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Conversation Protocols: A Formalism for

Specification and Verification of
Reactive Electronic Services

Xiang Fu Tevfik Bultan Jianwen Su

Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA.

{fuxiang,bultan,su}@cs.ucsb.edu

Abstract. This paper focuses on the realizability problem of a frame-
work for modeling and specifying the global behavior of reactive elec-
tronic services (e-services). In this framework, Web accessible programs
(peers) communicate by asynchronous message passing, and a virtual
global watcher listens silently to the network. The global behavior is
characterized by a conversation, which is the infinite sequence of mes-
sages observed by the watcher. We show that given a Büchi automaton
specifying the desired set of conversations, called a conversation proto-
col, it is possible to implement it using a set of finite state peers if three
realizability conditions are satisfied. In particular, the synthesized peers
will conform to the protocol by generating only those conversations spec-
ified by the protocol. Our results enable a top-down verification strategy
where: (1) A conversation protocol is specified by a realizable Büchi au-
tomaton, (2) The properties of the protocol are verified on the Büchi
automaton specification, (3) The peer implementations are synthesized
from the protocol via projection.

1 Introduction

The use of e-services (i.e., self-contained Web accessible programs and devices)
has revolutionized the way that business services are provided and deployed.
One recent trend is to provide value added composite e-services by integrating
existing services available on web. However to make such a “composite paradigm”
prevail, one has to first resolve the modeling problem, i.e., how to define the
public invocation interface so that individual e-services can be discovered and
invoked by others (see [18]).

It has been realized that stateless function call models like WSDL [29] are not
adequate to describe long running complex services. Indeed [15] shows that lack
of stateful coordination of server scripts caused problems in Orbitz reservation,
and similar flaws are also observed in many other services like Hertz Rental and
Register.com. Emerging standards like BPML [7], BPEL4WS [6] and WSCI [28]
can resolve this problem by exposing the abstract control flow skeleton of busi-
ness processes so that invoker knows how to interact. In contrast to the process



oriented view of BPEL4WS [6], IBM Conversation Support Project [16] concen-
trates on the interaction in a peer-to-peer conversation session, and proposes
the notion of conversation policy. In [9] we generalized the idea of conversation
policy to conversation specification (protocol), which describes conversation logic
globally for any number of peers. A conversation protocol can be conveniently
captured by a finite state automaton, with the set of messages exchanged among
peers as the alphabet. A reactive version for e-services would simply use a Büchi
automaton, which is a successful methodology for expressing liveness require-
ments.

Though increasingly many e-service standards [29, 6, 19] have been and are
being proposed by the industry, many fundamental issues remain unclear [18].
For example, one issue is what the underlying communication model for e-
services should be. There has been extensive work on synchronous communica-
tion models, for example, CSP [17], I/O automata [22] and interface automata
[3]. However, their synchronous assumption, i.e., two communicating processes
should execute a send and a corresponding receive action synchronously, is not
realistic in an environment like Internet, where there is no global clock and
network delay is significant. Although asynchrony can be simulated by intro-
ducing explicit queue processes in synchronous model, like [14], the introduction
of queue processes inhibits the direct application of finite state model checking
tools.

In our previous work [9], a framework was developed for modeling e-services
with asynchrony assumptions. Under this framework, peers (individual e-service
components) communicate via asynchronous messages and each peer maintains
a queue for incoming messages. A virtual global watcher keeps track of messages
as they occur, i.e., each sent message is simultaneously written to an input queue
and concatenated to the watcher. A central notion of a conversation, which is
a finite sequence of messages observed by the watcher, was studied. This model
can be regarded as a theoretical abstraction of many industry efforts like Java
Message Service [27].

Continuing on the study of e-service conversations, this paper extends the
model in [9] by focusing on reactive e-services, where the global conversation is
always infinite (However, some peers may terminate in the composition). Similar
to the results of [9] on finite words, in this paper we show that composition of
finite state peers generates non ω-regular languages. In addition, we show that
the problem of checking if the composition of finite state peers satisfies an LTL
property is undecidable due to the unbounded input queues associated with
peers. This motivates our top-down approach to specification of composite e-
services. We specify the desired set of global conversations of an e-service using
a Büchi automaton, and we call it a conversation protocol.

Unfortunately, not all conversation protocols are realizable. We present three
realizability conditions in this paper and show that any conversation protocol
which satisfies these three properties is realizable. The first property is called
lossless join property which requires that the protocol should be complete – when
projected to individual peers, the Cartesian product of the projections should be



exactly the same as the original protocol. The second property is the synchronous
compatible property which ensures that the protocol does not have “illegal states”
as specified in [3]. Finally the third condition is the autonomous property which
implies that at any point in the execution, each peer, independently, can make
a decision on whether to send, or to wait for a message, or to terminate. LTL
properties verified on a realizable conversation protocol will be preserved by its
synthesized peers, and this result supports a top-down verification strategy.

Related Work Our model of composite e-services is different than the Commu-
nicating Finite State Machines (CFSM) model in [8]. In our model message are
exchanged through a virtual common medium and stored in the queue associated
with the receiver, whereas in [8] each pair of communicating machines use iso-
lated communication channels and each channel has its own queue. The idea of
using CFSM with FIFO queues to capture indefinite delay of messages (signals)
is similar to many other published models like Codesign Finite State Machine
[10], and Kahn Process Networks [20]. Other formalisms like π-Calculus [23] and
the recent Microsoft Behave! Project [26] are used to describe concurrent, mobile
and asynchronously communicating processes.

Brand and Zafiropulo have shown in [8] that CFSM with perfect FIFO queues
are as powerful as Turing Machines. Thus it is not hard to infer that LTL model
checking on our e-service composition model is undecidable. This undecidability
result is caused by the unbounded FIFO queues, and in [13], many problems are
proved to be undecidable even for two identical communicating processes. The
transaction sequential consistency problem in [5] provides another perspective
for understanding the queue effect, where independent transactions are allowed
to commute (which resembles our Prepone operator in [9]). In [2] it is shown
that, if perfect FIFO channels are replaced by lossy channels, many problems
become decidable. However we stick with the perfect FIFO in our model, since we
assume that underlying communication protocols (like TCP/IP) ensure perfect
FIFO message deliveries.

To the best of our knowledge, the notion of realizability on open/concurrent
systems was first studied in the late 80’s (see [1, 24, 25]). In [1, 24, 25], realizability
problem is defined as whether a peer has a strategy to cope with the environment
no matter how the environment decides to move. The concept of realizability
studied in this paper is rather different. In our model the environment of an
individual peer consists of other peers whose behaviors are also governed by
portions of the protocol relevant to them. A related notion is the realizability
of Message Sequence Chart (MSC) Graphs [4]. However, the MSC Graph model
captures both “send” and “receive” events, while in our e-composition model
we are interested in the ordering of “send” events only. It can be shown that
the MSC Graph model and our conversation protocol model are incomparable
in expressiveness. In addition, the three realizability conditions proposed in [4]
are different than ours. For example, a conversation protocol which defines the
language mω does not satisfy the bounded condition of [4], but it satisfies the
realizability conditions in this paper. It is interesting to note that there are other
works like fair reachability analysis in [21] which achieved decidable analysis



results by restricting both the shape of composition (cyclic connection in [21])
and the control flow of protocol itself.

This paper is organized as follows. §2 defines the e-service model and in par-
ticular the notion of an e-service conversation. §3 discusses LTL model checking
of e-services. §4 defines the concept of a conversation protocol and establishes
the main results on the three realizability conditions. Finally §5 presents our
conclusions.

2 A Model for E-Services

We introduce the formal model of composite e-services in this section. In our
model (see Fig. 1), an e-service consists of a set of peers where each peer

Peer 1

Peer 2

Peer n
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……

Fig. 1. e-service model

maintains one input queue for incoming messages and
may send messages to the queues of other peers. A
global watcher listens silently to the network and ob-
serves the global behavior as a sequence of messages
at the times of being sent (i.e. enqueued). The time
a peer actually consumes a message from its queue
is a local decision by the peer. Such a modeling of
the global behavior of an e-service (or a distributed
system) departs from the traditional approach of fo-
cusing on the behaviors of individual peers (or sub-
systems). In this section, we start with the modeling
of individual peers. Then we move to the definition of
composite e-services. Finally we introduce the notion
of global configuration, based on which the concept of a conversation is defined.

For an alphabet Γ , let Γ ∗, Γω be the set of all finite, infinite (resp.) words
over Γ , and Γ≤ω = Γ ∗ ∪ Γω. The definition of a peer is presented as follows.

Definition 1. A peer is modeled using a nondeterministic Büchi automaton
(Σin, Σout, T, s, F,∆) where (1) Σin and Σout are disjoint finite sets of incoming
and outgoing (resp.) messages, (2) T is a finite set of states, s ∈ T is the initial
state, and F ⊆ T is a set of final states, (3) ∆ ⊆ T × (Σin∪Σout∪{ε}) × T is
the transition relation. (ε is the empty word.)

A transition is either an ε-move, or it either consumes an incoming message
(from the input queue) or produces an output but not both. These three types
of moves are denoted by triples (q1, ε, q2), (q1, ?a, q2), (q1, !b, q3) respectively. Let
L(p) represent the language accepted by a peer p. (A word is accepted if some
final states are visited infinitely often.) Due to the presence of ε-moves in a peer
p, L(p) may contain finite words, i.e., L(p) ⊆ Σ≤ω where Σ = Σin ∪Σout.

In the following we define the notion of an “e-service” which involves a set
of peers. For convenience, we use pi to denote a peer, and the alphabets, the set
of states, etc. of the peer pi also have subscript i.

Definition 2. An e-service is a triple (n, P, σ) where



– n > 1 is an integer,
– P = {p1, p2, ..., pn} is a set of n peers with pairwise disjoint input alphabets
Σin

1 , ..., Σ
in
n and pairwise disjoint output alphabets Σout

1 , ..., Σout
n (note that

Σin
i ∩Σout

j may be nonempty for i 
= j) such that ∪iΣ
in
i = ∪iΣ

out
i , and

– σ : [1..n]× (∪iΣ
out
i ) → [1..n] is a partial mapping such that

• For each i ∈ [1..n] and each b ∈ Σout
i , σ(i, b) is defined, and

• For each i ∈ [1..n], each j ∈ [1..n], and each b ∈ Σout
i ∩Σin

j , σ(i, b) = j.

Intuitively, σ(i, a) = j means that the message a can be sent by peer pi to
peer pj . Note that in Definition 2 a message can be transmitted on one channel
only. In the remainder of the paper, we use Σ to denote the entire set of alphabet
of an e-service (n, P, σ), i.e., Σ =

⋃
iΣ

in
i .

Definition 3. Let S = (n, {p1, ..., pn}, σ) be an e-service. A configuration of S
is a (2n + 1)-tuple of the form (Q1, t1, ..., Qn, tn, w) where for each j ∈ [1..n],
Qj ∈ (Σin

j )∗ is the queue content of peer pj, tj is the state of pj, w ∈ Σ∗ is the
global watcher which records the sequence of messages that have been transmitted.

For two configurations γ = (Q1, t1, ..., Qn, tn, w), γ′ = (Q′
1, t

′
1, ..., Q

′
n, t

′
n, w

′),
we say that γ derives γ′, written as γ → γ′, if one of the following holds:

– A peer pj executes an ε-move, i.e., there exists j ∈ [1..n] s.t. (tj , ε, t′j) ∈ ∆j ,
and Q′

j = Qj , and w′ = w, and for each k 
= j, Q′
k = Qk and t′k = tk.

– A peer pj consumes an input, i.e., there exist j ∈ [1..n] and a ∈ Σin
j s.t.

(tj , ?a, t′j) ∈ ∆j , and w′ = w, Qj = aQ′
j , and for each k 
= j, Q′

k = Qk and
t′k = tk.

– A peer pj sends an output to peer pk, i.e., there exist j, k ∈ [1..n] and
b ∈ Σout

j ∩ Σin
k s.t. (tj , !b, t′j) ∈ ∆j , and w′ = wb, Q′

k = Qkb, and Q′
l = Ql

for each l 
= k, and t′m = tm for each m 
= j.
For each configuration c = (Q1, t1, ..., Qn, tn, w), we denote its global watcher

content as gw(c) = w. Next we define the key notion of “run” and “conversation”.

Definition 4. Let S = (n, {p1, ..., pn}, σ) be an e-service. A run γ of S is a
finite or infinite sequence of configurations γ = c0, c1, c2, . . . satisfying the first
two of the following conditions, and a complete run is an infinite configuration
sequence satisfying all of them.

1. c0 = (ε, s1, ..., ε, sn, ε) (si is the initial state of pi for each i ∈ [1..n]),
2. for each 0 ≤ i < |γ|, ci → ci+1,
3. for each ! ∈ [1..n] and each i ≥ 0, there exist j > i, k > i such that

(a) tj� is a final state, where tj� is the state of p� in cj.
(b) head(Qk

� ) 
= head(Qi
�) if Qi

� 
= ε, where Qi
� and Qk

� are the queue contents
of p� in ci and ck respectively.

4. for each i ≥ 0, there exists a j > i such that gw(ci) 
= gw(cj).
An infinite word w ∈ Σω is a conversation of S if there exists a complete run
c0, c1, c2, . . . of S such that for each i ≥ 0, gw(ci) is a finite prefix of w. Let C(S)
denote the set of conversations of S.



In Definition 4 condition 3 requires that during a complete run, the Büchi
acceptance condition of each peer should be met, and all messages ever sent
should be eventually consumed; condition 4 specifies that global message ex-
change should eventually advance. The notion of conversation captures the global
behaviors where each peer proceeds correctly according to its specification. Note
that there might be bad runs where some peer is blocked by an unexpected
message, or all peers stay in a waiting (deadlock) state.

3 LTL Model Checking

Given an e-service specification, one interesting problem is to check if its con-
versations satisfy an LTL property. We will first define LTL properties[12, 11] on
conversations. Then the decidability of LTL model checking will be discussed.

For a conversation w = w0, w1, w2, . . . , let wi denote the i-th message in w,
and wi = wi, wi+1, wi+2, . . . the i-th suffix of w. The set of atomic propositions
(AP ) is the power set of messages, i.e., AP = 2Σ. The syntax and semantics of
LTL formulas are defined as follows, where ψ ∈ AP is an atomic proposition,
and φ and ϕ are two LTL formulas.

w |= ψ iff w0 ∈ ψ
w |= ¬φ iff w 
|= φ
w |= φ ∧ ϕ iff w |= φ and w |= ϕ
w |= φ ∨ ϕ iff w |= φ or w |= ϕ
w |= Xφ iff w1 |= φ
w |= Gφ iff for all i ≥ 0, wi |= φ
w |= φUϕ iff there exists j ≥ 0, s.t. wj |= ϕ and, for all 0 ≤ i < j, wi |= φ
We say that an e-service S satisfies an LTL formula φ (denoted as

Online Stock 
Broker

?Data

?Complete

Research
Department

Investor

RawData

DataAck

!RawData

Online Stock Broker

!RawData

!EndOfRdata
?Ack

!Start

!Data

?RawData

?RawData

!Data
?EndOfRdata

!Complete

Research Department

?Start

?Data
!Ack

Investor

Start

EndOfRdata

Complete

Fig. 2. Fresh Market Update Service

S |= φ) if for each conversation w ∈
C(S), w |= φ.

One natural question concern-
ing model checking an e-service S
is whether we can find a Büchi au-
tomaton to characterize the con-
versation set C(S). A positive an-
swer would imply that many ver-
ification techniques become imme-
diately available. Unfortunately we
show that the answer is negative.
Consider the system shown in Fig. 2.
In each round of message exchange,
Online Stock Broker sends a list of
“Rawdata” to Research Department
for further analysis, where for each
“Rawdata” one “Data” is generated
and sent to Investor. Message classes “EndofRdata”, “Start”, and “Complete”



are intended to synchronize the three peers. Finally Investor acknowledges On-
line Stock Broker with “Ack” so that a new round of data processing can
start. This seemingly simple example produces a non ω-regular set of conver-
sations. Consider its intersection with an ω-regular language (R∗ESD∗CA)ω

(each message is represented by its first letter). It is easy to infer that the result
is (RiESDiCA)ω, because Investor enforces that “Start” should arrive earlier
than “Data”. By an argument similar to pumping lemma, we can show that this
intersection cannot be recognized by any Büchi automata.

Proposition 5. There exists an e-service S such that C(S) is not accepted by
any Büchi automaton.

In fact, given a set of finite state peers LTL model checking is undecidable.
The proof can be shown by reduction from the halting problem of Turing Ma-
chines. For each Turing MachineM we can construct a two-peer e-service S that
simulatesM and exchanges a special message (saymt) onceM terminates. Thus
M terminates if and only if S |= Σ U mt.

Theorem 6. Given an e-service S = (n, P, σ) and an LTL property φ, deter-
mining if S |= φ is undecidable.

4 Conversation Protocols

By Proposition 5 conversations of an arbitrary e-service are not always ω-regular,
thus it is natural to consider a “top-down” approach to e-service design by spec-
ifying permitted conversations to restrict the global behavior of an e-service.
In this section, we introduce the notion of a conversation protocol to constrain
the global behavior by a nonredundant Büchi automaton. Then we study the
concept of realizability: given a Büchi conversation protocol, is it possible to
obtain peers to form an e-service which produces exactly the same set of con-
versations as specified by the protocol? We present three realizability conditions
that guarantee a realizable conversation protocol.

To facilitate the technical discussions below, A peer prototype is defined as a
pair of disjoint sets (Σin, Σout). A peer p implements a peer prototype (Σin, Σout)
if the input and output alphabets in p are Σin, Σout (resp.). Similarly, we can
define an e-service prototype as an e-service with peers replaced by peer pro-
totypes, and an e-service S implements an e-service prototype SP if peers in S
implement corresponding peer prototypes in SP . A standard Büchi automaton
A is nonredundant if for every state s in A there is a run of some accepted word
traveling through s.

Definition 7. Let SP = (n, PP , σ) be an e-service prototype and Σ be the union
of all alphabets in SP . A conversation protocol over SP is a nonredundant Büchi
automaton A = (Σ, T, s, F,∆) with the alphabet Σ. A conversation protocol A is
realizable if there exists an e-service S which implements SP and C(S) = L(A).



Our definition of realizability here is similar to the weak realizability in [4], where
deadlock is not considered. A conversation protocol A satisfies an LTL property
ψ, written as A |= ψ if for all w ∈ L(A), w |= ψ. The following theorem follows
from the well-know results in LTL model checking [12, 11].

Theorem 8. Given a conversation protocol A for an e-service prototype SP =
(n, PP , σ) and an LTL property φ, determining if A |= φ is decidable.

Note that Theorem 8 does not solve our problem, because not every Büchi
conversation protocol is realizable. Consider an e-service prototype with four
peers, pa, pb, pc, pd, where Σout

a = Σin
b = {α}, Σout

c = Σin
d = {β}, and Σin

a =
Σout

b = Σin
c = Σout

d = ∅. The conversation protocol A = (Σ, T, s, F,∆) with
Σ = {α, β}, T = {0, 1, 2}, s = 0, F = {2}, and ∆ = {(0, α, 1), (1, β, 2), (2, β, 2)}
is not realizable, because there is no communication between peers pa and pc,
so there is no way for them to make sure that α is sent before any β is sent.

4.1 Realizability conditions

In the following, we present three realizability conditions that guarantee a re-
alizable conversation protocol. We write w1 � w2 to denote a word w1 being
a prefix of w2 (w1 may be equal to w2). Let L∗

�(A) includes all finite prefix of
L(A) for a Büchi automaton A, clearly L∗

�(A) is regular. Given a conversation
protocol A, and a peer (prototype) pi, the projection of A onto pi is a Büchi
automaton Ai obtained from A by replacing each move for a message not in
the alphabet of pi by an ε-move. We define SP (A) to be the e-service derived
from the conversation protocol A based on the e-service prototype SP where
each peer in SP (A) is Ai. Clearly L(Ai) = πi(L(A)), where πi is the projection
operator w.r.t. peer pi.

Lossless join property We now introduce the “lossless join” property. Intuitively,
the lossless join property requires that a protocol is complete w.r.t. the product
of its projection to each peer. Let SP = (n, {p1, . . . , pn}, δ) be an e-service pro-
totype, the join operator is defined as: join(L1, . . . , Ln) = {w | w ∈ Σ≤ω, ∀i ∈
[1, n] : πi(w) ∈ Li}
Definition 9. Let A be a conversation protocol for an e-service prototype SP =
(n, PP , δ). A is lossless join if L(A) = join(π1(L(A)), . . . , πn(L(A))).

The check of lossless join property is straightforward. Obtain SP (A) from A,
and then construct the Cartesian product (a generalized Büchi automaton) of
A1, . . . ,An. Then verify whether the resulting product is equivalent to A.

Synchronous compatible property Before we introduce the property, let us revisit
the Fresh Market Update example in Fig. 2. We have argued in §3 that the
composition in Fig. 2 is bad because the conversation set is not ω-regular, which
inhibits the application of model checking techniques. In fact it is even worse.
Consider the peer Investor, it is possible that “Data” arrives earlier than “Start”,



and Investor is blocked. This scenario is similar to the “illegal states” described
in [3], where a peer receives an unexpected message. We define an synchronous
compatible property to avoid such scenarios.

Definition 10. Let A be a conversation protocol for an e-service prototype SP =
(n, P, δ). A is said to be synchronous compatible if for each word w ∈ Σ∗ and
each message α ∈ Σout

a ∩Σin
b , the following holds:

(∀i∈[1,n] πi(w) ∈ πi(L∗
�(A))) ∧ πa(wα) ∈ πa(L∗

�(A)) ⇒ πb(wα) ∈ πb(L∗
�(A))

The decision procedure of synchronous compatible property proceeds as fol-
lows: construct e-service SP (A) from A. For every peer make each state a final
state, and then determinize each peer. Construct the Cartesian product of all
peers, and check if there is any illegal state, i.e., there is a peer ready to send
a message while the receiver is not ready to receive. A is not synchronous com-
patible if an illegal state is found.

Autonomous property Synchronous compatible property is still not enough to
constrain a conversation protocol. Consider the conversation protocol A0 shown
in Fig. 3. It is easy to infer that A0 is synchronous compatible, however the word
βαγαω is a legal conversation that is not contained in L(A0).

αααα
A B

C

ββββγγγγ

εεεε εεεε

(C)

? γγγγ

(A)

! αααα

! αααα? ββββ

? ββββ

! γγγγ! αααα

! αααα

! ββββ? αααα

? αααα! ββββ

(B)

? αααα ? αααα

αααα

ααααββββ

ββββ

γγγγ
αααα

αααα
(Protocol)

Fig. 3. Ambiguous execution

Taking a close look at the exe-
cution paths of all peers (denoted
by dotted arrows in Fig. 3), we
learn that the abnormal conver-
sation is the result of “ambigu-
ous” understanding of the proto-
col by different peers, and the rac-
ing between A and B at the ini-
tial state is the main cause. Con-
sequently, we introduce the follow-
ing autonomous property to re-
strict racing conditions, so that at
any point each peer can make in-
dependent decisions to receive, to
send or to terminate.

Let A be a conversation proto-
col on a e-service prototype SP = (n, PP , δ). For a peer pi ∈ PP , we say pi is
output-ready (input-ready) at a word w ∈ Σ∗

i if there exists a word w′α ∈ L∗
�(A)

such that α is an output (resp. input) message of pi and πi(w′) = w. Similarly
pi is terminate-ready at a word w ∈ Σ∗

i if there exists a word w′ ∈ L(A) such
that πi(w′) = w.

Definition 11. Let A be a conversation protocol on e-service prototype SP =
(n, PP , δ). A is autonomous if for each peer prototype pi ∈ PP and for each
finite prefix w ∈ L∗

�(A), pi at πi(w) is only one of the following: output-ready,
input-ready, or terminate-ready.



Given a conversation protocol A and its e-service prototype SP = (n, PP , δ),
we can check the autonomous property as follows. For each peer pi, let Ai =
(Σin

i , Σ
out
i , Ti, si, Fi) be its peer implementation in SP (A), and let T ′

i ⊆ Ti in-
cludes each state s where an ε loop starting at s passes through at least one final
state. Construct prefix automaton A∗

i for each Ai by making each state in Ai a
final state. Determinize A∗

i , and now each state of A∗
i can be represented by a

subset of Ti. We check each state s′ of A∗
i . When s′∩T ′

i is not empty, we require
that there is no outgoing transitions starting from s′. If s′∩T ′

i is empty, then the
outgoing transitions from s′ are required to be either all output messages or all
input messages. The complexity of the above check is NPTIME because of the
determinization procedure. The following lemma summarizes the complexity of
checking three realizability conditions.

Lemma 12. Given a conversation protocol A and an e-service prototype SP , it
can be determined in polynomial time in the size of A and SP if A has lossless
join, synchronous compatible, and autonomous property.

We now proceed to present the main result (Theorem 14), which shows that
if the realizability conditions are satisfied, a conversation protocol is realizable.

Lemma 13. Let A be a synchronous compatible and autonomous conversation
protocol, and SP (A) the e-service obtained from the projection of A to each peer,
then for each conversation w ∈ C(SP (A)), the following two statements hold

1. for each peer pi, πi(w) ∈ πi(L(A)), and
2. during any complete run of w, each message sent is consumed eagerly by its

receiver, i.e., a peer never sends a message with its queue not empty.

Proof. (Sketch) We need only prove statement (2) because (1) is implied by (2).
Assume A is synchronous compatible and autonomous, but there is a a run R
where a peer px sends out a message αn while a message αm is stored in its
queue. Without loss of generality, let αm be the first such message during R.
Hence each αi where i < m is consumed eagerly by its receiver. It is not hard
to show that for each peer pi, πi(α0 . . . αm−1) ∈ L(Ai), now by synchronous
compatible definition, πx(α1 . . . αm) ∈ L(Ax), and hence px is input ready at
πx(α1 . . . αm−1). On the other hand, we can infer from the run R that px is
output ready at πx(α1 . . . αm−1) because of message αn. This contradicts with
the autonomous property, and thus the assumption does not hold.

Theorem 14. A conversation protocol A for an e-service prototype SP is real-
izable, i.e., C(SP (A)) = L(A), if A is lossless join, synchronous compatible, and
autonomous.

Following Lemma 12 and Theorem 14, we get the following verification strat-
egy: (1) A conversation protocol is specified by a realizable Büchi automaton, (2)
The properties of the protocol are verified on the Büchi automaton specification,
(3) The peer implementations for the conversation protocol are synthesized from
the Büchi automaton via projection.



The three realizability conditions in Theorem 14 may seem restrictive, how-
ever they are satisfied by many real life e-service applications. We verified that
five out of the six examples listed on IBM Conversation Support site [19] satisfy
the conditions. In fact, except restricting the racing between send and receive
actions, our realizability conditions still allow a certain level of parallelism, which
makes it acceptable to many e-services.

The results in this section can be directly applied to the framework in [9],
and even better results can be achieved. For an FSA conversation protocol A
and its e-service prototype SP , we can determinize each peer implementation in
SP (A), and it is guaranteed that their composition is deadlock free and peers
do not get blocked by unexpected messages in the composition. The difference
between the two frameworks is that nondeterministic Büchi automata cannot be
determinized.

5 Conclusions

In this paper we studied the global behavior of reactive e-services in terms of the
conversations permitted by e-services. LTL model checking on e-services specified
using the bottom-up approach was shown to be undecidable. This suggests that
specifying the permitted conversations as conversation protocols in a top-down
fashion is beneficial. However, not every conversation protocol defined by a Büchi
automaton is realizable by asynchronous peers. We gave three conditions on
conversation protocols which ensure realizability. Studying the global behavior
of e-services is a promising research topic. The results in [9] and in this paper
provide a starting point.
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