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  ABSTRACT OF THE DISSERTATION 

 

Applications of Geospatial Modeling to Improve  

Public Health Surveillance and Control  

of West Nile Virus 
 
 

 by  
 
 

Bryan Moy 
 

Doctor of Philosophy in Environmental Health Sciences  
 

University of California, Los Angeles, 2016  
 

Professor Hilary Godwin, Chair 
 
 
 
 

The overarching goal of the work described herein is aimed at increasing the translation 

and application of geospatial research to improve real-world West Nile virus surveillance and 

mitigation activities. We first conducted a case study in Los Angeles County to demonstrate how 

geospatial methods can be used to identify factors supporting WNV hotspots. Through our 

analysis, we determined that catch basins provide a link between drought conditions and 

increased WNV prevalence of vectors and humans in the county. We then focused on public 

health and vector control agencies involved in WNV control and investigated the barriers and 

challenges in implementing geospatial modeling for use in WNV surveillance and mitigation. 

Barriers were largely dependent upon what stage agencies had implemented geospatial modeling. 

Additionally, stand-alone vector control and public health agencies faced a greater number of 

barriers compared to combined agencies. Following our analysis of identifying barriers to 
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implementation, we sought to identify best practices in geospatial modeling for use in WNV 

control. We examined how four vector control and public health agencies have used geospatial 

modeling to: (1) elucidate the vector ecology of mosquito species; (2) bolster mosquito source 

reduction efforts; (3) develop predictive risk assessment models; and (4) increase vector control 

agency worker utilization. Taken together, these studies provide important insights into how 

geospatial modeling can be used to applied and implemented in practice to improve the 

surveillance and control of WNV throughout the United States, and identifies how these 

practices can be applied to address threats by newly emerging and re-emerging vector-borne 

diseases.   
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CHAPTER 1 

Introduction and Overview to the Dissertation 

 

 

Since it was first identified in New York in 1999, West Nile virus (WNV) has continued 

to be a serious threat to public health in the United States (1, 2). West Nile virus is an arbovirus 

commonly transmitted between Culex mosquito vectors, bird reservoir hosts (primary 

transmission), and secondary transmission occurring among humans and horses (3-4). In most 

human cases, WNV infection is asymptomatic or causes a mild febrile illness known as West 

Nile fever, which is characterized by increased body temperature, headaches, fatigue, skin rash, 

swollen lymph glands and eye pain (5). More severe infections can result in neurological 

disorders known as ‘West Nile encephalitis’ and ‘West Nile meningitis,’ which, if left untreated, 

can result in death. These significant public health threats posed by WNV are further 

compounded by a lack of vaccines or antivirals for the virus (6). The lack of available treatment 

and prevention options make vector surveillance and control an important public health weapon 

in the prevention of the disease in the United States and abroad (1). 

One way to increase the effectiveness and capacity of vector control efforts is to use 

geospatial modeling and geographic information system (GIS) tools.  Geospatial modeling 

allows for the visualization, analysis, and interpretation of data to understand spatial 

relationships, patterns, and trends (www.esri.com). When applied to vector control, geospatial 

modeling can be used to gain insights into mosquito ecology and disease hotspots in a spatio-

temporally explicit manner (7-11). For example, geospatial models have been developed to allow 

vector control agencies to incorporate local vector ecology information into their mosquito 
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control prevention efforts (12), identify areas of high human risk (13), and target those areas for 

public outreach and intervention efforts. Unfortunately, significant gaps exist between the state 

of the research and the use of these tools by practitioners to inform and improve WNV 

surveillance and mitigation activities.   

In an effort to improve the translation of geospatial modeling for use in WNV control 

practice, I sought to answer the following questions: (1) How can geospatial modeling be used to 

enhance WNV control in a WNV hotspot, such as Los Angeles County, CA? (2) What are the 

current barriers and limitations of public health and vector control agencies in implementing 

geospatial modeling for WNV control at the national level? (3) For agencies that have 

successfully implemented geospatial modeling, how has geospatial modeling helped to improve 

WNV control and how can geospatial modeling be applied to inform the control of newly 

emerging and reemerging mosquito-borne diseases? These questions are addressed sequentially 

in Chapters 2-4 of this thesis.   

To begin, Chapter 2 demonstrates how geospatial modeling can be applied to evaluate 

the role catch basins against other known predictors of WNV prevalence in Los Angeles County, 

California, a known WNV hotspot. To identify the significance of catch basins in supporting 

WNV prevalence in both Culex vector and in humans, a number of environmental and 

demographic predictors were evaluated through ecological niche modeling software and machine 

learning algorithms. Modeling revealed that warm, dry conditions, such as those during periods 

of drought, are a significant predictor for WNV prevalence in vectors, while catch basins are a 

significant predictor for WNV disease in humans within Los Angeles County. The application of 

geospatial modeling demonstrated herein provides critical information for vector control and 
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public health agencies to develop more effective WNV programs and prevention efforts within 

Los Angeles and other jurisdictions with similar environmental conditions.   

Chapter 3 focuses on identifying barriers restricting the implementation of geospatial 

modeling for WNV control at the national level. Standardized interviews were conducted with 

public health and vector control agencies in states with the highest cumulative human WNV 

cases. The barriers that were identified from this study were dependent on the current level of 

implementation of geospatial modeling used for WNV control. Agencies that were interested in 

applying geospatial modeling techniques to their WNV program described barriers related to 

their initial implementation and support. By contrast, agencies that were using geospatial 

modeling internally for their WNV program reported barriers related to surveillance and 

mitigation. Additionally, the agencies that had already integrated geospatial modeling into their 

WNV program both internally and externally discussed barriers related to communication and 

outreach. Recommendations are provided to address each challenge to improve the application 

of geospatial modeling for WNV control.   

Chapter 4 is aimed at identifying best practices in the use of geospatial modeling 

methods to improve mosquito control efforts in different regions in the United States.  In-depth 

interviews were conducted with four public health and vector control agencies identified in the 

study reported in Chapter 3 as being particularly successful in using geospatial modeling for 

WNV control. Best practices include the use of geospatial modeling by agencies to: (1) elucidate 

the vector ecology of mosquito species; (2) bolster mosquito source reduction efforts; (3) 

develop predictive risk assessment models; and (4) increase vector control agency worker 

utilization. Identifying best practices currently used in practice can inform public health and 

vector control agencies about how geospatial modeling is currently being used to reduce WNV 
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prevalence and how these practices can be applied to address newly emerging and reemerging 

mosquito-borne disease threats in the future. Chapter 5 concludes with overarching conclusions 

for these studies as well as recommendations for future studies that could improve the translation 

of geospatial modeling for enhanced mosquito control. 

As agencies attempt to reduce the burden of WNV, understanding the available tools, 

barriers, and best practices of effective mosquito control is critical to reducing the burden of 

WNV and other vector-borne diseases as well. The information provided herein demonstrates 

how geospatial modelling can be applied to help provide insight into the role of predictors 

supporting WNV prevalence in vectors and humans in hotspot locations. Additionally, the 

identification of key challenges and limitations preventing further application of geospatial 

modelling can help to enhance mosquito control of WNV and other vector-borne diseases. 

Lastly, highlighting best practices in geospatial modelling for WNV surveillance and control 

efforts can provide insight into how geospatial resources can be applied to address newly 

emerging and re-emerging mosquito-borne diseases.   
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CHAPTER 2 

Adapting to a Changing World: The Role of Urban Infrastructure and Drought in 

Facilitating West Nile Virus in Los Angeles County   

(a modified version of this chapter was submitted as a manuscript to Emerging Infectious 

Diseases on August 13, 2016)  

 

 

ABSTRACT 

Los Angeles County, California continues to be a hotspot for West Nile virus (WNV) 

within the United States, despite the occurrence of an ongoing drought. Given these conditions, 

we sought to examine the role of artificial water sources, such as catch basins, against known 

predictors of WNV prevalence. To assess the significance of catch basins in supporting WNV 

prevalence in both Culex vectors and human hosts within the county, we tested a number of 

predictors using ecological niche modeling software and machine learning algorithms. We found 

that a combination of warm, dry conditions, due to meteorological drought, were significant 

predictors in explaining WNV prevalence in vectors. Additionally, analysis of human WNV 

hotspots identified catch basins as a potential mechanistic link providing suitable habitats for 

Culex vectors during dry conditions. This study provides critical findings into how public health 

and vector control agencies can improve current and future WNV surveillance and control within 

Los Angeles County. 
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INTRODUCTION 

Los Angeles County, California remains a top priority region for improved control of 

West Nile virus (WNV). Following the initial identification of WNV in Los Angeles in 2003, the 

county has recorded positive mosquito and human cases every year, with some of the highest 

human WNV incidence in the United States (1, 2). Within the past year (2015), Los Angeles 

County alone accounted for 13% of all human WNV cases within the United States (2). The risk 

of WNV to the county as a public health concern is amplified by the lack of available WNV 

vaccines, which to date have proven unsatisfactory and cost-prohibitive (3). The limited 

available treatment and prevention options makes vector control and personal protection the 

primary defense mechanisms against the spread of WNV in Los Angeles County and the greater 

United States.    

The control of WNV in Los Angeles County is an enormously challenging task. 

Responsibility for the surveillance and control of WNV lies with the Los Angeles County 

Department of Public Health (LACDPH) and the County’s five vector control districts (Antelope 

Valley Mosquito and Vector Control District, Greater Los Angeles County Vector Control 

District, San Gabriel Vector Control District, Compton Creek Mosquito Abatement District, and 

Los Angeles County West Vector & Vector-borne Disease Control District). These vector 

control districts serve over 10 million residents and have a combined jurisdiction over an area of 

approximately 12,310 km2 (i.e., larger than the states of Delaware and Rhode Island combined) 

(4). The surveillance of human WNV cases falls under the jurisdiction of LACDPH, while the 

region’s five vector control agencies are responsible for conducting surveillance and control of 

local WNV vectors, such as Culex quinquefasciatus and Cx. tarsalis, (1, 4, 5). Despite these 

efforts, Los Angeles County has continued to experience high WNV incidence, with high 
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number of human cases occurring in 2004 (294), 2008 (169), 2012 (169), 2013 (159), 2014 

(257), and most recently, 2015 (252) (2).  

To improve the control of WNV, researchers have attempted to identify the biotic and 

abiotic drivers supporting the spread of WNV. A number of studies have identified links between 

elevated temperatures and decreased precipitation, conditions found during droughts, to increases 

in WNV disease in both Culex vectors and humans in California as a whole, and in Southern 

California in particular (6-8). While these findings are significant given California’s ongoing 

meteorological drought, the mechanism(s) supporting the exceptionally high rates of WNV 

transmission in Los Angeles have not been well characterized to date. In studies conducted in 

other parts of California and the greater United States, researchers have identified artificial water 

sources, such as storm drain catch basins, as playing a significant role in contributing to vector 

breeding and viral amplification of WNV (9-16). Thus, we hypothesized that during drought 

conditions, the availability of catch basins (curbside drains used to capture urban runoff) could 

support the transmission of WNV prevalence by providing suitable microhabitats for the survival 

of Cx. vectors in Los Angeles County.  

Here, we investigated the importance of catch basins compared to other known 

environmental and socio-demographic predictors of WNV prevalence in mosquito and human 

populations for Los Angeles County, between the period 2004–2014. Using machine learning 

algorithms, we assessed whether catch basins may better explain WNV prevalence in mosquitoes 

throughout the county compared to other environmental and socio-demographic predictors. We 

then conducted a similar analysis using ecological modeling software to examine the importance 

of catch basins in explaining human cases of WNV disease using observed positive WNV 

presence data and their relationship to the current environmental and socio-demographic 
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landscape. 

METHODS 

Within our analysis, we sought to examine the importance of catch basins against a range 

of known environmental and socio-demographic predictors identified within the literature to be 

associated with WNV prevalence in vectors and humans. All data was processed using ArcMap 

10.3 (17). Environmental and socio-demographic data layers were clipped to adhere to the Los 

Angeles County boundary, and measured to ensure cell sizes were consistent at 1km resolution, 

an estimate of the nightly range of Cx. spp. (18). We then used the statistical framework R (19) 

and the ecological modeling software package Maxent (version 3.1.0) (20) to analyze and 

develop predictions for WNV in both Culex mosquitoes and in humans in Los Angeles County.  

 

West Nile virus data 

Confirmed WNV positive human case data with geo-locations were compiled and 

provided by the Los Angeles County Department of Public Health (LACDPH) for the years 

2004-2014. The Los Angeles County Department of Public Health only included confirmed 

cases of WN neuroinvasive disease, WN fever, and positive blood donors. In addition, only those 

cases for which the infections were believed to have occurred in Los Angeles County (as 

opposed to one where infection was believed to have occurred during travel to another region) 

were included in the data set. Cases for which no geo-locations was available (e.g., cases 

involving transient or homeless individuals) were excluded from the study.    

Culex vector data was provided between 2004-2014 by the Greater Los Angeles County 

Vector Control District (GLACVCD). The GLACVCD is the largest of Los Angeles County’s 

five vector control districts covering an area of 3,471 km2 and serves over 6 million out of the 10 
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million residents in the county (21). Vector data from the remaining four vector control agencies 

were not available at the time of the study and were therefore excluded from our analysis. For the 

years 2004-2014, we included trapping sites that were surveyed more than 15 times during the 

WNV season (defined as May-November each year), resulting in over approximately ~100 sites 

sampled across Los Angeles County. Mosquitoes were collected using gravid traps and CO2 

traps to capture the potential dominant WNV vectors (Cx. quinquefasciatus and C. tarsalis), and 

individual mosquitoes were then pooled to test for WNV (mosquito pools were defined as 

batches of ~50 mosquitoes). For each mosquito pool, we calculated the Maximum Likelihood 

Estimate (MLE) of positive mosquitoes to represent WNV prevalence (16). MLE was used as a 

proxy for prevalence of WNV in mosquitos, where larger MLE values correspond to higher 

overall WNV prevalence in mosquito samples.  In addition to MLE, mosquito abundance was 

obtained by calculating the total number of mosquitoes divided by the number of trapping nights. 

 

Environmental data 

A number of studies have identified relationships among WNV prevalence in mosquitoes 

and humans and environmental factors including precipitation (22) and temperature (7, 23, 24), 

vegetation (8, 25), and elevation (8). To incorporate aspects of climate into our model, we began 

with 19 bioclimatic layers developed by the WorldClim group at 1km resolution (26). Each 

bioclimatic layer was derived using monthly mean temperature and rainfall data, and represented 

annual trends, seasonality, and temperature extremes. To avoid multicollinearity among the 

variables, we removed variables with an r correlation value greater than 0.5, resulting in a final 

suite of four bioclimatic variables (mean annual temperature, annual precipitation, precipitation 

seasonality, and temperature seasonality) for use within our analysis. Elevation was found to be 
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highly correlated with the bioclimatic variables for Los Angeles County during the time period 

studied and was therefore excluded from further analysis.   

To include vegetation within our model, we used the Normalized Difference Vegetation 

Index (NDVI), which is a vegetation index that uses visible light and near-infrared radiation to 

identify vegetation abundance and biomass (27, 28). NDVI values range from +1.0 to -1.0, with 

high NDVI values corresponding to denser vegetation and lower values indicating bare soil. For 

our study, we obtained mean NDVI data at 1 km resolution using NASA’s Moderate Resolution 

Imaging Spectroradiometer (29).  

To assess the role of catch basins within our study, we obtained the geo-locations of all 

catch basins throughout Los Angeles County (n = ~168,000) from the Los Angeles County 

Department of Works (30). Catch basins were defined as curbside drains used to capture urban 

runoff. To develop a usable layer for our analysis, we used the ‘Spatial Analyst’ tool in ArcMap 

10.3 to calculate the density of catch basins for each grid cell within a 1km radius. 

 

Socio-demographic variables 

In addition to the listed environmental variables, prior studies have identified economic 

conditions and population density to be predictors of WNV prevalence in humans for other 

regions within the United States. (16, 31) To evaluate for these socio-demographic predictors, we 

obtained ‘per capita household income’ and ‘mean population density’ for Los Angeles County 

from the U.S. Census 2014 American Community Survey (32). ‘Per capita household income’ is 

generally considered to be a good descriptor of the economic variation in residential areas, and 

‘mean population density’ was included to assess whether WNV prevalence was correlated with 

population distribution throughout the county. Data was obtained at the block group level, which 
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contains between 600– 3000 people (32). To process the socio-demographic data, U.S. Census 

data tables for Los Angeles County were first assigned to their corresponding block group 

shapefiles in ArcMap 10.3, and then converted from feature data to 1km cell raster grids for our 

analysis. 

 

Importance of variables for WNV prevalence in mosquitoes 

To assess the importance of each variable in explaining WNV prevalence in vectors, we 

used random forest models in R. Random forest models are well suited for this analysis, as this 

analysis can help capture any complex, non-linear relationships that may exist between the 

predictor variables and the response variable (here, Culex MLE). Random forest models use 

binary recursive partitioning procedures to measure the amount of variation in a response 

explained by each predictor used in the model (33). Predictor input for the model corresponded 

to vector abundance and the extracted environmental (NDVI, annual precipitation, mean annual 

temperature, and density of catch basins) and socio-demographic (per capita income and 

population density) data for each grid cell at the mosquito sampling location (both positive and 

non-positive sites). Ten thousand iterations were run with 50% of the data set aside; the 

remaining data were set aside and later used to test predictions generated from the random 

forests models. 

 

Modeling the spatial distribution of human and vector hotspots in Los Angeles County 

 Because only positive WNV human cases (not human WNV prevalence data) were 

available, a random forest regression approach (which requires continuous data) could not be 

used to model human WNV data. Instead, we used Maxent, a machine learning algorithm to 
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model the human cases and assess the relative importance of variables in predicting human 

WNV hotspots. To ensure that any differences observed between predictors for mosquito 

prevalence and human cases did not arise from using different modeling approaches for the two 

data sets, we also performed the Maxent analysis on vectors in addition to the random forest 

models run on these data (See Appendix 1). For our analysis, we used the geo-locations of 

positive human WNV cases as the outcome variable, and ran them against the generated layers of 

the environmental and socio-economic predictor variables at 1km resolution. Similarly, to assess 

the spatial distribution of WNV hotspots in vectors, we ran the environmental and socio-

demographic predictor layers against the geo-locations of positive mosquito surveillance sites 

provided by GLACVCD. For the human case analysis, data from 2010 was excluded from the 

model due to the low human case count in LA County for that year (n = 4). By contrast, data for 

all years were used in data analyses on vectors. Default Maxent settings were used (10,000 

background points; regularization multiplier = 1.0; maximum iterations = 500; convergence 

threshold = 0.00005).  

 

RESULTS 

For the period 2004-2014, the number of confirmed human WNV cases per year in Los 

Angeles County as a whole roughly mirrored trends observed in the Maximum Likelihood 

Estimate (MLE) of positive mosquitoes sampled by the GLACVCD during the same calendar 

year (ρ =  .619, p = .1153) (Figure 2.1). As has been reported previously both for California and 

for other regions of the United States, significant year-to-year variation in overall human case 

counts were observed during this period (2).  

Analysis of WNV mosquito data in Los Angeles County using random forest models 
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revealed that at least 20% of the variation in WNV prevalence in Cx. vectors could be explained 

for the years 2004-2007, and in 2013. The amount of variation in WNV prevalence in Cx. 

vectors that can be explained using environmental and socio-demographic factors was highest in 

2004 and 2005, with a maximum of 33% and 39%, respectively, of the variation explained in 

these years. Models for the years 2006, 2007, and 2013 explained 27%, 22%, and 25% 

(respectively) of the variation in WNV prevalence in Cx. vectors in those years. Random forests 

models did not, however, explain high amounts of variation between 2008-2012 and 2014. (Only 

~17% of the variation was explained for 2012 and only ~20% was explained for 2014; even less 

variation was explained in 2008, 2009, and 2011).  

For the years where the amount of variation in WNV prevalence in vectors that could be 

explained by the random forest models was over 20% (i.e., 2004-2007 and 2013), the predictors 

that consistently explained the largest amount of variation in WNV are ‘mean annual 

temperature’ and ‘annual precipitation’ (Figure 2.2). Inspection of the relationship for ‘mean 

annual temperature’ and ‘annual precipitation’ revealed that higher MLE levels in vectors were 

consistently associated with temperatures between 22-28°C, and annual precipitation between 

200-300 mm. Similar results were also obtained from the Maxent analysis of positive WNV 

surveillance sites (See Appendix 1 and Figure A1.1), and are consistent with previous studies 

that have linked warm, dry climates (e.g., those observed during drought conditions) to increases 

in the frequency and transmission of WNV (22, 23).  

Our models of the spatial distribution of WNV infections in humans using Maxent 

revealed that catch basins consistently explain the highest amount of spatial variation of WNV 

infections in humans with the exception of 2004 (Figure 2.3). The percent of the observed 

variability attributed to catch basins was highest in 2005 (75.8%) and lowest in 2014 (46.4%). 
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Population density was the second highest contributing factor for the years 2007 and 2011-2013. 

All other predictors contributed less than 20% for each year. Interestingly, we observed that 

vector abundance did not significantly explain WNV prevalence for all years, suggesting that 

amplification dynamics may play an important role in determining the rate of WNV 

transmission. Furthermore, predictive maps generated by Maxent for both human cases (Figure 

2.4A) and vectors (Figure A1.2) both identified the San Fernando Valley as an area supporting 

high human risk for WNV, with low WNV hotspot predictions occurring within the northern 

high desert region.  

 

DISCUSSION 

 The findings from our analysis indicate that warm, dry conditions support WNV 

prevalence in vectors and human cases within Los Angeles County (Figure 2.4). For Cx. vectors, 

our results indicate that mean annual temperatures between 22-28°C and low rainfall between 

200-300 mm supported higher WNV prevalence in mosquitos. Although these environmental 

conditions are consistent with the average annual temperature (~24°C) and rainfall (375 mm) for 

Los Angeles County as a whole during the period investigated, it is important to note that Los 

Angeles County comprises a broad range of microclimates and that both average temperature 

and rainfall are highly variable across the region (see Figures 2.4C and 2.4D). Additionally, 

spatial analysis of WNV human case data revealed that the density of catch basins (Figure 2.4B) 

is an important predictor of the location of human WNV cases in Los Angeles County. This 

result, combined with the lack of association to vector abundance, suggests that catch basins may 

play a role in the survival and development of WNV in adult Cx. vectors, thereby contributing to 

increases in secondary human cases (Figure 2.4A).  
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 The presence of warm mean daily temperatures (between 22-30°C) within the WNV 

season may support WNV prevalence in vectors by accelerating the growth of WNV within Cx. 

mosquitoes (known as the extrinsic incubation period, or EIP) (23, 34) (Figure 2.4C). Decreases 

in the EIP due to warmer temperatures may increase the probability that mosquitoes will survive 

long enough to become infectious (35). This theory is supported by our data showing that 

temperatures between 22-28°C contributed to higher WNV prevalence for all years except 2006. 

Additionally, while our findings may be explained by increases in vector abundance (given 

identified relationships between warmer temperatures and higher rates of oviposition (13, 16, 36-

38), there were no significant associations between vector abundance and daily temperatures 

within our study (Figure 2.2). This suggests that amplification dynamics among adults vectors 

and hosts may be primarily driven by warmer temperatures, rather than due to increases in the 

vector abundance. 

For periods of unsuitable conditions for Cx. vectors (e.g., low rainfall or high 

temperatures), catch basins may facilitate WNV prevalence for three reasons.  First, as Cx. 

tarsalis and quinquefasciatus are nocturnally active, they may rest within sheltered conditions, 

such as catch basins, during the day. Since catch basins receive constant urban runoff and are 

subterranean, they can provide cooler, humid microhabitats for adult Cx. mosquitoes to rest 

during unsuitable high daily temperatures, and allow them to return to the surface to feed in the 

evenings when temperatures subside (39). The increased persistence and survivability of adult 

female Cx. in catch basins may allow recently infected female WNV Cx. mosquitoes to become 

infectious and capable of transmitting the disease. The high number of infectious WNV positive 

mosquitoes around populated areas can help to drive WNV infections in humans at times when 

conditions may be normally hazardous for the survival of adult Cx. mosquitoes. The lack of 
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human population and limited number of catch basins may help explain why our predictive maps 

did not identify the northern high desert region as a hotspot of disease for both humans and 

vectors, despite having extremely high temperatures and very low rainfall (Figure 2.4A and 

A1.2).   

Second, during periods of low rainfall or persistent drought, WNV amplification may 

increase as Cx. vectors and common competent urban avian hosts, (e.g., house sparrows or 

crows) (40) congregate around anthropogenic or limited natural water sources, such as catch 

basins or reservoirs. The forced interaction between Cx. mosquitoes and primary avian hosts can 

provide an ideal environment for the rapid epizootic amplification of WNV throughout arid 

regions (22). Such may be the case in the San Fernando Valley, which receives low rainfall 

throughout the WNV season (Figure 2.4D) (5), maintains a high abundance of consistent avian 

hosts, and contains a number of man-made water sources, including catch basins, that can 

facilitate interactions between WNV vectors and hosts for WNV transmission. These findings 

are consistent with those reported in Orange County, California, which revealed that neglected 

swimming pools within low socioeconomic areas were associated with higher WNV 

amplification in vectors (16).   

A third, albeit less likely, explanation for how catch basins may support the persistence of 

WNV during drought conditions is through their role in providing suitable ovipositing habitats 

for Cx. mosquitoes, as has been found with other water sources across the United States. The 

constant presence of eutrophic water found within and around catch basins provides ideal 

breeding habitats to support high densities of immature mosquitoes during extremely dry 

periods. These high mosquito densities have been associated with increases in WNV outbreaks, 

as more mosquitoes may increase the risk of people being bitten by WNV positive mosquitoes 
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(41-43).  However, as noted, there were no significant associations between mosquito abundance 

and WNV prevalence, which is consistent with results conducted in neighboring Orange County 

(16). The lack of association between mosquito abundance and WNV prevalence indicates that 

the persistence and survival of adult WNV positive female Cx. mosquitoes may serve as the 

primary driver for WNV amplification and transmission to secondary human hosts within Los 

Angeles County.  

 

Public Health implications for surveillance and mitigation of WNV in Los Angeles  

The identification of how drought conditions support WNV prevalence in vectors and 

humans can aid public health and vector control agencies in reducing the overall burden of 

disease within the county. For regions within the county that may experience warm, or 

unseasonably high temperatures or dry conditions during the WNV season, vector control and 

public health agencies should focus their efforts on bolstering WNV preparedness, surveillance, 

and control within these regions to reduce the burden of WNV in Cx. vectors. Additionally, in 

addition to ongoing larvicide applications, vector control agencies should consider the 

application of adulticides to catch basins in populated areas to help reduce mosquitoes that may 

be resting or breeding. Furthermore, the identification of the San Fernando Valley as a consistent 

WNV hotspot for human cases and Cx. vectors warrants the need for vector control and 

LACDPH to provide increased surveillance and control in this region. Overall, the control of Cx. 

vectors during these conditions can help to reduce the transmission and occurrence of WNV to 

secondary human cases.   
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LIMITATIONS AND FUTURE RESEARCH 

 Our analyses in identifying predictors of WNV prevalence within Los Angeles County 

had several limitations that should be acknowledged. First, the outcome variables used within the 

study may not accurately represent the true spatial distribution of positive WNV mosquito pools 

and WNV human cases throughout the county. Although we were able to obtain comprehensive 

mosquito surveillance data from GLACVCD, the largest vector control agency in Los Angeles 

County, we were not able to obtain mosquito surveillance from the four other vector control 

agencies that operate in Los Angeles county, and hence did not have complete coverage for all 

geographic areas in the county (Appendix Figure 2.1). The lack of vector control data from the 

four other vector control districts limits our ability to accurately identify other spatial variations 

supporting WNV disease in vectors.     

Additionally, it should be acknowledged that our use of WNV human cases may be 

influenced by media attention and how frequently medical practitioners test suspected patients 

for WNV (44). For example, in years were WNV epidemics are promoted in the general media 

more frequently (such as 2012 or 2014), medical practitioners may be more likely to test for 

WNV, thereby potentially identifying more WNV cases (Figure A1.3). Such variations in 

reporting may bias our data away from truly identifying potential human risk factors for WNV. 

To adjust for this, future research should consider correcting for this bias by implementing 

analyses of sentinel chicken sites alongside estimates of human WNV prevalence (45).     

Additionally, in this study, temporal trends were downplayed to better capture spatial 

aspects related to identifying predictors. As a result, our analysis may not have picked up 

dynamic changes in environmental conditions that occurred throughout the duration of our study.  

Lastly, our models focused on examining the likely drivers of WNV in secondary cases, without 
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examining primary avian hosts. To fully understand the mechanisms of WNV within the county, 

it will be important for future studies to examine the role of avian hosts, particularly for years 

where our models did not explain significant variation in our models. We suspect that one factor 

that we were not able to examine that may contribute to the variation is variation in immunity 

among avian hosts as a function of time, which would in turn influence WNV transmission and 

the overall WNV prevalence in humans over time (14).    

The research presented herein provides important information to help researchers 

prioritize future studies. Ideally, future research should focus on developing methods to capture 

surface water sources at the neighborhood-level, such as pools and reservoirs, to identify how 

these sources may contribute to the amplification of WNV within the county. Furthermore, the 

observation that WNV amplification in vectors in Los Angeles County is driven by above 

average temperatures and limited rainfall may be applicable to other parts of the Southwestern 

United States. As a result, it will be important to conduct larger regional studies to identify how 

these climatic conditions influence WNV prevalence in mosquitos and human WNV cases.    

 

CONCLUSIONS   

The findings presented herein provide critical insights into how WNV has persisted 

throughout the recent drought in Los Angeles County and provides important insights into how 

both microenvironments and social dynamics contribute to the spatial distribution of WNV in 

Los Angeles.  These findings are important for the surveillance and control of WNV for several 

reasons. First, climate change is anticipated to result in hotter and drier conditions in California 

in the coming decades (46), suggesting that WNV will continue to pose a significant threat in 

this region. Our study also provides insights into how catch basins may play a role in supporting 
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WNV prevalence in Cx. vectors during periods of drought.  The results of this study suggest that, 

to reduce WNV infection in humans, vector control agencies should consider applying 

adulticides to catch basins to target and reduce WNV positive mosquito populations that may be 

sheltering in the catch basins during otherwise unfavorable climatic conditions. Lastly, our 

predictions identifying the San Fernando Valley as an area of high WNV risk in both humans 

and Cx. mosquitoes can allow the LACDPH and vector control agencies to prepare for future 

outbreaks of WNV within this region, and also improve community resilience to WNV through 

public health communication and outreach. These findings not only provide important 

ramifications for improving WNV surveillance and control within Los Angeles County, but may 

also be applied to improve the prevention of other mosquito-borne diseases as well. 
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Figure 2.1. During the period 2004-2014, the total confirmed human WNV cases per year (bars) 

in all of Los Angeles County roughly mirrored the mean Culex WNV Maximum Likelihood 

Estimate (MLE) (line) reported by the Greater Los Angeles County Vector Control District 

(GLACVCD) (ρ =  .619, p = .1153). 
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Figure 2.2. Importance scores (% mean square error) obtained from random forest models for 

potential environmental predictors (mean annual temperature, annual precipitation, NDVI, catch 

basin density), demographic predictors (population density, per capita income), and vector 

abundance of WNV virus prevalence in Los Angeles County. Negative changes in percent mean 

square error indicate poor predictors, while positive changes indicate good predictors. The 

variables that explained the largest amount of variation in WNV prevalence in vector populations 

were mean annual temperature and annual precipitation. Data for the years 2008-2012 and 2014 

performed poorly within our random forest models and were excluded from the analysis. 
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Figure 2.3. Percent contribution to spatial variability of human WNV cases in Los Angeles County 

obtained from Maxent models for environmental predictors (mean annual temperature, annual 

precipitation, NDVI, catch basin density) and demographic predictors (population density, per capita 

income).  A higher percent contribution indicates that the variable is able to explain more of the model 

compared to lower percent contributions. Data for 2010 was excluded from our Maxent model due to low 

human case data (n = 4) for that year. 
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Figure 2.4. The cumulative presence of WNV in humans (A) during the period 2004-2014 was 

the density of catch basins (B).  The best predictors of the spatial distribution of the prevalence 

of WNV in Cx. vectors during the same time period were mean annual temperature (C) and 

annual precipitation (D).  Information displayed in (A): spatial distribution of risk of WNV 

prevalence in humans for the years 2004-2014 derived from Maxtent model. Data displayed in 

(B): distribution of catch basins provided by the Los Angeles County Department of Public 

Works.  Data displayed in (C): spatial distribution of mean annual temperature for the time 

period 1960-2000. Data displayed in (D): spatial distribution of annual precipitation for the time 

period 1960-2000.  
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CHAPTER 3 

Building Capacity to Support the Use of Geospatial Modeling for Vector-borne Disease 

Control: West Nile Virus as a Case Study  

(a modified version of this chapter was submitted as a manuscript to the Journal of 

Environmental Health on December 14, 2015) 

 

 

ABSTRACT 

We surveyed public health and vector control agencies in the United States to identify 

barriers restricting the implementation of geospatial modeling for West Nile virus (WNV) 

control. We conducted standardized interviews (n=18) with public health and vector control 

agencies in states with the highest cumulative human WNV cases. Agencies were categorized 

according to their stage of implementation of geospatial modeling (either Initial, Internal, or 

Internal and External) and thematic analysis was used to identify barriers and best practices. 

Initial Implementation agencies reported funding and educational barriers, while Internal 

Implementation agencies reported surveillance data challenges and mistrust of geospatial 

modeling as limiting factors for geospatial modeling use. Agencies involved in Internal and 

External Implementation reported policy guidelines and lack of public interest as barriers to 

using geospatial modeling for WNV control. To overcome these challenges, we identified the 

use of unified resource programs, local data repositories, and multi-stakeholder taskforces as best 

practices to improving overall WNV control.    
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INTRODUCTION 

The use of geospatial modeling technologies for vector surveillance, control, and 

prediction have rapidly increased within the last decade. Myriad geospatial modeling tools 

implemented in QGIS (1), R(2), and ArcGIS (3), have allowed researchers to examine vector 

presence, abundance, and biodiversity for a variety of vector-borne diseases (VBDs) with respect 

to time and space (4-8). These advances should ideally allow public health agencies to 

effectively use limited operational funds, increase their flexibility and response, and improve 

coordination with other stakeholders. Despite these advances, most public health agencies 

continue to use traditional empirical methods of VBD surveillance and control, with limited 

integration of geospatial modeling techniques to enhance these methods.  

The gap between the potential use of geospatial modeling and actual practice for VBD 

control is evident in the case of West Nile virus (WNV) in the US. In response to the emergence 

and spread of WNV in the United States starting in 1999, the Centers for Disease Control and 

Prevention (CDC) collaborated with public health departments and academic institutions to 

develop WNV surveillance and mitigation guidelines (9, 10). These guidelines serve as the 

foundation for a national arbovirus program and outline public health and vector control efforts 

to monitor WNV infections in humans, birds, mosquitos, and other vertebrate hosts (11). These 

guidelines continue to be used for WNV control efforts across the US, with minor variations 

dependent on the specific agency features and access to local resources (12).  

In addition, the US government has invested significant research dollars examining 

factors contributing to the distribution of WNV. For example, within the past five years, the 

National Institutes of Health have invested more than $250 million aimed at understanding and 

improving the ability to model and predict WNV transmission (13). As a result of these studies, a 
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growing body of literature has demonstrated that geospatial modeling techniques can be used to 

examine a variety of facets such as the spatial heterogeneity of vectors and hosts, and 

applications into predictive modeling (5, 14-18). Unfortunately, very little of this progress has 

been translated to current CDC WNV surveillance and mitigation guidelines (12). 

As CDC guidelines focus primarily on traditional surveillance and mitigation approaches, 

we hypothesized that a majority of public health and vector control agencies do not optimally use 

geospatial modeling techniques within their WNV control efforts, and that barriers may prevent 

further implementation of geospatial modeling efforts. Exploring these factors could provide 

insights into improving public health practice within this arena. To test this hypothesis, we 

conducted structured interviews with individuals at public health and vector control agencies in 

regions of the United States with the highest WNV human cases. We sought to assess how 

geospatial modeling techniques are currently used to support WNV control efforts, and what 

barriers may exist to greater use of geospatial modeling for WNV control. Based on our analysis 

of these interviews, we provide recommendations for how building capacity can expand the use 

of geospatial modeling capabilities by public health agencies, and how that could translate into 

better use of existing funds, improve response to outbreaks, and engender greater support from 

agencies and stakeholders for vector control activities.   

 

METHODS 

To focus our efforts in areas with significant WNV case burden, we reviewed cumulative 

human WNV count data from the US Geological Survey (USGS) Disease Mapper (19) for each 

of the 50 states for a 10-year period from 2004 to 2013. We selected 11 states based on a 

combination of regional distribution and highest WNV cumulative human case counts (Table 
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3.1). For these 11 states, we used the CDC’s county-level ArboNET data to identify counties 

with the highest WNV human case activity. Within these counties, we identified local public 

health and vector control agencies involved in West Nile virus control efforts through a series of 

internet searches and agency referrals. In selected counties which lacked local public health or 

vector control departments, (n = 3), state-level health departments were included. The resulting 

agency sampling frame (n = 22) consisted of 8 stand-alone public health agencies, 7 stand-alone 

vector control agencies, and 6 combined vector control/public health agencies. Potential 

interviewees (n = 24) in each of these agencies were identified after speaking with individuals in 

these departments to identify staff involved in WNV control activities.  

Once potential interviewees were identified, they were sent a recruitment email followed 

by a phone call from a member of the research team. This resulted in an interview pool of 18 

individuals, representing 7 stand-alone public health departments (both state and local), 6 

combined public health and vector control programs, and 5 stand-alone vector control agencies. 

All interviews were digitally recorded and transcribed using the software program Transcribe 

(20).   

The structured interview guide consisted of questions regarding current WNV 

surveillance and mitigation practices and specifically whether their WNV control program used 

geospatial modeling techniques (See Appendix 2). For agencies not using geospatial modeling 

techniques, we asked open-ended questions to elucidate why their agency was not employing 

these methods and what barriers prevented them from using these tools. Agencies that indicated 

using geospatial modeling techniques were asked further questions about how their program uses 

these techniques to enhance their WNV activities.   
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Interview data was analyzed through the qualitative data analysis program, Dedoose, 

using a thematic analysis approach (21, 22). Thematic codes (n = 91) were used to identify 

underlying concepts that linked recurrent statements about WNV control priorities and 

challenges, and benefits and barriers with regard to implementation of geospatial modeling 

techniques. Emergent themes were then refined and a comparative approach was used across 

agencies to identify connections between concepts(22). Coding and analyses were conducted by 

researchers to ensure consistency in coding and authors discussed thematic coding results for 

relevancy, followed by further recoding and redefining of appropriate themes.  

 

RESULTS 

Based on these interviews, barriers reported by agencies correlate with the category at 

which the agency was using geospatial modeling for their WNV programs. (Tables 3.2-3.4.) 

Agencies that were interested in applying geospatial modeling techniques into their WNV 

program typically described barriers related to their initial implementation and support. Agencies 

that were using geospatial modeling internally for their WNV program generally described 

barriers related to surveillance and mitigation, while agencies that had already integrated 

geospatial modeling into their WNV program both internally and externally discussed barriers 

related to communication and outreach. Below, we examine the main barriers reported within 

each of these categories. 

 

Initial Stage: Barriers Related to Implementation and Support 

Individuals from 28% of all agencies interviewed reported being in the early stages of 

geospatial modeling. All but one stand-alone public health agency within this category reported 
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insufficient funding as a primary barrier restricting the application of geospatial modeling within 

their WNV programs. Individuals reported the high upfront cost to obtain and maintain software 

licenses for geospatial programs such as ESRI’s ArcGIS, and geocoding devices prevented their 

agencies from using geospatial modeling within their WNV programs. Additionally, budgetary 

constraints related to hiring geospatial modelers were also cited. Furthermore, funding was 

consistently cited as a barrier among agencies within the later stages of geospatial modeling 

implementation for their WNV programs. 

The second barrier reported by agencies within this category was the high learning curve 

required to use previously mentioned programs such as ArcGIS or QGIS. These software 

programs often require individuals to take multiple courses or tutorials to gain familiarity with 

the management of geospatial data. Interestingly, this barrier was frequently reported by local 

public health agencies that were unable to allocate the time and resources necessary for 

geospatial modeling proficiency. By contrast, state-wide public health agencies (20%) did not 

report challenges to learning geospatial software, possibly indicating that more geospatial 

modeling resources and training opportunities exist at agencies at the state level.  

 

Internal Stage: Barriers Related to Surveillance and Mitigation  

Individuals from 39% of the agencies reported that their agencies were using geospatial 

modeling for surveillance and mitigation of WNV. All but one of the stand-alone public health 

departments interviewed expressed challenges associated with using avian surveillance, such as 

dead bird reporting, as a predictor for identifying WNV risk. Literature on the use of dead bird 

surveillance as early indicators for WNV activity has been inconsistent among researchers (23-
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25), though many agencies reported decreasing utilization of avian surveillance for predicting 

WNV risk. One particular public health agency adequately explained: 

 

“We don’t do dead bird surveillance anymore. What ended up happening is that 

we’d get WNV positive humans before we would get birds or horses or anything 

like that. It just wasn’t all that useful for us and we’ve grown out of that.” 

 

The decrease in avian surveillance efficacy may be attributed to several factors, such as 

increasing avian resistance to WNV (26), biases among birds sampled (26-28), and the 

decreasing public reporting of dead birds within their neighborhoods(23, 24, 29). Additionally, 

once an area has become endemic for WNV, avian surveillance loses much of its scientific 

interest and control programs may shift their efforts towards other WNV surveillance 

mechanisms (30). Despite this, current CDC WNV guidelines (12) draw attention to the use of 

the Dynamic Continuous-Area Space-Time (DYCAST) program (31), which uses geospatial 

modeling of dead bird reports to predict WNV risk. Unfortunately, given the aforementioned 

problems with dead bird surveillance, the efficacy of the DYCAST program has decreased over 

time (32), highlighting how existing efforts should be refocused to identify robust data sources 

for predicting WNV risk.  

A second challenge within this category was a perceived inability to conduct geospatial 

analyses using mosquito surveillance data due to inconsistent spatial coverage. Individuals from 

both stand-alone public health and vector control agencies within this category believed 

inadequate mosquito surveillance prevented them from conducting geospatial analyses. This 

perception is concerning, as a primary strength of geospatial modeling is its ability to help 
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elucidate environmental factors correlated with WNV prevalence in mosquitos, thereby helping 

in situations where surveillance data is incomplete (5, 14-18). By contrast, none of the combined 

public health agencies within this category reported limitations related to using WNV mosquito 

surveillance data for geospatial analyses. 

A third challenge reported within this category was the perception that geospatial 

modeling is better suited for research. Both stand-alone public health agencies within this 

category and 39% of all stand-alone and combined public health agencies within the study 

believed that more advanced geospatial modeling techniques were unreliable and better suited 

for research purposes than for practice. For example, when questioned if their agency uses 

advanced geospatial modeling techniques such as predictive mapping of WNV human cases (7), 

one public health agency stated:  

 

“We are the Department of Health, and we have goals. We don’t do research. I 

think that’s a good idea that somebody from academia do it.” 

 

Despite this outlook, certain public health agencies have made efforts to predict 

the risk of WNV transmission to humans (34). For example, the California Mosquito-

borne Virus Risk Assessment relies on passive surveillance data to predict overall WNV 

risk. Similarly, many geospatial modeling techniques also use WNV passive surveillance 

data as the basis for their analyses. Public health agencies may perceive geospatial 

modeling techniques to be less reliable for assessing overall WNV risk, despite results 

being derived from the same data sources. In these cases, the distance between research 
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conducted by public health agencies and academia may be more perceived than real, and 

future work should work to unify efforts from groups with the same ultimate goals.       

The fourth barrier reported within this category were challenges of stand-alone vector 

control agencies in using the home address of confirmed WNV human cases as a proxy for 

exposure site. Despite CDC guidelines requiring public health agencies to obtain a four week 

travel and exposure history for cases prior to disease onset, public health agencies typically 

report the home address of the individual, as cases may be subject to recall bias or simply forget 

where they were possibly bitten (9, 12). One individual from a stand-alone vector control agency 

in this category explained: 

 

“Human cases are tricky when you use the home address because people are very 

mobile and so they’re going from place to place. Unless that person doesn’t leave 

their house, there’s a good chance that you won’t know where they were exposed, 

which makes it less reliable for us to use.”  

 

While having the home address may be useful for public health outreach programs, the lack of 

known exposure sites can be troublesome for WNV mitigation efforts, as agencies may be 

missing potential WNV hotspots. This demonstrates an absolute necessity to link human case 

data with mosquito and avian surveillance, as these combined datasets can allow agencies to 

identify legitimate or “false” hotspots (areas in which only human cases occur, but where the 

virus is not present vectors or other hosts) in real-time.  
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External Stage: Barriers Related to Outreach and Communication  

Individuals from 33% of the agencies surveyed reported using geospatial modeling for 

both internal decision-making and external outreach to stakeholders. Among the agencies 

represented, two primary barriers were identified: (1) intra-agency communication challenges 

due to the Health Insurance Portability and Accountability Act of 1996 (HIPAA) (35); and (2) 

maintaining public interest in WNV activities.  

HIPAA-related intra-agency challenges were reported by stand-alone vector control 

agencies, which receive WNV human case data from stand-alone public health agencies. While 

HIPAA provides safeguards to protect electronic health information, the Privacy Rule allows for 

disclosure of health information needed for patient care (35). However, stand-alone vector 

control agencies within this category reported that the spatial-level at which positive WNV 

human cases are reported is at the discretion of their associated public health agency. An 

individual from a stand-alone vector control agency in this category noted: 

 

“Due to HIPAA laws, if someone tests positive for West Nile virus, all I can find 

out from my local public health department is that it’s somewhere in the county. 

Other departments here have been able to get within a square mile or township 

range, but it’s dependent on how you can get your health department to work with 

you.” 

 

Unfortunately, the specificity of WNV human case locations appears challenging for stand-alone 

vector control agencies, which must use this data to perform mosquito mitigation. Conversely, 

both combined and stand-alone public health agencies did not report challenges with 
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communication to stand-alone vector control agencies. This discrepancy suggests that public 

health agencies may be unaware of the problems experienced by stand-alone vector control 

agencies, and that enhanced intra-agency channels of communication are needed for effective 

WNV control activities.  

By contrast, both combined and stand-alone public health agencies reported challenges in 

maintaining public interest in WNV activity, despite providing real-time WNV geospatial human 

case data and intensive public health messaging. Despite public projects such as the previously 

mentioned USGS Disease Mapper, public health agencies reported drawbacks to having such 

data available during observed periods of low WNV presence (11, 36). One individual from a 

public health agency in this category explained: 

 

“People will see that we only have a few cases in our county of West Nile virus 

one year, even though we [public health] know that it’s largely underreported. 

This reduces West Nile virus as a threat, and people become accustomed to not 

taking precautionary measures during the West Nile virus season.”  

 

To counteract the lack of public WNV preparedness, public health agencies reported 

spending considerable resources on public education programs, only to be met with disinterest. 

Lack of public interest in WNV presents a substantial challenge for WNV programs, which must 

provide WNV control despite declining public interest and decreasing availability of funds. This 

became a substantial issue during the 2012 WNV season, in which a lack of public interest 

combined with decreased government spending for WNV contributed to an unprecedented 

number of WNV human cases (n=5674) in the United States since the initial WNV outbreak 
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(19). Furthermore, the 2012 WNV season highlights a larger systematic need for public funds to 

reflect current public health risks such as WNV. To begin to address these issues, new 

approaches to public communication may be required in order to balance the fine line between 

community awareness and message oversaturation, while still bolstering WNV resiliency among 

communities.  

 

DISCUSSION 

To develop recommendations to overcome these barriers, we identified best practices 

within the interviewed agencies for each of the three stages of implementation. These 

recommendations aim to improve the implementation of geospatial modeling efforts for WNV 

control activities. 

 

Unified Sharing of Geospatial Modeling Resources 

Within the Initial Stage: Barriers Related to Implementation and Support category, 

combined public health/vector control agencies reported fewer budgetary and learning 

constraints compared to stand-alone public health agencies. This suggests that stand-alone public 

health agencies within this category could benefit from working with stand-alone vector-control 

agencies within their jurisdictions to share geospatial training and resources (such as hardware). 

Additionally, resource sharing would have the co-benefit of fostering more robust intra-agency 

communication and partnership development. While we recognize that stand-alone public health 

and vector control agencies have distinct data collection roles with regard to WNV surveillance, 

unified geospatial training sessions would allow for greater appreciation for the challenges 

experienced by their partner agencies.  
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Development of Local Shared Data Repositories 

To address barriers related to use of geospatial modeling within the Internal Stage: 

Barriers Related to Surveillance and Mitigation category, agencies would benefit from 

developing local shared data repositories that include both human and non-human WNV 

surveillance data, similar to the CDC’s national ArboNet platform (11). However, agencies need 

access to real-time shared data at a local scale in order to effectively perform geospatial analyses 

of WNV risk factors. Additionally, increased accessibility to local geospatial WNV surveillance 

data would increase agency response time and flexibility to changing conditions.  

Furthermore, increased application of geospatial modeling can help remove the spatial 

and resource limitations associated with mosquito surveillance. An abundance of literature 

supports the use of geospatial modeling techniques to enhance spatial coverage for areas not 

currently surveyed due to resource or personnel limitations (5, 6, 17, 37-40). Thus, for agencies 

currently using geospatial modeling for internal purposes, the creation of shared local WNV 

surveillance data repositories could facilitate optimal use of limited surveillance resources. 

 

Creation of Multi-Stakeholder Taskforces 

To address barriers within the External Stage: Barriers Related to Outreach and 

Communication category, we recommend that agencies hold regular meetings of multi-

stakeholder taskforces, which include stakeholders associated with WNV control. This best 

practice was identified among some of the combined public health/vector control agencies: 
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“Funding has been a major gap for us, but through constant communication with 

the City Council, Mayor, and Commissioner of Health, they’re providing us 

assistance and funding and we’re trying our best to do what we can for the city.” 

 

Multi-stakeholder taskforces are an important mechanism for facilitating partnerships between 

agencies involved in WNV control and other government agencies that can support these efforts. 

Additionally, further benefits reported were greater support for WNV spraying initiatives, 

increased funding, and greater public awareness. More localized planning, transparency, and 

outreach among agencies can help empower communities to be more vigilant with regard to 

WNV precautions and emphasize the need for WNV mitigation efforts. Furthermore, regularly 

scheduled stakeholder meetings can allow for more rapid information transfers, such as for 

human case data between stand-alone public health and vector control agencies, as well as 

decrease the reluctance associated with HIPAA constraints.  

 

 

LIMITATIONS AND FUTURE RESEARCH 

Our analyses on the use of geospatial modeling for vector control had several limitations 

that should be acknowledged. First, potential sample bias may be present, as participants were 

only from states with the highest WNV cumulative human case counts for the 2004-2013 period. 

Given this, participants were likely to be from well-developed WNV programs, which may have 

influenced their views on the use of geospatial modeling. In this sense, we predict that these 

examples are ones of a “best-case” scenario, and it is possible that smaller or less-funded 

agencies face these or even greater limitations in their WNV control efforts. 
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Secondly, another limitation within our study could be recall bias among the 

interviewees, which could work for or against the barriers identified in this study. For example, 

given the amount of senior positions interviewed, some interviewees may have aggrandized their 

WNV control programs in a more positive tone for fear of seeming underprepared or outdated. 

Conversely, given the confidential nature of this study, certain agencies may have over-

emphasized the extent to which their agencies could be improved (e.g., with the goal of trying to 

drive more resources nationally to their field of expertise).  

 

CONCLUSIONS 

This study highlights the barriers facing agencies in implementing geospatial modeling 

techniques for WNV control. Despite an abundance of literature supporting the use of geospatial 

modeling efforts for WNV control, the barriers reported by agencies is largely dependent on the 

category at which they use geospatial modeling within their agency. These results suggest that 

combined public health agencies experience fewer challenges in using geospatial modeling for 

WNV. The barriers articulated by agencies and their best practices highlight the need to increase 

sharing of geospatial modeling resources across agencies, create locally shared repositories of 

surveillance data, and create regional multi-stakeholder taskforces to improve communication 

between agencies and with external stakeholders. These insights provide important ramifications 

for translating geospatial research into practice not only to improve WNV control, but for 

improved prevention of other vector-borne diseases as well.  
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Table 3.1. Number of agencies in which interviews where conducted in each region of the 

United States and the number of states in that region that were covered by the interviews. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region Agencies 
interviewed 

States 
included 

Midwest 5 4 

Northeast 2 1 

South 4 2 

West 7 4 

TOTAL 18 11 
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Table 3.2. Barriers reported by interviewees at agencies that were in the initial stages of 

implementation of geospatial modeling (n = 5). 

 

 

 

 

 

 

 

 

*N.A. indicates that no agency of this type fell within this stage of implementing geospatial modeling.  

 

 

 

 

 

 

  

Number of each type of agency reporting barrier 
Barrier 

reported 
Stand-alone 
public health 

(n = 4) 

Stand-alone 
vector control 

(n = 0) 

Combined 
public health 

and vector 
control  
(n = 1) 

% of all 
agencies in 

this category 
reporting 
barrier 

Budgetary 
constraints 

3 N.A.* 1 80% 

High 
learning 

curve 

2 N.A.* 1 75% 
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Table 3.3. Barriers reported by interviewees at agencies that were already using geospatial 

modeling for internal purposes (n = 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*39% of all stand-alone and combined public health agencies believed geospatial modeling to be unreliable. 

 

 

 

 

  

Number of each type of agency reporting barrier 
Barrier 

Reported 
Stand-Alone 

Public 
Health 
(n = 2) 

Stand-Alone 
Vector 
Control 
(n = 2) 

Combined 
Public Health 

and Vector 
Control 
(n = 3) 

% of all 
agencies in 

this category 
reporting 
barrier 

Ineffective 
Avian 

Surveillance 

1 2 3 86% 

Spatially 
Incomplete 
Mosquito 

Data 

2 2 0 57% 

View 
Geospatial 

Modeling as 
Research* 

2 0 0 29% 

Home used 
as Proxy for 

Exposure 
Site 

0 2 0 29% 
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Table 3.4. Barriers reported by interviewees at agencies that were already using geospatial 

modeling for both internal and external purposes (n = 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Number of each type of agency reporting barrier 
Barrier 

reported 
Stand-alone 
public health 

(n = 1) 

Stand-alone 
vector control 

(n = 3) 

Combined 
public health 

and vector 
control  
(n = 2) 

% of all 
agencies 
in this 

category 
reporting 
barrier 

HIPAA 
Constraints 

0 3 0 50% 

Lack of 
Public 
Trust 

1 3 2 50% 
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CHAPTER 4 

Applied Geospatial Modeling to Improve Control of Current and Future Mosquito-borne 

Disease Outbreaks  

(A modified version of this chapter has been submitted as a manuscript to Applied Geography on 

June 10, 2016) 

 

 

ABSTRACT 

The use of geospatial modeling methodologies has the potential to significantly improve 

the control of mosquito-borne diseases and reduce the risk of these diseases to public health. 

Despite the availability of these methodologies, many vector control agencies continue to rely on 

traditional methods of surveillance and control. To identify how geospatial modeling methods 

can be used to improve mosquito control efforts, we conducted in-depth interviews with four 

public health and vector control agencies that currently use geospatial modeling applications 

within their mosquito control programs. Best practices include use of geospatial modeling by 

agencies to: (1) elucidate the vector ecology of mosquito species; (2) bolster mosquito source 

reduction efforts; (3) develop predictive risk assessment models; and (4) increase vector control 

agency worker utilization. This study provides critical lessons on practical ways that public 

health and vector control agencies can use geospatial modeling to more effectively mitigate the 

threats posed by new and reemerging mosquito-borne diseases. 
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INTRODUCTION 

The need to implement enhanced methods to proactively combat mosquito-borne viruses 

has never been more apparent, with threats of West Nile, Chikungunya, dengue, and the recently 

introduced Zika virus (Zika) in the Americas. Within the past year, Zika rapidly spread 

throughout South America, Central America, and the Caribbean, with thousands of locally 

acquired, annual cases of Zika expected to occur in Puerto Rico alone (1). Although not 

particularly fatal in healthy adults, Zika has been linked to microcephaly, a serious birth defect 

resulting in abnormally small heads in newborns, and other congenital abnormalities in infants of 

pregnant women infected with the virus (2). Associations have also been found between Zika 

infection in adults and Guillain-Barré syndrome (1). The significant public health threats posed 

by Zika to fetuses and adults is further compounded due to sexual transmission of the disease and 

the lack of vaccines or antivirals for this virus (3). The lack of available treatment and prevention 

options make mosquito control and personal protection the primary defenses to reduce the spread 

of Zika and other mosquito-borne diseases in the United States and abroad.  

One way to bolster the efficacy and cost-effectiveness of mosquito control efforts is to 

use geospatial modeling and geographic information system (GIS) tools to gain insights into 

mosquito ecology and disease hotspots with respect to space and time (4-8). The use of 

geospatial modeling tools for mosquito control can improve the effectiveness of vector control 

efforts by allowing agencies to incorporate local vector ecology information into their mosquito 

control prevention efforts. Geospatial modeling techniques can also allow vector control 

agencies the ability to identify areas of high human risk and target those areas for public outreach 

and intervention efforts. Despite these capabilities, most public health and vector control 
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agencies currently use geospatial modeling tools in a limited capacity. (See Chapter 3 of this 

thesis.) 

The limited use of geospatial modeling techniques for mosquito-borne virus surveillance 

and control efforts is well illustrated by the case of West Nile virus (WNV) control practices in 

the U.S. Following the arrival of WNV in New York City in 1999, the National Centers for 

Disease Control and Prevention (CDC) established guidelines encouraging state and local public 

health agencies to adapt existing empirical methods of other mosquito-borne diseases to use in 

monitoring WNV (9). Unfortunately, most agencies in the United States still face challenges in 

managing WNV (Figure 4.1). The majority of vector control agencies continue to rely on 

traditional methods for WNV control, despite the increasing availability of geospatial modeling 

resources to enhance existing methods of WNV surveillance, management, and mitigation (5, 

10-15). In interviews with U.S. public health and vector control agencies involved in WNV 

control, less than a third of agencies surveyed acknowledged using geospatial modeling to 

predict, manage, or prevent WNV. (See Chapter 3 of this thesis.) Here, we explored how 

agencies that are successfully using geospatial modeling tools for WNV control can provide 

crucial insights into how other agencies might implement geospatial modeling within their own 

jurisdictions to mitigate threats posed by new and reemerging mosquito-borne diseases.  

 

METHODS 

Through previously conducted interviews (n = 18) with vector control and public health 

departments in states with high cumulative human WNV cases, we identified 13 agencies in the 

U.S. that currently use geospatial modeling resources in some capacity in their WNV control 

efforts. (See Chapter 3 of this thesis.) From these unique 13 agencies, seven potential 
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interviewees were selected to best represent the geographic range and spectrum of geospatial 

modeling practices used within their WNV programs. Each of the seven potential interviewees 

were sent a recruitment email, followed by a phone call from a member of the research team. 

Following this process, four of the seven individuals from different vector control and public 

health agencies responded, comprising the final interview pool. These four individuals were 

located in the Northern Great Plains, Southern California, Southwestern United States, and 

Southern United States. (See Figure 4.2.) 

Each structured case interview consisted of questions regarding the use of geospatial 

modeling in the agency’s WNV program, benefits that the agency perceived resulted from using 

geospatial modeling, and how/whether geospatial modeling could be applied to address other 

mosquito-borne diseases (See Appendix 3). The implementation questions also focused on how 

the agency had initiated their use of geospatial modeling within their WNV programs and 

whether geospatial efforts had included other agencies or organizations. Questions about the 

agency’s current geospatial modeling practices focused on how geospatial modeling methods 

were being used by the agency (e.g., whether geospatial modeling was being used in a limited 

project-based capacity or as part of an integrated program within the agency’s WNV control 

efforts). Follow-up questions focused on whether agencies had observed any noticeable 

improvements to their WNV control efforts or impacts to their local WNV prevalence after 

having implemented geospatial modeling techniques, and how/whether their geospatial modeling 

practices could be adapted to address newly emerging or reemerging mosquito-borne diseases. 

All interviews were digitally recorded and transcribed using the software program Transcribe 

(16). 
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Lessons learned: best practices for incorporating geospatial modeling into vector control 

programs 

The ways in which vector control programs used geospatial modeling to inform their 

WNV surveillance and mitigation practices varied dramatically between the four agencies that 

were interviewed. Here, we begin each case study by introducing how that particular agency 

used geospatial modeling techniques to address gaps in their current WNV control programs, and 

provide details on how these techniques were implemented. Next, we summarize how the 

application of geospatial modeling applications has enhanced each agency’s WNV program. 

Finally, we explore how lessons learned from each case study can be applied by other agencies 

beyond the scope of WNV to address the threat of emerging and reemerging mosquito-borne 

diseases (Table 4.1).   

 

Elucidating the vector ecology of Culex spp. in the Northern Great Plains. To improve 

current WNV programs in the Northern Great Plains, vector control agencies, public health 

departments, and research institutions have conducted joint geospatial modeling projects to gain 

insights into the vector ecology of the Culex tarsalis, the local vector for WNV in that region 

(17-19). These geospatial modeling projects allowed collaborators to identify suitable abiotic and 

biotic environmental conditions for Cx. tarsalis, which allows local WNV programs to provide 

more targeted mosquito surveillance and control efforts (5, 20-23). For example, collaborators at 

the U.S. Geological Survey’s Earth Resources Observation Center and South Dakota State 

University, reported conducting geospatial analyses with GIS software such as ESRI’s ArcGIS 

(24), to combine traditional mosquito surveillance data with a variety of climate forecast models, 

and remote sensing data, and U.S. Census data to identify landscape-level features and climatic 
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influences affecting the local Cx. tarsalis ecology, human activity, and avian host communities 

(25-27).  

The results from these projects have helped to enhance current Cx. surveillance and 

mitigation efforts in the Northern Great Plains. Benefits recognized by the interviewees include 

the ability to re-focus mosquito trapping sites to accommodate Cx. ecology data and the 

identification of new Cx. tarsalis habitats outside the scope of current surveillance sites. These 

analyses allow vector control agencies to conduct more effective source reduction and ground 

spraying efforts, thereby saving resources and reducing unnecessary chemical spraying. 

Furthermore, project collaborators are now using the information generated from their geospatial 

modeling efforts to develop long-lead forecasting systems for WNV outbreaks based on 

overwintering and springtime climate anomalies (28). The aim of these forecasting systems is to 

provide vector control agencies ample time to prepare for potential disease outbreaks and 

conduct appropriate mitigation activities (12, 29, 30).  

The success and versatility of this project highlights how geospatial analyses and GIS 

software could be used more broadly to address emerging and reemerging mosquito-borne 

viruses within the U.S. Because there is significant ecological diversity in the U.S., vector 

control agencies would benefit from using geospatial analyses to characterize how/whether their 

local environment might support new mosquito-borne disease vectors, such as Aedes mosquitoes, 

which can transmit Zika, dengue, and Chikungunya. Following the introduction of Aedes 

mosquitoes into new areas, vector control agencies should conduct vector ecology studies to 

develop targeted surveillance and control efforts to help reduce the potential for human cases to 

occur. Furthermore, combining geospatial analyses with traditional mosquito surveillance efforts 

can provide the foundation for the development and implementation of predictive forecasting 
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systems aimed at controlling the spread of Zika and other mosquito-borne diseases.  

 

Mosquito source reduction in the Southern United States. Vector control agencies in the 

Southern U.S. have employed geospatial modeling tools to address the abundance of WNV 

positive mosquitoes breeding in abandoned swimming pools in the aftermath of Hurricane 

Katrina in 2005 (31). Originally, field technicians would identify abandoned swimming pools 

through observation during their daily rounds, which was both time consuming and resource 

intensive. However, the addition of geospatial modeling tools, such as aerial surveillance photos 

and mobile GIS devices, allowed field technicians to significantly improve source reduction 

efforts of Culex mosquitoes. Through aerial surveillance photos provided by local County 

Assessors, vector control agencies have been able to identify the location of permanent 

swimming pools within their jurisdictions. Following the identification of pools, field technicians 

then “ground-truth” pool locations, assess the condition of the pools, and apply appropriate 

control measures for treatment. Given the success of the source reduction program, it has been 

expanded to include other suspected breeding sites such as tire piles and leaking pipe runoff 

pools (32, 33).  

The use of aerial surveillance and GIS hardware for source reduction efforts has largely 

improved local vector control capacity to identify and control Culex breeding sources and 

increases the flexibility of field technicians to address new breeding sites as they appear. The 

application of geospatial modeling tools and techniques has allowed field technicians the ability 

to; 1) rapidly assess potential Culex breeding sources; 2) prioritize trapping and planning efforts; 

3) manage previously identified and treated sites; and 4) provide more targeted source reduction 

efforts. Furthermore, the addition of mobile GIS platforms have further enhanced the ability of 
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field technicians by allowing them to spatially manage, prioritize, and record treatment sites for 

follow-up in real-time, and allow for the quick mobilization of field teams when needed.  

This use of geospatial modeling to enhance source reduction efforts can also allow vector 

control agencies to more effectively address the challenges across a much broader range of 

diseases and vectors, such as the introduced Ae. aegypti and Ae. albopictus (34). Both Ae. 

aegypti and Ae. albopictus present challenges for source reduction efforts given their ovipositing 

preferences for small water sources or small objects, such as funeral urns, water jugs, and tires 

(35). Additionally, differences in vector competency for mosquito-borne viruses such as Zika, 

may require vector control agencies to conduct different source reduction strategies for each Ae. 

spp. (36). For example, Ae. ageypti has been suggested to be a more competent vector than Ae. 

albopictus for both Zika and Chikingunya transmission, though both species maintain distinct, 

but overlapping ecological niches (34). However, combining geospatial photos and GIS 

hardware with traditional mosquito surveillance methods can allow vector control agencies to 

survey and manage multiple Ae. spp., including competent native arboviral vectors, such as Ae. 

triseriatus. Through these enhanced source reduction programs, vector control agencies can 

increase the flexibility and timeliness needed to address the current and future disease outbreaks 

that likely depend on reducing the availability of suitable habitats for ovipositing, competent 

vectors throughout the U.S.  

 

Predictive risk assessment in Southern California. In Southern California, individuals 

from vector control agencies have collaborated with researchers from local academic institutions 

to use geospatial modeling to develop regional predictive risk assessment models in an effort to 

reduce future WNV human cases. Predictive risk assessment models can be used to identify 
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environmental, climatic, or socioeconomic predictors of mosquito-borne diseases, and can be 

used to provide lead-time for WNV control efforts. To develop these models, collaborators used 

GIS software (24) and machine learning and statistical software, including Maxent (37) and R 

(38) to combine local topographical, environmental, climactic, and socio-demographic layers to 

risk factors for WNV human cases across the region (21). Results from these models can then be 

used by vector control agencies to identify other suitable areas where future WNV human cases 

may occur and to more effectively target their control and outreach efforts. 

The addition of predictive risk assessment models has helped vector control agencies 

overcome many of the challenges facing WNV control in Southern California. For example, 

since the abundance of the most locally prevalent WNV vector, Cx. quicifaciatus, does not serve 

as an accurate predictor for WNV human risk, vector control agencies have used predictive risk 

assessment modeling to identify suitable conditions for where WNV hotspots may occur. In 

Southern California, identified risk factors supporting WNV hotspots have been the density of 

abandoned swimming pools and regions of low per capita income (21). Using this information, 

vector control agencies have been able to decrease their response time between surveillance and 

control efforts, verify suspected breeding sources, perform targeted WNV control efforts, and 

conduct educational outreach programs in identified high risk areas. 

In the future, predictive risk assessment modeling could also be used to identify areas of 

high risk for emerging and reemerging mosquito-borne disease threats. For example, leveraging 

the associations between Zika and microcephaly, and low socioeconomic conditions and high 

birth rates, can yield predictive risk assessment models for use in Zika virus disease control. 

Preliminary models can already be generated using a combination of Aedes niche preferences, 

local pregnancy rates, and socioeconomic conditions to roughly estimate the risk of Zika 
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infection to pregnant or soon-to-be expecting women within a region (1, 35, 39). Additionally, 

the data required to develop these predictive risk assessment models presents an opportunity for 

increased collaboration and data sharing between separated vector control and public health 

agencies. Lastly, results generated from predictive risk assessment models can be used to target 

high-risk populations for increased education and outreach efforts in order to bolster community 

resilience to future threats posed by emerging and reemerging mosquito-borne viruses.  

 

Increasing vector control capacity in the Southwest. In the Southwestern U.S., where 

suitable conditions may support prolonged WNV activity, vector control agencies have partnered 

with the geospatial technology company Environmental Systems Research Institute (ESRI) (24), 

to increase the productivity and effectiveness of their WNV control efforts. Through such 

partnerships, some vector control agencies have obtained a variety of fully customized GIS 

programs and GIS applications to support their WNV surveillance, control, and management 

activities. For surveillance purposes, cloud-based applications have allowed field technicians to: 

1) enter and directly send data to central databases for manager processing; 2) observe historical 

records of all previously surveyed sites; 3) identify and route next surveillance sites; and 4) flag 

potential high risk or suitable breeding sites for future mosquito surveillance. For control efforts, 

these applications have allowed field technicians to quickly identify treated sites to reduce 

reapplication of pesticides, prioritize areas for treatment, and determine the chemical 

concentration and amount of pesticides needed to address an area designated by the field 

technician. At the management level, the development of GIS applications provides supervisors 

the ability to track field technicians in real-time to assess performance within the field and adjust 

workloads when necessary.  
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To analyze WNV data, GIS software, and freeware such as QGIS (40) and packages 

within the statistical program R (38), can allow vector control agencies to expand their 

department’s geospatial modeling capabilities without significantly increasing financial costs or 

the number of personnel. The addition of these programs can allow supervisors to rapidly 

observe positive mosquito trends, identify where control activities should occur, and rapidly 

mobilize staff for treatment as needed. Furthermore, by providing supervisors with real-time 

updates of data and fieldwork, supervisors are able to rapidly organize data and personnel to 

decide best management decisions. Overall, the addition of GIS software and applications for 

WNV control efforts has allowed vector control agencies in the Southwest to overcome the year-

to-year variations in vector control budgets and increase WNV surveillance and control activities 

without the need to increase personnel or demands on current employees.   

Cloud-based geospatial modeling approaches could also be effective tools to address the 

emergence of other new or reemerging mosquito-borne viruses. As previously mentioned, 

differences in the vector ecology for certain mosquitoes, such as Ae. spp, their range, and other 

potential mediating factors, will require vector control agencies to increase their overall capacity 

to perform rapid surveillance and control. During periods when vector activity may extend 

beyond the normal breeding season or when resources may be limited, the application of 

geospatial tools and applications can increase the efficiency, productivity, and response of vector 

control agencies in controlling vectors. Furthermore, these tools can help facilitate the transfer of 

data, increase communication efforts between entities involved in mosquito control, and provide 

transparency to external stakeholders regarding the work being conducted by vector control 

agencies.  
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DISCUSSION 

The identification of best practices from years of surveillance and control efforts for West 

Nile virus provide important insight into how geospatial modeling hardware, software, and 

analyses can be used to improve the effectiveness and efficiency of surveillance and control 

methods for new and re-emerging mosquito-borne diseases. (Table 4.1) For surveillance of 

emerging threats such as Zika and other anthroponotic viruses, applying geospatial methods, in 

combination with traditional control and mitigation efforts, will be essential for understanding 

the local vector ecologies of non-native mosquito species such as Ae. aegypti and Ae. albopictus, 

along with the particular conditions that increase the risk of the diseases they transmit. 

Furthermore, predictive risk assessment models can aid vector control agencies in bolstering 

preparedness efforts by identifying new areas where hotspots of disease may occur. For active 

mosquito control efforts, resource-limited vector control and public health agencies can use 

aerial photos and mobile GIS devices to help rapidly identify, mitigate, and manage mosquito 

breeding sources. Lastly, to effectively manage the mounting workload and demand of vector 

control and public health agencies in dealing with current and new mosquito-borne viruses, 

cloud-based GIS applications can be used to expand the capacity of field technicians, managers, 

and lab workers to effectively perform their duties without the need for additional resource 

investments.  

 

CONCLUSION 

Overall, the application of geospatial modeling resources in tandem with traditional 

surveillance and control methods can allow agencies to develop and implement effective, 

adaptive, and flexible vector control programs that are capable of addressing threats posed by 
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current and emerging mosquito-borne diseases. For vector control programs with limited 

resources, the use of geospatial modeling tools to develop preventative measures for mosquito 

surveillance and control can be substantially more cost-effective in the long-run compared to 

potential disease case management and coverage of follow-up costs. The case studies presented 

herein suggest that it will be increasingly necessary to think outside the purview of traditional 

vector control activities and embrace the incorporation of geospatial modeling resources to 

address the growing threat posed by current and emerging mosquito-borne diseases. 
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Figure 4.1. Yearly human WNV cases from 1999-2015 for the Northeast (red), Midwest (blue), 

South (green), and Western United States (purple), the regions of the US that have consistently 

shown the highest human WNV case counts. Annual variations of human WNV cases by region 

highlight the limited success of vector control efforts in addressing WNV.  
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Figure 4.2. Case study areas used in this study and summaries of the geospatial modeling efforts 

used for mosquito control and disease prevention by the “best practice” agency interviewed each 

of these areas. Case studies were selected to address how geospatial modeling resources have 

been used to help overcome distinct problems experienced using traditional vector control 

methods.   

 

 

 

 

  

NORTHERN GREAT PLAINS 
Collaborations between universities, 
public health departments , and 
geospatial modeling agencies have 
helped to elucidate the local vector 
ecology of Culex sp. 

SOUTHERN  
UNITED STATES 

Aerial surveillance photos paired with 
handheld geospatial devices have 

improved the ability of vector control 
agencies to conduct source 

identification and reduction efforts of 
green pools and tire piles 

 

SOUTHERN CALIFORNIA 
Researchers have developed 

predictive risk assessment models 
identifying low socioeconomic 

conditions as hotspots for West 
Nile Virus   

SOUTHWEST  
UNITED STATES 

Cloud-based geospatial 
modeling applications have 

helped to increase the utilization 
and capacity of vector control 

agencies 
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Table 4.1. Case study areas, aims, available tools and approaches, and identified improvements 

 

*Includes both adult mosquito surveillance and larval dips 
 

  

Case Study Aim 
Available tools and approaches 

Identified Improvements 
Traditional Geospatial 

Northern 
Great 
Plains 

Understand 
local vector 
ecology of 
Culex spp. 

Scientific literature Remote sensing 
layers 

Greater understanding of local vector ecology of Cx. 
Tarsalis in the Northern Great Plains 

Mosquito surveillance* Climate forecast 
models 

Able to explore alternative data sources to improve 
mosquito forecasting efforts 

Technical collaborations Geospatial modeling 
software 

Developed seasonal forecasting approaches for 
mosquito-borne diseases 

Increased mosquito surveillance * 

Southern 
United 
States 

Source 
identification 
and reduction 
of mosquitos 

Larval dips Aerial surveillance 
photos Increased in the number of breeding sites identified 

Field technician 
observations 

Mobile geospatial 
devices 

Faster response time for source reduction efforts 

Greater flexibility in mitigating new breeding sites 

Civilian 
complaints/reports 

Geospatial modeling 
software 

Improved management of field technicians and 
operations 

Extended source identification range outside of 
current larval dipping sites 

Southern 
California 

Risk 
assessment and 
disease hotspot 

analysis 

Mosquito surveillance* Remote sensing 
layers Improved verification of known disease hotspots 

Mosquito infection rates Ecological niche 
modeling software 

More targeted mosquito surveillance, control, and 
public education efforts 

Human case follow-up Machine learning 
techniques 

Increased mosquito surveillance* 

Non-human surveillance Geospatial modeling 
software 

Southwest 
United 
States 

Increase vector 
control 

employee 
utilization 

N/A 

Cloud-based mobile 
applications 

Increased productivity of managers and field 
technicians to perform mosquito surveillance and 

control 
Improved management and tracking of pesticide 

applications 

Geospatial modeling 
software 

Greater response of field operations through 
improved identification of virus risk 

Increased confidence of field technicians 
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CHAPTER 5 

Overarching Conclusions and Recommendations for Future Studies  

 

Geospatial modeling as an integral tool in the identification of factors supporting West Nile 

virus prevalence 

The analyses applied and implemented in Chapter 2 demonstrates the power of 

geospatial modeling in identifying predictors supporting WNV hotspots in vectors and humans.  

We identified environmental predictors for WNV using geospatial layers, such as temperature, 

precipitation, elevation, and socio-demographic features, with machine learning algorithms to 

identify any complex, non-linear relationships that may exist between variables and WNV 

prevalence. Through this approach, we were able to obtain significant insights into the drivers of 

WNV in Los Angeles County and provide guidance on how local vector control and public 

health agencies can leverage these results to anticipate when suitable climatic conditions are 

present that may support the spread of WNV. Additionally, these insights can help identify target 

hotspots within the county and develop new approaches to mitigating the spread of WNV.  This 

study demonstrates that geospatial modeling analyses of mosquito-borne diseases can provide 

valuable insights for vector control agencies, particularly those that cover areas with 

heterogeneous landscapes, jurisdictions, or climates. This study suggests that future research 

should be conducted to assess how these methods could be used to improve surveillance and 

mitigation of other vector-borne diseases such as Lyme disease, typhus, or Zika.  
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Public health and vector control agencies face different barriers depending on their stage of 

implementation of geospatial modeling for West Nile virus control  

The findings presented in Chapter 3 highlight the barriers that public health and vector 

control agencies face in implementing geospatial modeling techniques for WNV control. The 

barriers reported by agencies are highly dependent on the stage at which the agency is at in 

implementing geospatial modeling. We termed these stages as: (1) Initial Implementation, (2) 

Internal Implementation, and (3) Internal and External Implementation.  Our results suggest that 

stand-alone public health and vector control agencies face the greatest number of barriers at all 

stages of implementation, and that combined public health and vector control agencies 

experience fewer challenges in using geospatial modeling for WNV. This study suggests that 

agencies falling within the Initial Implementation stage would benefit from sharing geospatial 

modeling resources with other local agencies.  By contrast, agencies that fall within the Internal 

Implementation stage would most likely benefit more from creating repositories of surveillance 

data that are shared with other agencies in their jurisdiction. Lastly, agencies in the advanced 

stages of geospatial modeling use (Internal and External Implementation), would benefit from 

regional multi-stakeholder taskforces to improve communication between agencies and with 

external stakeholders. These insights provide important ramifications for translating geospatial 

research into practice not only to improve WNV surveillance and mitigation, but for improved 

prevention of other vector-borne diseases as well. Going forward, to obtain a holistic national 

perspective of barriers preventing the implementation of geospatial modeling, future studies 

should seek to examine barriers within non-WNV hotspots. 
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Though limited, geospatial modeling resources are currently being used to enhance the 

surveillance and control of West Nile virus Across the United States  

In Chapter 4, we identified best practices from agencies that are already using geospatial 

modeling to improve their effectiveness and efficiency of their surveillance and control methods 

for WNV. This study provides specific examples of how geospatial modeling hardware, 

software, and analyses are currently being used to improve the effectiveness and efficiency of 

surveillance and control methods for WNV, and how they can be applied to other new and re-

emerging mosquito-borne diseases.  For surveillance of emerging threats such as Zika and other 

vector-borne viruses, geospatial analyses combined with traditional surveillance techniques can 

provide critical insights into the local vector ecologies of non-native mosquito species such as 

Cx. tarsalis and Ae. aegypti, and can also help to identify environmental conditions that increase 

the risk of the diseases they transmit. Additionally, combinations of geospatial software and 

machine learning algorithms can help vector control agencies to improve their effectiveness by 

identifying new areas where hotspots of disease may occur and allowing agencies to target 

mitigation activities at those sites. For active mosquito control efforts, resource-limited vector 

control and public health agencies should consider using aerial photos and mobile GIS devices to 

help rapidly identify, mitigate, and manage mosquito breeding sources. Lastly, the availability of 

cloud-based GIS applications can aid vector control agencies in effectively managing the 

mounting workload and demand of dealing with current and new mosquito-borne viruses.  

The application of geospatial methods demonstrated in Chapter 2, combined with the 

identification of barriers and best practices in geospatial modeling (Chapters 3 and 4), provide a 

holistic perspective into how geospatial modeling can be applied to improve vector control and 

public health practice of WNV and mosquito-borne diseases.  Overall, these findings suggest 
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that, as the field of vector control advances, it is becoming increasingly necessary to think 

outside the purview of traditional vector control activities and embrace the incorporation of 

geospatial modeling resources to address the growing threat posed by current and emerging 

mosquito-borne diseases. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
	

82 

 

 

 

 

 

 

APPENDIX 1 

Supporting Information for Chapter 2 
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SUPPLEMENTAL METHODS 

To assess whether differences in predictors identified by vectors (through random forest 

models) and human cases (through Maxent) varied due to research methodologies, we used 

Maxent to assess the relative importance of variables in predicting positive WNV surveillance 

sites. For this analysis, we ran the environmental and socio-economic predictor variables layers 

against the outcome variable of geo-locations of positive WNV surveillance sites provided by 

GLACVCD. Data for all years were included in the model, and default Maxent settings were 

used (10,000 background points; regularization multiplier = 1.0; maximum iterations = 500; 

convergence threshold = 0.00005).  

 

SUPPLEMENTAL RESULTS 

Across all years, the most significant predictors for WNV prevalence in vectors was 

mean annual temperature, annual precipitation, and density of catch basins (Figure A1.1).  Mean 

annual temperature contributed the most to explaining WNV prevalence during the years 2004-

2005, 2008, and 2011-2014.  Of these years, mean annual temperature explained above 60% for 

the years 2013 (64.7%), 2008 (62%), and 2014 (60.5%), with over 45% explained for all other 

years in this category except for 2004 (39.3%).  For the remaining years where mean annual 

temperature did not contribute to explaining WNV prevalence (2006-2007 and 2009-2010), 

annual precipitation was the largest contributor. During 2009 and 2010, annual precipitation 

explained above 80% of the WNV prevalence in vectors, and explained above 35% for 2006-

2007. Lastly, while the density of catch basins was not the most significant predictor for WNV 

prevalence in vectors, it did explain over 20% for the years 2005, 2008, and 2011-2014.  
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These findings are highly concordant with those from the random forest models for WNV 

prevalence. The regression trees for WNV prevalence in vectors identified that mean annual 

temperature and annual precipitation consistently explained the most variation of any predictor 

variable across the study years.  Other variables were also included in the regression trees, but 

these only explained a relatively small amount of the variation, and were not consistent across 

years. Interestingly, the years where annual precipitation was the highest contributor to WNV 

prevalence were also years with the lowest average MLE among sites.  This could potentially 

indicate that complex transmission dynamics were at play for these years, atypical from years 

with higher WNV prevalence where mean annual temperature may help drive WNV 

transmission in vectors.   

The spatial predictive maps generated using the WNV positive surveillance sites (Figure 

A1.2) were also highly concordant with those generated from the human WNV cases (Figure 

2.4A). Within these maps, the San Fernando Valley has been identified as a hotspot for the 

disease, with noticeable hotspots in the southeast, within the San Gabriel Valley.  In the north, 

the high desert has not been identified as potential hotspot, which can be explained given the 

extremely high temperatures, minimal rainfall, and possible lack of microhabitats (e.g. catch 

basins), which may support vectors during extreme conditions.   
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Figure A1.1. Percent contribution to spatial variability of WNV positive mosquito surveillance 

sites in Los Angeles County obtained from Maxent models for environmental predictors (mean 

annual temperature, annual precipitation, NDVI, catch basin density) and demographic 

predictors (population density, per capita income).  A higher percent contribution indicates that 

the variable is able to explain more of the model compared to lower percent contributions.  
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Figure A1.2. The cumulative presence of WNV in Cx. spp in positive WNV surveillance sites 

developed through Maxent models for the years 2004-2014. 
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Figure A1.3. Google Trend searches for the keywords, “West Nile virus” and “West Nile” 

within Los Angeles County from 2004-2014.  Search results are presented relative to the year 

with the highest amount of searches for the key words listed above (2004).   
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APPENDIX 2 

Supporting Information for Chapter 3 
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Interview Questions for West Nile Virus Surveillance Experts 

Interview Format: Non-schedule standardized narrative interviews 

 

WNV Prevalence 

1. Describe the WNV prevalence within your jurisdiction currently and for the past 10 

years. 

Prompts 

given 

participant 

response 

a. What do you believe has attributed to the WNV prevalence within 

your jurisdiction?  

 

Current WNV Surveillance Techniques 

2. What are the current WNV surveillance techniques of non-human cases used by your 

agency/department? 

Prompts 

given 

participant 

response 

a. Describe how these techniques are conducted. 

b. How successful have these techniques been in identifying WNV 

hotspots within your jurisdiction? 

c. Can you identify any potential limitations or gaps with your current 

WNV surveillance program? 

 

Geospatial Modeling of West Nile Virus to Inform Public Health Decisions:  

A Critical Review 

Bryan Moy, MPH | Department of Environmental Health Sciences 
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Use of Geospatial Modeling to Enhance Surveillance Activities 

3. Has your agency/department used geospatial modeling as a tool for improving 

surveillance of any infectious diseases? 

Prompts 

given 

participant 

response 

a. Describe how you use geospatial modeling in your work; what are 

the inputs and outputs? 

b. Have you used geospatial modeling as a tool for improving WNV 

surveillance? 

 

If Geospatial Modeling is used as a WNV Surveillance Technique 

4a. You mentioned that your agency/department uses geospatial modeling for WNV 

surveillance.  Approximately how long has your department been using GIS? 

Prompts 

given 

participant 

response 

a. How effective has GIS been in helping you to identify and predict 

WNV hotspots? 

b. Describe any benefits that have resulted from use of geospatial 

modeling in your WNV surveillance program.   

c. Describe any limitations your agency/department has experienced in 

using geospatial modeling for WNV surveillance. 

d. How was your agency able to integrate geospatial modeling into 

their WNV surveillance program? 

 

If Geospatial Modeling is NOT Used as a Surveillance Technique 

4b. I’m interested in examining the use of GIS in West Nile virus surveillance. How 

familiar are you with the use of geospatial modeling for WNV surveillance? 
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Prompts 

given 

participant 

response 

a. Is your agency/department interested in implementing geospatial 

modeling into their WNV program? 

b. If YES: 

i. What are the potential barriers preventing this 

implementation?  

c. If NO: 

i. Why is your agency not interested in implementing 

geospatial modeling into their WNV surveillance?  

  

Human Case Data 

5. How are human WNV case data collected and communicated in your jurisdiction? 

Prompts 

given 

participant 

response 

a. Which agency in your jurisdiction is responsible for collecting WNV 

human case data? 

b. If not own agency, then do you have easy access to human WNV 

case data for your jurisdiction? 

c. Approximately how long is the lag between when a human case 

occurs and when your agency is notified of the case?  

 

Abatement & Mitigation 

6. How are WNV mitigation and abatement activities conducted in your jurisdiction?  
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Prompts 

given 

participant 

response 

a. Which agencies in your jurisdiction are responsible for WNV 

mitigation and abatement activities? 

b. What mitigation/abatement techniques are being used?  

c. Describe how these techniques are conducted. 

d. How are intervention locations selected?  Are human case data used 

to inform intervention locations? 

e. If human case data IS NOT used: 

i. Why does your agency/department not use human case data 

to inform mitigation/abatement efforts? 

f. Is geospatial modeling used to inform abatement/mitigation efforts?  

g. If YES: 

i. What types of data are used in your geospatial modeling? 

ii. What types of correlations have you observed as a result of 

this modeling? 

h. If NO: 

ii. Has your agency considered using geospatial modeling for 

abatement/mitigation efforts? 

i. If your agency HAS considered using geospatial modeling: 

i. What are the potential barriers to implementing geospatial 

modeling into your intervention efforts? 

j. If your agency HAS NOT considered using geospatial modeling: 

i.  Why is your agency not interested in using geospatial 

modeling for WNV mitigation? 
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Helpful Documents  

7. Do you have any suggestions for publically available documents that would be helpful for this 

work? 

 

NOTE: If there are any individuals that you feel should be included in this study, we have 

created a flyer for this study that you may provide to them.   
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Supporting Information for Chapter 4 
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Follow-up Interview Questions for West Nile Virus Surveillance Experts 

 

Email solicitation and explanation at beginning of interview: 

Thank you for participating in the earlier interview with me about use of geospatial modeling of 

WNV amongst public health and vector control agencies. As a result of my interview with you 

and other practitioners, I have written a manuscript describing barriers to use of geospatial 

modeling for WNV in practice settings and how those barriers have been overcome by some 

agencies. The manuscript is currently under review at the Journal of Environmental Health, 

would you like me to share a copy of the manuscript with you?   

Your agency was one of the few agencies surveyed that reported successfully incorporating 

geospatial modeling of WNV into their program.  I am now in the process of developing some 

case studies about how geospatial modeling can be used to improve surveillance and mitigation 

of WNV by public health and vector control agencies.  These case studies will be compiled into a 

report that will be made available to public health and vector control agencies to help 

disseminate best practices and will be included in my doctoral dissertation.  Would you be 

willing to answer some follow up questions about how your organization has specifically 

incorporated geospatial modeling of WNV into your practice? 

 

Interview Format: Non-schedule standardized narrative interviews 

 

Applied Geospatial Modeling to Improve Control of Current and Future  

Mosquito-borne Disease Outbreaks 

Bryan Moy, MPH | Department of Environmental Health Sciences 
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Current Geospatial Modeling Practices 

a. Has your agency used geospatial modeling for West Nile Virus either specific short-term 

projects or more comprehensively as integral part of your surveillance and/or mitigation 

program? 

a. If short-term (e.g. project-based): 

i. Can you provide me with a more specific example of a short-term project in 

which your agency used geospatial modeling for WNV surveillance or 

mitigation? 

ii. Did your agency receive support from any outside organization(s) (such as 

universities, private companies, etc.) for the geospatial modeling component 

of this project? If yes, please describe what support they provided. 

iii. Has your agency noticed any improvements in your West Nile Virus 

surveillance and mitigation programs as a result of using geospatial modeling? 

1. Do you feel that your use of geospatial modeling has improved either 

the efficiency or cost-effectiveness of your WNV surveillance and/or 

mitigation program? 

2. Do you believe that your use of geospatial modeling has resulted in a 

decrease in the prevalence of West Nile Virus (mosquito, humans, 

etc.) in your area? 

3. Have you made any changes to your surveillance or mitigation 

strategies as a result of including geospatial modeling in this particular 

project? 
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b. If long-term (e.g. implemented use or program): 

i. Can you provide me with a more detailed explanation of how your agency has 

incorporated geospatial modeling for WNV into your surveillance and/or 

mitigation program(s)? 

ii. Did your agency receive support from any outside organization(s) (such as 

universities, private companies, etc.) for your geospatial modeling efforts? If 

yes, please describe what support they provided. 

iii. Has your agency noticed any improvements after using geospatial modeling 

for your West Nile Virus surveillance and mitigation? 

iv. Has your agency noticed any improvements in your West Nile Virus 

surveillance and mitigation programs as a result of using geospatial modeling? 

1. Do you feel that your use of geospatial modeling has improved either 

the efficiency or cost-effectiveness of your WNV surveillance and/or 

mitigation program? 

2. Do you believe that your use of geospatial modeling has resulted in a 

decrease in the prevalence of West Nile Virus (mosquito, humans, 

etc.) in your area? 

3. Have you made any changes to your surveillance or mitigation 

strategies as a result of including geospatial modeling in this particular 

project? 
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Geospatial Modeling Assessment and Evaluation Practices 

a. Has your agency assessed or evaluated the impact of your geospatial modeling 

project/program for West Nile Virus on your surveillance or mitigation strategies? 

i. If yes: 

i. Was this assessment or evaluation either formal or quantitative? 

ii. Please describe who conducted the evaluation or assessment and what metrics 

if any they used to assess impact? 

ii. If no: 

i. Has your agency considered formally or quantitatively evaluating/assessing 

the impact of your geospatial modeling efforts on your WNV surveillance 

and/or mitigation program? 

1. If yes: 

a. What were you considered using as metrics to assess the 

impact? 

b. What were the barriers to conducting this evaluation? 

2. If no, would this be something your agency would be interested in? 

would you need assistance with this effort? 

 

Helpful Documents  

a. Do you have any suggestions about what information would be helpful to other practitioners 

who are considering implementation of geospatial modeling into their WNV surveillance 

and/or mitigation program? 
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b. What do you think is the most effective way to communicate this information to 

practitioners? (e.g., report, workshop, webinar, etc.) 

 

 

	




