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Electromagnetism -:- Image Forces 

in Presen,ce of Boundaries, etc. 
(Continued from volume m 



Sequel --

L. Jackson Laslett 

19 JE>nuary 1970 

1. The electrosta.tic i;r.c:.ge-field co-

efficient for an extended straight beru~, 

of const<~nt density throughout e.nd of el-

liptical cross-section, has been discus

sed in EPJ\K-1~9. In that repo::t an infi!lite 

plane conducting boundary surface was taken 

to be at y = - h v1ith respect to the centre 

* 

y 

~~X 

~. 

of the beam, and the image fields were ex- ---v 

a::-.ined along an nxis that pe,ssros throu:;ll 

the cent::.oe of the b(Osc;: end is p:J::allel to the conducting sheet. 

The non-linearity of E vs. x >·:es fou:1d to be not so pror,otmced but that x-
one might, in the interest of convenience, employ simply the coefficient e

1 
evaluated at the centre of the bea~. In this spirit ~e note here that one 

can easily evalur:te, in closed for:n, this quantity 

2 
,,_, ( Im) 

h o."Jx 
---
4:\ dX 

= ~~ ( d:~ ( Im)) 
at tl:.e ccnt1'e of the be;;.~,,, 

namely c:.t y '~ + 2h if the origin is no>! shifted to the centre of the el

liptical iffi~ge-charge distribution (A e.s.u. per em). For this purpose we 

refer to the formula 

* 

E y 
ab ---0:,. r 

c. b (. 
a -

2 
e. -

3-141 
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- 2 -

-)< 

given (for x=O, y:?: b) on p.5of' E}'.AH-~.1~. 

By differentiation we now find 

dE y l:A. 
() Y = -a-=-2 --b-=-2 

a.nd 

ClE/ Im)l 
-- J == 

Cly ·B,,m 
'- ........ 

2 2 
a - b 

Centre 

Hence, based on the field gradients a.t the centre of the bea::-1, 

= _h2 [l - (l 
'!<'2 
J. 

F 2 _J_l 
+ -) 2J 

l~h2 

llhere >'le have ,.;ritten 

-~ 
F ='Ia'-'- b'" . 

In the form of a series development, 

... l 
J. 

'l'hus, for h >> F, E 
1 

tends to-,.;ard "chE valuc: E
1 
~ ~ . 

* Cf. Eq;... (32) of L. C. Teng, P.I0.I.J-59 (19-)3). 

3-142. 



3 -

Nu~erical values of e
1 

are listed below, for a few values of h, when 

co:nputcd in tl·1is ma.nner for beams with a=l.O and b=O.l~ or 0.5. 

e AT THE CE:LiTPE OF MT ELLIPTICAL B~.M 
l 

a= 1.0} 

b = 0.~- b
a : 1.0} 

0.5 

J======-=--=--=--=:r=--·------=n====---== 

h h 

2 
F = 

t---------1--- ------- ----------t-----------

2.0 

1.5 

1.0 

0.75 

0.50 

0 .1?.0281~ 

0.116879 

0.108225 

0.093223 
·--·· ~ 

0.078211 
.. -- ·--·- ·- -- --· 

o.c6522o . -·-I 
I 
I 

2.0 

1.5 

1.0 

0.75 

0.120770 

0.117693 
... --------------------

0.109783 

._ .. , --· 

o. o31357 

2. The 1wrk discussed up to this point has been for a conducting surface 

that is parallel to the major axis of the elliptical charge distribution, 

and hence is appropriate for application near "spill ouV' rlhen the greater 

of the semi-azes (here de:1oted by "a") is in the z-direction. For e;en

erality, in the interests of corrcpleteness, one rc.ay 1·1ish to obtain results 

that are derived in tt:e spirit of paragraph 1 above but that consider the 

image surface to be parallel to the minor axis (b) of the beam. One may 

presume that the result for e
1 

will be an a:1alytic function of the bea:n 

para:neters, a and b, but the follmd.ng explicit der:Lvot:Lon :!1D.Y be appro-

pr:Late as a check. 

Accordingly_. "tle no~-; tc:!l:e the x ·and y semi-axes to be e and b respectively, 

rlith a > b as before, and locc-:~e a s:L:n:Lla:c imase distrib.rt:Lon of oprosite 

sign (+A e. s .u. per c:r,) a dista:-,ce 2;1 to the left of the beam. Fe the:, need 
~,, (Im) 
v~ 

X 
to eva.luotc the der:LvatiY.:: -

dX 
of the a p::>:Lnt x -- 2!1, J.~rlc.ge field at 

3-143 
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> T 

L 

0 f< 

01 I 1 '/I ·r; 

1 • 
2"· 
3· 
Lr. 
5· 
6· 
7~ 

s. 
9 . 

1 0. 
1 I . 
12. 
I J. 
1 '-1 •· 

15· 
1 6~ 
17. 

10. 
19. 

IG 

2 
.. , 

'.:; 

13· 2'/. 30 

rl ( 1 ) = 2· u 
rl< 2) = 1 . 5 
H ( J) = 1 . G 
H ( .'j) = 0· -,s 
H ( ::, ) = 0· SG 
rl ( 6) = (:}. /iU 

1~::: f\ D.• A~ [3 
Pi\L'-J T CJ -, ~ (\~ 

,-, 
CJ 

I F < El • G "(. !\ > U T J 1 ~;, 
F S = A;(. 1'.. - fj ;; 8 

F = SD~~TC F:::i> 
Pid,'JT1J~ F 
(·lj = 6 
IF <8 ·Ci·· HC6)) GJ TJ .t:::·i 

O.J 3D I = 1 ~- i·i 
~~ = F :::;1 C :-l C I ) ~; d <I > ) 
EPS = < 1 - 11::-;UF<TC 1 + fUt'1) )lr:: 
P ;:d ,\! t 1 iJ , H < I ) ~ ~= r -, S 

20. 30 CO.'-l ·u ,,l LJ:;: 
21 . 
8-~. 

<:)') c:. J. 

GJ TJ I U 

(;J - TJ ') .. , 
c.. ~.:..J 

t ;\~ J 

8 ~ c;I \\! x::.: \:.: 

A= 1·800 B= C-4JJ 
F= 0·916515139 
HC 1)= 2·0C(:J0Z~J EYS= 0·12U2~~LJ 

J-l C 2) = 1 • ~i ~) ~ 0 ;_; J E r) S = C • 1 l C.:o 3 7 )' 

H<J>= 1;C~JS~8 EPS= 8;!G3225 
HC4)= 8;750~00 E?S= U·G93223 
HC5)= c;SJSCDJ E?S= 2·873211 
rl<6>= 0;48JJJ0 EPS= 8;865220 

~ 1·0~~ B= ~.SJJ 

F :.: C •· 2: 6 6 S 2 :) I; :) L; 

H ( 1 ) =' 2. J :_) C ~! .:; J E ;~.) = 8 • 1 ~?. J 7 -, .) 
H < 2) ::: 1 ~ ::> ~~ ,:; ,; ::; ,J E i 0 S = Cj; 1 l ., {_,·) J 
dC 3) = 1 •. L.1 ._i ,; .:; :J J t: i S = G • 1 ;_i) 7 ::J 3 

HC.t!):, 8·75~_:::~·0~--~ Er.'i= J.1C::.iL';:.:l 
H C 5 ) = C; 5 -~;: J J ·:: :._;; t.: F' S = -;_;, • CJ 3 I 3 5 -i 
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- 5 -

y = 0 ~ith respect to the centre of this image-charge distribution. Again 

we virite 

and employ the results of E?J;N-44. 

Along the positive x-axis (y = 0) we have u 1l 
2 J so 

x = F Cosh v. 

Also (EPP.I,T-44, p.4), since then cos 2u = -1, the exterior potential of the 

image is 
· -2v 

¢ = -~(2v + e ) 

at points along the x-axis, and 

2~(l- e-2v)dv 
Ex dx 

= 
2~ l- e- 2v 
F Sinh v 

l~)\ -v 
= F e 

lf)\ -v e ' = -
F2 Sinh v 

8/\ l 
= -

F2 2v 
e - l 

SoJ~ing the equation ~h = F Cosh v for the value of the curvilinear 

coc)rdinate V at the centre of the bee.m, '.-IE find 

±v 2h [1 ±-J~(:r,? J e F 

and 

[ -/--] ±2v ' 2 ' -, 2 
€ = 2( ~h) l ± l - ( 2"h) ' -1. 

Jl. ccordingly _, 

)\ . 1 
= -

h2 
+ -vl F 2 F 2 

1 (2h) (2h) ( contd) 

Centre 
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F 2 2 { [ 
r] __ ],_ } 

l- ( 2b) - l . 

HenceJ finally) 

1vith 

- !"?" 2 
F=va--b 

.. .J ' 

To adapt these results to the custo.:nar;y notation, in 1·:hich l!vr refers 

to the axi.o.l se!;'li-axis and r:an refers to the r<Jdial semi-a.zis, '.-lrite 

F = 

then) a.t the centre of the bear:J., ' .L • 
1·ie ooualn 

If a > b: 

If a.< b: 

···] 
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In either case, then, \·ie may \Jrite tl:e elect:tostatic i;:,n.ge 

at the cer"t:re of tl:e elliptical bea:n as 

-l 
v1here 

a = radial semi-axis 

and 

b = axial se~i-axis, 

.CO~·· • J... coe.c ... 1c1cn·-

while h denotes the radial clearance fro:n the centre of the bea:n to the 

conducting boundary ( assurc.ed to be essentially plc.ne). 

Nu:nerical values of c
1 

(denoted EPSl) are presented on the follmdng 

sheets,?<_· for various values of b and h in units of the redial SE:~•-.i-axis 

"a" (a= l, h2a). 

It is noted tbat for a > b, the values of e
1 

·Hill ezceed l 
8 since, 

physically, a portion of the i!'!w.ge-charge distribution i.s rele.tively close 

to the centre of tbe bea:n. b l 0 l'""" ' t .L. For a = , e
1 

~ 8 = . GJ unuer he presen~ 

assu..'I'.ptions of a straight beam and a plane bour.dary. 

It will be recalled thut the notation of the previous co~putational re
sults, prese:1ted on p.~- of this repol't (E?.J'.I~-~f9-bis), inte:cche:.ngcs the sig
nificance of the se~i-axes a, b. Thus those earlier runs correspond, in 
the prese:1t natation, to b equal to 2.5 or 2.0, respectively, with h de
crensing fro~·:·, 5.0 to 1.0 or fro:r, l~.O to 1.0 ir;. the t~-:o c~,_ses sbo;.;n. 
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CURRENT IMAGES INDUCED IN AN INFINITE PLANE 

CONDUCTING SHEET OF THICKNESS s AND VOLUME 

RESISTIVITY Pv. * 

L. Jackson Laslett 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

31 March, .1970 

I. Notation 

ERAN-60 

We consider a 2-dimensional "current dipole", P(t) abamp•cm, 

formed of currents in the ± z direction and situated at y = - h. 

Parallel to this current dipole is placed an infinite conducting sheet, 

of thickness s, that fills the region 0 < y < s. The specific volume 

resistivity of the sheet is denoted Pv abohm.cm; we shall also employ 

the (d.c.) "surface resistance" Ps = pv/s = 2TLv, so that pv = 2nvs. 

We shall, most particularly, examine the case in which P(t) 

is a step function, of magnitude P
0

, that·is turned on at t = 0 

[P1 (t) = P0 -o(t)]. Results for other functions P(t) in principle can 

reaoily be synthesized from the solution for the step-function case. 

As is customary, displacement currents are neglected and the 
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currents induced in the conducting sheet have a density 2 
(abamp/cm ) given by 

1 oF ~ - p- dt in terms of the total vector potential. A. 
v 

II. Basic Analysis 

The 2-dimensional current dipole is taken to have, if isolated, 

a vector potential (z-component)1 

A(o) = 2Po 
y + h 

2 2 
X + (y+h) 

(XI 

= 2Po J e-k(y+h) cos kx dk, 

0 

:for t ~ 0 in the step-function case. We then take the total vector 

potential to be given by 

where A (I) denotes the contribution that induced eddy currents make 

to the total vector potential A e. The condition v X~= 4nJ or . z z 

V x [V x AJ = 4n1 then requires that A (I) be "harmonic" (if-A = 0) 
z 

for y < 0 and y > s, while 
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0 < y < s. 

We also require continuity of A(I) at the surfaces y = O,s and of 

oA(I)/oy at y = s. Moreover, once a volume distribution of current 

has been established in the sheet (t > 0), we require continuity of 

oA(I)joy at the interface y = 0. 

A (I) = 

III. Fourier and Laplace Transformations, 
in x and t Respectively 

We write 

00 

J F(y, t;k) cos kx dk 
0 

00 J F ( t;k)eky cos kx dk 

0 

For y > s 

For 0 < y < s 

For y < 0. 

Such a solution clearly is harmonic in the regions y < 0 · and y > s 1 

while the function F(y, t;k) ·· must satisfy the differential equation 
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The continuity conditions at the upper interface require that 

oF/0 y = - kF at y = s. At the lower interface we similarly require that 

oF./0 y = + kF, at y = o, after a volume distribution of' currents has been 

established in the sheet. At the instant the current dipole has been turned 

on (t = o), howeyer, a s~ace current 

( ) 1 1 -kh . j x = - "it P 0 ke cos kx 

0 

with a vector potential 

co 

A~:; =-2P0~ e-k(1yl+h) cos kx dk, 

will arise to prevent immediate penetration of magnetic field into the 

sheet; at this moment there will be a discontinuity of slope such that 

oF C 4 -kh) dy = k F + P0 e at y = 0, t = 0. More explicitly, we can say that 

at \this initial instant 

F(y,t = + 0; k) = - 2P e-k(y+h) 
0 

throughout the sheet. 

A Laplace transformation of the partial differential equation 

for F(y,t;k) can be conveniently written for all subsequent times by 

thinking of' the impulse P' as having disappeared, but introducing 
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F(t = 0) = - 2P0 e-k(y+h). We thus obtain the ordinary differential 

e~uation for F(y): 2 

This differential e~uation is to be solved subject to the boundary con-

ditions dF/dy = + kF at y = s, 0 (respectively). We find 

where 

_ 2P
0 

F=
p 

. 
(K+k)eK(s-y) + (K-k)e-K(s-y) 

(K+k)2eKs - (K-k)2e-.Ks 

The corresponding Laplace transforms of F and F 
+ -

-ksl 
- e J 

and 
2P [ ( ) Ks ( ) -Ks - oK+k e +K-k e F = - 2k --->.--~=--=-=---->----'---=---=-::-

- p (K+k)2eKs - (K-k)2e-Ks 

.-ky) .-kh ' 

are 

-kh e 

-kh e 1 

by continuity. The last of these expressions is of greatest interest 

for describing directly the eddy-current fields in the neighborhood of 

the dipole source. 
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IV. Examination of the Solution for t Small 

The correctness of the results can be checked, if desired, and 

some insight gained into their implications, if one examines these results 

for p large and thereby obtains the behavior at very early times. For 

p large/we have, to lowest order, K =. ~· • Then 

Note: 

= - U
l -ky 

2P -e 
0 p 

~2Pk[l: 
0 . p 

-ky 2 
e --p 

-kh e 

One expects that with nd p very large the 2 term retained within 

the s~uare bracket for dF/dy will be negligible unless y is exactly 

zero, but will combine with the lst term to give dF/dy = 

when y = 0. (This behavior already reflects the dis.continuity of 

oAjoy at y = 0.) 

Also 

From this last approximation we find the inverse Laplace t~ansforms3 

F ... -

; 3-162 
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when t is small, f'or the function that pertains to the image potential 

A(I) at points below the sheet (y < 0). 
• 

Accordingly, we expect that, when y < 0 and t is small, 

00 

~2v_:t j ke-k(h-y) J 
" 0 cos kx dk 

It may be noted that, to first order in Jvst, this result can be written 

A (I) ., 

where 

-2P 
0 

H - y 

thus, in this approximation, the image that initially is situated 

at y == h recedes to y == H == h + 2 J 2vst/rc at subsequent early times 
2 

(t<~=~=~). 
2v Ps Pv 

V. Examination of' the Solution f'or t Large 

The implications when t is large of' the solutions presented in 

Sect. III can be examined by treating p as small.4 In this limit one may 

write 
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1 2 
K - k :::::! ...1:... - - (L) - kvs 2k kvs and 

2 2 
(K-k) ~ (-kp ) • vs 

By a somewhat tedious Taylor-series development of F through terms 

of order (K-k) 2 we then find, for s ~ o, 

F = 

Po 
2 --:---kv + p 

-kh e 

-kh e 

B,y taking the inverse Laplace transform of this last form, we then obtain 

and 

where now 

F = - 2P -k(h+vt) 
o e 

00 

A(I) =- 2P0~ e-k(h+vt) cos kx dk 
0 

= - 2P 
0 

= - 2P 
0 

H = h + vt. 

h + vt - y 
2 2 x + (h+vt-y) 

H - y (fory<o), 

Accordingly, in this large-t approximation (s << vt), the image that 

is situated above the sheet (in order to describe the effect of eddy currents 
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as felt below the sheet) recedes from its initial position y == h with 

a constant speed v (== Ps/2n). This is the well-known result of Maxwell, 

for the case of a thiri infinite sheet, to which reference was made in 

ERAN-37. 

VI. References and Notes 

* Work supported by the U.S. Atomic Energy Commission. For previous work, 
see LRL Reports ERAN 37- 39 (July, 1969). 

1 The Fourier integral form follows from B.O. Peirce, "A Short Table of 
Integrals", #506, p. 64. 

2 The Laplace transform of F(t) will be denoted F(p) = f: e-ptF(t)dt. 
The Laplace transform of a time derivative is then given by 

~ co -pt dF t co co . t 
dt = !

0 
e dt dt == Fe-p b + p !

0 
e-p F(t)dt 

= - F(O) + pP. 

[ Cf. J. C. Jaeger, "An Introduction to the Laplace Transformation", 
(Methuen, London; Wiley, New York).] 

3 The connection between the behavior of a function for t small and the 
asymptotic character of its Laplace transform (p large) is discussed by 
G. Doetsch, "Theorie und Anwendung der Laplace-Transformation" (Dover, 
New York, 1943), Part III, Chapt. 13, Sect. l.l (p. 243 ff). 

4 Cf. G. Doetsch (op. cit., ref. 3), esp. Part III, Chapt. 13, Sect. 2 
""CP. 247). 
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ERAN-61 

MAGNETIC IMAGE FIELDS FROM THE PARALLEL TRANSVERSE MOTION 

OF A LINE CURRENT WITHIN A THIN- WALLED CIRCULAR CYLINDER 

OF NON-VANISHING SURFACE RESISTIVITY* 

L. Jackson Laslett 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

16 February 1970 

I. Statement of the Problem 

A steady line current r€ e.m.u. moves its location along a radial z 
trajectory r == h( t), 8 = 0 within a thin-wall conducting circular cylinder 

of radius R and surface resistivity p e.m.u. ( abobms) per square. It 

is desired to find the vector potential or magnetic-field components of 

the 11 image currents" induced in the cylinder ~- most particularly the azi

muthal field component B~I) of the image currents evaluated at the location 

r = h( t), 8 = 0 of the line current I. 

II. Solution 

The solution to the problem posed in Sect. I should be obtainable from 

the results of ERAN-39 (31 July 1969). In that report it was shown that, 

for a step-function tvlO-dLrnensional dipole p 
0 

at r = h, 8 = 0 that is 

turned on at t , we have (for t < t) the following z-directed vector po-
o 0 

tential of the image currents: 

rhr)n} CX) 

R:r (cos n8) 
~( t- t ) 

A(It - ~p [ 
-n R o e h 0 n=l 

(~)n 
r 

= P • F (h, r, 8, t- t ), 
0 0 

1-1here F can be vlritten in closed form as 

* Work supported by the u.s. Atomic Energy Co~rnission. 

for { r s R 

r:?:R 

( contd) 
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cos e - hr E (t t ) 2 J 0 
r R 

F = - 2 • 

R 2 
1-2 hr (cos 8) E(t,t ) + [(h~) E(t,t

0
)]

2 

R2 o R 

cos e - ~ E (t,t ) 
1 ----~------------~r----~-0--------~ 
r 1 - 2 ~ (cos e) E ( t, t ) + [ ( ~) E ( t, t ) ] 2 

r o r o 

• E ( t, t 
0

) for { r ~ R 

r 2: R , 

- ~( t- t ) 
with E(t,t

0
) _ e R 0 and v = ~~ [with p expressed in abohms (e.m.u.) 

per square]. 

If now -- to return to the problem that was posed -- a constant current I 

(e.m.u.) moves in radius at the constant azimuth angle 8=0 with h=h(t), 

one expects that the vector potential of the image field in this case will be: 

A (I) = I ; ~~;') F (h(t'), r, e, t- t') dt' 

-ro 

and the total vector potential will be this A(I) supplemented by the direct vec

tor potential A(O) of the current itself at its instantaneous position h(t). Ex

plicitly this latter is (1vith an arbitrary zero): 

A(o) = - I £n J?-"hJ 
R2 

h2- 2rh cos e· + 
2 

- I £n r 
= 

R2 

r{ [f ~ h n 
ne] tn ~}' = 2 (-;-) cos -

r 
n=l 

this last (series) form applying only for r >h. 
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III. Check of the Proposed Solution 

To test the results suggested in Sect. II, we note that the "induced cur

rents" in the viall at r = R have a surface density ( e .m.u. of current per centi

meter of circumferential distance) 

However this sa~e current density must also be given by 

& 
J =- = 

p 
- l: dA I 

p dt = -[~ 
R R . 

Hence we require: 

2 dA (I) I 
v 2Jt 

R 

= 2 dA ( 
0

) I 
v 2Jt 

R 

As a check of whether this requirement is in·fact satisfied by the solutions 

proposed, we may apply the series forms and write the condition 

t 

r j dhir l [ ;r Fr<R ( h( t'),r, a,t- t')-
0
: Fr>R ( h( t'l,r, a, t- t1 dt' + 

-ro R 

t 

+ ~I[ dh(t) F(h(t) R e o\ + j dh({) cFI dt'] ~- ~ cA(o)l 
v dt ' ' ' '} dt 2Jt v 2Jt 

-ro R R 

as 

-
hi ~ [ jt dh( t') h n-1 -n~( t-t') "] 4I dl ( t) ~ h n-1 

2 l..J n -, (R) e dt cosne--
1 

l..J(-) cosne + 
R n=l -co dt vR dt n=l R 

t v ( ') 
n[ J dh(t') (-E)n-\ -nR t-t dt"l cos ne 

dt' r 
-co 

00 

L~ I dh( t) \' h n-1 
- l.J ( -R) cos ne • 

vR dt n=l 
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This relation is seen indeed to be identically satisfied. In addition to satisfying 

this boundary condition at r = R, the forms proposed for the vector potential are 

continuous and A(O) has the proper singularity at r=h. The solutions elsewhere are 

harmonic ( \/2A = 0), as required, and fall off reasonably as r --4 oo • The vector po

tential could be supplemented, if desired, by the vector potential of a constant and 

uniform (t-independent and e independent) surface current at the radius R, to repre

sent a uniformly distributed return D.c. current (-I) in the cylinder, but this would 

contribute no field to any point in the interior. 

If we accept the vector potential expressed in the proposed series forms as correct, 

it is readily verified that the closed-form expressions are equivalent and hence may 

also be adopted as solutions to the problem that was posed. 

rv. The L'Ilage Field at the Location of the Given Current 

.h e 0 h th . f'' ld ~B (I)= B(I) A • th B(I) gJ..'ven by r = 1 = We ave e J..ffiage J..e g e
8

, WJ.. S 

h,O 

Hence we may write 
t 

B(I) = -
e Ij 

-co 

dh~;/ fr F (h(t'),r,O,t-t') I dt/ , 

r=h 

where (using the forms for r < R) 

. oo '. n-1 -n ~(t-t") 
*r F0(t'),r,O,t-t'lh = - : 2 ~1n [ h(t;~(t ) ] e R 

with E(t,t') e 
- ~(t-t 1 ) 

R 

E(t,t') 
} 
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v. Illustrative Ex~~ples 

A. Exponential Movement of the Current 

As an illustration, it is interesting and informative to consider the case in 

which the current moves outward exponentially from a very small radius value at a 

very early time. We accordingly take 

h(t) = 

t-tl 

h e ' 
0 

and dh(t) 
dt 

t-tl h 
o e-,-

1" 

Then the result given in Sect. IV becomes, employing the closed-form expression 

for fr F(h(t "),r,O,t-t") I , 
r=h 

t t~t v ') 
h 1 - -(t-t 

R 
0 1" e B(I) ~I; ·- e 

[ h 2 t-tl 
t -t 

j\(t-t')] 
2 8 R2 . 1" ' 1 

-en 1- ~ e 1" 
1" 

R2 
e e 

and, by writing t' = t- s, 

2Ih 
B(I) o 

8 = -2-
-rR 

h 
0 

2 I 

e 

t-t 
1 

2 I = ----:---:--
t-tl 

l 
VT 

1 + R 

l 
VT 

1 + R 

e 
(.2: + ~)t' 

1" R 

[ 
t-2t J2 h 2 l _ vt ( .2: + ~ )t! 

. l o 1: R 1: R --- e e 
R2 

1 v) -(- +- s 
-r R 

\-t 2 2 ds 

_l ) - ( .2: + ~ )s ]. -r -r R 
e e 

l 

e 

1 v) -(- +- s 
-r R 

l 
----,----- - 1 

t-tl 

1- (ho e 1" 

R r 
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, 
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= 
h e 

0 

t-t 
l 

( 

- t-tl)2 
R2 - h e -r 

0 

- 6 -

If one has a very good conductor serving as the image cylinder, so that 

p and hence v are small, or if the location of the current is changing rapidly, 

so that -r is small, our result indicates that in this limit (v-r << R) we 

shall have 

This result is that expected under circ~~stances such that the cylinder can be 

regarded as a surface into which virtually no flux will penetrate -- in this 

field is that of a. line current -I situated at lL~iting situation the 
R2 

r = h , or a distance 

image 
R2 

h 
h away from the current I at r = h, and the con-

sequent value of B( I) is 
e in agreement with the result 

found above. In the more general case (v-r not necessarily small in comparison 

to R), the image field at the location of the line current I is reduced by 

the factor ---1-
l+ V'r 

R 

in this example. 

B. Sinusoidal Oscillation of the Current 

A similar evaluation of may be attempted for a line current whose 

position oscillates with simple-harmonic motion (sinusoidally) about the central 

axis of the image cylinder. In this case we take 

h(t) = A sin rut and dh(t) -dt -Am cos rut. 

We now find the necessary integrals to be more elaborate, so we here confine our 

attention to the terms in the result that are first-order in the a~plitude A (the 

terms of next-higher ·order are of order A3). The result obtained then is 

( contd) 
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A ill v 
2I 2 2 v 2 [ill sin illt + - cos illt] 

R ill +(R) R 

sin (illt + ¢), 

where 

tan ¢ = v /R = _P_ 
ill 2n ill R 

v For ill >> R this result approaches 2I ~ sin illt 
R2 

2I~ , as obtained in sub
R 

section A above for rapid motion of the current if we now employ the approxima

tion that h is small. 

There is also present, ho-v1ever, the out-of-phase component of the image magnetic 

field, na.'nely 

This possibly-small out-of-phase component leads to an inward force from the re

sidual image magnetic field when dhjdt is positive (and vice-versa) for this 

parallel-displacement mode. 

It may be mentioned that retention of only the initial terms of the series 

developments presented in this report as, in effect, has been done in this 

last exa.'nple -- confines attention to image fields of low multipole order ( cf. 

ERAN-38 and ERAN-39). 
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ADDENDUM 

( 23 February 1970) 

The Lrnage Field of a Suddenly Established Current 

The solution to the image-field problem that arises when a current 

I is suddenly created at a radius h should be obtainable from the dipole
o 

step-function solution given on p. 4 and p. 7 of ERAN-39, namely from 

(X) 

=-~PL: 
h on=l 

- 2P 
0 

(cos ne) 
-n ~( t - t ) 

R o 
e 

( ~) . 
R . 

hr ) cos e - :2 E(t,t 
R o 

1- 2 h~ E(t,t )cos 8 + [(h~)E(t,t )]
2 

R o R o 

or · E(t t ) ' o· 

h 
1 cos e - ~ E(t,t

0
) 

----~-----------------,--------~ 

r 1 - 2 ~ E ( t t ) cos e + [( ~) E ( t, t ) ] 2 
r ' o r o 

- ~(t-t ) 
for r § R and with E ( t, t ) = e R 0 

0 
It is only necessary simply to 

form h 

( I) = 1 I 0 A~ "I) 
ACurr P P dh• 

0 0 
0 

We then augment this result with the direct vector potential of 

(i) an isolated doublet, formed by a current +I at r= h and -I 
0 

at the axis: 

(X) l h 
L: -(..£)n cos ne- £n·~ 
n=l n ho r 

(X) 

L: 
n=l 

or 

1 h n 
-(-0) 
n r cos ne 
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h h 2 
= - I .en [ l - 2 ro cos e + ( : ) ] , and 

(ii) a. current +I on the axis and a return current -I uniformly distri

buted over a cylindrical surface situated (to be definite) at r =R: 

R 
(0) (0) {2I £n r 

A . +A = 
r.<r<R 

2 

I on aXlS -I at R O r > R. 

Accordingly, employing the series expansions, we have 

(X) 

= -2I L: ~ 
n=l 

or 

-n ~(t-t ) 
(cos ne)e R 0 

-n ~(t-t ) 
(cos n9)e R 0 

(r § R) 

(r ~ R)_, 

or the closed-form expressions (that can be obtained directly by inte

gration 

h r h r 
£n(l- 2 °2 E(t,t

0
)cos 9 + [(-;.)E(t,t )]

2
} 

R R. 0 
(r < R) 

or 

h h 2 
£n(l- 2 __.£ E(t,t )cos 9 + [(_.£)E(t,t )] } (r > R). 

r o r o 

These forms, if used in conjunction with the A(O) given above, give the 

total potential A= A(O)+ A(I): 

( contd) 
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oo 1 h r n -n i( t-t ) 
R 2I [ L: -[(...E..)n-( ~) e 0 ]cos n8 + £n-

n=l n h
0 

R2 h 
0 

or 

oo 1 h n h r n -n ~(t-t ) R 2I [ L: - [ ( ~) - ( ~) e 0 
] cos n8 + £n-

n=l n r R2 r 

or 

oo 1 h n -n ~( t-t ) 
2I L: -( ~) [ l - e 0 

] cos n8 n=l n r < 

h r 

{ 

l - 2 ° 2 E ( t , t ) cos 8 + 
R o 

h r 
[( o2) E(t,t )]2 

R o 
I £n h 

or 

1 - 2 ~ cos 8 + 
r 

{

1-2 ho E(t,t) cos 8 + [(h0
) E(t,t )] 2 } 

I £ r o r o 
n h h 

0 0 2 
1 - 2 - cos 8 + (-) 

r r 

r <h <R 
0 

h < r<R 
0 

h <R<r 
0 

r. <r<R 
1-

r > R. 

It will be noted that these f'or:ns for the total vector potential A 

vanish at and outside the boundary r = R when t = t and that correspondingly 
0 

B = l: ~A likewise vanishes for r 2: R, t = t -- i . e., there is no initial flux 
r r o8 o 

penetration of the boundary. To continue a check of the expressions proposed, 

we first form 

= 
I 

2rcR 
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We then also form 

l . l . 
-(-A) --(-A) p r=R- 2~ r=R 

00 h 

11:~ L: ( Ro) (cos ne ) 
n=l 

-n ~( t-t ) 
R o e 

We thus see, from these expressions, that the current density in the cylinder 

is correctly related to the induced electric field ~ = - A through the 

surface resistivity p, save for the D.C. term I in J. This uniform 

(8-independent) return current of course must be sustained in this model 

by other means-- ~·f£·:; by electrostatic fields. 

As for the B
8 

fie.ld, the total B
8 

field near h
0 

is given by 

A = 

{ 

oo [h~ h:rn-1 
2I L -l + 2 

l n+ R n n= r 

R o -n ~( t-t ) ] 
e cos ne + ~} r>h 

0 

or 

2I[ r2-

n-l 
r 

n n-l 
h r 

0 -- +---::::--
R2n h n 

0 

r - h 
0 

cos 8 

2h r cos 8 + 
0 

h2 
0 

-n~(t-t )] R o 
e cos ne} r< h 

0 

h r 
cos e - -T E(t,t ) 

+ h 
R o 

0 2 hor 2 
R- 2h rE(t,t )cos8+ [RE( t, t

0
)] 

0 0 

E(t,t
0
)] 

Of the terms sho-vm, those that do not involve the time-dependent exponential 

- :::.(t-t ) R o factors e or E(t,t ) 
0 

represent just the B
8 

field of an isolated 

wire that is situated at r = h , 8 =0 and carries a current +I. The force 
0 

on this wire thus may be calculated by employing solely the remaining field -

that we might term the "image field" and denote by B(I). 
8 
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Thus, in s~~ary, we have at the location of the current the image 

field 

.~ h 2n -n ~(t-t ) 
2I l..J ( : ) e R o 
ho n=l 

h 2 
2Ih l- (R

0
) E(t,t

0
) 

0 ---:-----------,,------=---- E ( t, t ) 7 h2 h2 2 0 
l- 2 ( Ro) E ( t, t 

0
) + [ ( Ro) E ( t, t 

0
)] 

This last form is immediately interpretable, as are the image-field com-

ponents at any point within the cylinder, as the field that 

would arise from an image current -I at a radial location H that is 

the rrimagerr of a point that recedes towards the axis as h = 
0 

h • E(t,t ); 
0 0 

i.e., R
2 + ~( t-t ) 

R o 
H =he 

0 

2. The solution to the image-field problem that arises when a current I 

is suddenly created at a radius_h 
0 

also should be_obtaina?le L~ediately 

from the results in the body of the present report. In this instance we 

would set h(t) equal to h · tL'lles a unit step flillction (S) of t-t 
0 0 

for evaluating the image fields by use of the formula 

t / 
I J dh(t ) F (h(t') 8 t-t") dt/ 

dt 'r' ' 
-oo 

for the vector potential of these fields. With the ar~'!lent h( t ') in 

dh( t ") F a step function and -
dt .... 

h 5(t"-t ), we now may write 
0 0 

( contd) 
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h 
0 

= I J F(h,r,e,t-t
0

) dh 

0 

I h
0 

(F) 
h-aver age 

Now from the body of this report we have 

cos e - h~ E(t,t ) 
R o 

F < = -2 ..£.. ---:-------'-------=--------:::-
2 

E ( t, t ) , 
r_R R2 l-2 h

2
r(cos8)E(t,t )+[(h

2
r) E(t,t )] 0 

R o R o 

J
h o [cos 8 - :~ E ( t, t 

0
) ] E ( t, t 

0
) 

hr hr . 2 dh 
0 

l - 2 - 2 (cos 8) E ( t, t ) + [ ( 2 ) E ( t, t ) ] 
R o R o 

= .en {l - 2 h 0 r (cos e ) E ( t, t ) + [ ( h 0
2
r) E ( t, t ) ]

2
} 

R2 o R o 

A <R = I fn 1- 2 +(cos e) E(t,t ) + [( ~ )E(t,t )] 
(I) { h r h r 2} 

r_ R o R o . 

From the image potential just written, we find the following 9-component 

of field: 

h r 

2 Ih 
0 

cos e-~ E(t t ) 
2 ' 0 

R 
h r 

l - 2 ~2 ( cos 8 ) E ( t, t ) + 
R o 

and vThen evaluated at r = h , 8 = 0 gives 
0 
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h E(t,t ), 
or 2 o 

[ (-
2 

)E ( t, t ) ] 
R o 
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2Ih E(t,t) 
B (I) = --::::--o ---:----o __ 
e R2 h 2 

l - ( Ro ) E ( t , t 
0 

) 

as found in Section l of this Addendum. 

The writer is indebted to Dr. Lloyd Smith of this Laboratory for 

penetrating comments concerning questions that arose with respect to the 

treatment undertaken in Section l of the Addendum .. 
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THE IMAGE-FIELD POTENTIAL 

OF A UNIFORMLY-CHARGED ELLIPSE 

SITUATED BETWEEN A SET OF 

CONDUCTING HYPERBOLIC SURFACES 

L. J. Laslett 

I. INTRODUCTION 

In considering the significance, for the transport of intense charged

particle beams, of image fields arising from charges induced in nearby 

conducting surfaces, attention has previously been given to boundary surfaces 

that are circular or that have a fundamental rotational symmetry period of 

180 degrees -- so that terms of the form r 2 ~~~ (28} can readily arise in 

the image-field potential and linear contributions to the image-field com

ponents can readily be present. Results for some such cases have been 

presented elsewhere by the oresent writer. (l ,2) 

As non-linear aspects of such image fields may become important, there 

may be utility in extending work of this nature to treat the case of signifi

cantly extended beams~ such as has been done for an elliptical beam (of constant 

charge density) co-axially situated within a circularly-cylindrical conducting 

wall (Appendix C). 
- -

It also may be of interest to examine image fields that 

are present for slightly displaced extended distributions, in order to 

examine the possible 11 coherent 11 effects that act on the beam as a whole. 

A situation of particular interest -- and that has motivated the work 

described in the present Note -- is that in which the boundary surfaces have 

the shape of (four} hyperbolic sections [/-y2 = ~ c2], such as would be 
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provided by the electrodes of an electrostatic quadrupole-focussing system 

(and that, in this application, of course could not be shielded from the beam). 

We accordingly have undertaken to treat the 20 electrostatic problem of an 

elliptical beam (with semi axes~ and .Q_, oriented in the x andy directions, 

respectively) situated inside conducting cylindrical boundaries of hyperbolic 
2 2 + 2 cross-section x -y = - c . The analysis will cover the case in which the el-

liptical beam may be displaced, by distances 6 , 6 along the x andy axes, 
X y 

so that its center lies at the point 6 , 6 . [These conditions, that still 
' X y 

are somewhat special -- namely the orientation of the elliptical beam boundary 

with respect to the four hyperbolic electrodes -- are adopted in the interests 

of simplicity, but are believed to refer to situations of greatest practical 

interest.] With respect to the charge distribution within the elliptical 

beam boundary, we furthermore assume the charge density to be constant across 

the beam cross-section, although it may be difficult to reconcile this as

sumption with a statio~ary distribution for a beam significantly affected by 

the image fields whose characteristics we seek. 

In the work that follows the linear charge density of the beam will be 

taken to be ~=1 esu/cm and results will be stated in e.s.u. for that linear 

density. (3) With respect to dimensional (geometric) scaling, we anticipate 

that fields will be of the form 

E =! 1 (~ ~ ox ~ x Y.). 
c c' c' c, c ; c' c 

3-183 



-x-

II. THE TRANSFORMATIONS 

The conformal transformations that we have found suitable for solution 

of the present problem are described in some detail in Appendix A. The 

"Green's Function" from which one can construct the fields of the elliptical 

beam (even if displaced, as shown) by (numerical) integration is that of a line 

charge A situated at a point whose location we shall denote at this stage·by 

(a, b). It has proven convenient to regard the solution of this problem to 

be formed as the sum. of four problems (see Appendix A). 

For each Case, the appropriate transformation or transformations lead to 

new coordinate values for the source points (and correspondingly for field points) 
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that may be denoted by primes (corresponding to whichever new plane is being 

considered). Such transformation$ have been programmed as a Sub-routine, for 

subsequent use. The results of such programmed transformations can be checked 

by observations of conformality between traces made in each of two different 

planes, by checking the correctness of the Cauchy-Riemann conditions, or 

(equivalently) by examining the values of v2 Re(z•) & v2 Im (z•), or etc. 

III. THE POTENTIAL FUNCTIONS 

Following the appropriate transformations, the potential functions for each 

of the cases may be evaluated (in terms of coordinates for their respective 

final planes) and the results, when summed, provide the desired total potential 

for the Green•s-Function problem posed above. By subtraction of the 11 direct 11 

potential (~. for the iSolated source), the associated 11 image-field 11 poten-
1:-

tial also is obtained. 

Such results, as obtainable at this stage, of course can be subjected 

to some checks of correctness thus: 

(i) The total potential should approach zero as the field-point approaches 

the hyperbolic boundary surfaces. 

(ii) The image-field potential should appear to be such that its gradient 

is divergence-free in the interior, while the total potential should exhibit 

an incipient singularity (V = -2A ln J6rJ) in the immediate vicinity of a 

line source; and 

(iii) A pair of sources close to the x-axis and close to the pole tip 

at (c,o) likewise should exhibit in that neighborhood potential or field 

characteristics close to those which would be expected for an image charge 

(-2A) situated behind the pole tip by approximately the same distance as these 

charges are in front of this pole tip. 
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.With such checks performed, to the exte!1t deemed desirable, the correspond

ing results for the full (possibly,displaced) ellipse are evaluated by inte-

gration over the area of the elliptical beam .. Initially., for simplicity, 

this integration was performed computationally by a Monte-C~rlo integration, 

but this procedure was soon replaced by a more economical (.and, in practice, 

more precise) procedure employing a double Gaussian integration (using our LBL 

source routine, GB (developed by Gene Golub), and normally employing n=32 

in. our work). 

Again such final results can be subje<:;ted to certain checks (some similar 

to those mentioned for the Green's function), of which we mention the following: 

(i) The total potential should approach zero as the field point approaches 

the hyperbolic boundary surfaces; 

(ii) For a small ellipse displaced so as to be situated close to the pole 

tip at (c, o) of one of the boundary hyperbolae, the potential or field quan

tities in that neighborhood should exhibit characteristics close to those 

expected for a similar image charge, of opposite charge, a similar distance 

behind the pole tip; 

(iii) For a centered beam of very small dimensions, the image-field potential 

should approach that expected (save for an arbitrary constant) from an inde

pendent analytic examination of the sp~cific_case of a c~~~e!e'!__line charge;( 4) 
and 

(iv) The "direct" fi.eld, or its associated potential function (V(T) - v<I)) 

should have the character expectedfor_a uniformly charged ellipse-- say, most 

particularly, within the beam itself.{S) 

With this description of our analysis and of the types of tests to which 
.· . 

our computational work has been subjected, we turn now to certain results 

that have thereby been obtained. 
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IV. RESULTS 

In operating the Program GBIMG or its succesor GB4MG it is convenient to 

make one or more of three types of scan, once the relevant dimensional 

Parameters are specified (namely, _c, the. semi-axes a & b, and 8 8 ): . - - x, y 

(i) A scan along the x-axis, 

(ii) A scan along they-axis, &/or 

(iii) A scan around a circle in the z-plane (centered on the 

origin, and with the radius typically taken to be R ·= 0.9c). In any 

such scan the image potential at a succession of-field points is printed 

(in e.s.u., for ~=1.0 statcoulomb/cm) and (in the most modern version of the 

Program) also the total potential. In the scan with respect to angle (#iii), 

a "standard" scan may be chosen, in which the angles of the field,points are 

the thirty-six va 1 ues 

5 Deg., 15. Deg., 25. Deg., .. 355. Deg. in Program GB4MG. If this 

option is elected, one then may ask the program to print the.Fourier coef

ficients of the image-field potential, developed in the form 

17 k 
= c0 + t c (r) cos ke + 

k=l k c 

18 
t 

k=l 

k 
(r) sin ke sk c 

-- in which some of the higher-order coefficients may be expected to have 

somewhat lesser accuracy than those of lower order. In this case the Program 

also evaluates and prints the inferred field strength at the centroid of the 

ellipse (point 8x, 8Y), as computed from the negative gradient of this trig-

onometric development evaluated at the point 8x' 

average image-field components, <E (I)> and 
x Av. 

means of a double Gaussian integration of Ex (I) 

ellipse. 
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A. The Centered Beam 

The characteristics of the image fields of a centered beam perhaps are 

best described in ter~s of the Fourier coefficients of the image-field paten-

tia1 

of which only coefficients ck with k even will be non-zero in this case. 

Accompanying Tables present such results (only for ck with k~l2) 

(i) For a/b=3/2 (and, in one case, for a/b=3~ ), 

(ii) For a/b close to unity (actually 16/15), and 

(iii) For a/b=2. 

Clearly the change of the value of the ratio a/b to its reciprocal will 

result only in a reversal of sign of the coefficients c2, c6 and c10 (and so 

forth; if the tabulation were continued), while the remaining coefficients 

would remain unaffected. 
' 

The striking feature of all these results (in contrast to that frequently 

found for other image configurations) is the pronounced presence of fourth

order coefficients (c4, c8, c12 ), attributable to the variation of the boundary 

(with its four-fold symmetry). These fourth-order coefficients in fact do 

not vary greatly with the size (or shape) of the beam, and for beams of moderate 

dimensions approach values( 4) characteristic of a line charge at the origin 
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w 
I .... 
oc 
\C 

co 

c2 

c4 

c6 

c8 

c10 

c12 

a = 0.15 

b = 0.10 

+0.2415605 

-0.0025702 

-0.205620 

-0.000423 

-0.02960-

-0.0001 

-0.0051 

0.30 

0.20 

+0.2415002 

-0.0102822 -

-0.205672 

-0.001692 

-0.02962 

-0.0004 

-0.0051 

c = 1 .0 0 = 0. 

Cases with a/b = 3/2 {or 3) 2) 

0.45 0.60 0.75 

0. 30 0.40 0.50 

+0.2412389 +0.2405338 +0.2390389 

-0.0231469 -0.0412083 -0.0645817 

-0.205898 -0.206511 -0.207825 

-0.003817 -0.006831 -0.010829 . 

-0.02972 -0.02998 -0.03057 

-0.0009 -0.0016 -0.0026 

-0.0052 -0.0053 - -0.0055 

[0.5J 0.80 0.90 

0.75 0.533333 ... 0.60 

+0.2390389 +0.2382890 +0.2362921 

+0.0645817 -0.0735908 -0.0935155 

-0.207825 -0.208492 -0.210291 

+0.010829 -0.012411 -0.016018 

-0.03057 -0.03087 -0.031705 

+0.0026 -0.00303 -0.00400 

-0.0055 -0.0056 -0.0059 

.\ = 1. {e.s.u.) 



~ 
I -IC 
~ 

co 

c2 

c4 

c6 

cs 

c .. 
10 

c12 

a = Oo16 Oo32 
b = Oo15 Oo30 

+Oo2415642 +002415605 

.:o 0 0006374 . -000025497 

-00205617 -0 0 205620 '•· 

-0.000105- -0.000419+ 

! 

-0.029594 ::.0.029595 

-0.00002 -0.00010 

-0.0051 -0": 0051 

c = 100 6 = Oo 

ALMOST - CIRCULAR BEAMS 

Oo48 0064 Oo80 
Oo45 Oo60 Oo75 

- ····-- ·- --- -

+Oo2415445 +002415012 +Oo24.14101 

-.-
-Oo0057369 -Oo0101999 -000159404~ 

-Oo205634 -00205671 ... -0.205750 
--···· 

--0.000944 -0.001679 -0.002626 

-0.029601 -0.029617 -0.029650+ 

-0.00022 -0000039 -0.00062 

.:o.oos1 -0.0051 . -0.0051+ . ' 

,\ = 1. (eosouo) 



-~ 
1. -\C -

' 

co 

C2: 

c4 

c6 

. CB 

c10 

c12 

a = 0.2 0.4 

b = 0.1 0.2 

-+0.2415414 +0.2411940 

-0.0061688 -0.0246923 

... 
-0.205637 -0.205937 

-0.001015 -0.004073 

. -0.029602 -0.029733 

-0.00024 -0.00096 

-0.0051 ' -0.0052 

. c = 1.0 6 = 0. 

CASES WITH a/b = 2. 

0.6, 0.8 
0.3 0.4 

+0.2396821 +0.2355548-
--·--- f---· 

-0.0557264 -0.0998993 

-0.207257 -0.2l0965 

-0.009298 -0.017211 -
~ 

-0.030315 -0.032025 

-0.00223 -0.00434 

-0.0054 -0.0060 
-· - --· - . 



The remaining significant Fourier coefficients in the image-field potential 

(i.e., c
2

, c
6

, & c
10

), for any fixed value of a/b, evidently scale fairly 

closely in direct proport·on to the square of the transverse linear dimensions 

of the beam relative to c (see following Tables)-- ~·.9..·•;;, (~) --and of 
c 

course become small as the centered beam approaches circularity. 

a/b = 2 

a b c2 c6 clO 
-

ab/c2 ab/c2 c c ab/c 2 

0.8 0.4 -0.312185 -0.05378 -0.01356 

0.6 0.3 -0.30959 -0.05166 -0.0124 

0.4 0.2 -0.30865 -0.05091 -0.012 

0.2 0.1 -0.30844 -0.05075 -0.012 

a/b = 1. 5 
a b c c6 clO 2 - -c c ab/c2 ab/c 2 

ab/c2 

0.90 0.60 -0.17318 -0.0297 -0.0074 

0.80 0.53333 ... -0.17248 -0.0291 -0.0071 
0.75 0.50 -0.17222 -0.0289 -0.0069 

0.60 0.40 -0.17170 -0.0285- -0.0067 
0.45 0.30 -0.17146 -0.0283 -0.0067 
0.30 0.20 -0.17137 -0.0282 -0.0067 

0.15 0.10 -0.17135 -0.0282 -0.0067 

a/b = 16/15 

a b c2 c6 clO -c c 
ab/c2 ab/c2 ab/c 2 

0.80 0.75 -0.02657 -0.004377 - -0.0010 

0.64 0.60 -0.02656 -0.004372 -0.0010 

0.48 0.45 -0.02656 -0.004370 -0.0010 

0.32 0.30 -0.02656 -0.004365~ -0.0010 

0.16 0.15 -0.02656 -0.00437 -0.001 

For~ and~ interchanged, the signs of these coefficients r~verse. 
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To extend this discussion we may now inquire how the coefficients c2, 

c6, and c10 scale with respect to the ratio a/b. A cursory examination of the 
c2 

data already presented suggests that the quantities 2 , etc. may scale 
(ab/c ) 

approximately in direct proportion to ln (a/b) -- a behavior that would lead 

to these coefficients vanishing when a=b and reversing in sign when a/b is replaced 

by its inverse. To examine this issue in some greater detail we have performed 

computations for a sequence of cases in which the product ab has the constant 

value 0.2520 c2, while various values are assumed by the ratio a/b. The Fourier 

coefficients found for these cases are presented in tabular form below, followed 
c2 c6 clO 

by a tabular summary of the quantities 2 , 2 , and 2 . These 
(ab/c ) (ab/c ) (ab/c ) 

latter quantities, plotted against ln (a/b), yield the graphs shown on the Figures 

that follow and suggest a very close to linear dependence upon ln (a/b) in each 

case at least for the interval 0.625 = ~ ~ 6 ~ ~ = 1.6, approximately. 

We accordingly might suggest that, for approximate practical work, one may 

represent these coefficients of the image-field potential of a centered ellipse 

by the handy formulas 

c -2 - -0.426759 ~ ln (E) 
c 

= -0.98265 ~ c 
loglO (E), 

c6 = -0.07097 ~ ln (6) 
c 

= -0.16342 ~ c 
loglO (fi), 

clO = -0.01695 ~ c 
ln (6) 

= -0.03902 ~ loglO (~) 
c 

-- or, more simply, 
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c2 = -0.98 (4) 
c 

loglO (5), 

c6 = -0. 16 (4) 
c 

loglO (6), and 

c,o = -0.039 (4) 
c 

loglO (5). 
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c..u ., .... 
\0 
til 

co 

c2 

(4 

(6 

(8 
--

c10 
---

(12 

~---.--

a = 0.504 0.5 

b = 0.50 0.504 

0.2415641 0.2415641 

- --0.0008258 0.0008258 

~0.2056170 -0.2056170 

-0.0001358 0.0001358 

-0.0295939 -0.0295939 

-0.0000319 0.0000319 

-0.0051216+ -0.0051216+ 

--. 

c = 1 .0 0 = 0. 

2 CASES ~ITH a·b = 0.2430 x c , cont'd 

0.45 0.40 0.35 0.30 0.84 

0.56 0.63 0.72 0.84 0.30 
.. 

0.2412470 0.2401169 I 0.2374956 0.2315825 0.2315825+ -
' 

! -0.0228585 0.0488521 0.0820725 0.1291658 -0.1291658 

-----··· --·-

-0.2058913 -0.2068757 -0.2092024 -0.2146843 -0.2146843 

0.0037690 0.0081242 0.0139265+ 0.0229729 -0.0229729 

-0.0297130 -0.0301456 -0.0311983 - -0.0338541 -0.0338541 

0.0008883 0.0019399 0.0034303 0.0060938 -0.0060938 

~------ ------·· 

-0.0051636 -0.0053182 -0.0057093 -0.0067893 -0.0067893 



~ 
I . .... 

\C 
Q'\ 

co 
----

c2 

c4 
1 

c6 

C8 

clO 

-· 

c12 

a = 0.28 
b = 0.90 

0.2273171+ 

r--·-·-··---

0.1548658 

-0.2188537 

0.0285348 

-0.0360484 

0.0080129 

-0.0077804 

c = 1.0 ~ = 0. 
CASlS WITH a·b = 0.02520 x c

2 

0.90 0.80 0. 75 0. 70 I 0.60 
0.28 0. 315 0. 336 0.36 0.42 

I 

! 
I 

0. 2273172 0.2339056 0.2363015 - 0.23819843 - 0.2406963 -
-. -· ----- __ l ______ ··-------i 

! -0.0378169 i -0.1548658 -0.1129270- -0.0934314 -0.0746071 I 

·-----·-·----+-

-0.2188537- -0.2124908 -0.2102829 -0.2085726 -0.2063697 

-0.0285347 -0.0197118 -0.0160024 -0.0125911 -0.0062614 I 

-0.0360483+ -0.0327610 -0.0317019 -0.0309090+ -0.0299223 

-0.0080129 -0.0050753 -0.0039992 -0.0030753 -0.0014851 

-0.0077804 -0.0063288 -0.0059039 -0.0055998 -0.0052380-



(..,! 
I -IC 
-! 

a, b 

1n {a/b) 

c2 

{4-) 
c 

c6 
( ab ) 
7 

c10 
{ ab ) 
7 

a, b 
1n {a/b) 

c2 

{ ab ) 
7 

c6 

{ ab ) 
7 

c10 
{ ab ) 
7 

0.50, 0.504 

-0.007968 

0.003277 

0.000539 

0.0001266 

0.90, 0.28 

1.167605 

-0.614547 

-0.113233 

-0.031797 

-~--··~...---

6 = 0. 

CASES !liTH a·b = 0.2520 x c2 

0.45, 0.56 0.40, 0.63 0. 35, 0. 72 0.30, 0.84 

-0.218689 -0.454255 -0.721318 .:1.0296194 

-
0.090708 0.1938575 0.3256845 0.512563 

0.014956 0.032239 0.055264 0.091162 

0.003525 0.007698 0.013612 0.024182 

I 

0.80, 0.315 0.75, 0.336 0.70, 0.36 0.60, 0.42 

0. 932039 0.802962 0.664976 0.356675 

-0.448123 -0.3707595 -0.296060 -0.150067 

' 

I 

-0.0782214 -0.0635016 -0.049965 - -0.024847 I 
I ' 

-0.020140 -0.015870 -0.0122036 -0.005893 
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~ 
·--
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With respect to the fourth-order coefficients c4, c8 , ... for such 

a centered ellipse, on the other hand, these might be taken simply as 

having values identical to those for a central line charge (as a lowest-

order approximation) 

c4 ; -0.2056, 

c8 ; -0.0296, and 

c12 ~ -0.0051 

namely 
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~The Displaced Beam 

In the case that the elliptical beam is displaced, as a whole, we 

have concentrated our attention on the effect that a displacement has on 

the development of the following quantities: 

(i) the Fourier coefficients ck and skin the image-field potential. 

(ii) the components of the image field evaluated at the centroid 

of the displaced ellipse, obtained from the Fourier coefficients as 

E (I) (o ,o ) = --c I: k(~)k-l [sk cos (k-1) e- ck sin {k-1) e], 
y X y 

where (in this application) r, e are the polar co-ordinates of the centroid 

and summations extend from k=l through k=l7 or 18 for terms proportional to 

ck or sk' respectively. 

(iii) the average image-field components, (Ex(I)) av., and (Ey(I)) av., 

obtained by integrations, over the area of the ellipse, of expressions similar 

to those written immediately above. 
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1. For Displacements Exclusively i~ the x Direction 

Before describing and discussing results obtained when non-zero dis-

placements are present in both the x and y directions, we first present 

some results (obtained with the simpler program GBIMG) for cases in which 

the displacement is only in the x"direction (8 = 8, 8 = 0). One finds that 
X y 

the three quantities -c1/c, E/I) (8,0), and <E/I))av. are all compara-

ble and are odd functions of 8. For a circular beam (alb= 1), moreover, 

these quantities are independent of beam size, and the values of Ex(I) (8, 0) 

and (E 0)) are identical--as is to be expected, since the x av. 
external direct field of a circular beam is independent of its radius. 

For this circular beam, however, the quantities Ex(I) {8, 0) and (Ex (I)) av., 
while remaining equal to one another for a circular beam, exhibit noticeable 

non-linearity as a function of 8/c. 
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Values of the quantities c
1

, and E (I) (6, o)·, and (E (I)) x x av. 
for the image fields have been computed and tabulated for several combina-

tions of values for the parameters a/b, ab/c2, and 6/c. We recognize 

that the quantity c1 should be a function simply of these dimensionless 

ratios, while the remaining two (field-like) quantities similarly should 

be! times functions of these same ratios-~ and all are for>.= 1 (e.s.u.). c 

The attached tabulations of this nature (for c=l) accordingly should be 

of some utility in themselves for application to specific cases. In addi

tion, however, it appears that -- for cases in which a/b does not differ 

greatly from unity, and the ratios ab/c2 and 6/c are each reasonably small 

-- one may write the approximate handy formulas 

cl -1.6 [1.0 + 0.21 (~) ln (6)] 
6 -- c c 

= -1.6 [1.0 + 0.48 (~) loglO (6)] 
6 

c c ' 

1.6 [1 .0 + 0.73 (~) ln (6)J ~ 
c c 

= 1.6 [1 .0 + 1.68 (a~) log10 (£)] ~' 
c c 

<E (I)> 
x av. - 1.6 [ 1.0 + 1.71 (~) ln (6)] ; 

c c 

= 1.6 [ 1.0 + 3.94 (~) log10 (6)J 6
2
. 

c c 

The extent to which these formulas provide values differing somewhat 

from the more exact values obtained from runs with Program GBIMG--when 

6/c differs significantly from zero, a/b differs significantly from unity, 

and ab/c2 is significant--is illustrated by the following tabulation of 

results for cases that might be regarded as typical of situations of interest. 

Agreement is found amongst all these cases substantially within 10 percent, 

and chiefly with an error appreciably less than this amount. 
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w 
I 

N = fJI 

a. 

4. 

3. 

4. 
---------

3. 

3. 

2. 

3. 

2. 

6. 

4. 

6. 

4. 

7.5 

5.0 

6. 

3. 

6. 
----

3. 

c • 10. 

b. 

3. 

4. 

3. 

4. 

2. 

3. 

2. 

3. 

4. 

6. 

4. 

6. 

5.0 

7.5 

3. 

6. 

3. 

6. 
---

c1 

~ COMPUTER FORMULA 

1. -0.1584 -0.1612 

1. -0.1562 -0.1588 

2. -0.3183 -0.3223 

2. -0.3136 -0.3177 

1. -0.1581 -0.1608 

1. -0.1565 -0.1592 

2. -0.3176 -0.3216 

2. -0.3142 -0.3184 

1. -0.1609 -0.1632 

1. -0.1545 -0.1568 

2. -0.3236 -0.3265 

2. -0.3099 -0.3135 

1. -0.1633 -0.1651 

1. -0.1533 -0.1549 

1. -0.1623 -0.1642 

1. -0.1537 -0.1558 

2. -0.3267 -0.3283 

2. -0.3081 -0.3117 
- - ---·--

(I) 
Ex'·' (~. 0) / (E}I)) 

COMPUTER FORMULA COMPUTER FORMULA 

0.01645 0.01640 0.01702 0.01695 

0.01564 0.01560 0.01510 0.01505 

0.03499 0.03281 0.03620 0.03389 

0.03326 0.03119 0.03213 0.03011 

0.01633 0.01628 0.01673 0.01667 
-- j 

0.01575 0.01572 0.01537 0.01533 I 

0.03473 0.03257 0.03559 0.03333 ! 
j 

0.03350 0.03143 0.03269 0.03067 i 
0.01724 0.01714 0.01897 0.01866 

0.01426 0.01486 0.01345 0.01334 

0.03669 0.03427 0.04046 0.03733 

0.03145 0.02973 0.02868 0.02667 

0.01796 0.01778 0.02086 0.02016 

0.01433 0.01423 0.0120!Js 0.01184 

0.01768 0.01746 0.02012 0.01942 

0.01455 0.01454 0.01260 0.01258 

0.03765 0.03491 0.04302 0.03883 

0.03097 0.02909 0.02691 0.02517 
---- ---- L_ -·---



2. For Possible Displacements in both the x and y Directions 

The displacement of the beam center, from the origin, is now represented 

by o , o . The lack of generality thus .consists only in restricting the 
X y 

results to be cited here to cases-in which (for simplicity) the principal 

axes of the elliptical beam.are taken to be parallel to the x, y co-ordinate 

axes. 

~ -·-··- (..._-- -·· 
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Values of and have been computed 

(Program GB4MG, stored in Library JACKSON), for various values of o , o , 
X y 

for several combinations of values of a and b. If alI dimensions of the 

problem {c; a, b; ox, o ) are scaled by a common factor, we expect the fields y . 

to vary in proportion to l; also an interchange of b with a and of o with c - - y 

ox will be expected to lead to an interchange of EY(I) with Ex(I)_ The 

image-field potential and the components of the image field itself moreover 

may be expected to be respectively even or odd functions of ox and of oy. 

Finally, if b=a (circular beam), the average field values <Ex (I)) av. 

and should be independent of the common value of a,b. av. 
Results for the cases that have been run (esp., with c=l. and a/b 

equal to 1.25, 1 .35, or 1 .50) can be seen in tabular form. 

to describe these results for ( E (I) ) and < E (I) ) x av. y 

We have attempted 

av. as derivable 

{approximately) as the gradient (with respect to o , o ) of a function - POT 
X y 

(denoted POTM in a Least-Squares fitting routine FITD2 of Library ~CKSON) 

<E (I) ) = a ( ) ;v-. -POT , x av. au 
X 

where 

0 2 0 2 
-POT = A1 (~) + A4 (...l...) 

c c 
0 4 0 4 0 2 0 .2 

+ A2 (~) + A7 (~) + A5 (1-) (-{:-). 
·C c 

[It was not judged desirable, in this effort to represent -POT, to go beyond 

terms of 4 th order. Greatest utility may be expected to accrue· for situations 

in which iox/cl and ioy/cl each are less than (or do not exceed) 0.15]. 
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We thus attempt the representation of our results in the form 

< 
( I) ) 1 oy 6 3 o 2 o 

E = (2 A4 (-c ) + 4 A
7 

(..1..) + 2 A (2-) (.L)]. y av. c c 5 c c 

For convenience in possible future dynamical computations, finally, 

we have attempted to represent the coefficients A1, A2, A
4

, A5, and A7 by 

simple approximate functions of the parameters ab/c2 and a/b (or log10 (~)) 

as follows: 

ab a 
A1 ; 0.785 + 3 ~ log10 b' 

c 
A2 - 0.834 + 3 ab log a = ~ 10 5' c 

A7 :: 0.834 - 3 ab log a 
--'2 10 b' c 

_ [ ( ab a) 2] A5 = - 2.4864 + 6.5 ~ log10 6 . 
c 

Thus for c = 10. em, a = 4.32 em, b = 3.20 em 

(ab/c2 = 0.13824 and a/b = 1 .35) 

and with 6 = 1. em, 6 = 0.5 em (6 /c = 0.1, 6 /c = 0.05), we would 
X y X y 

compute from the "handy formula" for < E/ I) ) the result < Ex (I)) 

fa. [1.701126 x 0.1] = 
0 · 1 ~~~ 126 

= 0.01701126 (for< Ex (I) ) av. 

expressed in statvolts/cm when A= 1.0 statcoulomb/cm), while if all 

physical {spatial) dimensions had been one-tenth as great (c = 1 .0) 

we would obtain an image field ten times greater--namely 0.1701126 

for \E (I)) 
x av. 

For this latter case (c being unity} the program GB4MG prints 

< E (I)) = 0;1709450 
x av. 
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The adequacy of the handy (approximate) formulas just proposed may 

be indicated by the followtng table, in which for c=l and 6x/c = oyjc = 0.15 we 

list first the values of <E {!")) and (E (I)> frorn GB4MG x av. y av. 
computations and then (on the line that follows) the same quantities as 

estimated by the handy formulas. 

c = 1.0. 

Average Image Field At 6/C = 0.15, 6/c=O.l5 

ale b/c c (Ex (I)) c < Ey (I)) 

0.338 821 487 0.295 140 668 0.2359 0.2243 
0.2356 0.2243 

0.40 0.32 0.2423 0.2182 
0.2416 0.2183-

0.55 0.44 0.2536 0.2079 
0.2519 0.2078-

0.65 0.52 0.2634 0.1994-
0.2605 0.1989 

0.432 0.32 0. 2481 0.2128 
0.2468 0.2129 

0.54 0.40 . 0.2587 0.2034 
0.2562 0. 2033-

0.675 0.50 0.2761- 0 .1889+ 
0.2708 0.1881-

0.45 0.30 0.2544 0.2072 
0.2522 0.2075-

. 0.60 0.40 0.2747 0.1900 
0.2692 0.1897 

0.75 0.50 0.3033 0.1684 
0.2908 0.1666 

a = b 0.2301 0.2301 
0.2300 0.2300 

--·---·--
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c = 1.0 & 

( E (I)> 
x av. 

/[(I)) 
\ y av. am= 0.40, bm = 0.32 R = 0.96 

,) 
X 0. 0.05 ll.1fl 0.15 0.20 

6 y .. 

0. .08288833 . 1683879 . 2592025 

0. 0. 0. 

0. .08226903 .1671447 .2573251 
0.05 

.07514553 .07452655 .07266513 .06954687 

0.10 0. .08041053 .163414ti .2516940 

(;.~ . 1526708 .1514322 .1477079 .1414711 
I 

N - 0. .07731037 .1571944 .2423092 - 0.15 
. 2350174 .2331569 .2275646 .2182049 

-

0.20 

0.25 

------



~ 
I 

N .... 
N 

c = l. 0 

am= Oo55, b
111 

= Oo44 

6 
' X Oo 

" 6y 

Oo 
' ,. 

r 
I 

I 

Oo05 

(Ex(!)) avo 

(E (I)) 
y avo 

Oo10 

o08652265 01757875 

Oo Oo '/·--·-/)/· 
' .. 

Oo05 Oo o08589880 0 1745332 

007184918 o07122595 o06934983 

Oo o08402831 0 1707732 
Oo 10 

ol459979 o1447524 o1410037 

Oo o08091364 01645144 
Oo 15 

o2247973 02229306 02173142 

Oo20 

Oo25 

-- ----'----- ~· -- -----

R = Oo96 

0015 0020 

02706475 

Oo 

02687484 

006620037 

0 2630572 

01347130 
' 

02535896 

02078948 



~ 
I 

N -~ 

' 

~ 

c = 1.0 

am~ 0.65, bm = 0.52 

6x . 

6 0. . 0.05 y 

~ ' .08969047 
0. 

/~// 0. 

0. .08906060 
0.05 

.06913150 .06850251 

0. .08717344 
0.10 

.1405044 .1392487 

0. .08403561 
0.15 

.2164037 .2145254 

0.20 

0.25 

-- - -· ------------

<
E {I)) 

x av. 

(Eol) 
Y av. 

R = 0.96 

0.10 0.15 0.20 

. 1822497 .2806762 

0. 0. 

.1809816 .2787515 

.06660731 .06341977 
·-

.1771828 .2729878 

.1354660 .1291064 

.1708688 .2634142 

.2088685 . 1993639 

---' -- - -



w 
I 

N .... 
.&;... 

6 

/E (I)) 
\' x av. 

c = 1. 0 

am= 0.432, bm = 0.32 

& (£ (I)) 
y av. 

R = 0.96 

ox~ .a. 
0. 0.05 

Y+ 

': LL· .08475825 0. I / I . ,. . , 0. . . . ' . 

0.05 u. .08413693 
.07342470 .07280386 

0.10 0. .08227325 
.1491860 ' .1479444 

-· 

0.15 0. .07916730 
.2296766 .2278140 

-""--'"--

0.20 

0.25 

c = 10. . l 
am= 4.32 . bm = 3.2oj 

(R = 9,6) 

0.10 

.1721933 
0. 

. 1709450 

.07093586 

.1672015 

. 1442096 

. 1609649 

.2222123 

0.15 

.2650833 
0. 

.2631958 

.06780326 

.2575369 

.1379485 

.2481148 

.2128272 

(i = 1.0 
X 

6y = 0_
51 

.ol70945o I 

.007093586 

NOTE: If all spatial dimensions scaled simiarly, 
fi~ld components change in inverse proportion. 

NOTE: 

are ~lose tQ -cl/c & -sl/c' respectively, 

and (with am = bm) 

(Ex) =Ex (6), (Ey) = Ey (6) 

0.20 

c = 1.00 
a = b .... m · m am= 0.372 

6 6
Y II cl X 

51 -
0.1 0. II -.1572868 .1603891 

0. 0. 

0.1 -.1571291 .1591516 0·0511 -.07825915 .07647937 

0.1 0 1 II - . 1566619 . 1554348 
. -.1566619 . 1554348 

0. o. 1 II 0. 0. 
-. 1572868 .1603891 

{R=0.96) 

bm = 0.372 

.1603891 
0. 

.1591516 

.07647937 

. 1554348 

. 1554348 
0. 

. 1603891 



t.J 
I 

N .. 
Ul 

c = 1.0 

am = 0.54, bm = 0.40 

~4 
y~ ' 0. 

~It?/; 0. 1/ /(;; .· . .. 

0. 
0.05 , .. 

. .07041504 

0. 
0.10 

.1430981 

0. 
0.15 

.2203643 

0.20 

0.25 

(Ex(!)) av. 
& 

( E (I)) 
y av. 

R = 0.96 

' 0~05 0.10 0.15 . 0.20 

.08817417 .1791550 .2758696 

0 . 0. 0. 

.08754741 .1778940 .2739579 

.06978904 .06790368 .06473560 

.08566892 .1741152 .2682312 

.1418477 .1380827 . 1317586 

.08254335 .1678300 . 2587121 

.2184923 .2128569 .2033969 

---



~ 

~ .... 
0'1 

c = 1.0 

am = 0.675, bm = 0.50 

0 

~ 0. 

1(/ /. // 
0. / .. /·./0 

/ /////; / 
0. 

0.05 
.06582642 

0. 

0.10 .1338328 

0. 
0.15 

.2062345 

0.20 

0.25 

(Ex(Il) av. 

&(Ex(I)) av. 

0.05 0.10 

.09377064 .1905914 

0. 0. 

.09313038 .1892999 

.06518739 .06325952 

.09121380 . 1854346 

.1325588 .1287162 

.08803280 . 1790220 

.2043330 . 1985995 

.1701007 

.2752079 

R = 0.96 

0.15 0.20 

. 2936711 

0. 

.2917046 

.06000871 

.2858210 .3958613 

.1222394 . 1130065 

.2760666 

.1889424 



~ 
I 

N 
1-' 
-..1 

(Ex(!)) av. 

& 

<
E(I)) 
y av. 

c = 1.0 

am= .45, bm = .30 

'\ ... 
6. ---~ y ... 0. 0.05 0.10 

~/_ >:' // .08678270 . 1763175 
0. 

~~~<///:: 0. 0. 

0. .08615843 . 1750623 
0.05 

.07162080 .07099716 .06911969 

0. .08428678 .1712995 
0.10 

.1455360 .1442898 .1405387 
0. .08117057 .1650369 

0.15 
.2240908 .2222234 .2166043 

0. .07681203 . 1562823 
0.20 

.3097377 .3072494 .2997649 

0. 
0.25 

.4051049 

0. ox= 0.10 0.30 .5130844 

oy = o.15 

* Reciprocally, for am= 0.3ot 

. 1342431 

.2638715 

bm = 0.4~ 

R = 0.96 

0.15 0.20 

.2714689 . 3753420 

0 . 0. 

.2695679 . 3727701 

.06596748 .06150147 

.2638715* .3650664 

. 1342431 .1253285 

.2543963 .3522637 

.2071791 .1938453 

.2411627 . 3344059 

.2872213 .2694986 



w 
I 
~ .... 
oc 

" ' ' 
' 

6 y 

. 

I 

c = 1.0 

am = 0.6, bm = 0.4 

6x 

', 0. 
" 

~-. / 

0. / ./ . . . ,. 
/ 1". / ~' 

./"/""1/·.".-. /. ·' .· 

0. 
0.05 

.06617088 

0. 
0.10 

. 1345276 

0. 
0.15 

.2072924 

0. 
0.20 

.2867639 

0 . 
0.25 

.3753668 

0. 
0.30 

.4757151 

(Ex(I))av. 

& (E (I)) 
y av. 

0.05 0.10 

.09333310 .1896959 

0. 0. 

.09269409 .1884071 

.06553306 .06360912 

.09078108 .1845499 

. 1332559 . 1294206 

.08760540 .1781492 

.2053938 .1996698 

.08318344 . 1692421 

.2842471 .2766630 

R = 0.96 

0.15 0.20 0.25 

.2922732 .40458132 . 530749U 

0. 0. 0 . 

.2903116 .4019141 

.06036584 .05574169 

. 2844423 .3939168 

. 1229578 .1137490 

.2747096 .3806684 

.1900313 . 1763119 

.2611798 . 3622791 

.2639044 .2457711 
-



~ 
I 

N ,_ 
IC 

c = 1. 0 

am= .75, bm = .50 

~ 6 

~ y '""--.. 0. 

0. :W;f .. / 
0. 

0.05 
. 05938263 

0. 
0.10 

.1208547 

0. 
0.15 

.1865265 
0. 

0.20 
.2585535 

0. 
0.25 

. 3391666 
-

* Reciprocally, for am = 0.5o1L 

bm=o.7sj 

(Ex(!)) av. 
& 

( E (I)) 
y av. 

0.05 

.1025356 

0. 

. 1018637 

.05871287 

.09985625 

.1195230 

.09653645 

.1845480 

.09194053 

.2559484 

_.__ 

6y=0.15 

0.10 

.2085882 

0. 

.2072271 

.05668636 . 

.2031605 

.1154947 

.1964388 

.1785652 

.1871404 

.2480758 

6x = 0.10 

.1086632 

.3135957 

R = 0.96 

0.15 0.20 

.3219207 .4468460 

0. 0 . 

.3198324 .4439670 

.05324866 .04829958 

.3135949* .4353669 

. 1086637 .0988322 

.3032916 .4211692 

.1684281 .1538542 

.2890574 .4015916 

.2347535 .2156390 



~ 
I 
~ 
~ = 

c = 1.0 

a_ = 0.6. b = 0.6 
Ill Ill 

' 6 

oy 
X 

"""- 0. 
' 

0. ' I '/ .· . I/ X'';// ';'/'/.: // 
Ll. 

0.05 
.07895164 

0. 
0.10 

. 1603891 
0. 

0.15 
.2468736 

0. 
0.20 

.3411269 
0. 

0.25 
.4461357 

Values below diagonal 
recorded by symmetry. 

(E Ol) x av. 

( E (I)) 
y av. 

R = 0.96 

0.05 0.10 0. 15 0.20 0.25 

.07895164 . 1603891 .2468736 .3411269 .4461357 

0. 0. 0. 0. 0. 
.07833419 .1591516 .2450101 .3386261 

.07833419 .07647938 .07337896 .06901632 

.07647938 .1554348 .2394145 . 3311199 

.1591516 . 1554348 .1492241 .1404894 

.07337896 . 1492241 .2300697 .3185942 

.2450101 .2394145 .2300697 .2169382 . 

.06901632 .1404894 .2169382 .3010138-
) use avera9 

.3386261 . 3311199 .3185942 .3010137-
e 



!.f 
N 
N .... 

c = 1.0 

am= 0.36, bm = 0.36 

0 
., X 

0 '· 
' y ~ 0. 

0. 
/ ~~ .· 

~~j·~/2 
0. 

0.05 
.07895164 

0. 
0.10 

. 1603891 

o. 
0.15 

.2468736 

0. 
0.20 

.3411269 

0. 
0.25 

.4461357 

Values below diagonal 
recorded by symmetry 

<[ (I l) 
x av. 

& (E/ 0) av. 

0.05 0.10 

.07895164 .1603891 

0. 0 . 
.07833419 . 1591516 

.07833419 .07647937 

.07647937 . 1554348 

.1591516 .1554348 

---

R = 0.96 

0.15 

.2468736 

0. 

---

Va 1 ues for 

am= bm 

0.20 

. 3411269 

0. 

are identical to those 

-'J 

0.25 

.4461357 

0. 

for other am = bm (e.g., am = bm = 0.60). 



C. Illustrations 

To illustrate these image effects--~.g_., in relation to the "direct" 

field of the beam--we have considered the particular case of a A=l beam with 

a=7.5, b=5.0 and f=~a2 b2 =~ ; 5.590. Such a beam may be typical 

of one traversing an A-G focusing structure as adopted for an induction 

linear accelerator for a heavy-ion driver in a HIF research program. Curves 

are presented graphing Ex vs. x at y = 0 and EY '!2.· y for x = 0 when such an 

ellipse is situated·centrally between four hyperbolic grounded conductors 

characterized by x2 - y2 = ± c2 with c = 10. 

For comparison we also present similar curves for two alternative bound-

ary surfaces: 

a concentric circular boundary (R=lO.), or 

an elliptical boundary that fits snugly (and hence confocally) around 

the beam. 

One should recognize that in the case in which hyperbolic boundaries 

are present, the distinctive feature of the image fields is perhaps not their 

magnitudes but rather the pronounced content of third-order terms (arising 

from the term cos 48 

for a>b, this can result in the 

in the image-field potential). Accordingly, 

image-field contribution toE (I)I _0 . - y X-

remaining quite small for all lxl <b. Thus, in the present example, by 

the time that the contribution of c2 to Ey(I)Ix=O has becom~ somewhat sig

nificant (say at y;4 in this example) the contribution of c4 may virtually 

cancel the c2 contribution: 

Contribution from c2 
Contribution from c4 

y = 3.75 

-0.00484 

+0.00438 

y = 4.00 

-0.00517-

+0.00532 

with, at these. radii, terms of higher order individually contributing amounts 

less than 10-4 in magnitude. 
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[We recall that the coefficient c2 in the image-field formula is present as 

a result of the eccentricity of the ellipse, while a significant value of 

c4 will occur even when a/b=l (as a result of the 4-fold character of the 

boundary structure presented by the hyperbolic surfaces.)] 

A circular boundary concentrically surrounding as elliptical beam also 

gives rise to non-linear image fields, but such effects appear to be less 

dramatic--and indeed in the example treated here the image fields are seen 

to be rather weak. The image fields resulting from the confocal elliptical 

boundary (that in our example snugly surrounds the beam) appear to be rea

sonably pronounced in magnitude, while being linear. It may be pointed out 

that, as Regenstreif has already noted (CERN Report CERN/PS/DL 77-37)* the 

image field due to the presence of the surrounding circular chamber reduces 

the field arising from the isolated beam in the direction parallel to the 

major axis and increases the isolated-beam field in the direction parallel 

to the minor axis. 

Returning to the case of the elliptical beam centered within the four 

hyperbolic boundaries, one will recognize that the cancellation we have 

seen to occur between the c2 and c4 - terms in -forming EY(I)Ix=O is associated 

with a corresponding very flat plot of image-field potential vs. y at x=O. 

Finally, with respect to the displacement of such a beam, by an amount 6 

along the x axis, we present here a curve of relevant fields that then arise 

[Ex (6, 0) and (Ex) av.J and that exhibit some non-linear character as a 

function of 6. 

* Final reference cited in our Appendix C. 
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V. SUMMARY 

The problem considered was an evaluation of the 20 image field* that 

arises from an elliptical charge distribution situated within four hyperbolic 

2 '2 2 surfaces x - y = ± c . The principal axes of the ellipse (semi-axes 

a & b) are taken to be pa.rallel to the x andy axes of the co-ordinate system, 

but the semi-axis in the x direction (~) need not necessarily be greater than 

that in the y direction (Q_). The charge density throughout the ell ipse is 

regarded as constant, with an overall linear density>-= +l esu/cm and with 

results expressed in un-rationalized cgs electrostatic units. The elliptical 

charge distribution may be either centrally located between the four hyper

bolic surfaces, or displaced from the center by a distances (\• oy along 

the x andy axes. [Note: The effect of a displacement exclusively along the 

y-axis is readily inferrable from results obtained for an x-axis displacement 

with the ratio a/b inverted.] 

.Aided by some preliminary refonnulation of this problem through the 

use of some conformal transformations discussed in Appendices, the problem 

just posed has been solved computationally (Program GBIMG or GB4MG) to provide 

the image-field potential (as well as the approximate total--image + direct-

potential) at .any field point (x, y) situated within the circle r=c, and 

numerical finite-differences evaluations .of -grad V would provjsfe O!le ~eans 

of obtaini·ng the corresponding electric fi·elds. Alternatively, however, a 

loop sca·n to evaluate potential values at a sequence ,of points equally 

spaced around a circle provides values that the program then '(optionally) 

has been designed to .anarysi·ze into a truncated trigonometric series for 

* lhe term 11 image•• here refers to the surface distribution of charge induced 

on the surrounding conductors. 
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the image-field potential in the form 

+ 17 
co k~l 

r k 18 (-) cos ke + r 
c k=l ( ~)k sk c sin ke 

--from which image fields can be obtained by evaluating the negative gradient 

of this expression. The same coefficients as are generated for this trig

nometric development then also (optionally) can be employed to evaluate both 

the image field at the centroid of the beam (at 8x, 8Y) and the average field 

(obtained by Gaussian integration over the area of the possibly displaced 

beam)-- as may be of interest in connection with the dynamical movement of 

the beam as-a-whole. 

Results obtained in many runs (with different values for the various 

relevant parameters) have been recorded in a number of Tables and several 

graphs have been drawn to illustrate such results. A most distinctive property 

of the image field for this configuration is the pronounced contribution of 

a c4 (~)
4 cos 48 term in the associated image-field potential function (r<c) 

and the consequent third-order non-linearily in the components of the image field 

itself. Thus for a centrally-located circular beam (independent of the size of 

a(=b) relative to c) one finds the image-field potential to be in excellent agreement 

with 

V
(I) 1r2 r4 ·. 7TI4 . r8 .• 

= const. - >. [48 (e) cos 4e +2"'3lml (c) cos Be+ ... ], 

as predicted for this case by Lloyd Smith. (4) [Note eccentricity of the ellipse· 

can give rise to coefficients c2 etc., and a displacement to coefficients 

cl' s, etc.' but coefficients c4 etc. can· always be expected as a consequence 

of the 4-fold character of the boundary surfaces.]. 
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The results obtained for image fields (or for total--direct plus image-

fields) that would act on individual particles of the beam in the present 

configuration have been ·compared (or contrasted) with the corresponding fields 

that would arise from a few other boundary configurations that have been 

examined in the past. As stated previously, the distinctive feature of the 

configuration examined here appears to be the pronounced non-linearity--

say of Ex (I)Iy=O ~· x (as is particularly noticeable for a>b, when c2 and c4 

terms add in forming Ex rather than effect some considerable cancellation). 

It will be recognized that the results presented here lack significance 

to some extent in that the assumed constant density of charge throughout an 

elliptical beam may not represent a truly stationary distribution of charge 

in view of the special dynamical effects that may arise from non-linear image 

forces acting on the particles of the beam. We are not at this time in a position 

to comment further concerning the dynamical consequences of the non-linear 

forces whose existance has been emphasized here (perhaps also, in some applications, 

with a distinctive AG or non-AG character) and certainly not concerning the 

extent to which the assumed constant density distribution will differ significantly 

from one that has a stationary character. It may, however, be of interest to 

suggest that, as G. Lambertson has kindly commented, the non-linearities 

introduced by the 4-fold character of the hyperbolic boundary structure consider

ed here might be reduced or suppressed by use of a more circular structure 

(perhaps composed of many isolated electrodes) onto which appropriate poten

tials could be individually applied to create, when desired, a suitable (~, 

quadrupole) applied electric field. 

Finally, for possible practical use (or for approximate dynamical computations) 

we have undertaken to provide some approximate handy formulas to describe in 

broad terms the salient results of the present work--thus (with A=l statcoulomb/ 

em): 
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For a Centered Beam: 
- ab a c2 = -0.98 (2 ) log10 (0) 

c 

-c4 = -0.20S6 

c 6 :; - 0. 1 6 ( ~) 1 0 g 1 0 ( ~) 
c b 

c8 = -0~0296 

c10 = -0.039 (~) log10 (~) 
c 

c12 = -O.OOSl, 

where log10 denotes the logarithm to the base 10. Similarly 

For a Beam Displaced only in the x Direction: 

c1 = -1.6 [1. 0 + 0. 48 (~) 1 og1 0 (-5-)] ~ 

E (I) ( ) ::: [ (ab) (a)] <\ X ox, 0 - 1.6 1.0 + 1.68 ~ loglO b ~ , 
c c 

<E (I)) = 1 6 [1 0 + 3 94 (ab) x av. · · · """2 
c 

a 0x 
loglO (1))]2 ' 

c 

where we may be overlooking, however, non-linear dependencies on ox that could 

be significant for sufficiently great values of o /c.* Also, more gen~rally, 
X 

For a Beam Displaced by ox' o : 

<Ex' I)) 1 0 0 0 0 
- - [2 A1 

(2) + 4 A2 
(2)3 + 2 As (2) (2)2] 

av. c c c c c 

<E (I)) 1 0 0 0 0 
- - [2 A4 (~) + 4 A7 ( cx)3 + 2 As ( cx)2 (2)] y av. c c 

* See. however. alternative (more extended) aooroximate exoressions orooosed 

immediately below for (Ex(I)) av. and/Ey(I)) ~ av. for cases in which both 

ox and oy may be non-zero. 
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where 

A1 = 0.785 + 3 ~ log10. ~ 
c ' 

ab a A4 = 0.785- 3 :z log10 b 
c ' 

A - 4 3 ab 1 a 
7 = 0. 83 - :z og1 0 b 

c ' 

( ab a)2 ] A5 = -[2.4864 + 6.5 :2 log10 b . 
c 
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SSR, Yerevan; 1970). 

3. If one wishes to interpert the results presented in this note in terms 

of MKS-C (SI) units, one may regard the results as applying to a charge 

density of l coulomb/meter, employ meters as distance units throughout, 

and divide reported values of potential (or field-strength) by 4n€ to 
0 

obtain results in volts (or volts/meter). 

9 8.987554 X 10 

4. Lloyd Smith (private communication) has kindly provided, as a result of 

analytic evaluation of the image-field potential of a unit line charge 

centrally situated between the hyperbolic electrodes (x2 - y2 = ± c2), 

the expression 

V(I) = Const. -A [
l( E (-l)n ) r 4 l l-~)n_ r 8 
4 n=o (n+l )2 (c) cos 48 + 32 (n~o ~) (z) cos 88 + ... 

= Canst. -A r~~ Cfl~ cos 48 + f~~40 Cfl 8 cos 88 + .•. ] ' 
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so that (for example) 

E(I) I =~ [7T
2 

(xory)3 
x or y c 12 c 

. y=O 

77T4 7 J + 2880 (x o; Y) + · · · 

or x=O 

; ~ [ 0.822467 {X o; y)J + 0.23676- {X O~ :t.)7 + .•. J 
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Our computational program for a small, almost circular, 'beam (with 

~=1 ), ce~tered at the origin (a = 0.11 c~ b = 0.10 c, and 8x 

gives results for which the 48 and 88 terms in v(I) imply 

= 8 = 0) y 

E (I) I x or y l ~·~ [ 0.82247 (X": Y) 3 + 0.23675 (X": Y) 7 + .. J 
y=O 
or x=O 

(~agreement with Dr. Smith•s results for the limiting case of a centered 

beam), while harmonic contributions to v(I) other than those of the type 

4n8 have been seen to tend to zero as the (centered) beam becomes small 

in its physical dimensions. This illustrates a case in which the 4-fold 

symmetry of the boundary introduces dominant non-linear terms into the image 

fields that act on individual particles of the beam. 

5. Within an elliptical beam (with A=l), of constant charge density throughout its 

cross-section, one expects the 11 direct 11 self field to be (6) the linear 

field noted below: 

Along the x axis: 

X 
Ex = 4 a(a+b) (e.s.u.), 

Along they axis: 

E =4~ 
Y b(a+b) 

(e.s.u.).-

6. L. C. Teng, .. Transverse Space-Change Effects .. , ANLAD-59 (Argonne National 

Laboratory, Argonne, Ill.; February 1, 1963). See also early papers cited .. 
in Ref. 1. 
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APPENDIX A 

THE TRANSFORMATION 

The starting configuration to be analyzed, and that in a sense serves 

as a Green's Function, is that sketched below--in which a unit line charge 

(~=1 e.s.u.) is situated at a, b withi~ grounded hyperbolic cylinders 

t 
1J 

A= l 
at (4, b) 

• 
x--

The solution to this problem will permit, by subsequent integration (in 

practice, numerical integration), the evaluation of the electrostatic 

potential function for a charged beam situated within this set of hyperbolic 

conducting surfacei.· 
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The electrostatic problem just posed can be taken to have the solution 

provided by one-fourth of the sum of the solutions to the four problems 

presented by the four sketches that follow: 

CASE lA 

~=' 
'- =-1 4t(A, b) 

• •• 
• • z-.:::..-

~=-' "= 1 

CASE IB t 
1J 

A= I 
A:.l a.t(a, b) 

• • 
• • x~ 

A.= -I ,.. = -1 
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CASE II 

t 
y 

A= I 
}... = 1 at( a.,a:,) 

• • 
• • x-

CASE II I 

t 
~ 

>.. = I 
~= -1 at (a., b) 

• • 
• • ,:-

>.=I A=-1 

3-245 



In these several cases the x and y axes become either equipotential 

surfaces (V=O) or stream lines, as follows: 

CASE x-axis y-axi~ 

IA Stream Line V=O. 

IB V=O.· Stream Line 

II Stream Line Stream Line 

III V=O. V=O. 

We accordingly may analysize each of these indivi~ual cases by first applying 

a conformal transformation (or transfo~ations) applicable directly in 

each case to the first quadrant.* We note, moreover, that Case IB becomes 

identical, with respect to the potential function, to Case IA if the source 

co-ordinates a, b are interchanged and if the field-point co-ordinates x, y also 

are interchanged. 

We now continue by first examining Case II, for which both co-ordinate 

axes constitute stream lines. 

*Solutions obtained for situations in which both the source point and the 

field point lie in the first quadrant can subsequently be so re-interpreted 

to account for situations in which one or both of these points may lie in 

any other quadrant. 
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• 

CASE I I. 

We first apply the transformation z' = (z/c) 2; i·~·· 

.• 2 
y' = 2 X y I c 

to obtain in the z' plane the situation sketched immediately below, in 

which the full line segment -1 < x' < 1, y' = 0 constitutes a stream 

line: 

. 
0 
II 

> 

(-l,o) 

A.= I 
• 

. 
0 
II 
> 

Equivalent to this situation, of course, is the extension shown below, 

. 
0 

" > 
(-1,0) 

A= I 
• 

---.+--~ 

• 
·A.= I . 

' . 
0 
11 
> 

(I, O) 

in which (through inclusion of the second line charge, below the dashed line) 

the dashed line automatically constitutes a stream line. 
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The problem of a single unit line charge situated between a pair of 

parallel conducting plates is a familiar one (Appendix B), so, with refer

ence to the preceding sketch, we may apply the result of that case (by 

superposition of results for unit line charges at a', b1 and at a' , ~b', 

with a field point at x', y') to obtain 

[ ln 
Cosh ~ (y' - b') TT ( "' - a .. ) - COS 2 X 

VII = -
Cosh ~ (y"' - b"') + cos ~ (x"' + a"') 

Cosh~ (y .. + b"') TT ( "' - a"') ] - COS 2 X 
+ ln 

Cosh~ (y"' + b"') + cos ~ (x' + a"') 

where 

y"' = 2 x y I c2 

Although this result for Case II has been derived for source and field 

points in Quadrant I of the original z plane, it is evident from the 

symmetry of the original sketch describing this case that a reversal 

of sign of any one or more of the quantities a, b, x, or y would affect 

neither the magnitude nor sign of the potential function VII for this Case 

II. We accordingly, for this evaluation, may perform the transformation 

from unprimed to single-primed variables by use of Ia I, lbl, lxl, and IYI 

-- and then evaluate VII through use of the formula presented (in terms of 

primed variables) above. 
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CASE I II: 

The situation designated as Case III may be treated by again introducing 

the transformation z~ = (z/c) 2 for transformation of the first quadrant 

of the z plane. In this case, however, the full line segment -1 < x~ < 1, 

y~ = 0 is to be regarded as characterized by V=O. -- as indicated below: 

or, equivalently, 

. 
0 
II 
> 

. 
0 
II 
> 

A.= I 
• 

V= o. v=o. ) ( _ I , 
0 

)...___...;.__.,_.....,;_____;;;,____,J ( I , 0 

. 
0 
u 
> ~=I • 

I 
I • 

0 ,, 
> 

(-I , 0) - - - - •- - - - ( I, 0) 

• 
A.= -I 

where, in this latest diagram, the introduction of the line charge A = -1 

below the dashed line automatically results in this dashed line assuming 

the potential value V=O. 
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Accordingly, for this Case III, we again may make the transformation 

from unprimed to single-primed variables (takjng the former with positive 

values, as ·if they wer.~. in the first quadrant of the z plane) and then make 

use of the known results for a line charge between parallel conducting 

plates.· In this instance, however, we note the assi:gnment of the negative 

value A. = -1 to the line charge at a', -b' and write 

Cosh ~ (y' - b') 7T ( ... ... ) - cos - . x - a 
2· 

Cosh-~ {y' - b') + cos i (x' + a') 

Cosh ~ (y' + b') 7T (x' a') ] - cos 2 -
·- ln 

Cosh 'IT ( ... + b') + 7T ( ... + a ... ) 2 y cos -.X . 2 

With VIII evaluated through use of primed variables derived from Ia], lbl, 

Jxl, and ]y], inspection of the ~riginal z-plane sketch for Case III indi-

cates that each change of sign of a, b, x, or y should imply a sign reversal 

of VIII" With VIII orginaily evaluated as indi~ated above, we then append 

the instruction that IF ~-~·b;y < 0~ then a sign reversal of VIII is to be 

imposed. 
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CASE IA. 

For Case IA we once again may transform from Ia!, lbl, lxl, IYI to 

the single-primed variables in the manner indicated previously--now resulting 

in the boundary-value problem sketched below: 

0 
II 

> 

d 
II 

> 
, !IL ,";t 

....._.....;V;....=_o;;;.._~_.;...;.;t~~~ ( I , 0) 
(-l,o) (o,o> 

z .. plane 

in which the left-hand portion of the x .. axis (-l<x .. <O) is to be at zero 

potential, while the right-hand portion (O<x .. <l) constitutes a stream line. 

A sequence of two additional transformations now serves, first, to 

straighten out the 90° corners, and then, second, to bend upward again the 

portions of the boundary that are at zero potentia 1 . Thus, fo 11 owing the 

transformation to the single-prime variables, we perform the Schwartz-

Christoffel transformation 

II • 1r .. z = s1n 2 z ( i ) 

j_.~.' X
11 = sin ~ x.. Cosh i y .. 

Y11 
- cos ~ x ... Sinh z y .. 

followed by an inversely somewhat similar Schwartz-Christoffel trans.formation 

Z111 = .?._ sin-l (2Z 11 -l} 
7T 

[ Z
11 __ l + s

2

,·n :!!..
2
· z 11

] 

or, equivalently,. 
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The results of these additional transformations, (i) & (ii), then are 

as sketched below: 

v=o. 

and 

0 
n 
> 

• 

0 
II 

':> 

A= I 
• 

v:o, Z11 plane 

Z
111 plane 

I 

The resulting problem, as presented in the Z
1

" plane, is thus seen to 

be identical to that presented in the z~ plane of Case II. For the present 

Case IA, then, we accordingly write 

fn 
Cosh ~ {y Nl - bIll ) - cos :!!.. (x "1 - a "' ) 

VIA = 2 

Cosh ~ (y Ill - bIll ) + cos :!!.. (x "1 + a "' ) 2 

Cosh ~ {y Ill + b Ul ) - cos ~ (x"' _ a 111 ) ] + ln 
Cosh ¥ {y Ill + bIll ) + cos ~ (xlll + y Ill) 

For z-plane values such that a·x < 0 the result so computed for VIA should 

be reversed in sign. 
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Case IB. 

As was noted earlier, the problem posed by Case IB becomes identical 

to that of Case IA if we interchange the x-plane values of a with b and 

of x with y. For Case IB, then, we accordingly first obtain new values for 

the single-prime variables 

y = 2 lxyl I c2 b .. = 2 labl I c2 

and then, with these single-prime variables, proceed through the same 

succeeding transformations as before to obtain new values of the corresponding 

triple-prime variables. With these new triple-prime variables, one next 

evaluates v18 through substitution into the formula given previously for 

VIA and then reverses the sign of the result if the original z-plane co

ordinates are such that b · y < 0. 

SUMMARY 

The total potential of the single unit line charge in the problem 

originally posed (A= 1. e.s.u., at a, b) then is given by 

The associated image-field potential is then obtained by subtracting the 

"direct" potential--specifically by forming* 

v(I) = v(T) + 1 (x - a)2 + (y - b)2 . n 2 
c 

*V(I) as so formed clearly has been assigned an arbitrary additive constant 

to its value. The subtraction procedure, as defined, also clearly will be 

inoperative if the field-point and source point coincide. 
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APPENDIX B 

POTENTIAL OF A LINE CHARGE ?ARALLEL TO, 

AND BETWEEN, TWO PARALLEL GROUNDED CONDUCTING PLATES 

For parallel conducting planes at y = ± h and a line charge ~ (c.g.s. 

) · n (z + i h) e.s.u. at x = x1, y = y1, the transformation z~ = exp 2h carries 

the conducting planes to the x~ axis of the z~ plane. The points z = ± i h 

(x = 0, y 

ordinates 

-e nx1/2h 

=±h) lie at z~ = i 1. The source point goes to z~-plane co

-e nx1/ 2h sin nyl , e nx1/ 2h cos nyl , its image then becomes 
2h "2"h 

sin nyl -e nx1.12h TTYl, and the field point becomes cos 
2h 2h 

nx/2h sin~ e nx/2h 2!1. in this z' plane. -e 2h ' cos 2h 

h 

t 
h 

The potential function then becomes 

* The transformation employed in this Appendix was introduced in Appendix. B, 
(pp. 352-353) of L. J. Laslett, "On Intensity Limitations Imposed by 
Transverse Space - Charge Effects in Circular Partic:l e Accelerators, 11 in 
Proc. 1963 Summer Study on Storage Rings, Accelerators and Experimentation 
at super-High Energies (J. W. Bittner, Ed.}, pp .. 324-367 (BNL 7534,. Brook
haven National Lab., Upton, Long Island, N.Y.; (1963). 
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and after some algebraic manipulation is found to be expressible as 

7T (X - x1 ) 1T {y ~ yl) 

] v = -/, ln [Cosh 2h - cos 2h 
7T {x- x1J 1T {y + y,J 

Cosh 2h + cos 2h 

With a re-orientation of the diagram, to become 

.. 
'1 t (x.,lJ,) 
._."' h-+h 

the result may be written 

•[Cosh ~h (y - y1).- cos ;h (x - x1 >] 
Cosh 2h (y - y1) - cos, ~ (x + x1 l] 

It is this last form of which we have made use in Appendix A of the present 

work, with a 11 owances of differences in notation and with recognition of 

the fact that (in these applications) more than one line charge may need 

be considered present. 
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APPENDIX C 

IMAGE FIELDS FROM AN ELLIPTICAL BEAM 

SURROUNDED BY A CONFOCAL ELLIPTICAL CYLINDER 

OR BY A COAXIAL CIRCULAR CYLINDER 

For comparison with some of the results presented in the body of the 

present report, we summarize here results for cases in which a uniform ellip

tical beam is surrounded either (1) by a confocal elliptical cylinder or 

(2) by a coaxial circular cylinder. 

1. Surrounding Confocal Elliptical Cylinder* 

We consider here a uniform elliptical beam with semi-axes a and b 

(focal length f =~ ) surrounded by a confocal elliptical conducting 

cylinder. In this case it is found that the image fields are strictly linear. 

The result has been briefly included in some of our early transport computa-

tions, but appeared to be of little consequence in that work. 

The electrostatic potential problem in this case may be analyzed in 

terms of elliptical co-ordinates generated by the transformation 

z = x + i y = f Cosh (u + i v), 

namely 

x = f Cosh u cos :} . y = f Sinh u sin 

*E. Regenstreif, CERN IPS I DL 76-4 (C.E.R.N., Geneva, Switzerland; June 

1976). L. Jackson Laslett (Lawrence Berkeley Laboratory), unpublished. 
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The major and minor semi-axes of the beam boundary then are 

a = f Cosh uE and b ~ f Sinh uE~ 

where uE refers to the edge of the beam. From the well known* expression 

for the "direct" field of such a beam' (when isolated), 

E (D) = 4, -~x--:-
x A a (a+b) and E (D) = 4>. 

y 
y (e.s.u.) b (a+b) 

within the beam, we may write the associated direct potential function as 

(D) x2 Y2 
V = - 2' [ ] + t 

A a (a+b} + b (a+b} cons · 

2A :~b [ ~ Cosh2 u cos 2 v + t Sinh2 u sin2 v] + const. 

f [ Cosh 2u + 1 
A a+b 2 Cosh uE (1 + cos 2v) + Cosh 2u -l (1 - cos v)] + const. 

2 Sinh uE 

within the beam (u < uE ), and correspondingly 

= - A 
f 

a+b 
[ Sinh 2u 

Cosh uE 
(1 + cos 2 v) + Sinh 2u (1 - cos 2v)] 

Sinh uE 

at the boundary. This direct internal potential and normal derivative may 

be matched to a harmonic external direct potential function 

f uE-2u . uE 
A a+b [ e cos 2v + 2 e · u] + const. 

* L. C. Teng, "Transverse Space-Charge Effects", ANLAD-59 (Argonne National 

Laboratory, Argonne, Ill.; February 1, 1963). 
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The image field required to make the surrounding elliptical conductor 

(u = uw) an equipotential then must be characterized by the supplementary 

potential function 

v( I) +A _f_ 
f UE 

Cosh 2u cos 2v] = ; e - 2uw 
+ const., a+b L Cosh 2uw 

UE 2u 2 
[2 

i + 1] f e w - y_ + const., = A a+b Cosh 2u f2 w 

or simply by 

2 2 
(x - y ) [u < u ]. - w 

It is noted that this potential implies exclusively linear image fields in 

this case. 

In the special case that the elliptical tube fits snugly around the 

beam (u ~ u ) V(I) becomes w E ' 

v(I) a-b 2 2 
= 2A X -y_ 

a+b a2+b2 

(since 
-uE 

= Cosh uE - Sinh a-b e UE =-and f . 

Cosh 2 uE Cosh 2 uE - Sinh2 = 
a2+b2 a2+b2 

= UE = 
f2 a2-b2 

In this case, then, the image fields become 

E (I) = 
X 

-4A aa~bb x and E (I). = + 4A a-b 
a2+b2 y a+b 

) . 

y_ 

a2+b2 

To obtain, finally the total space-charge field for this special case, 

we add 



E (D) 4>. X or E (D) 4>. b(~+b) = a(a+b) = 
X y 

to obtain 

E = b X and Ey 4/. ~ y 
(u 2 UE uw) 4/.- = = 

X a a2+b2 b a2+b2 

with V · E = 4'- = 4n --"-- = 4np (as required). It was these components of ab nab 
space-charge field that were employed in some brief tests of beam transport 

and that led to the conclusion that image fields introduced no pronounced 

effects in such a configuration as that just discussed. 
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2. Surrou~ding Coaxial Circular Cylinder* 

With the elliptical beam again characterized by semi-axes a, band with 

the focal length f =~a2 - b2 , the surrounding conducting surface is now 

taken to be a co-axial circular cylinder of radius R. In this case the image

field potential at a point r, e can be written conveniently in the multipole 

form 

v(I) = 2A ln [ 2 (~) 2 ] A n~l c (f)2n (f)2n cos 2ne, n R 

where en = (2n-1)! 
22n-l n! (n+l)! 

Thus the image field at points along the x-axis can be written 

Ex (I) I y = 0 = 
av (I) 

ar I e = o 
,, 

= A E 2 n c 
n=l n 

where the en are as before. The form just shown exhibits most explicity the 

occurrence of fields of various harmonic orders. The closed form presented 

by Regenstreif gives this same result as 

*E. Regenstreif CERN/PS/DL 77-37 (C.E.R.N., Geneva, Switzerland; October 

1977). L. Jackson Laslett (Lawrence Berkeley Laboratory), unpublished. 
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[1 
., 

E (I) 
I y 4>. 

R4 
-vl- (fx)2 1 (fx)J = 

f2x3 - 2 X = 0 R2 R2 

i ri our units. 

The corresponding forms for the image field along the y axis are 

E (I) I = A I: 
y x = 0 n=l 

f2n 2n-l 
(-l)n 2n en Y 

R4n 
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IF () ,N£, l"'F) GO TC' !00 
;,r;y~r :JOOO 
PRI'H H GJ 

I PFINT ~115o A~, 3~, JXo ~y 

r Gc TC 111 
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• 
~SO ~RI~T 3DDO t CALL STATU51IRAYI 

:us~= o.oot•FLOATII~AYIHI s PlliNT Hoo, cus~< 

BO ~RI~T BOO 
• 
~000 

~0 01 
~002 

iO 0 3 
~oo:. 

i010 
~011 
3012 
:JO 1 5 

FO~MAf(• •1 
F0.~"1AT(,11 

FO~I'IAT 10201 
FO~MAT(• •,2~•,A10,//J 
FOR1AT(• °CT :•F17o1L,•, •,02~,• (JC!AL~'"~/, 

£• TJ~ :•F17.1~,•, •,JZC,• (OCTALJ'",II 
FO~MAT(• TY~~ :•1 
FORMAT(• C ='"Fl:.lCI 
FO~MATI• •,1,• TYP~ A ~ 9•1 
FO~MAT(• A =•F15olO,• 9 =•F15.10, 

1• :: :'"f15olCI 
'"331~ FO~MATt• Al :•F15.10,•. Bl =•f15.101 
•3017 FO~MAT(• 42 =•Ft5.10,• 32 :'"F15o101 
•901~ ~0~"1ATI• A~ :•F13ol~,• 93 =•FlS.tl,/1 
3013 FJR!'IAT(• MO~~ JR T~~~lNkTE? --'I Q;> T'"l 
~020 FO~~AT(• ~:vi~E C? -- Y 0~ N'"l 
~021• FQR~AT(• COt1T!NUr wiT~ T"'ESE SOU"'C: L.OCATI')t<S"?•, 

~· -- Y 0~ N•l . 
~J22 F0~1ATI'" :~r:; FI(Ls-~orNr :o-oRJI~'rEs, x A v•1 
~025 FO~M4r(• X =•F1:.10,• Y =•F15ol0, 

£• :: ·:•Fl5o101 
302~ FO~MATt• ~1 :•FlSolG,• Y! :'"Fl':ol') 

v2 =•ns.tol 
Y3 =•Ft5.1j,l) 

3030 

H11 
H12 
H15 

uzo 

H51 

H60 

Hot 
H?2 
310 3 
315 ~ 

F0~"1lT(• X2 =•FtC:.lC,• 
FC~M~T(• X~ :•F1~.1:,• 

Fo~·MA!(• •,t, 
s• PJT~NT!AL~ FO~ LA~EJA : 1,0 t:.s.v,t•,/, 
1• vTJf :•Ft,.10olt'" ~I~G :•F1~o10,/l 

FOR"1t.T(• NEW FifLC·PC!tJT, SOUI'Cf POINTS, 0~ 

I'" •• F, S, J~ :•1 
F0~"1AT(• TYPE JELTAA A DELTAY'"I 
~O~MAT(• TYPE 5E~IA ~ s:~ra•1 

FC~~AT(• s:~I-AAc5•,J~•,I, 
,. A~ =•F1~.1~.· 3M :•C15.10,I, 
s• J~ =•F15olO,• QY :•F15,1Q,/) 
ro~~AT(• ~E~~G~~ G~l5SI'N IhTEG;t.TIJN?•, 

J• -- y JR "l•l 
FOR~AT(• TYP~ ~ IL~ 12! -- E~, 321•1 
FQR~4T(• PP!N! NCDE3 A WEIG~TS? -- y :~ N•) 
~o~~ATI'" X~(•!3,•1 =•E22ol~,• CGI•:~, 

,., =·::22.1 .. 1 
FORMAT(• ~EPEtf W!TH N~~ ~? -- Y 0~ N•l 
::'Q~"1AT (• •, I3,• OFDi ~, IM'GE•, 

l'" PJTE~TIAL :•Ft~.lQ,• IE,S.~ol•,/1 

COR~AT(• • =•Ft~.!G.· ., =•fl~o.1C,• : =•Ft~.lO,/, 
,. •,Ic,• o~a~c,•,F23.to, 
s• IMAGE POTENTIAL ~~.s.~.,.,,1 

FJR1~T(• X :•F1~.10,• Y :•F1~.1C,• C :•F1~.10,1, 
$• •,z&,• 0P);:;,•,F23.10, .. 
, .. I~~G~ PCTEN!IAL 1:.s.~.,.,,, 

, .. •,13(,F23.10.• TJTAL POTfNT!AL•,t) 
F0~"1AT(• LOOP FifLD-P'JINT X, Y, u:;, "~ WJT?•, 

I • •- ~ , Y , ;) J R r. • I 
FORo.t~Tf• TYP 
co~~!Tt• T'I'P 
FO~"'AT(• TYP 
::'0~'1Art• •y;> 

F I?~ r, 
F I C::S T, 
F I "5 T, 
1• I 

FINAL, 
F!NAL, 
F!~AL, 

"r:J Kl.S 
AWl (IS 
APlQ <AS 
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~1!>" 

~1os 
'H 67 
~17 0 
~171 

~BJ 

;ro a 
H~·J 
• 

•o~!'1~r.1• ;yr> ~.} 

i:'Q~'1~T(• TYP ~A:J!US•I 
F"ORI":ATI• ,P~'! ,. PQTEM !ALS F"ROP" SCA~ v OR N•) 
F"0~'1A Tl• lJSE STANOA"D DE Gl:lt::E 1/ALUE$ y OR N•l 
F0~'1ATt• co•Pur Fe A~') TA~UUH FOU~I .~·. , .. :::J:H:Ct::NiS? ·- y OP N•l 
FO~f'!!H I • .,,,• sou~<.c: " fi£LO POINTS COINC.IOE •, 

s:.H ••• ,,, 
FO~~ATt• •,t,• SOL~C: "BOUNDARY POINTS•, 

s• :orN:Ior·.~~ ••• ,,, 
FQ~'1AT(• •,t,• NEGATIVE APGUMENT•. 

s~ o• SQUAPE RC3T·,~~ •••,11 
•oq'1~rt• •.•11.3.• cJ•s Rri":~I~··'' 
CQ~'1AT(• •.2~•.1~~··· £~0 gF ~UN ••• ,,, 

S T:)P 

E"'J 
SU3~J;TINE T~~~SIUO,I/OoUloll1oU2oll2oJ3,1/3oCoMAl0l 
JATO PJT, TOP I 

S 17 2Jt22a 773Z5a .:.20 55H.o 1 717~() 571.60 333C.~71a '-E I 
~:s = 1./IC"Cl 

"'A:.::J = 0 
If IJO .• r-a., 0.1 GC' T~ LtO 
IF 1110 .::a. O.J ·GOT~ 50 
J1 = ~:s•cJG•Jo - vJ•11o1 
111 = 2,•Rc5•A3SI~G·~JI 
Ell= EIPI~OT•Vll l R~~ : 1.1!~ I A~GU- POT•~l 

JZ = D.~·SlNIA~GUl•tEII•~EVl 
112 = a.~·cost£~~ul·l~v-;£vl 
Al ~ 2.•~2 - 1, I ALS : AL•AL ' 3~S = :..•vz•~z 

:> = 1. t z.•t:?ES·ALSI + li3:S+4LSI••z 
.IF 15 .:;::. Dol C.O T:J OS 
"!.A;. J : :1 
~ETU~t-. 

05 SS : ;:;Tt31 
A~5 = 3,5•11. • tLS + ~~S - ~Sl 

~ = D.5•1S5 - 1. + ALS • SfS) 
If:((,~::; .u:. 0.1 ,:.·-41 •. (rl .G:. ·!),:1,) :;o T•C f.' 
'"Al 3 = 1 
~E T U ~to< 

07 5H = Sl~7~rll 
J3 : TJ~•ASifliS~c•ca=SII 

IF U.l ,r,:-, O,l GC TJ 10 1 L:3 = •J3 
:10 ~3 : TO~·~LQ~(SQ~TI~+l.l 4 !Hl 

~UJ~~~ 

• c ·>~ 2 = 111 = a • s •_t 3 = ·.1 • 
Jt = -1fG•voJ·~cs 
J 2 = sIt;.( C:Q T • u! l 
A~; : 1. • 2."J2 S ARGSM ~ A~i·A~; • 1. 
tF (~.;~;:;"' .G:. (l,) GC TO lo~ 

'1A~ J : 1 
~E T J~ ~ 

~s ~3 : TOP•AL~:;tAF~ t ~1~Jt~~GS'"ll 
~ETPN 

~a :J 1 = u-a • un 1 • :~:: s s v ~ = a = 111 = a. 
J2 : SIN(P()T•Ul) 
J3 : TJP•ZS!Nt2.•~2 - J,} 
~~r J~ ~ 

£NJ 
SU~;JJ~I~E G~ 9 ~V1A,s,x.¥,~1.B1,(1,~1,43~33,~5,Y3, 

1 A P 3 ., 3 P 3 , 'I a 3 ., 'f P 3 ., C , 117 J T , II I't:!G , "'ACH 
OAT4 "JT I 1T20E22D.73?S0~2~!~13 / 
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.. 

- : 

- : 
: -

- : 

- = E : 
ac '13 
3C.>3 
CC!'13 
CCP3 
CC'11 
CC"l 
:: 3J 
::3! 
F3J 
F3I 
""10 
F1[ 
019 
Pl~ 

P? 
P3 

: 

= 
= 
= 
= 
= 
= 
= 
: 

= 

tPIPOT•I3~3-YP311 s BH"13 
'P(POT•(~P3tYP311 t 9HP3 
.;?(POPI93•v:!ll s CHH3 
I( PI f'O T • I c33 +Y 3 I I s CHP3 
t PI PG T • I 31 •Y 1 l l I CH~l 

ICP(P0'!'•(91+Y1ll i CHP! 
= COSIPOT•(A~3-tP31l 
= CCS(PJT•(AP3+Y"311 
= CCSIP)H(A3-0II 
= C 05 I POT • U 3 +X 3 I I 
= COS I PQT • I A 1-.a: 1 I I 
= COS (P)T• tAl+( 11 l 
13HH3•3C~3111?~~3+6C 3 31 

(3HP3-3L~311(3HP3+3C33) 

I:HM3·C:~3111C~H3+CCP3) 

1Ch?3•CC~3111C~P3+CCP3) 

ICH~1-CC~1111CH~1+CCP!) 

ICHPl·CCHli/(C~~1+CCP1) 

::3o•:3I 
F3J•F3! 
F'lo•F1! 
F3::JIF3I 

IF ~A•t .~T. ~.1 ;»lA = loiPtt 
IF (3•Y .LT. C.) 01~: 1./PlB 

= 
: 

= 
= 
= 
= 

IF (A•(•a•v oLT, 0,1 P3 = 1,/P~ 
~T~T : -o.zs•a.OGIP1C•P1~·~?·~~i 
~»F\J = IIA-x1••2 + ca-vt••ZII(C••z> 
~I~; = ~TOT + ALOGIP=JI 

~ETH~ 

::NJ 
iU3~JJTINE FOJ~I 

o.s•cE • loll) 
o.s•cr: + 1.1E I 
o.s•cE + 1.1 L I 
o.s•cE • 1.1t I 
o.s•cc.: + lolll 
o.s•cc.: t 1.1L I 

~ ••• FOJ~!~~ A~ALY~IS OF I'1A;f-FIELO PC·~N!!AL, 
:O~H0'4 I COF')U I Co JXo OYo FAOIUSo 113;;::;, lf::":N1, 

• 

i KAS::S, ST::P, II!St.V(3')1 
C0'1"!0N I GOLU5 I N, t."1, Cl"', UGI12!1, WGI12~ I 
'li!'1::'4SION C~ll,lo $(11'1 
DATA P[, P::JT I 

S 1721~?20 7732~3~205513, 1720~2207732504?0551~ I 
~OJ : Pl11'0• ~ N(ASES = 3E 
IF I<ASES .GT. NK~SFSI ~ETU~N 
IF (CASES oL::. 41 ~[TU~N 

(H = <ASES12 i (~ : (H - 1 f ~K~S£5 = t.I~AS::S 
PRINT ~02 ' :<1181::(C:S<1'=~• f rs~~=1· 

: ••• 03TAI'4 ~'"OU~I~~ COEFFICIE~TS OF I~AG~ POT~~T:AL 

ao 1a0 LS=l•~'SES 
CKO = :<O • II!SAVILSI 
5<1! : 5~1~ + FS•VIStV(LSI S FS-= •FS 

100 :CNT[IIoJ~ 

:KO : ~<AS~S•C<O I 5(11'1 : R<AS~S•5<1' 
='RI-.T ~0 3, C<O 
IF naJrus .~a. o.1 on JRN 
~A::JFA: : RAOI~SIC I ~~A~FAC : CI~AJIUS 

DO 230 (S=lo<~ E F = 'r'DFt.:•~ 
SU15I = SU~:~ = O. 
,0 2Dl LS:t,CASES 
AR:i = ~:l::J•IvE; + ILS-t.)•;TfP) 
SU~:J = SU"'CO + VIS,IIILSI•COSICS•A~;) 
SU~SI : SU~SI + VISA~ILSt•SINI<S·A~~~ 

ZOO :oNTIIIoJE 
C(l<il = 2,•F•~(As:s•suMCO 
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SKI<SI = z.•~·~KASES•SUHSI 
PRINT ~o~. K), CKI~SI, KS, SKIKSI 

250 :ONTINU~ I SKIK~l : RPAQFAC•F•SKCKHI 
~RI~T ~07, K~, SKIK~I 

• 
DO:= (5~RTIJ•••z t 3V••ZIIIC I f~: O. 
IF ((J(,N~.O.I.OR.I~Y.N:.o.ll T~ = ATANZIOY,,YI 
£YJ~~ = [XQE~ : 0. £ F : 1. 
JO ZSO i.=1,<>i 
COl.~ = :CSIIL-loi•T~I f SILM = Sl~((~·loi•THI 
£XJ~~ = EXD~~ • L•F•ICKI~I•COL~ • S<ILI•SIL~I 
£YJ!~ = EYC! ... + L•F•C'i1CIU•CCL'1- C<IL,.Sll"'l 
IF I •• ::a. <>11 GC T~ 260 
F : F•JOC 

260 CONTINJ:: 
Z8a CONTI.-J:: 

~XJ~~· = -EX~!LIC I ~YOEL = -EV~ELIC 
DRI~T ~10, :•r::L, EYD~L 

PRINT ~00 ' ~~tNT 3~5 t ~tAO ~01, a 
IF ll .~a. 11tH GC •c :O:lC I P~I.NT H6 

:; ••> OBTAIN (QPTIJ~ALLYI C~ECK SU~~ 

JO 350 .S=loKAS~S r F = lo 
AR~: ~J~•cva::; t (l~-l.I•STfP) S S"'"! : :;KO 
)0 300 <5=1,<~ S F : RAJFAC•F 
SU~ = SJM+F•CC<IKSJ•COSI<S•ARGI+SKC<SI•S!N(KS•A~GII 

3DJ :ONT!NJ! 
PQINT iiOe, LS, VISAVCLSI, S~~ 

3SD :ONTINJ! I PRrNT 9uJ I PRINT ~D~ 

• 
:.00 ~qi~T HO S ~EA( 301, Q S If ca .::a. lHNI RffL~N 
: u> INT!G~u: FIELJ ov:;; CDISP~ACEDI EI.L I,SE 

SU151 = SU~S< = C. 
JO ~so J=t,N s su~rv = su~TY = o. 
~S = ~~IJI I S : ~GIJI 
J 0 :. :. C I= 1, ~. 
~T = ~;1:1 S T = uGI~I S AP~ = PI•CT+1ol 
A : D.5•Au•CS+1oi•CDSIA~Gl + OX 
3 = 0.5•3M•()+loi•SINI~JGI t DY 
~0: = !Sa~T!A•A + a•~IIIC I 4N; = ATANZIB,AI 
!Y : £( = :. I F = lo 
JO .. 30 L=1,K~ 

CO~M = :O~I(L-t.I•AN;I S SIL~ = 5I~IIl-1oi•ANGI 
!X = !( + L•F•ICKILI•COLH t SKILI•SiL~I 

£Y = ~y + L•~•(SKILI•COL~- CKIL,•)tL~l 

IF IL .::1. <oil GO TC 1tZil 
~< = =•~)C 

r.ZO :ONrtii.U! 
lt30 ':ONTINJ! 

SU~T( = SU~f( + W!•~t 

5~'1T1 : :;u~"<T 1 t WT•t1 
·•IJ :ONTikJ~ 

5U'15( = s~~~~ + ws•c~•1.t•SJ~Tx 
SU'1i1 = SUMSY + WS•IS+loi•SJ"TY 

.;a r;ONTINJ~ 

• 

!(A~; = -o.~~·5u~~~~= 
~YA~~ : -O.Z5•)UM~Yt: 

P~INT ~21. [(AJG. EYtVG 
~ETJ'" 

~00 FORMAT(• •) 
~01 FO~~C.TIAll 
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~02 FO~~ITC• •,11,• V~~G = CKI~I+SU~ti~ADIUSICI•, 
C5H••L)•,•tiC<I~J•,7M•~OSIL•,•THI+S<ILI•, 
l11~•5lN(L•T~ll,/ll 

~03 FO~~ATt• FCJRif~ COfFF!C!fNTS•~tl, 
,. :cc n1 =·E1~.91 

~0~ FO~~&TI• CK4 4 lZ,•J =·~1&.,,• SC{•Iz~•l =•£16.81 
~05 FO~~IT(• TA2ULAT£ C~~~< SU~S? -- Y ~~ N•l 
~06 FO~~ATI• •,It,• ~~IG!NAL COMPUTED IALUES•, 

iTX,• FJJ~!E~ SJM 4 ,/I 
~or FO~~arc• •,zs),• scc•t2,•l =•£1&.~·'' 
90~ FO~~If( 4 VII•I2,•) =•Elf.-, 

,. SJ~ =•E16.~l 
~10 FO~~ITI~ ~,1,• CC~E~~NT flfLO AT n~.Df IS~~ :•, 

SE1~.~.•, EY =•El~.S,/l 
~20 FORMATt• INi~G~ATi FCP AVG. fLO.~~ 

s• i~~ :O~~RENT FO~CE ~~~ UNIT LAM8)~J?•, 

1• -- Y OR N•) 
~21 FQ~~ATt• •,t,• AVG !~AGE Fifl~ ON 3£4~. EX~V :•, 

iEl••S,•, EYAV :•f14.E~Jl 
• 

EN) 

222222222.222222222.2222222?2.222222222.222222222.222222222.222~22222.22222222 • 
222222222.222~22222.222222222.222222222.222Z22222.22Zi22222.222222?22.22222222 • 
222222222.22222222?.?22222222.222222222.222222222.222222?22.2?2?22222.2?222222 • 



222222222.222222222.222222222.22zzzzzzz.222222222.222222Z2!.2l2222222.222222222. 
222222222.2,2222222.222222222.222222222.222222222.222222222.2?.2?22222.222222222. 
2222222ZZ.2222222i2.222!22222.222222222.22Z222222.222222222.222222222.22222222Z. 
222222222.222222222.222222222.222222222.222222222.222222222.222222222.222222222. 

1 2 3 " 5 r, ., '3 

HIVOS11 

i 0.25; 1:l PAG::s: 521 PRINT LIN:::;; PRINT~P 12, ;'l 
B I l L B 0 A R 0 W~IT::UPS SUBSET 8CYN[NS WAS LAST C~AN;!1 ~AR 31 

~AND~OOK SJBSET C~ANG~S WAS LAST C~A~iE1 ~AR OJ 

APR Z NO SQUUE PEGS 
YOu HAV:: AN JNPA~~LLEL£0 CPPQRTUNITY TO ~EA~ THE PEGS, 
BIC't"S A :AP::LLA MIJSIC MA~TEI\5, AT A GALA ALL FOOL"S OAY CON:E:H AT 3 00 :t04 
ON FRI A:t~IL ~IN T~E ~oq TR'INING ROOM (5D9/22S~I, W~E~ TME ~€GS WILL 
SING ALL N::w MATEUAL, 50114~ OF IT TI\ANS:RI9£0 ESPECit.LLY FO~ '1'-4~ 

)CCASIO~. A GOOD TI'1E WILL SE HAD BY AL~oo 

APR 2 fOODS CACHE UP 
THE 6DDlS GSS CAC~~ IS NOW ~CAOr FOR JS::. SEE !~E ~RITEUPS SJ~S~T GSS 
FoJR I~F)~'IAriON. W~ITEUPS SU9SE:T GSS W!LL Br: U;)QATEC. ON MQ'Ot.V, 1 AP~!L, 
T~ INCLJ~~ E~~~PLE5 OF USING TME: CAC~E :ONTqOL C~P~S CFETCHGS, ENTE~GS, 
A'fJ EUSEGSI. 

MAR 31 SOURCE Ll9RARY HIT LIST 
AS ANNOJtCEJ IN '!'"': HA~C'"'• 1S80, N'::WSLE.!'TE.~, "'A~Y OQL;l'I~ES 
F~OM THE SO~~CE LI~~A~Y WILL 9E ~FHOV~u FqOM THE PSS TO"'O~~~w, 
AP~IL 1, AN.) PLACE:J ON GSS TAl>£ 13Z14t. SE[ llf~!~El•~S SliBS:T A'l" t:)tJE' 
A~~/OR TH:: CONSULT~NTS FOF DETAILS. 

MAR 0& CHANGES FOR VAK USE~S ~F THE ZETA PLOTTEQ 
)N TUESJAf, M~~C~ 11, T~E GRAFPAC 1~IVE~S FO~ T~E ZETA ~L)TTE~ J~ VAX 
:0'1PUTE~5 LiiLG ANJ LBLH i'IILL BE SIGNIFI::AN"LY 110CIFH.O. ZETA TAP~.S C~FATEJ 
~N LBLG 0~ L9LH ON OF AFTEP THIS DATE HUST 9E ~EAJ 0~ 8(Y W!T .. THE. AQGU~E~r 

M•B(YVA( J~ THf C)OE9 CON"~OL CA~O --
CJOE~,NFaO,M•B(YVAX•••• 

PLEASE OI~E:T a~y QJfSTIONS TO OEB~IE CA~N, X~8~9. 

FEB 25 N~W FTN~ COMPILER AVAILABLE FOP TESTING. 
A NEW FTN4 CGM~IL::F (FTN~.8, LEVEL 51~1, C~NTAINING ~ANY FTN• ~UG FIXES, 
WILL Bf PJT J,._. TH: 7&00 S1STEM ONLY ON TUES:JAY "API'); Ito lift: EN:Ji.JqAGf 
YOU T~ TEST :r IN T~E M;ANTI~E, ESPECIALLY IF YOU~ o~OG~A~~ HA~E CAJSEO 
T-4E CJ~~::NT FTN. TC A~O~T. T~E TfST ~E~SION IS AVAILAB.:: 0~ ~'SS AS FOLLOWS -

FETCHPS,FTN~ 1 FTN~.FTN~. 
F:ISIZE,FTN~•O• 

PL::ASE U:tJ-<'1' 3U:>S TG TH: CONSULTANTS, ICSq'!1, 0~ RI:ttAF) ~q~)~AIIl, )(;2?~. 
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HI vo~ 11 
0 .(XXX )( )()()' XJCX xxxx 'I )1. 

I. )( )( )( X l( X X X I( 

)')()()( X o: l( l( I( I( , X 
)l X X X XXX XX l( X X 
:oxx X X .( X '()(X y )( 

0 .. s-.t o:. • . .OEC< . 03 A"~ ~0 . 1 2. 53 . lo51o1 01 

XX.o.)(.I(I(XXA(XW. 
l( 

X 
X 

XXAXXX)(l(l(l(l.( 

l( ( 

)(l(I(X.(J(X)(XI(l(J( 
J( X 

)(J(J(I(J(I( )f'l()(X l('i )(t ( 

XXX X X X 
l(J(( X y )( 

XXI( )( X )t' 

)(l(l(I(J.( X '()( X X X )')( l()( lC X 

l()(J()()t')(l(l(X((J. )()'X)('()f')((J()f(X , X y 'I 
I( .. 'f/ )( 

I( J( )( )( 

XX). nxxxo: <l( XXX~l(Y'I(t 00 

XXXXXlCXXXJ(J.l( XX)(YXY 
I( I( I( Xt: '( 
)( )( ( )()(X 

I( )f l( )((( 

XX XXX X Ill(\ XX)()C)(Y 

X 'I 
)(Y)('('(Yl('il()l'l(l( 

X 'I 

'(Y'I()(YX)(J( )()()()' 
X 
)( 

X 
)(')(lf')I'J()().l()(li'I(Y 

~es .. 1 01 .T~UIISDt.'l' • C3 43~ 3D . 12."'1 . 1>541 !Jl 
0 ) X X XJ A X w Jr l('i '()()(I(,( tl(ll)" Y)')llfV 

'i • )( )( "( lf )( X )t' 

)I()( ) X )( ( lC X){Y)( )(tXt .. ) ) ). X )( I( X lC 

( ) 'iXXX XHXY J(l()(l(J( J( )( 1(1.'/ 
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"1Ta2,12,~000,51000.~56~0~,LASL£TT 

•&~OO,NOTA~~S,PSS 

FL.OOR!31 
LIBCOPY(L.ASL.~TT,Ll9/~B~,FATTYI 
CO~YIINPJT,l~M,L.l3,1~,0~C(/~g~l 

~~ TURtl, l :>J. 
'JN761SC~,NL1;000,I=JEC<I 
TTy • 
L~OITA"ETTY,TAPETTfl 
~I(Ii, 

:l"'P. 
J'1PU3&001 
T~XT,TAPETTY,[YEQ £FROPJ, 
::•n r. 
T~(T,TA 0~TTY,(CQMO, :Rcc~J. 

FIN. 
SESAME. 

• 
• 
• 

OI(J:;~AM FITJ21INPLT,CUTPUTI 
DIM;NSION 0((3JI, DYI301, EICC3QI, ~TI30J 

:II11!~S10N ut;l, 11151 
JIM;•JSION At;l, f(S,EI, SC~(~,o.) 

JI11:.~5IO~ I~AYI7J 

10 "RI~T HOD 
0 RI~T 3010 ' C~LL OATA(A'1,1t911.1,:.1J 
0 RINT 3011, A~, 9"• C 

11 PRINT 3000 ' PFINT ~020 S CALL JATAIKASESoll 
IF ll<~s~s.Lr.;, .oF. IK~s;s.GT.30II Go TO 11 
PRINT 3021, KAS~S 

• 
JO 12 (:1,1(4$"5 
OR INT 30 22. <, I( • CALL JATt.l111t1tii2,1J 
Q)((() = Ill s OY ((I = 112 
PRI~T 3023, 1(, I( ' Coll l JA TA 1111 t1t V2t 11 
~XI<I = 111 ' EYII(I = 112 

12 CONTI NJ:: ' PI< IN; )!) 0 0 
13 PRI~T 3000 I l(f'1 = c 

)0 1:. (:1,1(AS:.~ 

PRINT ; 0 2S, <. L)Y(o<l, urii(J, ;:-X(<I, :. y ( <, 
llt CONTINJ£ I PR IN! HOD 
15 DR INT 30 ~0 ' CALL DATAIKt1l 

IF ( ( • ::a. 0 I GO TO 18 
IF II<.~T.11.C~.IK.Gf.KAS~SII G'J TJ 15 ! KN = 
PRINT 30 22. '( '. I( ' CAL:. JATA ('/1 9 1, 112,11 
)X (<I = 111 ' DYIICI = 112 
DR INT 30 2 3' 1(, I( ' CALL )AT4(111t1tll2t11 
~X I< I = 111 ' EYII() = 112 ' GO T) 15 

B IF c ( .. • N~ • 0) GC TO 1 3 
0 RINT 3 0 DO s PP INT 3032 I R;A!) HC1, 0 
IF ('J • :. Q. 1 ~NI c:c ": 10 ' PR.Itf" ~OO!l 
LO:)( = 1 ' pp !NT s 0 3.5 s ~E AO :100 1' 0 
!f ( J • € a. 1-i~) L 001( = 0 

• 
DO ~) N= 1, 5 s f C N,: I = A C t.l = o. 
~0 3D '1 1.5 I ~, ....... , = D • 

30 :ONTINJ 
~o CONTINJ 
• 
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~0 100 (:l,KAS:S 
Dl(5 = J• Ct<l•l)iiKI S OYS = DYCICI•OYIKI 
Jill : 2.•1)((1(1 S Vlll =D. 
1.1121 : ~o.•DJCIKI•D1S i Vl21 = Q, 
J(3l Q, S Vl3l z.•JVIKI 
Ul~l = 2,•JI((KI•I)YS ! Vllol : z.•JY(K)•JY5 
J(51 = 0. i V(c;) : :.,•')Y(K)•DYS 
DO 60 111:1,!; 
ECN,&l = A(N) = AINI + U(N)•£1((1() + II(N)•fY(I(J 
DO SD 'i:N,5 
:: ( 'i, N l = :: I N, "'I = E I~, '4 I t U ( N l • U I '1 I t 'J I N I • V I"! I 

50 CONTINJ: 
oO CONTINJE 

IF I< .LT. KASESI GO TO 80 
IF li..OJ< .E"a. Ql GC TO eo 
DO 65 N:1,5 $ P"INT ~035, N, A(Nl 

65 :oNTINJ~ i o~INT qooo 
)0 75 N=1e5 
DO 70 "1:!1i,S S Pf:.INT Q03•, N., "4, ~(N,'1l 

70 :ONTI,...J:: 
75 CONTINJ:: ! Oli='JNT =!000 
SO CONTI NJE 
10 0 :ONT I NJ: 
• 

• 

• 

• 
IF IJ::T .Ea. G.l GJ T~ q'!C 
PRINT ~0 11, A"1, 131"', C 

JO 210 L=lt5 £ IN~ = ~ 
IF ( L , ::a. 31 I 1110 = ._ 
IF ( •• ::'), :.1 IN11 = 3 
IF IL .::a. 51 IW1 = 7 
PRINT 10:05, IN), E.(L,~l 

i .P'?INT q000 

210 :ONTINJ: & PPINT ~OJO 

IF ( A '1 • N~ • 9 "1 I G 0 T D 2 S 0 
::13,61 = ~11.E:I = o.s•c::!1,&1 + ~13,&11 
::cs,:,1 = ::cz,c, = a.~·r::r2.e.1 • E<5,611 
)0 220 L=1,5 S IN~ = L 
IF (L ,:;Q, 31 !Wl = " 
IF IL .::a. :.1 IND = 3 
IF (L .::a. 51 INO = 7 
PRINT ~o .. ;, IN), EIL,fl 

220 :ONTINJ:: ' P~INT ~000 
• 
250 

2!0 

HO 

98 0 

"RINT 3D 00 
10 2~0 <=1·~<~s::s 
JX5 = )tiKI••z S QY:i = O.l'IKI••z 
POT"!= ::11,E<l"JY.S + ::12o61"DIS•Jt5· 

'+ :13,&l•:>v5 • •r:.,:l•;:,xs•:JYs + :rs,ei•Jv:;••n:; 
F L J ( : 2 • • I:: ( 4, E> l • J Y S + 2 • •e: I i? ~~I • ~ .<i +:: 11 , Ed I • J Y I K I 
•LJl' = 2."1:(l.,e)•J~St2,•!:(5,EI"ul':i+C:I3.E:Il•JYIII-I 
P R IN T :j 0 50 , D 'i I ( I , D Y ( r I , E t. IIC' I ,.E" Y ( < l , I( , F L J ;t. , ' l J Y, P J T ~ 
:ONTINJ: C P~lNT go~O . . 

CALL ST~TUSII~'YI 

:u:;~ = D.1Dt•F~ocrcr~AYI311 ~ P.R!o.jT ~:"00, CL'~~ 
PRI~T ~002 I P~IN• 1c;00 I Q~AD HOlt C 
IF () .NE. 1-iTI GO TC 10 
PRINT 3000 S CALL CAT:ILI 
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CBD PRI~T H!lO 
• 
iO 0 0 
3001 
9002 
30 0 3 
1301 J 
9011 

301:; 
3020 
3021 
30 22 
130 2 3 
3025 

303Q 
3032 
30 3 3 

3035 
HB 
30 .. 0 
30 :.s 
905 0 

95 0 0 
9700 
H80 
• 

• 

F0~1'1U(• •1 
I<OR1'1Af(A11 
FO~MAT<• •,1,• •,17(~~·•••1,/1 
FO~MAT(• •,29t,A10 9 //) 

FO~MAT(• •,1,• TY~'E (FOr\ RECOROI A, Bt -. C•l 
FORMAT(• •,t,• A :•F15o10, 

s• 3 :•F15o10t• C :•F15o10,/l 
FO~~ATt• It•It,•l =•I2,• Jt•It,•l :•I21 
FO~~AT(• TYPE KASfS CGE 5, LE 301•1 
FOR~lTt• •,~0~,12,• KASES•I 
FO~Mt.Tt• TYP~ JX(•I2,•1 "OYC•IZ,•l•l 
~<oR~'r<• TYPE rAt•rz,•l -.·:yc•r2.•1•1 
FO~~ATt• < :•!3,• Jx :•F7.~,• OY :•F7.~, 

1• E~ :•F11o6,• EY =•f11o91 
FQ~~ATt• TO CDRRfCT, TYPE K INOEY -- OTHEPw!Sf 
F0~1'1ATt• PROCf:D WIT~ THESE DATA? •• ~ oo ~·1 
~o~~ar<• P~I~T v~cTo~ ,. HATQIY ELE~:Nr~?·, 

s• -- Y o~? N•l 
FQQ~IT(• tHSI•!t,•l =·~18,101 

FO~~AT(• ~<•u,•,•I1,•1 =•::"16.101 
f<Q~1'1AT(• DET~~~INANT =•E16o101 
FOR~AT(• •,9k,•A•It,• =•t1~.bl 
~'0~1ATI• D~ =•~<e.~,· QY :•F~.4,1, 

s• £( =•F12.s,• FY =•rtz.e,sx,•< =•I3, 
S1Zt,•INP~T OATA•tlt 
s• Ft :•F12.e,• FY :•Ft2,9, 
s• -~'~T =•Ft3.~,• F~OM FIT•o/1 
FO~~ATt• MORE J~ TE~MINATE? -· ~ C~ T•l 
f<OR~AJ(• •,F1t.3,• CJ'S REMAIN•,II 
FORMAT(• •,25X,18H••• ~NO OF FUN •••,II 

s T::l" 
::NJ 
SU3RJJTINE HATIN~I~,N,H,QETtiDIH,S:~I 
OIM::NSION VIDII'tll ,s:~?<IDI .. ,ll 
CALL I"ATIN (~,N,V(1,~t11 ,!OC,OET,IOIM,SCP,SCC: ll,!I,S:I(Cl,loll 

~ET HN 
:: NJ 
SU3RJUTIN£ HATIN (A,N,3 9 H,JET~R~,I)IM,INOEA,IPIVOT,PIV~TI 

: 1'1AT~I• INVERiiON WIT~ ACCO~PtNYING SOLUTIO~ OF LIN~AQ ~QJATtONS 

JI ~:~)I 0 N A ( I D I 1'1, 1 I , ? C I 0 I 1'1 t1 I , I If DE~ ( I Cli !'1, 11 , IP! V C' T ( ll , o:t I II 'H ( 1 I 
ECJIIIA~ENC~ t!ROW,J~:JWI, liCCLU'1,J:JLJ'41, (A"t.l(, T, 5•U-'1 

C I N I T I A ~ I Z A T I 0 II 
nr~~!'1=1.o 
:lO ?0 J:l,N 

20 IPI~Jf(JI=O 
:lO HD I:l,N 

C SEA~:M FOR PIV:JT tLE~ENT 
AMA(:Q,O 
00 lOS J:1,N 
IF lPIVOT(JI ,ffl, 11 GO TO 1:15 
:lO 100 <=1,N 
IF IIPIVOTII<I•ll ~0. 100, 7lo0 

!10 IF U851A"1AO .Gr. AESU.(J,KIII GO TO 100 
IRJN:J 
IC:JLU"':IC 
AHA(:A(J 0 1() 

100 CONTINi.Jf 
US CONTINJ:: 
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IF IA)14( .EQ. 0.01 GO TO 800 
IPIVJTIICOLUMI=IPIVOTIICOLU~l+1 

C INT£~CHANGE ~CWS TO PUT PIVOT ELEM£NT ON Ol~GO~tL 
IF III:IJW .EQo ICO-LUMI GO TO 260 
OET:: ~ '1=• D£T £~ .. 
:10 200 L.=ltN 
SWA;>:AIIROW,Ll 
AIIRJW,Ll=AIICJLUM,Ll 

200 41I:JL.uM,Ll:SWAP 
IF I~ oLE. OJ ~0 TC 2:J 
JO 250 L=l,"' 
SwA:>:31IRQW,L) 
31IRJW,L.l:aiiCOLU~,LI 

250 31ICJLJM,Ll=SWAP 
2~0 IND£(1I,l):I~OW 

INJ:(II,Zl:I:JLUM 
PIVDTIII=AIICOLUH,ICCLU"'l 
JETE~"':OETEI:I"'•~IVCTIII 
J!VIJ: PIVOT POW ev ~IVCT EL[~(NT 

AII:JLJM,ICOLUMI=l.O 
:10 350 L.=loN 

3;0 AII:JLJM,Ll:AIICCLU~.Ll/P!VOTIII 
IF I~ .L~. 01 ~0 TO 380 
JO 370 L=1tl" 

370 31I:JLJM,LI:31ICOLU~,LII~IVOTIII 
C ~EOJ:£ NON•PIVOT ROW~ 

380 )0 550 L.1:1,N 
IF IL1 .fQ, I~nUMI ~0 TO 550 
T:AIL.1,ICOLUMI 
AIL.1.I:JLU"'I=O.II 
:~o c.~o L.=1,N 

+50 AIL.1,Ll:AIL1oLI•tiiCCLUM,LJ•T 
IF 1'1 .Lf. 01 ~0 TO ~50 
)0 500 ·=1,1'1 

;ao 31L.:.,Ll:51L1,~1-91ICOLUI",LI•T 
550 :ONTINJ: 

C INTf~:HA NG:: :DL.LI"'NS 
JO 710 I:1,N 
L='H1·I 

• 

IF IINJ:>.ILt11 ,fQ, INDEXILt211 GC TO 7H 
J'<Ow= I'l::J::-x IL ,11 
J C J L. J 1'1= It< Dr t. I L , C: I 
::10 705 (:loN 
SWAP:A((,JQO~I 

AI<,J~JWI=AI<,JCOLU"'l 
Alo<,JCJ~U"'I:SWAP 

705 CONTINJf 
710 ::ONTINJ:: 
TloO ~ET..H'l 

~ 0 0 DEE~ IC = 0 • 

333333333.333333333.333333333,333333333.333333333.333333333.3333333~3.3~333!3~3. 

333333333.333333~33.333333333.333333333.333333333.333333333.333~33333.33333~333. 
333333333.333333333.333333313~333333333~333333333,3333!333 •• ~3~33~333.33~1~~~3~. 
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]]]]]JjJJ.333333333.33333333l.3333333ll.J3333llll.l333333JJ.ll33lllll.ll33333~3. 
]]]]]]]JJ.J]]]J]]JJ.JJ]]]]Jll.l33333333.Jllll3333.3333333~3.3333333ll.lll33l33~. 
J]]J]J]]Jo]J]]]]]J].]]]]J]]]]o]]]]]]]J3oJ]]]]]]]JoJ]]]]]3]JollJ~J]3]Jo333JJ]]]]o 

l33333J3J.lll33llll.333333333.333333333.33333333l.33333l333.ll3333333.333JJ~J33. 
1 2 3 ~ s s 1 8 

I a.z~; 6 PA~~s; 10~ PRINT LIN~S: PQINTE~ 12, ~~ 
9 I l l a 0 A R 0 wqiT~UPS SUBSET B~YNEWS WAS LAST C~AN;~~ ~A~ 31 

~AN~~OO~ S~PSET C~ANGES WA~ LAST C~AN;El ~A~ 03 

APR 2 NJ SQUA~E PEGS 
YOU HAV~ l~ JNPA~AL~:Lf~ CPPQ~TUNITY TO ~[Aq THF PEGS, 
9~Y"S A :AP~LLA MUSIC HASTEqs, AT A GALA All FOOL"S LAY CON:E~T AT 3 00 P~ 
ON FRI l~~IL ~ IN T~E 503 TRAINING ROO~ (51BIZZ&51o WHE~ THE PFGS WILL 
SING AL. N;w HATE~IAL, iOH£ JF IT TRANSC~IaEO ES~CI~LlY FO~ f~~ 
OCCASION. A ~000 TI~E WILL B£ HAa BY ALL. 

APR 2 &OOOS CACHE UP 
THE 60005 &SS CACH~ IS NOW READY FOR US~. SEE THE W~IT~UPS SJ3S~T GSS 
FOR INFJRMAfiON. WRITEUPS SUBSET &SS WILL Bf UPDATED 0~ HO~DAr, 1 APQIL, 
TO INCL~~E ~CAHPL:S Of USI~G TH£ CACHE :ONTROL CARDS (FETCH,S, ENTERGSo 
AND ERASEGSio 

HAR 31 SOURCE LIBRARY HIT LIST 
AS ANNOJN:E~ IN T~~ HAOCH, 19b0 1 N~WSLETTE~ 1 ~A~Y RO~TIN:~ 
FRO~ TH~ SO~RCE LIB~APY WILL BE ~EHOVED FRO~ THE PSS TO~O~DOW, 
APRIL 1o AND PLAC~D ON GSS TAPE 1321~. s:: wRITEUPS SUBSET ANTI~UE 
lND/OR r~: CONSULTANTS FO~ DETAIL~. 

~AR D& C~ANGES fOR VAX USERS OF THE ZETA PLOTTE• 
JN TU~S~AY, ~A~CH 11, T~: GRAFPAC DRIVE~S F~Q THf ZETA ~LOTTE~ 0~ VAX 
:o~PUTE~5 L9L' A~Q LBL~ WILL B~ SIGNIF!:A~TLY HOCIFilOo ZETA jAP~S C~EATE~ 
0~ lBLG J~ LBLH 0~ JR AFT~~ f~!S DATE MUST 9E FEA~ :N B<Y WITH THE A~GU~~NT 
HaB~YVAX JN T~E C00~9 CONf~OL CtqD --

CJOE9oNF•O•Ma8(YVAXoooo 
PLEASE OI~E:T ANY QJESTIO~S TO DE68Ic CA~N, Y56~9. 

FEB 25 N~W FTN~ COMPILER AVAilABLE FOR TESTING, 
A NEW FTN~ COMPILe~ (FTN~o8o LEVEL 508), CONTAINING MANY FTN~ ~U~ FIXES, 
wiLL BE PJT ON TH; 7600 SYST:~ 3NlY ON TJES~AY ~APC~ ~. wf E~CJUqA~E 
YOU TJ TEST IT IN T~E HEANTIMf, ESPEC!ALLV IF YOU~ PkOG~A~S HAV: CAUSED 
THE CJR~~NT FTN~ TC A90~T. THE TEST VER5ION IS AVAILAB~E 0~ P5S AS FOLLJ~S -

FETCHPS 1 FTN~,FTH~,FTN~. 
FBSIZE,FTN~=D• 

PLEASE ~E~O~T 3U~S TO THf CONS~LfANTSo (~~81, DR RIChA~J F~IED~AN, XS279. 

TO :ALL A CONSJLTANT DIAL XS9!1 1 1~151 ~8&-S9i1 OR ~5l-S9~1 CFTSI 
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HI- FAN-271 

Addendum to HI-FAN-117 

11 The Image-Field Potential of a Uniformly Charged Ellipse Situated Between 
A Set of Conducting Hyperbolic Surfaces 11 

L. Jackson Laslett 

March 1985 

In an earlier report [HI-FAN-117 (LBID-244), July 1980] we analyzed the 

image-field potential that arises from the image charg~s induced, by a 

(possibly displaced) elliptical beam, in a set of 2-D quadrupole electrodes 

2 2 2 
X -y = ± C 

The beam was taken to be of uniform charge density (A=l, in electrostatic 

units) and the semi-axes were denoted 11 a" and "b" (for the x and y 

directions, respectively). 

Computational options (l.g., in version GB4MG, as stored in library 

Jackson) included the analysis of this image-field potential into Fourier 

components or multipole coefficients in terms of r,e variables taken with 

respect to the origin. Dr. Lloyd Smith has recently expressed an interest, 

however, in certain similar multip~le coefficients, for the image-field 

potential, computed with respect to an r,a origin situated at the center of 

the displaced beam. Such coefficients (as well as correct values for image 

fields at the beam center) tan be r~adily obtained by only minot 

modifications to Program GB4MG viz: 

Values of x and y evaluated on line 121 should be augmented 
respectively by OX and DY; the DO-LOOP index KH on line 382 
should be replaced by 1 (unity); and the quantities OX and DY 
should be deleted from the expressions on the respective lines 
411 and 412. 

Such results for c1 ,s1,c 3, and s3 moment coefficients are 

summarized on the attached Table for a circular beam displaced (i) along the 

x-axis or (ii) at 45° to the x-axis. 
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~ 
I 

N ...... 
\C 

c = 10.0 

>.. = 1 .0 

Displ. 

.sx 

0.5 

1.0 

2.0 

3.0 

4.0 

5.0 

0.5 

1.0 

2.0 

3.0 

4.0 

5.0 

.Sy 

0. 

0. 

0. 

0. 

0. 

0. 

0.5 

1. 0 

2.0 

3.0 

4.0 

5.0 

a = 3.0 

Fourier Coefficients for Image-Field Potential 
About Center of Displaced Beam 

cl sl c3 s3 

-0.07B95 0. -0.05165 0. 

-0.16039 0. -0.10480 0. 

-0.34113 0. -0.22305 0. 

-0.56529 0. -0.37657 0. 

-0.86288 0. -0.61024 0. 

-1.27931 0. -1.02932 0. 

-0.07833 -0.07833 -0.05173 +0. 05173 

-0.15543 -0.15543 -0.10537 +0. 10537 

-0.30101 -0.30101 -0.22542 +0.22542 

-0.42706 ;-0.42706 -0.37133 +0.37133 

-0.52477 -0.52477 -0.54644 +0.54644 

-0.58777 -0.58777 -0.74303 +0.74303 

b = 3.0 

Image Field Components 
at Center of Displaced Beam 

..... ~ ·-- - --

Ex Ey 

-

0.007895 0. 

0.016039 0. 

0.034113 0. 

0.056529 0 . 

0.086288 0. 

0.127931 0. 

0.007833 0.007833 

0.015543 0.015543 

0.030101 0.030101 

0.042706 0.042706 

0.052477 0.052477 

0.058777 0.058777 
---~----



4 
Coherent Collective Instabilities 



• 

Charge 

Original t.. 1 
-A.l 

-A 
1 

+A.l 

+Al 

-A 
1 

-A 
1 

Distance from Field Point 

yl - y 

2h - yl - y 

2h + yl + y 

4h - yl + y 

4h + yl - y 

6h - yl - y 

6h + yl + y 

above 

above 

below 

below 

above 

above 

below 

The upward-directed electric field due to the images alone then is: 

=4Al[ 2yl+y 2+ 2yl-y 2+ 2yl+y 2+ .•• ] (B. 4b) 
. 4h - (y + y) 16h - (y - y) 36h - (y + y) . 1 1 1 

. Al I 
= -z l[(yl + y) + (l/9)(yl + y) + (l/25)(yl + y) + ••. J 

h 

+ [(l/4)(yl - y) + (l/16)(yl - y) + 

A. 1 [ -2 -2 -2 -2 -2 -2 
= -z (yl+y)(l + 3 + 5 + ..• ) + (l/4)(yl-y)(l + 2 + 3 + 

h 

Al [ TT2 TT~2 
= -- (y + y)-- + (yl - y)--2 

h2 1 8 

n 2A 
1 

= --2 (y + 2Yl) ' 
12h 

in agreement with Eq. (B.3). 

(B.4c) 

... ) J (B.4d) 

(B.4e) 

(B. 4f) 
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Coherent Electromagnetic Effects in High Current Particle Accelerators : 
II. Electromagnetic Fields and Resistive Losses* 

V. KELVIN NEIL AND DAVID L. JuDD 

Lawrence Radiation Laboratory, University of California, Berkeley, California 

AND 

L. jACKSON LASLETTt 

Ames Laboratory, Iowa State University, Ames, Iowa, and Midwestern Universities Research Association, Madison, Wisconsin 

(Received October 13, 1960) 

Coherent electromagnetic fields arising from an azimuthally modulated beam are considered. The beam is com
pletely enclosed in a toroidal vacuum tank of rectangular cross section and highly conducting walls. Expressions 
are given for the image currents arising from low harmonics of the beam circulation frequency. These expressions 
are then used to evaluate resistive losses in the walls of the chamber. Expressions are given for fields arising from 
harmonics of the revolution frequency high enough that the beam may be in resonance with a characteristic mode 
of the vacuum chamber. The results are generalized to provide a description of the electric field in the neighborhood 
of a resonance. Numerical examples of resistive losses are given, indicating that these effects will not be serious for 
circulating currents of the order of 1 amp. Some properties of high-order Bessel functions, required for a description 
of the resonant chamber modes and the energy lost in their excitation, are developed in an appendix. 

I. INTRODUCTION 

JN most particle accelerators currently in use, the total 
number of particles is not sufficiently large to produce 

coherent effects that warrant special consideration. As the 
number of particles and thus the circulating current in the 
machine is increased, some of these accompanying phe
nomena may become troublesome. 

In this paper we investigate the electromagnetic fields 
arising from the current and charge distributions of a 
beam of particles in an accelerator vacuum tank.l In 
general, such a beam of high velocity particles will have 
an azimuthal variation in density which will give rise to 
large coherent electromagnetic fields. It is noted that 
these fields contain "resonant" and "nonresonant" parts, 
the former arising from a resonant excitation of the cavity 
modes at a multiple of the particle circulation frequency. 2 

These resonant fields are of particular interest because of 
the forces they exert on coasting beams, which may 
produce instabilities.3 This problem will be treated in 
Part III of the series, where use will be made of the results 
presented here. 

The electromagnetic fields associated with the particles 
provide a mechanism for loss of energy from the beam. 
These losses are of two types. The first is the resistive loss 

*]'his work was done under the auspices of the U. S. Atomic 
Energy Commission. 

t Now in London with the Office of Naval Research. 
1 The treatment given in this paper is somewhat intuitive (and 

consequently simple) in its approach, and therefore not as rigorous 
as might be desired. A more extensive, rigorous treatment may be 
found in V. Kelvin Neil, "A study of some coherent electromagnetic 
effects in high-current particle accelerators," (thesis) Lawrence 
Radiation Laboratory Report UCRL-9124 (April 26, 1960). 

2 The possible existence of resonance is discussed in the Appen
dixes; see also reference 3. 

3 C. E. Nielsen, A. M. Sessler, and K. R. Symon, Proceedings of the 
International Conference on High-Energy Accelerators and Instrumen
tation (CERN, Geneva, Switzerland, 1959), pp. 239-252, especially 
p. 246. 
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arising from image currents in the walls of the vacuum 
chamber and is largely due to the low harmonics of the 
beam circulation frequency. This loss may be calculated 
to a good approximation by neglecting the curvature of the 
vacuum tank. The second loss is due to wall currents 
specifically associated with resonant modes which may be 
excited by a high harmonic of the orbital frequency. 
Expressions are given for the power dissipated by each 
of these effects, and numerical examples are given which 
indicate that such losses are negligible in many practical 
instances. 

Sections II, III, and IV are devoted to determining the 
nonresonant fields, resonant fields, and fields near reso
nance, respectively. Section V contains numerical examples 
of energy loss, while the Appendixes are devoted to a discus
sion of the properties of the resonant modes. 

II. NONRESONANT FIELDS 

For the lower-order harmonics, the wall currents are 
substantially divergence-free image currents (i.e., un
influenced appreciably by time dependent induced 
charges), distributed in such a manner that the normal 
component of the magnetic field vanishes at the boundaries. 
Since the field configuration will be substantially that 
found in a straight pipe of rectangular cross section and 
transverse dimensions small in comparison to a wavelength, 
the distribution of image currents can be found readily by 
methods analogous to those employed in corresponding 
two-dimensional electrostatic problems.1 Therefore, we 
employ a coordinate system (:ll, y, z=R8) in which the 
toroid is straightened. 

The current distribution 

I= L In cosn(8-wot), (2.1) 
n 

Reprinted by permission of the American Institute of Physics. 
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centrally located within a metallic chamber enclosing the 
region 

-w/2~ x~ w/2, -h/2~ y~ h/2, 

gives rise to an image current distribution as follows: 
On the top and bottom we have 

1 [ 7r h 
Isurf'= --LIn L sech(2m+1)--

w n m 2 W 

Xcos(2m+ 1)7r:] cosn(fJ-wot); (2.2a) 

and on the sides, 

1 [ 7r w 
Isurf=-- LIn L sech(2m+1)--

h n m 2 h 

Xcos(2m+ 1)7r~ I cosn(fJ-wot), (2.2b) 

directed azimuthally. For h«w, the expression for the 
surface current in the top and bottom boundaries may be 
simplified by writing it in the approximate form4•5 

Isur~- ~~I{.["' sech(1rhjw)t cos(21rxjw)uit] 

Xcosn(fJ-wot) (2.3) 
1 7rX 

=--LIn sech- cosn(fJ-wot). 
2h n h 

The nonresonant contribution to the res1st1ve loss is 
immediately obtained from Eqs. (2.2a and b) in terms of 
the surface resistances appropriate to the frequencies of 
the individual harmonics, 6 as 

4 W. Grobner and N. Hofreiter, Integraltajel (Springer-Verlag, 
Vienna, 1950), Part II, Sec. 335, Eq. (lla), p. 136. 

6 The result for the case w/h--> oo may also be obtained directly 
by reference to a corresponding electrostatic problem treated by 
William R. Smythe in his Static and Dynamic Electricity (McGraw
Hill Book Company, Inc., New York, 1950), 2nd ed. Sec. 4.20, p. 85, 
for a line charge centrally located between a pair of parallel conducting 
plates. From Smythe's result, the current density in the boundary 
surfaces becomes 

lour!=-~~ In{;x[tan-{tanh;~) ]} cosn(O-wot) 

1 7rX 
=-Zh ~In sechh cosn(O-w0t), 

as found in our Eq. (2.3). This result also follows from the analysis 
by W. K. H. Panofsky and M. Phillips in their Classical Electricity 
and Magnetism (Addison Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1955), Chap. 3, Sec. 6, p. 45 ff. 

6 The surface resistance is defined as the resistivity p divided by the 
skin depth o. It may be written !R=n+<Jh, where the surface resistance 
for the fundamental frequency is in mks units, 

<Jh =p/llt = (p.owop/2)i= p.owollt/2. 

Correspondingly, the skin depth for the fundamental frequency is 

61 = (2p/p.owo)i. 
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R 1r w] 
+- L sech2(2m+1)-- [ L nlf,2

], 

h m 2 h n 
(2.4) 

in which R denotes the radius of the accelerator. If h«w, 
the first of the two sums over m distinctly dominates, and 
one may write 

P"'7rCfh:[.£"' sech2(1rhjw)tdtl ~ n!In2 

R 
= Clh- L n!I , 2• (2.5) 

h n 

Equation (2.5) could have been obtained directly from 
the approximate expression, Eq. (2.3), which in this limit 
was given for the surface-current density in the upper 
and lower surfaces. 

If desired the expressions just derived for the resistive 
loss may alternatively be expressed in terms of the Fourier 
coefficients of the linear charge density or of the number 
of particles per radian at the orbit radius RB. Thus we may 
write 

A= L An cosn(fJ-w0t) charge per unit length (2.6a) 
n 

and 

N = L 1'{ n cosn(fJ-w0t) particles per radian, (2.6b) .. 
by use of the relations 

(2. 7a) 

and 
(2.7b) 

The electromotive force per turn associated with the 
resistive loss, furthermore, is given by 

V = (27r/ ewo) (P / N t), (2.8) 

where N 1 denotes the total number of particles in the beam. 
Thus the nonresonant resistive loss alternatively may be 
expressed conveniently in the forms 

or for h«w, 

R 1rW][ N,2] +- L sech2(2m+1)-- L nl- , 
h m 2 h n Nt 

R N,2 

V"'27rewo6h- L nt-. 
h n Nt 

(2.9) 

(2.10) 
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III. FIELDS ASSOCIATED WITH A 
RESONANT MODE 

It is well known that in a straight wave guide, all 
electromagnetic modes have phase velocities greater than 
the velocity of light c. As shown in Appendix I, at any 
radius within a toroidal cavity it is possible to find modes 
that have, at that radius, azimuthal phase velocities less 
than c. Such modes have eigenfrequencies that are very 
high harmonics of the beam circulation frequency. It is 
therefore possible for an azimuthally modulated beam of 
relativistic particles to excite one or more electromagnetic 
modes of the chamber.2 The fields of such high-order 
modes may be large. The concomitant resistive losses 
then warrant separate evaluation, despite the relatively 
low magnitudes of the Fourier components responsible for 
the excitation of these modes. The turvature of the 
chamber is essential for the excitation of the resonant 
modes, and these high-order solutions may well show a 
radial dependence that differs materially from that of a 
simple circular function. It is expedient, therefore, to use 
cylindrical polar coordinates (r,O,z) and to consider the 
fields expressed in terms of solutions (Z) of Bessel's 
equation, with the imposition of boundary condi
tions at r= a, b appropriate to the type of mode under 
consideration. 

Rather than commencing with a general solution for 
the electromagnetic fields excited by the beam and then 
extracting a particular resonant term, it is convenient to 
employ from the start only the field components that are 
associated with the resonant mode of interest. Power will 
be supplied to such a mode by the work that the beam 
current performs against the longitudinal electric field 
Ee. Excitation will be strongest if Ee is precisely out of 
phase with the beam current. In the steady state, this 
power may be equated to the resistive losses in the chamber 
walls. Both the level of the electromagnetic excitation and 
the power loss are thereby determined in terms of the 
appropriate Fourier component of the ,beam current. In 
what follows, we employ this procedure to obtain expres
sions for the power loss associated with a resonant TE 
mode and, independently, for the loss arising from a 
resonant TM mode. In each case the results are expressed 
in terms of the loss factor Q of the chamber for the particu
lar mode under consideration. 

We assume that the beam has a negligible cross-sectional 
area and is located at r=RB, z=O. For a resonant mode 
of angular frequency w,, the power is given by 

P= f. I(-Ee)ds=brRB(-Eei)av· 
circumference 

(3.1) 

The loss factor is defined by 

[stored energy] 
Q=w,.------

P 
(3.2) 
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so that the power may be written as 7 

(27rRB)2(- flel)a} 
P= ·-Q. 

w,[stored energy] 
'(3.3) 

For a resonant TE mode within a chamber of inner and 
outer radii a and b, one may employ a field configuration 
of the form (mks units): 

z 
Be= -Ank- sinh cosn(O-wol) 

r 

dZ 
13,= -Ak- sinkz sinn(O-wot) 

dr 

Bz=Aq2Z coskz sinn(8-w0t) 

dZ 
Ee= -Aw,- coskz cosn(8-wot) 

dr 

z 
E,= -Anw,- coskz sinn(8-wot) 

r 

E.=O. 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4c) 

(3.4f) 

Here Z represents a solution of Bessel's equation, 
d/dr[r(dZ/dr)J+[q2r- (n2/r)]Z=O, subject to the Neu
mann boundary conditions [dZ/dr ]a= [dZ/dr ]b=O; q2+k2 

=w,2/c2 .; k is an odd multiple of 1r/h; w,=nwo; and the 
phase intentionally has been chosen so that - E9 is in phase 
with the current In cosn(O-wot). 

With these fields, then, we have 

In [dZ] (-Eel)av=-Awr - , 
2 dr B 

(3.5) 

the subscript 13 denoting that the derivative Is to be 
evaluated at r=RB. The stored energy is 

;

0 f f f E2
dv+ 2:

0
J f f B 2

dv 

= 7rA2\2(Wr)2fbrZ2dr. 
2JJ.o C a 

(3.6) 

Accordingly, we have 
RB2 [dZ/dr ]B2 

PTE= 27rJJ.oC2f n2-- QTE 
w,q2h fabrZ2dr 

(3.7) 

where ;;; denotes (.u 0/ Eo)l:= J.l.oC= 1207r= 377 ohms. In cases 
for which the annular width of the chamber is small in 

7 It will be noted that the convenience of this form lies in the fact 
that it may be used to evaluate P in terms of I (or its Fourier com
ponent In) and Q without any special normalization of the fields which 
describe the resonant mode of interest. 
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comparison to the diameter (w<<2R), this last result may 
be written conveniently in the approximate form 

where the dimensionless variable u is such that 

r=Hb+a)+ (w/2)u, (3.9) 
with 

w=b-a. 

The loss factor QTE may also be evaluated8 in the 
conventional way from these fields and expressed in terms 
of the relevant properties of the characteristic solution Z: 

(3.10) 

Again some simplification results for w«2R, for which 
we have 

( 
[Z( -1)]2) [Z(1)]2 }-1 

X 1+ , 
[Z(1)]2 f_ 1

1Z 2du 
(3.11) 

where the arguments of Z are now understood to represent 
values of the dimensionless variable u. 

Under potentially resonant conditions, the required 
properties of the characteristic function Z can depend in a 
fairly sensitive way on the parameters of the structure 
and are best determined by computation. Typical values 
(d. reference 8, Table IX) in a resonant situation are 

[Z( -1)]2 [Z(1)]2 
---~'""~0.85, '""0.52, 

[Z(1)]2 f-11Z2du 

and, for a beam centrally located within the aperture 
(at u=O), 

[dZjdu]B2 

---..-I:."-'~0.42. 

f-1
1Z2du 

For a resonant TM mode, similarly, one may employ a 
field configuration of the form (J?ks units): . 

Wr dZ 
Be= -A-- sinkz cosn(O-w0t) 

c2 dr 

nwr z 
Br=- A-. -- sinkz sinn(O-w01) 

c2 r 

(3.12a) 

(3.12b) 

8 L. Jackson Laslett and William Lewish, Ames Laboratory Report 
IS-189, Iowa State University, Ames, Iowa, 1960 (unpublished work). 
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B.=O 

z 
. Ee= -Ank- coskz cosn(O-wot) 

r 

dZ 
Er= -Ak- coskz sinn(O-wot) 

dr 

E.= -Aq2Z sinkz sinn(O-wot), 

(3.12c) 

(3.12d) 

(3.12e) 

(3.12f) 

in which the solution Z of Bessel's equation now must 
conform to the Dirichlet boundary conditions 

Z(a)=Z(b)=O. (3.13) 

With these fields we have 

. In [Z I (-Eef)av=-Ank - , 
2 R B 

(3.14) 

and the stored energy is 

(3.15) 

Accordingly, we may write 

n2k2 ZB2 
PTM = 27rlJI n2 QTM, 

(wr/c) 3q2h fabrZ2dr 
(3.16) 

and for w«2R, 

Finally, the loss factor QTM may be evaluated8 for this 
mode, with the result 

~ Wr { bh [ a (dZ/dr)a
2

] 
QTM=--h 1+- 1+----

4CR c 4q2 b (dZ/dr)b 2 

(3.18) 

which, for w«2R, may be written 

~ Wr r 2h [ _(d_Z/_du_)-_1
2

] 

QTM"-'--hl1+- 1+ 
· 4CR c q2w3 (dZ/du)I2 

(3.19) 

The required properties of the characteristic function Z 
are again best determined by computation. Illustrative 
values (reference 8, Table VIII) are 
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(dZ/du)j 
---~""'~0.04, 
(dZjdu)12 

(dZ/du)I2 
----""'8.4, 
f-11Z 2du 

and, for a centrally located beam, 

---:""'::::=:0. 79. 
f-1

1Z2du 

Because q is of the order of n/b (or n/R, for w«2R), and 
n2 (w/2R)3 is normally of the order of unity under resonant 
circumstances, it may be seen that the second term in the 
denominator of QTM will be very much smaller than unity. 
In contrast, the second term in the denominator of QTE 
could play a strong or even dominating role. This situation 
may be regarded as arising in the following way. In the 
TE mode, the Bz field component is (for n sufficiently large 
to attain resonance) by far the largest of the three com
ponents of B. The associated current, which is in the side 
walls only, consequently dominates. For a TM mode, on 
the other hand, component Bz vanishes and there is no 
such dominance as occurs in the TE mode. For the TM 
resonance, the factor f_ 1

1Z 2du enters in estimating energy 
stored and the resistive loss in the upper and lower surfaces. 
It thus effectively cancels, in the evaluation of QTM· With 
the TE fields, the energy involves this integral and the loss 
is determined by the quantities [Z( -1)]2 and [Z(1)]2 

which serve to specify the current density Ie associated 
with Bz at r= a, b. 

It is appropriate, therefore, to simplify Eqs. (3.11) and 
(3.19), which were applicable only for w«2R, as 

and 

1'1 (wr/c) 3w4 f-11Z2du 

QTE~ 16CR R173n2 [Z( -1)]2+[Z(1)]2' 

1'J Wr 

QTM""'- -h. 
4CR c 

(3.20) 

(3.21) 

Here 17 denotes w/2R and the product 173n2 is a convenient 
quantity to employ in estimating the location of the 
resonances that may be excited in a chamber of small 
transverse dimensions .. Finally, if Eqs. (3.20) and (3.21) 
are combined, respectively, with Eqs. (3.8) and (3.17), 
the following resistive losses result: 

IV. FIELDS NEAR RESONANCE 

The stability of an intense beam will be influenced by 
the self-generated electric fields which are enhanced by 
proximity to resonance. For the purposes of Part III of 
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this series, we extend the results of Sec. II to obtain 
required expressions for the longitudinal electric field. 
Under resonant conditions, the longitudinal electric field 
of aTE mode is of the form of Eq. (3.4d) in which coeffi
cient A is expressible through use of Eqs. (3.1) and (3.5) as 

p 
A=------

7rlnRswr[dZ/dr ]s 
(4.1) 

By use of Eqs. (3.7) and (4.1), the longitudinal electric 
field at resonance is found to be 

Equation (4.2) may be generalized for frequencies near 
the resonant frequency by replacing 

QTE cos(nO-wrt) 
by 

(w//QTE) cos(nO-wt)+ (wrLw2) sin(nO-wt) 
w2'------------------

wherein we have not distinguished between w and wr, 
except in the arguments of the circular functions and in the 
resonant term (wr2-w2). With this substitution, Eq. (4.2) 
rna y be written 

Rs [dZ/dr]s2 
Ee= 1'JI n------

(wr/c)q2h fabrZ2dr 

and gives the field generated by a current In cos(nO-wt), 
or by !I n[ei<nB-wtl+e-i<nB-wtJ]. For the perturbation 
analysis of Part III, it is convenient to employ specifically 
the complex field associated with a perturbation of the 
number of particles per radian, expressed in the form of a 
complex number. A perturbation 

oN= JV nei(n6-wtl, 

or an associated perturbed current 

of= ewoN neitne-wtl, 

should thus, from Eq. (4.3), have associated with it the 
longitudinal field 

cRs [dZ/dr]s2 
Ee = 2i i'JeN n-- w2 

nq2h fabrZ2dr 
ei(n6-wt) 

X (4.4) 
(wrLw2)-i(wNQTE) 

When w«2R, q=n/R and Eq. (4.4) may be written in the 
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somewhat simpler approximate form 

ei(n8-wt) 

X (4.5) 
(wrLw2)-i(wNQTE) 

To proceed in a similar way to evaluate the longitudinal 
electric field of a TM mode near resonance, we have 

(4.6) 

from Eqs. (3.1) and (3.14). By use of Eqs. (3.16) and 
(4.6), the resonance longitudinal electric field, Eq. (3.12d) 
IS 

For frequencies near the resonant frequency, Eq. (4.7) is 
generalized in the same manner as employed in connection 
with the TE resonance to read 

Eo= lJl ,-------
(wr/c)3q2RBh fabrZ2dr 

For a perturbation oN= N nei<no-wtl, Eq. ( 4.8) gives the 
associated field 

ei(n8-wt) 

X (4.9) 
(wrLw2) -i(wNQTM) 

for w«2R, with q=n/R and k= (2m+1)1rjh, we have 

ei(n8-wt) 

X (4.10) 
(wr2-w2)-i(wr2/QTM) 

V. NUMERICAL EXAMPLES 

We have calculated the nonresonant power loss using 
the parameters of the Berkeley Bevatron, a typical strong 
focusing machine such as the CERN proton synchrotron, 
and the Stanford electron storage rings. Results are given 
in Table I. For a proton machine in which the radio
frequency operates on a harmonic m, (m= 1 for the beva
tron, m= 20 for AGS) we take the azimuthal distribution 
of particles to be 

TABLE I. Parameters of three accelerators and the nonresonant 
energy loss per particle per turn. The circulating current assumed in 
the calculation is I c, and j 0 =w0/2-rr is the particle circulation fre
quency. The parameters a and (lf')av characterize the extent of 
particles in rf phase. 

<R, lc fo oE 
Machine (ohms) R/h (amp) (cps) "' (lf')av (ev) 

Bevatron 3.14X1o-a 50 4 2.5X106 1 3.56 
(CERN 1.37X 1o-a 103 1 4.8X10 6 0.1 24.6 
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Stanford 10 xw-a 36 1 2.5Xl07 

2N 
N(0)=-[1- (O/a)2]!, 

7rma 

0.014 21.8 

in which N is the total number of particles. This distri
bution leads to Fourier coefficients of the current given by 

2ewoN 4Ic 
I,=--ll(na)=-ll(na), 

1rna na 

for n an integral multiple of m. Other Fourier coefficients 
are zero. The total circulating current is I c. The azimuthal 
distribution of particles in the Stanford storage rings will 
be taken as Gaussian. We thus have 

from which it follows that 

I,= I c exp[- n2(02).v/2]. 

The resistivity p of the conducting walls is taken some
what arbitrarily to be 10-4 ohm-em for all numerical 
examples. If the true resistivity Pt of the walls is known, 
the results in Table I should be altered by a factor 102ptl, 

with Pt in ohm-centimeters. 
We have calculated the resonant power loss for the 

bevatron only, using Eq. (3.22). Inserting values RB= SO 
ft, b=52 ft, h= 1ft, and -y=6 into Eq. (A-18), we find that 
resonance can occur for n=650. The ratio w/h is 4 for 
this machine, and the resonant energy loss oE is of the 
order of 0.1 ev. For the strong focusing machine, we insert 
RB= 100 m, b= 100.15 m, h=0.1 m, and-y= 25 into Eq. 
(A-18), and find that resonance is possible at values of 
n"-'8X 105• This is sufficiently high that the resonant 
energy loss is negligible. 

For the electron storage rings, we use RB= 142 em, 
b= 150 em, h= 5 em, and-y= 103• Resonance is found to be 
possible with the 27Sth harmonic, but the 27Sth Fourier 
component of the Gaussian distribution is so small that 
resonant power losses do not warrant consideration. 

APPENDIX I 

Azimuthal Phase Velocities and 
Possible Resonance 

The eigenfrequencies w1 of the cavity modes which can 
be excited by the beam are given by (w1jc)2=q2+(p7r/h)2 
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with q the characteristic value of Bessel's equation and 
p an odd integer. The angular phase velocity is simply 
wz/n, and the azimuthal phase velocity v8 is w1r/n. We thus 
have 

Obviously the second term may be made negligibly small 
by choosing p= 1 and n»1rrjh. For p> 1, this term may 
still be made small, but only for much larger values of n. 
With this term negligibly small, we may have vo<c at any 
radius r within the vacuum tank for which qr/n< 1. It is 
then possible for a relativistic beam of particles to be 
circulating with a velocity coinciding with the phase 
velocity of the mode. This is the resonant condition 
referred to in this work. We now show that for sufficiently 
large nit is possible to satisfy qr/n< 1 at any radius within 
a toroidal cavity. 

For TE modes the appropriate solution of Bessel's 
equation is 

Zn(r) = Y n1 (qa)1 n(qr)-1 n1 (aq) Y n(qr), 

with the values of q determined by the boundary condition 
Zn'(b)=O. In Fig. 1 we have plotted qualitatively the 
function 1 n' (x)/Y n' (x) vs X for large values of n. The 
maximum of the curve occurs at x=n, and the half-width 
is of the order of nl. The lowest characteristic value q0 may 
be found approximately by selecting qoa<n and 
n<qob<j' nl such that 

1 n 1 (qoa)/Y n' (qoa) = 1 n 1 (qob )/Y n1 (qob ). 

The first zero of 1 n' is designated by jn/, and occurs 
approximately at x=n+0.81nl for large n. The ratio b/a 
is fixed and determines how far down the curve we must 
place our values. Thus in Fig. 1, the portion of the vacuum 
tank for which q0r/n< 1 holds is represented by the region 
of the abscissa between qoa and n. 

For fixed bja, the portion of the vacuum tank for which 
q0r/n< 1 does not hold diminishes to zero as n approaches 
infinity. This can be seen by noting that qo is of the order of 
n/b and thus qob-q0a"-'n(1-ajb). For any b/a, it is 
possible to choose a value of n such that this quantity is 
very much greater than the half-width of the curve, which 
is of order nl. We must then place qob very close to its 
maximum value jn1', while q0a is located far to the left of n. 
The portion of the vacuum vessel represented by the 
region of the abscissa between nand jn/ therefore becomes 
negligibly small, as n increases without limit, compared to 
the portion between q0a and n. In the latter portion, 
q0r/n< 1 holds. More accurate values of qo will be found 
in Appendix II. 

For TM modes, the appropriate solution of Bessel's 
equation is 

Zn(r)= Yn(qa)1n(qr)-1n(qa)Yn(qr), 
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FIG. 1. Qualitative graph of J,.'(x)/Y,.'(x) for large n. The radial 
aperture of the vacuum tank is represented by the region of the 
abscissa b~t:veen ,qoa and qob. The ith zero of J n' is j,.;', and the ith 
zero of Y" IS Yni . 

with the values of q determined by the boundary condition 
Zn (b)= 0. The lowest characteristic value may be found 
approximately by a graphical technique analogous to that 
used above. In Fig. 2 we have plotted qualitatively the 
function 1 n(x)/Y n(x) VS X. For large n, the first zero 
jn1 of 1 n, occurs approximately at n+L86nl, while Yn 2, 
the second zero of Y n, occurs approximately at n+2.54n!. 
Hence for large n the first characteristic value for TM 
modes always has the limits n+l.86ni<qb<n+2.54nl. 
Again, more quantitative evaluation will be found in 
Appendix II. We merely wish to point out here that, for 
this first TM solution, the condition qr/ n< 1 holds for 
some portion of the vacuum-tank apel,"ture. 

APPENDIX II 

High-Order Solutions of Bessel's 
Equation for a Narrow Annulus 

A. Introduction 

The lowest characteristic values q, and the associated 
characteristic functions Z(r), of interest here are those 
which arise from Bessel's equation when n is large and 
when (b-a)/(b+a)«l. As shown in Appendix I, the 
lowest characteristic values will be in the neighborhood of 
n/b. To find whether a resonant electromagnetic mode will 
be excited by a modulated beam moving within the 
vacuum chamber, however, the characteristic values must 
be determined with some accuracy, because of the strong 
cancellation involved in computing the quantity 
k=[(nw0/c) 2-q2]!. This quantity assumes values which 
are odd multiples of 1r/h in resonant modes. It is accord
ingly appropriate to examine directly8 the characteristic 
solutions of Bessel's equation, subject to our particular 
boundary conditions, without reference to the customary 
Bessel and Neumann functions 1 nand Y n· 
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B. Analysis 

It is convenient to introduce the quantity 

7J= (b-a)/(b+a)=w/2Ro 

and, because of the strong cancellation mentioned above, 
to define 

(A.1a) 
and 

u=2(r-Ro)/w. (A.1b) 

In terms of these quantities, we have r=R0(1+7Ju), with 
-1 ~ u~ 1, and Bessel's equation assumes the form 

(A.2) 

For 11«1, the characteristic values o and the charac
teristic functions for this equation may be obtained8 by a 
perturbation method provided n is not too large. In this 
way we find for the first Neumann solution (TE mode) 

1 8 
o'='=!.-'YI4n2 __ 7J6n4 
-3'' 15 ' 

(A.3a) 

Z o:: 1+7J3n2[u- (u3/3)]. (A.3b) 

For the first Dirichlet solution (TM mode) 

(A.4a) 

(A.4b) 

/ 

FIG. 2. Qualitative graph of Jn(x)/Yn(x) for large n. The radial 
aperture of the vacuum tank is represented by the region of the 
abscissa between qa and qb. The ith zero of J n is jni and the ith zero 
of Yn is Yni· 
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and for the second Neumann solution (TE mode) 

(A.Sa) 

Z o:: sin~- t7J (u sin~+~ cos~) 
2 2 7r 2 

1 [( 4 ) 7r 2 7r ] --'113n2 1 +.:_-u2 cos-u+-u sin-u . 
1r r 2 1r 2 

(A.Sb) 

The region of applicability of the foregoing expressions is 
that for which 7]3n2«1. Of greater significance for our 
present purposes, however, are the results for the case 
7J3n2> 1, which we discuss below. 

Since our interest here is confined to the case 77«1, it is 
convenient to approximate the differential equation for 
Zby 

d2Z 
-+[ll+27]3n2u]Z=O. 
du2 

(A.6) 

Solutions of this approximate equation may then be 
written explicitly in terp1s of Bessel functions of order t. 
Specifically, we take 

where ~ denotes ll+ Z773n2u. The particular ratio of the 
coefficients of J l and J -l is selected to ensure a decreasing 
exponential solution to the left of the "classical turning 
point," Uc= -ll/27J3n2• When 7]3n2 is fairly large in com
parison to unity, such a solution will drop sufficiently 
rapidly in that region to satisfy the boundary condition 
required at u= -1 (i.e., at r=a). 

Asymptotic forms for the characteristic values of o 
may then be found immediately by application of the 
desired boundary conditions at u= 1, with the aid of 
published tables.9 The following estimates of o, applicable 
in cases in which 7J3n2 is at least somewhat larger than unity, 
are obtained. For the first Neumann solution (TE mode) 

ll"'- 27]3n2+ 1.617247]2ni, 

for the first Dirichlet solution (TM mode) 

ll"'- 27]3n2+3. 711517]2nf, 

for the second Neumann solution (TE mode) 

o"'- 27]3n2+5.156197]2nt. 

(A.8) 

(A.9) 

(A.10) 

The nature of the characteristic functions can be seen 
conveniently from a graph (Fig. 3) of 

9 National Bureau of Standards Computation Laboratory, Tables of 
Bessel Functions of Fractional Order (Columbia University Press, 
New York, 1948-49), Vols. I and II. 
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Z ex v![Jt(vi)+Lt(v!)] vs v, 

with v defined by the relation 

o+2773n2u 
v 

(A.ll) 

(A.12) 

The various characteristic solutions of interest are then 
depicted by this curve, with the u= 1 boundary ap
propriately located at the maximum, zero, or minimum 
of the function plotted. When 173n2 is large, the solutions are 
highly localized near u= 1. Their values exceed (1/ e)Zmax 
only in an interval t:.u of width 1.3577-ln-J, 2.3977-ln-l, 
or 3.1277-ln-i, respectively, for the three characteristic 
solutions discussed here. This property, and others useful 
in the application of the characteristic solutions, depend 
only upon the value of rln2 and may be estimated from 
the graph or evaluated computationally. 8 

C. The Possibility of Resonance 

The possibility that an azimuthally modulated beam 
may excite a resonant electromagnetic mode of a toroidal 
vacuum chamber may be examined by reference to the 
equation 

(A.13) 

where k= (2m+1)11"/h. In terms of the average radius of 
the chamber, Ro and the radius of the particle orbit RB, 
this relation may be written 

(A.14a) 
or 

(A.14b) 

For a relativistic beam moving close to the center of 
the aperture, f3Ro/ RB will be close to unity. The ratio 
wjh is normally greater than unity. For resonance to 
occur, therefore, o must be somewhat negative and hence, 
173n2 would be roughly of order unity for the lower-order 
resonant modes. Somewhat lower values of n could give 
rise to resonant excitation if RB<Ro, while (3 materially 
less than unity will require larger values of n. There is, 
in fact, a limiting value for the particle energy below 
which resonance will not occur, even with RB=a, as can 
be seen from the following argument. If we have 

(A.15) 
we can write 

(A.16) 

and resonance certainly cannot occur in any mode if we 
have 

i.e., for 
(32/ (1-77)2_ 1 +277<0, 

(32< (1- 277) (1-77)2, 
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or 

FIG. 3. Graph of the universal radial function Z(v), as 
defined by Eqs. (A.ll) and (A.12). 

1 1 
'Y2 < "' . 

1- (1- 277) (1-77)2 477 
(A.17) 

For RB=Ro, however, significant resonances may arise for 
values of n sufficiently great that 773n2 is in the range 4 to 
30. A convenient general expression is obtained from Eq. 
(A.14b) by neglecting terms proportional to (773n2)l which 
appear in Eqs. (A.8) through (A.lO). The first resonance 
then is seen to occur for harmonic numbers such that 

(A.18a) 

D. Salient Properties of the Characteristic Solution 

With 773n2> 1, the characteristic solutions differ con
siderably from simple circular functions. This fact affects 
the coupling between the beam and the electromagnetic 
fields and modifies the numerical values of the loss factor 
Q. For purposes of this paper it may suffice to state that 
computational results8 indicate 

[dZ/du]N{[Z( -1)]2+[Z(1)]2} 

does not appreciably exceed 0.40 for the first Neumann 
solution (for 773n2""'3). For the second Neumann solution, 
this quantity assumes the value 1r2/8 for 773n2 small, 
vanishes for 773n2""'6, attains a maximum value of approxi
mately 4.0 for 713n2""'20, and decreases thereafter. The 
quantity [dZ/duJN J_ 1

1Z 2du for the first Neumann 
solution has a maximum value of approximately 0.71 at 

713n2""'4, drops to 0.41 at 773n2""' 10, and becomes less than 
0.13 for 173n2 ~ 20. For the second Neumann solution it is 
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r/4 for rln2 small, vanishes for 7]3n2"-'6, attains a maximum 
value of approximately 4.5 for 7J3n2"'20, and decreases 
thereafter. Finally, for the first Dirichlet solution, the 

4-10 

quantity [Z(0)]2/ f_ 1
1Z2du drops steadily from a value 

unity for 7]3n2 small, to 0. 79 for 7J3n2"'4, 0.37 at 7J3n2"' 10, 
and 0.10 at 7J3n2"-'20. 
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III. Electromagnetic Coupling Instabilities in a Coasting Beam* 

L. JACKSON LASLETTf 

Ames Laboratory, Iowa State University, Ames, Iowa, and Midwestern Universities Research Association, Madison, Wisconsin 

AND 

V. KELVIN NEIL AND ANDREW M. SESSLERt 

Lawrence Radiation Laboratory, University of California, Berkeley, California 

(Received October 13, 1960) 

The electromagnetic interaction of an intense relativistic coasting beam with itself, including the effect of a 
nonperfectly conducting vacuum tank, or a quiescent rf cavity, is investigated theoretically. It is shown that the 
resonances that may occur between harmonics of the particle circulation frequencies and the electromagnetic 
modes of the cavities can lead to a longitudinal instability of the beam. A criterion for stability of the beam against 
such longitudinal bunching is obtained as a restriction on the shunt impedance of the rf cavity, or the Q of the 
vacuum tank. This criterion contains the energy spread and intensity of the coasting beam, as well as the parameters 
of the accelerator. Numerical examples are given which indicate that, in general, the resonances with the vacuum 
tank will not cause instabilities, while those with an rf cavity can be prevented from causing instabilities by 
choosing the shunt impedance at a sufficiently low but still convenient value. 

I. INTRODUCTION 

I N the second article (Part II) of this series1 it was 
shown that a resonance can occur between a beam of 

particles in an accelerator and the characteristic electro
magnetic modes of the vacuum tank. It is possible that 
this resonance could lead to instabilities in an intense 
relativistic coasting beam. This problem is distinguished 
from the longitudinal instabilities investigated previously 
by a number of authors2•3 because resonance can occur 

FrG. 1. Cutaway view of 
toroidal cavity. 

*This work was done under the auspices of the U. S. Atomic 
Energy Commission. 

t Now in London with the Office of Naval Research. 
t Permanent address: Ohio State University, Columbus, Ohio. 
IV. K. Neil, D. L. Judd, and L. J. Laslett, Rev. Sci. Instr. 32, 267 

(1961). 
2 A. A. Kolomensky and A. N. Lebedev, Proceedings of the CERN 

Symposium on High Energy Accelerators, Geneva 1959 (CERN, 
Geneva, 1959), p. 115. 

s C. E. Nielsen, A. M. Sessler, and K. R. Symon, Proceedings of the 
CERN Symposium on High Energy Accelerators, Gene"ua, 1959 (CERN, 
Geneva, 1959), p. 239. 
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only with modes characterized by short wavelengths in 
the azimuthal direction. Thus we shall be dealing with 
perturbation frequencies that are very high harmonics of 
the particle circulation frequency. 

We shall again take a toroid with rectangular cross 
section as a model of the vacuum tank (Fig. 1), neglecting 
all windows, discontinuities, and straight sections. The 
conductivity of the walls is sufficiently high to allow the 
vanishing of the tangential electric field to be used as a 
boundary condition in the solution of Maxwell's equations. 
Therefore, we can use the results in Part II of this series. 

The stability of the coasting beam may also be affected 
by the presence of an rf cavity through which the beam 
must pass. If the cavity has an eigenfrequency near a 
harmonic of the beam circulation frequency, a resonance 
condition exists between the beam and the cavity. Such 
a resonance generally occurs for a much low~;r harmonic 
than the resonance with the modes of the vacuum tank. 
For purposes of this calculation we assume that the cavity 
is not driven externally. 

Transverse particle motion will be neglected throughout 
this work, except insofar as it contributes to the cross
sectional area of the beam. The density of particles in 
the unperturbed beam is taken as being uniform azimuth
ally. In Sec. II we assume an infinitesimal perturbation 
that preserves the cross-sectional dimensions of the beam. 
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It is then possible to solve the linearized one-dimensional 
Vlasov equation to obtain a dispersion relation that gives 
the allowed values of the perturbation frequency. This 
dispersion relation contains the azimuthal electric field 
generated by the perturbation, and in Sec. III convenient 
expressions are cited for this component of the electric 
field, using results from Part II of this series. 

Section IV is devoted to a discussion of the dispersion 
relation. A criterion for stability is derived that places 
an upper limit on the quality factor Q of the resonant 
mode of the vacuum tank. If the beam is near a resonance 
with the rf cavity, this criterion can be expressed as an 
upper limit on the input impedance of the cavity. These 
criteria contain the total number of particles in the 
machine as well as the energy spread of the coasting 
beam. Numerical estimates using the parameters of two 
quite different accelerators are giveri in Sec. V and in
dicate that instabilities arising from excitation of vacuum 
tank modes will not, in general, be a serious problem. 
Instabilities induced by an rf cavity, on the other hand, 
may place significant upper limits on the input impedance 
of rf cavities used in beam stacking schemes. 

II. DISPERSION RELATION 

It will be convenient in what follows to introduce the 
action variable W, which is defined by 

(2.1) 

Here E is the energy of the particle and f the instantaneous 
circulation frequency of the particle. The variable W is 
canonically conjugate to the angle variable ¢ describing 
the particle's position in azimuth. In the absence of an 
applied radio-frequency voltage, the equations of motion 
are given by 

and (2.2) 

The effective azimuthal electric field is designated by Eq,. 
We may denote the distribution function for particles 

in synchrotron phase space by 'lt(W,¢,t), and it can then 
be shown3 that 'lt satisfies the one-dimensional Vlasov 
equation, 

a'lt a'lt a'lt 
-+4>-+ 27re(REq,)-= 0, 
at a¢ aw 

(2.3) 

in the well-justified approximation of ignoring collisions 
between particles. In Eq. (2.3), (REq,) involves the 
longitudinal electric field averaged over the beam cross 
section. For the investigation described here, we may 
safely replace this average by the orbit radius times the 
electric field at the center of the beam. 

Since the unperturbed coasting beam is assumed to be 
uniform in azimuth, the unperturbed distribution of 
particles in w -¢ space may be described by a function 
1fo(W). We. shall consider an infinitesimal perturbation 
such that the total distribution function 'lt(¢,W,t) may 
be written as 

'lt(¢,W,t) =1fo(W)+1fl(n, W,w)ei(n</>-wt). (2.4) 

Note that the perturbation does not affect the transverse 
distribution of particles. Linearizing Eq. (2.3) leads to 

a1fo/aW 
lfl (n, W,w) =-21rie(REq,)--. (2.5) 

(w-nlj>) 

The electric field in Eq. (2.5) arises from the charge 
and current densities of the perturbation only. The 
particle density associated with the perturbation is 

oN=Nnei<n¢-wtl, (2.6) 
where 

Nn= J lfi(n,W,w)dW, (2.7) 

and the associated azimuthal electric field at the beam 
center may be written as 

(2.8) 

The quantity t thus defined will be investigated in the 
next section. If we insert Eq. (2.8) into Eq. (2.5) and use 
Eq. (2. 7), the condition for a solution to the Vlasov 
equation becomes 

. 1 = ~ 21riet J d1fo dW . (2.9) 
dW (w-nl/>) 

The particular dependence of 1fo upon W is not important 
as long as d1f0/dW has no discontinuities. A completely 
realistic distribution function would necessarily vanish 
for values of W corresponding to particles moving faster 
than the velocity of light. For convenience, however, we 
shall take a Lorentz (resonance) line shape for 1fo and set 

(2.10) 

This function falls off as W-2 for large values of W, and 
this behavior should not appreciably affect the results of 
the calculation. In Eq. (2.10), N is the total number of 
particles circulating in the machine. The distribution is 
centered about the value W = Wo and has a characteristic 
width AW. The integral in Eq. (2.9) may be evaluated 
by integration along the W axis, if we assume that w has a 
small positive imaginary part,3 and we use the relation 

lj>(W)=l/>(Wo)+27rj(:~) (W- Wo). 

4-12 
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One obtains 

J #o dW 

dW (w-rub) 

nkN 1 
--- . 

27r (w-nwo+ir) 2 
(2.11) 

in which k = 21rjdj /dE, w0 is the central frequency of the 
beam [equal to <f>(Wo)l, and r=n/k/LlW is n/2 times the 
characteristic frequency spread of the distribution. 

Having evaluated this integral, we have reduced 
Eq. (2.9) to the form 

1 =iekNne(w-nwo+ir)-2 • (2.12) 

The next section is devoted to a discussion of the 
quantity e. · 

III. AZIMUTHAL ELECTRIC FIELD 

For resonances with the accelerator tank we may use 
directly the result of Part II Eqs. ( 4.4), ( 4.5), ( 4.9), and 

)4.10) to obtain 
iw2 

e=Bt . , 
(wrLw2)-z(wNQTE) 

with 
2ecR2 I>[ dZ / dr ]s2 

Bt=-------

(3.1) 

(3.2) 

for a resona!lce in the first possible mode. The notation is 
is that of Part II of this series. 

Although the contribution to the azimuthal electric 
field from the resonant mode is the major contribution, 
other contributions also arise from current and charge 
distributions that vary as exp(ituf>). These additional 
contributions may be attributed to the excitation of 
modes characterized by the same value of n, but having 
more than one wavelength in the r and z directions. A 
more general treatment of this problem, including the 
excitation of nonresonant modes, shows that the non
resonant contributions to the electric field have little 
effect on the results of the dispersion analysis. We shall 
therefore use the expression for e of Eq. (3.1) in the 
dispersion relation. 

For. resonance with an rf cavity, we may proceed from 
Eq. (2.9) of Part I of this series,4 and write the effective 
azimuthal electric field as 

(3.3) 

which is a valid expression if the perturbation frequency 
is exactly equal to the resonant frequency of the cavity. 
If the cavity is being driven slightly off resonance, we 
may write 

4 V. K. Neil and A. M. Sessler, Rev. Sci. Instr. 32, 256 (1961). 
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iewrW2 (Zc/Qc)N nei<n<P-wn 
<rE,p) 

27rn(wr2-w2-iwNQc) 

It follows immediately that 

e=Bc-------
wr2-w2-iwr2/Qc 

with 

IV. CRITERION FOR STABILITY 

(3.4) 

(3.5) 

Either for resonance with a tank mode or resonance 
with the rf cavity, we may write the dispersion relation, 
Eq. (2.12), in the form 

-1=ekNnBw{ wr2-w2
- i;2r1 

(w-nwo+ir)-2, (4.1) 

with B given by Eqs. (3.2) or (3.5). One can see that the 
fourth-order equation, Eq. (4.1), has various roots 
corresponding to possible instabilities. One root is always 
stable (w"-' -wr), two correspond to the longitudinal 
instability of a coasting beam treated previously, and the 
root in which W""'Wr corresponds to the possible instability 
associated with the electromagnetic mode with eigen
frequency Wr- Setting w = w,+ P, we solve for P by linearizing 
the dispersion relation in P. The imaginary part of P is 
then obtained as a function of wr-nw0• The criterion for 
stability is ImP <O, and since the ImP is largest for 
wr-nwo""'±r, we make this substitution to obtain 

I' -----------~---, (4.2) 

2(-~r-A )±i(2r+~)r 
where A =ekNnB. The plus or minus signs refer to the 
choice of wr-nwo= ±r. 

Observing that Q»1, we have as a criterion for stability 

or 

±(-A± 
2;)<0. (4.4) 

By appropriate choice of the sign, depending upon whether 
k is positive or negative (corresponding to the beam's 
being below or above the transition energy), we obtain as 
the most stringent requirement for stability5 : 

5 If n is sufficiently large· that resonances occur with higher-order 
electromagnetic modes, the coupling factors which enter in the 
coefficient B, of Eq. (3.2), and which appear in expressions for 
evaluation of QTE, may be modified materially. From the WKB 
form of the function Z (r), however, estimates of the relevant factors 
can be obtained which suggest that the factor n4 in Eqs. (4.6)-and 
(4.7) will increase rapidly enough to ensure that no more stringent 
limitations on particle number or wall conductivity will result from 

• 
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Q<2r2/e/ k/ NnE. (4.5) 

We now may use the definitions of k and r which, after 
substitution of B for the case of a tank resonance yields 

where r0, the classical electron radius, is 2.8X 10-13 em. 
For w<<R this may be written as 

A few illustrative values for the last bracket can be found 
in Part II, while tables of values are in reference 8 of Part 
II of this series. 

For resonance with an rf cavity, we obtain as the 
condition of stability from Eq. (4.5) that the shunt 
impedance Zc must satisfy 

ncJ\:~1 (fl£)2 

Zc<------ (4.8) 
(moc2)roNf2 

The quantity J is the impedance of free space, which 
is equal to 377 ohms in mks units, and 47r/c in cgs units. 

V. NUMERICAL EXAMPLES 

A. rf Cavity Resonance 

As an example of a resonance with an rf cavity, we take 
the MURA 40-Mev electron model6 : 

j(df/dE)= 1.1X1012 Mev-1 sec2, 

j=25X106 sec1, 

n=1, 

flE=3 Mev, 

N = 1.5X 1013. 

the presence of such higher-order modes. With high-order resonances 
present, of course, more than one resonance can occur within a 
sufficiently small frequency interval that the coupling with the beam 
is enhanced, and a somewhat stronger limitation can result. But if 
n were high enough so that many resonances would fall within the 
range where interaction with the beam occurs, variation of phase 
amongst the several modes excited by the beam would appear 
to suppress the reactive feature of the coupling which permits 
instabilities to develop. 

6 The MURA Staff, Proceedings of the CERN Symposium on High 
Energy Accelerators, Geneva, 1959 (CERN, Geneva, 1959), p. 71. 
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The shunt impedance Zc must be less than 3200 ohms, to 
prevent a longitudinal instability. This limit is sufficiently 
high to ensure no difficulty. 

As a second example, we might consider a hypothetical 
proton storage ring for 15-Bev particles. As reasonable 
parameters, we take 

dj/dE=0.70 Mev-1 sec1
1 

(= 106 sec!, 

n=10, 

flE=300 Mev, 

N=1014. 

In this case the shunt impedance of an rf "maintaining 
cavity" must be less than 5.1X105 ohms, which would 
preclude the use of a very high Q cavity such as otherwise 
might have been used in such a device. For example, the 
cavities at the Cambridge electron accelerator have shunt 
impedances of 107 ohms. 7 

B. Tank Resonances 

As a first example, we consider the MURA electron 
model in which the vacuum tank has a height of 5 ~m, an 
inner radius of 122 em, and an outer radius of 224 em. 
The 38-Mev beam will be stacked at a radius of 203 em. 
From Eq. (A-18) of Part II, the estimated n value for 
the first resonance is approximately 200, but the coupling 
factor 

J·l Z2dx/ (dZ)2 
-1 dx B 

is so small that the restriction on Qe is satisfied by a 
vacuum tank made of even the best conducting material 
imaginable. 

As a second example, we consider a full scale FF AG 
accelerator for which the following parameters might be 
typical: 

a=7X103 em, 

b=7300 em, 

Rs=7275 em, 

h=15 em, 

j= 106 sec1, 

df/dE=0.70 Mev-1 sec!, 

E=15 Bev, flE=300 Mev, 

N=1Ql4. 

The first resonance is at n=30 000, and once again there 
need be no concern about a longitudinal instability for 
any physically realizable cavity. 

7 M. S. Livingston, Proceedings of the CERN Symposium on High 
Energy ~celerators, G~neva, 1959 (CERN, Geneva, 1959), p. 335. 

\ 
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The transverse electromagnetic interaction of an intense azimuthally uniform beam of particles with itself, 
including the effect of a resistive vacuum tank, is investigated theoretically. It is shown that a beam of particles all 
having velocity vis unstable against the development of transverse waves having a phase velocity close to (1-v/n)v, 
where vis the number of transverse free betatron oscillations occurring in one revolution and n is a positive integer 
greater than v. The growth rate for the instability is proportional toN !u•, where N is the number of particles in the 
beam and u is the conductivity of the surface material of the vacuum tank. Stabilizing mechanisms are examined 
by means of the Vlasov·equation and it is shown that a spread in the quantity (n-v)v, evaluated for particles in the 
unperturbed beam, will prevent the instability. A criterion for the spread required is shown, in the limit of walls 
of high conductivity, to depend upon the beam intensity and energy as well as upon certain geometrical properties 
of the accelerator, but not upon the conductivity. Numerical examples covering a range of particle accelerators 
are presented, and suggest that the theory is in agreement with the coherent beam behavior recently observed in a 
number of accelerators. 

I. INTRODUCTION 

AMPLIFICATION of longitudinal density fluctuations 
in an electron beam by the resistance in the surround

ing walls has been predicted theoretically and demon
strated experimentally.1•2 The companion paper3 to this 
article treats the occurrence of this phenomenon in particle 
accelerators. Recently a number of particle accelerators 
have exhibited an instability that consists of a coherent 
vertical oscillation of the particle beam.4- 6 The purpose of 

* Research supported by the U. S. Atomic Energy Commission. 
1 C. K. Birdsall, G. R. Brewer, and A. V. Haeff, Proc. IRE 41, 865 

(1953). 
2 J. R. Pierce, Bell System Tech. J. 30, 626 (1951). 
3 V. K. Neil and A. M. Sessler, Rev. Sci. Instr. 36, 429 (1965). 
4 C. P. Curtis et al., "Beam Experiments with the MURA 50 MeV 

FFAG Accelerator," Proceedings of the International Conference on 
High Energy Accelerators, Dubna, 1963 (Atomizdat, Moscow, 1964), 
p. 620. 

• F. E. Mills and G. K. O'Neil, "Vertical Instabilities in Electron 
Storage Rings," Proceedings of the Brookhaz•en Summer Study on 
StoraJ;e Rings, Accelerators and Experimentation at Super-High 

our work is to develop a theory of the transverse instability 
that is conceptually related to the theory of the resistive 
wall amplifier. Our detailed investigation was suggested 
by the earlier work of de Packh, 7 and is more general than 
any of the above analyses in that details of the particle 
dynamics are incorporated, although not in a strictly self
consistent manner. This sophistication is vital in obtaining 
a threshold for the instability. The analysis follows that 
of the companion paper on longitudinal resistive insta
bilities3 but is complicated by the more involved electro
magnetic fields associated with the transverse motion. 

A beam of particles with angular-circulation frequency 
wo executing coherent vertical oscillation~ generates travel-

Energies (BNL-7534, 1963), pp. 368, 375 (Brookhaven National Lab
oratory, Upton, New York, 1963). 

6 M. Q. Barton, J. G. Cottingham, and A. Tranis, Rev. Sci. Instr. 
35, 624 (1964). 

7 D. de Packh, Naval Research Laboratory, Washington, D. C., 
private communication to MURA, 2 May 1963. 
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ing waves with angular frequency w= (n±v)w0, where n 
is an integer and v is the number of betatron wavelengths 
per revolution. In the absence of resistivity in the surround
ing walls these oscillations are stable. The associated 
electromagnetic force on the beam is 90° out of phase with 
the vertical velocity of the beam, and merely shifts the 
betatron oscillation frequency. If this shift is sufficient to 
change the betatron wavelength to a value corresponding 
to an accelerator resonance, the beam becomes unstable. 
Generally a change in v of about 0.25 is sufficient. This 
mechanism has been examined in detail in a recent publica
tion.8 The resulting space-charge limit is ample in most 
machines. 

In the presence of resistive walls, the fields associated 
with the wave having w= (n-v)wo exert a force on the 
beam that has a component in phase with the coherent 
vertical velocity. This is the "slow wave," or "negative
energy" wave. It has a phase velocity less than the directed 
velocity of the particles, and may lead to an exponentially 
growing transverse oscillation of the beam. Ultimately the 
energy required for the transverse motion comes from the 
longitudinal motion of the particles. The electromagnetic 
force on the beam arising from the wave with w= (n+v)wo 
has a component 180° out of phase with the coherent 
vertical velocity. This is the "fast wave," or "positive
energy wave." It has a phase velocity greater than the 
directed velocity of the particles and leads to exponentially 
damped vertical oscillations. 

The crucial role of a dissipative mechanism in the 
occurrence of an instability has been encountered in the 
so-called "hose instability" of a stream of particles passing 
through a plasma.9 In this instance it is collisions between 
plasma particles that render the beam unstable against 
transverse oscillations, and such a phenomenon could 
occur in particle-accelerator beams. Our treatment assumes 
that the beam is in vacuum so that the walls must supply 
the dissipative mechanism. The presence of background 
plasma could well have an effect upon the instability 
considered here. 

The analysis is given for a beam with uniform density 
in the azimuthal direction, as is the physical situation in 
Ref. 4. Most experimental observations have been made 
with beams that are bunched by an externally driven rf 
cavity. It is not clear whether bunching is unimportant, 
but the methods invoked here are not powerful enough to 

8 L. Jackson Laslett, "On Intensity Limitations Imposed by 
Transverse Space-Charge Effects in Circular Particle Accelerators," 
Proceedings of the Brookhaven Summer Study on Storage Rings, 
Accelerators and Experimentation at Super-High Energies (BNL-7534, 
1963) p. 324 (Brookhaven National Laboratory, Upton, New York, 
1963). 

9 H. Chang, "The Hose Instability of a Finite, Pinched, Rela
tivistic, Electron Beam Penetrating an Infinite, Field-Free Tem
perature Plasma," Stanford Research Institute Technical Report 
201 (Stanford Research Institute, Menlo Park, California, 1963) 
(unpublished). 
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treat an azimuthally varying density in the unperturbed 
beam. The perturbation considered is a small vertical 
displacement of the beam. The displacement has the form 
exp[i(nB-wt)], where() is the azimuthal angle around the 
machine. In Sec. II approximate expressions for the electro
magnetic fields associated with the displacement are calcu
lated for vacuum tanks of circular cross section and 
rectangular cross section. In the latter geometry, the con
ductivity of the side walls is assumed to be infinite. Finite 
conductivity is considered present only in the top and 
bottom surfaces. In Sec. III these fields are combined with 
the Vlasov equation so that a dispersion relation for the 
allowed values of the frequency w can be derived. 

Section IV is devoted to a discussion of the dispersion 
relation. It is shown that for a beam of particles all having 
the same values of v and w0, finite conductivity always leads 
to an instability. The characteristic growth time is given 
by Eq. (5.2); it is a function of the geometry and beam 
energy and is directly proportional to ITijN, where IT is the 
conductivity of the wall material and N is the total 
number of particles in the beam. The instability is sup
pressed if the particles have a sufficient spread in their 
values of v and/or w0• Both of these quantities are functions 
of particle energy and of the betatron oscillation amplitude. 
A criterion derived for stability shows that the requisite 
spread is directly proportional to N. The required spread 
is independent of IT in the limit of highly conducting walls. 
In Sec. V we summarize the results of the calculation in a 
form convenient for application to a large number of 
existing and contemplated accelerators, and also present 
some numerical examples. 

II. ELECTROMAGNETIC FIELDS 

As mentioned in Sec. I the treatment presented here is 
not strictly self consistent. We use a simple model of the 
beam as a sourcefor the fields. When the dispersion relation 
is discussed in Sec. IV, various equilibrium distributions of 
particles are considered. These do not in general give rise 
to the same charge and current distributions used in this 
section. The implications of this are discussed in greater 
detail below. As the major curvature of the vacuum tank 
has little influence on the results of this calculation, we 
solve Maxwell's equations in a straight waveguide. 

A. Rectangular Cross Section 

The geometry we consider first is that illustrated in 
Fig. 1. The current and charge densities in the unper
turbed beam are taken as uniform in the direction of 
motion (y direction). The center of the beam is located at 
z= 0 and the particle density is uniform in the region 
- (r/2) <z< (r/2). The position and shape of the beam in 
the x direction is arbitrary at this stage. The equilibrium 
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FrG. 1. The geometry of the beam and vacuum tank 
for the model with rectangular cross section. 

charge density p and current density jy are thus 

p= {XG(x)/r, 

0, 

lzl <r/L 

lzl >r/2, (2.1a) 

with X the charge per unit length. The function G(x) IS 

normalized so that 

1w G(x)dx= 1. 

All particles move in the y direction with speed v. For 
purposes of this section it is assumed that the perturbation 
consists of a rigid displacement of the entire beam. Every 
particle in the beam at position y and timet is displaced a 
distance ~z given by 

(2.2) 

where ~ is a constant and ~<r. The perturbation gives 
rise to no azimuthal bunching. The electric and magnetic 
fields arising from the perturbation have the following 
sources 

where a subscript t indicates the total quantity and a sub
script 1 a perturbed quantity. Equilibrium quantities 
carry no subscript. It is apparent from the preceding 
equations that 

PI= (X/ r )~G(x)[o(z- r/2)-o(z+r/2)]ei(ky-wtl, (2.4a) 

j1y=p1v, '(2.4b) 

. {i(kv-w) (X/ r)~G(x)ei(ky-wt), 
]lz= 

0, 

lzl <r/2 

lzl>r/2. 
(2.4c) 

Since the instability is characterized by frequencies and 
wave numbers such that (w/kv)2.<<1, we treat w/kv as 
negligible and solve the following quasistatic equations 

for the perturbed fields : 

V·E~=411'pl, 

V·B1=0, 
v xE1=0, (2.5) 

V xB1=41l'j/c. 

Gaussian units are used throughout this work. Only the 
contribution to E1 from the finite conductivity [Eq. 
(2.11) below] has nonzero curl. Solutions to the complete 
Maxwell's equations also have been obtained, and the 
resulting vertical force per unit charge is presented below 
[Eq. (2.17b)]. Some of the numerical examples in Sec. V 
utilize this complete expression. We first present field ex
pressions that satisfy the boundary conditions appropriate 
to walls of infinite conductivity. Expressions for the fields 
must satisfy Eq. (2.5) and the condition that the normal 
component of B1 and the tangential component of E1 
vanish at the walls of the pipe (z= ±h/2, x=O, and x=w). 
The fields must satisfy the appropriate discontinuity condi
tions at z=±r;2. We expand the function G(x) in a 
Fourier ·series 

G(x)= (2/w) L: g. sin11x, (2.6) 

with 11=S11'/w and san integer. The dimensionless quanti
ties g. are given by 

g.= 1w G(x) sin11xdx. (2.7) 

The subscript s on 11 has been suppressed for brevity 
throughout the rest of this report. 

It may be verified that Eqs. (2.5) as well as the boundary 
conditions are satisfied by the following expressions: In the 
regions lzl >r/2 we have 

E 1= L: A,{sinht(z=Fh/2)['17 cos11x£+ik sin11xJJ 
s 

+C coshC(z=Fh/2) sin11xk}, (2.8a) 
and 

B1= L: B.{coshC(z=Fh/2)['17 sin11x£-ik cos11xJJ 
s 

-C sinhC(z=Fh/2) COS1JXk}, (2.8b) 

where £, j, and k are unit vectors along the coordinate 
axes, and £2= k2+112• The upper signs apply for z> r/2 and 
the lower signs for z <- r /2. In the region I z I < r /2 we 
have 

E1 = L: C.{sinhCz ['17 cos11x£+ik sin11xJJ 
s 

+C coshCz sin11xk}, (2.9a) 

B1 = L: D.{ coshtz ['17 sin11x£-ik cos11xJJ 
s 

- f sinhfz COS'17Xk} 
81l'i(kv-w) g. + X~ L -[ik sin11Xi-11 COS'17Xj], 

WT s £2c 
(2.9b) 

The factor exp[i(ky-wt)] is understood to be appended to 
each of the above expressions. In accordance with an 
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earlier remark, we neglect w/kv compared to unity in what 
follows. The coefficients A 8' B., C 8 , and D 8 are to be deter
mined from the jump conditions at z= ±r/2. 

With finite conductivity in the top and bottom surfaces, 
E1 and B1 must satisfy the conditions 

Eb·= (1-i)CRB!y, E 1y=- (1-i)CRB 1, (2.10a) 

on the top surface (z= h/2), and 

E1x= ~ (1-i)CRBly, E1v= (1-i)CRB!x (2.10b) 

on the bottom surface (z= -h/2), where CR= (w/87r<T)! 
and <T is the conductivity of the wall material in sec-1• 

Satisfaction of these conditions can be accomplished by 
adding small corrections E/ and B/ to the fields in the 
regions lzl >r/2. We may express E1' as 

E1' = =F (1-i)CReitku-wtl I: B, coshf(z=Fh/2) 
s 

X[i/? cos1)xt+1J sin17xJ], (2.11) 

which is valid for I z I > r /2. This contribution to the elec
tric field has no component in the z direction and thus can
not contribute to the vertical force on the beam other 
than through its effect on the coefficients A, and C,. The 
effect is small compared to the contribution from B/, 
and we shall in fact use only Eqs. (2.8a) to (2.9a) to deter
mine A 8 and C.. The field given by Eq. (2.11) serves merely 
to determine B1' in the regions I z I> r/2. From the equation 

(2.12) 
we derive 

B/==Feitkv-wt) I: B.,Z8 {sinhf(z=Fh/2) 
s 

X [17 sin17xi-ik cos17xJ] 

-C coshf(z=Fh/2) COS1)xk}, (2.13) 

where Z,= (l+i)CRcf/w. Note that B 1,' and B1/ are zero 
at z= ±h/2, so that Eqs. (2.10) remain satisfied. 

Equation (2.9b) is sufficiently general to represent the 
entire magnetic field (including the contribution from 
finite conductivity) in the region r/2> lzl provided the 
coefficients D, are properly chosen. Using Eqs. (2.8a) and 
(2.9a) for the electric field together with Eqs. (2.4a) and 
(2.6) for the surface-charge density at z= r/2, we obtain 

A,= (81rA.jr)~g, sinh(fr/2)/wC sinh(fh/2), (2.14a) 

C,= (81rA.jr)~g8 sinh[C(r-h)/2]/wf sinh(fh/2). (2.14b) 

Analogously, using Eqs. (2.8b), (2.9b), and (2.13) for the 
magnetic field, we obtain 

87r1){3A~g, sinh(fr/2) 
B,= , (2.1Sa) 

rf2w[sinh(fh/2)+Z. cosh(fh/2)] 

D, 
81r1]{3A~g,{ sinh[ C( r- h)/2]-Z, cosh[£( r- h)/2]} 

rf2w[sinh(fh/2)+Z, cosh(fh/2)] 
(2.1Sb) 
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Since the boundary conditions [Eqs. (2.10a) and (2.10b)J 
are valid only to first order in CR, we keep Z, to first order 
in D,, which leaves 

87r1){3A~g, { sinh(fr/2)} 
D, sinh[C(r-h)/2]-Z, . 

· .f2wr sinh ( fh/2) sinh (fh/2) 

(2.16) 

In the next section we employ a vertical force per unit 
charge (E1z-f3B,) found by averaging the quantity 
E1z-{3B 1, over the width of the beam. This average is 
obtained by multiplying by G(x) and integrating over x. 
The result of this operation is to replace the factor g8 sin17x 
by g8

2 in the expressions for E 1z and B 1,. Furthermore, we 
consider the products .fr and fz to first order only in these 
expressions. Using Eqs. (2.9), (2.14b), and (2.16) with the 
definition of Z,, and making some simplifications, we 
obtain 

where 1'-2 = 1-{32
• Note that the factor exp[i(ky-wt)] is 

not included. Treating fh to all orders while keeping only 
first-order terms in Cr and Cz is valid if r<<h. In the 
examples given in Sec. V, it turns out that it is also a good 
approximation to treat Ch to first order only; thus the re
striction r<< h is really not imposed. 

If the complete Maxwell's equations are solved with 
the same sources and boundary conditions as above, the 
following expression for (Eiz- {3Bix) results: 

with JJ.2=£2
- (w/c)2 and f3w=w/kc. We have kept Jl.T to 

first order only. Equation (2.17a) results if we set f3w=O 
in Eqs. (2.17b). 

B. Circular Cross Section 

The second geometry we consider is that of Fig. 2, in 
which both the beam and the wave guide have circular 
cross sections. If, as above, we consider a beam with uni
form density rigidly displaced in the z direction, it is 
possible to derive simple expressions for the perturbed 

• 
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FIG. 2. The geometry of the 
beam and vacuum tank for the 
model with circular cross sec
tion. 

fields. These expressions are valid provided second-order 
terms in kb are negligible compared to unity; this is true 
if the wavelength of the perturbation is very much larger 
than the radius of the pipe. Except for the contribution 
from finite wall conductivity, the following treatment does 
not include components of E1 and B1 along the pipe 
(y components). These are indeed first order in kr, but 
since they do not enter into the transverse force on the 
beam, we shall not concern ourselves with them. 

In cylindrical coordinates (r,B,y) we have the following 
sources for the fields : 

pr=po~ cosO o(r-a)ei<kv-wtl, (2.18a) 

(2.18b) 

with po the charge density in the unperturbed beam. It is 
not necessary to include j 1• as a source in order to obtain 
the transverse force within the limits of this approxima
tion. We can in fact consider k = 0 except in the exponential 
factor, since no first-order terms ink occur. Inside the beam 
we have uniform E 1• and B 1x as the only field components 
needed to satisfy Eqs. (2.5). In cylindrical coordinates 
these components become 

E1 = Elz(cosfJr-sin80)ei(ky-wt), 

B1 = Biz(sinBr+cosfJO)ei<kv-wt), 

(2.19a) 

(2.19b) 

with rand {J unit vectors. In the region a<r<b we have 

Er= 8{[(b/r)2+1] cosfJr 
+[(b/r)2-1] sinee}ei<kv-wtl, (2.20a) 

B1=CB{[(b/r)2-1] sin8r 
-[(b/r)2+1] cosfJe}ei<kv-wt>. (2.20b) 

The procedure we employ now deviates from that used 
with rectangular geometry. We first evaluate the coeffi
cients in Eqs. (2.19) and (2.20), then add contributions 
E1' and B1' arising from finite wall conductivity. The usual 
conditions at r=a yield 

Er.= -27rpoK1- (a/b)2], 8= 27rpoHa/b)2, 

Brx=f3Erz, CB= -{38. 

(2.21a) 

(2.21b) 

Whereas in the pipe of rectangular cross section it was 
possible to satisfy the conditions Eqs. (2.10a) and (2.10b) 

exactly, it is now possible to satisfy the condition 

Er/ =- (1-i)CRB u (2.22) 

only to first order in CR. We add a contribution E 1/ that 
satisfies Eq. (2.22), with Eqs. (2.20b) and (2.21b) inserted 
for Bro. In the limit k---+ 0, the expression for E 1/ is simply . 

Er/= -47r{3poHa/b)2(1-i)CR(r/b) cosfJei(ky-wt), (2.23) 

which is valid for all values of r. We determine Br' from 
Eqs. (2.12) and (2.23), 

Br'= -47r{3poHa/b)2(1 +i) (cCR/wb) 
X (sinBr+cosee)ei<ky-wt>. (2.24) 

Note that Br' is not equal to zero at r=b, and that is why 
Eq. (2.22) is satisfied to first order only. This expression 
is valid for all values of r. 

The vertical force per unit charge Erz-f3Biz must now 
include the contributions from Eqs. (2.19) and (2.24). 
We again use brackets for consistent notation, although 
in this geometry they do not imply any averaging process. 
The factor exp[i(ky-wt)] is again omitted, and we have 

(Erz-f3Biz)=- 27rpo~{'y-2[1- (a/b)2] 

-2 ({3a/b )2 (1 +i) (cCR/wb)}. (2.25) 

III. DERIVATION OF THE DISPERSION RELATION 

In order to study the dynamics of particles in an accel
erator, we employ the Vlasov equation in cylindrical coordi
nates r, 8, z, instead of rectangular coordinates x, y, z. Here 
8 should not be confused with the notation of Sec. II.B and 
Fig. 2. We make the substitution ky---+ n8, y---+ R8 in the 
formulas for the vertical force, where R is the radius at 
which the beam circulates. The particle-distribution func
tion~ is a function of z, P., 8, and W, where W = 27r(Po- Po) 
is 271" times the deviation in canonical angular momentum 
from the average value for particles in the beam. The 
equation satisfied by the total distribution~~ is 

d~t d~t . d>/lt d>/;t . d~t 
-+11-+(W)---+i-+(P.)-=0, (3.1) 
at ae aw az aP. 

where, as in the previous section, brackets indicate an 
average over the width of the beam when applicable. 

In the equilibrium configuration, W is a constant of the 
motion. We shall take the amplitude a of axial betatron 
oscillations as the second constant of the motion, and 
choose the equilibrium distribution function ~ of the form 

~=Nh(a)j(W)/ (271")2R, (3.2) 

where N is the total number of particles in the beam. 
The functions h and f are normalized so that 

Jh(a)ada=1, jJ(W)dW=1, (3.3) 
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Under the influence of the perturbation, we have 

1/lt=-'1/;(W,a)+l/IJ (W,a)ei(n8-wt)' 

(F,1)= (Fz)+e(E 12-{3B 1x)ei(n8-wt), 

(W,)=(WI), 

(3.4a) 

(3.4b) 

(3.4c) 

where the appropriate expression, Eq. (2.17) or Eq. (2.25), 
is to be used for (EJ.-/3B 1x). We are not considering 
azimuthal density variations, in which case (W1) is negli
gible. Inserting Eqs. (3.4) into Eq. (3.1) and linearizing 
leads to 

ay;1 . ay;1 ay; 
i(n8-w)l/IJ+z-+{P.)-= -e(Elz-/3Blx~· (3.5) 

az aP. aP. 

We now assume thatP. is linear in z so that the equations 
of motion for a particle in the unperturbed beam are 

(3.6a) 

(3.6b) 

where v, is the axial betatron wavenumber, wo is the 
average particle circulation frequency, and ko is a char
acteristic parameter of the accelerator. Equation (3.6a) is 
only approximate because ~'z (as well as Q) is actually a 
function of a and the motion is not simple harmonic. This 
fact is very important, and in the next section is shown to 
be the major stabilizing mechanism. However, for the 
purpose of solving Eq. (3.5), it is sufficient to write the 
solutions to Eqs. (3.6) as 

z= a sin¢, 

P.=mvza cos¢, 

O=nt, 

(3.7a) 

(3. 7b) 

(3.7c) 

in which ¢= v.nt, and m is the average relativistic trans
verse mass of particles in the beam. 

With the above approximations it is easy to show that 
Eq. (3.5) may be written 

i('lill-w)l/11+ v.n(al/;1/ a¢)=- e(E1z-/3B1x)(ay;jaP z). (3.8) 

Furthermore, neglecting the dependence of v, on a, we have 

ay; ay; aa cos¢ ay; 
(3.9) 

This approximation omits terms in 1/; 1 that are first order 
in the quantity (a2/v.) (av.jaa2). These small terms have 
little influence on the results. With Eq. (3.9) used in Eq. 
(3.8), we have a first-order equation in one variable. After 
some simplification, the solution may be written as 

(3.10) 
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From our perturbed distribution function 1/;1 we now 
compute a dipole moment per unit length P(O,t) = pei(n8-wt), 
where 

p = e J zl/;1adad¢dW. (3.11) 

Inserting Eqs. (3.10) and (3.7a) and performing the¢ in
tegration, we have 

p= (-~re2/m)(E1=-{3B 1 x) J (ay;jaa)a2dadW. (3.12) 

We come now to the basic approximation in our treatment. 
In general the distribution functions 1/; and 1/;1 will not lead 
to current and charge distributions consistent with 
those assumed in Sec. II. Therefore the expressions for 
(E 1.-{3B 1x) are not strictly applicable. In particular, the 
perturbed force may have z dependence other than the 
weak function cosh-t'z, which we have approximated to 
unity. A general self-consistent analytic treatment of an 
arbitrary 1/; seems impossible. However, investigation has 
shown that physically reasonable axial distributions of 
particles in the unperturbed beam lead to a vertical force 
that is quite well approximated by the treatment in 
Sec. II, so long as the conditions tr<<1 or ka<<1 are 
satisfied. To complete the quasi-self-consistent treatment 
here, we equate the dipole moment per unit length p with 
the quantity/..~ in Eq. (2.17) and with 1rp 0a2 ~ in Eq. (2.25). 

Inserting 1/1 from Eq. (3.2) and (E 1z-/3B 1x) from Eq. 
(2.17) into Eq. (3.13), we derive the dispersion relation 

where 

I
= f h' (a)J(W)a2dadW. 
- (3.14) 

[(w-nQ)L v/!12] 

If Eq. (2.25) for (Elz-{3B 1x) is employed, we obtain 

e
2

cYI { [ (a)2

] (cCR)({3a)2

} 1 =- 27rmRa2 'Y-2 1- b -2 (1 +i) --:;b b . 
(3.15) 

It is convenient to introduce the quantities Ur and Vr by 
the definitions 

(3.16a) 

(3.16b) 
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FIG. 3. The function 'J1 (h/w,t:./h), which is defined in Eq. (3.23a) 
and expresses the long-wavelength part of the real frequency shift 
arising from image effects. It can be seen that 'J, is almost inde
pendent of its first argument. For large y, 'J1 (0,y)-> 1; the deviation 
from unity being only 5% at y=4.0. For small y, y[F, approaches a 
constant of order-of-magnitude unity. 

Alternatively, for the pipe of circular cross section we 
introduce U c and V c by the definitions 

U c= -eW[1- (ajb )2]/27rv2wo-y3mo.Ra2, (3.17a) 

V c= eW(3ffi./1rVz'YmQWb3• (3.17b) 

In Eqs. (3.16) and (3.17) we have replaced m by -ymo, 
where mo is the rest mass of the particle. In terms of these 
equations, the dispersion relation becomes 

1 = Vzwo[U + (1 +i) V]l. (3.18) 

If Ur and Vr are inserted into Eq. (3.18), it is identical 
to Eq. (3.13). Alternatively, if Uc and Vc are inserted, 
Eq. (3.18) is identical to Eq. (3.15). 

If we employ the more general expression, Eq. (2.17b) 
for (E1.-(3B1x) .in the pipe of rectangular cross section, 
still another set of definitions for U and V results. We 

2 3 4 5 6 7 8 

y 

FrG. 4. The function 'J2 (h/w,t:./h), which is defined in Eq. (3.23a) 
and expresses the dominant contribution in the relativistic limit to 
the part of the real frequency shift arising from image effects. For 
most applications x=h/w is small, and then n'2(x,y) is approximately 
equal to 'J2(0,0) = 1 and decreases linearly with increasing second 
argument. 
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call these U0 and V0 • They are defined by 

U0 = (eW /v.wo-ymowR)[Re- (2h2r) L g.z], (3.19a) 

V0 = (eWffi./v.wo-ymowR) Im, (3.19b) 

where 

Re= ~ g.2 {[~2+: ((3,.-(3)2] coth(Jl
2
h)}, (3.20a) 

Im= (:)~(:J[Jl4f32+Jl2k2(f3w2-(32) 
+(kw/c)2(f3w-f3) 2] csch2(Jlh/2). (3.20b) 

These general expressions may prove useful in some 
applications. We have evaluated them for a particular 
choice of G(x) that has two parameters, namely a beam 
of width 11 with center located at xo, as indicated in Fig. 1. 

0 
0 2 3 4 

v 

X • 0 

5 6 7 8 

FIG. 5. The function 'J3 (h/w,t:./h), which is defined in Eq. (3.23b) 
and expresses the imaginary part of the frequency shift. The function 
is relatively independent of its first argument, especially as in most 
applications h/w<O.S. 'J3 (0,0) is unity, and this affords an order-of
magnitude estimate unless y is greater than unity-which usually is 
not the case. 

The functional form taken was 

{
(7r/211) cos[7r(X-xo)/11], \x-xo\ <11/2 

G(x)= (3.21) 
0, \x-xo\ ?-11/2 

and a 7094 FORTRAN Program was developed to evaluate 
the quantities Re and Im.10 

In most applications k:::-<1/w and 1/h; and in this limit 
the formulas for Re and Im can be considerably simpli
fied. Simple neglect of the k2 terms in Eq. (3.20) would be 
valid, however, only in the nonrelativistic limit because the 
dominant k-independent term in Re varies as 1/-y2. In 
order to obtain formulas valid at all energies in the small 
k limit, we retain the k2 correction to the 1/-y2 term in Re, 
but neglect k2 in all other occurrences. Thus W""'7J, and Eq. 

, 10 IBM 7094 FORTRAN program MESS, Computer Center, Lawrence 
Radiation Laboratory, University of California, Berkeley, 1963 
(unpublished). 
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(3.20) yields 

Im= (c(32/w) L: gh12 csch27Jh/2. (3.22b) 
s 

Note that Eq. (3.22a) is not a valid expansion of Eq. (3.20) 
through terms in k2• 

For the beam configuration of Eq. (3.21), with xo=w/2, 
and in the limit of n<<R/w and. R/h, Re and Im depend 
upon the geometrical parameters in a simple way. Thus we 
may define functions 5'; by 

~h), (3.23a) 

(3.23b) 

There is no r dependence in the 5'; functions, graphs of 
which are presented in Figs. 3, 4, and 5. In the figure 
captions we summarize some of the properties of the 5'; 
functions and suggest various approximations that can be 
employed to obtain convenient analytic formulas for Re 
and Im, and hence for all of the results of this paper. 
Numerical comparisons of Eq. (3.23) and Eq. (3.20) are 
presented for four very different examples in Table I, where 
the agreement is seen to be excellent. 

From the definition of gs [Eqs. (2.1a), (2.6), and (2.7)], 
it follows that 

(3.24) 

which for the distribution of Eq. (3.21) yields 

(3.25) 

Combining Eqs. (3.19), (3.23), and (3.25), we have 

(3.26a) 

(3.26b) 

IV. ANALYSIS OF THE DISPERSION RELATION 

In order to illustrate the characteristics of the instability, 
we first consider a beam with no spread in canonical angular 
momentum and take j(W) = o (W). We further neglect the 
dependence of v. and n on a. The integral I defined by 

4-22 
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Eq. (3.15) becomes simply 

I=- 2/[(w-nwo)L v,2w0
2], (4.1) 

[since fh'(a)a2da= -2], and from Eq. (3.18) we have 

(w-nwo)2 = v,2w0L 2v,wo(U+ V +iV). (4.2) 

This is a cubic equation in win view of the factor 1/w in V. 
However if V~ U and U<<v,wo (as is generally true), two 
roots of Eq. (4.2) are given approximately by 

w=(n±v,)wo=F(U+V+iV), (4.3) 

with w= (n±v,) wo inserted in V. The upper signs represent 
a "fast wave" that is damped. For n > v., the lower signs 
represent a "slow wave" that grows exponentially with 
an e-folding time To given by 

To= v-l. (4.4) 

For n<v., the lower signs represent a wave that has phase 
velocity in the negative fJ direction. This wave is also 
damped because Vis negative. 

We are therefore interested in values of w near (n- v,)wo. 
The integrand in Eq. (3.14) may be separated by partial 
fractions, which yields · 

[(w-tzn)L v.2Q2]-1= (2v,n)-1{ [w- (n+ v,)Q]-1 

- [w- (n- v,)Q]-1}. (4.5) 

The singularity of the first term on the right-hand side is 
of no interest, and dropping the term will have negligible 
effect on the results. Further, we replace (2v,n)-1 by 
(2v,wo)-1 in Eq. (4.5). The dispersion relation then 
becomes 

f 
h'(a)a2daj(W)dW 

2=-(U+V+iV) . 
[w- (n- v,)Q] 

(4.6) 

The only mechanism effective in stabilizing the beam 
against vertical oscillations is a spread in the quantity· S 
defined by 

S= (n-v.)n. (4.7) 

In general both v. and Q are functions of a and W. We may 
write 

n=wo+ (anjaW)W + (anjaa2)a2, 

v.= v+ (av.jaW)W + (av./ aa2)a2
• 

(4.8a) 

(4.8b) 

The quantity anjaW is equal to ko, where ko was defined 
by Eq. (3.6b). The dependence of Q on a2 is quite weak, 
so we will neglect the a2 term in Eq. (4.8a). The quantities 
U and V defined in the previous section are not independ
ent of w, but it is a good approximation to replace w by 
(n- v )wo in these expressions. Further, whenever v. occurs 
in U and V we shall replace it with v, thus neglecting the 
dependence of U and Von a and W. For purposes of the 
dispersion analysis, U and V are simply constants. 

We now introduce some short-hand notation for use in 
what follows. Let y=a2 and let Sw and Sy be given by 

Sw=aSjaW = (n- v)ko-wo(av.jaW), 

Sy=aSjay= -wo(av.jay). 

(4.9a) 

(4.9b) 

Since we are searching for a solution to Eq. (4.6) in the 
region w~ (n-v)wo, we define a quantity o by 

o=w- (n-v)wo. (4.10) 

Using this notation a~d noting that a2(dhjda)da 
=y(dh/dy)dy, we may rewrite Eq. (4.6) as 

2(U+ V -iV) f (dh/dy)ydy j(W)dW. 

[(U+ V) 2+ V2] [o-SwW -Syy] 
(4.11) 

A spread in both Wand y can be treated only with great 
difficulty, so we consider the effect of each separately. 
First let Sy be zero, and consider a spread in W. There is 
some question as to the validity of this, since the dynamics 
of the W- fJ motion were disregarded in the previous sec
tion when we neglected the W1 in the Vlasov equation. It 
seems proper, however, to consider the stabilizing effect 
of a spread in W, since the axial betatron frequency of a 
particle does depend on its canonical angular momentum. 
The choice of j(W) is fraught with pitfalls, as discussed 
in the companion paper} In particular, we must choose 
j(W) such that f'(W) ~ 0 as j(W) ~ 0 for some maxi
mum value W min order that the stability criterion be valid 
in the limit V ~ 0. However, a Gaussian distribution gives 
a fairly realistic stability criterion. We choose 

j(W)= (1/wiq)e-W 2
fq

2
, 

and Eq. (4.11) becomes 

Swq(U+ V-iV) 

[(U+ V) 2+ V2] 

(4.12) 

( 4.13) 

in which x1 = o/ q IS w 1. The minus sign on the right applies 
if Sw>O and the plus sign for Sw<O. The stability criterion 
is independent of the signs of Sw and U+ V. Equation 
(4.13) is in general useful for specific numerical examples 
and should be used in conjunction with tables of the 
function 3(x1).U We are interested in solutions for real 
X! (real o). The ratio V/(U+V) determines Xt, and the 
value of q required for stability is then found from either 
the real or imaginary parts of the equation. 

As an example, consider the equation when I Ul «V. 
The real and imaginary parts of the left-hand side are both 
approximately equal to Swq/2V. The value of x1 satisfying 
Rev(xt)=Imv(xt) is Xt=0.7. We have Rev(0.7)= 1.03, 
and thus Swq~ 2.06V is the stability criterion. The fre
quency shift o is equal to 1.44 V at the stability limit. 

11 B. D. Frie'd and S. D. Conte, The Plasma Dispersion Function 
(Academic Press Inc., New York, 1961). 

4-23 
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An example of general interest is that for which I U I» V. 
We must choose x1 such that I Rell(xl) I»Ima(xt), which 
is satisfied for large x1 where the asymptotic expansion is 
valid. This expansion is 

(4.14) 

and from the real part of Eq. (4.13) we have x1 = U / q I Sw I, 
oro= U. The frequency shift is the same as if no damping 
were present. The criterion for stability may be found by 
solving the transcendental equation 

(4.15) 

for Xt and thus the value of q necessary for stability. How
ever, we note that the dispersion relation cannot be 
satisfied if the frequency shift o lies outside the range of S 
in the beam. Any realistic j(W) will extend over a finite 
range, - W m < W < W m· Provided the condition I U I» V 
holds, a necessary criterion for stability is I Swl W m> I Ul, 
or 

I (n-v)ko-wo(avjaW) I Wm> I Ul. ( 4.16) 

We now consider stabilization by means of the non
linearities in the accelerator as characterized by Sv. We 
set Sw=O in Eq. (4.11) [or j(W)=o(W)], which then 
becomes 

2Su(U+ V -iV) (" (dh/dy)ydy' 

[(U±V)2+V2] Jo y-yt 
( 4.17) 

with Y1 = oj Su. As Su may be either positive or negative, 
care must be taken in evaluating the imaginary part of 
the integral. We note that for real y~, solutions exist only 
for Yt>O, and therefore o has the sign of Sv· For Sv>O, 
Imo>O corresponds to Imy1>0. Thus in the limit Imo~ 0 
(the stability limit), the pole in the complex y plane 
approaches the real axis from above. The opposite is 
true if Sv<O. With this in mind we write Eq. (4.17) in a 
form valid for real y1, 

2Sv(U+ V-iV) 

[(U+ V) 2+ VZ] 

1
00 

(dh/dy)ydy . (dh) 
= CP ±I7rYt - , 

0 y-Yt dy Y=Yl 

(4.18) 

where CP indicates the principal value. The plus sign is 
used if Sv>O, the minus sign if Sv<O. Equation (4.18) 
will be satisfied only for those values of y1 for which 
h'(yl) <0. In addition, U+ V may be positive or negative. 
This fact caused no concern in the previous example where 
the sign of Sw(U+ V) merely determined the sign of o. 
Here the sign of Sv(U+ V) has a more important role, as 
we shall see below. 

In order that the theory be valid in the limit I U I» V, 
the function h(y) must have the property that h' ~ 0 as 
h ~ 0 for some maximum value y= Ym· It is not necessary 

that h' be zero at any other value of y, but the condition 
yh'(y) ~ 0 as y ~ 0 is necessary. It seems reasonable that 
any realistic distribution of betatron amplitudes will have 
these properties. As a useful example we choose 

(4.19) 

a monotonically decreasing function of y. We shall examine 
this form in detail, and then merely state the results ob
tained from other distributions. Differentiating Eq.(4.19) 
with respect to y and inserting the result in Eq. (4.18) 
yields 

(4.20) 

with p'='=yl/ym- The principal-value integral is easily 
evaluated, and from the real terms in Eq. (4.18) we have 

(
1-p) 

i-p+p(1-p)ln -P- = 
SvYm(U+ V) 

6[(U+ V)2+ VZ] 

Dividing Eq. (4.21) by Eq. (4.20), we have 

1 1 +ln(1-p) 
2p(1-p) (1-p) p 

( 4.21) 

=-Su?r(U+V)/VISvl, (4.22) 

from which the appropriate value of p may be obtained. 
Consider first the conditions Sv(U+ V)>O and I Ul » V. 

The right-hand side of Eq. (4.22) is a large negative 
number and therefore p must be very nearly unity. We 
neglect the logarithm, set p(1-p) equal to 1-p in Eqs. 
(4.20) and (4.22), and obtain 

(4.23) 

a stability criterion independent of V. The frequency shift 
o, which is equal to Syy 1, is very nearly equal to SvYm· If 
Sy(U+V)<O and IUI»V, the right-hand side of Eq. 
(4.22) is a large positive number, and therefore p must be 
very small compared to unity. The first term on the left
hand side of Eq. (4.22) dominates. We set p(1-:-p)=p in 
both Eqs. ( 4.20) and ( 4.22) to again obtain I Sy I Ym ;=:: 3 U 
for the stability criterion. But notice that o=SyYmP is now 
very much less (in absolute value) than SvYm· Thus in the 
limit I Ul» V the sign of Sv(U+ V) does not affect the 
stability criterion, but it does determine the magnitude 
of the frequency shift. Numerical analysis of Eq. (4.22) 
shows that the above stability criterion is quite a good · 
approximation for I Ul >SV. 

We next consider the limit I UI«V. If Sv>O, the right
hand side of Eq. (4.22) is approximately equal to -?rand 
a value of p=0.8 results. If Sv>O, the right-hand side of 
Eq. (4.22) is ""'+1r and a value of p~0.2 results. But in 
either case, the left-hand side of Eq. (4.20) is approxi
mately equal to 0.16, and the criterion for stability becomes 

(4.24) 

4-24 
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independently of the sign of Sy. In the event that U + V «V, 
the right-hand side of Eq. (4.22) is very small and the 
equation is satisfied by p= 0.5. From Eq. (4.20) we obtain 
the criterion 

( 4.25) 

The numerical factors in Eqs. (4.23), (4.24), and (4.25) 
result from the particular form of h(y) chosen. With the 
one exception discussed below, the qualitative dependence 
of the stability criterion upon U and V is not sensitive to 
the form of h(y). The exception is a distribution h(y) that 
is constant out to some value y= Y, then falls to zero at 
y= Y + ~. where ~«Y. This distribution closely resembles 
that experimentally determined for the stacked beam in 
the MURA electron accelerator.4 Analysis of such a dis
tribution reveals that only the quantity ~ enters the 
criterion for stability. In the investigation, only the 
limit U» V was considered, and the resulting stability 
criterion is 

(4.26) 

The spread in betatron amplitudes characterized by Y is 
not instrumental in suppressing the instability. 

Although the spread in S from a distribution in W and 
from a distribution in a have been treated separately, it 
seems reasonable that the two contributions would occur 
additively in the stability criterion. One attempt was 
made to consider a distribution in both variables, and 
results of the involved analysis did indeed exhibit the 
additive property. We therefore state that, in the limit 
I UI»V, the stability criterion is to a good approximation 

~S>IUI, ( 4.27) 

where ~Sis the total spread inS, including the contribu
tions from distributions in W and a. In the limit V» I U I, 
the criterion may be written 

~S>V, (4.28) 

and in this limit our theory is completely self consistent. 
The model used in Sec. II to calculate the vertical force 
on the beam gives only an approximate expression for U. 
In contrast, the electromagnetic force characterized by 
V arises from charges and currents in the surrounding 
walls. If the transverse dimensions of the beam are much 
smaller than the dimensions of the vacuum tank, this latter 
force is independent of the model chosen. 

V. RESULTS AND EXAMPLES 

The first result of Sec. IV is that the characteristic 
growth time of the instability, for a beam with no spread 
in vz or wo, is given by Eq. (4.4), namely, 

To= 1/V, (5.1) 

where Vis defined by Eqs. (3.17b), (3.19b), and (3.20b) 
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or (3.26b), and w"'=' (n-vz)wo. For circular geometry, 

(5.2) 

where r0 =e2/m0c2 is the classical electron (or proton) 
radius. In rectangular geometry, and when n<,_<Rjw and 
R;h, we have 

To= 3vz(n- v,)'yh3/27rroNRffic'.J3(h/w,~/h), (5.3) 

which is in close agreement with Eq. (5.2) when h«w and 
~«h so that '.J3 ~ 1, and h is replaced by 2b. The most 
general expression is that given by Eqs. (3.19b) and 
(3.20b), but Eq. (5.3) with Fig. 5 should suffice for most 
applications. 

The second result of Sec. IV [Eqs. (4.27) and (4.28)] is 
that the spread in the quantity S= (n- vz)Q necessary to 
stabilize the coherent motion is approximately I Ul + V, 
where U is defined by Eqs. (3.17a), (3.19a), and (3.20a) 
or (3.26a). If the particles are not extremely relativistic, 
I U I» V, and for circular geometry the criterion for 
stapility becomes 

~S> 1Vroc[1- (ajb )2]/27rvz.B'Y3a2• (5.4) 

For rectangular geometry with n«Rjw and R/h, we have 
the criterion ~S> I U0 l + V0 , where 

(S.Sa) 

(S.Sb) 

In the nonrelativistic case, V0<<U 0 and the term '.J2 is 
negligible. For a beam that is thin vertically, T<<h and 
'.J1 can also be neglected and Eq. (5.5a) affords a con
venient analytic expression which is valid in a different 
regime (ribbon beam) than that of Eq. (5.4) (circular 
beam). The most general expression is that given by Eqs. 
(3.19); Eq. (5.5) with Figs. 3, 4, and 5 suffices for most 
considerations. · 

The application of the theory to actual accelerators is 
severly restricted by the assumption that the unperturbed 
beam is azimuthally uniform. The MURA accelerator4 is 

TABLE II. Computational resul.ts for the MURA accelerator .. The 
sensitivity to parameters can be Judged by the fact that. changmg h 
to 3 em makes Re,0.060. This is the dominant term m U0 , so a 
corresponding change would occur in the threshold criterion. 

Re Im (U0/N)X109 (V0/NX109
) 

N CRX 105 (cm-1) (em-') (sec') (sec') 

3 0.346' 0.034 1255 12 1.85 
4 0.846 0.033 208 12 0.75 
5 1.15 0.032 113 11 0.56 
6 1.38 0.031 77 11 0.46 
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a case where this assumption is acceptable, as would be 
proton-storage rings in which

1 
no rf is employed. 

A. Azimuthally Uniform Beams 

1. MURA 40 MeV Electron Accelerator 
We take as parameters of the accelerator4

•
12

: 

R=200 em 
h=5 em 
w=100 em 
xo=90 em 
A=5cm 

r=l em 
'Y= 70 

wo= 1.58X 108 sec-1 

v,=2.8 
u= 1017 sec-1, 

and employ Eq. (3.20) to obtain the results presented in 
Table II. To estimate the nature of the instability we need 
to evaluate AS, which we write in the form 

[ 
an avz J 

AS= (n- v.)---Q AE 
aE aE 

(5.6) 

AS=ASE+ASa'· 

The various coefficients are, 

anjaa2 ::::::0; 

av.jaE= -3.0X 10-3 Me V-I, a measured quantity; 

anjaE= -0.34X 106 sec-1 MeV-1, theoretically derived; 

av.jaa2= LOX 10-2 cm-2, theoretically derived from non-
linear orbit studies. 

The energy spread in the beam AE, is observed to be 2.0 
MeV; the full amplitude spread corresponds to Aa2 = 1.0 
cm2, but if the distribution is fiat except for a small region 
[as is discussed after Eq. (4.25)], then that small region 
would have a greatly reduced effective Aa2

• From the 
parameters given and from Table II we derive the results 
in Table III. The observed instability would be damped 
for all n values if Aa2 :::::: 1.0 cm2, but for the smaller value 
of Aa2 the observed threshold for n= 4 and N = 2X 1012 can 
be explained by the theory. The reduced value of ASE at 

n 

3 
4 
5 
6 

TABLE III. Comparison between AS and I U I + V 
for the MURA accelerator. 

Aa2 =1 cm2 Aa2 =0.01 cm2 N=2X1012 

0.81 
0.13 

-0.54 
-1.22 

(IUI+V) 
AS.2Xl06 AS.'Xl0-6 Xl0-6 

(sec-1) (sec-1) (sec-1) 

-1.58 -0.016 0.028 
0.025 
0.024 
0.023 

'TO 

(msec) 

0.27 
0.67 
0.90 
1.1 

12 D. A. Swenson, "On the Threshold for the Coherent Vertical 
Instability," MURA TN-421, 2 July, 1963 (unpublished). 
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n=4 comes from a sensitive cancella;tion-an observa
tion first made by Swenson.l2 If, for example, avz/ aE 
=- 2.6X 1Q-3 MeV-I, then the threshold would agree 
exactly with observation. The observation4 of instability 
only for n> 2 is in good agreement with the general 
theory, and ro agrees semiquantitatively with the observed 
growth rates. 

2. Proton-Storage Rings 

The instabilities one might expect in a storage ring have 
been studied by Hereward as part of the design study of 
the CERN intersecting storage rings. We recommend his 
paper13 for a detailed application of the theory. Here we 
shall simply give an example having parameters that are 
typical of relativistic proton-storage rings. We take 

R=130m 

h=7 em 

w=15 em 

xo=7.5 em 

A=Scm 

r=1 em 

)'=25 

wo= 2.3X 106 sec-1 

v.=8.75 

u= 1016 sec-1 (stainless steel) 

CR= 0.87X 1G-5, 

from which, for n= 17, we obtain by means of Eq. (3.23) 
and Figs. 3, 4, and 5 the values Re=0.0016 cm-1 and 
Im= 120 cm-1• The growth time for N = 2X 1014 photons
which is the CERN design goal-is 3.6 msec, so the in
stability must be damped if the storage rings are to 
operate successfully. Hereward considers the various con
tributions to AS that either occur in the ring design or 
can be explicitly built into the design. One possibility for 
stabilization is through nonlinearities, i.e., amplitude de
pendence of v •. From the above numbers (N = 2X 1014

) we 
deduce that U0 = 1050 sec-1 and V0 = 290 sec-1• To stabilize 
this with nonlinearities we would need 

or a spread in tune within the beam of 

This is a relatively modest value, and presumably could 
be designed into the storage rings. Of course, all values of 
n> vz must be considered to obtain the most stringent 
requirement on Av. 

B. Azimuthally Bunched Beams 

Clearly the theory must be extended before it can be 
rigorously applied to accelerators with longitudinally 
bunched beams. On the other hand, the theory of this 

13 H. Hereward, "Dissipative Transverse Instabilities in the Storage 
Rings," CERN AR/Int. SG 64-8, 16 April, 1964 (unpublish~<;l). 
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report can be used to gain insight into the expected result 
of such an analysis. We proceed in this ad hoc manner, 
modifying the theory in three elementary regards: 

(i) The local charge density in the bunch is employed 
in all formulas so that if L is the length of a bunch and 
there are h bunches, then whenever (N j21rR) appears it is 
to be replaced by N / Lh. This changes formulas by the 
ratio Lh/21fR, which is simply the bunching factor B of 
Ref. 8. 

(ii) If the beam is under the influence of rf, then 
particles will sweep through a range of energies during a 
synchrotron oscillation. If the growth time of the insta
bility is less than a synchrotron period, then the analysis 
of this paper should apply, but if the instability growth 
time is long compared to the synchrotron period, then the 
evaluation of t:.S must be modified. In particular, the term 
t:.SE will average to zero if anjaE and av.jaE are inde
pendent of E (as they are, to first approximation). Thus 
the effective stabilizing mechanisms are greatly restricted, 
namely to intrinsic nonlinearities !:.Sa•, external octupole 
fields (not sextapoles), and nonlinear terms in the de
pendence of fJ upon E. 

(iii) Clearly n is no longer a good mode number in the 
case of a bunched beam and we expect different n values 
to be coupled. 

Phenomena for bunched beams, that are evidently the 
analog of the instability treated in this report have been 
observed in the Stanford electron rings, 5 the Cosmotron, 6 

the Cornell electron synchotron,14 the Argonne zero-gradi
ent synchrotron/5 and (possibly) in the Bevatron.I6 De
tailed analysis for some of these accelerators either appears 
in the literature or will be published in the future. We 
restrict ourselves here to one example, namely a crude 
evaluation for the Cosmotron, where the phenomenon has 
been studied in most detail and in fact has been suppressed 
by a feedback technique. 6 Stabilization by means of an 
external octupole has been extremely effective both at 
Cornell where it allowed a hundred-fold increase in in
tensity/4 and at Stanford where it allowed an eighty-fold 
increase in intensity.U Both machines are now limited by 
injection capabilities. 

14 D. F. Edwards and R. R. Wilson, Department of Physics, 
Cornell University (private communication, 1964). 

15 F. E. Mills, MURA, Stoughton, Wisconsin (private communica
tion, 1963). 

15 T. Elioff, Lawrence Radiation Laboratory (private communica
tion, 1963). 

17 B. Gittleman, Department of Physics, Stanford University, 
(private communication, 1963). 

As parameters for the phenomenon observed at the 
Cosmotron we take 

R=950 em {3=0.5 

w=65 em v,=0.875 

h=16cm fo= 1.5X 106 sec-1 

r=2 em CR""' 1X 10-5 

!:.= 10.6 em B=0.25, 

where some parameters-such as CR-are only rough esti
mates. Employing the formulas for circular geometry 
with n= 1 and taking a= 1 em and b= 8 em, we find that 
Nro=l.2Xl09 sec, and !:.S/.N=4.1X1Q-6 sec-1• The ob
servations are that N = 5 X 1011 protons is close to thresh
old, with a growth time of the order of 10 msec. The value 
of ro at this intensity is 2.4 msec-in remarkably good 
agreement with the observations. The threshold is ex
perimentally observed to be a strong function of operating 
conditions, being lowest under those conditions where 
av./ aE is not zero but where a2v./ aE2 is small. 6 Under 
these conditions, if we ascribe the threshold to a avj aa2 

term, then the threshold corresponds to a tune spread 
across the beam !:.v= a2(av.jaa2) ""'0.22. This is comparable 
with the amount needed to shift vz to the integral resonance 
at v.= 1.0, and might well be representative of the beam 
quality in the accelerator. Finally, we note that the mode 
mixing expected for bunched beams has been observed. 6 

It is possible to excite the instability by an applied rf with 
frequency w= (l+v.)wo. This is in marked contrast with 
the experience of MURA,4 where the beam is azimuthally 
uniform and only the (n- v.)wo components, for n> v., 
are unstable. 
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ON INTENSITY LIMITATIONS IMPOSED BY TRANSVERSE SPACE-CHARGE EFFECTS 

I. Introduction 

IN CIRCULAR PARTICLE ACCELERATORS 

L. J. Las lett 
Lawrence Radiation Laboratory 

The influence of space-charge forces on the frequency of betatron 

oscillations has been recognized for many years as one mechanism which will 

impose a limit on the number of particles that can be accommodated within a 

circular accelerator. The implications of the space-charge forces which 

1-3 act on an individual particle have been discussed in several early papers 

4 and in a recent report by Teng. Attention has also been directed by a 

number of workers, in particular by members of the Midwestern Universities 

Research Association staff, to the importance of image forces in this 

5 phenomenon. 

The intensity limit which arises because of the transverse space-charge 

effect has provided a powerful argument for the use of high-energy injection, 

since, because of the almost complete cancellation of the electric and 

magnetic forces when the effect of image fields may be neglected, the number 

1. D.W. Kerst, Phys. Rev. 60, 47 (1941). 

2. J.P. Blewett, Phys. Rev. 69, 87 (1946). 

3. D.L. Judd, "A Study of the Injection Process in Betatrons and Synchro
trons", California Institute of Technology thesis (Pasadena, 1950). 

4. L.C. Teng, "Transverse Space-Charge Effects", Argonne National Laboratory 
Report ANLAD-59 (Argonne, Illinois; February 1, 1963). The papers 
presented on August 26 by Drs. Lloyd Smith and P. Lapostolle at the 
1963 International Accelerator Conference at Dubna are of interest for 
obtaining self-consistent solutions to the transverse space-charge 
behavior of a particle beam. 

5. See, for example, J. van Bladel, "Image Forces in the Third MURA Model", 
Midwestern Universities Research Association Report MURA-466 
(Madison, Wisconsin; June 12, 1959). 
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of particles which can be accepted is proportional to s~ 3 . As we shall 

see, however, image forces can distort this energy dependence when the 

ratio of 'the aperture to the transverse beam dimensions becomes comparable 

to or less than Y, and the limit to the number of particles will become 

proportional to Y at high energies. In seeking the attainment of high 

intensity by means of high-energy injection, therefore, one must employ a 

sufficiently large aperture to insure that image effects are suppressed or 

inject at an energy considerably higher than would be required if image 

effects were negligible. In practice, a careful optimization of the design 

would be appropriate in order to achieve the best balance between aperture 

and injection eriergy for achievement of the desired intensity. 

In addition to the space-charge forces which act on an individual par

ticle in the beam, a second phenomenon, involving the transverse movement 

of the beam as a whole, may be of importance. This latter effect, which 

of course arises in its entirety from image forces, could lead to an insta-

bility for coherent transverse motion of an intense beam. Because, as will 

be indicated in greater detail below, the forces which could lead to single

particle or to coherent instability are not identical, it may prove to be 

quite complicated to provide compensating fields which will suppress both 

of these phenomena. 

In the sections which follow we shall give a general discussion of the 

transverse space-charge phenomena, as they may affect axial stability in a 

circular accelerator; present some field coefficients that represent the 

image effects in certain particular geometrical configurations that ace 

analyzed in the Appendices; and finally give some illustrative numerical 

examples. The influence of space-charge neutralization is ignored in the 

present report, in the supposition that the time required for complete 
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neutralization of the beam normally is long compared to the duration of the 

injection process. The work reported here has benefited from discussions 

which the writer has enjoyed with staff of the Brookhaven National Laboratory, 

the Lawrence Radiation Laboratory, the Midwestern Universities Research 

Association, and the Stanford Linear Accelerator Center, 

II. Transverse Space-Charge Effects -- Axial Stability Limit 

A. Single-Particle Stability 

1. The Assumed Fields 

The electric and magnetic fields which arise from the collective action 

of a uniform isolated beam of elliptical cross section have been evaluated 

4 
by Teng. In Gaussian units, the field strengths at a distance y above 

the center of a beam with semi-major (radial) and semi-minor (axial) axes 

denoted respectively by a and b are 

--> 
E 

unbunched 

--> 

= 4A b(a + b) ! 

H = -4Ae ... 
unbunched b(a + b) 1 

(la) 

(y < b) (lb) 

for the transverse distribution of density assumed by Teng, where the linear 

charge density (A) is related to the number of particles in the beam (N) and 

to the orbit radius (R) by 

Ne 
A = 2TTR • (2) 

The fields 'represented by Equations (la) and (lb) will be modified by 

the presence of nearby conducting or ferromagnetic material through the 
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supplementary effect of so-called image fields. In addition, for a given 

total number of particles, the peak fields, experienced by some of the par-

ticles in the beam, will be enhanced - and the maximum attainable intensity 

correspondingly reduced - if the beam is bunched azimuthally by a'ction of 

the rf acceleration system or if significant fine structure is otherwise 

present in the density distribution. 

The beam distribution accordingly will be characterized by a 

"bunching factor", B (B ::;; 1) representing the ratio of the average to the 

maximum linear charge or particle density. The relevant fields for an 

isolated beam accordingly will be taken as 

.... .... 
E = Eunbunched X (l/B) (3a) 

and 
.... .... 
H = Hunbunched X (l/B) ' (3b) 

of which 
.... .... 
Hdc = Hunbunched (3b I) 

.... .... 
Hac = Hunbunched X (l/B - l) • (3b") 

To each of these fields [ (3a), (3b 1 ), and (3b")] must be appended appro-

priate correction factors to account for the supplemental image fields • 

.... 
The electrostatic field, E, will be modified by the presence of a 

vacuum chamber with conducting walls through the addition of terms which 

insure that the chamber surface (most simply taken as formed by parallel 

conducting planes, a distance 2h apart) be an equipotential. Likewise, 

.... 
the de component of the magnetic field, Hdc' will be modified so as to 

insure that, if possible, this field is directed perpendicular to the sur-

faces of ferromagnetic magnet poles (most. simply taken as formed by parallel 

pole surfaces, a distance 2g apart). The ac magnetic fields of the beam 
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will be influenced by skin-effect currents induced in the conducting walls 

of the vacuum chamber, so as to result in a net ac field which is tangential 

to this boundary, and the correction factor required in this case may be 

expected to be identical to that applicable to the electrostatic field. For 

a beam of reasonably small transverse dimensions, these various correction 

fields may be considered as evaluated adequately without regard for the 

cross-sectional size of the beam, and, for small displacements of the test 

particle, will give rise to forces proportional to the displacement y. 

The fields to be employed in analysis of single-particle stability 

accordingly will be ~ritten 

and 

J. --+ 4A [ E=- 1+€ B 1 
b(a + b) J 

h2 b(a + b) J = 

= ~ 1 Ne [ 1 + € b(a + b)J 
TT B R 1 h2 

[ b(a + b)J -4A~ 1 - € 2 2 
g 

• 
b(a + b) J ' 

_ __,_ __ t = 
b(a + b) 

~ ........ ---,... t 
b(a + b) 

-+H ,, g 1 [ b (a + b)] A = -""'~(-B- 1) 1 + e 1. = ac 1 h2 b(a + b) 

= -

(4a) 

(4b') 

( 4b") 

where s
1 

and e2 are numerical factors for which expressions applicable to 

specific geometrical configurations of practical interest are given below 

(sub-section 3) and where the lengths h and g respectively serve to charac-

terize conveniently the semi-apertures of the vacuum chamber and magnet gap. 
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Because the effect of bunching has been explicitly taken into account in 

writing Equations (4a-b"), the quantity A. should be taken here as repre-

senting the average linear charge density, as given by Eq. (2). It may 

be remarked that in some configurations of possible practical interest the 

de component of the beam also gives rise to an axial magnetic field corn-

ponent which effectively is independent of position; such a field component 

is not considered to affect directly the frequency of axial betatron oscil-

lations, however, and is not included in Eq. (4b') or in the equation of 

motion which follows. 

2. The Equation of Motion 

The linear equation for the steady-state axial betatron oscillation of 

a test particle in the presence of a beam of N identical particles may be 

written in the smooth approximation as 

(5) 

where n is the effective field index of the applied magnetic field and 

in which 

2 1 Nr R 
[ 1 + e1 

b(a + b)] KE = ---
TT B ~2.y b(a + b) h2 

(6a) 

2 Nr R 
b) [ 1 - e2 

b(a + b)] 
~ =-

TT y b(a + 2 
g 

(6b) 

2 1 
Nr R 

b) [ 1 + el 
b(a + b)] ' Ks (- - 1) p 

TT B y b(a + h2 
(6c) 

by use of Equations (4a), (4b'), and (4b"). The coefficients ~' ~' and 
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K
8 

represent respectively the electrostatic effect of the bunched beam, 

the effect of the magnetostatic de component of the beam, and the magnetic 

effect of the ac component of the beam as modified by the skin-effect 

currents induced in the chamber surface. The quantity r denotes the 
p 

2 
"classical radius" (~) for the particle, and may be taken as 1. 536 X 10 -l

6 

Moe 
em for a proton (rest mass equivalent to 938 Mev). 

The shift of betatron frequency which results from the space-charge 

terms included in Eq. (5) is given by 

and leads to the space-charge limit 

N 

= 

B ::! b(a + b) 
2 r R 

p 

h2 TT 
B-

2 r R 

1 + b(a + 
h2 

\) 
2 

Yo 

p 
€1 

1 
(B + S~2) + e2B 

TT h2 
-
2 r R 

- \) 
2 

y 

h2 h2 1 -+ 2 b(a + b) S2y2 g 

\) 2 - 2 
\) 

Yo y 

J h2 p 
€1 [1 + 

1 1 
2 + €2 2 + 2 

B(Y - 1) g B(Y - 1) 

(7) 

y (8b) 

h2 y ' 

b(a + b) 

in which \i refers to the frequency (oscillations per revolution) of the 
y 

(8c) 

nearest axial betatron oscillation resonance, below the low-intensity value, 

to which the oscillation may be shifted. The form of the Eq. (8a) is most 
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suitable for indicating the correction factor, 

F (9) 

that must be applied to the usual formula for the space-charge limit of 

an isolated beam, but the form of Eq. (Be) may be more convenient for com

putation (when h
2 

/ab < BV' 2) and indicates more clearly the following charac-

teristics of the transverse space-charge limit at high energy: 

(i) The space-charge limited intensity becomes substantially propor-

tional toY; 

(ii) The aperture dimensions become more important, and the beam dimen-

sions correspondingly less so, in determining the space-charge limit; and 

(iii) The bunching factor (B) becomes relatively less important [due to 

the almost complete elimination of 1/B from the sum of the coefficients KE 

and K
8

, given respectively by Equations (6a) and (6c), when ~ 2 
is near 

unity and by virtue of the identity of the image-force coefficients (e
1

) 

that appear in these equations]. 

3. The Image-Force Coefficients 

The image-force coefficients, e
1 

and e2 , which have been introduced 

in Equations (6a-c), can be evaluated directly by the use of image charges 

or currents in certain simple two-dimensional configurations, and in other 

two-dimensional cases use may be made of conformal transformations to obtain 

an equivalent problem for which the solution by image techniques or other 

means is readily apparent. 
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a. The electrostatic image coefficient, e
1 

(1) Plane-parallel conducting surfaces 

The simplest configuration for the eLectrostatic problem - and hence 

also for the equivalent problem concerning the ac magnetic field, in which 

the boundary conditions are satisfied by virtue of skin-effect currents 

induced in the conducting surfaces - is evidently that of two infinite 

parallel conducting planes, at elevations h above and below a line charge 

~ 1 . The supplemental electric field at a point situated a distance y 

directly above the line charge can be obtained immediately by summing the 

effects produced by an infinite series of images, of alternating sign, or 

by use of a simple conformal transformation (Appendix B). The additional 

electric field at this point is vertically directed, of amount 

E. 
~mage 

(10) 

and hence is in the same direction as the field 2~ 1 /y which arises directly 

from a localized line charge. The coefficient e
1

, which was introduced in 

Eq. (4a), is thus seen to be 

= (11) 

for the boundary surfaces considered here. 

(2) Elliptical boundary 

6 It has been pointed out by Dr. John P. Blewett that use of a conduc-

ting vacuum chamber with a circular cross section would provide the advantage 

6. J.P. Blewett, private conversation (July, 1963). 
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of suppressing the coefficient e
1 

which otherwise is of major importance 

in determining the intensity limit which results from the requirement of 

single-particle stability. Since use of a chamber with a strictly cir-

cular cross section may prove inconvenient because of other practical design 

considerations, it is of interest to obtain the image-force coefficient for 

a chamber of elliptical cross section. Unfortunately, as will be seen, 

any substantial departure of the cross section from circularity results in 

2 the coefficient e1 assuming a value that is comparable to the value TI /48 

for the plane-parallel case. As will be noted in Section B, moreover, the 

image forces that arise from a coherent transverse displacement of the beam 

as a whole clearly will not vanish for a chamber of circular cross section, 

The rather lengthy analysis of the image effects for an elliptical 

boundary, of semi-axes w (radially) and h (axially), has been outlined 

in Appendix D and leads to results expressible in terms of the complete 

elliptic integral K(k) of the first kind and modulus k. 

to be selected so that 

K' 
K = 2 tanh-l h 

TI w 

The modulus k is 

(12) 

where K' denotes K(k') = K(·A - k
2
). In terms of this notation, the supple-

mental electric field at a distance y above a line charge at the center of 

the ellipse is 

E. = 
~mage 

~1 
(13) 

and the image-force coefficient accordingly is 

1 (14) 
6[(w/h)

2 
- 1] 
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This result includes, as limiting cases, the results for the case of 

parallel planes and for a circular cylinder; approximate values of the 

coeffficient e
1 

for certain special cases of the axis ratio are listed in 

Table I below (see also Fig. 1). 

TABLE I 

Values of the electrostatic image coefficient e
1 

for a cylinder of elliptical cross section 

w/h 

1 0 0 

5/4 0.838 0.090 

4/3 0.904 0.107 

3/2 0.9655 0.134 

2/1 0.998 0.172 

1 
n2 . 

0.20562 00 = 48 

b. The magnetostatic image coefficien~ e2 

(1) Plane-parallel magnet poles 

For extended plane ferromagnetic poles, the magnetostatic image co-

efficient e2 can be obtained immediately by summing the effects produced 

by an infinite set of current images of identical sign, or by use of a 

simple conformal transformation (Appendix C). The additional magnetic 

field at a point y directly above a line current 1
1 

is parallel to the 

pole surface and is oppositely directed to the field 2I
1

/y (e.m.u.) which 

arises from the line current alone. The strength of the supplemental 
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FIG. l. 
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field is 

H. = 1mage 
(15) 

The image-force coefficient e2, which was first introduced in Eq. (4b'), 

accordingly becomes 

(16) 

for the boundary surfaces considered here. 

(2) Wedge-shaped magnet gap 

Since in practice the magnet poles are commonly designed to provide a 

magnetic field whose strength in the median plane is characterized by a 

substantial gradient (field index, n R dH) . . f . . . H dr , 1t l.S o 1nterest to 1nvest1-

gate whether the value of e2 is markedly modified in such circumstances. 

The detailed equations for the magnetic field generated by the beam may be 

different in form for various geometrical arrangements of the ferromagnetic 

material, and, in special cases, application of the usual boundary condition 

Ht = 0 may be incompatible with the necessary condition f H·d1 = 4TT L:I. 

In particular, it is found that, in addition to the expected radial campo-

nent of field above and below the beam, an axial field component which 

effectively is independent of position may arise if the presence of the 

magnet yoke or some other feature of the geometrical configuration produces 

* a lack of symmetry with respect to a vertical plane through the beam. 

* The presence of a substantially constant magnetic field component, typically 
TTl 

given approximately by ---1 j, may be noted in the work of van Bladel 
g 

(££. cit., 5 Sect. III), wherein an image-field component of nj gauss is 
shown in the neighborhood of a 50-amp beam (Il = 5 e.m.u.) when g = 5 em. 
In this same report van Bladel investigates, evidently successfully, means 
of compensating the total image field in the median plane. 
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A rather simple magnet configuration for the production of a non-

uniform field is that represented by a wedge-shaped gap, of half-angle a, 

with the beam current situated a distance X from the vertex of the wedge, 

The distance X may be identified with the reciprocal of the relative 

field gradient, 

H X = - _;;.;:.__ 
dh/dr 

R 
n 

(17a) 

and a may be related to the half-gap at the beam location by the equation 

-1 ("7 
a = tan ..c 

X 
= ta -l _g_ 

n R/n (17b) 

By an analysis outlined in Appendix E, one finds an image field given 

by 

..... 
1

1 { n n ..::L "' n [ n x J } 
Hi mage = X Cc; , - 1) Cc; - 5) 6X i + (c; - 1) 1 + Cc; - 5) 6X 1' (18a) 

* (18b) 

Since the image coefficient e2 serves to characterize the horizontal com-

ponent of the image field at points directly above the beam, we obtain 

n n ("72 
e = (- - 1)(- - 5) ~ 

2 a a 24X2 
(19a) 

(19b) 

Typically g << R/n (a << 1) and the coefficient e2 then becomes sub

stantially n
2

/24, in agreement with the result obtained in sub-section (1) 

for plane-parallel magnet poles. 

* . nr 1 ,. 
The presence of a constant f~eld component approximately given by -- J 

for g << R/n, of which mention was made in the footnote on g 
p. 337, is evident from Eq. (18b). 
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(3) Other pole configurations 

Other idealized two-dimensional pole configurations also are suscep-

tible to analysis. The results would be of interest in permitting a 

comparison to be made between the image fields which arise in such cases 

and those present in the wedge-shaped gap that was considered in the pre-

ceding sub-section. In order that the gradient will be substantially 

constant over a limited region in the neighborhood of the beam, it might 

be considered desirable to locate the beam at a point of inflection for the 

median-plane magnetic field that is produced by the application of a magneto-

motive force between the poles. Poles formed by two parallel circular 

cylinders of ferromagnetic material afford the advantage of permitting one 

to select independently both the semi-aperture (g) and'the relative gradient 

(n/R), while locating the beam at a point of inflection for the median-plane 

field. 
7 

Such a pole system suffers, however, from the omission of a yoke 

structure to connect the two cylinders, as would be desirable in any prac-

tical application of this arrangement, and detailed analysis of the image 

fields for this case appears to require, moreover, a formidable amount of 

algebraic work. 

Another pole configuration of possible interest for checking the 

results found for the wedge-shaped gap is that in which the pole surfaces 

are described by the hyperbolic cylinders 
2 

y - X 
2 = s 2 

(asymptotes at ± 45°) 

and by the vertical plane x = 0. For determining the image fields for the 

general case in which a line current is located at the point (X,y), it would 

be convenient to average the results for the following two cases: (i) line 

7. The magnetic field produced by a specified magnetomotance applied bet
ween the cylinders may be evaluated in a manner similar to that appro
priate for an analogous electrostatic problem discussed by Smythe: 
W.R. Smythe, "Static and Dynamic Electricity" (McGraw-Hill Book Company, 
Inc., New York, 1950) 2nd Ed., Sect. 4.17, pp. 80-82. 
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currents 1
1 

at (X,y) and at (X,-y); and (ii) a line current 1
1 

at (X,y) 

and -1 1 at (X,-y). Analysis of this problem again involves considerable 

algebraic effort, but for the simplified case in which the beam and field 

point are located in the median plane, at X+ 5
1 

and X+ 5 respectively, 

the image field can be shown to be 

(20a) 

..... 
for o and o

1 
small. Application of the condition 7xH = 0 permits gener-

alization of Eq. (20a) to include the case in which the field point is 

located a small distance, y, from the x-axis: 

yt+ ot] 
X , (20b) 

0. In limiting cases, Eq. (20b) may be simplified to 

..... I yt + ( 5 + 0 1) j] 
H. . 1 [ ~ 
~mage xJ 2X ' 

for s >> X (20b') 

I _ yt + (5 + S5 1)j] ..... i [Jj H. . 
~mage 2X · for s << X • (20b") 

The results expressed by Equations (20b') and (20b") are consistent with 

those given for a wedge-shaped gap by Eq. (E.4a) of Appendix E, if in these 

respective cases we set the half-angle a equal to TI/2 or TI/4, and if we 

identify x with 5, x
1 

with o
1

, and set y
1 

equal to zero. The image-force 
2 

coefficient, e2, accordingly assumes the value - ~ in these limiting 

cases, as follows from Eq. (19a) with the substitution of TI/2 or n/4 for a; 

in cases of practical importance, however, a would be taken as small 

(g << R/n) and interest would be directed to the dominant term of Eq. (19b). 

4-45 



- 341 -

B. Stability with Respect to a Collective Transverse Displacement 

1. The Assumed Fields 

In examining the stability of the beam with respect to a transverse 

displacement of the beam as a whole, it again is appropriate to consider 

separately the electrostatic field, the de component of the magnetic field, 

and the ac magnetic field which occur in the presence of conducting or 

ferromagnetic boundaries. We now require these components of the image 

fields at a point x,y which coincides with the location of a displaced beam 

We shall characterize these image fields by coefficients, 

sl and S2, which, for consistency with the notation of Section A, are de

fined as follows in terms of the axial component of electric field from a 

line charge Al and the radial component of magnetic field from a de current 

E 
y 

H 
X 

2. The Equation of Motion 

(2la) 

(2lb) 

In a manner analogous to the procedure followed in Section A2, especially 

Equations (5) and (6a-c), we write the differential equation for axial 

betatron oscillation of the beam centroid as 

where 

K' 
E 

+ (n + K' + 
E KM + K5) y = 0 

N r R 
~ 1 p sl 
TT B S~ h2 
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2 
N r R 

KM - - p 
s2 n 2 y g 

(23b) 

2 cl 
N r R 

K' =- - 1) p sl s n B y h2 
. (23c) 

By again identifying K' + K' + K' one obtains the space-E -}1 S' 

charge limit imposed by the requirement of axial stability for coherent 

transverse motion: 

n h
2 

N =---2 r R 
p 

'V 2 'V 2 
yo y * (24) y 

The result expressed by Eq. (24) is clearly of the same form as Eq. (8c) 

1 • h 2 
----~--- is omitted from the denominator; 
B(Y2 _ l) b(a + b) 

when the self-field term 

as will be pointed out in the following sub-section, the numerical coeffi-

cients s
1 

and s2 will differ, however, from the.coefficients e1 and e2 that 

are employed in Eq. (8c). Nevertheless, to the extent that the coefficients 

s
1

, s2 and e
1

, e
2 

are of a similar order of magnitude, the coherent and in

coherent space-charge limits that are respectively expressed by Equations 

(24) and (8c) will be comparable when Y is large (BY 2 >> h 2/ab). 

* If the beam location (y
1

) ·is flopping on successive revolutions rapidly 
(in comparison to the leakage time for ac fields of such frequencies 
through the metallic chamber wall), the y

1
-term in the so-called de 

component of the magnetic field will be alternating also and would 
be subject to the boundary conditions imposed b~ the ~resence of the 
vacuum chamber. In this case we may replace g by h and S2 by -s1 
in Eq. (24), with the result 

n h
2 

B 2 
N =2 rp R s

1 
(vy

0 

v 2) y (Y 2 - 1) 
y 

n h
2 

B ('V 2 _ \1 2) s2y3 
= 2 rp R ~ y 

0 
y 

(24 1
) 

(2411
) 

and note a consequent pronounced enhancement of the space-charge limit 
for stability of collective transverse motion. We are indebted to 
Dr. K.R. Symon for helpful discussion of this point. 
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3. The Image-Force Coefficients 

a. The electrostatic image coefficient, s1 

(l) Plane-parallel conducting surfaces 

The supplemental image field for a line charge Al situated in a gap 

of height 2h between infinite parallel conducting planes can be derived 

directly by summing the contributions from an infinite series of images or 

by use of a simple conformal transformation. From the results of work 

described in Appendix B, the supplemental electric field is 

E 
y 

(25a) 

for a line charge (A
1

) displaced a distance y
1 

from the median plane _and 

the field point located directly above the charge at a distance y from the 

median plane. To obtain the image field at the center of the displaced 

beam, we set y1 = y and find 

rr 2A 
E 1 = --y 

y 4 h
2 

( 25b I) 

so that [see Eq. (2la)] 

sl 
TT2 

16 (25b") 

It is noted that the value of s1 given by Eq. (25b") is three times the value 

of e1 given by Eq. (11) for the identical boundary configuration. 

(2) Elliptical boundary 

Similarly, with the notation introduced in sub-section A3a(2), the 

results of Appendix D lead to the following expression for the electric 

image field arising from small vertical displacements from the center of an 

elliptical conducting cylinder: 

E 
y 

= 
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Again setting y
1 

= y, this becomes 

;.. 
[4K

2 J E 
1 

= --1 y 
y 2 h2 n2 w 

(26b') 

and 

sl 
1 [K

2 
lj = 

- 1 n2 - 4 (w/h)
2 (26b") 

The result (26b') includes as a limiting case the image field which 

arises from the displacement of a line charge within a circular cylinder 
2A.

1 
(E. 

:::: 2A. 1 
sl 

1 
h2/y h2 

y, = 2)' and also that for infinite parallel 
~mage - y 

n2 
conducting planes (S 1 = 16, as obtained previously). Approximate values 

of the coefficient sl for certain special cases of the axis ratio are listed 

in Table II below: 

TABLE II 

Values of the electrostatic image coefficient s
1 

for a cylinder of elliptical cross section 

w/h k2 sl 

1 0 0.5 

5/4 0.838 0.553 

4/3 0.904 0.559 

3/2 o. 9655 0.575 

2/1 0.998 0.599 
TT2 

:!:: 0.61685 00 1 16 

A remarkably small variation of s
1 

is evident from the values given in 

Table II and from the graph shown in Fig. 1. 
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b. The magnetostatic image coefficient, s2 

(1) Plane-parallel magnet poles 

The supplemental image field for a current 1
1 

situated in a gap of 

height 2g between infinite plane-parallel ferromagnetic slabs can be 

derived immediately by summing the contributions from an infinite set of 

images or by use of a simple conformal transformation. From the results 

of work described in Appendix C, the supplemental magnetic field is 

H 
X 

(27a) 

for a current (1
1

) displaced a distance y
1 

from the median plane and the 

field point located directly over this current at a height y above the 

median plane. To obtain the image field at the center of the displaced 

beam, we set y
1 

= y and find 

so that [see Eq. (2lb)] 

H 
X y ' (27b') 

(27b") 

It is noted that the value of s2 given by Eq. (27b") is three-halves the 

value of e2 given by Eq. (16) for the identical pole configuration. 

(2) Wedge-shaped magnet gap 

With the same notation as employed in sub-section A3b(2), the results 

of Appendix E lead to the following expression for the image field arising 

from small vertical displacements from the central plane of a wedge-shaped 

magnet gap: 
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2 
s).L t + [<~) 

6X a J yl h 

+ 2 12 X 1 

+ (~- 1) j + (~- 1)(~- 5) 6~ j- [<~)
2 

- 1] :i j }·(28a) 

2 2 
. Il {~ [ 1 - ~(~) + <i + ~) (~) J ~ ~ 

n g 

[ 1 1 
2
] 1 +, n 1 - -(-lL) + -(-lL) - j 

n R/n 3 R/n g 

(28b) 

where the coordinates of the current and field point are respectively 

(X+ x1, y1) and (X+ x, y) with respect to the vertex of the wedge, X is 

identified as R/n, and a= tan-l g/X = tan-l ~[Equations (17a-b)]. 

The terms of interest for determination of s2 are those which involve 

with y
1 

set equal to y, we obtain 

Il [ n 2 J H =- (-) - 4(~) + 4 y 
x 4X2 Ql 

(29a) 

2 
n I [ 4 ~ __ 1 1 - -(_&__) 

4 8
2 n R/n 

1 2 
2
] + 2(3 + 2)(~) y 

n 
(29b) 

and 

(30a) 
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• n2 [1 - ~(_g_\ 
16 n R/n' (JOb) 

The dominant term in Eq. (JOb) is seen to be in agreement with the value 

g2 = n 2 
/16 that is given by Eq. (27b") for plane-parallel poles (~ _, 0). 

III. Examples 

To illustrate the relative importance of energy and aperture in deter-

mining the transverse space-charge limit, numerical examples are presented 

in Table III for a proton synchrotron of 120 meters radius (as might be 

representative of an AGS designed for a final energy in the neighborhood 

of 30 or J5 Bev). The bunching factor, which plays an important role only 

at the lower energies, is taken somewhat arbitrarily as J/8. The frequency 

of betatron oscillations is considered to be shifted by action of the space-

charge forces from 8. 75 oscillations per revolution to the half-integral 

resonant value of 8.50. Beam dimensions such that 2 
b(a + b) = 5.25 em 

are assumed, although these dimensions influence the results strongly only 

when the energy is low or the gap relatively large. The space-charge limits 

as determined by single-particle stability were computed by use of Eq. (8c) 

and the limits for the stability of coherent axial oscillation were evaluated 

·k 
by Eq. (24). In all cases, plane-parallel magnet poles were assumed, so 

that 

* 

2 e: 2 = n /24 2 and g2 = n /16. 

Since the space-charge limits given in Table I for stability of coherent 
beam displacement have been computed by use of Eq. (24), they may be 
considered as more representative of limits imposed by proximity to an 
integral resonance, for reasons indicated in the footnote to Eq. (24). 
In addition, considerations which have been carried out by the CERN 
group in regard to a multi-hundred Gev accelerator suggest that the 
bunching factor (B) necessarily will differ from unity by a greater 
amount than is the case in the example considered here. 
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TABLE III 

Illustrative values of transverse space-charge limits, for protonsa 

B = 3/8, 
2 2 2 2 

a= 2 em, b = 1.5 em, R = 12,000 em, v - vy = (8.75) - (8.50) 
Yo 

4.3125 

[The limiting number of particles is given by the values in the Table times 1014.] 

Plane-Parallel Chamber 3:2 Chamber Aperture Circular Chamber Aperture 

h = g: 3 em 6 em 10 em 3 em 6 em 10 em 3 em 6 em 10 em 
w: 00 00 00 4.5 em 9 em 15 em 3 em 6 em 10 em 

Space-Charge Limit for Individual-Particle Stability 

€1: ---- n 2;48 = 0.20562 ----- --------- 0.134 ---------- ----------- 0 ------------
e2: ---- n2;24 = 0.41123 ----- -------- 0.41123 --------- -------- 0.41123 ---------

K.E.inj. 

50 Mev 0.00735 0.00807 0.00824 0.00764 0.00815 0.00827 0.00826 0.00832 0.00833 
200 Mev 0.0350 0.0396 0.0408 0.0365 0.0401 0.0409 0.0397 0.0410 0.0412 

1 Bev 0.313 0.429 0.465 0.333 0.437 0.469 0.378 0.455 0.476 
5 Bev 2.80 7.62 12.05 3.12 8.19 12.54 3.96 9.53 13.60 

10 Bev 5.89 20.4 43.0 6.63 22.6 46.4 8.67 28.2 54.4 

Space-Charge Limit for Stability of Coherent Beam Displacement 

s 1: 
2 

---- n /16 = 0 61685 ----- --------- 0.575 ---------- ---------- 0.5 -----------2 • 
s2: ---- n /16 = 0.61685 ----- -------- 0.61685 --------- -------- 0.61685 ---------

K.E.inj. 
50 Mev 0.0214 0.0857 0.238 0.0229 0.0917 0.255 0.0262 0.105 0.291 

200 Mev 0.0850 o. 340 0.945 0.0904 0.361 1.00 0.102 0.407 1.13 
1 Bev 0.393 l. 57 4. 3 7 0.411 l. 65 4.57 0.448 l. 79 4.98 
5 Bev 1.64 6.57 18.2 l. 70 6.80 18.9 1.82 7.28 20.2 

10 Bev 3.10 12.4 34.4 3.21 12.8 35.6 3.42 13.7 38.0 

a -16 rp = 1.536 X 10 em, for protons of rest mass equivalent to 938 Mev. 
For the injection energies cited, we take Y respectively as 1.053, 1.213, 2.066, 6.330, and 11.66. 

l.V 
.j> 
OJ 
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Several characteristic features of the space-charge phenomenon are 

apparent from the entries in Table III: 

(i) At low energy, or for large apertures, the more stringent limita

tion is imposed by the requirement of single-particle stability, since the 

direct action of the beam fields on the particle is then dominant. At 

higher energies, when the image fields are of greater significance, the 

requirement for collective stability becomes the more important, since the 

image-field coefficients are greater for this case, 

(ii) The number of particles is effectively proportional to ~ZyJ only 

at the lower energies, but this dependence is followed over a somewhat more 

extended range of energy if the aperture is large. (Note, for example, 

that the ratio of ~ZyJ for 200 Mev and 50 Mev kinetic energy is 4,96.) At 

high energies, the acceptable number of particles is substantially propor

tional to Y. 

(iii) Similarly, the size of the aperture is of major importance at 

high energies, where the number of particles may vary directly as h2• The 

shape of the vacuum-chamber aperture, however, does not appear from the 

examples considered (h = g) .to be of great importance. 
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APPENDIX A 

APPLICATION OF CONFORMAL TRANSFORMATIONS 

In two-dimensional electrostatic problems, the method of conformal 

transformations employs a potential function that is the real or imaginary 

part of an analytic function (W = U + iV) of the complex position vector 

(z = x + iy). By virtue of the Cauchy-Riemann conditions, the potential 

(U or V) satisfies the two-dimensional Laplace equation, and the magnitude 

of the electric field strength is given by 

E = ! dWI 
dz1 

(A. 1) 

If, for an isolated line charge of strength A (e.s.u. per em), we take 

W = -2::\ log z (where z denotes the position of the field point with res

* pect to the line charge), the potential function is 

Potential= U = -2::\ log lzl (A. 2a) 

" ~ r 
E = - grad U = 2::\ , and 

r 
(A. 2b I) 

I E I = 2A = I dW ,. 
r dz 

(A.2b11
) 

With steady line currents in a two-dimensional problem, the Cartesian 

-+ "' magnetic-field components and the vector potential (A, with A = Ak) simi-

larly satisfy the two-dimensional Laplace equation. Again a complex ana-

..... ~ "' 
lytic function (W) may be employed, with H =curl A k x (-grad A) and A 

expressed by U or V. For an isolated line current of strength I (e.m.u.), 

we may take W = 2 I log z, with 

.,~ 

We employ natural logarithms in this analysis. 
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A = U = - 2 I log I z) (A. Ja) .. 
/\ A ..... A k X r 

H k x (-grad U) = 2 I and (A.Jb') r 

l HI = 
2
ri = I ~~ I oersted. (A. Jb") 

The usual boundary condition to be satisfied at the surface of ferromagnetic 

material of high permeability is Ht = 0, or oAjon = 0 and the orthogonal 

function remains constant along the boundary. This requirement must be 

abandoned, however, if its application would violate the basic equation 

4n ~I, as would be the case for a current-carrying conductor 

threading a tube of ferromagnetic material. The magnetic-field lines can 

be visualized as a system orthogonal to the flow lines in a current-flow or 

heat-flow problem in which, with similar geometry, the line current becomes 

a source and the ferromagnetic material assumes .the property of very high 

resistance to the flow of current or heat. The magnetic-field lines are 

curves which then become, in this analogy, the electric or thermal equi-

potentials. 

In the case of alternating currents, the phenomenon of skin effect 

will prevent the ac magnetic field from penetrating into neighboring con-

ductors, and the magnetic field must be tangential at the surface of these 

conductors. The magnetic-field lines of a two-dimensional problem involving 

alternating currents directed exclusively in the z-direction thus constitute 

a system orthogonal to that given by the electric-field lines of the geo-

metrically similar electrostatic problem, and the magnitude of the magnetic 

field will be just I/A times the value of I ddWz I for the corresponding electro-

static case. 

In all cases, determination of the complex function W may be aided by 
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use of intermediate conformal transformations in which the strength of 

the sources remains unchanged, Electrostatic field lines which- go to 

infinity may, however, be interpreted as associated with a sink repre

sented by a negative charge, and this charge will have to be included 

whenever the point at infinity is transformed to within the finite region 

of the next complex plane; an analogous situation-in a magnetostatic 

problem wouid involve transforming a return current at infinity so that 

this current would fall in the finite region of the complex plane. 

APPENDIX B 

IMAGES IN INFINITE PARALLEL CONDUCTING PLANES 

1. Application of Conformal Transformation 

The transformation 

z' = exp n(z + ih)/2h (B.l) 

is useful for transforming the boundaries of interest to the real axis of 

the z'-plane and carries the region between the plates into the upper half 

of this new complex plane. 

z 

<X> + 

ih 

-oo 

-ih 

00 -

ih 

ih 
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With the line charge A
1 

located at z = iy
1 

and the field point at z = iy, 

the electrostatic potential may be written directly by use of a single 

iTT(yl + h)/2h 
(B.2a) 

-iTT(yl + h)/2h 

- 2A
1 

log 
sin rry/2h - sin ny

1
/2h 

1 + cos TT(y + y1)/2h 
(B.2b) 

{TT IY - Yll TT2 y 
2 

+ 4y yl + 
2 

[1 yl ]} . - 2A log 4 h + 48 1 h2 
(B.2c) 

TT I y Y1l n 2 A 
2 

- 2A
1 

log 1 2 - (- ) 2(y + 4yyl + yl ) 4 h 24 h 
(B.2d) 

The image-field, as derived from the image-dependent term in Eq. (B. 2d), then 

is 
.... 
E. 1.mage for x (B.3) 

This result is employed in the body of the present report in writing Equa-

tions (10) and (2Sa). 

2. Direct Summation of Image Fields 

The result expressed by Eq. (B.3) can be derived directly by summing 

the field contributions of an infinite series of images of alternating sign. 

The following system of images applies: 
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Original t.. 1 
-f.. 

1 
_f.. 

1 
+f..l 

+f..l 

-A 
1 

-A 
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Distance from Field Point 

y
1 

- y above 

2h - y - y above 
1 

2h + y
1 

+ y below 

4h - y1 + y below 

4h + y1 - y above 

6h- y
1 

-·y above 

6h + y1 + y below 

The upward-directed electric field due to the images alone then is: 

y - y yl + y 1 
2 + --2--=-----2 + 

(yl - y) 36h - (yl + y) 

t..l f 
~-- [(y + y) + (l/9)(y1 + y) + (l/25)(y1 + y) + ••• ] 

h2 l 1 

+ [(l/4)(yl - y) + (l/16)(yl - y) + 

... J 

Al [ •2 -2 -2 -2 -2 -2 ] = -z (yl+y)(l + 3 + 5 + •.. ) + (l/4)(yl-y)(l + 2 + 3 + ••• ) 
h 

Al [ Ti2 Tia2 = -- (y + y)-- + (yl - y)--2 
h2 1 8 

in agreement with Eq. (B.3). 
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APPENDIX C 

IMAGES IN INFINITE PLANE-PARALLEL FERROMAGNETIC POLES 

1. Application of Conformal Transformation 

The field which arises from the images of a line current (I
1

) in 

infinite plane-parallel ferromagnetic poles can be computed readily by 

aid of the transformation (B.l) that was introduced in Appendix B. The 

single image (-A 1), which was employed in the z 1 -plane for the purpose of 

the electrostatic computation, now becomes replaced by a positive line 

current (+I
1
). In addition, however, a line current -I

1
/2 at x = -ro in 

the z-plane is transformed to z• = 0. This current, together with its 

image (of like sign) in the x•-axis, constitute a current (-I
1

) whose con

t·ribution to the potential must be included. [The significance of the 

line current -I
1

/2 at x = -oo may be appreciated most clearly by visualizing 

the analogous problem of conduction current or heat flow, in which half the 

flow lines emerging from the given source I
1 

pass to the left to terminate 

on a 11 sink11 (of source strength -I/2) at x = -oo.] 

With the line current I
1 

located at z = iy
1 

and the field point at 

z = iy, and with a pole separation of 2g, the potential function becomes 

in this case: 

A U = -2 r
1 

log 

= -2 r
1 

log 

:!:: -2 I
1 

log 

:!:: -2 r
1 

log 

[exp irr(y + g)/2g - exp irr(y1 + g)/2g] I 
x [ exp irr(y + g) /2g - exp -irr(y

1 
+ g) /2g] 

1 exp irr(y + g) /2g 

[2 I sin rry/2g - sin rry1 /2giJ 

{rrl Y g- Yll [ 1 TT2 
2 2 

y + yyl + 
yl ]} 

24 2 
g 

IY - y l 2 
TT Il 2 2 (TT 1 ) + (y + yyl + yl ) g 2 
12 g 
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A 
The image field, as obtained by evaluation of k x (-grad U) for the image-

dependent terms in Eq. (C.ld), is in the x-direction and of the amount 

H. 
~mage 

for X = 

This result is employed in the body of the report in writing Equations 

(15) and (27a). 

2. Direct Summation of Image Fields 

(C. 2) 

As in the electrostatic problem for infinite plane-parallel conducting 

plates, the magnetostatic problem to which Eq. (C.2) applies also can be 

solved directly by summing the field contributions of an infinite series of 

images. The locations of the required image currents are the same as for 

the line charges considered in Sect. 2 of Appendix B, but in the present 

case the sign of each image is that of the original current (+I1) . 

= 

..... 
The horizontal magnetic field of the images (H = H t) is 

X 

1 1 + 1 + 1 1 + 
~mage 

2I [ 1 
1 2g-y -y 

1 2g+yl+y 4g-yl+y 4g+yl -y 6g-y -y 
1 6g+yl+y 

... ] (C.3a) 

yl - y yl + y [ yl + y 
= 4Il 2 2 

16g
2 2 + 2 2 

4g - (yl + y) - (y - y) 36g - (yl + y) 1 

~I~ {[(y
1 

+ y) + (l/9)(y
1 

+ y) + (l/25)(y
1 

+ y) + .•• ] 
g 

- [(l/4)(yl - y) + (l/16)(yl - y) + ... J} 
\ 

+ ... J 

_ Il r -2 -2 -2 -2 -2 -2 
- 2 L (y1 + y)(l + 3 + 5 + ..• ) - (l/4)(y1 - y)(l + 2 + 3 + 

g 

n
2

I 
1 

= ~ (2y + yl) ' 
12g~ 

in agreement with Eq. (C.2). 

4-61 

(C.3b) 

(C.3c) 

... ) J 
(C. 3d) 

(C. 3 e) 

(C.3f) 



- 357 -

APPENDIX D 

ELECTROSTATIC IMAGES IN AN ELLIPTICAL CONDUCTING CYLINDER 

We are concerned here with the image fields which arise from an ellip-

tical conducting cylinder, of which the upper portion extends from the point 

A (x = w) through B (y =h) to A
1 

(x = -w). The center is at the origin 

(0,0), and the foci F,F
1 

are at x = ± Jw
2 

- h
2

• Sufficient generality will 

be obtained for the work of this report by locating the line charge (A
1

) 

and the field point (F.P.) on they-axis, at z = iy
1 

and z = iy, respectively. 

In order that specific boundary conditions may be applied along the 

line AA
1

, despite the asymmetry introduced when y
1 

1 0, it is convenient to 

consider the potential in the z-plane as the average of the potentials 

which would result in the following two cases: 

Case I: The entire boundary, OFABA
1

F
1
o, of the region contained within 

the upper half of the ellipse is at constant (zero) potential. 

Case II: The elliptical boundary is at constant (zero) potential, but 

the horizontal axis, AA
1 

is a stream line. 

These two cases would respectively arise if identical charges (A
1

) 

were located at z = ±iy
1

, or if charges of equal magnitude and opposite sign 

(±A
1

) were located at these two symmetrical points. In either case, the 

portions of the y-axis from A
1 

to B and to 0 are stream lines. , 
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The transformation 

. -1 -===z== z' = m s~n ,.-z-- 2 
Vw~ - h 

will transform the region within the upper half of the ellipse to that 

within a rectangle in the z'-plane. A second transformation, 

2K z' 
z" = q sn(- - k) n m' 

2K . -1 z 
= q sn <11 s~n ~~~2====72 , k) , 

\' w - h 

(D. 1) 

(D.2a) 

(D.2a') 

in turn will transform this region to that above the x"-axis of the z"-plane. 

The boundary point B lies at x" = ± co, the points A and A
1 

at ±p, and the 

points F and F
1 

at ±q. In Equations (D.2a,a'), K denotes the complete 

elliptic integral of the second kind, 

k = q/p , 

and k is selected so that 

K' = l tanh -1 .!:! 
K TT w 

(D.2b) 

* (D.2c) 

*K' denotes K(k'), where k' = J1 - k
2

• [For numerical values and helpful 
relations concerning elliptic functions and integrals, see, for example, 
E. Jahnke and F. Emde, "Tables of Functions (Funktionentafeln)" 
(Dover Publications, New York, 1945), Chapters V and VI.] 

4-63 



- 359 -

Point z z' zll 

0 0 0 0 

:\1 iyl 
-1 yl 

iy II im sinh j w2 - h2 1 

F.P. iy im -1 iyll sinh J w2 - h2 

B ih im -1 h tanh - ±oo 
w 

A,A
1 

±w c±% + i 
-1 h ±p m tanh -) 

w 

± /w2 h2 n ±q F,F
1 - ±m-

2 

The location of the field point in the z11 -plane is given by 

zll iyll (2iK -1 k) (D.3a) = q snn sinh j w2 
- h2 

, 

2K -1 
iq tn(~ sinh ~-- h 2 , k'), (D.3b) 

and a similar equation relates the coordinates y
1

11 and y
1 

of the line 

charge. In Case I, for which the entire boundary, BA
1

0AB is at zero 

potential, the required potential function can be written immediately in 

terms of the coordinates in the z11 -plane: 

yll - ylll' 

y" + y II 
1 

(D.4) 

For Case II, in which the line segment A
1

F
1
0FA is .a stream line while the 

remainder of the x"-axis is at zero potential, additional transformations 

are required, A possible systematic procedure employs the following: 
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(i) the transformation 

(D,S) 

i Ill [ to bring the charge ~ 1 to the origin of the z -plane with the result that 

the stream line from z" = iy
1

" to the origin of the z"-plane becomes a 

portion ( -t :s;; x
111 

:s;; t) of that segment (AA
1

, between the points X
111 = 

±t j (p/y
1
")i +--{).of the x"' -axis which constitutes a stream line]; an 

image charge, t..
1

, should also be imagined as located at the origin, an infi-

h 
Ill • 

nitesimal distance below t e x -ax1s, in order that the strength of the 

original source t..
1 

be confined, as it should, to the upper half of the 

Ill 
z -plane; 

(ii) the transformation 

iv 2u -1 z =- sin 
TT 

z
111
/t 

I "2 + "2 
2u 

sin 
-1/ z y 1 

rr I 2 "2 v p + yl 

0 Ill • 
to fold upward by 90 the zero-potential portions of the x -ax1s; and 

(D. 6a) · 

(D. 6b) 

(iii) the transformation, analogous to that employed in Sect. 1 of Appen-

dix B, 
iv 

z v = v exp [ i ~ ( 1 - z u ) ] (D, 7) 

iv to bring the vertical equipotentials that extend between ±i~ at x = ±u 

into coincidence with the entire xv-axis. By Eq. (D.7), the zv-coordinates 

of the line charge (strength 2/..
1

) and of the field point above it become 

respectively zv = iyv = iv and 
1 1 

v . v rr yiv 
z = 1y = iv exp 2 u 
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For Case II, therefore, the potential function may be written 

I v 
v\ !Y 

v 
:Y + V! 

(D.8a) 

TT iv 
= 4A

1 
log ctnh - :t.__ 

4 u 
(D. 8b) 

( I .,2 .,2 ) - y 
4A

1 
log 

1 -1 y 

+ y> ctnh 2 sinh J p2 (D.8c) 

! 2 "2 Jp2 "2 ,, p + y + + yl 
4)..1 log 

Jy"2 "2 - yl 

(D.8d) 

By averaging the potentials u
1 

and u
11

, given by Equations (0.4) and (D.8d), 

we obtain the result 

y"2) ij [y" + y " (Jp2 + y"2+Jp2 + 
t.. 1 log y" 

1 (D.9a) u = y " I "2 "2 1 yl y -

which may be expressed in terms of the coordinates y and y
1 

in the original 

z-plane as 

u 
jk2 2 2K . -1 y k') j 2 2 2K . -1 1 1 tn (-;:rs~nh J 2 2 , + 1 + k tn (rrHnh 1 2 2 , k') + 1 

w -h Vw -h 
2t.. 1 log ----------------~--~----------------------------~~---------

k [ ( 2K . h-1 y k'). (2K. -1 Y1 k')] tn rrs~n , - tn rrs~nh 17. ---, 
I 2 h2 2 h2 Vw- w-

(D.9b) 
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D. Mohl 
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ABSTRACT 

The theory of coherent transverse oscillation~-:; of t~o:c> part:!.cle 

species is extenced to include strong species-species and iJnage forces. 

It is show::-1 that i.r.. general the species-spec:!.es force can considei.'ably 

alter the instability threshold. Conversely, it is shm-rn that the limit 

on the perfor:ae.nce of an electron ring a~celerator :in.po~ed by the 

req_ui.rer.1ent of stable ior1 electron oscillations, is not sig:l~ficantly 

improved bJ the inc:l<:sio:1 of L--:ages. 

her;:.. sum:ort2:i by the U.S .. 11tor:.ic Ec.ergy Ccr:r.::Jssion. 
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* The potential expressed by Eq. (D.9b) may be expanded, noting that 

k' = .;;-~ k
2

, to give the result 

;_:2::) 
I 2 z! 

v' w -h 

and the vertical image field becomes 

E. = 
~mage 

(D.lO) 

as has been employed in writing Equations (13) and (26a) in the body of the 

report. 

The results expressed by Eq. (D.lO) may be checked for two limiting 

cases- that of parallel planes (w- ~),and that of a circular cylinder 

(w- h). In the first of these, 

* 

k ~ 1, 

sn(u, k) ~ u -
k

2 + 1 
6 

as may be obtained 

sn u 

3 
u 

by 

TT 
K' ~-

2' 

+ k
4 + 14 k

2
+ 

120 

expanding the 

dt =I u 
Jl - t2 .Jl - k2t2 0 

Then 
4k

2 + cn(u,k) ~ 1 1 2 1 4 
- 2 u + 24 u 

and 
k2 - k4 -

tn(u,k) ~ 
2 3 + u - 6 

u 

and 
2 

::::>< TT W 
K- 4 h'' 

1 5 
u 

elliptic integral 

16 k
2 

+ 16 5 
120 

In expanding factors of the form y" - y
1
", terms through third order 

must be retained, in order that terms of second order will remain in 
the expansion after y - y1 has been factored out. 

4-67 



K' 
in order that K equal 

- 363 -

2 -1 h • 2 h 
tanh - =- -. n w n w Then 

in agreement with Eq. (B.3) or (B.4f) of Appendix B. 

In the second limiting case, 

k
2 = 8(w - h)/h, 

Then 

K' = logj 2h 
w-h ' 

4h(w- h) yl = 

and 

as is directly obtainable from calculation of the image field which results 

from an image charge situated a distance h
2
;y1 from the center of a cir

cular cylinder of radius h [see the discussion in the text following 

Eq. (26b")]. 

APPENDIX E 

MAGNETIC IMAGES FOR A WEDGE-SHAPED GAP 

We consider here a wedge-shaped gap, of half-angle a, between ferro-

magnetic poles. The reference point, which serves as the origin of the 

z-plane, is situated on the median plane of the gap a distance X from the 

vertex. The current (I
1

) and field point will be located with respect to 

this reference point by coordinates, (x
1

,y1) or (x,y), which themselves are 

small in comparison to the half-gap 
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g = X tan a . (E.la) 

Since the magnetostatic potential which would be generated by a pair of 

magnet poles in this configuration is proportional to the angular coordinate 

taken about the vertex as a center, 
8 

the distance X would equal - dH~drlx 
and we may set 

R 
X=

n ' (E.lb) 

where n is the so-called "field index" which measures the relative gradient 

of the magnetic field. With this simple pole configuration, however, the 

field gradient may not be as constant as would be desirable in practice, but 

the arrangement described may serve as a useful model for the investigation 

of image forces resulting from the presence of a line current in the magnet 

gap. 

The transformation 

z' = ia' (E. 2) 

will transform the region between the ferromagnetic boundaries into the 

upper half of the z'-plane, with the vertex of the wedge (z = -X) trans-

formed to z' = 0 and the reference point to z' = iy' = ia'. The potential 

function then may be written 

8. See, for example, Sir James Jeans, "The Mathematical Theory of 
Electricity and Magnetism" (Cambridge University Press, 
Cambridge, 1948), Sect. 318. 
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A= U -21
1 

1 og I [ ( x' + iy' ) - (x
1 

' + iy 
1
')] [ ( x' + iy') - (x

1 
' - iy 

1
' ) J I (E, 3a) 

rr I 2et 

{ 
2

1 [ 
rr /2et x1+iy1 J 

= -2I
1 

log a' (1 + x+iy) - (1 + X ) 

[ 
rrj2et x -iy rr/2et] I } 

x (1 + x+,}y) + (1 + \ 1) (E.3b) 

2 2 2 2 

{ 
rr x+xl rr rr x +xl - y -yl 

- I 1 <a- - 1 )-X- + <a- - 1 H; - 5) 
12 x2 

" . By forming k x (-grad U), one obtains the supplementary image field 

-. 
1

1 { rr TT ...::L " [ TT 
2 l Yl /).. 

Hi rna g e = X <a- - 1) <a- - 5) 6X i + <;) + 2m i 

(E.4a) 

(E.4b) 
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where in going from Eq. (E. 4a) to (E. 4b) we have made use of Equations 

) I -1 _g_ 
(E.la and (E.lb) to identify X with R nand a with tan R/n' and 

have considered g small in comparison to R/n. 

Equation (E.4a) may be checked in two limiting cases, of which the 

first is that for which a - 0 and X - oo so that aX - g. Physically this 

corresponds to the magnet surfaces becoming the faces of plane-parallel 

poles, with a yoke situated at a great distance to the left. In this 

case the image field becomes 

2y + yl ";} 
2 1. • 

g 

In this result the horizontal field component agrees with Equations (C.2) 

and (C.3f) of Appendix C, the term 
n 2I 
__ l(x 
6 g2 

is consistent with the 

_ ni
1 

~ 

condition \l x H = 0, and the component g J is tqe field expected from an 

infinite set of current images in the yoke (images separated vertically by 

2g and situated a large distance to the left). 

In the limiting case that 
n 

a- 2• the distance X represents the dis-

tance by which the reference point is located to the right of the face of 

an infinite plane slab of ferromagnetic material. 

Eq. (E. 4a), 

x + x
1 ----=-) ,._ 

2 x2 J 

The field given by 

/;.] 
1. ' 

is just the field to be expected at a point X+x to the right of the slab 

by virtue of an image current (I
1

) situated a distance X+x
1 

to the left 

of the slab when the difference in elevation is 
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...... 
211 [ 

2X+ x+ x
1 '-' 

H(ii) 2 2 J 
( 2X +X+ x

1
) + (y - y 1) 

. 
1 1 [~ ( 1 -

x + x
1 I:-

y - y1 
2X ) J 

2 x2 

as was obtained from Eq. (E.4a) for the case 
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2' 
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QUADRATIVE FORCES TB.AT DRIVE COHERENT RADIAL MOTION 

OF A BEAM IN THE NEIGHBORHOOD OF THIN, IMPERFECTLY -CONDUCTING SIDE PLATES 

Glen R. L~~bertson and L. Jackson Laslett 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

July 8, 1971 

I. INTRODUCTION 

A coherent transverse instability of the electron ring has been 

* 

observed in some recent experiments with the LRL "Compressor rv" device. 

This instability evidently involves a radial collective motion, as is 

indicated by probe measurements and by the detection of strong electro

magnetic signals with the characteristic frequency (l - v ) · f .t The 
r o 

radial instability has been observed at times for which the radius of 

the ring beam is considerably less than the radius of the inflector struc-

ture or of similar devices that are situated near the outer boundary of the 

vacuum chamber -- it is of interest, therefore, to investigate the extent 

to which radially-directed forces in quadrature with the radial displacement 

could arise from the presence of L~perfectly-conducting layers (~ 10 to 50 

o~~s per square) on the side walls of the chamber. 

In this report we present, in Sect. II, a simple analysis of the 

radial quadrature forces that could act on the particles of a precessing 

ring beam to drive the instability in question when poorly-conducting side 

plates are situated near-by. The analysis takes no account of the presence 

* Work supported by the u.s. Atomic Energy Commission. 

t f denotes the cyclotron frequency, and 
c8herent radial betatron oscillations. 
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of dielectric walls (that themselves may be lossy) and, for simplicity, 

considers first the case of a "straightened-out" beam that oscillates 

transversely about an otherwise linear trajectory. An Appendix provides 

a correction factor that should be applied to the magnetic component of 

the force (the magnetic component typically being dominant) to allow for 

the circular nature of the true equilibri~~ orbit. The dynamical impli

cations of these forces are discussed in Section III, and a numerical 

example is given in Sect. rv. 

It will be recognized that a complete dynamical analysis of the 

collective motion requires, in addition, an evaluation of in-phase per

turbation forces that may arise from a small coherent transverse oscillation 

of the beam and also must consider the Landau damping that can be introduced 

by virtue of a spread in the energy or oscillation-amplitude of the particles 

in the beam. The in-phase forces frequently may arise, however, from 

"self-fields" that are independent of the surroundings and the Landau-damping 

coefficients of course are determined by the character of the externally

applied magnetic field, so neither of these effects are treated in the 

present report. It will be recalled, however, that evaluation of the 

quadrature forces will lead directly to an estimate of growth rate for the 

instability when (as may be the case in the recent Compressor IV experiments) 

the Landau da~ping is insufficient to suppress the instability. 

II. ANALYSIS, FOR A STRAIGHTENED-OUT BEAM 

A. Magnetic Forces 

With a thin surface layer of resistive material, the thickness 6 is 

sufficiently small, in relation to the characteristic skin-depth parameter 

6 (_::.g., by a factor of several thousand), that the magnetic field arising 
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from an oscillating beam may be assumed to penetrate the layer virtually 

unimpeded. The associated flux changes then permit the computation of 

induced currents and of the asociated fields that then can react on the 

beam. 

We now consider a ring beam, of radius "a", 

that is oscillating transversely with an amplitude 

A. In a straightened-out geometry, this beam may 

be regarded as providing a current I whose posi-

tion is described by 

where, in the lowest mode, 

(J) 

A cos (f... - rut), 
a 

= (l- v ) (J) • 
r o 

IX 
z 

0 ' I 

-4----= h _____. I 4----- h ---+ 

With x, y, z denoting the coordinates of an observation point, the vector 

potential for the magnetic field of this beam may be written as 

with (in the long-wavelength limit) 

and 

A = y 

l..l. I 2 2 
= - 4~ £ n [ ( x - ~ ) + ( z - zb ) ] 

at the location of the side walls. 
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A j 
Y z=±h 

fl I 
0 

= 2rr 

- 4 -

X-~ 

X-~ 

sin ( ~ - mt ) , 

· and the induced current per unit width in each of the thin side plates 

l 
R s 

A y 

fl mi 
0 

- 21!R A 
s 

X-~ 

sin ( ~ - mt ) , 

where R 'is the (d. c.) surface resistance (ohms per square) of the 
s 

side plates. Such· a current distribution over the two side plates will 

lead to a magnetic field component at the beam that, in terms of 

is given by 

= 

X = X - ~' 

2 
fl mi 

0 
- 41!hR 

s 

fl X 
0 

A sin (f.. - mt) 
a 
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ix 

if we adopt a complex notation ( e -imt) for this field component and for the 

displacement (x) at the point on the beam where this field is evaluated. 

[These same results for a straightened-out beam are also obtained if the 

conducting plates are not located to the side but are above and below the 

bea:n (Appendix A), or if, alternatively, the beam is situated within a 

circular tube (Appendix B).] 

A result similar to that just written is obtained if one takes into 

account the circular character of the orbit (see Appendix and requires 

only the inclusion of a dimensionless correction factor that typically 

might have a value in the neighborhood of 0.5 and that approaches unity as 

E tends toward zero.* These results moreover may be expressed conveniently 
a 

in terms of the "impedance of space", 

2rca 

Z == r::;;- == 377 ohms, and the wavea '1~-'-ol ~ o 

length A == cjf == 2rc c/m [ for the lowest mode]. We thus "Write 
~( l - v ) 

r 

- 2 2 

Bzii 
1-l I 

f(~) \ 
1-l mi h 0 i 4~hR f(a:) == - 4rchR == X 

s s 
z==O 

1-L Z I h . 1-L mZ I h 1-L Z I h 0 0 0 0 0 0 

- 4rcchR f(a:) ~ == i 4rcchR f(-) X == i 2h/\R f(-) x. 
a a 

s s s 

*Values of the function f(E), as obtained by numerical integration, are 
tabulated vs. h/a at the e~d of Appendix c. 
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B. Electric Forces 

An effect of comparable, although usually of lesser importance arises 

from the currents associated with the movement of' electrostatic images 

induced in the side walls by the ring charge. For the purposes of the 

analysis that follows, the electrostatic images are considered to be 

identical to those induced in perfectly conducting walls, but, by virtue 

of the surface resistance, the currents associated with the movement of 

these charges develop a tangential electric field that extends from the 

surface of the plates into the interior region where the beam is situated. 

For sufficiently resistive walls, the tangential fields can impede move-

ment of the L~age charges and reduce the electric forces. 

With a straightened-out geometry, the electrostatic problem of a 

charged ring in the presence of side walls at potential zero leads to 

the scalar. potential function 

¢ = A 
rtE 

0 

00 

l 
2k + l 

cos (2k + l)n 
2h z 

_ ( 2k + 1 )n 
e 2h 

where denotes the charge per unit length and (as before) 

!xi 

X = 

x- A cos (l- rut). 
a 

* The induced charge density accordingly is 

cr = ± E 
d¢ I z~±h 0 dz 

A 
00 

k - ~ 2k + l)n !xi 
2h 

I: ( -1) e 2h 
k=O 

* 

X-~ 

As a check of the result given for the induced charge density cr, one may 
note that the total charge induced per unit width on one plate is correctly 
given, by use of the above formula, as 

00 co 

A r dX A J Sech u du 
A 

-411 = - 2 
J Cosh rtX 

1( 

-oo 2h 0 
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Now cr = - (¥x) since X = x - ~' and the "equation of 

continuity"· (conservation of charge) states that 7 . 1 + a = o, or 
CJJ 

X --- = - cr, where Jx dX is the surface-current density associated with 

We thus are led to the expected result 

cr . 1\ 
-411 

1 
1lX 

Cosh 2h 

The surface resistance then requires a tangential electric field, at 

the surfaces z = ± h, of the amount 

R s 
s 

1\R 
s 

=- 4h 

J 
X 

1 
1lX 

Cosh 2h 

and, for later use, this may be developed as a Fourier integral 

= ~:s [I 
0 

cos kX 
Cosh kh 

cr. 

Because E x,I is a Cartesian component of an electrostatic field, it is 

a harmonic function in the region - h < z < h and in the present instance 

is an even function of z. Accordingly E may be written as x,I 
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ARs [ . f 
2rc v 

0 

Cosh kz cos kX J 
2 dk ~ 

Cosh kh 

for - h < z < h, and at the location of the ring becomes 

E I 
xi X~ 0 

= 

z = 0 

2rcE he 
0 

R 
s 

z ~· 
0 

For comparison with the results obtained in Sect. IIA for the quad-

rature magnetic field of a straightened-out beam, we may note here the 

ratio of the electric to the magnetic forces suggested by this analysis: 

= 
E x,I 
~ B I z, 

_!:_R 
2rch s 

2 
1.1 I c 

~c 4rchR 

2 
2P.2 2 

IJ. f-' c 
0 

s 

2 
R s 

Normally this ratio will be considerably less than unity -- thus with 

~ = O.g8 and Rs = 50 ohms per square, the ratio becomes 

I 5o ~ 2 

- 2 \0 • 98 X 377; = 
0.0366 
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and only for a surface resistance at least as high as 266 oh~s per square 

does this ratio become as large as unity. 

The foregoing analysis for these walls will apply under conditions 

where the magnetic field penetrates the wall but electric images are 

free to develop. We believe the applicable region is defined by 

3~ 
10 ~2rf and 

III. DYNAMICAL CONSEQUENCES 

It has been shown in Sect. IIA 'chat a magnetic field of magnitude 
1-lillZ lrl h 
4~c~ A f (-8:) exists at the beam and has such a phase that /i:!_; lags by 

s 
90° the displacement of the beam current. Thus the radial outward force 

arising from this field attains its maximum value at any point when the 

displacement is zero but the charged particles (considered for the moment 

as having a charge +q) are moving outward with a radial velocity component 

v = villA. There accordingly is a mechanism for energy to be added to 
r r o 

the transverse mode of particle movement -- specifically at a rate 

* 

1m v ill A o r o d 
p = 

dt ( 

2 2 2 ) 
2 2 

= )'m v ill A o r o dA ~ ~ - = F v dt r r . tlme avg. 

In more specific detail, the motion of N particles undergoing a "slow 
wave" collective oscillation may be described by the equations 

¢ 
n 

2:r<M 
x =A cos (v ill t + ---N n +a) n r o 

2:rm 

N 
+ill t, 

0 

A cos [M¢ - (M- v )ill t +a], and 
n r o 

• 2:r<M x = -villA sin (v ill t + N n +a) = -villA sin [M¢ - (M- v )ill t +a] . n r o r o r o n r o 

Since the displacement of the beam is then described by 

x,. = A cos [M¢ - (M - v ) ill t + a], o r o 
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Accordingly, by use of the magnetic field previously evaluated, 

and introducing a factor 1 
2 to obtain the time average, we obtain 

1 
A 

dA 
dt 

= 

mZ qt3I 
0 

1m v w h R o r o s 

2 
n q w Z 

0 

h R' I movr s 

nr t3wZ 
e o 

4:rr 1 v h R r s 

where n represents the total number of particles and r 
e 

is the classical 

particle radius (= q
2 

2 )· Thus, from the magnetic field alone, 
4:rr E m c 

0 0 

we expect an eA~onential growth of amplitude (in the absence of Landau 

damping suppression) characterized by the lapse rate 

1 

-rM 
= 

Nr t3wZ e o 
4:rr 1 v h R r s 

f (E) a ' , 

with w = (1 - v ) w for the lowest mode of collective radial oscillation. r o 

The electric force has been seen (Sect. IIB) to be less than the 

magnetic force, in the ratio 

()) 
with an angular speed of precession given by M 

outwardly-directed force thus is of the form 

M - v 
r 

M 

F F cos[M¢ - (M - v ) w t + ~2 +a] r max. , r o 

-F sin[M¢ - (M - v ) m t + a] max. r o 

m
0

, a lagging 

and attains its maxima in phase with the radial velocity components 
x of the particles. 

n 

4-82 



- ll -

if the factor h 
f(-) -- whose analogue was not evaluated a 

for the electric field -- is ignored. We therefore estimate the corres-

ponding electric field contribution to the lapse rate as 

Nr mR 
e s 

= 2rc (3 y v h Z 
r o 

and take the total lapse rate to be 

l = 

with the greater contribution normally arising from the term 

rv. NUMERICAL EXAMPLE 

As a numerical example, suppose 

y = 5, r = 2.82 x l0-l3cm, 
e 

50 oh~s per square, m = 4.4 x 10-8 sec-l 

(as would correspond to 

p = 1.0 x 10-4 ohm·cm), 

-6 
6 = 2 x 10 em and 6 

h = 3.5 em, and h 
f (-) = 0.56. 

a 

6 -3 
x 10 em, if 

Then the magnetic contribution to the lapse rate is characterized by 

the e-folding time , 
4rc y v h R 

r s 

f (-h) Nr (3mZ e o a 
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= 4rr 
5 X~ X 3.5 X 50 

N X 0.98 X 2.82 X lO-l3 X 4.4 X 10 

3.2 X 105 
N 

sec. 

X 377 X 0.56 

Thus, for N = 10
11

, 10
12

, or 1013 particles, one respectively obtains, 

from the magnetic field alone, a growth time 

TM 3.2 ~sec, 320 ns, or 32 ns 

in the absence of any suppression of the instability through the mechanism 

of Landau da~ping. One normally would expect the growth rate of the insta-

bility to be increased, and the characteristic growth time to be correspondingly 

decreased, by a few percent due to the concurrent effect of the quadrature 

electric field. 
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APPENDIX A 

The Quadrature Hagnetic Field From A Straightened-Out Beam Oscillating 

Vertically Between Thin Top and Bottom Imperfectly-Conducting Plates 

As Dr. Sessler has reminded us, previous workers have investigated 

again for a straightened-out geometry -- a problem similar to that con-

sidered in Sect. IIA of the present report but in which the resistive wall 

completely enclosed the beam current I. Thus it may be of some interest 

here first to inquire whether the presence of resistive strips solely 

above and below the beam (x = ± h) would lead to a quadrature component 

of magnetic field, BII , similar to that cited in the body of this 
z=O 

report. [In Appendix B a similar investigation is made for a transversely 

oscillating beam centrally located within a thin-walled resistive tube of 

circular cross-section.] 

Proceeding as before, we have 

and 

J = y 

1.1. I 
0 

± ~ 

1.1. I 
0 

± 2n: m A 

1.1. I 
- 0 
+ 2n:R m A 

s 

h 

h 

h2 + 

h2 

Then, at the location of the beam, we have 

B I ZI 
near beam 

-co 
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2 
z 

h 
2 

+ z 

2 
+ z ) 

(f..- (1) t) sin a 

sin (Z-mt). a 

[ J ll - J I J dz 
y X=h y X=-h 



- A2 -

2 
I [} h2 dzl flo (1) 

A sin (l - mt) 
2rc

2 
R (h2 + 2 2)2 a 

s 
-oo 

2 
I flo (1) 

A sin ( ~ - mt), 
4rc h R s 

a result that is precisely identical to that found in the body of this 

report (Sect. IIA) for a straightened-out beam oscillating transversely 

between imperfectly-conducting side plates. 
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APPENDIX B 

The Quadrature Magnetic Field From A Straightened-Out Beam Oscillating 

Transversely within a Thin-Walled Resistive Tube of Circular Cross-Section 

The analysis of Appendix A, for a straight beam oscillating vertically 

between top and bottom plates, led to the same quadrature magnetic-field 

component (B ) as was obtained in the body of this report for the case 
ZI 

in which the conducting plates were at the side. We now sketch a similar 

analysis for a straight bea~ centrally located within a thin walled circular 

tube and oscillating transversely in the x direction. 

In the same spirit as in the preceding work we accordingly write 

A I 
Y0 wall 

J..l I 
0 

2-n: 

J..l I 
0 

X-~ 

2 
- ~) + (z -

sin 8 ~ 

* with 8 measured from the positive z axis toward the positive x axis 

and (in analogy to the notation for the previous planar situations) h 

denotes the radius of the circular tube. 

* i.e., z = h cos 8 and y = h sin 8 at the wall, so that a positive 
rotation of 8 would advance a right-handed screw in the direction of 
the positive y axis. Similarly r vlill denote here the plane-polar 
radial coordinate in the transverse x, z plane. 
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Then 

J = y 

1-L I 
0 

21lhR 
s 

- B2 -

m A sin 8 sin (l- mt). 
a 

The local transverse variation of the magnetic field associated with Jy 

may be described in terms of a (harmonic) vector potential 

m I 
A sin 8 sin (l- mt) 

a 

and leads to a uniform (z-directed) field 

2 
1-L m I 

0 A sin (l - mt) 
a 

h ~ r 

r ~ h 

in the interior (r < h) -- as is characteristic of a first-harmonic surface-

current distribution on the surface of a circular cylinder. Again this 

result is seen to be identical to the result obtained earlier for side 

plates (Sect. IIA) and for top and bottom plates (Appendix A). 
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APPENIHX C 

The Quadrature Magnetic Field of a Ring Current Oscillating Transversely 

Between Thin, Imperfectly-Conducting Side Plates 

In Sect. IIA of this report the quadrature magnetic image field was 

evaluated for a straightened-out be~~. We here revise that analysis to 

take into account the curved (circular) character of the reference orbit. 
~ 

The vector potential A = A~e¢, that describes the magnetic field for an 

isolated d.c. beam of current Ie~ circulating about the z axis, may 

be written 
00 

* where "a" denotes the radius of the ring current. ·If the beam has its 

center displaced from the origin of the coordinate system to a point 

with polar coordinates A, ¢b' this same result may be written 
00 

A• = .~0 I a J J
1 

(ka) J
1 

(k [r- A cos (•- •b)] e-klzldk 

0 

for A small. 

* As a check, one may note that the 

1 
r~ 0 

= 
2 

I a 

( 2 2)3/2 a + z 

B z 
field on the axis is given by 

00 .J flo 

2 
0 

-kJ z 1 · k J (ka) e dk 
l 

by use of the formula cited, in agreement with the well known result 
[MKS units] for the field on the axis of a circular current loop. 
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If the beam is precessing, additional current components in principle 

may be present, but the expression just written still may represent a major 

part of the vector potential -- with A denoting the radius of the circle 

described by the orbit center as a result of the precession and ¢b advancing 

at the angular rate of precession (m). Under these circumstances, the time 

derivative of the vector-potential component A¢ is given by 

iJ.
0 

m I a A 

2 

00 J k J 1(ka) J 1 ' (k[r- A cos (¢ - ¢b)] sin(¢- ¢b) e-k!zjdk, 

0 

where the prime on the second J
1 

function denotes differentiation of this 

function with respect to its argument. The induced surface-current density 

(per unit width) then is 

t..T ¢ = 

2 R s 

2 R 
s 

00 

~ k J 1(ka) J 1 '(k[r- A cos(¢- ¢b)])sin (¢- ¢b)e-khd 

0 

where we have introduced rl, ¢1 as the polar coordinates of the observation 

point relative to the precessing beam center. 

Such a current distribution will give rist to a supplemental magnetic 

field that can be derived from a vector potential 
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lzl ~ h 

sin ¢
1 

dk h ~ lzl 

(an even function of z), where the coefficient C(k) is determined 

by the requirement 
- H I r

1 
I . _ 

' z=h 

to be 

C(k) = 
2 

[.J.
0 

w I a A 

4 R
8 

Thus, in the region lzl < h, the supplemental magnetic field may be 

obtained from the vector potential 

A = 
<Ill I 2 R s 

CXl 

J 
0 

Accordingly, by evaluating 

We denote the integral shown in the square brackets by 

with the expectation that 

of this notation 

f'(-!2) ~ l for h << a [see below]. 
a 
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0 we obtain 

l f( E) 
21Lh a 

In terms 



2 
~o w I 

4n: h R 
s 

- c4 -

The radial coordinate of the be~~ at a particular point (as distinguished 

from the coordinate of a particular particle in the beam) departs from 

the reference value "a" by the amount A cos (¢ - <Pb), for A<< a, where 

¢b advances at the angular rate w. The quantity w A sin (<P - ¢b) 

accordingly is analogous to the transverse velocity ~ of the line 

current for which the magnetic field was evaluated in Sect. IIA· Thus 

by re-writing the expression given immediately above as 

4n: h R s 

f(E) · 
a ~' 

the results previously obtained for this magnetic field component are 

seen to be applicable if adjusted by inclusion of the correction factor 

co 

_ 2n:h 1 
0 

-2kh l 2 
e ( ka - ka ) [ J 1 ( ka) ] dk 

co 

0 

-2v 
e dv. 

* The correction factor f(~) 
a 

has been evaluated n~~erically for several 

values of its ar~~ent, with the results tabulated below and becoming 

* Teletype progr~~ ROMBESl, used in conjunction with BESTABl that contains 
coeffcients for evaluating the Bessel function JJ' and the remote-submittable 
progr~~ BESSl. The integration variable x in tnese programs is taken to 
be given by v = ~ , so that dv = dx and the range of integration is 

l-x (l - x)2 
0 ~ x ~ l. The required values of J are obtained by means of "polynominal 
approximations" attributed to E.E. Alien and quoted as equations 9.4.4 and 
9. 4. 6 by F. W. J. Oliver in M. Abr~~owi tz and I .A. Stegun ( Eds. ) , uHandbook of 
Mathematical Functionsrr, Chap. 9, pp. 369-370. 
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close to unity for E 
a 

h 
a 

0.010 

0.020 

0.025 

0.030 

o.o4o 
0.05 

0.10 

0.15 
0.20 

0.25 

0.30 

0.35 
0.40 

0.45 

0.50 

- C5 -

small (as expected). 
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0.9698 
0.9414 

0.9277 

0.91429 
0.88838 

0.863479 

0.751155 
0.654167 

0.568507 

0.491871 

0.422817 

0.360392 

0.303924 
0.252901 

0.2o5901 
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ABSTRACT 

The theory of coherent transverse oscillation::; of ti-;o particle 

species is extenced to include strong species-species and irnage forces. 

It is show::1 that ir: g~neral the species-spec:i.es force can conside:cably 

alter the instability threshold. Conversely, it is shoi-rn thc..t the limit 

on the perfor~ae.t"lce of an electron ring a~celerator ir.tpO[ed by the 

req_uireraent of stable ior1 electron oscillations, is not sign~ficantly 

improved by the inclu.sioz:-1 of L--:::ages. 

vier~ sup:port2,:: by the U.S. .4 tor:.ic Er:erw Cc!:t:~i s s ion. 
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l. INTRODUCTION 

The transverse coupling instability of relativistic stabilized beams 

has long been a subject of intensive study (e.g. ref. l-5). Recently, it 

has been emphasized, 5) that this two-stream instability can impose a severe 

limit to the acceleration rate attainable in an electron ring accelerator 

(ERA). 

A similar type of instability can also occur in synchrotrons or 

storage rings when particles of the opposite charge are trapped in the 
main beam.6), 7),B) 

In the present note we extend the theory to include -- in an approxi

mate way -- the influence of space-charge forces acting between particles 

of the same beam ("species-species forces"), as well as image forces due to 

the presence of walls. For simplicity, and because they are the most un

stable modes, we shall concentrate on dipole oscillations. 

We find that species-species forces and images can considerably -- and 

in many cases adversely affect the instability threshold. In fact, to 

explain the instability in the Bevatron it seems vital to include electron 

electron forces in the theory. 

In an electron ring accelerator acceleration column, where axial 

focussing is provided only by ion-electron forces and electron images, we 

hoped that the inclusion of images would relax the ion-electron instability 

threshold. We shall show this is not the case. 

2. OillLINE OF THE SOLUTION 

We start with the equation of motion for a test particle of each 

species. We include three types of forces, a "single particle force", a 

"coherent force" and a "coupling force 11
• The single particle force is 

proportional to the displacement of the test particle, the coherent force 

is proportional to the displacement of the entire same beam of particles 

similar to the test particle, and the coupling force is proportional to the 

displacement of the other beam. Each of these force coefficients is modi

fied by images and/or species-species forces. 

We assume harmonic oscillation of the beam centers and average the 

single particle response over all beam particles. The averaging process 

takes frequency spread into account. The eigenvalues and eigenvectors, of 

the coupled system which describes the motion of the two beam centers, 
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determine the mode frequency (and hence thresholds and growth rates) aod 

the relative amplitudes of the two beams. 

3. EQUATIONS OF MOTION 

To be specific, and clearly without loss of generality, we take the 

beam species to be electrons (the replacements for proton beams is made in 

Section 7). We normalize all frequencies to the average electron revolu

tion frequency (n0 ) and denote the beam (electron) frequencies by lower 

case q's and the stationary species (proton) frequencies by capital ~'s. 

The equations of motion of the two test particles are 

1 
n 2 

0 

2 2- 2-
+ q X + ~ X - qC y = 0 1 

2 2-
+~Y+~ y u 

2-
~ X= 0, c 

(1) 

vThere x and y are the transverse coordinates (in the same direction) of 

the test electron and test ion. 

The quantities q2, Q2, 2 
qu' etc. will be discussed in more detail in 

the examples given below. We remark, here, that in the absence of species-

species forces and of images: 

2 2 2 n2 
( 2 2 2 q = qc + q 

n2 = ~e = Ql + "A ), 
0 

0 

2 o, ~ = 

(2) 

2 2 
(qc ;:::: ~1 ), 

~2 ~2 my f 2 2 
= = M qc (= Q. ) ' c 1. 

~2 = o, u 
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where ""fle give in parentheses the notation 

The extern~l focussing is characterized by 

mass ratio beu;een electrons and ions, and 

loading. The quantities qc and Qc are 

of Koshkarev and Zenkevitch5~ 
~' ~r is the (relativistic) 

Ni 
f = Ni the fractional ion 

e 
in this approximation -- the 

electron and ion bounce frequencies in the potential well of the other beam. 

The quantities q~ and Q~ are in general closely related to the coeffi

cient (U + V + iV) of Ref. 9) which determines single beam stability 

(resistive wall effect, etc.). For the electrons "'tie have, e.g., 

2 -l( qu :::;:, -2qn 
0 

u + v + i v) . (3) 

4. SOLUTION 

\-le solve (1) by assu.'1ling that the beam centers oscillate harmonically 

in time and space: 

x = 1 exp[i(ne - vn
0
t)], 

y =! exp[i(ne - vn t)], 
0 

(4) 

and regarding the x- and y- terms in (l) as drivir.lg forces. In finding 

the response of the test particle we, as is usual in Landau damping calcula-

tions, ignore transients and take Im( v) ~ + 0 

the un~;tabl.e range. 

hence concent~ating on 

In the case where nonlinearity in the oscillation direction is negli

gible the single particle response s and ~ is simply the steady state 

solution of a driven harmonic oscillator. In the case Gf important non

linearity in the oscillation '"e use the resul~s of Ref. 10) to obtain 

D})Jlroximte expressions for s and s valid for siJB.ll amplitude and small 

aonlinc.:ari t;y. 

'tle introduce normalized distribution functions f(p), g(a2 ), h(b2 ) 

for the electrons, and for the ions, that describe the 

;;;omeotru:'. distribt.:.tion, and the distribution of the incoherent betatron 

am:pli tu~les of the particles, l·~i th b referring to the direction of the 

oscillation. He assUJD.e that the distributions are uncorrelated so that 

the bem:l center is determined by: 

( 5) 
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(5) 

Thus we obtain: 

(6) 

vThere 

(7) 

and Iu and Ic are similar dispersion integrals for the ions (with 

D == 0). 

'vle know that the values of dispersion integrals, such as (7), are 

pr~narily determined by the width of the distribution functions.9),ll) 

Hence we approximate (7) by neglecting the variation of the q_2-coefficients 

in the numerator and keeping only the first-order variation of the co

efficients in the denominator. Furthermore, we circumvent q_uestions of 

self-consistency and assume that the coefficients and the distribution 

functions can be independently selected. Thus, vTe write the characteristic 

equation, associated vrith (6), in the form 

(8) 

where: 

l/6q2 
== J f(p)g(a2 )[-b

2
h

1
(b2 )] dpda2db2 

2 2 ' q_ - ( v-n) 

(9) 

1/1::{).,2 ;;:: J F(p)G(a2 )[-b~ 1 (b2 )] dpda2db2 • 
Q2 _ v2 
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The combined effect of three spreads can be treated only with 

difficulty. Double dispersion integrals have in fact been treated in Ref. 

11). The result is that the spread effective for damping is not the sum 

of the spreads, but rather the Landau damping is mainly determined by the 

larger of the two spreads. Hence we shall consider only the effect of a 

single spread; namely the largest. 

Finally, one may make a further approximation which we call the "slow 

wave approximation"; namely we expand the denominators of (9) in partial 

fractions and keep the term which is largest when v ~ (n-q), and when 

v ~ Q. In this approximation and by expanding q ~ ~ + s(dqjds) 0 , 

etc. -- (8) takes the form 

with 

and 

The quantity s 

2 2 
qCQC (~- ~)(~ + :t) + 4~Qo = 0 

. -1 

~ _ [f f(s)ds 
- (n-~) - v + "';s] ' 

~ [f F(s)ds r 
= Q

0
- v + 6is ' 

6; = [ dds l n t) -q(s))] 

"'~ =l ~ L 
is one of the spreading parameters 

f(p)dp or 

f(s) ds = g(a2)da2 or 

-b2 dh(b2) db2 

db2 

J f(s)ds = 1. 

2 2 p, a or b , and 

[see ref. 8], 

(10) 

(11) 

(12) 

(13) 

Alternatively, we employ the term "improved slow wave approximation" for 

the approximation in which we retain (8) but approximate the factors that 
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arise from the fast-wave terllis by the v-value (n-q) and Q. 

6. STAB:lliiTY COliDITIONS 

A. Analytic Results 

Stability conditions can be obtained from (8) or (10), by finding the 

boundary (on which v is real) of the unstable zone (in which the imaginary 

part of v is positive). To this end, the integrals of (9), or (11), need 

to be evaluated; and in Table I we summ3rize results, for the essential 

component of (9) and (11), resulting from two different choices of distri

bution functions. The Lorentzian distribution is studied, despite its 

unphysically long tails, because the analysis is simple and because it can 

be employed to establish an interesting general result (see Sect. 8). For 

accurate results, a truncated distribution is required. 

In the case of &-functions for f(s) and F(s) (no frequency spreads) 

the eigenfrequencies are determined from 

(14) 

For a Lorentzian line, [f(s) CC (4s2 + .c.,~f\ F(s) ex: (4s2 + 6~f1 ], 
Hi th equal slow wave and fast wave frequency spread and ~orJth 6e and 6i 

the full •lidths at half maximwn, equation (14) is valid •1ith 

v -7 v + i 6e_/2 in the first factor and v -7 v + i ~/2 in the second 

factor. If, in addition, t;e ~ t;i = 6 1 the condition for stability is 

where -r01 is the growth rate in the absence of dispersion. 

(15) 

In the neichborhood of a resonance we 1nay use the improved sloH-wave 

approxir:!Fition. In the absence of frequency spread, (14) yields 

Q d i 
q~c d2 v + ± 
10"' - ' ,q 

(16) 

~or here 
]( ,_j '"') d = ~ n - q - Q , 

(17) 
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(17) 

and resonance occurs when d ~ 0. For the Lorentzian line, and in improved 

slow wave approximation, 

l ~+L\il + i 4 - ' (18) 

with 6p and 6 the full widths at half maximum in the fre~uericies Q, 
n e 

and jn no- ~~. Stability of the solution (18) re~uires spreads such 

that 

2 2 [ 2] -l ~CQ,C 4d 
6 6. ~ - l + l ~ L\) . 
e~ ~Q +· 

(19) 

To suppress an instability that occurs within a narrow resonant fre~uency 

band (where d will be close to zero), (19) provides the convenient 

sufficient condition 

(20) 

For values of ~ etc. that are considered to be essentially known (~·~·' 

from Table II). It is of interest to note, from (19) or (20), that both 

~ and 6i must be non-zero to suppress the instability.5) 

Finally we turn to the case of the semi-circular distribution (see 

Table I). For this distribution the damping is very different for the 

fast and the slow waves and hence it is not reasonable to assume ~+ = 6_. 

Rather, we employ the slow wave approximation and completely disregard the 

non-resonant fast wave to obtain: 

(21) 

' 

with 

(22) 

4-103 



2 
(n-q-v) , 

(22) 

After considerable algebraic manipulation it can be seen that stability 

requires: 

(23) 

Again within a narrow band of instability, associated with the resonance 

d1 ':! 0 (where n - q - v ~ q~/q and IQ-v I ~ Q~/Q), we may write 

or (24) 

as a sufficient condition for suppression of the instability. The second 

of the forms (24) clearly implies that we must require 

and 

6. > e 1~1 
(25) 

The condition (23) is similar to. the condition (19) found for the Lorentzian 

distribution -- or (24) is similar to (20) -- but vlith the width parameters 

modified to correct for the anomalous results arising from the extensive 

tails of the Lorentz distribution [~·~·' in the manner suggested by (29) of 

Sect. 6B belm.,r]. It is evident that for W3.ve frequencies removed from the 

central beam frequency there is reduced Landau damping. With the abruptly 

terminated sE:mi-circular distributions that led to (23) et seq., this limita

tion is explicitly indicated by the condi tj_ons (2,?). Again we note that 

and 6. must be non-zero to insure stability. 
~ 
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B. Numerical Formulation 

For numerical work we proceed directly from (8) and (9) and again 

employ Lorentzian distributions in s, with 8+ denoting full widths at 
n \ -half maximum in the ~uantities \n no±~ for the fast and slow waves of 

the electron component and ~ correspondingly for the ions. If we then 

let 

and write 

x = v - (n + ~), 
+ 

g_ =X + i ~~ + + 

h = g+ - g - 2~o' -

G 

X = v ± Q,0 , 

+ 

= X + i6 
+ + + 

H = G+ - G -
' 

2Q,o' 

we then find 

(q0 (x_ + g_)(x+ + g+) + h~] [Q0 (X_ + G_)(X+ + G+) + HQ,~] 

- hH 2Q,2 0 ~c c = • 

(26) 

(27) 

(28) 

The imaginary parts of the expressions written above for g_, G_ are seen 
+ + 

to imply a damping that is independent of the distance by which the actual 

fre~uency is displaced from the peak of the distribution. This results 

from the unpbysically extensive tails of the Lorentz distributions that 

were assumed for evaluation of eq2 and ~2 • For this reason we have 

elected to replace, in the numerical work, these expressions by 

~ 

18+1 + i + 
g_ = X 

I x+\2 + 82 ' + + 
+ 

(29) 

G X i ~ 
16:j:l = + 

I x+l2 + 6~ + + 

in the expectation that a more realistic type of distribution will be 

described in this way. With this replacement we obtain an equation for 
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which roots have been sought computationally.12 ) 

From computational tests that employed paraneters similar to those 

introduced in the example of the follovTing Section, it was found (i) that 

the values of the fast-wave dispersion parameters 5+' 6_ for the t-.10 species 

had little effect on the stability threshold (although it may be necessary 

that they be, for example, some 3% of the respective slow-wave quantities 

o_, 6+), and (ii) that (19) [or (20)] can be safely taken as a stability 

criterion to be applied to the slovT-wave dispersion parameters after modifi

cation in the manner indicated by (29). It was confirmed, moreover, that, 

as expected,5) stabilization could not be obtained by introducing dispersion 

into just~ of the two species. 

7. PROTON SYNClffiOTRONS AHD STORAGE RING 

We assume that electrons created by scattering with the background gas 

remain trapped in the circulation beam. Further, we assume the electrons 

to be uniformly distributed around the circumference, and we neglect the 

influence of the background gas ions. We take the proton and electron minor 

radii as equal. 

The proton and electron frequencies relevant to this case are given in 

Table II. In wany situations of interest one can use, to a good approxima-

tion, simplified relations obtained by taking q ~ v a~d neglecting images. 
zo 

In this approximation the stability conditions (24) and (25) are con-

veniently expressed in terms of the 11 space charge q-shift 11
, q11 so that one 

requires 

q 3 

~ zz > f l 
e p vz ' 

0 

6 > fl[ (30) e f ql ' 

6 > 
ql2 

p 2 ' )' vz 
0 

where 

2 N r R 
(2/rr.) p p 

(31) ql = rb(a+b) • 
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Let us, as an example, discuss the case of the :Bevatron, where an in

stability of the debunched beam at 6 GeV has been observed, and has been 

cured by the provision of clearing fields.7) 

Vz 
0 

For typical operating conditions at 6 GeV vle find q_1
2 = 4 x 10-3 and 

~ 0.9. (More details nay be found in Ref. 13.) Hence, for stability 

we req_uire 

If vle assu."'lle the relati.vely large sp!'eads ~ = 1.5, L>p = o.o4, we 

find a threshold neutretlization f = 0.24. Neglecting electron-electron 

forces, the threshold f uould be a tolerable f > l. Hence, in the case 

of th·:: }Jevatron, species- species forces appear to play a dom.inant role in 

the determination of the threshold. This situation is generally the case 

in a JJroton ring if the proton frequency spread is large and/or y is 

snnll . 

8. AXIAL STABILE"£ IN THE EBA 

In the acceleration colnnn of an ERA, or of a':w similar system in 

which translation3..l :invariance of the co!lfiguration can be legitimately 

cwswned, it follmvs from. ec_;_uation (l) that 

(33) 
Q2 + Q 2 - Q 2 = 0. 

u c 

From (17), y.re mo.y '1-.'ri te 

.... 2 2 q - qc ' 
(34) 

"'2 
Qc 

2 Q = . 

As -v1e shall see belm-1, the invariancc conditione inply that images hardly 

effect the r::xio.l ~tability conditions in an ERA. 

FreC}.uE:ncy par.::;.meters for an ERI\. have been derived in Ref. (14). They 

arc pn~sented in Table III. 'l'hesc forraulas cen be. simplified by assurr.ing 

4-107 



1 >> f >> 12 
'Y 

b(a+b) >> P/8, 
e 
e 

in which case image contributions only appear in ~2 and ~· 

(35) 

For the Lorentzian distribution, equation (14) is valid with the re

placement discussed just follm1ing equation (14). In view of (33), this 

equation is independent of images. Thresholds are as has been discussed 

in the literature,5) and above threshold we hav.e the stability condition 

(20), v7hich takes the image-independent form: 

6 6. ~ q Q • e ~ c c (36) 

We note that the condition (36) will normally not be satisfied except 

for working points with very small values of qc and/or Qc• Such working 

points, however, are unattractive because both qc and Qc are "figures 

of merit11 of an ERA device -- since Qc2 is a measure of the holding power 

of the ring and qc 2 detennines the fractional ion loading. 

For the semi-circular distribution, or the modified Lorentz distribution, 

the thresholds and da'!lping conditions depend slightly upon the image terms. 

He have undertaken numerical studies in order to ascertain the effect, on 

the instability, of images and dispersion. We concentrate on the n ~ 1 

(dipole) .instability and we refer to Table III and postulate parameters 

such that ;· ~ 4o, c1 = 4( 1~) b(~~b) = 5.0 x lo-13, 

c2 = 4(~e) ~ ~ 6~. x 10-
1

3, and c3 ~ 4(~;) (s::
1

)2 = 0.05 x 10-
1

3. 

(Such coefficients might result, approximately, from R = 3.5 em, 

a ~ 0.30jf2 em, b = 0.15jf2 em, and I Se-11 = 0.625/3.5). Then, with 

11/m :::: 1836, we write 

2 (c1j1600 + c2 - ]{c
3

) ·Ne ~ :::: 

2 
(Cl + C - 'H.C ) ·Ni qc :::: 

2 3 

2 2 2 q ~ qc -~ 
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Q 2 :::: (40jl836)q2 
u c 

Q 2 :::: (40/1836) (c1 + c2 -X c
3

) ·Ne c 

and 
Q2 :::: Q 2 2 

- Q ' c u 

where 7i is a "flag" that, if set equal to unity, introduces the effect 

of a strong electrostatic focussing. The dispersion may be controlled by 

means of a parameter ~ such that 5 ·= 5 :::: ~q and 6 :::: 6 = ~Q. 
- + - + 

With these substitutions introduced into (28), as modified by (29), 

one may solve for the roots.computationally, along a trajectory on which 

(for example) f = Ni/Ne is held constant, and so examine the variation of 

the threshold vs. the damping coefficient ~· With the ratio Ni:Ne equal 

to one and one-half percent, and with images absent (M::: o), one finds in 

this way virtually no change of the threshold until ~ > 0.4, and even with 

~ as large as unity the particle abundances are permitted to increase by 

only 43 percent. Under similar circumstances dispersion is found to be 

somewhat more effective when image focussing is present(~= 1), but the 

gains are trivial until ~ > 0.4 and ~ should exceed 0.93 to achieve a 

doubling of the permissible particle numbers. 

In examining an alternative trajectory on which the ratio Ni:Ne is 

taken to be one-half of one percent, it appears desirable to have image 

focussing present (H= 1) since the ion focussing can be expected to be 

weak. Under these conditions the effect of the dispersion coefficient ~ 

has been found to be somewhat greater than was the case for the trajectory 

mentioned earlier, although the effect remains small until ~ exceeds 1/2. 

Somewhat more striking effects do develop at the larger values of ~ --

thus, with Ni/Ne :::: 0.005, dispersion characterized by ~ = 0.88 permits a 

doubling of the particle numbers and, at ~ = 1 and Ne = 5 x lol3, stability 

is obtained for Ni ~ 4.67 x 1011, i.e. for f ~ 0.0093 (cf. the Figure on p. 

5 of ERAN-177,12 ) which suggests th~ -;:bility of strong di-;ersion to open 

up a narrow stable corridor through a region of small Ni). 

In summary, the numerical studies have shown that with physically 

achievable damping terms the stability threshold is only slightly changed 

from that which obtains in the absence of damping; a result in accord with 

(36) and with the conclusions of Zenkevich and Koshkarev.5) We conclude 

that neither Landau damping nor image effects and species-species forces 

are capable of any considerable extension of the stable working range in an 

ERA-column. 
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Table I - The Dispersion Inte[ral I 

a.) Definitio~s 

I= J f(s)ds ~ _!:_~ f(s)ds 
2 :1 2 - 2a ~: 
q-(v-n~) - v-n-+q 

·~ no ~J 
q qo 

cq 
= +- s 

cs 

n () 
On 

= + -- s ··o ds 

!:::, I~; l ~~I = 5
1/2' ± 

Do ± 

s
1

/
2 

is the half width of f(s) (full 'Hidth at half maximum or half width 

at bottom). 

b.) Lorentzian Distribution 

f( s) 2 -n 

l If [\ 
+ I == 2 iL 2 

q - (v+ -2- -n) 

c.) Se~i-circle Distri~ution 

f(s) = 
0 

I 

' 
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(s1/ 2 + 4s ) 

l ] --rL.::;+ 
v-(n+q ) +-;) 2 

2 
- s 



Table I (cont. ) 

1 
= ~ [v-(n-~~ + ~ 

4-113 



Table II- Frequencies of Vertical Oscillation of a Coasting Proton Beam 

Partially Neutralized by Electrons* 

1. Proton frequencies:t 

-- + 2 4!-L [ l 
~l - y2 b(a+b) 

€1-~l] 2 
2 R 

h 

Electron frequencies 

where: 

Q. 2 
u 

Q 2 
c 

(~ :::: 0): 
e 

N r 
p p 

1-L :::: 2n:Ry 
N'e 

f:::: N, 
p 

-¥.- Curve.tu.re effects are ignored, and the beam is assigned. to be centered in 

the vacuwa ch~~ber. 

t In 1-1d.ting the proton frequencies, we have set f3 - 1, save in the last 

(Ina[_.;nctostatic) term of the equation for q
0 

2 • 

E
1

,E2 , s
1

: Image coefficients 

h: Half heie:;ht of V2.CUUlit chamber 

g: Half height of :tr.acnet gap 

rp: Classic::..l proton radius 
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p 
- d 

E 

+ 

2 [ R2 p e 
g_u == 4~L 2 + ? +p 

b (a-rb):;; TI 

2 [ R2 4 ~ ' g_c = f.! I . b( e.-r·O} 

2. IoD fre~uencies: 

vihcre: 

(s -1)-
e 

(se:~)2] 

Q2 -u 

Q2 -c 

N r e e 

2 my 
qc 11 

2 my 
q :t,I.:f c 

f-1 = 2nRy ' 

* Uniform external guide field assumed. 

t f)e ""' 0 

P == 2 ln[l6R/(a+b)] 

Se =-= Radius of Electric li--:.2.ge cylinder /R 

Sm == Radius of magDetic image cylinder/R 

Ee ~ ~ ~ 0.125 li1age ccefficients 

re: Classical elec~tr·on rc:.dius 

) 

E (1-f) 
e - t32 

2 

(s :~)2 J 
rn. 

tt We are indebted to Prof. M. Reiser for a recent communication concerning 

his analysis of toroidal field gradients (l'!Jax-Planck-Insti tute for Plasma 

Physics Report IPP 0/14 (Munich-Garching, July 1972) J that called to our atten

tion the appropriate form of certain terms indicated in Tatle III. 
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ERAN-209 

SOME REMARKS CONCERNING THE COLLECTIVE TRANSVERSE OSCILLATION 

* OF A D.C. BEAM IN THE PRESENCE OF RESISTIVE WALLS 

L. Jackson Laslett 

May 25, 1973 

The "coherent force" to be applied in the case of an unbunched 

beam oscillating transversely with a displacement y within a highly 
l 

conducting chamber is normally taken to be expressible as 

2 
=-

1{ 

if D.C. magnetic image forces are negligible, where the first term within 

the square bracket arises from electric image terms and the second from 

current images. The portion of the formula that involves ~ - E is 
l l 

regarded as arising from the vertical movement (within a conventional syn

chrotron chamber) of the longitudinal D.c. beam current, which results in 

A.c. magnetic image fields (subject to boundary conditions appropriate to 
l 

A.c. fields). These A.C. magnetic fields are co?sicered to be derivable, 

for a beam at y = y1, from the image field computed at y1 (through use 

of A.c. boundary conditions) for. the beam at y1 (contribution proportional 

to E1 ) minus 

(contribution 

the field similarly computed at y for an undisplaced beam 

proportional to E
1

). For a pair of plane-parallel conduc-
2 2 2 

ting surfaces at ±h, E1 = n j48 and ~l = n /16; for a circularly 

cylindrical conducting tube of radius h surrounding a beam on its axis, 

and ~ = l 
1 
2 

2 

The terms shown in the expression for F thus represent the effect of 

(i) a defocusing electric image field (e.s.u.) 
y 

E = 4/\ E 1 - 2 and 
h 

(ii) u focu:Ji.n[.•; mu+~lwi.ic field (e.m.u.) 

* 

y 
H == 4 [ ( El - E ) ""2" 

l h 

Work supported by the u.s. Atomic Energy Commission. 
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In certain cases of interest in which the chamber walls have 

appreciable r,esistance, the magnetic image fields given by the expres

sion written immediately above will arise immediately from a step

displacement y but subsequently will decay (due to attenuation and 

possible redistribution of the image 

characterized by the characteristic 

for surface resistance in e.m.u., or 

currents) in a manner conveniently 

Maxwell velocity 3 v (v = R /2~ 
s 4 

v = 2R ht in the MKSA system) s 0 

and a characteristic dimension h of the structure. Thus, in particu

lar, for an infinitesimal displacement of the beam from the axis of a 

thin circular cylinder of radius h, the decay is characterized by the 

simple factor exp [-v.(t- t )/h]. For currents suddenly established 
0 

(or displaced) between two thin plane-parallel side plates, the time 

dependence may be more elaborate, but the important initial decay again 

appears 5 to be reasonably well represented by the exponential factor 

just mentioned, with h now denoting the half-gap. 

To obtain the time variation of the magnetic contribution FM to 

the force r' when the displacement y is an arbitrary (small) speci

fied fUnction of time, it therefore may be appropriate as well as 

convenient to write this contribution as arising from an image field 

H = 
4 ~ (~l- El) /y(-r) exp [- v·(t - -r)/h] d-r 
h -oo 

and 

For an oscillatory (SHM) variation of y, represented by the factor 

· exp(jrut), these expressions become 

H = 

2 . v 
4 ru + Jru -h 
___! (e E ) 

FM 

F 

2 "1 - 1 
h 

= 4r (s - e ) 
h2 1 1 

Nr 

-----y 
2 ru+ 

2 2 2 c - -
1f Rh2 

(moe ) S (El- El) 

Nr ~l-2 2 2 c 
=- -- (m c ) S ( E -

~ Rh2 0 1 
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The frequency dependence implied by the complex expression just given 

for H, if applied to a thin circular cylinder of radius h and surface 

resistance R , can be compared (and confirmed) by reference to earlier 

reports 6 tha~ were specifically concerned with this particular geometrical 

configuration (setting, for this purpose, E1 = 0 and ~l = l/2 in the above). 

The imaginary part of F, as given by the last expression above, can 

be converted to the quantity V, frequently employed in dispersion analyses 

of collectiv2 motion, by multiplication of Im(-F/y) by the factor 

to obtain 

v = 

l 
2v(~c/R) 

l 
ym 

0 

with v = R /2~ (e.m.u.). The analysis of magnetic-field behavior that s 
has led to the magnetic contributions contained in all of the foregoing 

formulas is ~elieved to be basically correct for R << Z 
s 0 

and a wall 

thickness < 5 ·.[where Z 
0 

denotes the "impedance of space" ( 120 ~ ohms) 

and 5 is the "skin-depth" characteristic of the wall material]. The 

result cited here for V has been checked 5 by co.mparison with results 

obtained computationally [for a beam situated on the axis of a circular 

stainless-steel cylinder of variable thickness and setting m = (l - v)m ] 
7 8Q 

from a program based on general methods developed at CERN by Zotter. 

Excellent agreement was found for the range of th~cknesses limited by the 

conditions R < 0.12 Z and wall thickness < 5/L 7, and the physical s 0 

principles employed in the preceding discussion thus should be applicable 

throughout an extensive range of values for 

include those of interest in the ERA program. 

R that will comfortably 
s 

[For approximate work the 

range of applicability might be taken to extend between the limits 

R < Z /2 and wall thickness< 1.7 5.] s 0 

From the form of the of the expression given for V, it is apparent 

that this quantity will be inversely proportional to R when the wall 
s 

resistance is high, but should be directly proportional to E for walls s 
of rather low surface resistance -- 2:·!:.·, 
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~ bw/2 = ~l h(JV1 
0 0 

v )rn /2 (MKSA units) at which the value of V is :1 
Q' 

maximum. 

An early analysis 9 was made specifically for the magnetic effect 

of image currents induced magnetically by a beam oscillating radially 

between thin plane resistive side walls at z = ± h. The analysis 

considered·the surface resistance R to be large (but<< Z ). A 
s 0 

"curvature factor" f was introduced into the result, but shall be con-

sidered in the following discussion to be unity as would be the case 

for an orbit radius that is large in comparison to the half-gap h. The 

growth rate that was deduced in this work as arising from the image currents 

induced in the side walls (with Landau damping ignored) was found to be 

the same when the conducting plates are taken to be situated above and 

below a straightened-out beam 10 and also when such a beam is situated near 
ll the axis of a thin circularly-cylindrical resistive tube. The result 

for this growth rate, if identified with V, reads (after an adaptation of 

notation that includes replacement of Rs by ~0v/2 and Z
0 

by ~0c) 

l v =- = 
"M 

Nr [:we 
e 

2Jtvyhv 

with v again denoting the Maxwell velocity. The law governing the decay 

of induced j~age-current effects is exactly known in simple terms as 

exp [-v·(t - t 0 )/hl only for the cylindrical geometry, and the formula just 
9-11. 

given for V will be seen to agree exactly in the limit v /h >> w 

ivi th the formula given previously for 

(as is appropriate for the cylindrical 

in Ref. 9, in which voc 1/R, thus is s 

V with E
1 

= 0 and ~ = 1fi 1 
geometry). The result obtained 

seen to be applicable for large 

values of R (but for R not as great as Z ), and presumably retains 
s s 0 

its validity until v becomes comparable to or less than wh -- l·!·, 
until R becomes comparable to or less than {ft /2 )wh (MKSA units). 

s 0 

More generally (until the resistance is so low that the skin depth becomes 

comparable to the wall thickness1 it might be reasonable to apply the 

factor 

to the results bf Ref. 9· 
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Transport of intense beams of heavy ions over long distances may be restricted by space-charge induced 
transverse instabilities. The stability of the microcanonical, or K-Y, distribution is analyzed with the help of 
the Ylasov equation, and reduced to a study of the characteristics of solutions for a set of ordinary 
differential equations with periodic coefficients. Numerical solutions for various periodic solenoid and 
quadrupole focusing channels are derived and provide information concerning stable regions of propagation 
in terms of betatron tune depression. The results are compared with computer simulation examples of beams 
in solenoid and quadrupole focusing channels to check linear growth rates and establish nonlinear saturation 
levels of instabilities. Conclusions are drawn for the design of a quadrupole lattice providing stable 
transport. 

I. INTRODUCTION 

The possibility of using high-energy heavy ions as the igniting mechanism for 
inertially confined fusion has necessitated a consideration of transporting currents in 
the kilo-ampere range for distances of the order of kilometers without significant 
degradation of beam emittance. In addition to the usual problems df field and 
alignment tolerances, there arises the question of the stability of beam propagation in 
a vacuum against fluctuation in self-forces arising from initial deviations from the 
desired distribution of the beam in the four-dimensional transverse phase space. 

The most powerful analytic technique for investigating this problem is a lineariza
tion of the Vlasov equation about a known stationary solution, coupled with the .. 
appropriate equations for the perturbed electromagnetic fields. If the external focusing 
force is constant, an infinite variety of stationary solutions can readily be. generated, 
since any function of the Hamiltonian is a solution of the Vlasov equation and the 
corresponding self electrostatic potential can be obtained by integrating Poisson's 
equation. 1 It furthermore is possible to show2 that a large class of such stationary 
solutions is stable against arbitrary fluctuations. 

For the more realistic situation of a focusing channel consisting of quadrupoles or 
discrete solenoids, however, the Hamiltonian function is not a constant of the motion 
and hence cannot be used directly to provide a stationary solution of the Vlasov 
equation. To our knowledge, the microcanonical distribution investigated by 

t This work was supported by the Assistant Secretary for Defense Programs, Office of Inertial Fusiqn, 
Laser Fusion Division, U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. 

1 Max-Pianck-Institut fiir Plasmaphysik, 8046 Garching, West Germany. 
1 Naval Research Laboratory, Washington, D.C. 
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Kapchinskij and Vladimirskij 3 (K-V), for which individual-particle restoring forces are 
linear functions of the displacement, is the only distribution for which a stationary (i.e., 
periodic) solution can be constructed. Because of its singular character, it is probably 
more susceptible to instability than real beams and so we have performed the present 
investigation concerning its stability characteristics in the hope that the results may 
serve as a conservative guide to identifying regions in parameter space that might be 
dangerous. 

We proceed by presenting in Sect. II the general framework of the linearized Vlasov 
analysis. This is followed in Sect. III by application to periodic solenoid and to 
quadrupole focusing systems. Specific results are given (Sect. IV) for several per
turbation modes in such systems (with the governing equations becoming increasingly 
complex for modes of high order) and suggest the particular importance of a "third
order" mode. In Sect. V, we compare the linear growth of the third-order mode found in 
both the analytic theory and in computer simulation. Simulation will also be used to 
establish the practical significance of the remaining instabilities. The implications of 
these results are discussed in Sect. VI. 

We observe that intensity is frequently related to the ratio vjv0 for beams in a 
continuous solenoid and to cr/cr0 in a periodic channel. Here v denotes the betatron 
oscillation "frequency" (with time replaced by distance), and cr the phase advance of 
betatron oscillations per focusing period; v0 , cr0 are the corresponding values for zero 
intensity. 

II. GENERAL FORMULATION OF THE LINEARIZED VLASOV ANALYSIS 

We use the distances along the transport channel as the independent variable and write 
the total Hamiltonian function as 

(1) 

where 

Q Q 
K" = Kx - a(a + b)' Ky = Ky - b(a + b)' 

Kx.y represent the external force constants [± B'(s)/[Bp] for quadrupoles, and 
(t B/[Bp])2 for solenoids in the Larmor frame], 

qe is the ion charge, A is the ion mass/proton mass, N is the number of ions per unit 
length, r Pis the classical proton radius, e2 /(47tE0 Mp.oc2

) (MKSA units), a(s) and b(s) are 
respectively the x and y half widths of the matched (periodic) beam envelope [as 
determined by the K-V envelope equations- Ref. 3, Eqs. (46) and (47)], and 

q 47t€0 r p/e 
V = - x electrostatic potential function due to perturbations. 

A p2-y3 
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The first two terms in Eq. (1) represent the unperturbed Hamiltonian, which is not a 
constant of the motion for s-dependent focusing, and the terms proportional to Q 
describe the effect of transverse components of the space-charge force for a K-V 
distribution. 

We now make use of the Courant-Snyder4 functions ~(s) and ~(s) for the un
perturbed orbits, for which (with dots denoting d/ds) 

where 1t€ represents the emittance (assumed to be identical in the two transverse 
planes). The form of the governing Hamiltonian function can thereby be simplified 
through introduction of a transformation defined by the generating function 

followed by a scaling transformation i = i/£ 112
, Px = fix/£ 112

, etc., so that 

and similarly for y, pY" The new Hamiltonian function then becomes 

H- 1 (- 2 -2) 1 (- 2 -2) 1 v. 
= 2 ~x Px + X + 2 ~y Py + Y + £ · 

(2) 

(3) 

(4) 

In the remainder of this work we shall omit, for brevity, the tilde that distinguishes 
these new (dimensionless) phase-space variables. In terms of these variables the 
unperturbed orbits can now be written as pseudo-harmonic oscillations 

x(s') = x(s) cos [\jlx(s') - \jlx(s)] + px(s) sin [\jlx(s') - \jlx(s)],} (
5
) 

px(s') = px(s) cos [\jlx(s') - \jlx(s)] - x(s) sin [\jlx(s') - \jlx(s)], 

with \jlx(s) = J• dz/~x(z), and similarly for y(s') and Py(s'). 
From Eqs. (5) it is evident that x 2 + Px 2 and y2 + pY 

2 are individually constants of 
the unperturbed motion. The unperturbed K-V distribution function, moreover, may 
now be written as 

fo = ~ 8(x2 + p/ + l + P/- 1), 
1t 

(6) 

with 8 denoting the Dirac delta function. 
With the introduction of a perturbing distribution function / 1 , the linearized Vlasov 

equation provides the total derivative along the unperturbed trajectories in phase 
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space, 

Df1 
::: {~ + _!_ [Px~ -x~] + _!_ [P,~- Y~]}tt 

Ds OS ~X ox OPx ~y oy op, 

2N [ a v a v J , 2 2 2 = -2- Px -
0 

+ P, -a · o (x + Px + y + p, - 1), 
7t€ X y . 

(7) 

wherein o' denotes the derivative of the delta function with respect to its argument. 
Eq. (7) can be solved by integrating over the unperturbed trajectories. Introducing 
\jl~.y = \jlx,,(s') as ancillary variables, Eq. (7) thus leads to 

/1 = ~~ [f ds' (a~x' +a~,,) V(x', y'; s')] o'(x
2 + p/ + y2 + p/ - 1), (8) 

and (when we neglect the longitudinal field component) Poisson's equation becomes, in 
terms of our scaled variables and the associated distribution function, 

(9) 

f
oo f2n 

x 
0 

d(p2 )o'(p2 - (1 - x2 - yl)) 
0 

d9V(x', y'; s'), 

subject to the boundary condition that the external fields vanish at infinity. 5 By noting 
that 

f~ dgl dz g(z)o'(z - Zo) = - -d - g(O) o(zo). 
0 Z z=zo 

we see that Poisson's equation, as expressed by Eq. (9), leads to (i) 

1 o2 V 1 o2 V 
--+--
a2 ox2 b2 oy2 

= _g_ f• ds' (-a + ~) [-d f2" d9V(x' y'· s')] I 
1t€ab o\jlx' o\jl,' d(p 2

) 0 '. p 2 =t-x>-y2 

(10) 

(ll) 

in the interior of the beam, and (ii) to a relation that reflects the presence of an effective 
surface charge (that describes the effect of an infinitesimal perturbation of the beam 
boundary) 

(12) 
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By introducing elliptic coordinates(~, ~)defined (in terms of our scaled coordinates, for 
a > b) by 

x = (h/a) Cosh~ cos~ andy = (h/b) Sinh ~sin~ (13) 

(where h2 = a2 
- b2

, and with Cosh~ = ajh, Sinh~ = b/h at the boundary x 2 + 
y2 = 1), Eq. (12) may be written as 

a2 v a2 v 2Qh2 

a~ 2 + a~ 2 = €ab (Cosh.2 ~ - cos2 ~) 

X [f ds' (a~x' + a~J V(x', y'; s')l=O 8(1 - x
2 

- y
2

). (14) 

The discontinuity of the electric field at the beam boundary accordingly becomes 

( 15) 

A consistent solution is obtained if we can find a function V(x, y; s) that satisfies Eqs. 
(11) and (15), where il(av;a~) is such as to match the solution interior to the beam to a 
harmonic (a 2 Vja~ 2 + a 2 Vja~ 2 = 0) outwardly decreasing solution external to the 
beam. 

• i 

III. APPLICATION TO SOLENOID AND QUADRUPOLE FOCUSING 

Finding a closed expression for the solutions of Eqs. ( 11) and ( 15) appears hopeless, but 
a brief inspection of these equations shows that they can be satisfied by potential 
functions that are finite polynominals in x andy interior to the beam and finite sums of 
e-n~ e±in~ exterior to the beam. Finite polynominals emerge as a result of our choice of 
a K-V distribution for the stationary beam. The derivative of the delta function in 
Eq. (7) suggests that the perturbati'ons describe distortions of the hyper-ellipsoid in 
four-dimensional phase space (cf final sentence in Sect. III of Ref. 6). 

(a) Solenoid focusing 

In the simplest case of continuous s-independent focusing, with Kx = Ky = K, 
~x = ~Y = ~and both K and~ independent of s, then ljlx = ljJY = s/~ and solutions 
are of the form V oc eiws G(x, y). Gluckstern6 has concluded that in this case G(x, y) can 
be expressed by means of hypergeometric functions 

(16) 

in terms of unsealed polar coordinates, where a is the radius of the unperturbed beam 
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and 

j = 0, 1,2, ... , m = 0, 1,2 ... ,excludingj = m = 0. 

The "order" of the mode (highest power of r appearing in the function G) is 2j + m. 
Gluckstern has also indicated 7 the manner in which this solution may be employed to 
obtain an algebraic equation whose roots must all be real to insure stability of the 
matched K- V beam. Stability limits for the modes described here can be conveniently 
described in terms of the factor vjv 0 by which space-charge forces may be permitted to 
depress the individual-particle oscillation frequency within the matched beam (Table I). 
It is clear that intensities limited to values such that vjv0 > 0.3985 are those for 
which the m = 0 modes may be expected to be stable, and the results. presented in 
Table I suggest that this restriction may also be sufficient to insure stability of the 
higher-order modes for an uninterrupted solenoid transport system; 

When the focusing strength of the solenoid is not constant but is periodically s
dependent, the matched beam radius (a) becomes a (periodic) function of s. The 
function a(s) may be sought computationally in such cases, and the entire investigation 
of beam stability conducted in a manner analogous to that adopted for quadrupole
focusing systems. 

(b) Quadrupole focusing 

For the case of alternating-gradient quadrupole focusing [Ky(s) = - K,(s)], we have 
not found a general closed form for the potential analogous to that indicated by 
Eq. (16). The analysis of Sect. II leads, however, to a procedure that can be followed 
to determine the stability characteristics of individual perturbation modes. As will 
be shown, moreover, the eigenvalues that characterize the stability or instability of a 
mode can be determined by reference solely to terms of the highest power in x and y 
and of highest harmonic order in ~ in Eqs. ( 11) and ( 15). 

(i) Example: 

To illustrate this procedure we first consider a simple example that will be seen to 
correspond to a coherent oscillation of the beam as-a-whole. In this example the 
internal potential is assumed to be, in terms of the scaled coordinate x, V; = A(s)x. 

It is seen that Eq. (11) is trivially satisfied by this potential function, since V2 V = 0 
and 

To treat the boundary Eq. (15), we employ the elliptic coordinates introduced earlier, 
writing V; as V; = A(s) (Cosh ~/Cosh ~0 ) cos~ and taking the exterior potential to be 
V0 = A(s)e-<~-~ol cos~, where ~0 is such that Cosh ~0 = ajh. By employing these 
forms,~(av;a~) = -A(s)(l + b/a)cos~andEq.(15)leadstotheintegralequation 

a+b Qfs 
-- A(s) = - ds' A(s') sin(\j!/ - \j!J. 

a € 
(17) 
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Then by differentiating twice the integral {I(s)) that appears in Eq. (17), one finds that it 
satisfies the differential equation 

d2I 
dljlx 2 = -[I + ~xA(s)] 

-[l+g~JI 
E. a+ b 

-[t + ~/Q J I. 
a(a + b) 

(18) 

With the quantities a, b, ~x• and ljlx determinable (e.g., numerically) as periodic 
functions of s, numerical integrations of Eq. (18) through one period of the transport 
channel will provide the elements of the matrix that advances the vector I, di jds 
through this interval. The eigenvalues of this matrix provide the frequency of the 
perturbation mode, and none may have an absolute value exceeding unity if this mode 
is to be stable. 

We note that, by use of the previously cited relation connecting the Courant-Synder 
parameter ~x (and its derivatives) to the force constant Kx, the differential Eq. (18) for I 
in this case may be transformed to 

(19) 

-which will be recognized as of the form expected for a simple coherent oscillation. 
Similarly, adoption of a potential function whose dependence on the scaled coor
dinates is of the form V; = A(s) x 2 + B(s)/ will lead to a pair of coupled second order 
equations equivalent to those customarily taken to represent a linear perturbation of 
the envelope equations. 

(ii) General Treatment: 

More generally, we assume a potential function of the form 

n n-2 
V, = L A..,(s) x"-"'y"' + L A..,(l)(s) xn-m- 2y"' + ... (20) 

m=O m=O 

in the interior. For a given order n, "even" and "odd" modes conveniently may be 
treated separately on the basis of whether the index min Eq. (20) is restricted to even or 
to odd integer values. 

For the stability analysis, Eq. (11) provides a set of coupled algebraic equations that 
relate the functions A..,(s) to i.ntegrals of the form 

(21) 
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while Eq. (15) provides a second set of such equations, and these equations taken 
together can be solved (at any s for which a(s), b(s) are known) to express each 
individual A j in terms of the integrals defined by Eq. (21 ): From Eq. (2 I), moreover, one 
finds that 

(22a) 

where 

(22b) 

With the Aj obtainable (as just mentioned) in terms of the Ij',k.l• Eqs. (22a) constitute 
a set of coupled second order differential equations for the latter quantities, and 
numerical integrations through one period of the structure will provide the elements of 
the matrix that advances such quantities (and their first derivatives) through one period 
of the transport channel. 

(iii) Computational Procedures: 

Computational programs have been devised to perform the computations outlined 
above, for various modes of order up through n = 6. Computations of this nature for 
quite large values of n may not be of practical importance. In a realistic beam with a 
natural spread of individual particle wavelengths (as may result from a nonlinear 
space-charge force), it is very unlikely that fine-grained transverse density variations 
(large n) persist through several periods. Computational results of Sect. Ilia pertain
ing to focusing in a continuous (s independent) solenoid-focusing system indicate, 
moreover, that the most stringent stability conditions are those imposed by modes Of 
order less than 6 or 8. 

To summarize the procedure followed in examining the stability of any particular 
perturbation mode, one first specifies the type of periodic lattice one wishes to employ9 

and a value of beam intensity (e.g., Q-or the parameter Q' -cited in Ref. 8). By a 
convergent iterative procedure one then determines initial conditions (for a, b, and their 
first derivatives) that lead to periodic (matched) solutions of the envelope equations, 
and, with this solution obtained, the individual-particle tune a is also obtainable (i.e., 
from solutions of the equations of motion for individual particles, or as ax = 
€ f5L dsja 2 etc). With this information available, the computations are then repeated 
to include (for various initial values of the Ij,k.l and their first derivatives) integration of 
the differential equations for the integrals Ij,k.l· [Note that integration of these 
equations requires repeated evaluations of the relations that express the quantities A j 
in terms of the Ir,k.1-as can be done by use of a matrix-inversion/simultaneous
equation-solver routine.] Such integrations yield the elements of the matrix that 
advances these integrals (and their first derivatives) through one period of the structure, 
and the eigenvalues A. (and eigenvectors, if desired) of such a matrix are then 
determined. The occurrence of any eigenvalue of magnitude greater than unity then is 
indicative of instability for the perturbation mode under consideration, and the 
magnitude of such an eigenvalue denotes the factor, per period, by which such a 
perturbation ultimately (in the linear regime) will be expected to grow. 
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IV. COMPUTATIONAL RESULTS 

Based on the analysis of Sect. III, we have examined computationally the behavior of 
several types of modes-both for a periodically interrupted solenoid system (Fig. 1a) 
and for a periodic alternating-gradient quadrupole (FODO) transport channel 
(Fig. 1 b), although with greater emphasis on the quadrupole systems. 10 It is convenient 
and efficient, in all such cases, to employ "scaled variables." Useful parameters for 
describing a particular situation are the phase advances cr0 and cr (of individual
particle transverse oscillations per period of the structure, respectively for a zero 
intensity beam and for a beam of intensity characterized by the parameter Q'8), and (for 
a given lattice) the "tune depression" factor cr/cr0 will serve as a useful index of beam 
intensity. 

In addition to the magnitudes of the eigenvalues that characterize the behavior of a 
perturbation mode, their phase angles, <I> [defined, with an ambiguity of 360°, as tan - 1 

(Im A./ReA.) and evaluated so that -180° < <I> ::;; 180°] also are of interest. Thus, with 
eigenvalues occurring as complex-conjugate and as reciprocal pairs, the development 
of an instability indicated by an eigenvalue moving away from the unit circle in the 
complex plane can occur either (i) when eigenvalues become real, or (ii) when at least 

a) 
I I 
~ 'llt(l-'lll~ 

___ r ___ ~B 1 ! .----I----, 
I I 

I 

Half period,L ~ 
Full period 

FIGURE I. Assumed periodic transport lattice, (a) with interrupted solenoid elements and (b) with 
quadrupole lenses. 11 denotes the fraction of the lattice occupied by lens elements. 
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two pairs are present, as a result of a confluence having occurred at the threshold of 
instability. hi the first of these cases (and if <I> # 0), the mode frequency becomes locked 
to the period of the lattice ("inhomogenous" or "structure" resonance). 

Results are best presented as regions of instability on a plot of cr vs. Q', since it has 
been found that the locations of these regions and the associated growth rates within 
them depend primarily on cr/cr0 and are remarkably insensitive to changes of the lattice 
structure-particularly for instabilities that arise as a result of a confluence of 
eigenvalues. 

(a) Interrupted-solenoid focusing 

The solenoid modes we have studied can be classified in terms of indices corresponding 
to those introduced by Gluckstern.6 We present specific results for symmetric 
interrupted solenoid systems with an occupancy factor of 1/2 (TJ = 1/2 in Fig. 1a). 

(i) Envelope Modes: 

). = 1 m = 0 with v oc. r2 and oa = 8a . 
' ' y X' 

j = 0, m = 2, with V oc. r2 sin 2<!> and 8ay -8ax. 

At zero intensity the true phases of the eigenvalues for these modes are 1<1>1 = 2cr0 and 
the phase will decrease as the intensity is increased. Accordingly, if cr0 > 90°, there thus 
is the opportunity, with either type of mode, for an instability to develop at an intensity 

·such that 1<1>1 becomes 180° (an example of a structure resonance). This behavior is 
illustrated by the curves of I <I> I vs. Q' on Fig. 2 for the case in which cr0 = 120°, and by 

200 100 

.a. ---------- b 
100 50 

o' 
FIGURE 2. Behavior of envelope modes for an interrupted-solenoid system for which l] = 1/2 and 
cr0 = 120°, with regions of instability indicated by heavy lines on plots of <II vs. Q'. 
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100 ------

----cjl 
Q) 

""'0 ...._... 

b 
50 

0.1 1 lO 100 

Q' 
FIGURE 3. Behavior of envelope modes for interrupted-solenoid systems for which 11 = 1/2 and 
cr0 = 120°, !00°, 90°, and 60°. 

the regions of instability shown on the curves of cr vs. Q' in Fig. 3. From Fig. 3 it is seen 
that, as expected, the envelope instabilities occur only for cr0 > 90°. The instability 
region for the oay = oax mode becomes quite extensive, moreover, when cr0 is as large 
as 120°. 

(ii) "Fourth Order" and "Sixth Order" Modes: 

j = 2, m = 0, with V cc r4 + terms of lower order; 
j = 3, m = 0, with V cc r6 + .... 

As illustrated by Figs. 4 and 5, each Of these modes exhibits minor patches of 
instability-which may not warrant concern. More significant are the extended 
regions of instability that are seen to develop for values of cr/cr0 close to the values of 
vjv0 shown in Table I for modes of 4th or 6th order respectively (and m = 0). 

(iii) R4 cos 2<1> and R4 cos 4<1> Modes: 

j = 1, m = 2, with V cc r4 cos 2<1> + terms of lower order; 
j = 0, m = 4; with V cc r4 cos 4<1>. 

Examination of stability of these modes (choosing cr0 = 120°, 90°, and 60°) indicates 
the occurrence only of short patches of instability-as are expected to become possible 
(for cr0 > 45°) when eigenvalues with initial phase angles of 4cr0 (or 2cr0 ) cross the real 
axis as the intensity is increased, but that have been seen also to arise as a result of a 
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b 

Q' 
FIGURE 4. Behavior of fourth-order mode (j = 2, m = 0) for interrupted-solenoid systems for which 
11 = 1/2 and cr0 = 120°,90°, and 60°. 

b 

Q' 
FIGURE 5. Behavior of sixth-order mode (j = 3 m = 0) for interrupted-solenoid systems for which 
11 = 1/2 and cr0 = !20°, 90°, and 60°. 
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TABLE I 

Threshold Values of vjv0 

a) For Modes of Even Order b) For Modes of Odd Order 

Order, m Order, m 
2j + m 0 2 4 2j + m 3 5 

2 Stable Stable 1 Stable 

4 0.2425 Stable Stable 3 Stable Stable 
6 0.3859 0.1741 Stable 5 Stable Stable Stable 
8 0.3985 0.2582 0.1384 7 0.2874 0.2184 Stable 

10 0.3972 0.2314- 0.1396 9 0.3235 0.3124 0.2038 
12 0.3921 0.1885 0.2940 11 0.3373- 0.3246+ 0.2608 
14 0.3861 0.1971 + 0.3205- l3 0.3425 0.3148 0.2248 
16 0.3798 0.1898- 0.3263 15 0.3439- 0.2968 0.2072 
18 0.3728- 0.2062- 17 0.3432 0.2757 
20 0.3680 0.2305 19 0.3415 

confluence. No extensive regions of instability are found, however, and one notes that 
no instability of these modes is expected in a continuous solenoid (see Table I). 

(b) FODO quadrupole focusing 

We have investigated the behaviour of several modes, for different values of the 
occupancy factor 11. in the symmetrical lattice of Fig. 1 b. It is noticeable that for 
quadrupole focusing the instabilities of a given order become more numerous than 
those found for the m = 0 solenoid modes. This occurs because, for example, the 
solenoid modes (f = 3, m = 0), (j = 2, m = 2), (j = I, m = 4), and (j = 0; m = 6)1 are 
all contained in the sixth order quadrupole. case, but extended regions of instability 
appear in close analogy to the solenoid case .. It appears,. however, that the· onset of 
regions of pronounced instability can be associated either with a definite value of 
eigenvector phase Cl> (as in the case of the envelope instability) or with a value of cr/lcr0 
that depends only slightly on the occupancy factor (11) of the lattiCe and on the value of 
cr0 , so that specific results will be cited here chiefly for 11 = 1/2 (Fig. lb). We first 
present results for modes of even order. 

(i) Envelope ("Second-Order Even") Mode: 

As was found to be the case for the envelope modes in an interrupted solenoid transport 
system (Sect. IV, a, i), we find that envelope instabilities in a FODO focusing structure 
occur only if cr0 > 90°. This behavior is illustrated in Fig. 6 for 11 = 1/2, wherefrom it 
is evident that very extensive regions of instability for this mode develop when cr0 is 
substantially greater than 90°. 

(ii) Second-Order Odd Mode: 

The second-order odd mode will not lead to instabilities in a symmetrical FODO 
structure if (as is customary) cr0 < 180°. 

(iii) Fourth-Order Even Mode: 

Computations pertaining to the fourth-order even mode (requiring evaluation of the 
eigenvalues of a 14 x 14 matrix) indicate the appearance of a substantial number of 
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120 

90 -
b 60 

30 

oL_~~--L_~~~~~~ 
0.1 0.2 2 5 lO 20 50 

Q' 
FIGURE 6. Behavior of envelope mode for quadrupole systems with TJ = 1/2 and cr0 = 180°, 150°, 130°, 
110°, 100°, and 90°. 

regions of instability that are of somewhat limited extent (Fig. 7). [In Fig. 7, or in 
similar graphs, regions of very restricted instability may not always be fully depicted.] 
For cr0 < 90° [as appears desirable in order to avoid potential envelope instabilities 
(Sub-sect i)], however, the most substantial instability is that which on Fig. 7 is shown 
to occur for Q' > 3. The particular unstable fourth-order mode just mentioned is one in 
which the eigenvalue A. has assumed a real (positive) value. 

This significant extended instability of a fourth-order even mode provides an 
opportunity to illustrate that the threshold for such a mode is given almost uniquely by 
cr/cr0 (Table II) and that such a threshold value of crjcr0 is surprisingly close to a 
corresponding threshold value of vjv0 for a continuous solenoid (namely, in this 
instance, to the value 0.2425 shown in Table I for the modej = 2, m = 0, for which the 
associated phase advance also is zero). 

(iv) Sixth-Order Even Mode: 

As with the fourth-order even mode, the sixth-order even mode exhibits a substantial 
number of patches of instability and ultimately develops an extended instability when 

· the tune depression is sufficiently great (Fig. 8). As was found for the fourth-order even 
instability, the onset of this extended instability is given almost uniquely by cr/cr0 . The 
threshold value of crjcr0 for this mode again is close to a threshold value of vjv0 for a 
continuous solenoid-specifically to the value 0.3859 shown in Table I for j = 3, 
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b 50 

0.2 0.5 2 5 10 20 50 100 
Q' 

FIGURE 7. Behavior of fourth-order even mode for quadrupole systems with 11 = 1/2 and cr0 = 120', 
900, soc, and 60,. 

TABLE II 

Instability Thresholds for Extended 4'h Order Even Mode 

Occupancy For cr0 = 60° For cr0 = 90o 
Factor 

11 Q' cr(deg.) cr/cr0 Q' cr(deg.) cr/cr 

I 3.055 14.58 0.2430 3.713 22.03 0.2448 

1/2 2.572 14.58 0.2430 3.130 22.o3 0.2448 

1/4 1.925 14.58 0.2430 2.347 22.02 0.2447 

1/6 1.598 14.58 0.2430 1.950 22.02 0.2447 

m = 0. [It is of interest to note that the maximum threshold value of vjv0 shown in 
Table I form = 0 modes is not markedly greater than the value cited here, namely the 
value 0.3985 for j = 4, vs. 0.3859 for j = 3.] 

(v) Third-Order Modes: 

The third-orde.r mode shows regions of pronounced instability, that appear to account 
for simulation results presented in the following Section (Sect. V). Because the 
quadrupole lenses were taken to be very short in the•simulation work, we present our 
results for cases in which 11 = 1/6 or 11 = 1/10. 

The instabilities are shown in Fig. 9 for a FODO lattice with cr0 = 90° and 11 = 
1/10. The small region of instability shown on Fig. 9 as originating at cr ~ 57.3° and 
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100 

b 50 

0.2 0.5 5 10 20 50 100 

Q' 
FIGURE 8. Behavior of sixth-order even mode for quadrupole systems with 11 = 1/2 and cr0 = 80° and 
600. 

0.30 ....---~--.---------,-----,------,-------, 

0.20 

Confluent mode 
....< '\.. 

0.10 

180° 

0 
mode\ 

60 55 50 45 40 35 
-CY (deg.) 

Increasing intensity -
FIGURE 9. Behavior of third-order mode for a quadrupole system with 11 = 1/10 and cr0 = 90°. 
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the major instability centered near cr = 45° are attributable to eigenvalue phases 
having been depressed from <1>0 = 3cr0 = 270° to become 180°, thus indicating a 
structure resonance, while the instability that originates for cr ~ 56° arises from a 
confluence of eigenvalues. With 1"-1 seen to become as large as approximately 1.27, it is 
of interest to examine the possibility of avoiding such a strong instability. The "180-
degree" modes may be avoided by use of a lattice for which cr0 ::;; 60°, and it appears 
also that no confluent third-order mode then will occur (Fig. 1 0). We remark in passing 
that in an interrupted-solenoid focusing system we also have found 11 (Fig. 11) unstable 
180-degree modes similar to those shown in Fig. 9 for the FODO quadrupole transport 
system. 

(vi) Fifth-Order Mode: 

Our computations pertaining to the fifth-order mode did not indicate any substantial 
instabilities that would account for the simulation results. We find that a quadrupole 
lattice with cr0 = 60° exhibits only moderate patches of instability for the fifth-order 
mode until the tune has been markedly depressed to cr ~ 10° (Fig. 12). 

60~------------------------~=-----------------~ 

'---- I<PI = CTO 

0~--------~----------~----------~----------~ 
0 0.5 1.0 

Q' 
1.5 2.0 

FIGURE 10. Depression of eigenvalue phase, 1<1>1, for third-order modes of a quadrupole system with 
11 = 1/6, and cr0 = 60°. 
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0.10 r-------.------r-----r-------, 

0.05 
7] = 1/2 

7] = 1/2 

0~----~~~--------~~~----~~~--~ 
60 55 50 

..- a- (deg.) 

Increasing intensity ... 

45 

FIGURE II. Behavior of third-order mode for interrupted-solenoid systems for which 11 = 1/2 or 
11 = 1/6 and cr0 = 90°. 

V. COMPARISON WITH SIMULATION RESULTS 

Computer simulation provides a possibility of testing the results obtained from 
analytic theory (and vice versa). The simulation programs used here are based on the 
particle-in-cell method; they employ typically of the order of 104 simulation particles 
and solve Poisson's equation with a fast Poisson solver. Results obtained from different 
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Q' 

FIGURE 12. Behavior of fifth-order even mode for a quadrupole system with 11 = 1/6 and cr0 = 60'. 

simulation programs developed independently 12- 18 have been found to yield es
sentially the same conclusions (apart from variations due to different statistical sets for 
the initial distribution). 

Simulation not only allows the study of the initial growth of an instability within the 
validity of the linearized theory [section V (a)]; it also provides information on 
the nonlinear saturation of an instability and its effect on beam quality (for instance the 
r.m.s. emittance). In section V (b) it will be seen that large linear growth rates do not 
necessarily induce deterioration of beam quality. 

(a) Growth of third-order mode within the linearized theory 

The theoretical results obtained for the third-order even mode strongly suggested that 
this mode could account for the strong instability observed in simulation com
putations15 (see also following section) with a K-V beam whose tune is depressed from 
cr0 = 90° to cr ~ 45°. The expected strong instability is characterized by an eigenvalue 
that is real, but negative-a feature indicated by the simulation results, wherein 
distortions of projected phase-space distributions (and their boundaries) were 
observed to oscillate with respect to the origin with a period twice that of the structure, 
while the centroid of the distribution remained essentially undisturbed. A quantitative 
check of the correspondence between theory and the simulation work accordingly was 
undertaken in order to establish the validity of each of these approaches. We compared 
both the relative magnitudes of various moments of the distribution (e.g., (xp/)av.• 
etc.) and the shape of the evolving distortion of projections of the distribution (e.g., for 
a projection onto the pY, y plane). Such comparisons were undertaken both at "full
period" points (i.e., at the centers ofF-quadrupole lenses) and at "half-period" points 
(centers of D lenses). 

In making such a comparison it will be realized that the growing perturbation will be 
characterized by an arbitrary initial amplitude and phase, so that "x-Iike" (even) 
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moments ((x3 ).u.• <xl>au.• etc.) may be intercompared at full-period points but 
separately from "y-like" (odd) moments ((y3 ).u.• (x2y).u.• etc.). The growing 
magnitudes of x-like moments at half-period points in a symmetrical FODO lattice 
may be compared, however, with the growth of y-like moments at full-period points. 
All such moments, of course, should grow in magnitude in proportion to p,t, where P 
denotes the number of periods traversed by the beam, and should alternate in sign once 
per period. Simulation data appropriate for evaluation will be restricted to an interval 
wherein the perturbation has grown sufficiently to dominate statistical noise, but has 
not become significantly influenced by the onset of (nonlinear) saturation. In practice, 
certain moments are more pronounced than others and the most pronounced moments 
accordingly are the most suitable for statistically significant intercomparison. 

The theoretical description of a developing instability requires retention of terms 
beyond the leading term in the expression for the perturbation potential. Since the 
coefficients that determine the moments depend significantly on the value assigned to cr 
within the zone of instability, the trajectories of the individual simulation particles 
were examined to establish a value of cr ~ 45.7° (with an associated theoretical 
eigenvalue A ~ - 1.27, for TJ = 1/6). The theoretical values of the coefficients required 
for the present comparison were then evaluated for these conditions. 

(i) Comparison of moments 

The growth and satisfactory intercomparison of x-like moments at full-period points is 
illustrated by Figs. 13-15, where we have used a value of A = -1.26. Curves (a) are 
based on individual fits of the moments (x3

)""·' etc., to curves of the form Y = SAP-18
, 

while curves (b) are drawn with the values of S for the respective moments constrained 
to be in the theoretically expected ratio. Figures 16-18 similarly indicate the behavior 
of three y-like moments at full-period points. Analogous plots (not shown) have 
indicated similar performance for moments evaluated at half-period points, and the 
values of the respective y-like or x-like moments moreover were found to be correctly 
related to the values of the corresponding x-like or y-Iike moments at the full-period 
points. 

(ii) Comparison of boundary curves 

We investigated the form of significantly distorted boundary curves for a two
dimensional projection of the simulation results arising from a perturbed four
dimensional phase-space distribution. Such simulation results are influenced by 
statistical fluctuations and may be sensitive to the development of nonlinearities in the 
dynamics. Comparisons with theory are most effectively made for the (p:c, x) or (py, y) 
projections and we have considered these both at full-period points and at half-period 
points, since fitting the boundary to the expected theoretical forms for such 
projections requires adjustment of only one coefficient, namely that giving the initial 
value of the perturbation. Empirically, the values of this coefficient found from such fits 
appear to be somewhat better characterized by a growth factor A ~ - 1.22 than by 
A = - 1.26 (possibly because of an incipient nonlinearity), but the values inferred 
from data that pertain to periods near P = 11 have been found to agree within a few 
percent with those expected from examination of the moments. A fit to the (py, y) 
projection of the simulation results is shown in Fig. 19 for P = 16. Other projections 
(i.e., y vs. x and p

1 
vs. P:c) have also shown agreement between the computation and 

simulation results.· 
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FIGURE 13. Growth of the moment Y= (xp. 2

) ••. at integer period numbers, from simulation 
computations. Curve (a) is based on a fit of this individual moment to the form Y = SI.P- 18, while the curve 
(b) is such that the values of S for this and other moments of the same type are constrained to be in the 
theoretically expected ratio. 
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FIGURE 14. Growth of the moment Y = (x2p,).,. 

(b) Simulation of beams in long transport systems 

The question of (nonlinear) saturation of an unstable mode is beyond the capaqilities 
of a linearized theory and is most convincingly investigated by computer simulation. 
To this end, we present below characteristic examples which shed light on the 
continuous solenoid K-V instabilities and the "structure" resonances found in periodic 
focusing. 

(i) Solenoid Focusing 

The findings of Section III (a) have been checked by simulating an initial K-V 
distribution beam matched to a continuous solenoid focusing system. The intensity is 
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FIGURE 15. Growth of the moment Y = (x5
) ••. 

described by the factor v/v0 , which is assumed to be 0.16 for the example shown in 
Fig. 20. Azimuthal symmetry has been imposed on the beam and hence all modes 
evaluated in the first column of Table I (m = 0) are expected to be unstable. There is 
evidence for rapid growth of instabilities of rather low order (j = 2, 3). The saturation 
of these instabilities leads to a different phase-space distribution, but evidently to no 
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FIGURE 16. Growth of the moment Y = (yp/) ••. 

noticeable increase of phase-space volume. The r.m.s. emittance even remains constant 
within < 1%. This supports the conclusion that the K-V instabilities found for 
vjv0 < 0 .. 39 (similar in periodic focusing to cr/cr0 < 0.39) have no effect on beam 
quality, but only emerge as a result of a non-monotonic distribution function. 

(ii) FODO quadrupole focusing 

In Fig. 21 we show an initial K-V distribution in a FODO channel with cr0 = 90° and 
cr = 45.7°. According to Section IV (b), this case is in the center of a third-order 
"structure" resonance, and projections onto the x - Px andy - p, planes clearly show 
the dominant character of this particular mode. The r.m.s. emittances have grown by a 
factor of 2.0 in x - Px and 2.5 in y - pY after 50 cells (with no further growth). 
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FIGURE 17. Growth of the moment Y = (y2p,).v. 
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FIGURE 18. Growth of the moment Y = (y 5 ).v. 

The third-order "structure" resonance is evidently suppressed in a FODO channel 
with cr0 = 60°. Furthermore simulations of such a 60° system exhibit a qualitative 
behavior resembling that of a continuous solenoid. Thus even for systems with 
strongly depressed tune (cases with cr as low as 6° have been simulated) the instabilities 
result in a rearranged phase-space distribution but saturate before any growth in the 

4-150 



KV STABILITY IN LONG SYSTEMS 171 

1.5 

0.9 
Q) 
::::l -
0 
> 
E 0.3 ::::l 

E 
X 
0 
E 
0 -0.3 -c:: 

.......... 

>-
(l_ 

-0.9 

-1.5 

-1.5 -0.9 -0.3 0.3 0.9 1.5 

Y I initial maximum value 
FIGURE 19. Boundary of p, vs. y projection, at period number 16. The dots denote simulation results 
and the curve represents the theoretically expected boundary. 

r.m.s. emittance is observed. These results suggest that although the system is unstable, 
in agreement with the analytic predictions, no restriction on allowable tune depression 
is imposed if r.m.s. emittance is a proper measure of beam quality. 19

•
20 This conclusion 

is illustrated in Fig. 22 with cr = 12.7° and an initial "waterbag" distribution (in 
contrast to the K-V distribution it is assumed that the interior of a hyper-ellipsoid in 
four-dimensional phase-space is uniformly filled, which produces a more realistic 
beam). Initial matching has been performed by assuming the same r.m.s. quantities as 
would apply for an exactly matched K-V distribution. This gave rise to 10% r.m.s. 
emittance growth, due to lack of detailed matching, but no further emittance growth 
over 100 focusing periods. 

Figures 23 and 24 demonstrate the importance of cr0 in a more direct way. Figure 23 
gives the ratio of r.m.s. emittance to initial emittance for a K-V distribution initially 
depressed from cr0 = 90° to cr = 7°. The emittance is seen to grow rapidly at first and 
then more slowly for the duration of the run. In Fig. 24 the tune is initially depressed 
from cr0 = 60° to cr = 6°; there is no detectable change in r.m.s. emittance. 
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FIGURE 23. Ratio of r.m.s. emittance to its initial value for a K-V distribution with cr0 = 90° and cr = 7°. 
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FIGURE 24. Ratio of r.m.s. emittance to its initial value for a K-V distribution with cr0 = 60° and cr = 
6·. 

VI. CONCLUSION 

The special character of the microcanonical or K-V distribution assumed in the present 
work may lead to instabilities that would not arise with other, more realistic, 
distributions. Simulations16 do, however, suggest that in regions where instability is 
strong (i.e., lead to substantial growth in r.m.s. emittance) the behavior of non-KV 
systems does not differ substantially. Some insight into the physical mechanism causing 
instability for the K-V and other distributions can be obtained from a fluid model 13 
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and by invoking the concept of negative-energy waves. In particular, the extended 
regions of instability found for continuous solenoid focusing (which also occur for 
periodic focusing at the same threshold values in terms of tune depression) can be 
interpreted as coupling of positive and negative energy oscillations 14 and are a 
characteristic feature of a distribution function that is a non-monotonic function of the 
Hamiltonian. These instabilities cause a marked redistribution of density in phase 
space, but do not lead to a growth in r.m.s. emittance. For quadrupole transport, on 
the other hand, the strength of the focusing force seems to provide a mechanism which 
causes emittance growth for cr0 > 60°; for smaller values of cr0 the saturated state is 
very similar to that reached in the case of continuous focusing. If one disregards the 
minor patches of instability found analytically as peculiar to the K-V distribution, the 
results of the linear analysis seem to provide a valid guide for design of periodic 
transport systems for high intensity beams and are particularly significant for cr0 > 
60°. 

In this spirit, it appears prudent not merely to require that cr0 < 90° (in order to 
avoid significant envelope instabilities), but to impose the restriction cr0 :=::;; 60° with the 
object of avoiding a pronounced instability of the third-order mode. If the restriction 
cr0 :=::;; 60° is adopted, one may expect that beam intensities will be limited only by 
potential instabilities of fourth or higher order and. that significant instabilities of this 
nature will not occur for cr/cr0 ~ 0.4 (see Sect. IV, b, iv, and Table I)-e.g., for cr ~ 24° 
if cr0 = 60°. 

Simulation work indicates that, for cr0 :S:: 60°, the remaining instabilities saturate at 
low levels and the r.m.s. emittance is not affected by the rearrangement in phase space. 
If r.m.s. emittance is an adequate measure of beam quality there is then no limit on 
allowable tune depression. However, if the transported beam is to be delivered to a 
small focal spot, a practical limit then would be set ultimately by aberrations in the final 
focusing system. 

The expected transportable intensities or beam power, based on a 60°-24° transport 
line and the associated maximum beam radii in symmetric FODO quadrupole 
transport systems are then given by the scaled-variable entries of Table III. The 

TABLE III 

Scaled-Variable Parameters 
for a Tune Depression from cr0 = 60" to cr = 24° 

Occupancy 
Factor e Q' Uo [FM] 

1.32 1.66 3.20 .764 

2/3 1.42 1.54 3.34 .688 

1/2 1.57 1.40 3,54 .601 

1/3 1.84 1.19 3.87 .481 

1/4 2.09 1.04 4.13 .405 

1/5 2.32 .944 4.36 .354 

1/6 2.52 .867 4.56 .315 

1/8 2.89 .757 4.89 .263 

1/10 3.22 .680 5.16 .228 

1/20 4.51 .485 6.13 .145 
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quantities tabulated in Table III are 

9 = K 112 • L, where Lis the half-period of the lattice; 

, 4q2 NrP where 7t€ is the (un-normalized) emittance 

Q = A ~2 y3€K 112 ' in either plane (meter radians); 

u0 = K 114 
€ -

112 a (maximum scaled beam radius); and 

[FM] = Q'/u0 
213 is a "figure of merit" that enters into a formula of the type 

proposed by Maschke21 and analyzed by Reiser22 for the maximum transportable 
beam current or power [Eq. (23)]. (The maximum beam radius becomes less if the 
intensity is reduced.) 

where 

p = Cs (A/q)4/3 (y - 1) Wy)713 €2/3 BQ213. [FM] 

= C s (A/q)413 (y - 1) (~y)S/3 €//3 BQ2/3· [FM], 

€,v = ~Y€ (meter-radians), 

(23) 

and BQ is the quadrupole pole-tip field (Tesla). 
The figure of merit [FM] in Table III increases as cr- 213 as cr is decreased from 24°, 

but the required aperture increases also and care must be taken in transporting very 
high currents that the aperture to length ratio of the quadrupoles does not become too 
Iarge.8

•
22 
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INTRODUCTION 

In a paper by Carlson and Hendrickson1 use has been made of 

variational methods to secure upper and lower limits for electrical 
resistance. These methods, as presented, were based on techniques 
formulated by Schwinger and involved cons ide ration of an integral equa
tion for the cur rent- or potential-distribution at a boundary surface. 
The presentation of Carlson and Hendrickson has the advantage of sug
gesting the applicability of similar techniques to problems in other fields 
of physics but, for this reason, may suffer from a lack of obvious physi
cal motivation for the detailed rnatheznatical steps. It is the purpose of 
the present note to indicate that the sarne technique may be introduced 
for resistance problems, in what may appear to be a more natural way, 
by use of well-known extremal theorems for resistance. It may be sup
posed that analogous extremal theorems exist in other fields of physics 
and that in some cases direct application of these theorems will lead to 
useful alternative methods of solution for specific problerns. 

B. UPPER LIMIT TO RESISTANCE 

Use is made of the theoreml that an upper-limit, Ru.Q., is given by 

R = 5~Jp/dT 
u.R. -r S5' -;. citf' 

-I 
where pis the resistivity of the material and J is an assumed current 

distribution (for which div J = 0) such that p f is not necessarily derivable 

Contribut~on No. 668. 

J.F. Carlson and T.J. Hendrickson. 1')53. Variational methods for 
problems in resistance. Ames Laboratory Manuscript LR-132: Jour. 
Appl. Physics 24:1462-1465. 

2 Cf. W .R. Smythe. Static and Dynamic Electricity (McGraw-Hill Book 
Company, Inc., New York, 1950) second edition, sect. 6. ll, p. 233; 
or see Appendix I. This theorem is analogous to Thornson's theorem 
i.n electrostatics. 
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from a pokntial or, if it is, the potential from which it may be derived 
is not necessarily constant over the electrodes. 

In tern1s of any assumed en1ergent current distribution, Jn, at one of 
the elt:ctrodes (designated as electrode number two), it is appropriate 
to consider the current distribution throughout the resistive medium to 

be 

r l 
p grad SS11 1 Jnds, 

where Ji. 1 is a Green's function, of 1 and J:/1, such that 

(i) 

(ii) 

(iii) 

1 /./ __, 7 
div(-p grad"'-d =- B(r-r'), 

1:! 1 = 0 on electrode number 1, and 

()1/1=0 
an on the other boundaries of the resistive 

mate rial. 

1:J 1 thus represents the 'potential arising from a point source of unit 
current when electrode number one serves as the sink. 

~-=0 
ill1. 

aJ;=o 
an. f2ZZZI 

c:=::J -
KEY 

RESISTIVE MATERIAL 

INSULATING BOUNDARY 
PERFECTLY- CONDUCTING 
ELECTRODES 

It will be noted that the expression considered for J" is such that, if Jn were the 

true distribution of the emergent current, the expression -55 kl J0 ds would 

represent the true potential function for the problen1, save for an arbitrary constant 
term. That this is so is seen from the use of Green's theorem (equivalent to a 

reciprocation theorern for currents}: 

rrV'J'!.f.~.,Jn rrl/l;:~V/<Jn 
V = - jj ds + j.) ds 

= vl - s~· lll Jn ds . 

By the nature of !J 1 as a source-function, the expression considered for 1 will, of 
course, be consistent with the Jn assuzned at the electrode. 
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Ru.(. 
Sjj' (J. grad s~· Ji I Jn ds) dT 

l ss Jn ds r 
SSJ'div (j 55' JJ1 Jn ds) dT 

2 

l ss Jn ds ] 2 

(since div J = 0 
throughout the 
volume) 

SS ds' SS Jn' lf1 (0,i) Jn ds 

[ ss Jn ds J 2 

433 

the integration being only over the surface of electrode number 2, since 
either Jn or tf. 1 will vanish on the other boundaries of the medium. To 
obtain an estimate for the resistance one assumes a functional form for 
the emergent current distribution, Jn, which is presumed not to depart 
violently from the correct distribution and which is sufficiently simple 
to permit performing the indicated integrations without undue difficulty. 
Since the expression for Ru.l. is homogeneous of degree zero in Jn, no 
further normalization is required. 

By way of comparison with the example of Carlson and Hendrickson1 , it is noted 
that 

G 1 = -
1
- (' /j 1 d <1> , 

znp j 
l 

[ 
nb' 1 K, = T G, - I at z = J. (i.e., at electrode number 2), and 

X (r) oc Jn(r) 

Hence, for that case, 

Ru.fl. = P 
5Y X (r') r' G,(r', r) r X (r) dr' dr 

[Sx(r)rdr ]• 

SS r X (r) [K,(r, r') +I ] r' X (r') dr dr' d 
rrb• ( s X (r) r dr r 
.£.1. [I + r] , in agreement with eq. (22) of the paper 
nb l cited (LR-132). 
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C. LOWER LIMIT TO RESISTANCE 

I 

hl• analogy with the procedure of section B, use is made of the theo-
rern3 that a lower limit, Ru.R.' is given by 

1 

R -
Q 0 Q. 0 

sss ~ (grad V) 2 d T 

2 

vo 

where V is a scalar function of position which assumes the specified 
values for the potential on the two electrodes and V 0 represents the 
potential difference between the electrodes. 

It is desirable to consider in this case, in addition to electrodes 1 and 
2, a third surface, number 3, which physically forms a natural extension 
of electrode 2 but wh :h constitutes an insulating boundary in the resist
ance problem of interest. 

~-o ht 

The potentials of electrodes l and 2 are then taken to be V 0 and zero, 
respectively; the actual potential distribution over surface 3 is not known, 
but will be con side red to be given by an assumed trial function, ib 

Following again the procedure of Carlson and Hendrickson1 , use is 
made of a Green's function, 1:1. 2 , such that 

(i) div (~ grad 1:1 2) = - 5 ( ~- r7) 

(ii) 

(iii) 

2J. 2 = 0 on surfaces l, 2, and 3; and 

:J 'H 2/ ;J n = 0 on the other boundaries -of the 
resistive medium. 

2i 2 thus represents the potential ansmg from a point source of unit cur
rent when surfaces 1, 2, and 3 serve as sinks at potential zero. 
. For use in the expression for RtQ. a potential distribution V = V 1 +V 2 

1s employed, where 

3 
See Appendix II; an essentially similar result in electro statics is pre
sented by H. Bateman, "Partial Differential Equations of Mathematical 
Physics" (Dover Publications, New York, 1944), sect. 2.41, p. 152. 
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V1 voSS ..!_ CJ}J2/'d n ds 
p 

jJ q, ? J:/2 
--- ds 

P o n 
and V 2 

It is noted by use of Green· s theorem or by the reciprocation theorem for currents, 
that V 1 represents the potential distribution which would be obtamed if electrode l 
were at potential V 

0
, surfaces 2 and 3 at zero potential, and the remaining surfaces 

remained current barriers; similarly Vz. is the potential corresponding to a distri
bution iP over surface 3, with electrodes l and 2 grounded and with the remaining 
surfaces impervious. The composite potential distribution V would be, in fact, the 
correct potential function for the problem at hand if the actual potential distribution 
over surface 3 were substituted for 41 • 

By making use of the form adopted for V 

sss (Y'V1 + V'V 2)
2 

dT 

R} r, = p 
•. x • 2 

vo 

SSS'~ {Y'VJ)
2

dT + 2 sss ~ V' V 1 . V' V 2 d T + sss ~ (V' V 2)
2 

dT 

v 2 
0 

ss 1 
<JVI 1 ss VI ;;JV2 1 ss· V2 ;?V1 - - ds + - 2 

- - ds + - --- ds 
Vo p an Vo 1 

p on 2 p d n 
v 0 3 

+ ss V 2 ~3V2 ds -- ---
2 p 

V 
0 

, Jn 

ss ss 
z 

2 <I> 0 Vz - ds ds' 

Ro vo ' 0 non' 3 I pp 

2 

_1 ss ss !_ ;) l;/2 ~ ds ds' , 
V 2 p ;) n d n' p 

0 

where R
0 

is the resistance obtained when electrode 1 is at the potential 

V 
0 

and both surfaces 2 and 3 are grounded. 
It is convenient to introduce the relative distribution of potential on 

surface 3: 

if :: <I> /V 0 

436 

whereupon 

1 

R.V.Q. R 
- 2 jj ss 

0 

L. JACKSON LASLETT 

2Jl 
w ~ ds ds'-

pf)7 ,1 n 'J n' 
rr ('(' w d 

2 !! 2 

JJ Jj p J n J n' 
3 3 

w' ds ds'. 
P' 

This last expression gives an upper limit to the conductance, and hence 
a lower limit to the resistance, in the problem of interest, through the 
use of various trial distributions for the potential on surface 3. In the 
form written it suffers, however, from the disadvantage that not only 
should a reasonable choice be made for the form of the trial potential, 
but also the scaling factor is of importance. For a given trial function, 
x, a scaling factor f may be introduced such that if = fX and the last two 

terms in the expression for 
1 

Ri.R. 
become 

2f ssss X 
pp' 

;) 2' ___ 2. d 
J n (} n' s ds' _ f2 

;/ _}}( 2 

;Jn<)n' ssss~ L ds ds' · p' 

The optimum choice of f, for a given X , is 

s.TS.r x -/Ji2 , J j pp' Jniln' ds ds 
3 I 

f = - j'~ s.r j j X "d
2 

Jj2 X' 
- ~-, dsds 1 

p p 

and the expression for --- assumes the convenient homogeneous form: 
RR.i. 

1 --
RR.R. 

1 - () z [ ss SS X zl/ 
=-+ · pp'JnJn' 

ds ds' ] z 

R 3 I 
0 

ssss X (}21:(2 X' 

p ;} non' --r 
ds ds' 

p 

The physical signiftcaJll~t· uf th·~ chui~·•: of .•:i:l.:ale factor may be sccn in thL· (ollow
ing m:l.:m.-;r: Fur the ~ distribution of voltage ow r surfact:: 3, the currt•nt 
dt..!nstty, J 11 = -{1.' p)(~)V 'dn), v.ill Uc z:cro at each point on surface 3; thus 

~ ~~ l ,, 1 ) l Jl .,.( ,., ' 
-,(:l :.! l.'' n.ln' ds' +- ) - J .:: l.rj11,l n )ds' 
p f! • IJ I 

l 

w1ll thl·n bt• Zl~ro at each point of surLH·e j, In tlu· pt·es•:nt case the tnal function 

X has been scaled in sud• &way th • .t tl><· '"'''gc<d sr ->Jn ds v.wishn; i.e., su that 

Jl jj' <11 )l.!fl. dsd~'t 
.;p .. ~ n.ln' 

rr II ·• ,'f!, ·•' 
,).) ,),) j, ..JnJn' --;;-. 

ds ds' 

fhis condition Jll!po,;l"d con •V 1h.·r1 .-ll'.Jrly ita·ludt•s th<· C.t~il: 111 whkh llo 

tht• tl'tl<' Vdillt•S of ..p, \/, 1 • 
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1 JV1 
A simplification results in the special case that - -- is independent 

V on 
0 

of position on surface 3 and {say) equals - l;L. This situation arises, 
for example, in a problem in which V 1 represents the potential in a con
ductor of constant cross-section and of constant resistivity across the 
cross-section, as in the example of reference l. In this case the double 
surface integral which appears in the numerator above, and which is 
identical with 

vo ss ~ 

R.e.R. Ro 

a v, 
<Jn 

+ z 
L 

ds, becomes 

[ j~ 

ssss; 
3 3 

X 

p 

~ ss ~ 
L 3 P 

ds J z 

~L~ 
a ndn' p 

ds and we obtain 

ds ds' 

involving integrations only over the surface 3. 

For comparison with the example of Carlson and Hendrickson', one notes that 

for that case 

p ::: con st., 

av, 
Yo ;1;; = -1/i • 

Gz = 2:ps.if,d<j>. 

Kz [- I - n b'£ (1 Z d '1 
dn~n· 

at z = _e (i.e., at electrode 3), 

and 
Pf 
,~ = R 0 . 

Hence, for the example chosen, 

(5x(r)rdr1

2 

R~ .ll.. Ro 

Ro 

/ 
Ro 

R ''(' 0 jj rx (r) [ K 2(r, r') +I ] r' X (r") dr dr' 

ss rx 

A 

A + 

SS rx (r) Kz(r, r') r' X (r') dr dr' 

(r) K 2(r, r') r' X (r') dr dr' + tSx (r) ~~ 
in consistency with eq. (35) of the referenced 
paper (LR-132). 
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D. EXAMPLE 

As an example consider the following "two dimensional" problem, 
which also may be solved rigorously by a simple Schwarz-Christoffel 
transformation when L is large: 

A slab of homogeneous resistive material, of height h, extends from 
x = 0 to b andy= 0 to L. Current enters the specimen at y = L by an 
electrode extending from x = 0 to b and leaves at y = 0 by an electrode 
extending from x = 0 to a. 

O,L 

0,0 o,O b,O 

1. Upper limit: 
In view of the two-dimensional character of this example, it suffices 

to use a Green's function, G 1 , such that 

(i) z G, V x,y =- p8(x,y;x',y'), 

(ii) G 1 = 0 at y = L, and 

(iii) ~ G 1 ja n 0 on the other boWldaries. 

SS Jn(x) G, (x, x') Jn(x') dx dx' 

Then R ;, = f 
u. ' h [JJn(x) dx) 

2 

A suitable fo,rm for the Green's function will be 

co 

A 0 (L-y') + L An cos nnx/b cosh nny/b sinh nn(L-y')/b, for y< y' 

co 

A 0 (L-y) + L An cos nnx/n sinh nn(L-y)/b cosh nn y'/b, for y > y' 

with b [;~·I 
y=y'- [ 

aGl 

CJy ] 
= p 8 

y=y'+ [ 

(x-x') 
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Accordingly, A 0 = P/b 

A 
_ 2 P COB n1Tx'/b 

n - (n?; 1) , and 
1T n cosh n1TL/b 

CXl 

G1(x,O;x',O) = p [_;;+ ~ L 
b 1T n 

4 

cos nnx/b cos nnx'/n tanh nnL/bJ. 

If one selects an assumed approximate distribution function Jn = const. 
(0..::. x L... a) and performs the requisite integrations termwise, 

Ru.i. 

for L large, 

Ru.~. ~ 

[
Laz bz ""' 1 . ] p -- + z3 £.- - smZ n1T a/b tanh n 1rL/b 

b 1T n3 

P [ L Z 
- + 

h b 1T 3 

bz 

az 

p 

h [ ~ + :._ 
b 1T 3 

h az 

L3 

bz 

az 

n 

2: 

sinz n 1Ta/b tanh n1r L/b] , 

~ sinz n1r a/b J 

and 

The term supplementing ~~ represents the estimated addition to the 

resistance of the sample as a result of limiting the area of electrode 

number Z. 

Z. Lower Limit: 
One again makes use of a two-dimensional Green's !unction, Gz, which 

is now required to satisfy the conditions: 

(i) z G 
V x,y z = - p li (x,y;x',y'), 

(ii) Gz = 0 at y = 0, y = L, and 

(iii) 
JGz = 0 at X: 0, X = b 
ox 

4 It should be remarked that Professor Carlson has pointed out that in 
this case the series may be 

G1 (x, 0 :x', 0) ~ p [ ~ 
(Private communication.) 

summed, .when L is large, to 

; .Qn(2l cosnx/b- cosnx'/b I)] 
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Then 

hz [ S x(x) dx 1 z 
+ 

RJ . .('. R
0 

LZ 

).s [
;;JzGz(x,y;x',y')J 

or 

R i.,R. Ro-
pz 

hbz 

h X(x) , X(x')dxdx' 
• dydy y,y'=O 

l 5 x(x) dx r 
55 X (x) [ Gz" + :b] X (x') dx dx' 

A formal expression for the Green's function may be written as 

00 

A
0 

y {L-y') + L An cos nnx/b sinh nny/b sinh nn(L-y')/b, for yL. y'; 

00 

A
0 

y' (L-y) + 2: An cos nnx/n sinh nn (L-y)/b sinh nny' /b, for y 7 y'; 

p 
with A = -0 

Lb 

2 p cos nnx'/b 
(n ~ 1) . A = -n 

1T 
n sinh nnL/b 

For a trial function, X {x), one might prefer to employ a distribution 
which near the electrode is proportional to .vx=a:; for illustrative con
venience, however, the function 

X {x) = 
1T x-a 

2 b-a 

is selected. By formal integration* in the case that L is large, one is 
J.ed to the result 

p 
""'R +-Rn - o znh .cR. cosz nna/b 

for a non-integral 
value of 

b 

* 

--· 2(b-a) 00 z 
"' n b-a)z] £.- [ 1 - (2nll 

Despite the poor performance, with respect to convergence. of the 
series for Gz" it is felt that the character of the series obtained after 
the double integration warrants confidence in the result of proceeding 
formally in this mannt..r (with the particular trial function selected). 
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and 

RJ.!J... 
'"'--' p 

Ro + 21Th 

1T2 

m-
16 

+ 

00 

)---....._ n 

1 
n/m 

when 
b 

2(b-a} 
equals an integer, m 

3. Exact Solution: 

cos 2 n 1T a/b 

[ 
b-a .zJ 2 

1 - (2n-b-) 

441 

As was mentioned in the introductory paragraph of section D, the 
present problem admits of a simple exact solution for L large. A suit
able Schwarz-Christoffel transformation is 5 

[ ''" i :· w = sin-
1 

. 1 ~a 
s1n-

2 b ]· 
At large distances above the x-axis, the potential function is 

V -v 1T y fJ . 1T ·a 
- - - - J(n s1n --

2 b 2b 

and the change of the stream function in traver sing the electrode is 

AU= :!!., 
2 

Accordingly, the exact resistance for L large is 

R ~ f. [_!: 
h b 

2 f n sin ~] 
2b 1T 

4. Numerical Results: 
Values for the supplemental resistance, obtained from the approxi

mate formulas by numerical summation, are given in Table I. 

5 W.R. Smythe, !.:_s., sect. 4.22, pp. 90-91. 

442 

Trial Function 

a/b 1/4 

a/b l/2 

a/b 3/4 

L. JACKSON LASLETT 

TABLE I 

Values of the Supplemental Resistance, 
R-R0 , in units P/2 7th. 

R u.f. R.R,_q, 

Jn = canst. X= sin 7t x-a 
2 b-a 

4. 26 3.04 

l. 70 l. 15 

0.392 0.268 

Rexact 

3.842 

1.386 

0.317 
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APPENDIX I 

Proof of the theorem that the current distribution is such that the 

"heating," 5SS pJz dT, is a minimum for fixed total current: 

-> 4 
Let J 0 be the correct current distribution, and J any other solenoidal 

current distribution corre spending to the same total current, I, at the 
electrodes. 

Then (i) 

(ii) 

(iii) 

It then follows that 

div J:, 

SS
~ -4 
J 0 'ds 

~ 

0 = div J 

:!:I= ss 1·~ and 

p ~ is derivable from a potential: 

~ ~ 
P J 0 = - gradY , withY constant on the 

electrodes. 

sss P (Jz - Joz) dT - 2 S5S p :r:, · <1-~) d T + SSS p( 1-r:)z d T 

- - 2 Sir(~)· (J-i0 ) d T + 5SS p (J-70 )z dT 

_ - 2 ill div [ Y(J-~) 1 d T + 2 sss Y div(J-J:,) d T 

+ sss P (.f_~)z d T 

_ - 2 jJ Y(1-~)· d! + 2 SSS Y div(1-fo) d T 

+ JJS p (-t-~t dT 

sss p C1-~)z d T ~ Q ' 

and the heating is least for the correct current distribution. 
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APPENDIX II 

Proof of the theorem that the potential distribution is such that the 

heating, s~~· {1/P )(grad Y)z dT, is a minimum for a fixed interelectrode 

potential difference: 
Let Y0 be the correct potential distribution, for which 

(i) 
1 

div (-grad Y 0 ) = 0, 
p 

(ii) Y 0 assumes the prescribed potentials at the electrodes, 

and {iii) ~y 
0

/;) n = 0 on the other boundaries. 

Y is taken to correspond to the same potential difference between the 
electrodes and, for convenience, might be considered to assume the same 
values as Y 0 on the electrodes. It then follows that 

sss (vY)2 - (vY ol2 
dT 

p 

2JJJ"'yo·v(Y-Yol dT +j}S[v(Y-Yo)1zdT 

p p 

- 2 ss~· div [ (Y- Y 0 ) 
grad Y 0 

p J d T 

-2 SSS (Y -Y 0 ) div (~gradY 
0

) d T 

+ sss [V (Y-Y 0 ) 1 z 

p 
dT 

- 2SS Y;Ya J yo ds - 2 ('('(' (Y- yo) div( grad Yo) d T 
an Jjj p 

+ sss [ V (Y -PY o) 1 z d T 

SST [v (Y -Y 0 ) l 2 

p 
dT > 0, 

and the heating is least for the correct potential distribution. 
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EVALUATION OF THE ZEROS OF 

CROSS-PRODUCT BESSEL FUNCTIONS 

L. Jackson La-slett and William Lewish* 

ABSTRACT 

Computational results for the characteristic values and characteristic 

solutions of Bessel's equation are presented. Specifically, the results 

pertain to the first two solutions subject to the Neumann boundary condi-

tion at r = a, b and to the first solution subject to the Dirichlet condition, 

when (b-a)/(b+a) is small (0. 1, 0. 01, 0. 001). Approximate analytic for-

mulas are derived to comple~ent the computational results. The possible 

application of the data to phenomena involving the interaction of an intense 

circulating beam and the electromagnetic fields within a particle accelera-

tor is indicated, as is also the utility of the results for estimation of the 

loss -factor, Q, for resonant electromagnetic modes of possibly high order 

within a toroidal vacuum chamber of rectangular cross section. 

I . INTRODUCTION 

In a number of physical or engineering problems in which use of 

cylindrical coordinates is appropriate, separation of variables leads to 

Bessetls differential equatio.n, 

1 d [ dZ] [ z n
2 1 -- r--+q--z Z=O r dr dr r ' 

( 1) 

* Associated with the Department of Statistics, Iowa State University, 

Ames, Iowa 

A resume of the results reported here has been submitted to Mathematics 

of Computation. 
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6 

for the radial dependence of the variable of interest. Solutions are typi-

ca11y sought which satisfy the Dirichlet boundary condition (Z = 0) or 

the Neumann boundary condition (dZ/ dr = 0) at r = a :-nd r = b. If the 

solution to Eq. (1) is written as a linear combination of Bessel and Neu-

mann functions, application of the Dirichlet or Neumann boundary condi-

tions respectively leads to the following equations for determining the eigen-

values, q: 

(Za) 

or 

J I ( q a) y I ( q b) - J I ( q b) y I ( q a) : 0' 
n n n n 

(Zb) 

The zeros of the cross-product Bessel functions which appear on the 

left-hand side of Eqs. (2 a, b) are frequently sought for cases in which n 

is not large, because of the interest in the lower-order modes which are 

possible in the physical problem under consideration. Cases may also arise, 

however, in which attention should be directed to the higher-order modes 

in order to determine the circumstances in which such possibly-unwanted 

modes may become excited. An example of the latter situation is the 

interest which is currently attached to the resonant electromagnetic 

modes which may be excited
1 

within a toroidal vacuum chamber of rec-

tangular cross section by an arlmuthally-modulated circulating beam 

such as that of a particle accelerator. 

1 V. Kelvin Neil, "A Study of Some Coherent Electromagnetic. Effects 

in High Current Particle Accelerators". Ph. D. thesis (Physics, Uni-

versity of California and Lawrence Radiation Laboratory, Berkeley, 

California, 1960, UCRL-9124). 
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Solutions to Eqs. (Za) and (Zb) have been discussed by a number of 

Z-7 . 
writers and results presented in the form of approximate algebraic 

fortnulas, in tables or graphically. For application to problems in 

b-a 
which b+a is small and in which n may be large, however, it appeared 

appropriate to make an independent investigation of the initial roots of 

Eqs. (Za) and (Zb) by study of characteristic solutions to Bessel's equa-

tion (1) in the interval a ~ r ~ b without explicit reference to the usual 

Bessel and Neumann functions. Approximate analytic formulas have 

been obtained for the first characteristic value and function associated 

with the Dirichlet boundary condition and for the first,two eigenvalues 

and functions associated with the Neumann boundary condition. An in-

2 
James McMahon, Ann. of Math. 9, 23-30 (1894). 

3 
A. KaHihne, Zeits. fUr Math. ~: Physik 54, 55-86 (1907). 

4 
William Marshall, Ann. ~Math. !.!_. 153·160 (1910). 

5 
Rohn Truell, J. Appl. Phys . .!_!. 350-352 (1943). 

6 . 
Don K1rkham, J. Math. and Phys. 36, 371-377 (1958). 

7 
W. N. Wong, "Electromagnetic Fields in a Donut Space", Midwestern 

Universities Research Association internal report MURA-555, Madison, 

Wisconsin, 1960. 
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dependent systematic determination of these characteristic values and func-

tions has also been made numerically with the CYCLONE digital elec

tronic computer at Iowa State University for case~ in which~: was as

signed the values 0.001, 0.01, and 0.1 and tor a special set of cases in 

which this quantity was given the value 0. 0001. It is the purpose of this 

report to summarize the results of this analytic work and to present the 

results of the numerical investigation. 

II. TRANSFORMATION OF BESSEL'S EQUATION 

It may be noted that, due to the nature of the customary Bessel func-

tions of high order, and in particular because the function J remains n 

quite small until its argument is comparable to its order, the lowest 

c;haracteristic values, q, will be in the neighborhood of n/b for n large. 

For this reason and to focus attention on the interval a~ r ~ b, it is 

convenient to define 

If -

and 

b-a 
b+a 

x = 2 r - (b+a) I Z 
b-a 

In terms of these quantities+ 

(3a) 

(3b) 

(3c) 

+Physically, it is seen that the quantity'( which is introduced here, re
presents the ratio of the width (b-a) to the diameter (b+a) of the annular 
region under consideration. Fort only slightly less than unity, this re
gion extends substantially from r = 0 to r = b, and the roots qb~a of Eqs. 
(Za) or (2b) may then be expected to approach one-half the corresponding 
roots,/"', of the simpler equations JnVC.) = 0 or Jn' (~) = 0, respectively. 

5-14 



r = b+a 
z ( 1 + t X ) , With -1 ~ X 

and Bessel's equation (1) assumes the form 

ddx [ (I +I( x ) dZ] + 
dx 

r ( 1 + ~ X .)i+ 2 + 1 X 

L 1 +f X 

9 

~ 1' (4) 

3 2 J · 1 n · x Z = 0. 

The solutions to Eq. (5) which are of interest are those for which the 

Dirichlet boundary condition (Z = O) or, alternatively, the Neumann boun-

(5) 

dary condition (dZ/ dx = 0) applies at x = + 1. In the case that the Dirichlet 

boundary condition is to be applied, it is convenient for some purposes to 

make the transformation 

l/2 
5 = ( 1 +-t X ) Z (6) 

in terms of which Eq. (5) may be written 

{r + <1 (7) 

with S(+l) = 0. 

For t ~ ~ 1, the terms in Eqs. (5) and (7) which contain""£ , save 

in some cases those which involve the combination Jr3n 2 , may be 

treated as a perturbation or, in some approximations, ignored~ 

III. APPROXIMATE ANALYTIC FORMULAS 

In a preliminary investigation of the present problem, estimates 

of the characteristic values and an indication of the nature of the charac-

teristic functions were obtained by a variational solution of Eqs. (5) or 

(7). For the present purposes, however, it appears preferable to em-

5-15 



10 

ploy, where applicable, a standard perturbation procedure, 8 since a 

' 
solution consistent to a certain order of smallness may thereby automati-

cally be obtained. We assume throughout that 1. ""- L 1 and commence 

by considering the case in which I[ 3n 2 also is small. 

(a) Application of Perturbation Method, with 1z 3n
2 

Small 

The differential Eqs. (5) and (7) may be put into an appropriate 

form, to which the standard perturbation procedure 
8 

is directly appli-

cable, by regarding n as the small parameter in terms of which the 

perturbation development is performed, but regarding n as possibly 

sufficiently large that quantities such as Jt 2
n 

2 
or Jt_3n

2 
are not neces-

sarily negligible. Equations (5) and (7) accordingly are written 

and 

d
2s [ z 1 · 3 z 1 ] ·1 - +'t 2't (n2 - -) · x · S - 3 'l (n --) x 2 S = -( + 
~z 4 4 

.1._2 
4 ) s, 

where the quantities contained within the square brackets are to be re-

garded as the perturbation Hamiltonian acting on the dependent variable-

i.e., H' Z or H'S, respectively--and the quantities - / and -( / + 4'> 
which appear on the right-hand sides of Eqs. (8) and (9) play the role 

8 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co. , Inc., New 

York, 1955), Ed. 2, Chapt. VII, Sect. 25, pp. 151-154. We gratefully 

acknowledge the assistance provided by Dr. C. L. Hammer in discus-

sing with us the use of the perturbation method for which results are de-

scribed in Sect. III(a) of this report. 
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11 

normally filled by the energy in quantum-mechanical applications of the 

perturbation technique. 

The basic solutions to the unperturbed equation, 

= - ;t u ( 1 Oj 

adjusted to be orthonormal in the interval -1 ~ x I. 1, are -
U - l i 1T X , COS '"'X, Sl'n 3 TT X COS 2-x rn -rz, s n T .. 2 • .. , ..... , 

with 

. 2 1 3 
~ rn = (rnn) , rn = 0, I, 1, I, 2, ... , 

for the case that the Neumann boundary condition applies, and 

TT • 
urn = cos z x , s 1n TT x 

3TT 
, cos T x , sin 2 TT x , .... 

with 

2 1 3 ). rn = (rnn) , rn = _ , 1, _ , 2, ... , 
2 2 

for use with the Dirichlet boundary condition. The results of a pertur-

bation analysis of Eq. {8} are then to be obtained fro~ the formulas 
8 

- d m =- :lm +It H'm, m + I[Z ~m H' H' rn,k k,rn 

).k- .l rn 

or 

H' H' rn,k k,rn 
n2 (kl-rn2) 

(11a) 

and 

{lib) 
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with analogous expressions for use with Eq. (9). The matrix elements 

H'k, rn in Eqs. (!Ia, b) represent the integral Ll ukH'urn dx. 

(i) Results for the first Neumann solution: 

With m = 0, the matrix elements for Eq. (8) are found, to the desired 

order, to be 

and 

HI -o, 0- - 't3
n

2 
from the x 2 term in H', 

3 
( 12a) 

( 12b) 

from the x term in H', where,!= 2k assumes odd values ( 1, 3, ... ) and 

in which the result has been simplified by anticipating the result that cf 

will be very small (v. i. ). 

By use of Eqs. (11a, b) it then follows that 

( 13a} 

and 
1-1 /) 

(-~ r sin -t 1rx 

(13b) 

9 a The summation of 1/ j.6 for ,/odd, may be determined in terms of the 
Riemann zeta function (Ref. 12, Sect. IX, p. 269): 

~ 1 = 63 " (6) = 63 1r6 = 1T6 
.1 !dd£6 64 {' 64 945 (64)(15) 

(cont.) 
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13 

For small values of ~ 3n 2 , the characteristic solution of concern 

here is, of course, nearly constant. From Eq. (13b), moreover 1 it is 

seen that in particular, 

(13c) 

for 'f3n
2 

small, and the slope at x = 0 similarly is given by 

Z'(o)/ Z(o) = /[n
2 

( 13d) 

The features of the solution indicated by Eqs. ( 13c 1 d) will be checked in 

Sect. IV(a)by comparison with computational results. 

(ii) Results for the first Dirichlet solution: 

With m = .!.. and by use of Eq. (9), results of the desired degree of 
2 

approximation are obtained by application of the perturbation method 

through first order. The desired matrix elements for Eq. (9) are 

H' 1 1 = - ( 1 - Jz ) }( 3 (n2 1 
-·- n- 4 

(14a) 

2 2 
and 

H' 1 
k, 

k 22 2 21 k 
= - (-) 16 ( ; ) i[ ( n - 4 ) ( 4k 2 - 1) 2 (14b) 

2 

9a whereupon 

8( 3.,6 L A, 
'"" ,!,odd ,l 

Eq. (13a) of the text. 

(8) (64) 
= n-b 

11'6 

(64) (15) 
8 

= rs , as employed in 

9b One may readily verify, for the interval -1 ~ x ~ 1, the Fourier 

development 

.!.. ( !_ )4 (X - X 3 ) : 
4 2 3 

. n-
Sln- X 

2 
1 . 311' 1 ' 511' 1 • 7-rr 

- 34 sm T x + s4 sm 2 x - 74 sm T x 

which is used in obtaining Eq. ( 13b) of the text. 

5-19 
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14 

with k = 1, 2, 3,... . Accordingly, by formulas analogous to Eqs. (lla, b), 

and 

11' 
=COS- X 

2 

I . 11' 2 ... 2 6 2 1 .JI4 = ( -2 ) - 'L- + (1 - -2 )(n - -) ., 
4 11' 4 

(I Sa) 

sin knx 

(15b} 

The corresponding form for Z is given by S/ -/ 1 + 'l x Eq. (6) and when 

~ ~ ( 1, will differ little from the form of S itself. To the order con

sidered in the present analysis, the factors (n2 - ! ) If 4 
and (n2 - ! ) 1{ 3 

which appear in Eqs. (lSa, b) might well be replaced by Jt4
n 2 and J{n

2
, 

respectively; we leave the results in the present form, however, since 

these expressions are exact in the case n =.! , for which 
2 

11' 
cos zx 

z p,=+;;:l'(;:x;.. With ~ small, the following simple characteristics of the 

derivative are suggested by Eq. (15b): 

9c The Fourier development 

3 2 
11' 2 . 11' 11' 
-- ( 1 - X )sm- X - -- ' X 
256 2 128 

11' 
coszx 

for -1' x ' 1, is employed to obtain Eq. (lSb) of the text. 
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.-/1-tt vm 

(iii) Results for the second Neumann solution: 

15 

( 15c) 

(15d) 

(15d') 

With m = ! the matrix elements for Eq. (8) are found, to the desired z 
order, to be 

H' 1 1 = - ~ (1 + ~) Jz3nZ -· ( 16a) 

z z 
H'.! I 0 = H'o.! = f! (1 +. -!z. If znz) (16b) 

z z 
so that 

H'1 • H' ~ z + 8( 1Tz )
2 

JIJ
2

n
2 

(16c) 
0 o,! ,, 

z' z 
an.d {I' ., ~ o +ZIt c. 

2 4k2+1 zk2 

H'
1 

= H' 
1 

= 8(-) 1rt n (4kZ-1)Z (4k -1) 

Z • k k, Z . kf 1 _ Z JrZn Z 4k Z + 11 
= -8(-) 4(4kZ- 1) ;z ., (4kl-1)Zj (16d) 

eo that f
1 1 

_ 
1 

H 1 · H 1 ~ 64 16 (4kz_ 1)z 1rZ 
- .k k,_ z z 

( 16e) 

where k = 1. z. 3, ... and in which Eq. {16d) has been obtained through 

use of the fact that, for the present purpose, I is substantially 

5-21 
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It then follows, by application of the formulas ( lla} and (11 b). that 

= ( ; ) 2 + ! f 2 + ( 1 + ~ ) }( 4n 2 
9d,e 

(17a) 

9d Use may be made of the Fourier development 

11'3 2 'TT 3'TT 'TT2 'TT 3'TT2 
--x cos-x (1+-)cos-x --·X 
128 2 32 12 2 64 

. 'TT . 1 
Sln- X "t'-

2 2 

~00 (-}k 1 k 
= (4kZ-1)3 cos 'TTX 

=1 

to simplify the result leading to Eq. (17a) of the text: By setting x = 1 

in this development it follows that 

and 

f~ k=l (4kl- l)J 

5-22 
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'1'1' 1 '1'1' z ,r = sin z x - 2 J( ( x sin 2 x + ;:; cos z x ) 

9e Use may also be made of the Fourier development , 

1 [ '1'1'4 3 . '1'1' '1'1'4 4 . 11' '1'1'1 - _ - X Sln- X -- (1 - - 2 )· X ' Sln- X + '1'1' COS-
32 24 2 8 '1'1' 2 2 

= 8 ~ 6 
k k 2 

(-) (4k 2 -1)4 cos kTrx, 

in which setting x = 1 leads to the result 
00 
.,. k 2 '1'1'4 '1'1'2 

8 m (4kZ - 1)4 = 384 - 64 

17 

By combining this result with the sum found in Ref. (9d) above it follows 

that 

and 

) 

! (1 + ~2 > + ac; >4
{ 1 + 2 2: 

k=l 

1 2 8 2 
=-+-2+-2+-3 '1'1' '1'1' 3 

10 
=l+;z' 

as was employed to obtain Eq. (17a) in the form cited in the text. 
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• 1T 
Bln _X 

z 
1 ,9f,g 

The form of the solution given by Eq. ( 17b) is such as to suggest 

Z(l) : Z(-1) : -

and 

3 z 
; 0. 318310 't + 0. 447316 1 n 

9f The Fourier development 

~Z · x · sin~ x +~cos 1T x 
8 z 4 z 

is employed in obtaining the coefficient of Jr. in Eq. (17b) of the text. 

9g The Fourier development 

1T3 z 1T + _1T ( 1 + _,. z ) 1T ,.z 
-

32 
X COS z X 8 4 COS z X + 16 •X • 

~ k 4k2 + 1 = 1 - z L (-) (4k 2 _ 1)3 cos k1Tx 
k=l 

is likewise employed in obtaining the coefficient of Jt3n 2 in Eq. (17b) of 

the text. 
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The results described in the sub-section (Sect.III(a) may be con-

side red applicable for Jt \1 2 < < 1; of equal or greater interest, however, 

are the results discussed below for "(n2 ) 1. 

(b) Character of Solution When lt3n2 is Large 

In cases for which .tz~ 1.1 but /(n2 is not small, the main features 

of the solutions to Eq. (5) may be obtained conveniently by consideration 

of the simpler equation 

Solutions of this approximate equation, (18), may be written explicitly in 

1 
terrris of Bessel and Neumann functions of order 3 or equivalently, in 

terms of Bessel functions of order.+ ! : 

( 18) 

z = 1/2[ !_3/2 · i3/2J 
~ AJ" 1/3(~ + BJ -1/3 (~) ' (19) 

where 

(20) 

To the extent that Eq. (20) adequately represents the solution to the 

exact differential Eq. (5), the desired eigenvalues, / , may be deter-

mined by solution of 

(2la) 

or 

(21 b) 

for the Dirichlet or Neumann boundary conditions respectively, where 
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.: ( J + 2 '/,3n2)312 
Y+ - 3 )f nl (ZZa) 

= ( /- 2 ;(n2)3/ 2 
y- - 3 I{ n2 

(ZZb) 

and the solutions would be sought by trial, aided by published tables of 

J 
113 

and J . 10 • 11 In the event that { 4( 2. 1en2 , Eqs. (2la, b) may be 
+ +2/3 

expressed more conveniently in terms of the associated Bessel functions as 

(23a) 

or 

(2.3b) 

for the Bessel and Neumann conditions respectively, and with 

{24a) 

(2.4b) 

In any case, of course, characteristic values of d for solutions to Eq. (18) 

must necessarily be somewhat less negative than -2. l(n2 in order that the 

coefficient of Z in Eq. (18) be positive for some values of x in the interval 

-l~x ~1. 

For the purpose of obtaining convenient approximate formulas for the 

characteristic values of i', it is use-ful to note that for Jt3n2 somewhat _ 

10 National Bureau of Standards Computation Laboratory, Tables of Bessel 

Functions of Fractional Order, (Columbia University Press, New York, 

1948-49). vols. I and II. 

11 
G. N. Watson, Theory of Bessel Functions, (Cambridge University Press 

and MacMillan Co. , New York, 1948), Ed. 2.. Note: Y 1/3 = [J 11 3 -2J _1 I~~ i/3. 
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greater than unity (f. ex., for 'l3n2 ) 6) the argument t_ which appears in 

Eqs. (23a, b) becomes sufficiently large that these equations effectively 

reduce to 

(25a) 

or 

(25b) 

respectively. This simplification, which very materially assists the es-

timation of I , corresponds to setting A= Bin Eq. (19) for the solution Z. 

Under these circumstances, then, the solution of interest is taken as 

substantially of the form 

1 2 -- *12 -1;,;'2 -, t I : J 1/3 ( ) + J -1/3 ( ) • for t t 0 • 
? _ 3 n 3 n ' --

(26a) 

1!' 3/2 
f3 i4/3/tfl/2 H (1) (i ~3 ) • for j. ~ 0 

2 ~ 1/3 '( n '"'l 
(26b) 

in which the first Hankel function becomes sufficiently small at x = -1 

as to satisfy adequately the boundary condition normally imposed at that 

point. The Eqs. (25a) or (25b) for the characteristic values J may then 

be considered as arising simply by application of the desired boundary con-

dition at x = + 1. A reasonably good description of the solution Z( x) for 

x < - 2 'l.~n2 --that is, for 4 < 0- -is afforded by replacing Eq. (26 b) 

by its asymptotic form, 

3 't3/2n , ,~,3/32 Z 
Z~ y Z1r ~~~I/4 exp(- 3'1 n ) (~< oJ , {27a) 
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and, with less accuracy, the Eq. (26a) for ~ > 0 may likewise be written 

- 3 t/'f0 1(3/2 n 

~ ~ 1/4 

I_ 3/2 
c 0 s ( ~':---3..-2....---

3 '{ n 
1f 

--) 
4 (~>o). (27b) 

These asymptotic forms, Eqs. (27a, b), may alternatively be obtained directly 
+ 

by use of the W -K-B procedure Ref. 8, Sect. 28, pp. 184 ££ + 

Solution of Eqs. {25a) and (25b) by aid of published tableslO, 11 leads to 

the following simple estimates for the characteristic values S , applicable 

in cases for which If 3n 2 is at least somewhat large in comparison to unity: 

For the first Neumann root: A ~ - 2 1f3n 2 + 1. 617241( 2n4/3 

For the first Dirichlet root: d ~ -2 '13n2 + 3. 7115141f2n4 /3 

For the second Neumann root: S ~ -2 ~t3n2 + 5. 156191(2n4/3 

(28a) 

(28b) 

(28c) 

The numerical factors associated with 1( 2n4/3 in Eqs. (28a, b) are seen, 

as could be expected, to be twice the numerical coefficients given in series 

developments for the first maximum and first zero of Jn when n is largel2 

(Ref. 11, Sect. 15. 83, p. 521; Ref. 12, Sect. VIII. .3. 6, p. 143] . The 

values of Jr3n 2 , at which d = 0 for the first Dirichlet root and for the 

second Neumann root, also may be estimated directly from Eqs. (23a) and 

(23b), again by reference to published tables, 10, 11 as 6. 412 and 17. 133, 

respectively, which do not differ greatly from the values suggested by the 

approximate Eqs. (28b, c). 

The nature of the characteristic solutions is such that, for large values 

+ + The authors are indebted to Dr. A. M. Sessler for calling attention to 

this point. 

12 E. Jahnke and F. Emde, Funktionentafeln,(Dover Publications, New York, 
1945), Ed. 4. 
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of 17 3n 2 , the magnitude of the solutions is large only for x near + 1. A 

more quantitative statement concerning this feature can be made by refer-

ence to a universal curve which is constructed by plotting (Fig. 1) a solu-

/ 

tion of the form of Eqs. (26a, b), 

Z 0<: vl/2 [J l/3(v3f2) + J -J/3(v3/2~ vs. v ( 29) 

with v regarded as linearly dependent upon x in accordance with the rela-

tion 

v= f + 2 JZ3
n 2 x 

32/3~t,2n4/3 
(30) 

The various characteristic solutions of interest may then be considered as 

depicted by the curve of Fig. 1 with the x = 1 boundary located at A 

(v = 0. 7775), B (v = 1. 7843), or C (v = 2. 4788), corresponding respectively 

to the three roots listed in Eqs. (28a, b, c). This representation will be 

substantially correct if Jr3n2 is sufficiently large that the boundary x = -1 

lies well to the left in Fig. 1 in a region where the function has become 

quite small in accord with the Hankel-function form of Eq. (29) appropri-

ate for v (0. 
1 

The function plotted in Fig. 1 is seen to be less than- of its e 

maximum value for v < -0. 52 and thus becomes small in this sense for 

displacements 

dv=1.3,2.3,3.0 

to the left of the points A, B, C, respectively. The corresponding annular 

regions, within which the solution Z assumes prominence, are then, 

delimited by 
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(1 1.35 ).( 
- it n2/ 3 -

X ~ 1 (for the first Neumann 
eigenfunction), 

(3la) 

(1 - 2. 39 ) 
X fl (for the first Dirichlet (31 b) 'tn2/3~ eigenfunction), 

and 

(1 -
3. 12 

I. (for the second Neumann (31 c) 1 n2/ 3)~ X 1 .... 
eigenfunction) 

IV. COMPUTATIONAL RESULTS 

The differential Eq. (5), suitably scaled, was integrated with the CY-

CLONE digital computer at Iowa State University by use of the Runge-

Kutta process. 13, 14 The primary purpose of the work was to determine 

characteristic values of I and to tabulate the corresponding functions for 

solutions satisfying the Neumann or Dirichlet boundary conditions at 

x = + 1, for a number of representative values of n and for 't given in 

turn the values 0. 001, 0. 01, and 0.1. In each case the value of d (or in 

two instances the value of n) was adjusted by trial, to give solutions of the 

desired form, conforming to the prescribed boundary conditions. 

In performing the integration a larger number of steps was employed 

to traverse the interval -1 i: x -' I in cases in which }[ 3n 2 was large 

since more rapid changes of the function occur in certain portions of that 

interval in such cases. The effect of truncation error was found by tests 

13 
S. Gill, Proc. Cambridge Phil. Soc. 47, 96-108 (1951). 

14 D. J. Wheeler, "Solution of a System of Ordinary Differential Equations", 

University of Illinois Computer Laboratory sub-routine F 1-114, (Uni-

versity of Illinois, Urbana, 1953). 
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in which the interval size was halved, to be sufficiently small that use of 

the finer interval only affected the final value of the function or its deri

vative (in the Dirichlet or Neumann cases, respectively) by less than lo- 6 

of the maximum value and the consequent errors in I could thus be 

judged when tabulating the results of the computations. 

In addition to the tabulation of results from the computations outlined 

above, an opportunity was taken to make a limited number of checks of 

the approximate analytic results described in Sect. III. For the purpose 

of obtaining tables of certain integrals of interest in physical application 

of the eigensolutions, a special series of runs was also made with 1 as

signed the small value 0. 0001 and '73n2 given various values in the in

teresting range extending from 1 I 2 to 20. 

We make below, first a brief comparison between some of the compu

tational results and the analytic theory for the form of the eigenfunctions, 

following which the main body of numerical results is presented in tabu

lar and graphical form. 

(a) Computational Checks of Theoretical Results for the Eigenfunctions 

To permit a comparison of the computational results with the theo

retical expressions for the form of the characteristic solutions when 13n2 

is small, Table I lists Z(+l)/Z(-1) and Z'(o)/Z(o) for the first Neumann 

solutions, Table II gives Z'(+l)/Z'(-1) and Z'(o)/Z(o) for the first Dirichlet 

solution, and Table III contains Z(+l)/Z(-1) and Z(o)/Z(-1) for the second 

Dirichlet solution, for examples in which 1 assumes the values 0. 1, 0. 01, 
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Table I. Comparison of observed and theoretical eigenfunctions for first 
Neumann solution. 

Z{+l)/Z{-1) Z'(o)/ Z(o) 
Computer Theory Computer Theory 

0. 1 0. 1 1. 14303 1. 14286 0.0997 0. 1000 

0.01 0.04 1. 054769 1. 054795 0.03998 0.04000 

0.001 0. 1 1. 14249 1. 14286 0.09986 0. 10000 

0.0001 0.5 1.9205 2.0000 0.4841 0.5000 

Table II. Comparison of observed and theoretical eigenfunctions for first 
Dirichlet solution. 

1(3n2 
Z'{+1)/Z'(-l) Z' (o)/ Z(o) 

1 Computer Theory Computer Theory 

0. 1 0. 1 -0.94213 -0.94195 -0.02022 -0.02026 

0.01 0.04 -1.0062312 -1. 0062307 +0.00689435 +0.00689431 

0.001 0. 1 -1.040319 -1. 040326 +0.0292346 +0.0292358 

0.0001 0.5 -1. 2244 -1. 2254 +0. 14851 +0. 14863 
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Table III. Comparison of observed and theoretical eigenfunctions for second~ 
Neumann solution. 

Jt3n2 
Z(+1)/Z(-1) Z(o)/Z(-1) 

Computer Theory Computer Theory 

0. 1 0. 1 -0.8697 -0.8687 0.0717 0.0766 

0.01 0.04 -0."974146 -0.974128 0.0208 0. 0211 

0.001 0. 1 . -0. 95944 -0.95932 0.0441 0.0450 

0.0001 0. 5 -0.8281 -0.8159 0. 199 0.224 

0. 001, and 0. 0001. The theoretical results listed in Tables I-III are cal-

culated from Eqs. (13c, d), (15c, d), and (17c, d) of Sect. III( a). 

The most striking feature of the solutions for large values of 1( 3n2 

is the localization of such solutions to a region close to x = 1. Table IV 

. 1 
presents values of the coordinate x at which the solutlon equals - of its e 

maximum value as determined computationally and as calculated from 

Eqs. (3la, c) of Sect.III(b) for Jt = 0. 0001 and 3 2 J( n = 20. 

1 
Table IV. Coordinate at which the characteristic solutions equal e of 

their maximum value for Jt =0. 0001 and Jt3n2 = 20. 

X 

Solution Computer Theory 

1st Neumann 0.509 0.503 

1st Dirichlet 0. 123 0. 120 

2nd Neumann -0. 143 -0. 149 
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(b) Tabulation of the Eigenvalues and Characteristic Solutions 

The computational results for the eigenvalues for a series of values 

of nand with I( given the values 0. 001,. 0. 01, and 0. 1, are listed in Table V. 

Included in Table V, for comparative purpose·s, are also characteristic 

values of i for Jt = 1, obtained from published tables 15 ·6! Bessel func-

tions of the first kind. Entries are also given for r;= 0. 001, ·which indi

cate the values of n at which the values of I for the first Dirichlet solu-

tion and for the second Neumann solution pass through zero (n = 80110 and 

130953, respectively); from the discussion of Sect.III(b) it was to be ex

pected that with If small, these roots would occur when 173n 2 = 6. 412 

and 17. 133, or at n~ 8. 007 x 104 and 1. 309 x 105 in the case ~ = 0. 001. 

The general dependence of the eigenvalues on n is depicted in ~ig. Z, in 

which hyperbolic scales 16 are used for the ordinates and abscisae, in 

order to provide a substantially linear scale near the origin. 

The character of the solutions associated with the computational re-

suits summarized in Table V, is described by the reproductions of the 

teleprinter output from the computer, which are included with this report, 

and in the accompanying graphs (Figs. 3-ZO) of selected eigenfunctions. 

15 Harvard University Computation Laboratory, Tables of Bessel Func-

tions of the First Kind, (Harvard University Press, Cambridge, Mas-

sachusetts, 1948), vols. III, IV, V, VII, & IX. 

16 
R. Legros, Ann. phys. 

I 

(Ser. lZ) .!_, 335-356 (1946). 
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Table V. Value• of J for the fir11t Neumann eigenvalue, the first Dirichlet eigenvalue, and the second Neumann eigenvalue. 

~: 
Root; 

-
n=O 

1/Z 
I 
z 
5 
10 
zo 
30 
40 
50 
75 
100 
!50 
zoo 
500 
1000 
1500 
zooo 
Z500 
3000 
4000 
5000 
10000 
zoooo 
50000 
75000 
80110 
100000 
130953 
150000 
zooooo 

0 
0 
0 
o· 
0 
0 
0 

0 

0 

N 
I 

'l" 

o.oooooooz 
0.00000004 

0.001 
D 

I Nz Nl 

Z.4674011 Z.46740Z09 0 

II 

II 

z. 46740ZI II • OOOOOlZ 

Z.4674011 Z.46740Zl0 .0000050 

Z.4674011 Z.46740Zll -O.OOOOZO 

Z.4674011 Z.46740Zl7 -0.0007ZO 
Z.4674015 Z.46740Z6 -0.03Z070 

-O.OOOOOOZO. Z.4674014 Z.4674046 -0.4560Z5 
-1.717081 

-0.000007ZO Z.4674015 Z.4674169 -3. 876713 
-6.9Z1675 

-10.857817 
-ZI. 440133 

-0.00032495 z. 467367 Z.4677163 -35.68ZZ79 
-0.005Z90 z. 466738 Z.4718184 
-0.08Z838 z. 456331 z. 533433 
-Z.030430 Z.04Z788 3. 787091 
-6. 1Z7374 0. 515508 4.811675 

0 
-1Z.476797 -Z. 763631 3.907135 

0 
-3Z.066830 -15.395587 -3.890509 
-60.999918 -36.537911 -19.657327 

a 
From publi•hed table•. 15 

f•O. 01 
D 

I 

Z.467376 

z. 467377 
Z.467378 

z. 467386 

Z.467409 

Z.4674Zl 
Z.463969 
Z.40150Z 
Z. 130Z64 
I. 441630 
0. 145494 

-I. 875544 
-8. Z8747Z 

-17.9938ZZ 

N 
l Nl 

z. 467476 0 
.00000839 

0. 0000330 
0.0001Z55 
0. 0005019 

Z.467478 -0.0019893 
Z.467484 -0.0680405 

-0. 335704 
-0.905569 

Z.4675Z9 -1. 799Z05 
-5.418144 

2. 4677ZO -ll.00931Z 
-28.Zl0824 

2. 468957 -53.56333 
Z.498479 
2.835Z14 
3.657827 
4. 53500Z 
4.843058 
4.303889 
0.828077 

-5.740178 

I(• 0. 1 

01 

Z.4648915 
z. 4649013 
Z.4649308 
Z.4650481 
Z. 465833Z 
Z.4681254 
l. 46934Z6 
Z.4435640 
Z.3513268 
z. 143523 
0.8024951 

-l. 103247 
-13. Z85380 
-31. 95612Z 

Nz Nl 

1•1. oa 
01 

Z.4749309 (O) 1.445797 
2.474989 0.089633 Z.217401 1 
Z.4751343 -0. 15Z511 Z.670493 
2.4757499 -1.667909 z. 593654 
Z.4802714 -14.709967 -5.765268 
Z.4994189 -65.361612-47.614970 
Z.6189112-276.5774 -238.492 
Z.9276509 
3.4493650 
4.0878274 
5. 142091 
4. 361139 

-Z. 541564 
-16. 514506 

Nz 

"" 0 

3. 670493 
5.049703 
6. 106071 
7.Z43048 
z. 666867 

-3l. 367035 
-Z08.010 
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FIG. 3 '1 = 0.001 ~ n = 2000 
8 = -0.0000072 FOR N1 

-1.0 • 2.4674015 FOR 0 
= 2.4674169 FOR N2 
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FIG.4 .,•0.001; n•IO,OOO 

8 =-0.005290 FOR N1 
-1.0 • 2.466738 FOR 0 

• 2.4718184 FOR N2 
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-.a 
FIG. 5 '1 = 0. 001 ; n = 20,000 

8=-Q082938 FOR N1 
-1.0 = 2.456331 FOR 0 

= 2.53343_3 FOR N2 
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FIG. 6 '1 = 0. 001 i n = 50,000 
8= -2.030430 FOR N1 

-1.0 • 2.042788 FOR 0 
= 3.787091 FOR N2 
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FIG. 7 'I = 0.001 ; n = 100,000 

8 • -12.476797 FOR N1 
-1.0 = -2.763631 FOR D 

• 3. 907135 FOR N2 
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FIG. 8 ,=0.001 ~ n = 200,000 

8= -60999918 FOR N1 
-1.0 =-36.537911 FOR 0 
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FIG.9 '1=0.01 i n•IOO 

8= -0.000020 FOR N1 
-1.0 = 2.467409 FOR 0 

= 2.467720 FOR N2 
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FIG. 10 'I • 0.01 ; n • 200 

a= -0.000720 FOR N I 
-1.0 • 2.467421 FOR D 

• 2.468957 FOR N2 
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FIG. II '1 = 0.01 ; n = 500 

8 =-0.032070 FOR N1 
-1.0 = 2.463969 FOR 0 

= 2.498479 FOR N
2 
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FIG. 12 "1 = 0.01 ; n = 1000 

8 =-0.456025 FOR N1 
-1.0 = 2.401502 FOR 0 

= 2.835214 FOR N
2 
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FIG. 13 ,=0.01 ; n•2000 
8=-3.876713 FOR N1 

-1.0 = 1.441630 FOR D 
= 4.535002 FOR N

2 
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FIG. 14 '7 = 0.01 ; n= 5000 

8 =- 35.682279 FOR N 1 
-J.O •-17. 993822 FOR 0 

•-5.740178 FOR N2 
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FIG.I5 "1 = 0.1 ; n = 2 

8: 0.0001255 FOR N1 
-1.0 = 2.4650481 FOR 0 

• 2.4757499 FOR N2 
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FIG. 16 'I • 0.1 ; n • 10 

8 •-0.0019893 FOR N1 
-1.0 • 2.4681254 FOR 0 

= 2.4994189 FOR N2 
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FIG.I7 ,=0.1; n•30 

8=-0.335704 FOR Nt 
-1.0 • 2.4435640 FOR D 

• 2. 92 76509 FOR N2 
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FIG.I8 "1=0.1; n=50 
8= -t. 799205 FOR N 1 

= 2.143523 FOR D 
= 4.087827 FOR N2 
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-.a 
FIG. 19 '7 =0.1 ; n = 100 

8=-11.009312 FOR N
1 

-t.o =- 2.103247 FOR 0 
= 4.361139 FOR N2 
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FIG. 20 '1 = 0.1; n= 200 
8=-53.56333 FOR N1 
= -31.956122 FOR 0 
= -16.514506 FOR N2 
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so 

The output format for the Neumann solutions is to be interpreted as 

follows, where the subscripts 1 and Z serve to distinguish two compu-

tations, for identical values of .>t, and n, made in the course of a single 

run, and s is an integer employed in scaling the program: 

a Total Steps 
bteps 
between Z -s (Total steps) 
orints D 

I lt I I 'l /zs-l I I N I ~ ~ 
:=:' =z s=-l=(x+~l ) .. II~ ==z=l =:II:= =P=l =..' l.....__z z_l ..._I _P_z" __.. 

(~ )Z D d 1 dZ. 
N = zs-111' ' = (zs-l1r)Z • p = zs-111' dx 

For the Dirichlet solutions the same format is used except DZ, Zz, and P Z 

are omitted. 

A comparison between the computationally-determined values of J 

and the predictions of the approximate theoretical results of Sect. III is 

provided by Table VI. A similar comparison of the characteristic func-

tions was presented previously, in connection with Tables I-IV. 
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Table VI. Characteristic values, d , as determined computationally and as estimated by theoretical formulas. 

~ 
First Neumann Eigenvalue First Dirichlet Eigenvalue Second Neumann Eigenvalue 

n Small-n Computer Large-n Small-n Computer Large-n Small-n Computer LaY"ge-n 
Formula Result Formula Formula Result Formula Formula Result Formula 

0.001 0 0 2.467400850 z. 4674011 2.467401850 2.46740209 
zo 0 2.467400850 2.4674021 2.467401851 2.46740209 
50 0 2.467400851 z. 4674011 2.467401855 2.46740210 
75 2.467400852 2.46740186 
100 0.000000003 0 2.467400854 z. 4674011 z. 46740187 2.46740211 
zoo 0.000000012 0.00000002 2.467400866 2.4674011 z. 46740193 2.46740217 
500 0.000000050 0.00000004 2.467400948 2.4674015 2.46740235 2.4674026 
1000 -0.0000002 -0.00000020 2.467401242 2.4674014 2.46740386 z. 4674046 
2000 -0.0000072 -0. 00000720 2.467402419 2.4674015 2.46740990 2.4674169 
5000 -0. 000325 -0.00032495 2.467410652 2.467367 z. 46745218 2.4677163 
10000 -0.0053 -0.005290 2.467440058 2.466738 2.46760317 2.4718184 
20000 -0.0852 -0.082838 +0.07797 2.467557679 2.456331 1. z 149 2.46820714 z. 533433 I. 9992 
50000 -3. 3325 -2.030430 -2.0210 2.468381033 2.042788 1. 8367 2. 47243490 3. 787091 4.4978 
100000 -12.476797 -12.4934 -2.763631 -2. 7727 3.907135 3. 93l9 
200000 -60.999918 -61. 0846 -36. 537911 -36. 5899 -19.657327 -19.6928 

0.01 0 0 0 2.4673761 2.467376 2.4674761 2. 467476 
1/2 2. 4673761 2.467376 2.4674761 

Ul 1 2.4673761 z. 467376 2.4674761 2.467476 
I z 2. 4673761 2.4674762 2.467476 
Ul 
-..1 5 0 2. 4673762 z. 467376 2.4674766 2.467476 

10 0 2.4673765 2.467377 2.4674781 2.467478 
zo. 0.0000012 2. 4673777 z. 467378 2.4674842 2.467484 
50 +0.000005 0.0000050 z. 4673859 2. 467386 2.4675264 2.467529 
100 -0.00002 -0.000020 2.4674153 2.467409 2.4676774 2. 467720 
zoo -0.00072 -0.000720 2.4675329 2. 467421 2.4682814 2. 468957 
500 -0. 0325 -0.032070 2.4683563 2.463969 z. 4725091 2.498479 
1000 -0. 530 -0.456025 -0. 38278 2.4712968 2.401502 1. 7115 2.4876083 2.835214 3. 1562 
1500 -2. 6925 -1.717081 -I. 7231 2.4761977 2. 130264 1. 8729 2.5127735 3.657827 4. 3535 
zooo -3. 876713 -3.9248 2.4830590 I. 441630 I. 3524 (Z. 5480048) 4. 535002 4.9928 
2500 -6.921675 -7.0127 0. 145494 0.0932 4.843058 4.9951 
3000 -10.857817 -11.0026 -I. 875544 -1.9412 4. 303889 4. 3095 
4000 -21.440133 -21.7312 -8.287472 -8.4334 0. 828077 0. 73'18 
5000 -35.682279 -36. 1728 -17.993822 -18.2670 -5.740178 -5.9152 

0. 1 0 0 0 2. 4648913 2.4648915 2.4749011 2.4749309 
1/2 0.0000083 0.00000839 2. 4649011 2. 4649013 2. 4749514 2.474989 
1 0. 0000328 0. 0000330 2.4649305 2.4649308 2.4751024 2.4751343 
2 0.0001248 0.0001255 2.4650481 2.4650481 2.4757064 2.4757499 
5 0.0005 0.0005019 2.4658715 2. 4658332 z. 4799341 2.4802714 
10 -0.002 -0.0019893 2.4688120 2.4681254 2. 4'1503 33 2.4994189 
20 -0.072 -0.0680405 +0. 07797 2. 4805742 2.4693426 1. 2149 2. 5554298 2.6189112 1.9992 
30 -0.402 -0. 335704 -0.2925 2.5001779 2.4435640 1. 6598 2.6560<)08 2.9276509 3.0064 
40 -I. 312 -0.905569 -0.9876 z. 5276230 z. 3513Z68 I. 8773 2. 7970160 3.4493650 3.8536 
50 -3.25 -1. 799205 -2.0210 z. 5629095 z. 1435Z3 I. 8367 (2. 9782.057) 4.0878274 4. 4'178 
75 -5.418144 -6. 1349 (Z. 6854323) 0.8024951 0.4890 5. 142091 5.0584 
100 -11.009312 -12.4934 -2. 103247 -2. 7727 4. 361139 3.'1329 
!50 -28.210824 -32. 1107 -13. 285380 -15.4195 -Z. 541564 -3.9055 "' 
zoo -53.563133 -61.0846 -31. 9561 Zl -36. 5899 -16. 514506 -19. 6<1l8 
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(c) Integrals of the Eigenfunctions 

In particular physical applications such as occur in determining the 

feedback between a centrally-located beam and the electromagnetic fields 

within a toroidal vacuum chamber or in estimating the loss figure (Q) for 

a resonant mode, certain integrals of the characteristic solutions will be 

found useful and in a sense may be regarded as providing a normalization 

factor for solutions of otherwise arbitrary magnitude. To obtain such in-

tegrals as would be generally useful, in an approximate sense, when )t 

is small, three special series of computer runs were made, with Jt = 0. 0001 

and with '7 3n 2 assigned values generally in the range ! to 20, from the 

results of which the requisite integrals were evaluated by an approximate 

hand calculation. The character of some of the solutions obtained in these 

runs is illustrated by Figs. 21, 22, and 23. The salient features of the so-

lutions and the values determined for the integrals are summarized in 

Tables VII, VIII, and IX. The particular quantities denoted 

F 1 = ( ~, 2 [? z I d X 1 0 2 

11' £I z2 dx 

-1 

a=~ -r z2 dx 

j_l 

f 12 _ 2 2. dZ/dx 
, and F = (-)O 

z 11' (1 zZ dx 

1-1 

** also 

are plotted in Figs. 2.4, 2.5, and 2.6, for the first Neumann solution, the 

** The quantities F and G are seen to be so defined that if Z were a simple 

circular function, sin·~ x or cos ; x , respectively, these quantities 

would become equal to unity. 
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first Dirichlet solution, and the second Neumann solution, respectively. 

Table VII. Salient features and integrated square of first characteristic so-
1ution subject to the Neumann boundary condition. }t = 0. 0001. 

2 z.a &z/dx] o £1 z2dx !:. 2 ~Z/dx]o2 Jt 3n 1 
( ,) {/ 2 

zf zf Zdx 

z2 -1 
f 

l/2 -0. 127783 0.52069 0.3576 1. 1780 0.0440 

1 -0.46206 0.28920 0.5228 0.8719 0. 1270 

2 -1.4544 0.11072 0.6245 0.6531 0.2420 

3 -2.6424 0.05144 0.6273 0.5634 0.2831 

4 -3.927 0.02681 0.6015 0.5102 0.2874 

5 -5.2714 0.01506 0.56655 0.4732 0.2749 

6 -6.6595 0.00893 0.5293 0.4451 0.2551 

8 -9.5299 0.00352 0.4575 0.4044 0.2098 

10 -12.492 0.00154 0.3942 0.3754 0. 1678 

15 -20. 161 0.00026 0.2738 0.3279 0.0926 

20 -28.081 0.00006 0. 1941 0.2979 0.0512 

a The subscripts i and f refer to the initial and final values, at x = -1 and x = +1, 

respectively; the subscript o refers to the midpoint of the interval, at x = 0. 
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Table VIII. Salient features and integrated square of first characteristic 
solution subject to the Dirichlet boundary condition. 'l = 0. 0001. 

Jt3n2 (dZ/dx] ia Z(o} £lz2dx ~ 
(dZ/dx] f 

1 
@z!~ .f 

(dZ/dx' l £ z
2 

dx 1 

1/2 2.44989 -0 81674 -0.57593 0.33307 0.9959 

1 2. 39757 -0.66744 -0.52222 0.27734 0.9833 

2 2. 19214 -0.44766 -0.43275 0. 19993 0.9367 

3 1.86207 -0.30299 -0.36266 . 0. 15139 0.8688 

4 1. 42218 -0.20749 -0.30734 0. 11964 0.7895 

5 0.88798 -0. 14394 -0.26319 0.09794 0.7073 

6 0.27375 -0. 10118 -0.22752 0.08249 0.6275 

8 -1. 14815 -0.05192 -0.17412 0.06234 0.4863 

10 -2.77031 -0.02786 -0. 13669 0.04997 0.3739 

15 -7.42438 -0.00686 -0.08063 0.03287 0. 1978 

20 -12.6550 -0.00199 -0.05119 0.02500 0. 1048 

a 
The subscripts i and f refer to the initial and final values, at x = -1 

and x = + 1, respectively. 
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Table IX. Salient features and integrated square of second characteristic 
solution subject to the Neumann boundary condition. Jt = 0. 0001. 

3 2 
~n 

l/2 2.5405 

1 2.8182 

2 3.4688 

3 4.0673 

4 4.5023 

5 4.7470 

6 4.8154 

8 4.5447 

10 3.9027 

15 1. 3587 

20 -2.0086 

30 -10.2162 

-1. 2076 

-1. 3666 

-1. 4092 

-1.2001 

-0.9222 

-0.6744 

-0.4846 

-0.2525 

-0. 1371 

-0.0352 

-0.0107 

-0.00136 

1. 7294 

1. 8363 

1. 7648 

1. 3936 

0.8964 

0.3950 

-0.0546 

-0.7599 

-1. 2495 

-1. 8894 

-2.0731 

-1. 9083 

/

1 z2dx 

1 
z 2 

£ 

1. 2822 

1. 6454 

2.1311 

2. 1419 

1. 9347 

1. 6864 

1.5420 

1.3297 

1. 2103 

1.0466 

0.9500 

0.8298 

0.9454 

0.8306 

0.5923 

0.3675 

0. 1683 

0.0375 

0.0008 

0. 1760 

0.5288 

1.3825 

1. 833 4 

1. 779 

a T~e subscripts i and f refer to the initial and final values, at x = -1 and 

x = + l, respectively; the subscript o refers to the midpoint of the interval, 

at x = 0. 
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V. CONCLUSION 

The analytic and computational work presented in this report provides 

information concerning the characteristic values of J , and for the 

shape of the first characteristic functions when the parameter 1 is small. 

Since the contribution from {.makes a relatively small change, in the 

characteristic value for the original Bessel equation when n is large, use 

of Eq. {3b) in connection with the values of d found here should afford 

accurate characteristic values for q in such cases. 

In application of these results to the excitation of electromagnetic 

modes by an azimuthally-modulated beam circulating within the vacuum 

chamber of a particle accelerator, however, the quantity J enters essen-

tially directly in determining whether or not a resonant electromagnetic 

mode is excited by the beam. With a modulated coasting beam moving at 

a radius R
0 

with an angular speed W 
0 

=P c/RB, the cp, t dependence of the 

charge -current density and hence of the electromagnetic fields, may be 

expressed in terms of circular!unctions of argument n(cp-U) 0 t). For 

the radial dependence of the fields one employs, of course, Bessel func-

tions {or their deriv,atives), Zn{qr). The axial variation, finally, may be 

expressed in terms of circular functions, whose argument we may denote 

by 1( z. Maxwell's equations for the electromagnetic field then require 

the relation 

"=2 = 
n2w Q2 

cZ - q 
2 

= 
n2 tl 2 

q2 
RB z 
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By introducing the average radius of the chamber, R = b + a this rela-Av- z 

tion may be put in the convenient form 

Resonant excitation of the chamber will occur if 1c times the chamber 

height, h, is an odd multiple of 'li: 

"'k = (2m+ l)rr/h 

The resonant values of q are thus such that 

(qRA )2 = nz( (J RAv )2 - [czm + l)rr 
v , RB 

Of r , , ( --- bb +- aa ) d h ( b ) or, in terms <' ., , and the chamber wi t w = - a , 

,f = (1f n)2 [ {PRR:v )2 - ~ [(m + ! )n :] 2 

Typically (3 RAv/RB will be close to unity (for a relativistic beam moving 

close to the center of the aperture) and w /h, although normally greater 

than unity, will not be large. For resonance to occur then, it usually may 

be expected that 6 would have to be somewhat negative, and hence, for the 

lower-order resonant modes, 1z3nZ would be roughly of order unity. 

As one example of resonance associated with the first Neumann root 

corresponding to a transverse -electric (TE) mode of oscillation, one may 

note that It = 0. 01 and n : 2000 leads to an eigenvalue J = -3. 88. If 

I RAviRB = 1, resonance would occur in this case with m = 0 for 

w '; ! h. For this example If n = 20 and 7z3n2 = 4. If ~3n2 becomes 

quite large, of course, the mutual coupling between the beam and the 
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electromagnetic fields (involving the factors For G shown in Figs. 24-26 and 

listed in Tables VII-IX) may be greatly reduced, due to the local' zation 
& 

of the characteristic functions close to the outer wall of the vacuum cham-

ber. In any case, with Jt quite small as is typical of modern high-energy 

accelerators, the values of the harmonic number, n, which could lead to 

resonance will necessarily be quite large. The possibility of a self-gener-

ated instability resulting from the mutual interaction between an intense 

coasting beam and the associated electromagnetic fields, however, lends 

interest to a study of these high-order modes. 

The loss-factor, Q, associated with the resonant electromagnetic 

modes of a toroidal vacuum chamber, can also be estimated, when )l is 

small and (in particular) with n large, from the results given in this re-

port. The evaluation of 

1 = 
Q 

<':Power Loss) Av 

Ltl (Energy Stored) 
(32) 

for a transverse electric (TE) mode leads to 17 

(I + ~ fZ{a!] ~ Jfz(b)] 
2 ~, 

b Z(b)J J[bz2r dr ~ . 
1a .; 

(33a) 

- W · _ resistivity -~0 W . ( k' d th) 
where K = 7 ' Rsurf. -skin depth - 2 s 10 ep 

Zspace =y~0 1 ( 
0 
=~0c = 411' x 1o-7 x 3 x 108 = 1201r = 377 ohms, and Z(r) 

satisfies the Neumann boundary condition at r = a, b. When a and b 

are nearly equal ( >t < < 1), the result given by Eq. (33a) can be simplified 

17 
The loss -factor, Q, of a toroidal cavity can be obtained for the TE modes 

( O:mt. on pg. 67) 
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by use of the field components {rationalized MKS units) 

B<P = -n ~ sin "kJ sin n cp cos w t 

dZ ' 
Br = dr sin k )- cos n cp cos w t 

2 
Bz =-: Z cos'k)- cos n <P cosw t 

w dZ 
Eq, = ;r dr cos '1f ;- cos n cp sin w t 

E = n ~ ~ cos 7r z. sin n cp sin 14) t 
r 1c r rT 

. 2 2 2 2 
E z = 0. Wl th q + 1t = ( w I c) = K 

representing standing waves of a resonant TE mode. Application of Eq. (32) 

then leads to Eq. (33a) of the text. In the special case of a pill box (a= 0 

and Z(r) = Jn(qr)J , Eq. (33a) simplifies to 

.!.. = 4 Rsurf. ! [7<2 + _!_ q4b2 + n2 1c 2 
Q z K 3 h 2b q b2 - n2 space 

which may be seen to agree with a result given by Smythe 18 (Sect. 15. 17, 

Eq. (8), p. 535) in which his a becomes our b, d becomes h, m becomes 

n, p becomes 7Ch/tr, (1 mn becomes q, {1 mnp becomes K, and his 

..Ar .M J-J may be identified as R f/ Z . Similarly with a circular-func-
./ sur space 

tion distribution for Z, as could be the case for Jt and 
3 2 >i, n both small, 

Eq. {33b) of the text may be expressed as 

R f 1 r~2 oz..2k2 .... + (k2 + k2 ,2 J 1 ~ 4 sur . 'i()-"' + " 't' r ; 
Q Zspace K h (k2r + k2 q,) w 

in which kq, has been employed to denote n/R, and we note q 2 ~ k 2 r + k 2 q,· 

This result too, may be seen to agree with a formula given by Smythe 18 

(Sect. 15. 16, Eq. (9), p. 534) for a rectangular resonator, in which his 

5-71 



66 
(R~~- '\ c.-..t-.) 

a becomes our w , d becomes h, m becomes kr w /TT, n becomes kq,b/TT, 

p becomes 1C h/TT, and we let his b _. oo to eliminate inclusion of losses 

from the end walls of Smythe's cavity. 

18 William R. Smythe, Static and Dynamic Electricity (McGraw-Hill Book 

Co., Inc., New York, 1950), Ed. 2. 
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to 

..!_ ~ 4 Rsurf. 

Q zspace 
~2[1 K1 h + 

2 4 [zt_p1 2 [z(l)J2) 
I (RZn +tz.>(l+L~J )jizzdx-r 

2q2w ~ 1 

-1 ""' 

(33b} 

b+a 
where R denotes the average radius, 

2 
w represents the width, b - a, 

and Z is now regarded as a function of x. Values of Z(-1)/Z(+l) and of 

[: 72/'(1 2 3 2 Z(l) J _ Z dx for representative values of '? n , are obtainable from 

-1 
Tables VIII and IX for the first two solutions conforming to the Neumann boun-

dary condition. 

Similarly, the result for a transverse magnetic (TM) mode is 19 

.!.. = 4 Rsurf. .!.. f.!..+ b [1 + ~ (dZ/ dr)a 2] (dZ/ dr)b 2 J (34a) 
Q Zspace K h 4q2 b (dZ/dr) 2 lb 

b z2 r dr 
a 

where Z(r) satisfies the Dirichl~t boundary condition at r = a, b. Again, 

when a and b are nearly equal, Eq. (34a) may conveniently be simplified 

to 

.!.. ~ 4 Rsurf. .!.. [.!.. + 2 
3 

[1 + ~ (dZ/ dxh 
2] (dZ/ dx)/ J (34b) 

Q Zspace K h q2 w . b (dZ/ dx)fZ r 1 z2dx 

(dZ/dx)· (dZ/dx)f2 /_1 3 2 
Values of 1 and of , for representative values of ~ n , 

(dZ/ dx)f r 1 z2dx ·c 
/-1 

are obtainable from Table VIII for the first Dirichlet solution. 

19 The loss-factor for a TM mode can be obtained by use of the field compo-

nents 

B "' dZ . - ~ ..~,. . q,=cr1c' dr sm"g cosn't'smwt 

B =n c.J zr sin?<~sinn..l..sinc.Jt r "ZZ1C cr 't' 

Bz = 0 
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(Ref. 19 cont. ) 

z 
Ecp = - n -;-cos 1r ;,sin n cp cos qJ t 

E = dZ c. os 7r.L cos n cp cos w t 
r dr tT 

E = q2 z k Z sin 'kJ- cos n cp cos W t, 

. 2 2 2 2 
w1th q + k = ( W I c) = K. Application of Eq. (32) then leads to Eq. (34a) 

of the text. In the special case of a pill box (a = o and' Z(r) : J n (qr)) , Eq. 

{34a) simplifies to 

1 = 4 Rsurf. ..!.. {..!.. + _1_) 
Q zspace K h 2b 

in agreement wi~h a result given by Smythe, 
18 

for p (or'}() f. 0 {sect. 15. 17, 

Eq. (9), p. 535 ) . Similarly for Z represented by a simple circular function, 

Eq. (34b) may be written 

..!.. ::: 4 Rsurf. ..!.. [..!.. + k~ 1 
Q · K h ' 

· Zspace (k~ + k~)w 

with kq, denoting n/R a~d use of q2 ~ k; + k~ This result is consistent with 
' 

an expression given by Smythe 18 (Sect. 15. 16, Eq. (10), p. 534) when his 

b is permitted to approach infinity after his n is replaced by kq,b/Tr and other 

appropriate identifications are made in the notation. 
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LONGITUDINAL COUPLING IMPEDANCE OF A STATIONARY 
ELECTRON RING IN A CYLINDRICAL GEOMETRYt 

ANDRIS F ALTENS AND L. JACKSON LAS LETT 

Lawrence Berkeley Laboratory, University of California, Berkeley, California, USA 

The longitudinal (azimuthal) coupling impedance is investigated for a stationary electron-ring beam circulating 
between a co-axial pair of conducting tubes. Proximity of the beam to the inner tube is found to be advantageous 
for reducing (! Z., 1/n)mu· Similar results are shown to be attainable with operation near the the outer tube, 
provided the quality factors Q for higher-order resonant modes are deliberately made small. Illustrative computa
tional results are presented graphically and a convenient approximate formula is suggested that may serve to guide 
the selection of desirable parameters for a typical fully-compressed electron ring. 

I. INTRODUCTION 

In evaluating the effectiveness of electron rings 
for the useful acceleration of ions, the requirement 
of longitudinal (azimuthal) stability appears to 
constitute a severe constraint. Another paper' 
appearing in this issue is concerned with the selec
tion of parameters for an electron-ring accelerator, 
and considers explicitly the stability requirements 
for a fully-compressed loaded ring at the time of 
release from the magnetic well. That paper re
iterates the necessity of strongly limiting the self
generated azimuthal electric fields, that could excite 
an unstable azimuthal modulation of the electron 
ring beam, if rings of useful holding power are to be 
obtained. Such electric fields may be expected to be 
reduced by the presence of nearby conducting 
material, that in a magnetic acceleration column 
might conveniently take the form of conducting 
tubes co-axial with the electron ring. It may be of 
interest, therefore, to report in the present paper 
results from an analysis of the longitudinal coupling 
impedance of a toroidal electron beam situated co
axially between a pair of infinitely long conducting 
tubes. The analysis for a pair of tubes constitutes 
an extension of previous work2 - 5 concerned with 
an electron ring situated interior to a single tube, a 
ring inside a compressor chamber,6

•
7 and of similar 

work8 relating to a cylindrical layer of electrons 
situated between two walls. A two-tube configura
tion may represent a better approximation to 

t Work supported by the U.S. Atomic Energy Commission. 
Editor's Note: A resume of this paper was presented at 

the Symposium on Collective Methods of Acceleration, 
Dubna, USSR, September 1972. 
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arrangements for magnetic acceleration that would 
be attractive on other grounds and, in addition, may 
aid in suppression of the longitudinal instability. 

2. COMPUTATIONAL PROCEDURE 

The present analysis is restricted to rings that are 
essentially stationary with respect to the tube 
structure, and (when losses are present) would 
require revision for application to rings with an 
axial speed comparable to that of light. No di
electric material is considered to be present, and no 
special frequency-sensitive elements are intro
duced (save for such as may aid in controlling the 
'quality factor', Q). 

The longitudinal coupling impedance, associated 
with an electron-ring beam of major radius R 
and with a postulated current modulation I. = 
/ 0 exp [j(wt-m/>)], is defined in terms of the corre
sponding longitudinal (azimuthal) electric field 
£4> as z. = - 2rrRE4>/I.. Perturbation analyses9 

have suggested the relation between I z. l!n and the 
amount of Landau damping that must be present 
(e.g., from energy spread) if longitudinal stability 
is to be assured. 

We commence the analysis, for determination of 
z., by making a formal series development for the 
steady-state electromagnetic fields associated with 
a current distribution / 0 b(r- R) b(z) exp [j(wt- n</> )], 
subject to boundary conditions that correspond to 
outgoing (or damped) waves for I z I large and to 
conducting surfaces at r = R,N, RouT· Radial co
ordinates can be expressed conveniently in terms of 
the radius of the inner tube, so that, in these units, 
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the radial interval of interest extends from unity to 
f = Rol'TI R1N and the ring beam is situated at 
R = pR1N (I < p <f). The angular frequency is 
w = nf3cf R = nf3c/(pR1N). The series development 
of the electromagnetic field then employs charac
teristic functions, Rm. and characteristic values, g'", 
of the Bessel equation 

X~ (x dd:m )+(gm2
X

2 -n2)Rm = 0 

with Rm lx= 1 = Rm lx=f = 0 for the transverse
magnetic (TM) modes-and correspondingly the 
functionS Sm and Va)UeS hm, With S~ lx= 1 = 
s~ lx = f = 0 for the transverse-electric (TE) modes. I 0 

The z-dependence of the fields is contained in 
factors that, for the TM modes, are circular func
tions of wt-kml z 1-n¢ with 

km = [(wfc)2-(gm/RlN)2Jl 12 

and w = nw 0 = nf3c/R for frequencies above cut
off, and are of the form exp(- rxm I z I> times a 
circular function of wt-n¢ with rxm = [(gm/R1N)

2
-

(wfc) 2P12 for frequencies below cut-off-and 
similarly for the TE modes. 

The azimuthal electric field is found in these 
terms to be such that 

~zn = 2rrZoP{L[(n/p)2-(gm/f3)2]112FTM 
n m 

+ ~ [(njp)2- (hm/f3f] -I 12 Fn}, 
where Z 0 = -....1 Jlol~>o = 120rr ohms, the 'coupling 
factors' F™, Fn are 

and 

and the coefficients before these factors have the 
character - j and + j respectively when the charac
teristic values 9m or hm exceed nf3/p. The formal 
expression written above for Zn/n clearly requires 
modification to take account of a non-vanishing 
transverse extent of the beam and to make allow
ance for losses that will prevent the factors 
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[(n/p)2-(gm/f3)2]112 and [(n/p)2-(hm!!Wr 1/2 from 
becoming exactly zero or infinite under 'resonant" 
conditions. 

With respect to the first of the modification< iust 
mentioned, we may note that for a large m, a 
combination of two of the terms just written will 
make a contribution that can be estimated as 
-j(Z0 /f3y 2 )(l/m), a capacitive impedance by virtue 
of the factor - j. Such terms, summed over large . 
m to a limiting value that will depend on the minor 
dimensions of the ring, will provide a contribution 
to Znfn of the form - j(Z0 ff3y 2) times a logarithmic 
factor in which the minor dimensions of the ring 
appear in the argument. This result is concordant 
with the expected low-frequency inductive imped
ance whose dominant (logarithmic) term is given 
approximately by 2rrf3cj[(Z0 /2rrc) In (8R/a)] for a 
circular ring of round wire (major and minor radii: 
R, a), combined with the corresponding capacitive 
contribution (larger, by a factor I I {3 2

) of opposite 
sign-or (more generally) with a contribution to 
Zn/n of the form - j(Z0 / f3l) In (D/a), where D is 
related to a major dimension of dominant impor
tance 7 (such as R, ),, or the spacing to the wall). In 
practice, terms of high m value were diminished by a 
'convergence factor' that served to suppress terms 
for which mrr ~ outer tube radius/minor radius, and 
the qetails of this procedure did not appear to affect 
the results materially for parameter values· of 
interest in the present work. 

With respect to the potentially resonant factors 
[(nfp)2-(gmff3)2]1!2 and [(n/p)2-(hm/f3)2rlil, for 
the TM and TE modes respectively, these were 
replaced by 

{(njp) 2- [(I+ jf2QTM)Ymff3] 2
} 

112 

and 
{(n/p)2- [(I+ jf2Qn)hmff3]2} -1;2. 

Such a replacement, although leading to a typical 
resonant-factor behavior, perhaps can be justified 
rigorously only if (i) the boundary condition at a 
resistive wall can be correctly written in terms of a 
surface resistance P/1, as E<t>/H: =(I +j).:JI, and (ii) 
the corresponding complex characteristic value 
(gm or h"') is given with sufficient accuracy by a first
order development from the case in which ffls = 0. 
With the exception of cases in which the quality 
factors are very low (e.g.,< 10), however, the 
resonant factors written above are believed to be 
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suitable in applications of the present work. In 
performing the computations, one has the option 
of either (i) computing for each n the QTM and QTE 
values for the m-value lying closest to resonance in 
each case, using a specified specific volume 

resistivity p,. for the tube material (~s = .. .j Jl 0wpvf2), 
or (ii) simply specifying a single value of Q to be 
used throughout (thereby permitting the user to 
represent loss mechanisms deliberately introduced 
into the structure). 

3. EXPECTED CHARACTER OF THE 
COUPLING IMPEDANCE 

The selection of geometrical configurations for 
which the longitudinal coupling impedance can be 
expected to be favorable or unfavorable for electron
ring stability may be guided by some general 
considerations. A ring beam enclosed within a 
structure with highly-conducting walls potentially 
can excite resonances that will lead to unacceptably 
high values of the coupling impedance. Reflections 
may be expected to be suppressed for certain (high
n) modes, however, if the boundary is poorly 
reflecting and is situated in the radiation-field zone 
for such modes-with the result that the corre
sponding impedance then should be close to that 
cited for a beam in free space (Z./n ~ 354i113 n- 2

1
3 

ohms, 7 
•
12

•
13 for n well below a critical harmonic 

number that is of the order of y3
). 

13
-

15 For lower 
n, where the free-space coupling impedance would 
be unacceptably high, a surface of high conductivity 
close to the beam should serve to lower Eq, at the 
beam and so act to reduce the coupling impedance 
substantially if resonant responses are avoided for 
such n-values. 

In a computational investigation of coupling 
impedance for a ring beam in the presence of one or 
two co-axial tubes, it is of interest, therefore, to 
include an examination of cases in which the beam 
is situated only a small distance outside an inner 
conducting tube, in an effort to provide coupling 
impedances that for low n will be well below the 
free-space values. If, with such geometry, mechani
cal considerations require the presence of an 
additional tube exterior to the beam, one may 
anticipate that the selection of a suitably large 
radius for this outer tube will preclude the excitation 
of dangerous low-order resonances. Under such 

P.A. A4 
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conditions, the provision of only moderate losses, 
by any one of several means at the outer radius, may 
suffice to suppress adequately the contributions of 
high-order (possibly resonant) TE.m modes (high 
m)-for which the m-1 sign reversals of Eq,(r) 
ultimately must serve to reduce the coupling 
between the electromagnetic field and a beam of 
appreciable radial extent. 

For purposes of comparison, there also is interest 
in cases in which the beam is located just inside an 
outer tube, with an inner tube either absent or 
assigned a considerably smaller radius. Under 
these latter circumstances the surface conductivity 
of the wall should be high for the low-frequency 
(low-n) modes, but the resonances that can occur 
for larger values of n should be suppressed by a 
deliberate reduction of the quality factor ('deQ-ing') 
for high-frequency fields. 

4. COMPUTATIONAL RESULTS 

The possibility of attaining undesirably large 
values of coupling impedance as a result of reson
ances is illustrated in Fig. I for a two-tube structure 

i 
0 

~ 
E 

IOQpOOc---..-Ly-----,-----,--------, 

IOPOO 

1000 

10'!!;o-v-<+3-----o!4-----+s -----;!6 

Rt,/Ri 

FIG. I. Maximum longitudinal coupling imped
ance, divided by n, for the first 12 azimuthal modes 
for coaxial copper tubes of radius ratio 6. For wall 
resistivity p,. = 1.8 x w-• fl-cm the Q's are in the 
range of 104 -105

• Beam locations were chosen to 
excite the TE •. 1 and TE.,, resonances and to 
exhibit 'resonant behavior. 
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FIG. 2. Resonant beam radii for coaxial tubes with radius ratio 6. For a given n the TE.m and TM.m resonances 
alternate, with m increasing to the left. 

with a radius ratio I : 6 and high values of Q which 
would be appropriate for tubes constructed of a 
good conductor such as copper. By reference to a 
mode chart (Fig. 2) that shows the beam radii for 
resonant excitation of the wave-guide modes in such 
a geometry (with f3 = vfc = 0·999703), it is evident 
that the largest value of 1 zn lin occurs when the 
beam is located so as to excite the TE 1 , 1 resonance, 
the second highest value corresponds to excitation 
of the TE2 , 1 mode, etc., with the low-n TEn. I modes 
dominating the coupling impedance in the region 
where the TEn,t modes are excited-that is, from 
approximately midgap to the outer wall. The TEn,t 
modes are distinctive 1 5 -and can be particularly 
troublesome-because the associated £ 41(r)-field 
experiences no sign reversal. The TE 1 •1 resonant 
beam radius for the case of a single tube is 
R8 ~ PRouT/1.8412 and the corresponding resonant 
radius for a pair of tubes whose radius ratio does 
not greatly exceed unity is close to R8 ~ 

fJ(R 1N +RouT )/2, while the resonant radii for other 
TEn, 1 modes will be progressively larger. The 
existence of these potentially-resonant modes thus 
deserves recognition when considering operation 
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with the ring beam fairly close to an outer cylindrical 
wall. 

The curves of Fig. 3 again indicate the behavior 
of zl vs. RB for RouT/RIN = 6, and illustrate the 
influence of the quality factor Q. One notes that. as 
expected, for Q sufficiently large, 

(i) For w < wresonant [p > n/3/(characteristic 
value, h)] 

Zn,Rcal is relatively small (in COmparison tO 
Zn,lmag.) and is approximately proportional to I /Q 
(as may be interpreted as due to wall resistance 
acting on image currents), while Zn,lmag. is rather 
insensitive to Q; · 

(ii) For W = Wrcsonant 

zn,Real ~ I zn.lmag.l, each assuming large values 
ocJQ; 

{iii) For W > Wresonant 

Zn,Real is large (in COmparison tO Zn,lmagJ and iS · 
rather insensitive to Q-corresponding to power 
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FIG. 3. Longitudinal coupling impedance for n= I, 
for coaxial tubes with a ~adius ratio of 6. For this 
case, y = 41, and the minor dimensions a and b 
are 0.02 R, •• .,. 

radiated down the tubes (and ultimately absorbed, 
remotely, in the tube walls or emerging from the 
ends). 

The curves of Fig. 4 depict the results of computa
tions intended to indicate how <I z.l/n)ma• can be 
held to reasonably low values either (i) by operating 
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with a moderate value of Q and situating the beam 
close to an inner tube (so that excitation of low
order resonances is precluded), or (ii) by operating 
with the beam close to an outer tube, with Q 
deliberately caused to decrease at the higher 
frequencies in order to reduce the extent to which 
the higher-order resonances can be excited. In 
performing computations pertaining to this latter 
type of operation, the computations (with selected 
Q values) were extended to sufficiently large values 
of n that I Z.l/n appeared to have become distinctly 
a monotonically decreasing function of n that 
essentially merged into the free-space curve for this 
quantity. Two illustrative examples of the compu
tational results for the two cases described are 
shown in Figs. 5 and 6. 

It will be recognized that, in the selection of 
parameters for an electron-ring device, a decision 
to operate with a ring situated close to a conducting 
tube necessarily restricts the amount of energy 
spread (and attendant radial spread) that can be 
present and that also could act to suppress the 
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FIG. 4. Maximum longitudinal coupling imped
ance divided by n. A-Beam located close to an 
outer wall at 4 ern and Q(n) adjusted to minimize 
IZ.!ni. B-Bearn located between two walls at 
3 ern and 4 ern and Q(n) adjusted to minimize; Z./n . 
C-Bearn located close to an inner wall at 3 ern and 
Q made high for all n. 
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longitudinal instability. As a guide for finding 
suitable parameters, therefore, it is convenient to 
have at hand a simple relationship that relates 
<I z. lin) max to the 'clearance· throughout the 
range of possible practical interest for these par
ameters. The results shown in Fig. 4 for a beam 
situated at a small distance outside an inner con
ducting tube suggest that with reasonable accuracy 
one may write <I z. lfn) n1ax;;; 300 (RB- RIN)/RJN 
ohms, for R 1N/30 ~ R8 - R 1N ~ R 1N/3, under these 
circumstances. Thus, with (R8 - R 1N)/R1N = 0.2-
that should provide sufficient clearance for a beam 
with a radial spread arising from A£/ E < 10 per 
cent (full width at half maximum)-we should 
expect to achieve a longitudinal coupling impedance 
such that I z. Jfn ;;; 60 ohms. The results shown 
in Fig. 4 are quite insensitive to y, decreasing 
typically by about 2 per cent when y is increased 

"' E 
~ 
0 

~ 
c:: 

N 

10 

0o~--~10~~2~0~~30~~40~--~5~0--~60 

n 

FIG. 5. Typical curves of [ Z./n; versus n for a beam 
radius Rb = 3.4 em near an inner tube at 3 em and 
an outer tube at 27 em, with Q as a parameter. 
y = 41 and the minor dimensions a and bare I mm. 
At this radius, resonant behavior (due to the 
presence of the outer tube) is seen to be developing 
at n:::: 27, whereas the i Z.!n lmu of the first peak is 
at n :::: I 0. For min i Z./n! for all nat this radius, Q 
should decrease from - 1000 at n=: 10 to - 30 at 
n :::: 27. [ Z./n 'max for this case was taken as 40 n in 
the construction of curve C in Fig. 4. 
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FIG. 6. Typical curves of: Z./n' versus n for a beam 
radius R. = 3.6 em near an outer tube at 4 em, and 
an inner tube at 0.444 em, with Q as a parameter. 
The clearance to the wall, 4 mm, is the same as in 
Fig. 5, y = 41, and the minor dimensions a and b 
are I mm. At this radius, resonant behavior is seen 
at n = 20, therefore minimum i Z./n I for all n would 
be obtained by switching from high Q to low Q at 
n :::: 13. J Z./n :m .. for this case was taken as 60 Q in 
the construction of curve A in Fig. 4. 

from 20 to 82. The minor dimensions of the beam 
have a larger effect on Z.ln than the y dependence, 
because the self field term and the term due to 
excitation of high m modes decrease as the beam 
minor dimensions are increased. The curve C in 
Fig. 4 is moved approximately 0.05 em to the left as 
the minor dimensions are decreased from 0.1 em to 
0.05 em, and approximately 0.15 em to the right as 
the minor dimensions are increased to 0.2 em, for a 
< 10 per cent change of I z. l!n in the region around 
60 n. At much greater spacings from the inner 
tube the dependence of I z. lin on the minor dimen
sions becomes negligible because of the dominance 
of the low n and m modes. 

5. CONCLUSIONS 

An examination of the longitudinal coupling 
impedance that can be attained for a ring beam 
between a pair of co-axial conducting tubes has 
indicated that low values of I z. lin may be con
veniently attained by situating the beam a small 
distance qutside an inner conducting tube. If, 
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alternatively, the beam is close to an outer tube, 
similar results may be obtained if the quality 
factors for higher multiples of the circulating 
frequency are reduced so as to suppress potentially 
resonant fields. For an electron beam withy= 41 
and a 3.5-cm orbit radius surrounding a tube of 
radius 2.9 or 3.2 em, it should be possible in this 
way to achieve values of <I zn l!n)m., that are 
approximately 62 or 28 ohms, respectively. 
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AN ESTIMATE OF LIMITS TO THE LONGITUDINAL COUPLING I~PEDANCE 

A. Faltens and L.J. Laslett 

Lawrence Berkeley Laboratory 

Various simple models of structures in a storage ring and 

their contributions to the longitudinal coupling impedance are 

considered in an attempt to focus attention on possible problem 

areas and their solutions. In all cases emphasis is placed on 

the physical mechanism which is the source of the undesirable 

impedance. None of the mechanisms or structures considered pre

vent the attainment of a low lz /nj, of the order of 10, if suf-
n 

ficient care is taken over the frequency range from 0.1 ~lliz to 

about 10 GHz. 

The various results and views in this note evolved mainly 

during the time of the Berkeley Electron Ring Accelerator project, 

in which a substantial effort was devoted to calculating, esti

mating, and measuring the properties of various beam-surrounding 

geometries which would simultaneously satisfy longitudinal and 

transverse stability requirements, and allow penetration of slow

ly increasing magnetic guide fields and fast inflection fields. 

Initially, interest centered on the low harmonic "inductive wall" 

effects, and later shifted to the microwave frequency region. It 

was shown that there are practical limits to attainable impedances, 

with the longitudinal impedance being the limiting one, with the 

limits manifesting themselves in the frequency region where free 

space wavelength and chamber dimensions are 

of jz /nj of about 300 was the lowest which 
n 

the geometries considered for electron ring 

comparable. A value 

might be attained in 

1 
1, 2 

acce erators. The 

1. A. Faltens, G.R. Lambertson, J.M. Peterson, J.B. Rechen 
Proc. IXth Int. Conf. on High Energy Accelerators, 1974, 
p. 226. 

A. Faltens and L.J. Laslett, Particle Accelerators 4, 151, 
1Y73. -

2. 

487 
corresponding limits for ISABELLE are less than 10. Also, as in 

.recent results from CERN, it was found that stability was deter

mined by the instantaneous local energy spread in a beam filament. 

Multiturn injection of a beam with an instantaneous energy spread 

plus an energy ramp in time gave the same high-frequency thresholds 

as injection without the ramp, thereby imposing more stringent 

limits on allowable coupling impedances. 

Before considering the effects of boxes and bends in the 

vacuum chamber, it may be appropriate to ask why a metallic 

vacuum chamber is necessary. The coupling impedance of a com

pletely unshielded beam in free space may be obtained from syn

chrotron radiation results. The power radiated by an electron 

in a circular orbit, as derived by J. Schwinger, 3 is: 

P (w,t) 
31/6r(1)e2 

TTR (
_1!/_) 1 1 3[ r (~ \ 

w 1-----22 
0 

( w )1/3 
\2w . + .. J 

cr~t 

for w < < w i , independently of particle energy and therefore cr t 
presumably the type of particle, and, 

P (w, t) 
3 
4 ( ;TT //2 ;2 (~:2Y ( Wo ) X 

wcrit 

1/2 -w/w . SSw . 
( w \ e cr~t [l + cr~t + J J )( 72 .•. 

wcrit w 

for w > > 

(3/2) w 
0 

w (2TT times the revolution frequency), and w . = 
o 2 3 cr~t 

(E/mc ) , or in our notation the harmonic number of 

critical frequency is n 't ""'(3/2) y
3

, 
cr~ 

3. J. Schwinger, Phys. Rev. 75, 1912 (1949). 

the 
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The power raditated at any harmonic, n, may be related to 

the real part of the coupling impedance, R , and the nth harmon
n 

ic current Fourier amplitude, 

p = I 2 
n n4 

I ' n 
of a a-function charge travel-

Inclusion of the reactive R /2. 
n 

in3 in a circle as 

terms leads to the result: 

z 
n 
n 

354 n-2/3(Lt + j f). 

At very low harmonics, the more precise result is .<~bout 10% 

smaller, about 3200 for n = 1, but very much larger than the "long 

wavelength limit", 

2
n =-- _ (jz ltp/) 

n o 
ln !L~ - j40 

na 

obtained by using the static inductance and capacity of a beam, 

and also greater than the tolerable impedance for ISABELLE. 5 The 

beam must, therefore, be shielded to suppress the low-harmonic 

radiation. 

One shielding geometry of interest is a metallic pipe sur

rounding the beam. Such a pipe is an effective shield for wave

lengths longer than its waveguide-cutoff wavelength, which for a 

circular pipe is given by 

4. 

5. 

"-co 
2rra 

2.405 
for TM or E-type waves. 

The harmonic number at which propagation begins for a 4 em 

A.G. Bonch-Osmolovsky, P9-6318, J.I.N.R., Dubna, 1972. 
W. Schnell, "Stacking & Acceleration", Summary Report of 
Working Group, Vol. I, p. 126. 
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radius pipe of 2960 meter circumference is n ~ 2960/A. ~ 28 325, 

• . co co 
at which harmonic the lz /nl of free space has dropped to about n . 
0.380. Right at cutoff the impedance of the idealized smooth 

pipe is much less than this, but eventually, with increasing 

frequency many modes will propagate and the impedance should 

approach the free space values. The question regarding the beam 

pipe is: "At what frequency will it give behavior similar to 

free space, that is, for which wavelengths will the changes in 

pipe direction, wall losses, imperfections, clearing electrodes, 

etc. destroy the coherence of the radiated· waves and scatter 

them randomly into the chamber until their energy is dissipated?" 

A reasonable estimate for this wavelength is about a centimeter, 

for which lz /nl =-- 0.1 0. Taking into account the local curva-n 
ture of the particles only in the magnets, n· · it ~ 105 at injec-

7 cr 
tion and ~ 3 X 10 at final energy, so we are interested in wave-

lengths down to centimeters and microns respectively. 

In the nonphysical model of a perfectly smooth pipe bent 

into a circle, there will be resonances which for an aluminum 

wall could have high Q values, leading to higher coupllng imped

ances than the free space values if the beam is able to excite 

them. Analogous problems using the eigenfunctions of a pill box 

cavity, coaxial cylinders, or a single cylinder showed that reso

nance that could be excited by a beam would occur at harmonic 

numbers n where 

rbeam 1 

tpRouter wall 1 + 0.80862n-2/3 ' 

where the required slowing of the phase velocity of the wave may 

be thought of as arising from the wave traveling at a slightly 

larger radius than the beam. In a straight, smooth pipe this 

synchronism does not occur because the phase velocity of any 
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mode is always greater than c, and the beam in vacuum will al-

ways travel at less than the velocity of light. The waves of 

course can be slowed down by loading of various types, and in 

ISABELLE this will undoubtedly be more important than the curva

ture effects, but the point is that even with smooth walls reso

nant effects may occur for n ~ 106 at high y. 

One such "smooth wall" resonance·is illustrated in the Appen

dix, where the properties of an 8 em X 8 em square cross sectioned 

aluminum chamber of 2960 meter circumference have been computed. 

The results of this computation are that a beam of y = 200 will 

resonate at harmonic numbers of about 2.5 X 106 with modes having 

a Q ~ 3 X 10
5 • Fortunately, the. jz /nj of these modes is only 

n 
0.20, or about a factor of 10 above what radiation into space 

would give at that frequency, and no resonances at all are· ex

cited at the injection energy. 

Returning to the real geometry of a beam pipe with bends, 

discontinuities, etc., resonances may be expected at the cutoff 

harmonic, n and even lower if resonant structures are intro-co 
duced into the chamber. A rule of thumb for attainable cavity 

impedances is: R ~~£ (MHz)' M 0/meter. The maximum useful 

length for a cavity is 1 ~ A/2 before transit time effects start 

to decrease R; if the cavity length is much longer than A/2, the 

net interaction with a beam is due to a length of A/2 or less, 

with the remainder of the length acting as a load on the cavity. 

Combining the above yields an estimate for single, simple cavi

ties of: 

R 
n 

n 
$ 4.7 x 10

8 (2~) -3/2 
n 

As an example of the sort of structure which should be 

avoided or modified, we consider a 30 em long section of 12 em 

491 
diameter pipe inserted in the standard 8 em pipe in order to join 

beam pipes and provide a space for clearing electrodes and moni-

tors (Fig. 1). 

high as 500. 

The R /n for such an empty cavity could be as 
n 

If this structure is complicated by insertion of 

clearing electrodes suspended at their midpoints, then this object 

is expected to resonate in a lower Q, half-wave TEM mode, coupling 

to the beam with the longitudinal fringing fields at its ends. 

Capacitive bypassing of such a clearing electrode is unattractive 

because a very large capacity, C ~ 400 ~' is required for the 

L ~ 12nH inductances which are to be bypassed. A well conduct

ing clearing electrode at a 4 em radius and ~ 30 em long will reso

nate near n = 4500 with a Q of ~ 3000, and also produce an R /n 
n 

of a few tens of ohms. By contrast, the contribution to Z /n 
n 

from inductive wall effects is almost negligible. At low frequen-

cie!s, the "inductance" of the empty box is due to the capacity of 

the fringing fields at the corners, which is effective over a dis

tance comparable to the step size, t; =>< b - a. The "inductance" 

of the box with clearing electrodes is approximately the induct

ance of the electrostatically shielded volume between the clear

ing electrode and the chamber outer wall. The impedances may be 

estimated as: 

z . . 
n J 1-1 ow o ( b) ( ) J w oi-L o ( b) ( ) ~ =>< z:;- .en; b-a =>< j O.OOill,and z:;- in; £ =>< j 0.01530 

respectively. The impedance due to the use of bellows for the 

outer wall certainly is small compared to the latter value, but 

could be reduced by bridging the bellow convolutions with longi-

tudinally conducting strips of metal. 
6 low-n (Z /n) may be measured. 

n 

The precise value of the 

6. A. Faltens, E.C. Hartwig, D. Mohl, and A.M. Sessler, 8th 
Int. Con£. on High Energy Accelerators, 1971, p. 338 
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After the obvious resonant structures are eliminated or 

otherwise made harmless, the beam pipe is still left with bends 

and other discontinuities. If no lossy materials are introduced 

at the discontinuities, then each junction simply transmits and 

reflects the incident waves, making each section of beam pipe 

no worse than an approximately 5 meter long cavity, for which a 

resonance at n ~ n is expected with an R /n ~ 10. A long 
co n 

structure such as this poses questions which can only be answer-

ed statistically: will one of the cavity resonances fall exactly 

on some beam harmonic; what will be the transit time factor; and 

how many cavities will be resonant at the same frequency? Taking 

the worst case limit for each would make Z /n ~ 500 for an esti-
n 

mated total of 500 beam pipe sections. The Z of ann= 28 000 

resonance can be expected to be less than 30 000, so the proba

bility of some harmonic hitting it is essentially 1. The trans

it time factor as used here oscillates as sin2 (rrt/~) with increas

ing cavity length, giving an expected value of 1/2. Simultaneous 

resonance of many sections is more likely at the cutoff frequency 

than at higher frequencies, therefore the potential problem is 

serious. However, the problem is easily overcome as only a small 

amount of loss, attainable by numerous means, will lower the Q's 

sufficiently to make the impedance very low. If the de-Qing is 

very successful, then the coupling impedance will approach the 

free space limits again, as any radiated energy from the beam 

would be absorbed. As the problem area is right around the cut-
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off frequency region, the \z In\ thus would tend towards 0.380, 
n 

perhaps enhanced by a small factor due to weak resonances remain-

ing after de-Qing. 

In the frequency region far above cutoff, that is, where modes 

are simultaneously propagating, the quality factors of individual 

resonances will be smaller than perhaps expected because any dis

continuity, unless it is specially designed to counteract the ef-

feet, will scatter energy into other propagating moqes. Likewise, 

the Q's of single resonators may be expected to be high only for 

frequencies below the cutoff frequency of the beam pipe. At 

these very high frequencies and at high y the beam fields tra

vel essentially as plane waves, parallel to the beam, with near

ly identical fields to the fields of a TEM wave in a coaxial 

transmission line, and their scattering at obstacles may be esti

mated geometrically. Given a beam incident upon a number of ob

stacles, the reflection of the fields at the first obstacle will 

be higher than at subsequent ones because of the time required to 

re-establish the fields. In the rest frame of the particle the 

fields would be re-established with a transverse speed of c or 

less, which in the laboratory frame would be vt~ c/y. The impe

dance of an isolated obstacle in the shape of a concentric disc 

with inner and outer radii a and b, respectively, based on the 

above considerations is: 

2
o b 

Z =-in-
2TT a 

As an example, for a 3 em, b 4 em. 

z ~ 170 ' 

and only one such .obstacle would be effective per beam pipe 

junction. The total impedance for wavelengths of 1 em or less, 

for which the above mechanism might apply is~ 8.5 kO, and 
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Z /n ~ 0.0280, and therefore no suprises or high impedances are 

n 
expected for very high frequencies (n > 105). 

The ordinary skin resistance contributes a term Z /n = 
n 

(l+j) /w0~/2n (1/2na), which is important only at low harmonics, 

with a peak magnitude of 1.70, and decreasing as n- 112 . A small 

amount of wall impedance, of the order of jlO, is desirable to 

offset the space charge term Z /n ~ jZ /sy2 
(in b/~ ~- jlO at 

n o 
the injection energy. 

The preceding limits and the harmonic range over which they 

are important may be all combined on one graph (Fig. 2). Some 

specific items such as rf cavities and kicker magnets have been 

excluded here because they are treated separately elsewhere ~nd 

because their impedances can be made small. The expected iz /nl 
n 

curve, after elimination of low frequency resonances and diminu-

tion of wall inductances due to discontinuities, should follow 

the heavy line, and stay below 10 for all frequencies except 

the first two harmonics. On the other hand, any resonant object 

in a wide frequency band is potentially very harmful and should 

be avoided. The graph was constructed to show the large possible 

variation of coupling impedance. The single cavity approximation 

assumes only one cavity in the ring at any harmonic, and the pres

ence of harmful low-harmonic resonances is unlikely in any event. 

The value of Z /n for vacuum chamber resonances is an estimate for 
n 

the worst case of ~ 500 sections acting similarly. 

The general recipe for obtaining low iz /nl for all n is 
n 

therefore to shield the beam with a nearby good conductor to de-

crease the low harmonic free space impedance. The shielding geo

metry will in most practical cases introduce resonances at higher 

frequencies, and at that point it is beneficial to provide attenu

ation, which, in the limit of sufficient attenuation at high fre

quencies will make the impedance approach the free space values 

(see Ref. 2 for some computed examples). There is a trade-off 

between low-n and high-n lz /nj's, as measures taken to move the 
n 
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resonant behavior to higher frequencies by decreasing the shield-

ing pipe diameter tend to increase the very low harmonic surface . 

impedance. For the parameters of interest to ISABELLE, a maximum 

lz /nl of the order of 10 is estimated to be possible for all n. 
n 

APPENDIX 

Coupling Impedance Contribution From the Electromagnetic 

Modes of a Toroidal Vacuum Chamber 

497 

The electromagnetic modes of a number of structures such as 

cylinders, pillbox cavities, and toroidal vacuum c~ambers may 

couple resonantly with an azimuthal current and produce a contri

bution to the longitudin~l coupling impedance. The effect of 

such modes is computed for a toroidal aluminum vacuum chamber of 

square cross section of 8 em X 8 em and major radius of 471 

meters such as might approximate the ISABELLE vacuum chamber if 

it were smoothly bent in a circle. Resonant behavior is exhibit

ed only for y > y. . , and a contribqtion to Z "In of 0. 20 is com-
~nJ · n 

puted for y = 200. 

The solution of the electromagnetic modes for the geometry: 

z 
I 
I 

11 ~ --R--··-rl" 
I R=a R=b 

is described by Las lett, and Lewish. 7 x=-1 0 x= l 

The solution for the TE fields at high azimuthal harmonic 

numbers is depicted in Fig. A-1, where the functions Z and z' , 

which are proportional to the B and E fields, are plotted across 

the normalized chamber radius, x. A beam located in the chamber 

midplane has a peak normalized coupling impedance on resonance of 

7. L.J. Laslett and W. Lewish, Iowa State Report IS-189, 1960. 
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1 
(dz)

2 

nz 2 2 dx beam R 
Il !!. = 0 

n 2 2 2 
pX K n 

2 2 z2. , 
2 2 H { n (Z outer Lnner ) 

<R>
2
q ~ r(l~x)Z dx + 4 <R> 1 + ~x0 + 1 +~xi 

4 
+ .9.._2 <R> (<l+~x )Z2 + (l+~xi)Z2. ) } 

K o outer Lnner 

2 2 
where q +K (~) , <R> 

b+a , K 
2 

1i H' , and ~ 
b-a 
b+a 

A handier version of this formula, in terms of the chamber Q is: 

dZ)
2 

4nz Q x \dx beam R 
0 

- = n 2 H < R >2T)3 t<1~x)Z2dx nq 
-1 

Either formula, evaluated at the first resonance, which occurs 

for n ~ 2.5 X 106 for a beam at the center with y ~ 200, re

sults in a value of(R /~ ~ 0.20. The resonant radii for success-- n 
ive azimuthal resonances in this region are spaced by only 16 

nanometers, which in combination with the high Q's of these 

resonances (> 105) may warrant reexamination of the usual re

lations between the peak value lz /nl and longitudinal stability. 
n 
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TRANSPORT OF HHENSE ION BEAMS* 

G. ~ambertson, L.J. Laslett, L. Smith 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, Calfornia 94720 

Summary 

The possibility of using intense bursts of heavy 
ions to initiate an inertially confined fusion reaction 
has stimulated interest in the transport of intense un
neutralized heavy ion beams by quadrupole or solenoid 
systems. We have examined this problem in some detail, 
using numerical integration of the coupled envelope 
equations for the quadrupole case. The general rela
tions which emerge are used to develop examples of high 
energy transport systems and as' a basis for discussing 
the limitations imposed by a transport system on achiev
able intensities for initial acceleration. 

Solution of the Envelope Equations 

. The envelope equations of Kapchinskij and Vladimir
skij {KV) are 1 J. 

d2a £2 4 2 Nr 1 __ x = 
- K {s)a + 

s2iax 3 + T- s2} ax +ay ds2 X X 

d2a 
£2 +1l~_l_ 

{1) 

d?= - K {s )a + y y B2y2ay3 A B2y3 ax+ay 

where ax =beam half-width, height; n£ =normalized 
emittance'{n either plane, q and A are the ion charge 
state and atomic weight, N is the number of particles 
per unit length, rp is the classical proton radius and 

~.y = : ~~~J) for quadrupoles 

= ]_ [Bs{s)l
2 

for solenoids {in a frame 
4 ~J rotating at the Larmor 

frequency). 

If K{s) is a step-wise function of s, of constant mag
nitude or zero, Eqns. {1) can be put into dimension
less form by setting 

{2) 

2 Nr 
where Q = ~ 2 ~72 and S{e) is a step function 

By £K 
of unit amplitude. If S{e) is periodic, the necessary 
aperture and the current for a matched beam can be 
expressed as functions of Q. For quadrupoles, 

* Work supported by the U.S. Energy Research and 
Development Administration. 

l/3 
a = C (~) B -l/3{B )-1/3 2/3 4/3 1 q Q Y £ urn ' 

{3) 

where t
m c)l/3 

c = ::L 
1 e = 1.46 [~1KSA units] 

5/6 (r.t c2)1/6 
C = l (4n) .:.e.:_ = 3. 66 x 106 

2 4 ~0 rp 

B 
BQ and a are defined by K = [s~a , and urn is the 
maximun value of ux y for the periodic solution of 
Eqns. {2). BQ is in Teslas, a and £ in meters and I 
in electrical amperes. 

For a continuous solenoid, let u = uy = u, a con
stant for a matched beam. Equations ~2) y1eld the rela
tion Q = 2(u2 - l/u2), from which one obtains: 

_ lAll/ 2 -1/2 l/2 
a - c3 q Bs £ u {4 ) 

I= c4Bs{By)£(u
2-7) = C:~ {tl {By)B/i (1- u~) 

where c3 =(2mlcr/
2 

= 2.5018.8 

c4 = t{~:) = 2.5 x 10
6

. 

Q, or the corresponding um or u, can be regarded as 
a free parameter measuring the influence of the space
charge force on particle motion. In the quadrupole 
case the relation between Q and urn depends on the 
lattice structure. It is convenient to use the phase 

advance per period, ~ = J d; = J de 2 = J de 2 , as the 
ux uy 

space charge parameter, since it has a more immediate 
physical significance t~an Q or urn· In Fig. 1 is 
plotted Q/umz and um4/ for a FODO lattice with equal 
drift and magnet lengths and a phase advance per period 
of 120° at zero intensity. It is evident from the 
figure and from the forn of Eqns. {4) for the 
solenoid case that, on the basis of these simple consi
derations, there is no limit to the current which can 
be transported, provided that the aperture can be made 
large enough and the variation in individual particle 
motion with intensity is tolerable. 
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~ Eqns. (4) then demand very high fields and large aper
tures. 
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As an application of these equations, we consider 
a situation in which a beam is extracted from an accel
erator, passed through a buncher and allowed to drift 
some distance to shorten the pulse and increase the 
current to meet the targeting requirements. It is 
assumed that the rate of increase of current with dis
tance is sufficiently slow that the transverse motion 
will adjust itself adiabatically to the matched condi
tions if it is matched at the entrance to the channel, 
where the current is low. We further assume that the 
elements at the end which focus the beam onto the pellet 
are adjusted to accept the phase-space configuration of 
the peak of the current pulse, which requires that there 
be a substantial overlap of the phase space ellipses for 
peak and lower intensities. The quantity, n. also shown 
in Figure 1, is the fraction of the zero intensity phase
space area lying inside the higher intensity ellipse, 
assuming an emittance independent of intensity. It can 
be seen that requiring n to be larger than, say, 50% 
sets a definite limit on peak current for a given quad
rupole field. Table I gives four examples: e2ergy, peak 
current and emittance are

1
target requirements, BQ was 

chosen arbitrarily for u~38 and as high as seemed real
istic for It27 because of the constraint on n. 

TABLE I 

Examples of High Energy Transport 

Ion Type +1 
u238 

+1 
Il27 

Energy (GeV) 100 40 40 10 

Ipeak(kA) 3.0 1. 25 7.5 5 

£(10-5 m-radians) 4.0 1.8 3.0 1.6 

Bq(T) 3 3 

a (em) 4.2 3.0 2. 1 2.6 

~ (deg) 107 100 92 44 

n .95 .92 .89 . 67 

Solenoid focusing does not look favorable for the 
cases considered. It is not difficult to show that 

4 -1 u-1 n = 1 - n tan U+f, whence u < 2.5 for n > .50. 

2 

Transport at Low Energy 

Equations (3) and (4) indicate that-particle current 
must be much reduced at lower energy. Hence, to provide 
a final high current, the accelerator system is required 
to ~uild up the current by orders of magnitude by some 
combination of stacking in transverse space and longi
tudinal compression. 

Additional considerations will affect the applica
tion of Eqns. (3) and (4). We assume that there is no 
need to transport a reduced current as well as the 
highest current through the same system, or equivalent
ly, that the lower current portion may have a lower 
emittance. This would then permit the zero-intensity 
phase shift ~0 to approach the pass-band limit of 180° 
and ~ to be made as small as allowed by the aperture or 
other considerations. However, a strong field BQ may 
result in quadrupole lengths and drift lengths tHat are 
too short, relative to the aperture, to permit fields 
that are reasonably linear and defined in length (as 
was assumed in the analysis). For the strong quadru
pole case, then, we introduce the additional require
ment that the ratio of aperture radius to quadrupole 
length not exceed a limiting value R and this results 
in the following limit on particle current in the FODO 
lattice with equal drift and quadrupole lengths: 

where c = -1 /41T\ _p_ = 1. 9 .X 1 o6 1/2 tm c2 )1/2 
5 16 \~o I r p 

and 29 is the cell length in the scaled variable, 9. 

The quantity 8
2 ~ will depend on the phase ad

Urn 

vances, but has a maximum value close to unity. 
Two other limitations should be kept in mind. First, 

the electrostatic potential in the beam can become com
parable to the kinetic energy and, second, if Bs or Bq 
approaches ~· ions entering a lens at radius a, 
will be turned back at low inteQsity for a quadrupole 
and at any intensity for a solenoid. Both potential/ 
kinetic energy and Ba/2[Bp] must be much less than 
unity for the paraxial ray approximation used in this 
paper to be valid. 

For a numerical example, we consider a beam of 
ut~a at a kinetic energy of 1.0 MeV and the same nor
maflzed emittance as the 100-GeV example of Table I. 
With a strong Bq and no restriction on R, the first 
column of Table II shows that a current of 4.65 amperes 
can be transported by the FODO system. Restricting R 
to about 0.5. reduces the current to 1.0 ampere (column 
2); with reduced Bq, a better compromise is found at 
2.42 ampere in column 3 but with somewhat larger aper
ture rouohly proportional to the ratio I/Bo in consis
ten2Y with Eqns. (3) and the approximate canstancy-of 
Q/um . 
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TABLE I I 

Ion Type +1 
u238 

Energy {MeV) 1.0 

E(lo-5 m-radian) 4.0 

s0 ( tes 1 a) 3.0 3.0 1.5 

R 0.68 0.52 0.50 

!{Ampere) 4.65 1.0 2.42 

a(cm) 41.4 21.5 45.0 

llo (deg) 160.0 120.0 160.0 

ll(deg) 35.3 87.7 44.7 

At this energy, the solenoid becomes comparable 
in effectiveness with quadrupoles. A choice between 
the two will depend on special features of the trans
port problem to be solved. 

Critique of the Envelope Equation Approach 

Although the phase-space distribution underlying 
the KV envelope equations is not very realistic, the 
results are known to provide a useful guide for moder
ate intensities. However, since we are interested in 
understanding beam behavior under extreme space charge 
conditions, we have investigated a number of effects 
not described by Eqns. (1). 

a) Incoherent image forces should be taken into. 
account in any case other than that of a round beam 1n 
a round pipe, since both economic and focusing field 
strength limitations demand that these beams substan
tially fill the vacuum channel. A simple, if somewhat 
academic, test can be made by assuming an elliptical 
chamber, confocal with an elliptical beam; in this 
situation the image forces are linear,3) but change 
the functional form of the space charge terms in Eqns. 
{1). It was found that even if the cham?er coinci~es 
everywhere with the beam edge, the relat1ons descr1bed 
by Fig. (1) change very 1 ittle. In the more realistic 
case of an elliptical beam in a round pipe, we have 
found by numerical computation that the non-linear 
part of the image fields is small compa:ed t~ non
linear fields due to a degree of non-un1form1ty one 
might reasonably expect in the charge distribution. 

Coherent image forces, which attract the beam to 
the enclosing pipe, come into play if the beam is 
steered improperly or is deflected by a lens placement 
error. We find that a coherent motion of the beam is 
stable, but with a reduction in phase advance compar
able to the reduction in the incoherent motion. 

b) For a round beam, born in a field free region 
but transported by a continuous solenoid, there exists 
an infinity of stationary self-consistent phase space 
distributions in addition to the KV distribution. We 
have examined a broade~ class of these.distributions 
than in previous work4J and find that 1n all cases the 
spatial distribution tends towa:d ~n~formity w~th in
creasing current, although the 1nd1v1dual part1cle . 
motion becomes highly non-linear except for the KV dls
tribution. Moreover, the dependence of current and a
perture on A/q, Bs, By and e is ~s g~ven.in Eqns .. (4), 
independent of the form of the d1str1but1on funct1on 
in the high-intensity limit. It is not clear to us, 
however, whether any of the distributions examined 
offers a better description of a real beam than the 

3 

• 
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KV distribution. It is known that a large sub-class 
of these distributions 1s stable for small perturba~ion 
of initial conditions,51 but we found that the KV dls
tribution is unstable, with a threshold in current, 
foi a large number of modes (see also Ref. 4). The 
lowest threshold occurs at u = 1.6, which would imply 
that Eqns. (4) have a very limited range of validity. 
On the other hand, the KV distribution has special 
mathematical properties and we prefer to believe that 
Eqns. (4) are probably qualitatively correct for more 
realistic distributions which are probably stable. 

c) Since the Hamiltonian is not a constant of the 
motion for a quadrupole transport line, it is not 
possible to construct stationary (i.e., periodic) solu
tions by the technique outlined in the previous para
graph. As a partial step away from the KV distri?ution 
we examined a "self-inconsistent" problem by trac1ng 
individual particle trajectories in a field with a 
linear part generated by the periodic solution of the 
envelope equation, plus cubic terms appropria~e to.a 
parabolic density profile of the same outer d1mens1~ns. 
For intensities such that ll is less than -20°, we f1nd 
a large growth in amplitude of some particles and the 
development of an island structure ~n t~eir phase .. 
space, indicative of resonant behav1or 1n the per1od1c 
non-linear field. We are thereby led to suspect that 
a quadrupole transport system may be subject to un
stable behavior at high intensity. 

l) 
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LONG-TERM STABILITY FOR PARTICLE ORBITS 

This report contains the lecture delivered by Dr. L. J. Laslett 

at a one-day conference on The Mathematical and Computational 

Aspects of Accelerator Design, and a discussion by Dr. J. Moser 

of some of the points raised by Dr. Laslett. Two appendices 

contain some further comments by Dr. Laslett and Dr. E. McMillan. 

In addition to the talks reported here, the Conference also 

h~ard a report by Dr. G. Parzen on the iterative techniques 

used to calculate the eigenfrequencies in recent cavities in 

connection with linear accelerator design. He reported on the 

difficulties caused by shapes that consist of two nearly dis-

connected domains of unequal size, and of methods for over

coming these difficulties. Dr. Symon reported1 on non-linear 

resonance phenomena due to the coupling of two particles, and 

Dr. E. Courant reported 2 on the effect of coupling in many 

particles. Dr. A. Garren described some sophisticated features 

of automation in codes used in accelerator design. 

We thank all participants of the Conference for their 

contribution, and hope that this report will stimulate mathemati

cians to concern themselves with aspects of long-range stability. 

1 See H. Meier and K. R. Symon, "Analytical and Computational 

2 

Studies on the Interaction of a Sum and a Difference Resonance," 

Proc. of the Intern. Conf. on High-Energy Accelerators and 

Instrumentation - CERN 1959 

See E. D. Courant and A. M. Sessler, "Transverse Coherent 
Resistive Instab.ilities of Azimuthally Bunched Beams in 

Particle Accelerators,'' The Review of Scientific Instruments, 

Vol. 37, No. 11, 1579-1588, Nov., 1966. 
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LONG-TERM STABILITY FOR PARTICLE ORBITS 

* L. Jackson Laslett 

/ 

The three accelerator papers on the program for this· 

afternoon will be concerned with types of dynamical pro'blems 

that arise in the study of particle accelerators, although 

the same mathematical problems may well arise also in other 

contexts. The accelerators ·with which we are concerned 

presumably will be of the "alternating-gradient" type, in 

which -- for very good reasons -- the functional character 

of the focusing force experienced by an individual displaced 

particle changes periodically as the particle proceeds on its 

way. Dr. Symon will review some of the quite striking effects 

that can develop from "coupling resonances," when the equations 

of motion are non-linear, and Dr. Courant will summarize the 

complications that develop with be.am intensities sufficiently 

great that inter-particle forces must be considered. 

My own paper is intended to report results on some 

computer experiments that I had hoped might cast light on 

the question of long-term stability -- specifically, in my 

work, for motion with only one spatial degree of freedom. 

For most accelerator projects this question may not be one 

of as immediate importance as the questions to be discussed 

by my colleagues this afternoon, but the answers could be 

vital for the proton storage-ring devices now being considered 

* Lawrence Radiation Laboratory, University of California, 
Berkeley, California 
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or under construction. The general problem appears to be a 

very interesting and quite difficult one, and I would look 

forward to comments from our mathematician friends concerning 

what one can say at this time in simple terms with respect 

to this problem. 

Thus, for my own part, I would like this afternoon to 

call to your attention this question of long-term stability 

and report on a few elementary computational experiments that 

I performed last summer.for my own orientation and amusement. 

As for motivation, the first Figure indicates some of the 

numbers that may be relevant for characterizing modern 

accelerators with respect to the interval over which one would 

wish them to exhibit stability of the particle motion. We 

note in particular that a representative particle may be called 

upon to traverse some 107 periods of the alternating-gradient 

(A-G) focusing structure. These parameters are indeed 

essentially the same as the number of oscillations or periods

successfully experienced by the beams of existing high-energy 

synchrotrons, and so we have the opportunity of concluding from 

experience that treacherous long-term instabilities need not 

be troublesome in a conventional A-G design. 
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PRESENT AND FUTURE A-G SYNCHROTRONS 

oscillation wavelength:One to Several Hundred Meters 

Period of Structure: 10 to 100 m. 

Time Interval: ""1 sec. 

No. of Periods Traversed: 

(3 x 10
8 

m/sec)(l sec)"" 107 
(10 to 100 m) 

Fig. 1 

It would not be out of the question, moreover, to think of 

computational experiments that would subject particles with 

a limited number of selected initial conditions to algebraic 

transformations that could simulate passage through some 107 

periods of the A-G structure, although one would have to be 

attentive to the possibility of obtaining misleading results 

as a consequence of round-off or truncation errors -.- especially 

if the structure of the problem is such that the distinction 

between the initial conditions for stable vs. unstable motion 

is very fine grained. 

A storage ring, on the other hand, might be of comparable 
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dimensions -- or at least involve a similar number of 

oscillations per second and number of periods traversed per 

second -- but would be intended to retain particles for hours. 

Thus, as we see on Fig. 2, one's interest in long-range stability 

becomes extended to intervals some 104 times as great i.e., 

possibly to 1011 periods, or even to 5 x 1011 periods of the 

structure. 

PRESENT AND FUTURE A-G SYNCHROTRONS 

Oscillation Wavelength:One to Several Hundred Meters 

Period of Structure: 10 to 100 m. 

Time Interval: '""1 sec. 

No. of Periods Traversed: 

( 3 x 108m/sec ) ( 1 sec ) ,.., 10 7 
(10 to 100 m) 

STORAGE RINGS 

Time, Interval: '"" 3 hrs. or sec. 

No. of Periods Traversed: '"" 1011 

Fig. 2 
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Here past experience is not particularly helpful, since the 

storage rings that have been operated to date have been electron 

rings (or electron-positron rings) in which radiation damping 

can helpfully play a dominant role that is effectively absent 

(by a relativ~ factor of ten orders-of-magnitude or more) for 

protons. 

Cosmologically, the universe is supposed to be only 

some 5 x 109 years old, corresponding to no more than that 

many planetary periods at the present rate, so astronomical 

evidence may provide little assurance to the storage-ring 

designer unless we are prepared to be relatively restrained 

in our non-linearities, and unless we have some theoretical 

scaling laws that then could be applied to relate the long-

term stability of our proposed device to that of another system 

that observationally has appeared to be stable. 

I could illustrate the mathematical form in which one 

might pose this problem in our application by considering 

explicitly the case of a single spatial degree of freedom 

such as the transverse particle displacement,in the median 

plane of the accelerator, measured from the equilibrium orbit 

(Fig. 3) • 

In the ideal case of an A-G accelerator that is perfectly 

constructed and aligned, the linearized equations of motion 

would be a simple equation of the form of Hill's equation 

(to which the Floquet theory would apply) as shown at the 

top of the Figure, where F(9) is periodic in e and in practice 
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might be represented simply by one of the two forms indicated. 

LINEARIZED EQUATIONS 
2 4 + F(e)u = o 

de 

Periodic Square Wave 

where F(e) = or 

a + b cos Ne 

TYPICAL NON-LINEAR EQUATIONS 

One degree of Freedom 

l R.._____.F 

2 
d u + (a+b cosNe)u + a(sin Ne)u2 - t3(cos Ne)u3 = 0 
~ 

Two coupled degrees of Freedom 

d2u 2 2 3 2 + (a+b cos Ne)u + a(sin Ne)(u -v )-t3(cos Ne)(u -3uv )=0 
de2 

d 2v 2 + (a'-b cos Ne)v - 2a(sin Ne)uv + 3t3(cos Ne)u v = o 
de

2 

Fig. 3 

In actuality, some non-linearity of the restoring (focusing) 

force will be present, either deliberately or inadvertently 

introduced. My own interest in the effect of non-linearities 

arose in connection with designs for fixed-field alternating

gradient (FFAG) accelerators, as proposed by Symon and others 
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of the Midwestern Universities Research Association (M.U.R.A.), 

in which non-linearities necessarily would be prominent at 

the amplitudes of interest. Representative terms that could 

be added to account for quadratic and cubic components to the 

force would, in that application, be of the form shown in the 

middle of the Figure, and below it one sees the Hamiltonian 

pair of equations that one could take to describe the corre

sponding motion in two spatial degrees of freedom. 

The inclusion of a periodic 9-dependent coefficient for 

the linear terms in these equations is not significant, since 

that feature can be transformed away by an explicit, well

behaved transformation. What is important is that we do not 

have linear equations, to which the well-behaved properties 

of the Floquet solutions apply, nor do we have a 9-independent 

Hamiltonian that could be taken as a constant of the motion. 

(As is of course known, Dr. Moser has investigated the 

possibility of systematically introducing a series of trans

formations for the working variables such that the 9-dependence 

of the Hamiltonian function becomes displaced to higher and 

higher order -- this is done with the expectation, as I 

understand it, that the new Hamiltonian functions will 

progressively become better approximations to a constant of 

the motion, as in fact certainly seems to be the case in 

limited applications of this technique to the study of solutions 

over moderately long intervals.) 

One has the impression that the essential features of 

solutions to equations of this form can be exhibited by suitably 
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constructed non-linear algebraic transformations whose 

short-term phase-plane characteristics would be qualitatively 

similar to those implied by the differential equations, and 

for which computational studies would be both faster and less 

affected by numerical error. Such transformations can, in 

fact, be regarded as special cases of the differential 

equations, with the periodic coefficients becoming periodic 

delta functions of the independent variable {discrete, 

localized lenses). What is required of the transformation is 

simply that the iterated values of the coord-inate and conjugate

momentum variables, as functions of the previous values of 

these variables, satisfy the Poisson-bracket conditions 

or any other of the several alternative forms in which one 

can express the necessary and sufficient conditions for a 

system to be Hamiltonian. In one spatial degree of freedom, 

this condition can be simply stated as requiring tha.t the 

transformation be area preserving in the two-dimensional q,p 

phase plane. 

A simple transformation in which I became interested 

some ten years ago at M.U.R.A. pertained to motion in one 

spatial degree of freedom and was belieVed to simulate the 

solution to the radial motion in the median plane of a spirally

ridged FFAG accelerator if the coordinate and momentum for this 

case are plotted at one-period intervals of the structure. 

This transformation is shown in Fig. 4, in which A is a 

constant and I regard :x! and y respectively as a coordinate 
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and its canonically-conjugate momentum._ 

x' =Ax + (l-A2 )y + (1-A)[x + (l-A)y] 2 

T: 

Y' = + x + Ay + [x + {l-A)y] 2 

If T(x1 ,y1 } = (x2 ,y2 ), then T-1 (x1 ,~y1 } = (x2 ,-y2 ) 

Sketch for A=- 5;8 

cos-1A ~ (0.35745)(2w) 

Area~ 5.5 x 10-3 

(would shrink to zero 

if A~ -
1
/2) 

F1 : (- J!l-5 , 0) = (-0:053966···, 0) 
26 

(o.o3846···, + o.o5688···) 

Fig. 4 

The upper and lower signs can be taken as referring to the 

forward or inverse transformation, respectively. The constant 

A can be interpreted as the cosine of the phase advance per 

iteration that would be exhibited by solutions to the linearized 

transformation, and A normally would be taken to have an 

absolute value less than unity. It also turns out that to 
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avoid being exactly at a one-third resonance when the quadratic 

terms are present, one likewise should avoid the value 

A= -1/2 (for which cos-1A = 2rr/3). 

This transformation, as written, was intended to simulate 

the solutions in a spirally-ridged FFAG accelerator when viewed 

at a suitable point of symmetry in the structure (and at 

homologous points, spaced at intervals, 2rr/N, equal to one 

period of the structure). In this form the transformation 

(T) has. the great convenience of exhibiting a symmetry about 

the x-axis, as has been noted on the Figure and as is evident 

from inspection of the transformation equations. The phase 

diagram, as revealed by short-term computations -- or roughly 

by application of Moser's methods or in some respects by more 

simple analytic considerations -- looks somewhat as sketched 

on the Figure /for A = -5/8, cos-1A ~ 0.35745(2w.) ~ 128.7 deg~, 

and in this respect the proposed transformation appears con

sistent with trajectories computed for some typical FFAG 

structures in which one would plan to employ the greater part 

of the apparently stable region that is situated within the 

roughly triangular boundary shown. 

What appears to be a stable area is b aunded by the curves 

that I have drawn through the three unstable fixed points of 

order 3 (F1 , F2 , F
3

), that are rigorous fixed points whose 

coordinates can be explicitly obtained from the roots of a 

quadratic equation .. In calling your attention to transformations 

of this form (and to the analogous non-linear differential 
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equations). I do not mean to imply that present accelerator 

or storage-ring projects visualize such pronounced excursions 

toward the boundaries of regions so obviously influenced by 

non-linear resonant effects, but smaller non-linearities may 

well be present in practice and future accelerator concepts 

may again involve strongly non-linear restoring forces. I 

also would not wish to imply that the most important problems 

to pursue in this connection are those that involve only one 

spatial degree of freedom. It may well be that results of 

some computational experiments and theoretical work by 

Kolmogorov and others that I hope Dr. Moser will rev:i,.ew for 

us -- can set the design~r's mind at rest with respect to 

possible long-range instability in one degree of freedom and 

that emphasis should be given in this context to the much 

more difficult problems that arise with systems having two 

(or more) spatial degrees of freedom. 

In any event, I thought last spring that for me it 

would prove instructive to examine the performance of the 

transformation just shown, using the CDC-6600 computer in 

double precision, since my previous look at this problem had 

been with the earlier IBM-704. This work was undertaken at 

Berkeley with the programming assistance of Mrs. Levine and 

with helpful advice from Eric Beals and Loren Meissner. By 

using double precision, we had available some 96 bits -

although truncation rather than true rounding was used in 

the arithmetic operations -- and it was possible to investigate 

7-13 



spurious fluctuations and drifts both by computational 

experiments and/or by a rough analysis. 

In investigating the behavior of an algebraic transfor

mation such as the one just proposed, one of course has a 

wide choice of working variables. Thus, if desired, new 

variables could be introduced that would result in a 

transformation having symmetry about the -t-45° diagonal, or 

one could select variables that would reduce the number of 

-computational steps (and hence improve the speed and accuracy 

of the work) required to perform each iteration. One may 

merely regard the introduction of such new variables as a 

mathematical operation, but, in some instances, use of the 

new variables rather easily can be interpreted as viewing 

the dynamics at some other reference point within the lattice 

of the physical structure. 

For my own computational experiments, it was convenient 

to introduce new ("working") variables defined in Fig. 5 for 

the direct or inverse transformations, respectively. In 

terms of these variables the transformation assumed the form 

shown at the bottom of the Figure. 
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By introduction of the working variables 

q = X + (1-A)y 

p = + y 

for the direct transformation T or its inverse, 

q' = Cp + q 

P' = (q'-l)q'' + p 

with 

c = 2(1-A) 

Fig. 5 

This transformation seemed particularly suitable for repeated 

iteration, but phase diagrams plotted in terms of these 

working variables (q,p) do not show any apparent symmetry 

and it therefore was convenient to express results in terms 

of the original x,y variables whenever output data were printed. 

The parameter A (= -5/8, a binary fraction) and derived 

parameters /Such as (1-A) = 13/8 and C = 2(1-A) = 13/47 were 

stored exactly .in the computer memory, and double-precision 

octal I-0 was available if required for resumption of any 

particular run. 

An initial attempt to reveal erratic or stochastic 

behavior gave negative results, in·that for runs of as many 

as 107 forward iterations,t starting with x = +0.026 = 0.85 xi' 

there appeared to be no computationally significant anomolous 

t 941.169 sec of CP time were required for a run consisting 

of 107 forward iterations followed by 107 reverse iterations. 
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drift -- e.g., after correction for computational drift and 

allowance for computational fluctuations, the +x intercept 

of the apparent invariant phase curves could be said to remain 

constant to an absolute accuracy of about 10-27, or a relative 

accuracy of about 4 x-lo-26 in this example. 

A positive, and hence more dramatic, effect can be 

obtained, however, by examining in some detail the character 

of the apparent separatrix. For this purpose we note that 

the transformation T3 will return a phase point to any 

one of the unstable third-order fixed points (F1 , F2, F
3

), 

and that the 11 separatrices" drawn through the fixed points 

can represent at these points the directions of outgoing and 

ingoing eigenvectors for the transformation T3 when the latter 

is linearized about the fixed points. If a true separatrix 

F2F
3 

exists, a line segment formed of"points situated very 

near to F2 and that lie on a curve whose slope is that of 

the appropriate (outgoing} eigenvector through that point 

should iterate under T3 so as to approach F
3 

along a 

similar eigenvector direction and, in the process, should 

generate a single smooth curve (F2F
3

). The symmetry of the 

present transformation (with respect to the x-axis) would 

imply, therefore, that the curve so generated cross the x-axis 

with a vertical slope. 

Numerically, forward iteration of a line segment from 

the neighborhood of F2 down toward the x-axis should be 

favorable with respect to unavoidable computational errors, 
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and detection of a non-vertical crossing would imply the non-

existence of a firm separatrix between 

application of T or -1 T , 

and (and, by 

correspondingly also 

would imply the absence of firm separatrices F3F1 and F1F2 .) 

Our work with double-precision arithmetic made it 

unambigously clear that extension of the eigenvector direction 

at F2 led to non-vertical crossing of the x-axis (at crossing, 

slope~ +106), although if single-precision arithmetic had 

been employed the results might have been ambiguous in this 

case. /Checks of the computational process could be made by 

use of different compiler systems, writing the algebraic 

statements in a different order or form, influencing the 

truncation errors (as by introducing intermediate steps such 

as "times 3 " followed by "divide by 3" into one or more 

equations for each iteration), and by use of varied starting 

conditions. Although some of these steps affected noticeably 

the location of individual iterates (x,y) near the x-axis, 

they had no significant effect on the curve that was generated 

in this process~? 

As is indicated in Fig. 6, the situation thus is such 

that a line segment QRS originating at F2 with the eigenvector 

slope will transform, after repeated iterations of ~, to 

generate the S-curve shown just below the x-axis (initially 

with an eigepvalue, for T3, "r ~ 2.102). 
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X -

Fig. 6 

A similar sequence of inverse iterations from F
3 

will 

generate the dashed curve, and forward iteration would cause 

points on the dashed curve to approach F
3 

in the absence of 

computational errors. Thus only particular points (e.g.: 

Q, R, and their iterates) that lie on both curves can originate 

arbitrarily close to F2 and ultimately approach r
3 
.. The 

area 1 transforms to the equal area 3 (unit Jacobian) and 

areas 1 and 2 are equal by vir.tue of the symmetry of the 

transformation, so all the loops shown -- and their iterates 

under the transformation T -- are equal in this example. 

It will be recognized that points, such as Q' and R', 

that approach F
3 

ultimately do so in smaller and smaller 
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-I 
steps (~II= ~I= 0.48). Conservation of the areas mentioned 

thus requires that the curve bounding the transforms of the 

areas 2 and 3 correspondingly must become increasingly 

elongated laterally, and (as suggested by Fig. 7) the solid 

curve Q'R'S'Q" will become increasingly sinuous. 

\ 
\ 

\ 
I 

\ 
I 

Fig. 7 

The areas shown (transforms of regions 2 and 3) each 

have the approximate magnitude 4.8 x lo-11 , or roughly 1/108 

times the area of the entire superficially-stable region 

F1F2F3 . The uniqueness of the transformation precludes that 

a finger such as that shown extending to the left will be 

intersected by one of its iterates, although such an iterate 

could well cross the dashed line. If the transformation 

continues to be applied, these fingers thus cannot remain 
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at all times within the finite area that at first might have 

been supposed to be a stable region, and an observed means of 

escape is that in which an iterate of this finger does cross 

the dashed line to enter a loop extending to the right. 

It ~ill be appreciated that the evolution of these 

fingers necessarily will become quite complex, and certainly 

they will make inroads into the ostensible "interior 11 region, 

but at this point it is by no means clear that the entire 

"interior 11 region need be consu.'Tled in this way. What is clear 

is that the non-smooth joining of the forward and backward 

eigenvector directions from F2 and F
3

, respectively -

either by a disparity of slope (as in the present example) 

or by a disparity of some higher derivative -- will imply that 

these curves do not generate a true separatrix and the truly 

stable area (if one exists) consequently is somewhat smaller. 

In the "interior, n closer to the 11 stable 11 fixed point 

at the origin, other (higher-order) fixed-point systems may 

be found. It can become increasingly difficult in such cases, 

however, to examine whether smooth or non-smooth intersection 

of their extended eigenvectors occurs, and a computational 

investigation would offer little hope of establishing absolute 

smooth joining. 

It is interesting and somewhat informative to examine 

other area-preserving transformations in these respects. 

Professor deVogelaere, who is now at Berkeley and has be~n 

very generous in discussion of these points, has for some time 
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been directing attention to a very simple transformation that 

requires little calculational precision to exhibit the fatlure 

of eigenvectors, when extended, to join smoothly. In its 

orig.inal form this transformation was of the form shown at 

the top of Fig. 8, 

De Vogelaere's Transformation 

x' 
2 

= y + X 

Y' = -X + x'2 

1 Tr. o. 2 = 

Modified De Vogelaere Transformation 

x' y + Tx + (1-T)x 
2 

= 
2 

y' = -X + Tx' + (1-T)x' 

1 Tr. T. 2 = 

Fig. 8 

and can be shown to possess the same symmetry property with 

resp~ct to the x-axis that was noted for the transformation 

I mentioned originally. This particular form may be somewhat 

distressing to a physicist, since the trace of the matrix 

for the linearized transformation vanishes (phase advance= rr/2), 

and one would be situated at a "quarter-integral resonance. 11 

A simple generalization of this transformation can be made, 

however, without affecting the interesting features by adopting 

the form shown at the bottom of the Figure. For either 
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transformation, an unstable fixed point, of order 1, occurs 

at the point {1,0), and the eigenvector directions extended 

from this point show a gross failure to join smoothly on 

crossing the negative x axis. This behavior is indicated 

on Fig. 9. 

Although this transformation may not be representative 

in any evident way of accelerator-orbit behavior, its study 

can be informative concerning features that can arise in 

non-linear problems. One can find, for example with 

T = -1/8, systems of unstable fixed points for which the eigen-

values are negative and that do not appear to have associated 

with them a corresponding system of stable fixed points. 

LE.g., forT= -1/8: Order 4/1, with eigenvalues -3.197 
and -0.3128 at x = 0.5615983, y = 0; 

Order 8/2, with eigenvalues -8.369 
and -0.1195 at x = 0.4562733, y = 0~7 

Also, with T > o·(e.g., +1/8), one finds for example a system 

of unstable and stable fixed points of order 19/4 in the 11 interior ti 

that roughly exhibits the classical 11 island structure" but for 

which the extended eigenvectors very easily can be shown not 

to intersect smoothly (both on ,the inner and on the outer 

island boundaries). f!Jne member of the stable and of the 

unstable fixed-point systems of this family will be found 

respectively at x = -0.38429776, y = 0 and x = +0.50736937, 

y = 0. The eigenvalues for the latter are AI= 1/AII ~ 3.2217 
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Fig. 9 

1 
T = E 

Somewhat closer to the origin, however, one finds a similar 

system of order 9/2 (indicated on Fig. 10), for which the 

intersections appeared completely smooth to the limit of my 

computational accuracy ffixed-points at x = -0.29000009, y = 0 

and at x = +0.32176070, y = o (with "r = 1/;>.,II ~ 1.179)_7. 
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Fig. 10 

1 T = 
8 

Experience with each of the transformations mentioned 

could be said to be not inconsistent with the view that some 

of the curves corrunonly regarded as stability boundaries are 

not firm and imply a sort of stochastic behavior of phase points 

' in their neighborhood, but, so far as we can tell, others may 

be perfect barriers and indeed may have true invarient phase 

curves nearby (ignoring, of course, the fluctuations of the 

parameters that in practice would be present as a result of 

"noise 11 in a physical system). The designer of particle 

accelerators -- or, more particularly, of storage rings --

7-24 



of course would like to know whether any regularity of behavior 

can be anticipated in this regard, and whether quantitative 

or reasonably-accurate semi-quantitative estimates can be 

made of diffusion rate in a region that possibly is characterized 

by stochastic behavior. It may be, of course, that such detailed 

and subtle features of behavior are highly sensitive to the 

exact values of the physical parameters that determine the 

transformation, and as such would be beyond the precise 

physical control of the experimenter. 

(I might add that the systems of unstable fixed points 

that have been found for both my transformation and for that 

of Professor deVogelaere appear to show what to me is a quite 

surprising regularity: I believe that deVogelaere noticed 

empirically that for his transformation, linearized about the 

fixed points of a certain class, the quantity 1 
"'2" Trace - 1 

showed an exponential dependence on the fixed-point order. 

It may be that other interesting features of such transformations 

can also be found to exhibit regularities such as that 

suggested by Mel'nikov in regard to the dimensions of the 

areas that are developed by the failure of separatrices to 

join smoothly -- and that some of these regularities might 

permit one to draw inferences that would have practical 

application.) 

An interesting class of transformations has been proposed 

by Dr. McMillan, for which it is possible to establish that the 

eigenvectors through the fixed point or fixed points do form 
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a true impenetrable separa.trix. He finds it convenient in 

this connection to consider the transformations to be written 

in a. form showing symmetry about the +45° axis (rather than 

about the x-axis) a form in which each of the transformations 

previously mentioned can be written by a suitable change of 

' variables. This form is taken to be, for the forward trans-

formation, that which will be seen on Fig. 11 in the upper 

left-hand corner. Such a transformation has a. simple physical 

x' = Y 

Y' = -x + f(y) 

X -

Fig. 11 
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interpretation in terms of a structure formed. simply from a 

periodic sequence of identical non-linear lenses ~y = -x + f(xl7 

placed with unit separation just before the measurement planes and 

with linear lenses L6Y = -~ situated just after each of these 

planes. For a fixed point of order one, the trace of the matrix 

for the transformation linearized about that point is just the 

derivative of f at that point, and stability of the linearized 

system requires ~~ f' I < 1. 

The transformation in the form shown can be executed by a. 

simple graphical construction, in which one first mirrors the 

initial point about the diagonal and then vertically reflects 

the resulting y-value about the curve 1 y = 2 f ( x}. A fixed 

point of order 1 is synonymous with the intersection of the 

diagonal with this latter curve. Referring to Fig. 12, 

McMillan has pointed out LlJCRL-177957 that if the function 

+ ¢-1 (y), ¢-1 ' f(y} can be expressed as ¢(y) where is the 

inverse·of ¢, then X = ¢(y) will be an invariant curve. 

The phase diagram shown in the Figure is for an example in which 

x = ¢(y) = a - 1 

Y +a 
and f(y)=, 22y2 

a - Y 
, 

with fixed. points at x = y = + ~ (lal > 1}. 
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Example in which 

f(y) = ¢(y) + ¢-l(y) 

= __,....2__.501----_,. 
a2 ~2 

¢( ~) = 
1 a----

~ + a 

[Plot for a= 5/4] 

Fig. 12 

An interesting and simple, although perhaps artificial, 

example of this class is one suggested by Dr. Judd, for which, 

as indicated on Fig. 13, one employs a step-wise linear f(x). 
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/ 

/ 
)L-----

Fig. 13 

a = 0.6 

Here the broken-line separatrix shown is a rigorous barrier. 

Also, of course, motion of sufficiently small amplitude to 

remain within the dotted square will trace the perfect 

elliptical invariant phase trajectories that are characteristic 

of truly linear motion. Outside of this dotted square, moreover, 

stable fixed points can be found Lfor example, with a = 0.6: 
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an order-6 FP at x = y = 9/13 and an order-7 FP at 

-x = y = 378/6837 that are surrounded by an elliptical 

boundary within which the motion is again truly linear (and 

truly stable "in the small'~. In Fig. 14 one such region is 

shown as the hatched area in the upper right-hand portion of 

the diagram -- the motion being controlled in such a case in 

a periodic way by definite values of f' at successive 

STABLE AREA 
with fixed point 

of Order b 

Fig. 14 
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iterations. Other points, including those neighboring unstable 

fixed points of the same family, however, show the failure of 

extended eigenvector directions to intersect smoothly and 

evidently are characterized by a sort of stochastic behavior 

that is confined to a finite region.T Nonetheless, the motion 

within the diamond is not completely ergotic, since, as we 

have seen, there exist in this area regions of limited extent 

within which the motion follows true simple invariant phase 

trajectories. 

In presenting this material I do not mean to imply that 

it contains much information that is new to the mathematicians 

who have been following recent developments of the theory. 

I am afraid that some of the computational results fail, as 

might be expected, to give definitive experimental answers 

to some of the significant questions, and my own work has 

·neglected entirely the more important (and more difficult) 

problems that arise with motion in more than one spatial 

degree of freedom. I also would not wish to claim that the 

questions of long-range stability are of quite as immediate 

importance to the accelerator designer as those, for example, 

T In this transformation (and also in a similar trans

formation with f(y) analytic), some cases were found in 

which the eigenvectors, when extended, generated a double-S 

(or double-Z), rather than a singleS (or Z) between 
successive iterates. 
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that concern collective motion. I would like to suggest, 

however, that the properties of such transformations as the 

one I mentioned at the beginning suggest questions that 

inherently are quite fascinating, and that it would be quite 

helpful for future design work if our mathematical colleagues 

could assist us in obtaining a better -- and hopefully somewhat 

quantitative understanding of these properties. 
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Appendix A 

I would li~e to call specifically to your attention a 

situation we encountered in which an area-preserving algebraic • 

transformation, when linearized about certain high-order fixed 

points, exhibited negative eigenvalues. This phenomenon arose 

in connection with some runs that I made using a modification 

of Professor deVogelaere's transformation, namely 

2 

T: 
{ 

x' = y-+ Tx + Cx 

2 
Y' = -x + Tx' + Cx' 

with C = 1 - T and T = -1/8. 

This transformation, whose phase plots are symmetrical 

about the x-axis, has an unstable fixed point of order 1 at 

the point (1,0) and the eigenvector-directions extended from 

this point develop loops in the familiar way (as qualitatively 

sketched in Fig. 1). In seeking higher-order fixed points in 

the "·interior" of this diagram, the following families of 

unsta•ble fixed points appeared for which the eigenvalues are 

negative: 

Family 1 ( 11 Tune 11 = 1/4 ) : 

X y 

0.5615983 
0. 2846170 

-o .45o4872 
0. 2846170 

0 

-o .5o6o428 
0 

o .5o6o428 

Eigenvalues: A= -3.197, -0.3128 
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Fig. 1 
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Family 2' ( 11 Tune 11 = 2/8) : 

X y 

0.4562733 0 
0.1771744 -0.44 31055 
-0~4299377 0.0845201 
0.3462146 0.5215085 
0.6130793 0 
0.3462146 -0.5215085 

-0.4299377 -0.0845201 
0.1771744 0.4431055 

Eig~nvalues: "A = -8.369, -0.1195 

Phase trajectories formed by extending the eigenvector 

directiions for the system described as Family 2 are shown in 

Fig. 2 in the region near the points 

(0.6130793, 0) and (0.4562733, 0). 

It does not appear necessary to have an associated 

family of stable fixed points in such a negative-/\ case, and 

none was found. ' 

With reference to Fig. 2, we may consider a point such 

as An,. that lies at the intersection of a phase trajectory 

that approaches the right-hand one of the two fixed points 

shown and a trajectory that is directed away from the left

hand point in the figure. After 8 applications of the trans

formation, this point moves so as to lie closer to the right-

hand fixed point {but on the extended eigenvector segment that 

lies on the opposite side of this fixed point, since 
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Fig. 2 

0.2 

0.1 

0 

-0.1 

-0.2 T = -
1 /8 

o. 0 o.so o. 0 
X---

0.70 
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~ ~ -0~1195 < 0), while it also comes to lie more remotely 

from the left-hand fixed point (and on the extension of the 

eigenvector segment on the opposite side of this fixed point, 

since ~ ~ -8.369 < 0). This new point is designated An+8 

on the drawing. 

The point Bn lies on the intersection of outward- and 

inward-directed eigenvectors from the left-hand fixed point. 

Its iterate is seen to lie on another such intersection 

closer in on the eigenvector for which 1~1 < l and more 

remotely on the extension of the vector for which 1~1 > 1. 

This performance may suggest that it is not necessary for a 

loop such as that shown between Bn and the left-hand fixed 

point to enclose another (e.g., stable) fixed point of this 

rotation number. I thus wonder whether the behavior of such 

fixed points (with ~ real and negative) may be qualitatively 

distinct from that expected in cases for which ~ > 0 (and 

for which one expects to find a "string of islands 11 such that 

one then i:nquires concerning the smoothness or lack of smoothness 

with which; eigenvector directions, when extended, intersect). 

The type o,f phase trajectories indicated in Fig. 2 may be most 

readily adaptable to fit in with the rather gross loops that 

develop in. this region of the phase plot from the eigenvectors 

extended f-rom the order-1 fixed point at ( 1, 0). [To avoid 

confusion on the drawing of Fig. 2, I have not shown there 

the order-4 unstable fixed point (0.5615983, 0), of Family l, 

that falls> in this region of the diagram. This point does not 
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lie on the intersection of any of the Family-2 trajectories 

shown in the Figure -- it lies on the x-axis some three-and-

one-half or four millimeters to the right of the point ~· 

The features illustrated in this diagram can be exhibited 

without any exceptional computational accuracy, and I have 

found it convenient to ad lib runs by sitting at a readily-

programmed Olivetti-Underwood "101 Programma"·] 

As a second point, I neglected to mention on Tuesday, 

during the discussion concerning "my" transformation, that 

this transformation also has an order-1 fixed point at (1,0). 

The transformation in question had the form 

{ 

x' = Ax + ( 1 - A2 ) y + ( 1 

Y' = -x + Ay + [x + (1 -

2 - A}[x + (1 - A)y] 
2 

A )y] . 

The extensions of the eigenvectors from this order-1 fixed 

point also develop gross loops, as might be expected. This 

behavior is sketched in Fig. 3, where the hatched area is the 

triangular area (with order-3 fixed points at its-vertices) 

to which I directed attention in my talk. As before, the 

constant A has been given the value -5/8. 

This same transformation, but with A= -1/4, shows a 

quite striking approximate constancy of the "tune" with respect 

to amplitude. With this value of A (A= -1/4) the small

amplitude tune corresponds to about 0.2902 (27r) radians 

phase advance per iteration, and a system of 7 stable and; 

7 unstable fixed points (tune = 2/7 ~ 0.2857) develops at a 
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rather large amplitude. [The x-coordinates of the fixed 

points that lie on the x-axis are given below: 

Stable F.P.: -0.123211 58766 12485 36429 040273; 

U~S. F.P.: +0.2 (exact), (half trace+ 1.05078125). 

Reasonably-appearing phase curves can be drawn inside and 

outside this system (Fig. 4) .] 

As a final point, you may recall that during my talk I 

mentioned in passing that certain regularities appeared to be 

present in the eigenvalues (or, more simply, in the matrix 

trace) for the successive families of fixed points of a 

particular class. You might be interested in the results for 

fixed points of tune m for Professor deVogelaere's 
4m + 1 

transformation (the transformation T, with the parameter 

T set equal to zero). These results, from the CDC-6600, 

are given in the attached Table, titled "TRACE", and apply 

to this transformation after linearization about the fixed 

points in question. 

It will be noted that the amount by which ~ Trace 

differs from unity is closely the same in absolute value for 

the stable and unstable fixed-point families of the same order, 

particularly for those with a tune having a large denominator. 

As Professor deVogelaere has pointed out, a plot of 

logjl -~Trace! vs this denominator is highly linear through 

many decades. Somewhat similar regularities also appeared 

with my transformation (taking A= -5/8). 
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TRACE -- with Characteristic Exponent or Eigenvalue 

Rotation 11 - t Trace I ~<(radians and degrees) 
or .>.. 1 

4/17 Stable 1.4425105233511725112471209 2.0291926112 rad. = 116.26417 deg. 
Unstable 1.43969121690663246936442793 3.66502113263853697319254146 

5/21 Stable 5.7813842878779832846897813 X 10-l 1.1352987670 65.04783 
Unstable 5.8036264715679285844257943 x 1o-1 1.80410530659480794010475635 

6/25 Stable 2.t7597940760361703235574oo x 1o-1 o. 6 722827659 38.51897 
2.1788566763236692069200659 x lo-t 

'\ 
9.1304428221204405827208083 x w-1 Unstable 

7/29 Stable 7.829060692954532623645218 X 10-2 0.3983316626 22.82272 
Unstable 7.831797137551201910136569 x to-2 4.8176517658506550100501700 X 10•l 

...... 
I 

X 10•2 ""' Stable 2.728644682248974445483034 0.2341429028 13.41540 ~ 8/33 
Unstable 2.728895164746296854366273 X 10-2 2.6249649867124260506989502 X 10•1 

9/37 Stable 9.29792427831269351629599 x lo-3 0.1364724784 7.81930 
Unstable ,9.29815526758626295733878 X 10-3 1.459830711381850496853179 X 10• 1 

10/41 Stable 3.11733627966553849389897 X 10-3 0.0789804692 4.52525 
Unstable 3.11735776570024232911098 X 10•3 8.21390854792845376708780 x 1o-2 

11/45 Stable 1.03289297698264626685582 X 10-3 0.0454 548311 2.60437 
Unstable 1.03289498665285647336435 x lo-3 4.64955922818988299371776 X 10-2 

12/49 Stable 3.3928393819586502370257 X 10•4 0.0260500720 1.49256 
Unstable 3.3928412689282888627246 X 10•4 2.6390836240047607322398 X 1Q•2 

13/53 Stable 1.1073874588761127191517 x lo-4 0.0148822572 0.85269 
Unstable 1.107387636632479404429 X 10-4 lo4993271827637053389945 X 10-2 



TRACE -- Continued 

14/57 Stable 3.597507701874426428512 x lo-5 0.0084823691 0.48600 
Unstable 3.597507869862235287326 X 10·5 8.518395228840448345675 x lo-3 

15/61 Stable 1.164736575122263454806 X 10•5 0.0048264663 0.27654 
Unstable 1.164736591051033262679 X to•S 4.838123045135810082937 x lo-3 

16/65 Stable 3.76188982802960206947 x 10·6 0.0027429518 0.15716 
Unstable 3.76188984318697930160 x 1o-6 2.74671537799954849551 X 10•3 

I 

17/69 Stable 1.21302583785923977869 x 1o·6 0.0015575789 0.08924 
Unstable 1.21302583930697271578 x 1o-6 1.5S879228547447310154 x 10-3 

18/73 Stable 3.9073431514620690060 X to•7 0.0008840072 0.05065 
Unstable 3.9073431528502623898 X 1Q•7 8.843979646269819787 x lo-4 

-...l 
I 

x lo-7 ,&:.. 
19/77 Stable 1.2579061979687540848 0.0005015788 0.02874 ,&:.. 

X 1Q•7 X 1Q•4 Unstable 1.2579061981024041544 5.017045535711146920 

20/81 Stable 4.048890866188331620 x 1o·8 0.0002845660 0.01630 
Unstabl·a 4.048890866317540574 x 1o·8 2.846065075505638042 x lo-4 

21/85 Stable 1.303401892994049370 x 1o·8 0.0001614560 0.00925 
Unstable 1.303401893006593882 X 10•8 1.614690281164473223 x to-4 

22/89 Stable 4.19742353638860984 x 1o·9 0.0000916234 0.00525 
Unstable 4.1974235364008412 x 1o·9 9.1627595583722791 x lo-5 

23/93 Stable 1.35249829376673101 X 10•9 0.0000520096 0.00298 
Unstable 1.3524982937679288 x lo-9 5e2010934205562950 x lo-5 

24/97 Stable 4.3612513115999777 X 1Q•l0 0.0000295340 0.00169 
Unstable 4.3612513116011556 x lQ•lO 2.9534319420601064 x lo-5 
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STABLE ~ POINTS Coordinates of Fixed Points on x•axis 

Rotation 

4/17 
5/21 
6/25 
7/29 
8/33 
9/37 

10/41 
11/45 
12/49 
13/53 
14/57 
15/61 
16/65 
17/69 
18/73 
19/77 
20/81 
21/85 
22/89 
23/93 
24/97 

xo 

-0.405787495533527606179670330 
-0.3898327790576272411210745517 
-0.376256564258982703826351991 
-0.364375876292784753973866988 
-0.353849991897727178101212375 
-0.344454467825082214779278635 
-0.3360136625106348627695919205 
-0.328382766046255557958214443 
-0.321441972573218211407301229 
-0.315092612636619870929695716 
-0.309253536442459300884027290 
-0.303857827005765909029891050 
-0.298850010528990438538647972 
-0.294183791444198337338681611 
-0.289820254666633978578222174 
-0.285726451504977016300760846 
-0.281874288628402645655758688 
-0.27823965234541592668327308 
-0.274801714559297280796278695 
-0.271542379067610302194439393 
-0.268445836701300885933631152 



UNSTABLE FIXED POINTS -- Coordinates and Eigenvector-Slopes of Fixed Points on x-axis 

Rotation ~ Eigenvector Slope 

4/17 0.496506084637672571858047332 + 1.19087319776336072103372725 
~ 

5/21 0.462456818522159807417166287 + 1.98025640724266507001182499 
6/25 0.434919899202634068763276322 + 3.6448303715138160554898096 
7/29 0.4129712543411046777982053091 + 6.71149665458175416010959 
8/33 0.395143181201283923562103066 + 12.13194932674224587711334 
9/37 0.38028378479061446738668478 + 21.65256874244943270658525 

i0/41 0.367615693398945789225052500 + 38.3974228188253509576353 
11/45 0.356618501511893262559214861 + 67.899195745219753844038 
12/49 0.346933293897475164157287819 + 119.930944670210285412930 
13/53 0.338303540926722169037576515 + 211.74390558804250663261 
14/57 0.330539854025521833310535365 + 373.77790810525522489253 

~ 
15/61 0.323498535361983972920093128 + 659.72253985475741663301 

I 16/65 0.31706804409355469021833772 + 1164.23127759143813146135 ~ 
~ 17/69 0.311160132509971989083355634 + 2054.08906983771121440622 

18/73 0.30570384083580695724148746 + 3623.0142160560248067746 
19/77 0.300641307899366821915148229 + 6387.950458569018040897 
20/81 0.295924774533113647798361329 + 11258.14336841298826259 
21/85 0.29151439360049880578482880 + 19831.80650990849558229 
22/89 0.287376599445981434654903827 + 34916.28816384722538324 
23/93 0.283482873883316580042953742 + 61439.461613242624541 
24/97 0.279808798677119570429068096 +108045.428556521895602 
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UNSTABLE ~ POINTS -- Coordinates and Eigenvector-Slopes of Fixed Points near Negative x-axis 

Rotation xo 

4/17 -0.374963547975391591167940018 

5/21 -0.3709792222736135823472685995 

6/25 -0.363360430000666384442227247 

7/29 -0.354799885030699916627188833 

8/33 -0.346384947641954153109214825 

9/37 -0.338456350459898304615153470 

10/41 -0.331089352530756057848620544 

11/45 -0.324270647171535629173200926 

12/49 -0.317958929780800613936981251 

13/53 -0.312106262884832988816311803 

Yo Eigenvector Slopes, from upper F.P., 
for .A~ 1 

+0.1059206297719378880335235985 0.915486568783131693553300896 
2.643243716380710957237796760 

+ 0.076240 72 563 890265843 3412 233 1.29658202546409954392340036 
2.69794367031100718218121146 

+ 0.057124516632160203007080502 1.62198974578660483326242039 
2.59545656091817951642492881 

+o.o44662298494267490408919155 1.8831866989852810751563540 
2.5294029554032894752569088 

+o.o3615560l69695I38o7o7o6oo7I 2.0958394793051152906058737 
2.5203670128578479810549472 

+ 0. 0300630 5 58080408 7 599 70049 50 2.2735196256654867498100389 
2.5501109094473573751463494 

+ 0.02 55211386 7392451901906386 2e425483218694276943146054 
2.603884480416832690781204 

+o.o220253o3oo3541669253251617 2.5584286643518998960738116 
2.6722903765866525976589024 

+o.o19264829387I99782429 528874 2.6774112341632897363909809 
2.7493648481699475750699039 

+o.o17038966471621903572171853 2.786211224111726315951442 
2.831281990313632622526412 



UNSTABLE FIXED POINTS •• near negative x-axis -- Continued 

14/57 -0.306665846880174961760996189 +0.015212653456478366785589701 2.8875759592867647514946485 
2.9155921632160939962612297 

15/61 -o.301594745181758972978848546 +0.013691912060098667750220235 2.98344770709623458485973 
3.00074835801797030168621 

16/65 -0.29685461990371039921986437 +Oo012409479227135966967667072 3.075172816638866086836259 
3.085796178029668174989598 

17/69 -0.292411664472703019119058302 +o.o11316046543926678118726977 3.163674983099432211082672 
3.170166636821707266037392 

18/73 -0.288236227231789099079304058 +o.o10374715612948833543028581 3.2495872938313320205429 
3.2535376525569821477697 

19/77 -0.284302340581867119271190549 +o.009557375155113915940587013 3.33334713195506387450208 
3.33574239886664091863436 

-..J 
I ,. 20/81 -0.280587249052701960844405559 +o.oo8B42267851511150343049067 3.4152617043102799591962 

00 
3.4167095355863915233517 

21/85 -0.27707097468107878695467275 +o.oo821231666554353688336967 3.4955520696750023864899 
3.4964248555929535977352 

22/89 -0.27373593262040534223520233 +o.oo76539491015729634814665o 5 
3.574382187359892100404 
3.575907087079015179917 

23/93 -0.27056659828187875545358686 +o.oo715625567931681763591264 3.6518778642681330455689 
3.6521928967283763252765 

24/97 -0.267549222310577829183807391 +0.006710377458137833432946976 3.728139039631599455481 
3.728327777110349067290 



DISCUSSION FOLLOWING LASLETT'S PAPER 

II * Jurgen Moser 

I should like to add some comments about some recent 

theoretical work on the problems of the type discussed by 

Laslett as well as mention some numerical experiments 

conducted by other people. 

It is hard to believe that these questions have their 

origin in the theory of accelerator design. In fact, orig-

inally the basic principle for the orbit stability of the 

Alternating Gradient Synchrotron depends to a large extent on 

the linear theory. However, in the course of deeper studies 

of the particle orbits in an accelerator, the nonlinear 

effects became more and more important and a source of concern. 

It was crucial to have some guarantee that the nonlinear terms 

would not destroy the stabillty which was so carefully provided 

for by the linear theory. This led to very delicate and 

difficult theoretical problems which also were approached with 

numerical experiments conducted on simplified model equations 

as we have just learned from Dr. Laslett's presentation. 

First, to mention some numerical studies of quadratic 

measure preserving mappings, I want to refer to the interesting 

work of Henon, "Numerical Study of Quadratic Area-Preserving 

Mappings", 1967, to be published. He studied simple quadratic 

mappings of the same nature as Laslett mentioned toward the 

end of his talk (transformation by Dr. McMillan). The main 

* Courant Institute of Mathematical Sciences, New York 
University 
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results are the following: 

In the neighborhood of an elliptic fixed point, one· 

finds well organized curve patterns which disintegrate at 

larger distances. Immediately the problem arises to determine 

the S'ize of this "stability region" as well as determine this 

curve pattern possibly by analytic procedure. Henon restricted 

himself to the description of the computations and comparison 

of his results with asymptotic series obtained by G. D. Birkhoff. 

The remarkable fact is that the agreement between the numerical 

results and these asymptotic series is tremendously close. 

However, no clear indication for the size of this stability 

region is in sight. 

It would require more space to refer to various theoret-

ical studies which have been made in this direction. First 

of all, it is to be mentioned that the curve pattern observed 

in most of these problems in general does not exist in the 

mathematically rigorous sense as a continuous family of 

invariant curves. This fact was known to Poincare and is 

closely related to his nonexistence proof of integrals. Of 

course, one can easily construct examples for which such 

family of closed curves does exist; however, this is an 

exceptional situation. For a rigorous proof of this last 

statement we refer to RThssmann1 . The situation is actually 

l H. RUssmann, '~ber die Existenz einer Normalform inhaltstreuer 

elliptischer Transformationen," Math. Ann. 137, 1967, 
pp. 64-67. 
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very delicate insofar as arbitrarily small changes of the 

mapping lead to a distribution of the curve pattern. On 

the other hand, by changes of sufficiently high order terms, 

one can force the existence of a family of smooth closed 

curves. The situation is somewhat reminiscent of the distri-

bution of rational numbers on the real line. Both the 

rational numbers on the real line. Both the rationals as 

well as the irrationals are dense yet the irrationals form 

the majority. 

To continue this analogy: it is rather easy to establish 

the existence of irrational numbers and, similarly, it is not 

too hard to establish the existence of mappings which do not 

possess such a continuous curve pattern. It is usually a 

more difficult problem to decide whether a preassigned number, 

say ~ is irrational. Therefore, one would expect it should 

be difficult to decide whether a given mapping of this sort 

belongs to one class or the other. In this connection, I 

want to refer to a paper of mine2 in which it is shown 

rigorously that even the simple polynomial mappings do not 

possess a family of closed curves. This includes, in 

particular, the example by McMillan. 

2 J. Moser, "On the Integrability of Area-preserving Cremona 
Mappings near an Elliptic Fixed Point, ir Bol. Soc. Mat. 

Mexicana, 1961, pp. 176-180. 
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At this point, it seems confusing that the numerical 

evidence does not match ttie theoretical prediction of non-

existence of such a curve pattern. It turns out that this 

paradox can be resolved: even though there is no continuous 

family of closed invariant curves there does exist a large 

set of closed curves which, however, do not join together 

into a continuous family. They are interrupted by 

infinitely many gaps so that one obtains a 11 Cantor set 11 of 

closed curves. This was proven in my paper3 as well as in 
4 Arnold's paper . It is to be emphasized that the closed 

curves so obtained are by no means pathological, they are 

differentiable, and, in fact, analytic curves. However, 

their distribution is pathological. The crucial point of 

these-investigations is that they insure stability of the 

elliptic fixed point since points starting in the interior 

of such curves are forced to remain there. 

What happens in the gaps left by the invariant curves 

mentioned above is only partially understood. These regions 

contain, in general, infinitely many fixed points of the 

3 

4 

J. Moser, "On Invariant Curves of Area-preserving Mappings 

of an Annulus," Nachr. Akad. Wiss., Gt:Jttingen, Math. Phys. 

Kl. IIa, Nr. 1, 1962, pp. 1-20. 

V. I. Arnold, "Proof of A. N. Kolmogorov's Theorem on the 

Preservation of Quasi-periodic Motions. under Small 

Perturbations of the Hamiltonian", Uspekhi Mat. Nauk 

U.S.S.R. 18, Ser. 5 (113), 1963, pp. 13-40. 
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mapping or one of its higher iterates. However, the behavior 

of the consecutive iterates in these regions is quite irratic 

and irregular, in particular near unstable fixed points. Thes~ 

domains are often referred to as "regions of instability". For 

an instructive schematic picture we refer to the paper by 

Arnolds. There are conjectures, more or less informal, that 

these regions of instability contain open invariant sets in 

which the mappings are ergodic. Nothing of this sort has 

been proven and there is some numerical evidence, especially 

in the work of John M. Greene, Forrestal Research Center, 

Princeton, 6 for extremely ergodic behavior in these domains. 

In fact, he expressed the opinion that there are invariant 

domains in which the unstable fixed points are dense. Since 

this situation is typical for ergodicity, one may take this 

as an indication for the existence of ergodic domains. 

Comparing the numerical and theoretical results, one 

has to be very careful: the theoretical results are strictly 

applicable only in extremely small neighborhoods of elliptic 

fixed points (in some paper, Henon estimates a ·radius of 

validity of the proof as about lo-3°0 !). This is due to the 

5 

6 

v. I. Arnold, "Small Divisor and Stability Problems in 

Classical and Celestial Mechanics,"Uspekhi Mat. Nauk, 18, 
No. 6 (114), 1963, pp. 81-192. 

Private communication. 
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shortcoming of proofs which are very crude in the details of 

the estimate. One would have to resort to numerical experiments, 

such as Laslett presented here, to obtain the feeling for the 

actual size of the stability region. In all. these numerical 

studies one finds,in fact, a sizeable neighborhood covered 

to a large extent by invariant curves. On which parameters 

or properties the size of this stability region depends seems 

still to be quite in the dark. For this reason, I consider 

the closer study of numerical experiments extremely worthwhile 

and instructive. 

7-54 



ADDENDUM TO UCRL 17795, "SOME THOUGHTS ON STABILITY IN 

NONLINEAR PERIODIC FOCUSING SYSTEMS 11
, Sept. 5, 1967. 

Edwin M. McMillan* 

March 29, 1968 

1.) Introduction 

In UCRL 17795, it was shown that curves in the x,y 

plane having reflection symmetry about the positive diagonal 

are invariant under the transformation: 

\ 

x' = y 
( 1) . 

y' = -x+f(y), 

where f(y) is the sum of the two values of x corresponding 

to the given y. It is required that there be just two values, 

but the two branches on which they occur are not required'to 

have a. common analytic form. An example given was the pair 

of rectangular hyperbolas y = 1 -a/(x+l) and y = -1 +a/(1-x}, 

with 2 f(y) = 2 ay/(1-y ), mentioned in paragraph 3 and illus-

tra.ted in Fig. 1. The question whether there are other 

invariant curves belonging to the same f(y} was left open. 

This question was answered by John M. Greene in a letter 

to L. Jackson La.slett (March 8, 1968). He pointed out that 

all curves of the form (l-x2 )(1-y2 ) + 2 axy = const. are 

such invariants. If the cons ta.nt has the value 2 2a-a , the 

equation fa~tors into two equations representing the rectangular 

hyperbolas, which are now seen to be simply the separatrices 

* Lawrence Radiation Laboratory, University of California, 
Berkeley, California 
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of a family of invariant curves. In the course of checking 

the invariance of "Green 1 s function 11 by the methods of 

" UCRL 17795, I found that it is a special case of a broader 

class, which can be called "double quadratic" curves. 

2.) "Double quadratic n curves 

Any equation which is quadratic in x can be solved 

explicitly for x. If x and y occur in it symmetrically, 

it represents a curve with the required symmetry about the 

positive diagonal. The most general equation with these 

properties is: 

whose solution is: 

l 
X = ----~----------

2(Ay2 + By + C) 

The sum of the two values of x gives f(y): 

f(y) = By2 + Dy + E 

Ay2 + By + C 

(3). 

( 4) • 

Since f(y) does not depend on F, all members of the family 

generated by giving different values to F are invariant under 

the transformation (1), with f(y) given by (4). 
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We thus have the remarkable result that an f(y) which 

is the ratio. of any two quadratic functions of y leads to 

a family of invariant curves, with the single restriction 

that the coefficients of 2 y in the numerator and of y 

the denominator must be of equal magnitude and opposite in 

sign. 

The first order fixed points, if they exist, are at 

f(y) = 2y, and are therefore the solutions of: 

2 A~ + 3 By2 + {2C+D)y + E = 0 

The number of parameters in (4) is easily reduced; 

in 

E can be eliminated by a coordinate displacement along the 

positive diagonal, either A or B can be made equal to 

D or E by a change of scale, and any one of the remaining 

parameters can be set equal to unity. Thus we have a two-

parameter system. Some interesting cases are: 

(1) A= 1, B = 0, C = -1, D = 2a, E = 0, F =c. 

(5) 0 

2 2 2 2 x y x -y + 2a x y + c = 0. {"Green 1 s function 11) 

f(y) 2 a y 
= 2 

1 - y 

The first order fixed points are at y = 0, ~ ~-

The separatrices are displaced rectangular hyperbolas, as 

pointed out above. 
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(2) A= 1, B = 0, C = 1, D = -2a, E = 0, F =c. 

x 2y 2 + x 2+y2 + 2a x y + c = 0. 

f(y) 2 a y 
= 2 

1 + y 

The first order fixed points are at y = 0, + Ja-1 

The separatrix is the curve given by setting c = o. 

In cases (1) and (2), if a is negative, the curve is rotated 

by 90°, and the first order fixed points (except the one 

at x = 0) become second order fixed points. (See paragraph 6 

and Fig. 3b of UCRL 17795) 

The 

The 

the 

(I 

(3) A = 0, B = 1, c = -1, D = 0, E = 0, F = c. 

2 + xy2 2 
X y - X - y2 + c = o. 

2 
f(y) = 

y 

1 - y 

first order fixed points are at 2 
y = 0, 3 

separatrices are the curve given by setting 8 c =-
27 

line x+y+2 = 0, and the curve xy -x-y + 2 = o. 

thank Dr. Las lett for finding the last two of these.) 

(4) A = 1, B = -2, C = 1, D = 0, E = 0, F = c. 

x2y2 -2 {x2y+xy2) + x2+y2 + c = 0. 

f(y) = 2y2 2 
(1-y) 

The first order fixed points are at y = 0, ~ (3 + V5). 
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ERAN-57 

STRUCTURE IN R.F. PHASE PLOTS* 

L. Jackson Laslett 

10 February 1970 

r. Introduction 

Phase plots that depic·t the results of repeated applications of various 

non-linear area-preserving- transforma.tions have been found to develop a re

markable complexity of structure. 1 .This behavior, and the associated ques

tion concerning the existence of invaria.nt phase curves, have posed challeng

ing problems to the mathematicians. Contributions to the theory have come 
,2 3 4 5 6 from H. Poincare, J. Moser, R. deVogelaere, H· Russmann, A.N. Kolmogorov, 

v.r. Arnol'd,7 v.K. Mel'nikov,8 and B.v. Chirikov,9 to mention the names of 

a few who have worked on these problems. 

The subject just described holds a certain fascina.tion for the accele

rator designer who is interested in the long-term stability of betatron os

cillations in a cyclic accelerator or storage ring. In this application 

the use of a (periodic) alternating-gra.dient structure precludes the Hamil

tonian function serving as a constant of the motion, and the possible presence 

of non-linearities prevents use of a quadratic invariant formlO,ll such as 

can be obtained from the Floquet theory for Hill's equation. In such a 

situation it may be conv~nient, particularly for computational work, to re

place the non-linear differcntinl equations of the system by a transfor

mation whose ·successive iterations may typify passage through successive 

periods of the alternating-gradient structure. Such transformations fre

quently can be interpreted, if desired, a.s describing the passage of a par-

ticle through a sequence of linear focussing elements and localized non- \ 

linear lenses. Transformations that are algebraic frequently are chosen as 

examples for specific study -- again partly for reasons of convenience, and 

in the expectation that the a.lgebraic nature of these transf'ormations should 

* Work supported by the u.s. Atomic Energy Commission. 
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I. 

not in itself give to the results any particularly distinctive character. 

The possible connection of non-linear transformations with accelerator 

performance, in fact, motivated the studies of the present writer that are 

described in reference 12. 

The theory of energy oscillations, or "synchrotron oscillations," in 

a synchrotron13 should describe the energy and phase oscillations that occur 

when a charged particle passes repetitively through one or more "accelerating 

cavities" situated at localized points around the accelerator ring. Since 

these oscillations normally are of a relatively low frequency, it often is 

legitimate as well as convenient to analyze them theoretically on the basis 

of differential equations derived on the supposition that the e.ccelerating 

field is uniformly distributed around the orbit. 10,l4, 15 Strictly, however, 

the energy changes experienced by a particle are essentially impulsive, 

and depend on the sine of the electrical phase angle ~ at which the par

ticle traverses the ca.vity, so that the motion in this degree of freedom 

(assumed uncoupled to the betatron motion) is basically described by the 

repeated application of a non-linear (end non-algebraic) transformation 

connecting the energy variation and phase to values pertaining to the pre

vious transit. 

The differential-equation approach to the theory of synchrotron oscil

lations leads to a Hamiltonian that constitutes a constant of the motion 

for an individual particle and to a critical value for this function that 

defines a stability boundary enclosing a region (.''bucket") that is truly 

stable under the assumptions introduced. The fact that the particle 

motion in this degree of freedom is more properly described by a sequence 

of transformations (due to localized forces, virtually of a delta-function 

character) suggests, however, that it would be of interest to examine the 

extent to which the complex phenomena arising from repeated application of 

non-linear transformations may make their appearance in this situation. 

This question has been examined computationally, for a specific example, 

in the work described in this report. The complex character of what 

appears superficially to be a separatrix between stable and unstable regions 

has been seen to be present, although not to a degree that would provide 

grounds for concern for the customary use of radio-frequency acceleration 

systems in present accelerator technology. 
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II. Derivation of the Transformation 

We consider here the case of a stationary bucket with no acceleration 

(stable phase angle, ~ = ~). To obtain the working transformation, we 
8 

consider a single cavity operating at a harmonic number b. The quantities 

denoted En and ~n are respectively the energy with which a particle enters 

the cavity and the electrical phase angle present at the time of transit. 

With denoting the transition energy in rest-energy units, we have 

and the transformations may be written 

[ 
1 ( 1 1 ) 6En+lJ ~ =LY/J+m__ht 1+- ----n+l n lti'' RF a. 2 ., 2 2 E

8 ~-'s ,,. rs 

[ 
1 ( 1 1 ) Mn+l] : A.J. + 27th 1 + - - - -

~n a. 2 2 · 2 E 
~-'s 'YT YB B 

The latter equation equivalently can be written 

A.l. = A.l. + 21Ch ( .1:..... - .1:.....) 6En+l 
'4"n+l '4"n 2 2 2 E 

t3s rT rs s 

If one now sets ~~- 1C and defines 

X= e;i 
1( , 

the transformation becomes 

ev 
0 

Yn+l= Yn --E s 

Y = DE 
- E 

s 

sin(1Cx ) n 

1 

, 

• 

+ .?.h ( .1:..... - ) xn+l= X 2 Yn+l n 2 2 
~B 'Y T rs 
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With K 
eV 

0 
t:: T, 

s 

f.. :c 2rch (__!_ _ _!_ ) 
2 2 2 

t3S -yT -yS 

finally assumes the form 

, 
X =X+Ay 1' n+l n n+ 

, and "A' ."A 
= ;( ' the transformation 

This transformation is area-preserving {unit Jacobian) and phase trajectories 

are expected to be symmetrical with respect to reflection in the origin (x ~ 

-x and y --t -y). No attempt has been made to effect e. change of variables 

that would result in further symmetries. 

In x,y-space, the stable fixed point is at the origin, unstable fixed 

points at x = + 1, y = 0, and the phase advance per transit of small

amplitude oscillations is 

-1( "AK) -1 V'):i --~ 8 = cos · 1- 2 = 2 sin 2 ='V "AK 

with the synchrotron oscillation frequency becoming 

rr = (!) !2_ ~ (!) ,.f);K 
0 21C 0 2 1( 

in terms of the going-around-frequency m . 
0 

If one linearizes the transformation about the unstable fixed points, 

one finds the eigenvalue factors 

and the corresponding eigenvector slopes 

In the limiting case that the transformation ma.y be replaced by a pair 

of differential equations, 

dy -K sin rex dn 

c1x -/.y 
dn -- ' 
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the motion is described by the Hamiltonian function 

' 2 K 
H = " ~ - - cos 1{X' 

"' 1( 

which is a constant of the motion and ha.s the value H = K/TC at the 

stability boundary. In this latter case, the complete bucket area is 

16/K 
easily found to be J • 7C '+/ ~ in x,y units. 

For numerical work we have taken 

1{ 

K = 10 and " ::: .2!... 10 so 
, 1 
)\-- . - 10 

One then expects 8 = 2 sin -l-1 ~ ~ 0.3155rad, or about 20 transits per 

oscillation when the oscillation-amplitude is small. In addition, by 

reference to the differential-equation formulation, one estimates the maxi

mum permissible value of y for "stable" oscillations (half bucket height) 

to be approximately 2, and the full bucket area to be close to 16 ~ 5.092958. 
1{ 

Similarly, the eigenvalues for this specific transformation, when it is linea

rized about the unstable fixed points, are found to be 

E ~ 1.36736, 0.731336, 

with the corresponding eigenvector slopes 

~~ ~ 2.68663, -3.67357 ' 

respectively. A sketch is shown in Fig. 1. 
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III. Computational Results 

The transformation was programed for execution on the c.n.c.-6600 

computer, in single-precision, using the LRL BRF teletype system. To 

demonstrate the presence of structure in an ostensibly smooth separatrix, 

one can begin with a line segment that is situated very close to the left

hand unstable fixed point and coincides in direction with the outward eigen

vector for that point. A segment whose extremities differ in their distance 

from the unstable fixed point by a fa.ctor E is suitable, and the evo

lution of points along this line segment can be followed, by repeated ap

plications of the transformation, as the iterates a.pproach the right-hand 

unstable fixed point. The development of loops in the iterated line seg

ment, that are cut by extensions from the right-hand fixed point of the 

growi_ng eigenvector direction for the inverse transformation, constitutes 

evidence for the existence of the type of structure in question. 

Loops of this character were found to develop with the transformation 

described here, as is illustrated in Fig. 2. To expedite the plotting 

that lack of' symmetry otherwise would make inconvenient, the plotted 

quantities were derived from x,y by an area-preserving coordinate trans

formation 

~ = A(x - 1) + Dy 

Yp = c(x - 1) + Dy 

with 

A -- , l.3!t"(O)ll~!~68 B :: 0. 366681~81~ 50 

c -- -1.15197!~lt.l5 2 D = 0.!~287797927 

[This transformation has the effect of transforming the eigenvectors through 

the point (1,0) so that they coincide with the new coordinate axes.] 

The points Q, Q1 indicated at the intersections shown on Fig. 2 are 

"Queen points", with Q1 the iterate of Q.* The invariant area of each of 
-11 the half loops shown can be estimated from the graph as about 10 in x,y 

units, which may be contrasted with an area of approximately 5 within the 

entire apparent bucket of Fig. 1. 

* The approximate x,y coordinates of these points are (0.999994602, 1.983053 

X l0- 5 ) for Q and (0.999996052, 1.!~50287 x l0- 5 ) for Q
1

• 
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Some computational check of the work can be obtained by repeating the 

itera.tions with a line segment that initially is situated closer to the 

left-hand unstable fixed point by some orders of magnitude (~·~·, by a 

-8 N o8 8 -16 _,. o66r>C. ) factor E = 0. l 35 or E = 0.0 7U9 . This check was made in the 

work reported here and did not affect the results shown on Fig. 2. 

Confirmatory work should be able to demonstrate the existence of 

loop structure by showing a non-smooth intersection of the extended eigen

vector directions in a region near the top of the bucket (where x ~ 0 and 

y ~ 2). Numerical accurucy of the computations made from the neighborhood 

of the points (+ 1,0), with the forward and inverse transformations re

spectively, should be good in this region near x = 0, but the effects to 

be sought are quantitatively more subtle. Details of the intersection at 

a Queen point for which x ~ O.lOd~234, y ~ 2.0o8464315 are shown in 

* Fig. 3· To construct this plot it again was necessary to employ a co-

ordinate transformation designed to eliminate most of the curvature and 

** slope from the line segments iterated to the neighborhood of this point. 

The scale of the plot shown as Fig. 3 is sufficiently expanded that some 

truncation noise from single-precision computations is noticeable, but 

the failure of the two phase-trajectories to intersect smoothly is evident. 

Double-precision computations were also made on the c.D.c.-6600 computer 

to check this point, with results shown on Fig. l~ that fully confirm this 

inference concerning the non-smooth intersection. 

From Fig. 3 or Fig. 4 one can estimate that the angle of intersection 

of the two curves shown is roughly characterized by a difference of slope 

* 

** 

The points designated by Q and Q' on Fig. 2 occur respectively 39 
and 40 iterations following attainment of the point Q on Fig. 3. 

The (area-preserving) coordinate transformation employed for 
this purpose in the present work was 

with 

~p= X

y = y -DP 

XQ 

yQ+ (2.564861730 X ~p+ 0.000038665)X ~p , 

XQ ~ 0.10043075210 

y Q ::: 2. oo846l~ 31485 • 
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6 (~) ~ 7.2 X 10-9. With a postulated parabolic or sinusoidal trend for 

the difference between the curves and a separation h ~ 0.099 between their 

successive intersections in this region, the area of a half loop could be 

estimated as roughly 

0.18 h2 6(~) = 0.18(0.099)2(7.2 X 10-9) 

... 1.3 x lo-1\ 

( ... -11) in adequate agreement.with the estimate = 10 obtained from inspection 

of Fig. 2. 

It is of some interest to observe the evolution, for a short time, of 

a (curved) line segment that starts near the left-hand unstable fixed point, 

but just inside (!·~·' to the right of) the eigenvector of positive slope 

that passes through the point (-1,0). As such an example, we have taken a 

line segment of which one end is situated at (-1+ £ 1 0) and the other at or 

* near the transform of' this last-mentioned point. The evolution of such a 

line segment with £ = 2.5 X lo-6 is indicated by the dashed lines on Figs. 

5 and 6. 
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* 2e: 
The ~~ansform of (-1 + e:, 0) is at Yo"" Tis sinlfe: ~ 1tlO 

"' (1+ 100 )e:-L We have taken intermediate points with 

1 
' xoc E+ lOYO- 1 
coordinates 

Y =f· =L+ /€2+(1 1)2 
Yo ' x 20 V 1(2 + 4oo Y -l ' 

with 0 ~ f ~ 1. 
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McMillan's form of an area-preserving transformation, 

bas the tangential-mapping transformation characterized by the matrix 

of which cumulative products are to be formed (starting with the identit.y 

matrix) as the transformation proceeds. If the cumulative matrix is 

denoted 

(with AD-BC = 1), one will have real eigenvalues (a reciprocal pair) 

1' 1 ) if 2 Trace = 2 (A+D is such that I ~ Trace I ~ 1. The magnitude 

of the eigenvalue of larger magnitude then will be 

1'1.1 = ~~ Tracej + ~ (~ Trace) 2 - 1 , 

with 'l/f1 =.. log10 I A~ , and the sign of /\1 will be the same as the sign 

of 1 2 Trace. 

This transformation -- for the dynamical variables x, y and for 

the matrix elements A, B, c, D of the corresponding tangential trans-

formation -- has been programmed as a double-precision interactive (TTY) 
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program ("FIG8D") for the L.B.L. COC-6600 computer for the specific 

particular case in which* 

f(£) 1 
= 2 (3£-1) - ~ 

although data are entered (and printed) in single precision. 

The program normally prints x, y; the matrix elements A, B, c,.D 

of the tangential transformation; ~v1 ; and a flag (LF) whose sign indicates 

the sign of Al when jA1 j > 0 (specifically the sign of ! Trace). If 

the value of AD-BC departs from unity by as much as TEST (= 1.0 x 10-9) 

-- presumably because of these matrix elements becoming large -- printing 

occurs (with asterisk flags) and the elements are then restored to 

provide the unit matrix (10 10) for continuation of execution of the 

transformation of x. y. If desired, ''noise" can also be in traduced into 

the program (by use of the external Librar,y function RANF) as a random-

number addition to x and to y immediately after each application of the 

transformation. Also, if desired, a quantity "OSC" can be printed that 

. * provides at least a rough measure (for k ~ 0.1) of the amount of 

oscillation and that becomes unity for points lying on the separatrix 

in this case (k = 0.1). 

It will be recalled that, for the particular transfor~tion cited, 

MCMillan has demonstrated the existance of a firm separatrix, 

& 
' 

* See Fig. 8 of McMillan's paper in "Topics in Modern Physics-- A 
Tribute to Edward U. Condon", p. 234. 
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but that within the region so enclosed a computational run launched with 

x = y = 0.25 (for k = 0.1) led to a highly scattered distribution of 
0 0 

phase points (confined to that region). We have found, within the region 

enclosed by the separatrix just men~ioned, a number of families of fixed poin~ 

-- notably families of order 5, 6, & 7 "-- in addition to the order-1 

fixed point at 

X = Y = - 0.32837 02811 6359 

A run, performed with the program FIG8D, launched at x0 =Yo = 0.25 

again showed a striking scatter of phase points, and in addition it was 

noted that the sign of A (for the cumulative tangential transformation) 

continued to alternate during the course of the run. The results of this 

run .i.nuica.i...eU. (in r:1u general disa.gr-eeme11t with tile results pre-,,-ic.us::..;y-

reported) a general outward drift ·or the phase points as the number of 

iterations (N) approached 1000, and this appeared to be followed by an 

inward movement as N ~2000; further iterations led to large amplitudes 

near N = 3000, 6000, 10000 and smaJ.ler amplitudes near (for example) 

N = 5000 and 20000. 
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TYPE INITIAL X1Y <SINGLE PRECISION> 
~0-32837028116359,-0.32837028116359! 

K = le0000E-01 

N = 0, X= -3.283702811~4E-01 Y = -3.28370281164E-01 

TO CONTINUE ~ITH THESE DATA1 TYPE 1 -- OTHERWISE 0 
1 ! 

TO .ADD NOISE1 TYPE 1 -- OTHERvHSE 0 
0 I 

TO PRINT OSC· MAGNITUDE, TYPE 1 -- OTHERWISE 0 
0! 

TYPE NUMBER OF PRINT STEPS 
1 ! 

TYPE ITERATIONS PER PRINT <·LE• 131070> 
1 ! 

X y A OR C B OR D LOG Hl LAM LF · 

0 -3.2837E-01 -3.2837E-01 1·0000E+00 0. 0. 
0. le0000E+00 

1 -3·2837E-01 -3.2837E-01 

TYPE ADDITIONAL NUMBER OF PRI~T STEPS 
0! 

N = 1, X = -3.28370281164£-01 
A = 0· 
c = -1.00000000000£+00 

DET = 1e00000000000E+00 
LOG 10 LAM = 0· 
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y = -3.28370281164E-01 
B = 1.00000000000E+00 
D = 5e54460160127E-01 

LF = 1 

1 



TYPE INITIAL X1Y CSINGLE PRECISIQ~) 
0.9949874371066110.99498743710661! 

K = le0000E-01 

N = X = 9.94987437107E-01 Y = 9e94987437107E-0l 

TO CONTINUE WITH THESE DATA1 TYPE 1 -- OTHERwiSE 0 
1 ! 

TO ADD NOISE. TYPE 1 -- OTHERwiSE 0 
0! 

TO PRINT OSC. MAGNITUDE, TYPE 1 -- OTHERWISE 0 
0! 

TYPE NUMBER OF PRINT STEPS 
1 ! 

TYPE ITERATIONS PER PRINT C ·LE• 131070) 
1 ! 

X y ·A OR C B OR D LOG 10 LAM LF 

0 9e9499E-01 9·9499E-01 1.0000E+00 0. 0. 
0. 1·0000E+00 

1 9·9499E-01 9.9499E-01 

TYPE ADDlliONAL ~UMBER OF ?fiiNI STEPS 
0! 

N = 11 X = 9e94987437107E-01 
A = 0· 
c = -1.00000000000E+00 

DET = 1e00000000000E+00 
LOG 10 LAM ;:::; 2.99940165179E-Sl 
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y = 9e94987437107E-01 
B = 1e00000000000E+00 
D = 2.49624372644E+00 

LF ;:::; 1 

1 



TYPE I~ITIAL X1Y CSINGLE PRECISION> 
-0.994967437106611-0.99498743710661! 

K = 1.0000E-01 

~ = 01 X = -9.94987437107E-01 Y = -9.94987437107£-01 

TO CONTINUE WITH THESE DATA1 TYPE 1 -- OTHERwiSE 0 
1 ! 

TO ADD NOISE1 TYPE 1 -- OTHERWISE 0 
0! 

TO PRINT OSC· MAGNITUDE~ TYPE 1 -- OTHERvHSE 0 
0! 

TYPE NUMBER OF PRINT STEPS 
1 ! 

TYPE ITERATIONS PER PRINT <·LE· 131070> 
1 ! 

N X y A OR C B OR D LOG 10 LAM LF 

0 -9.9499E-01 -9.949YE-01 1·0000E+00 0• 0• 
0. 1·0000E+00 

1 -9·9499E-01 -9.9499E-01 

TYPE ADD I 1 T Q\J AL 1\JIJ!Y.:BEP.. OF PR! ~JT 
0! 

c: "f't;' 0 c: -·-·-
N = 1 .. X = -9.94987437107E-01 

A = 0. 
c = -1.00000000000E+00 

DET = 1·00000000000E+00 
LOG 10 LAM = 2·29994016518E+00 
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y = -9·94987437104E-01 
B = le00000000000E+00 
D = 1·99503756273E+02 

LF = 1 

1 



It is probably not surprising that d~ing any epoch . (of', say, 100 

iterations) the phase points follow a motion that does not depart 

markedly from a curve similar to a reduced replica of' the separatrix. 

Diffusion -- if that is the proper term -- outward or inward from 

such a curve might be expected to occur gradually. It is, however, 

important to be aware of the extent to which limited computational accuracy 

(even with double-precision computations) can distort these results. 

This question of computational accuracy perhaps can be judged by a com-

putational experiment in which uniformly distributed "noise" between 

1 -28 the limits ± 2 10 was introduced into x and into y after each iteration. 

The results agreed substantially with those for a noise-free run for 

N 'i:' 700 (through 5 decimal figures), but thereafter departed markedly from 

the results obtained without the deliberate introduction of this small 

amount of noise. The occurrence of scattering in the points thus aprears to 

be valid, but the slow throb of amplitude observed in the first run of' 

this series may be influenced by computational errors. 

Because of the ef'f'ects just mentioned, it may be particularly 

useful to examine the characteristics of' the higher-order fixed points 

that have been identified. The locations of' fixed points of' orders 

5, 6, and 7 are tabulated below, with the coordinates of' one member 

of each family given to approximately 12-decima~ precision 

7-87 



Order 5 -- Stable 

X y 

-O.o47 111 -O.o47 111 
-O.o47 111 -0.41826 
-0.41826 -0.65883 

-0.65883 -0.41826 

-0.41826 -O.o47lll 

Order 5 -- Unstable 

x0 = Y0 = - 0.5724 7793 9150 

X y 

-0.57248 -0.57248 
-0.57248 -0.21679 
-0.21679 -0.020348 
-0.020348 -0.21679 
-0.21679 -0.57248 

Order 6 -- Stable 

xo = 0.2820 4836 65o4, 

X 

0.28205 
0.10921 

-0.47466 
-0.84564 
-0.47466 
0.10921 
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y 0 ... 0 .1092 1.187 0733 . 

y 

0.10921 

-0.47466 
-0.84564 
-0.47466 
0.10921 
0.28205 



Order 6 -- Unstable 

X y 

0.23633 0.23633 
0.23633 -0.12927 

-0.12927 -0.77254 
-0.77254 -0.77254 
-0.77254 -0.12927 
-0.12927 0.23633 

Order 7 -- Stable 

X y 

0.43652 0.43652 
0.43652 0.16261 
0.16261 -0.50601 

-0.50601 -0.91595 
-0.91595 -0.50601 
-0.50601 0.16261 
0.16261 0.43652 

Order 7 -- Unstable 

Xo = Yo = - 0.8592 6979 47273 

X y 

-0.85927 -0.85927 
-0.85927 -0.10009 
-0.10009 0.34506 
0.34506 0.47323 
0.47323 0.34506 
0.34506 -0.10009 

-0.10009 -0.85927 

7-89 



~~-2~±:~::::r::.~~=~~'';~~~~::~-~-~~~;;~!-~~~{,[L~~~,l~~~~:-~!-~-:~~~~~S+ .. ~ -.:;{~:::~::-~::::~~~ 
-~,:~::: ~<::.:..·· :~ 

Q 

7:.90 



-...J 
I 

IC .. 

The matrix elements A, B1 C1 D1 printed for run:> starting at the values of Xo 1 y 0 just recorded 

and returning (after 5, 6, or 7 applications of the transformation, were found to be the 

following: 

A B c D 

Order 5 
Stable I 0.9214 3239 7260 -0.2950 4352 2058 0.2950 4352 2059 0.9907 9359 7887 

Unstable I 0.7299 4894 2218 -0~1794 5685 0052 0.1794 5685 0052 1.3258 3963 480 

Order 6 

Stable 1.3380 6309 073 -0.9080 0152 9533 2.4018 1063 234 -0.8825 0526 8993 

Unstable 0.1905 3887 1258 0.5967 7888 7825 -0.5967 7888 7823 3.3791 2655 195 

Order 7 

Stable I 1.1863 9656 723 -1.5747 2725 767 1. 574 7 272 5 767 -1.2472 7766 156 

Unstable I -0.7764 3655 5686 -2.3874 1929 306 2.3874 1029 307 6.0529 4518 014 

Certain expected symmetries will be evident in many of these results. 



From these results the characteristics of the f'lxed-point families listed below follow. 

Half Trace -1( 

I 
'1 1-L = cos Half Trace) "1 

'Order 5 

Stable 0.956 112 997 574- 17.0375 deg. = 0.0473265 rev. I 
Unstable 1. 027 894 288 51 1 1.265 731 772 0.102 341 682 

' 

Order 6 

Stable 0.227 778 910 87 76.8337 deg. ~ 0.213427 rev. 

-.J 
~ Unstable 1.784 832 711 604 3.263 219 606 0.513 646 3016 
N 

Order 7 

Stable -0.030 440 5472 91. 7444 deg • == 0. 2 54846- rev • 

Unstable 2.638 254 31223 5.079 644 452 0.705 833 3151 
----------- - -~----- -~ - ---- --



Other fixed points, of higher order, of course exist. Thus, in 

the region that may be of particular interest we have the following 

systems: 

2/ll Systems: 

2/13 Systems: 

Order ll -- Stable 

Order-ll -- Unstable 

X = y = 0.1315 4928 98819 
0 0 

Order 13 -- Stable 

Order 13 -- Unstable 

x
0 

= Yo = 0.3136 4321 59384 

~l = 0.7955 5975, . Al ~ + 6.2454 



TYPE INITIAL x~Y CSINGLE PRECISION> 
-0-7049251097833~-0-7049251097833! 

K = 1e0000E-01 

N = 0~ X = -7.04925109783E-01 Y = -7.04925109783E-01 

TO CONTINUE WITH THESE DATA~ TYPE 1 -- OTHERWISE 0 
1 ! 

TO ADD NOISE~ TYPE 1 -- OTHERwiSE 0 
0! 

TO PRI~T OSC• MAGNITUDE1 TYPE 1 -- OTHERWISE 0 
0! 

TYPE NUMBER OF PRINT STEPS 
1 1 ! 

TYPE ITERATIO~S PEh PRINT C.LE• 131070> 
1 r 

y A OR C B OR D LOG 10 LAi"l LF 

0 -7.0493E-01 -7·0493E-01 1.0000E+00 0. 0. 
0e le0000E+00 

1 -7·0493E-01 -1.5742E-01 

2 -1.5742E-01 le4935E-01 

4 5·6847E-02 -4·5379E-01 

5 -4.5379E-01 -7·8201E-01 

6 -7.8201E-01 -4·5379E-01 

7 -4.5379E-01 5·6847E-02 

8 5e6847E•02 le4935E-01 

9 1.4935E-01 -1·5742E-01 

10 -1.5742E-01 -7·0493E~01 

11 -7.0493E-01 -7·0493E-01 

TYPE ADDITIONAL NUMBER OF PRINT STEPS 
0! 

,'J = 111 X = -7.04925109783E-01 
A = -3.32314195875E-01 
c = 1·18574~94794E+00 

DE1' = 1·00000000000E+00 
LOG 10 LAi"i = 0· 
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y = -7·049251097~3E-01 
B = -1·1857~894794E+00 
D = 1·22173705659£+00 

LF = 1 

1 

.. 



TYPE INIT1AL x~y <SINGLE PhECISION> 
0·1315492898819~0-1315492898819! 

K = 1·0000E-01 

~. = X = 1.31549289882E-01 Y = 1e31549289882E-01 

TO CONTINUE WITH THESE DATA~ TYPE 1 -- OTHER~ISE 0 
1 ! 

TO ADD NOISE, TYPE 1 -- OTHERWISE 0 
0! 

TO PRINT OSC. MAGNITUDE, TYPE 1 -- OTHERwiSE 0 
0! 

TYPE NUMBER OF PRINT STEPS 
1 1 ! 

TYPE ITERATIONS PER PRINT <·LE• 131070> 
1 ! 

N X y A OR C 

0 1·3155E-01 1.3155E-01 1·0000E+00 0· 

B OR D 

0· le0000E+00 

1 1·3155E-01 -2.7340E-01 

2 -2·7340E-01 -7.5742E-01 

3 -7• 57Ll2E-01 -6.1935E-01 I 

4 -6·1935E-01 -5·7370E-02 

5 -5·7370E-02 1.4327E-01 

6 1e4327E-01 -5.7370E-02 

7 -5·7370E-02 -6.1935E-01 

8 -6·1935E-01 -7.5742E-01 

9 -7·5742E-01 -2.7340E-01 

10 -2. 7340E~fH 1·3155E-01 

1 1 le3155E-01 1.3155E-01 

TYPE ADDITIONAL NUMBER OF PRINT STEPS 
0! 

LOG 10 LAM 

'-'• 

;'J = 11, X = le31549289882E-01 y = 1.31549289882E-01 
A = 3·38972357076E-01 B = -2.27898226816£-01 
c = 2e27898226815E-01 D = 2·79687230662£+00 

DET = 1.00000U00~~0E+00 

LOG 10 LAM = 4e43350082393E-01 LF = 1 
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LF 

1 



TYPE INI~IAL x,y CSINGLE PRECISION> 
-0·822448031~007,-0.~224480318007! 

K = 1.0000E-01 

N = 0, X = -8.22448031801E-01 Y = -8.22448031801E-01 

TO CONTINUE 'WITH THESE DATA, TYPE 1 -- OTHERWISE 0 
1 ! 

TO ADD NOISE, TYPE 1 -- OTHERWISE 0 
0! 

TO PRINT OSC· MAGNITUDE, TYPE 1 -- OTHERWISE 0 
0 I 

TYPE NUMBER OF PRINT STEPS 
1 3! 

TYPE ITEHATIONS PER PRINT <·LE• 131070> 
1 ! 

N X y A OR C B OR D LOG 10 LAM LF 

0 -8.2245E-01 -8.2245£-01 1.0000£+00 0. 0· 
0. 1·0000E+00 

1 -8·2245E-01 -1.1088E-01 

2 -1·1088E-01 2·9982E-01 

3 

,, ... 
2·9982E-01 3·7281E-01 

3-7281E-01 

5 1·4175E-01 -4.9108E-01 

6 -4.9108E-01 -8.8704E-01 

7 -8.8704E-01 -4.9108E-01 

8 -4·9f08E-01 1·4175E-01 

9 1·4175E-01 3·7281E-01 

10 3·7281E-01 2·9932E-01 

11 2·9982E-01 -1.1088E-01 

12 -1·1088E-01 -8.2245E-01 

13 -8·2245E-01 -8.2245E-01 

TYPE ADDITIONAL NUMBER OF PRINT STEPS 
0! 

N = 13, X = -8.22448031801£-01 
A = -5·79649985966£-01 
c = 8·52506469794E-01 

DET = 1·00000000000E+00 
LOG 10 LAI"i c 0· 
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y = -8.22448031801£-01 
B = -8·52506469794E-01 
D = -4.71375356811E-01 

LF = -1 

1 



TYPE INITIAL x .. y CSI~GLE PRECISION> 
0·3136432159384 .. 0.3136432159384! 

K = 1·0000£-01 

N = X = 3e13643215938E-01 Y = 3.13643215938E-01 

TO CONTINUE WITH THESE DATA .. TYPE 1 -- OTHERWISE 0 
1 ! 

TO ADD NOISE1 TYPE 1 -- OTHERWISE 0 
0! 

TO PRI~T OSC· MAGNITUDE .. TYPE 1 -M OTHERWISE 0 
0! 

TYPE NUMBER OF PRI~T STEPS 
1 3! 

TYPE ITERATIONS. PER PRINT C.LE. 131070> 
1 ! 

N X y A OR C 

0 3·1364E-01 3·1364E-01 le0000E+00 0· 

B OR D 

0· la0000E+00 

1 3·1364E-01 -1·7785E-02 

2 -1·7785£-02 -7·4384E-01 

3 -7.4384E-01 -8·6696E-01 

4 -8.6696E-01 -2.2147E-01 

5 -2·2147E-01 2·7133E-01 

6 2·7133E-01 4el372E-01 

7 4el372E-01 2·7133E-01 

8 2·7133E-01 -2.2147E-01 

9 -2.2147E-01 -8.6696E-01 

10 -8·6696E-01 -7.4384E-Ol 

1 1 -7·4384E-01 -1·7785E-02 

12 -1·7785E-02 3·1364E-01 

13 3·1364E-01 3el364E-01 

TYPE ADDITIO)JAL NUMBER OF PRINT STEPS 
0! 

LOG 10 LAM 

0. 

N = 13 .. X = 3·13643215933£-01 y = 3·13643215938£-01 
A = 1·45205244129E-01 B = 3·01613679064E-01 
c = -3.01613679070E-01 D = 6·26030550105E+00 

DET = 1-00~00000000£+00 

LOG 10 L.Ar-1 = 7·95559752095£-01 LF = 1 
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LF 

1 
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Expanding eigenvector directions, extended from such unstable fixed 

points as (for example) those of orders 6 and 7 may fail to form simple 

curves that wo~ld generate simple island structures surrounding the stable 

fixed points of the same order. The extended eigenvector segments then 

develop into increasingly thin and increasingly long curved fingers that 

cover an extensive region of phase space. Phase points near these fingers 

also would be expected to move in an apparently erratic manner, and small 

changes in coordinate values (~o~· from '.'noise" or from truncation errors) 

* could lead to pronounced changes after a few additional iterations. 

There nevertheless may be apparently firm smooth invariant curves in 

certain regions of limited extent surrounding stable fixed points such as 

those of order 7, and points executing what appears to be erratic motion 

may avoid intruding into these "protect~d" regions. 

* 21 1 -14) For example in some trials with noise ± ~ (1.0 x 10- ) or ± 2 (1.0 x 10 

added to x and to y after each execution of the transformation, valid runs 

(say ~ 5-decimal accuracy) could not extend beyond some 300-400 or circa 

200 iterations, respectively. 
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A further examinatipn of the regions "enclosed" by the loops associated 

with the order-7 unstable fixed points revealed the presence of two curious 

fixed-point families of order 28 ("tune" = 4/28). There thus are four 

numbers of the "stab~e" order-28 family and four members of the associated 

unstable fixed-point family within each of the seven regions. The stable 

family of order 28 can be generated by launching a computation at the point 

X = y = 0.4763 7231 36139 
0 0 

on the positive principal diagonal, or, alternatively, by launching the 

computations at a point (14 iterations removed) at 

X = y = 0.3978 1128 9467 
0 0 

(also on the positive principal diagonal). For this family, 

~Trace= 0.9674 4823 621 

The unstable family can be generated by computations launched at 

on the curve 

removed) 

X 
0 

0.9101 2951 4108 

0.5026 1156 6232 

y = ~ f(x), or, alternatively, at the point (14 iterations 

Yo = 

[also on the curve y = ~ f(x)]. For this family 

and 

(for the 28-iteration period). 
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:-J X y A OR C 8 OR D LOG 10 LAM LF 

0 4o7637E-01 4o7637E-01 1· 0000E+00 0· 0· 1 
0· lo0000E+00 

4o7637E-01 2o2155E-01 

2 2o2155E-01 -4.0506E-01 

3 -4. 0506E -01 -9.2033E-01 

4 -9.2033E-01 -6·1244E-01 (') 

a: 
5 -6·1244E-01 lo0931E-01 0 - .. 

lSI t\l 
6 lo0931E-01 4o2006E-01 I 

w .. 
q -7 4o2006E-01 4o4905E-01 
\() til 
(') ll. 

8 4o4905E-01 2ol012E-01 >-
M ..... 
t\l 
1:"" CSI 

9 2ol012E-01 -4.0530E-01 M 
\() til 
1:"" r.n ..l 

10 -4.0530E-01 -9.0902E-01 . - lSI ..l 
q ;.& :::l a: til 1&. 

11 -9.0902E-01 -S.9869E-01 til r.n 
n :I! ... a: ..... ;.- 0 

>< 0 a: 
12 -5.9869E-01 lo0552E-01 til .. 

:I! lSI u - ..... r- .... 
13 1o0552E-01 3·9781E-01 lSI 0 lSI ..... 

I lSI r.n 
::::!: til (') 0 

!II 3·97BlE-C1 3o97dlE-Iill 0 <: :.l w ?. .... ll. Vl 0 r.n- \() >< .... . <1: .... a. M ..... ;3 til .... 
15 3o9781E-01 lo0552E-01 UM a: til ..l t:l 

til- M .. til ll. . 
::a.o t\l <1: :I! >- ..... :I! 

16 1o0552E-01 -5.9869E-01 Q,M r- ..... ..... ..... •.n t-
(") 

~ 0 ll. ..... 
tiiM \() .. til 2 ;3 

17 -S.9869E-01 -9.0902E-01 ..lt\l 1:"" til t- .... 
Cll:"" . til Q Vl a: t-
::::!:M q Vl :::l ll. 0:: 

'"'"' til t- t- 0 
18 -9.0902E-01 -4·0530E-01 Vlr- :I! - 2 ':X: :I! 

..... q u t- til 2 .... til Vl . ll. Cl ::a ll. 
19 -4o0530E-01 2o1012E-01 >-Sl )( :I! >- <1: ll. .. .. .. lSI t- t- :E: Ul· t-

)(0\ I 1&. ::::!: ::::!: 
20 2o1012E-01 4o4905E-01 ("') til ;;a .. . 0 0 ... 

.J- lSI .. til u .... 0:: 
<l:\0 lSI lSI til Ul Ul a: ..... ll. 

21 4o4905E-01 4o2006E-01 
.... (') lSI :::l .... 0 til ~ t-- lSI 2 0 Ill t-
-(") .... 2 t- :E: til a: 
Zt\l t- 2 :::> t- 0 

22 4o2006E-01 1o0931E-01 - r- ::>: Cl .... 2 :X: 
(") 0 Cl a: Ul 

til\0 Q u <1: ll. til til 
23 lo0931E-01 -6·1244E-01 ll.r-- ll. ll. :z: 

)>oq X :7. 0 0 0 >-- >- 0 
t- • t-- t-- t-- t-:0 t--·1&. 

24 -6o1244E-01 -9.2033E-01 
lSI lSI lSI t\l t\l 

25 -9o2033E-01 -4.0506E-01 

26 -4.0506E-01 2o2155E-01 
X = 4o76372313614E-01 y = 4·76372313614£-

27 2o2155E-01 4o7637E-01 A = 6o8256274~217E-01 B = 3oc31055969Lll'iE-
c = -3.81055969019E-01 D 1·25233372420£+ 

28 4o7637E-01 4o7637E-01 DET lo00000000000E+00 
LOG 10 LAM 0o .LF 

TYPE ADD ITI 0:-JAL NUI':BER OF PHI :\IT STEPS 
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N X '{ A OR C B OR D LOG Hl LAM LF 

0 -9.1013E-01 -5·0261E-01 1o0C:l00E+00 0. 0. 1 

"· 1o0000E+00 

-S·fll261E-01 1·5862E-01 

2 1•5862E-01 4·2374E-01 

3 4o2374E-01 4·0886E-01 M 

0:: 4 4o0886E-01 1o0692E-01 0 

.. 
5 lo0692E-01 -6·0661E-01 CSI C\l 

I 
lzl .. 
C\l .... 

6 -6·0661E-01 -9.147SE-01 M 
C\l lzl 
\0 a. 

7 -9·1475E-01 -4·0396E-01 \0 )o 
11'1 .... 

8 -4·0396E-01 2·1657E-01 CSI 
\0 
C\l lzl 

9 2·1657E-01 4·6325E-01 
CSI Ill ..J . ... C5) ..J 
11'1 :;r: ::> 
I 0:: lzl Ia. 

10 4·6325E-01 4•4880E-01 lzl Ill 
II :I: ... 0:: .... :;r: 0 

11 4o4880E-01 1·6631E-01 )o 0 l: 
lzl .... .. 
:I: ~ 0 

12 1o6631E-01 -5·0956E-01 .... r-- -lSI 0 lSI .... 
I lSI Ill 

2 lzl M 0 
13 -5·0956E-01 -9.2157E-01 0 a> !l! lzl z ... lSI :Jl Cl 

.;.,; - )o ... . ~ 

14 -9.2157E-01 -5·0956E-01 .... (.\] <: .... :::0 . lil ..... 
OM 0:: Cal ..J Q 
WC\l 11'1 .. lzl a. 
0::\0 0\ ~ :I: )o :I: 15 -S·0956E-01 1·6631E-01 a.-a C\l .... .... .... Ill .... 

11'1 ~ 0 a. .... 
w- lSI Q .. Cal 2 ::: 

16 1o6631E-01 4o4880E-01 ..J- .... I lzl .... ... 
Cl\0 . w I Q Ill 0:: .... 
?.Cil 0\ Ill ::> a. 0:: 

17 4o4880E-01 4o6325E-01 -s I bl .... .... 0 
VILI'I :I: ... 2 0:: :I: 
""" . n .... lzl '2 ... w VI 

-4•632SE-01 2·1657E-01 
lSI a. Cl 0:: a. 18 >-I X :I: )o « a. .. 

~ ~ CSI .... .... :E: Ill .... 
'>(a> I ... Ia. 2 z 

19 2·1657E-01 -4·0396E-01 lSI lzl :;r: .. . 0 0 -_,_ 
lSI .. Cal 0 - X 

~<: lSI iSl w Ill Ill 0:: .... a. 
20 -4.0396E-01 -9.1475E-01 ........ lSI ::> - 0 lzl ~ 

i-oLI'l lSI 2 0 m 0:: .... 
.... 0\ - z .... :E lzl J:: 

21 -9.1475E-01 -6·0661E-01 ZC\l ... 2! ::> .... 0 ........ 2 Q - 2! - X 
lSI 0 Q 0:: Ill w- II n 0 « a. Cal lzl 

22 -6·0661E-01 l•0692E-01 ll.,O\ a. a. J:: 
>- • ::.: 7. 0 0 0 )o -· )o 0 
I-lSI t-- t--t--1-o:ot--Lo. 

23 1·0692E-01 4·0B86E-01 I CSI CSI C\l C\l 

24 4·0886E-01 4·2374E-01 

25 4·2374E-01 1·5862E-01 

26 1·5~62E-01 -5·0261E-01 
X -9.10129514108E-01 y = -5.02611566232=: 

27 -S.0261E-01 -9·1013E-01 A 1·01~65564575E+00 B = -7·1~02727733/E 
c -4.373d5946307E+00 D = t. 0 1156625466E 

28 -9.t013E-01 -5.0261E-01 DET le00000000000E+00 
LOG 10 LA!-1 7·66391376290E-02 LF = 

TYPE ADD IT I ~hiJAL NUMBER OF PRI:-Jl STEP5 
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These fixed points are seen to group in tight clusters and might merge 

for a somewhat different value of the parameter k (here we have retained 

the value k = O.l). 

Additional fixed-point systems of course can be found. Thus, there 

exists an unstable ~stem of order 8 that can be computed by commencing at 

x 0 = Y0 = 0.5939 6695 4780 

on the positive principal diagonal or, alternatively, at the point (4 

iterations removed) 

on the negative principal diagonal. For this family 

and 

"A1 = + 6.9o4 7971 

(for the 8-iteration period). An associated (stable) order-8 family 

(l/2 trace = 0.297 627 29025) bas also been found. The flxed points of 

this latter family can be obtained. computationally by launching a solution 

at 

y = ·~ f(x ) = 0.513 770 756 622 
0 0 

or at a point (4 iterations removed) with coordinates 

xo = - 0.952 316 214 05917 

Y
0 

= ~ f(x
0

) = - 0.537 889 794 977 
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TYPE l~ITIAL x,y CSI~GLE P2EC1SIO~> 
0·593966954780,0.59396695~7681 

K 1.0000E-01 

N = X = 5·93966954780E-01 Y = 5·93966954780E-01 

TO CO~TINUE wiTH THESE DATA, TYPE 1 -- OTHER~ISE 0 
1 ! 

TO ADD NOISE, TYPE 1 -- OTHERwiSE 0 
0! 

TO PRINT OSC• MAGNITUDE, TYPE 1 -- OTHERWISE 0 
0! 

TYPE NU~BEH OF PRINT STEPS 
81 

TYPE ITERATIONS PER PRL'JT CoLE• 131070> 
1 I 

F'OH SHORT PRL\11.. SHORT v!I TH DIAGNOSTIC.. OR FULL -- TYPE 1, 2 .. OR 3 
3! 

N X y A OR C B OR D LOG 10 LAM 

0 5·9397E-01 5·9397E-01 1o0000E+0f0 0. 0· 
0· 1·0001:lE+100 

5• 9397E-01. 3o9617E-01 0· 1·001:l0E+00 2·9756E-01 
-1.0000E+00 2 • 4tH:S 1E+00 

2 3o9617E-01 -9.4690E-02 -1.0000E+00 2. 48!HE+rcJf:l 5o9041E-01 
-2.4722E+00 5 • 15 0 9E + lHl 

3 -9.4690E-!32 -9.0601E-01 -2.4722E+00 5o150.9E+0:J n. .... 
-1.0235E+00 1·7281E+00 

4 -9.0601E-01 -9.0601E-01 -1·0235E+00 1·7281E+00 6·1029E-01 
lo3749E+00 -3.2983E+00 

5 -9.0601E-01 -9.4690E-02 1o3749E+00 -3.29o3E+00 5·5780E-01 
2o4975E+00 -5.2641E+00 

6 -9.4690E-02 3e9617E-01 2o4975E+00 -5·2641E+00 0· 
6·6941E-01 -1.0106E+00 

7 3·9617E-01 5·9397E-01 6o6941E-01 -1.0106E+00 4e9334E-01 
-8·4259E-01 2·7658E+00 

8 5·9397E-01 Se9397E-01 -8.4259E-01 2·7658E+00 8·3915E-01 
-2·7658E+00 7•8922E+00 

TYPE ADDITIONAL NUMBER OF PRINT STEPS 
01 

N = s .. X = So93966954760E-01 y So93966954780E-01 
A = -8·425d5004407E-01 B 2·76583747~27E+00 
c = -2.76583747427E+00 D 7•89220897514E+00 

DET = 1o00000000000E+00 
LOG 10 LAM 8o39150922660E-01 LF 

1921.500 COMPUTING UNITS REMAIN* 

FOR NEW K.o COORDS ... OR TERMINATE.. TYPE 1 .. 2.o OR 9 
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FOR Y=0•5*F, TYPE 1 -- OTHER~I5E 0 
1 ! 

TYPE INITIAL X CSINGLE PBECISIO~> 
0·6089973727356! 

K = 1o0000E-01 

0 .. X 6·08997372736E-01 y = 5o13770756622E-01 

TO CO.'JTI:VUE v: ITH THESE DATA.o TYPE 1 -- OTHERwiSE 0 
1 ! 

TO ADD NOISE .. TYPE 1 -- OTHERwiSE 0 
0! 

TO PRI~T OSC. MAGNITUDE, TYPE 1 -- OTHERWISE 0 
0! 
TYPE :\lUMBER OF PRINT STEPS 
a r 

TYPE ITERATIO~S PER PRINT CoLE• 131070> 
1 r 

FOR 5HOf1T PRINT.o SHORT \dTH DIAGN05liC.o OR FULL 
3! 

TYPE 1.o 2, Oh 3 

N X Y A OR C B OR D LOG 10 LAM LF. 

0 6.0900E-01 5·1377E-01 1.0000E+00 0• 0• 1 
0o 1o0000E+00 

5·1377E-01 1·~177E-01 0. 1·0000E+00 2·9629E-01 
-1.0000E+00 2•4838E+00 

2 1.8177E-01 -5·3789E-01 -1.0000E+00 ~-4838E+00 S·505SE-0! 
-2.3797E+00 4·91~7E+00 

3 -5·3789E-01 -9·5232E-01 -2.3797E+00 4o9107E+00 1·9752E-01 -1 
-2o8568E-01 1o6930E-01 

4 -9.5232E-01 -5·3789E-01 -2.856BE-01 1a6930E-01 6•5486E-01 -1 
1~6071E+00 -4·4528E+00 

5 -S.3789E-01 1·8177E-01 1o6071E+00 -4·4528E+00 0• 
1o1539E+00 -2·5750E+00 

6 1o8177E-01 5·1377E-01 1.1539E+00 -2·5750E+00 0• 
1o1390E+00 -1•6750E+00 

7 5o1377E-01 6o0900E-01 1o1390E+00 -1•6750E+00 0• 
1o6750E+00 -1·5852E+00 

8 6a0900E-01 5·13~7E-01 1o6750E+00 -1.5852E+00 0• 
3o0296E+00 -2·2702E+00 

-1 

-1 

-1 

-1 

TYPE ADDITIONAL NUMBER OF PRINT STEPS 
01 

N = 8, X 
A = 
c 

DET = 

6·0~997372736£-01 
1o67496915691E+00 
3o02955960102E+00 
1·00000000000£+00 

LOG 10 LAM = 0· 

1977.160 COMPuTING UNITS RE~AIN* 
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y 5·13770756622E-01 
B = -1·58523197160£+00 
D -2·27022373740E+00 

LF = -1 
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A Remark Concerning a Transfonnation 

Examined by Froeschle"'-J<· 

L. Jackson Laslett 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 

March 6, 1974 

EHJ\N-2.)5 

Froeschle
1
(l-3) has examined certain area-preserving mappings with 

the object of gaining insignt into the stochastic, or apparently stochastic, 

beh3.vior of such ma:p:9ings in certain regions. He ciirects atteui:.iou .i.n 

this connection to the behavior of ~n = loglO An and of ~uantities 

related to ~n' where jAnl is an eigenvalue (of magnitude greater than 

unity) of the cumulative matrix f'or the tangential mapping. In attempting 

to relate the behavior of a transformation to that of a C-system, however, 

it is also of interest to ing_uire into the sign of An -- ~ ·~., into the 

sign of the trace of the cumulative tangential-rrapping transformation --

and this matter we pursue in the present note with respect to the trans-

fonr~tion denoted by Froeschl~ as T1 in our Ref. 1. 

The transformation T1 of Froeschle"(l) is cited by him as associated 

with the earlier work of H~non (cited here as our Ref. 4) and is written 

-:~-

. \-!ork supported oy the U.S. Jl.to!nic Energy Com.'!lission. 
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where a is a constant (taken to be such that cos a = 0.22 in the 

work of Ref. 1 and throughout the numerical work reported in the present 

Note). We consider_ it convenient to express the transformation T1 in 

terms of other variables, so that the transformation assumes the form 

advocated by McMillan.(5) To this end we write 

~sin a y X 
X 

.vsin a X = = cos :c + y 
~sin a 

n 

X y cos a X -y = y = ' ~sin a: ~sin a 

for which the functional determinant (Jacobian) is -1. The transformation 

T1 applied to x,y is then found to be equivalent to the following 

transformation for X,Y: 

= -X + 2Y cos a + Y 2 sin3/2 a. 
n n n ' 

which will be recognized as being of McMillan's (area-preserving) form( 5) 

X = y n+l n 

Y l ~ -X + f(Y ) n+ n n 
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where 

f'{Y) 2 3/2 = 2Y cos a + Y sin a 

in this instance. 

The matrix of' the tangential-mapping associated with this transf'or-

mation -- _i._e., the matrix taking dX ,dY into dX. 1 ,dY 1 --is n n n+ n+ 

with 

· f'' (Y) = 2( cos a + Y sin3/2 a) 

and the half'-trace is 

htr = ~{a+d) 

= cos a + Y sin3/2 a. 

From a cumulative-product matrix, f'ormed by the repeated multiplication 

of' such tangential-mapping matrices -- ~·~·' f'rom 

l 
-- we f'orm HTR = 2 (A+D) and then, when I HTR / ~ 1, the eigenvalues 

are ( 6 >. HTR ± ·~( HTR) 2-1 and 
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with the sign of A identical to the sign of HTR. Related quantities 
-- n 

of interest to Froeschle~(l) in additicn to 

are 

and the "Cesaro mean" 

n 
1 e ~n = - r. . n m=l m 

The transforrration specified above has a first-order stable fixed 

point at the origin, with HTR : cos a. There also is an order-1 fixed 

point on the principal diagonal at 

2(1-cos ex) 

sin3/2 ex 

that (for cos ex = 0.22) is unstable and lies at 

X = Y • 1.619137656439 

(with the larger eigenvalue A~ 3.252548810736). In addition, for cos ex= 0.22, 

there is a :family of five sta.ble and five unstable order- 5 fixed points --

with the approximate co-ordinates listed below: 
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Order-5 Fixed Points 

(cos a: = 0.22) 

Stable Family 

X 

0.669716 

0.669716 

0.057097 

-0.641453 

0.057097 

y 

0.669716 

0.057097 

-0.641453 

0.057097 

0.669716 

Unstable Family(a) 

X y 

--
-0.382322 -0.382322 

-0.382322 0.354932 

0.354932 0.65986$ 

0.659868 0.3.54932 

0.354932 -0.382322 

a) A~ 1.774 for the total of 5 iterations. 

Half Trace~ 0.7528856 Half Trace ~ 1.1689567 

In executing the transformation (which we have done computationally 

* in double precision on the LBL C.D.C.-6600 computer) we find, as noted 

by Froeschle/,(l) certain regions of apparent smooth stable behavior (in 

the neighborhood of the stable fixed points mentioned) that are surrounded 

by regions of irregular (stochastic!) and in some cases evidently unstable 

behavior. Froeschlehas chosen(l) to identify these regions by means of 

starting values y
0 

= 0, x
0 

= 0, 0.01, 0.02, etc. and notes(l) erratic 

behavior for 

0.53 ~ Xo ~ 0.57 and for 0.81 ~ x0 • 

Corresponding starting values 

See Fig. l. For startlng values of the type Jeo,o in Froeschl{' s notation, 
the corresponding values X,Y were entered to single-precision 
accuracy (and the succeeding cornputat~cns executed in double 
precision). 
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FOR i=0·5*F~ TY~E 1 -- JTAEh~ISE 0 
0! 

TYPE I~IliAL K & Y <F-FOriMAT O~Lt, 2 LI~ES) 
0• 6 6 ':)I 1 6 ~~ 6 ~ 6 ! 
0·6697163':52E! 

SI~ = 9·7550E-01 

X = 6·69'll6362600E-01 y = 6·69716362600£-01 

TO CJ~TI~JE ~lTd TrlES~ DATA, It~E 1 -- OT~EH~ISE 0 
1 ! 

iJ ADL ~Ols£, T~PE 1 -- OI~EhWISE 0 
0! 

TYPE ~JMREH OF ?rii~T SIEPS 
5! 
Tt~E IIEHATIJ~S ?EH Pk!~l <.LE· 131~70> 

1 ! 
FOrt TTt OUT?UT, TYPE 1 

1 I 
FOrt PLOf, TYPE 2 

FOH SHJrt1 Prtl~I, ~~Jrtf WITrl DIAG~JS!IC, Orl FULL -- 1i?E 1~ 2, Ort 3 
2! 

h. '{ PSI PSI I:J CESAnJ 

0 6·69716£-01 6-69716£-01 0· 

1 6·69716£-01 5·70970E-J2 

2 5 • 7 ::En ;jE-02 -6.L11453E-~1 

3 -6· 41453£-iil 5·70970£-02 

4 5·70970£,...~2 6.6·n 16E-01 

5 6·6~716E:-01 6e69716E-01 

TYPE ADDITIJ~AL ~JMBEh OF PBI~l STEPS 
0! 

:.J = 5~ X = 6·697163326d5746997542d6d8dl4D-01 
'f = 6·697163d25924d9J~3954451756SD-01 

·.\j = 5~ ;~ = 6.697163o26o6E-01 '( = 6.69716332592£-01 
A = 1 • ~j/1~0::)71423"/2£+•.00 D = -~·d2547d09256E-01 
c = d·d2547d0Y716E-Ol D = 1·6439975105dE-~l 

DET = 1-J~J0000000J~+00 

LOG 10 LAiv; = 0· LF" = 1 
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FJri Y=0·5*F" Tt?E 1 -- OfH~hWI~E 0 
0! 

TYPE IIJITIAL X & t CF-FJ.t~i'1AT Q .. \JL'f, 2 LL\!ES> 
-0· ~id 232~~ 31 -, :2 9! 
-0.3623223172';;}! 

~ = 0, X = -3·82322317290£-01 t = -3.o2322317290E-01 

TO ADD ~JISE, Tt?E 1 -- JTHEHWISE 0 
0! 

TtPE ~UMBER OF ?HI~T STEPS 
5! 

lYi'E ITEi\.:~TIJ'-iS l.;,2tt ?itL~f c.u:~. 131070> 
1 ! 

OTHEh'l-i I ~E 0 

FOh Tit OJT?JT, TYPE 1 FOh PLJT, TYPE 2 
1! 
F 0 H S H J H. T P 1i I.'Jl , S :i J H 1 \d T H D I A G .v 0 S T I C , J H F iJ L L - - TYPE 1 , 2, J H 3 

2! 

X 'f P!:il PSI /;.J CESArtO 

~ -3.::)232?.F.:-Gl -3.6?.3;::2E:-~ll ~;. 

1 -3.o2322E-u1 3-54932£-01 

2 3.54932£-01 6·59ts6dE-01 

3 6· s9e66E-rai 3·5LJ':J3~E-01 

4 3e54932E-01 -3.o2322E-01 

5 -3.o2322E-:ol -3.82322E-01 

1tPE ADDITIONAL ~U~BErl JF PRI~T STEPS 
0! 

\,J = s, X = -3.H2322317297406':15645d3717612D-01 
i = -3.823223172Jl21204460234613o1D-01 

:.J = s, '·' = -3.d2322317297E-01 'f = -3.523223172olE-01 H 

i~ = d·SJ856324152S-02 R = -d.SJ8196232d46E-01 
c = d·9~l~E232d66~-~l D = 2·2521;37721 13E+00 

DET = 1 • -;) (.5 00\~ ~3 o ~10 0ir~: + 0 o 
L')G 10 LAl-i = 2·49030~2Jd2US-Zl L.F = 1 
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X 
0 

~sin a ' X == 
0 

cos 0: 

~sin a: 
X = Y COS 0: 

0 0 

of course show the same behavior when introduced into the McMillan form 

of the transformation under consideration. 

(
0.118055) ~ 

0.536614 (

0.1269651 

0~577114i 
( 

0.180424 )\ "'"' 
and ~ 

0.820109 

The starting point x
0 

== 0.30, y
0 

= 0, for which some specific detailed 

results are given by Froeschle/ in Ref. 1, corresponds essentially to 

X • 0.06682367053919, 

and exhibits very smooth behavior. 

We have made computational runs -- usually of 2000 iterations duration, 

unless terminated (in a case corresponding to X = 0.55, 
0 

y == 0) 
0 

by 

1 Y I becoming very large ( IY I > 10160) -- for starting values similar 

to those mentioned above, namely for Xo, Y0 corresponding to y0 == 0 and 

xo == 0.30; 0.52, 0.53, ..• 0.57, 0.58; 0.80, 0.81 

The quantity wn == logloiAI (when IHTRI ~ l) and the sign of A 

(LF == sign of HTR) were printed, but with a diagnostic warning and a 

re-initialization of the cumulative matrix {~ ~) to the unit matrix 

[~ ~) whenever the detenninant ~~ ~I cam~ to di:ffer from unity (as 

a result of the matrix elements themselves becoming very large) by as 

much as 10-9• There also was exercised an option to print g~owth factors 

for cumulative differential distance growth: 
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{and their common logarithms), although these q_uantities are not 

invariant to a canonical change of variables (as, for example, a 

simple scaling of X by a constant factor and of Y by the reciprocal 

of that factor) and also, in fact, their logarithms do not differ 

markedly (understandably) from If·= logi"AI when If is large. 

We tabulate below an account of these various runs (in which, of 

course, printing was not req_uested at each iteration). Tests of 

program accuracy with respect to co-ordinate values (X,Y) were made by 

repeating a run and introducing noise (uniform, in the range ± 0.5 x lo-28 ) 

i11to eac!'! of tl1e co-ordinates n.ftc:;: each i t8:r-aticn and exar:1inin~ the 

resultant difference in the co-ordinate values at the end of the two 

runs. Throughout all these runs (including those in which phase plots 

were definitely erratic and suggested a stochastic behavior) the sign 

of An [LF = Sign (HTR)] continued to flip, so that the true stochastic 

behavior req_uired for a C-system (a lower positive bound to 

not appear to be established. 
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0.52 

0.53 

o. 54 

0.55 

0.80 

0.81 

Length of Run 
{Iterations) 

10000 

2000 

2000 

2000 

970 

2000 

2000 

2000 

2000 

2000 

! 
I 

Did IDET-11 I 
-9 (a) i exceed 10 '! j 

No \ 

No 

!Yes, 
No 

i 
\ 

@ 11=484( us) ~ !Yes, 

I 
Yes, @ 11=763 

No 

No {us) 

No 

No 

co-ordinate Errorlw
0 

= 1og10 1~nl 
at End of Run{b) lnear End of Run{c) 

6 X 10-25 

1 X 10-24 

1 X 10-8 

6 X 10- 5 

6 X 10-24 

7 X l0-22 

8 X 10-27 

1 X 10-1 9 

> 2, (2.6) 

2, (2.7) 

2 to 3, (2.9) 

Co-ordinates 
became large 

3, (3.8) 

6, (6.8) 

~ 1, (1.4) 

8, (8.6) 

(a) If Yes, the cumulative tangential-mapping matrix (~ ~) was re-ioitialized. 

(b) The larger of the errors in X and in Y, resulting from noise. 

(c) Estimated typical value, for runs in which matrix not re-initialized. 

As a partial check of the work, graphs similar to those published 

by Froeschle/ (Ref. 1, Figs. 2 and 4a) were constructed, and appeared to 

depict results in complete agreement with those curves. Specifically, 

the graph of our Fig. 2 shows the evolution of the Cesaro mean ~' through 

10000 iterations, for x
0 

= 0.3, y
0 

= 0 {and cos a =0.22), and is to be 

compared with Froeschle''s Fig. 2. Likewise, our Figs. 3 & 4 show~~· 

x
0

, as evaluated after 200, 300, 500, 900, 1000, 2000, 5000, and 10000 

iterations -- of which the results for n = 2000 (on our Fig. 4) may be 

compared Kith the corresponding curve of Froeschle"'s fi~. 4a. 
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It has seemed of interest also to construct curves showing the 

evolution of -w, vs. n, for a sequence of starting values x (withy = 0), 
0 0 

namely X = 0.20, 0.30, 0.40, 0.50, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 
0 

0.58, 0.60, 0.70, 0.80, and 0.81 --see Figs. 5-8. Computation of results 

required for such 

normally taken to 

plots was terminated
1 
if jHTR - 11 ~TEST, with TEST 

-9 be 10 although some dotted-line extentions of the 
• 

results were obtained (for Fig. 7) by setting TEST= 5.0 x 10-5• 

As noted by Froeschle ", (l) the use of the Cesaro mean, 'W• for construct in~~ 

* such plots (or, perhaps preferably, usc of the similar quantity -w 

introduced in Sect. IV, p. 20,of Ref. 1) certainly removes the distressing 

fluctuations that would be seen on plots of ' or of e vs. n. It may 

be noteworthy, however, that the plot of -w vs. n for x
0 

= 0.53 

a case for which erratic phase plots have been obtained(!) -- appears 

to show a monotonic dccreas~ of u with incr~asing n, extending from n ~ 60 

through to the end of the run (n = 10000). This behavior seem~ somewhat 

at variance with that seen by Froeschlc' for his transformation T2, in 

which a run leading to "ergotic" coverage of the phase plane appeared to 

* give values of -w (and of 8) that did not tend to zero (sec upper curves 

on Fig. 1 of Ref. 1). Returning to the transformation under consideration 

in the present Note (equjvalent to Froeschle 1 's transformation T
1
), we also 

notice from Fig. 7 that the curve of ll ~· n for the starting condition 

x
0 

= 0.57 -- that also exhibits erratic phase-plane behavior -- shows a 

slow rise (at a very rnodest rate) only after the computations have progressed 

to fairly large n values. -w vs. n plots of other cases leading to 

erratic behavior (e.g., with x
0 

= 0.54, 0.56, and 0.81), moreover, fail 

to provide any clear evidenc'e of "leveling off" before it was judged 

advisable to terminate computation of -w in the interest of computational 

accuracy (as judged by IHTR- lj). 

7-127 



In view of the remarks of the preceding parar:raph, it may be 

suspected that the Cesaro mean, as introduced by Frocschle"', (l) 

p 
n = 1 

Tl 

n 
L: 

m=l 

e 
m 

• 

is a bit sluggish in its response to changes C~·R·• to growth) of 

of A possible alternative indicator, namely 

n n-m 
L: - -- e e T m=l m v = n n-m n - --

L: c T 

m=l 

n loglol>.l 
L: 

n-m m -- -------
m=l e T m 

= 
n n-m - --
L: e T 

m=l 

0 or m 

might serve desirably to give relatively greater emphasis to recent values 

of e -- taking, for example, T = SO (iterations). For comparison with 

some of the results obtained for l-1• we have made evaluations of un (as 

defined above) for x = 0.52, 0.53, ... 0.58, 0.80, and 0.81 --taking 
. 0 

1/T = 0.02 (and cos a= 0.22, as before). 

The results, in the form of plots of v vs. n -- Figs. 9-11 --

may be compared with those given previously for p vs. n on similar scales 

(Figs.·6-8). Plotting typically was at intervals of 50, 100, or 200 
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iterations as the runs progressed, and the fluctuations do not generally 

appear to be particularly troublesome in the plots of v vs. n. The 

greater responsiveness of the v vs. n graphs is apparent and may be 

helfpul thus the runs begun with x = 0.52 and with x = 0.53 arc seen 
0 0 

to drop to lower values during the course of 10000-iteration runs and, indeed, 

show less distinction between them (despite the erratic character assigned 

to the phase plots of the x = 0.53 run). 
0 

The succeeding runs -- with x
0 

= 

.54, 0.55, 0.56, and 0.57 -- also arc more responsive, so that their eventual 

up-turns may be-more evident. 

sequence, that commenced \vi th 

Similarly, in the final two runs of this 

x = 0. 80 clearly drops further on the v 
0 

vs. n plots and the run with x = 0.81 gives some ir1dication of a.dcveloping 
0 

upward trend before evaluations of lor 1 o I A I were t~rminatcd. It is of 

interest to note [sec Ref. 9, Sect. 4 (which refers in that Section to a 

pair of.non-linc~r differential equations derived from a time-independent 

Hamiltonian function) -- esp. the two paragraphs beginning ncar the bottom 

of p. 8 and continuing through p. 10] that an approach of an eigenvalue 

pair (A. 1 & A 2 = 1/ A 1) to a common value of magnitude unity can be 

associated with a confluence of eigenvector directions, since the eigenvector 

slopes arc given(9 •6) by 
A,_ A 
-B-- The general circulation of points within or 

around the quite simple phase diagram shown as rig. 1 in Ref. 9 appears to 

be sufficient reason to cause, in that case, sucl1 confluences to occur 

(more frequently when the circulation about .the phase plane is more rapid) 

and in ln IA1 I having no positive lower bound. 

In conclusion, we may say that the evolution of the Cesaro mean U, 

employed by Froeschle ", or (perhaps preferably) the evolution of the similar 

quantity v suggested here, provides a helpful indication of the development 

of the magnitude of the (greater) eigenvalue of the cumulative tangential-mapping 
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matrix. From the examples rpeorted in the present note, 

however, graphs of such quantities evidently do not always 

provide a completely clear early means of distingui~hing ruris 

leading to apparently stochastic phase plots from those that 

do not -- see, for example, our graphs pertaining to a run 

commenced with = 0.53 and y 
~ 0 

= 0. 

Of particular significance, moreover, may be observation 

that in all the cases examined there continued to be reversals 

in the sign of the eigenvalue, so that the motion under examination 

can be said to be not strictly that of a C-system. Such sign 

reversals have been seen also to occur in pr~vious studies --

both with non-linear area-preserving algebraic transformations 

(with or without the region of interest enclosed by a firm separa

( sn 
trix) "J and also for a non-linear pair of first-order Hamiltonian 

differential equations (with or without explict time dependence 

in the equations). ( 9 ) 
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On A Form of McMillan's Transformation 

Suggested by P. Channell* 

L. Jackson Laslett 

Lawrence Berkeley Laboratory 
Uni versl ty of California 

Berkeley, California 

April 19, 1974 

EKAN-237 

Paul Channell has indicated an interest in the McMillan transformation 

:: : : X + f(y) } 

in which, in particular, he proposes taking the function f to be 

such that 

f(f:) = t:2 + It: . 

Since f(~J can be written in this case as 

* Work supported by the U.S. AtoT!lic Energy Commission. 
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where <!>(~) = ~~. the condition expressed by Eqn. (11) of McMillan's 

Chapter in the Condon Festschrift is fulfilled and \ve have the assured 

firm invariant curves {parabolas) 

and 

connecting the order-1 fixed points at 1,1 and at 0,0 (as is readily 

confirmed). 

Within these boundaries we have the ordcr-1 fixed points on the 

princip~l diagonal: 

and outside, 

x,y: (3 -15)/2 ~ 0.381966 

0. 

1. 

(3 + 15) /2 ~ 2. 618034 

The differential transformation is characterized by the matrix 

1 \ 
I 

f .. Cy) I 
= 

7-144 
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with a half-trace 

htr = y + 
1 

4/Y 

The values of htr at the three interior order-! fixed points listed arc 

13 - 3 /5 "' 
8 

00 

0.78647451 

5/4. 

For the first of these, we have cos~= 0.78647451 ... and 

~ ~ 0.106 (2TI) = 0.106 osc.; 

For the fixed points at 0,0 & 1,1 there arc the respective (growing) 

eigenvalues and eigenvector slopes 

00 

dy/dx = .\ = [htr] + 
2 

Within the area bounded by the curves 

and 
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manyapparantly smooth invari;mt curves appear to exist [Interactive 

TTY Program FIRMB]. Some complexity has appeared to arise, however, 

as a result of some order-22 fixed-point systems that have been found 

to occur. Approximate co-ordinates for the fixed points of the stable 

and unstable ordcr-22 fixed-point systems arc appended. To determine 

whctl1cr phase-plane trajectories launched in the neighborhood of one of 

these unstable order-22 fixed points exhibit erratic behaviour may 

require careful attention to the accuracy of (double-precision) computations 

performed in this region of the phase plane, since it has been found (Program 

FIJU.113) that significant v laues for phase-plane coordinates arc obtained 

(\.;ith double precision) in this region only for computational runs that 

do not exceed some 6000 iterations. 
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STA&.E ORDER-22 FIXED POINTS 

0.990d3d351 
0.990.:33~351 

~ X: '( A OR c B JR D LOG 10 LAM LF 

0 9.9084E-01 9e9084E-01 1·~000E+00 0· 0· 1 
a. le0000E+00 

1 ~.90d4E-01 Yed633E-01 

2 9e8633E-01 9e7'515E-01 

3 9e751'5E-01 'Je5209E-01 

4 9.5209E-01 9.0707E-01 -CS) - --~ CS)~ 

9e0707E-01 de230'i£-01 
I I I I 5 til til til til tS) - r---
~ r-- t-0\ 

6 d.2309E-01 6e7766E-01 CS) 0\ '1"0 - CS) C"')C\] 
an -- o.n C\1\() 

7 6e7766E-01 4-5932£-01 C") tS)CS) C") t-Ln 
I'() 

I I "0 \() •:J\ 
C") 00 ("') ..n-o 

d 4.5932E-01 2·1105E-01 
:0 C\]CS) "0 "0"0 CS) ~\() IS) 0\\() 
':J\ M'l ')\ C\ltn • -C\l • • • 9 2.1105E-01 4e462'-JE-i12 0\ ...,_ 

0\ <"- -C\l'l I 

II 
.;;j'O\ 

10 4.4629E-02 2.1917E-03 \()0\ II II II II 

).o 
C\1\C 
0\\() ,.. a::o Cz.. 

11 2·1917E-03 2.1917E-03 M.;;j' ..J 
.:;ran - IOC\l - --~ CS) q'C") :S) ·~ CS) Q 

12 2.1917E-:J3 4e462:JE-02 I 'It"'" I I I + til 
'"" .;;r 

r.JJ !zlWW 
Sl ISl- - '1'1.01$1 

13 4·462-.H:-02 2 • 1112l5E-,iH IS) 
an~ 11'1 -:7\t-tSl 

IS) C")~ C") \O"''CSI - -~ - C\li.OISl an tJ"':fl 11'1 '7\C")Gl 
:"".) ("):"".) C") Gl"'~ 

14 2·1H:l5E-01 4e5932E-01 "0 "0:0 "'() C")I.C)IS) 
C") ("')(") C") ·:.\J tJ"' ISl 
"0 ':'O'Xl :0 ')\'()($) 

4e5932E-01 6·7'i66E-01 
IS) IS) iS) IS) C\l')IISl 1.5 ':J\ 0\ •.)\ "' \OC\l!Sl 
• • • • • • • • 
" 0\0\ 0\ Y.l::I\-ISl 

16 6e7766E-01 d. 230·)£-01 
II n II II II II II II 

17 8e2309E-01 9 • 07 07E-~1 
~ ~>- ~ <Ct>~E 

til<C 
18 9.0707E-01 9. 52119E-ell Q..J 

.. .. .. ISl 
ISl C\l C\l -19 9e5209E-01 9.7515E-Ol C\l C\l 

(.!) 
C) 

20 9-7515E-01 )ed633£-01 ..J 

21 Y·8633E-~l ':1 • ·:H-'d4E- 01 II II II 

2 ~ ?. 

22 9.9084E-01 9 • ') 0 3 4 E- 0 1 
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UNSTABLE ORDER-22 FIXED POINTS 

FJH t =~J • 5 >lr F, TtPi 1 -- n·~it:Hv~ 15£ j 
1 ! 

Tl'PE LH TIAL X <F-FJrliv:iAT ).'J L l' > 
0e00065Sd151! 

:-J X '( A JR c B Jti D LJG 10 LAM LF 

0 6·55~2E-04 1·2d05E-02 1.0000E+rJ0 ru. 0· 1 
0. 1·0000£+00 

1 1· 2d05E- 02 1.1267~-01 

2 1·1267£-01 3-3555£..:.01 

3 3·3555E-01 5·791-JE-01 
Cll CllCilQ 
~ CSISliSl 

4 5·7919E-01 1·60:i6E-01 I I I + 
tzl Wc..:Jtzl .-: r-tJ'IO'I - CllCSI.-: 5 7·60':f6E-01 d·7220E-01 - CSI-CSI 
10 ~\()'X) 
'0 ~Cil C\ll{')-

6 d·7220E-01 1}.3369£-01 l{') lSI'S> \/')tS)ro-
10 I I lOr--e--
~ QQ ~r--.;:r 

7 9·3369E-01 9·6585£-01 iSl .;:r- $l\()l{') 
"0 f'Sl')\ 'O"fr--
Cll "0)\ CllSliO 
• 0- • • • d 9·6585£-111 IJ.81:J5E-01 - (" l ...... .......... - ..... 

c.; .-: 
(<)QJ 

9 9·tH95E-01 ~·d-=J31E-01 II Q')\ II II II II 
Ml{') 

>- 'X) (::\] -...roo [.t, 

10 9·8:131£-01 9·:]142£-~1 C\J'O _, 
C\ll{') 

~ "()')\ .;:r ·Sl C\: Sl-

9·9142£-01 9·d':t31E-01 
S) C"-\() iSl •S) CS1 S)S) 1 1 I 0\:;J' I + + + I 
tzl (l\'0 tzlc..:Jtzl w (ij 
iSl ~10 l{')l{')- S'O 

12 ':fed':)31E-01 9·dl95E-01 :$) \()·:\) \()~("') 0.-: 
·'Sl \OSl 10 •"' r-- Sl\0 
'Sl "'"'"' r-- •0 C\J 0'0 

13 ':tedl':fSE-01 'i·65c35E-01 Sl r-:\3 r-\()\1') CSir--- 0l{') S)C\J'Q ISIC\l 
tJ'I l{')\Q 

l{') ·:0 - Sl-- -~ -SlC"') CS!r-14 9·65d5E-01 9e3369E-01 "0 ::OS) 
'X) - '" 

CSIC\J 
l{') l{')"' 'ttl.:---.~ Sl:n 
l{') l(')C\J \/')-;("') CSI"f 

15 9·3369F:-01 8·7220E-01 • • • • . • • • 
\0 ..o- ..o-- -.;:r 

16 8·7220£-01 7 • 6096E-01. II II n II II II II II 

~ x:-... ~<tu E-~ 17 7·6096£-01 5•7:H9E-01 W<t 
Q-1 

1d 5·'19198-01 3.3555E-01 .. .. .. CSI 
Sl Cll :'\) -Cll ·:'\) 

19 3·3555£-01 le1267E-01 (!) 
Q _, 

20 l·1267E-01 1. 2805£-•(}2 
II II II 

21 le2805E-02 6·55d2E-04 ~ ?. ?. 

22 6·5Sd2E-04 1.2d05E-02 
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UNSTABLE ORDER-22 FIXED POINTS {vith different starting point) 

TYPE I~ITIAL X CF-FJRMAT J~LY> 
0.9914196378! 

~ X 'f A OR C B OR D 

0 9.9142E-01 9e8931E-01 1·0000E+00 0. 
le0000E+00 

1 9.8931E-01 9·819SE-01 

2 9.81~SE-01 9.65d5E-01 

3 9.6S85E-01 9e3369E-01 

4 9.3369E-01 8.7220£-01 

5 8·7220E-01 7.6096E-1211 

6 7·6096£-1211 5.7919£-1211 

7 s.7919E-1211 3.3555E-01 

3e3555E-01 le126.7E-01 

9 t.l267E-01 l·2d05E-02 

10 1.2805E-02 6·55<32£-1214 

1 1 6.55d2E-1214 le2d05E-IJ2 

12 1·2d05E-02 1.1267£-01 

13 1.1267E-01 3.3555£-01 

14 3·3555E-01 s.7919E-01 

15 s.7919E-01 7e609.6E-01 

16 7e6096E-01 3e722~E-01 

17 8e7220E-01 9e3369E-01 

19 9.6535E-01 9.81)5£-01 

2121 9.d195E-01 9.d931E-01 

21 9.8931E-01 9·9142E-1211 

22 9.9142£-01 9.8931E-01 
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008. SCALE -- 0 9SS TO 0.995 
008. 0.99 
008. 0.991 
e0a. 0.9903 
008. 0 9393.0.9914 
c~3. c~r.c:R 22? 
003 STABLE ORDER-22 FP ~T CIRCA ~·Y•0.990838351 

:.t:ROLLOi- Dt4 02 
ROLLIN •:0r!PLETE 1"1 
KILLED BY REQUEST 

JOB ENDED - DISCOtltiECTED 

..... ~.~·'':· . _.--: J.·.:, .... ) ·.~~,~· .... ~ ', .. . , . "' .. ,,.,( ·r· .. .,. ... ~ '. :• • . ..... -~ ...... . \• ~ ,. 
~ ~- -· • \.:1' •I ~· :~ .,. , . . .·-. ·' . ..•, .· .· 
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Computations extending the approximate (circa 100 accuracy) 

outgoing eigenvector direction from thri unstable order-22 fixed point 

at 0.9914196379, 0.9893067373 (approximately) toward the positive 

principal diagonal (by double-precision computations, as in Program 

FIRMB)* did suggest, however, that such an extension docs not intersect 

the principal diagonal at right angles (and hence would lead to the 

development of loops). The results of such computations arc conveniently 

examined through usc of the variables 

Sl\1 = 
X + y 

12 
and DF = X - y 

12 

For which one can examine whether or not the extension of the 

eigenvector direction traverses the line or = 0 vertically. 

The skeptical reader may wish a more thorough examination of this 

question -- as certainly could be undertaken in an entirely straight-

forward manner -- hut it appears quite likely that loops of increasing 

elongation will develop as the eigenvector-directions extended approach 

the mirror point at 0.9893 · ··, 0.9914. In the case that has been ten-

tatively examined here, the crossing of the principal diagonal occurs in 

the neighborhood of x = y = 0.9918 -- ~·~·· further from the origin than 

the stable order-22 fixed point at 0.9908 ···, 0.9908 ··· . 

* The starting values in these computations lay in the range 

0.99141963895 < X < 0.9914196407 

0.9893067405 < X < 0.9893067458 
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* Structure in R.F. Phase Plots 

ERAN-57 Continued 

L. Jackson Laslett 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 

May 20, 1974 

ERAN- 241 

In ERAN-57 we gave some examples of the structure that ca~ develop in 

R.F. phase plots if the s~1chrotron oscillatio~s are described (for a 

coastL,g beam) not by differential equations of the fvrm 

~ = - K sin(1rX) 

~ = "A'Y 

but by a discrete transformation 

* Work supported by the U.S. Atomic Energy Cormnission 
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[Here K = eV
0

/Es, for ~s = rr, and A1 = A/rr = 2h(dt/t)/(dE/E) if we 

identify X as the electrical-phase error (6¢) divided by rr and Y as 

6E/Es.] The transfonnation is seen to be area-preserving, and we accordingly 

may regard X,Y as a canonically-conjugate pair of variables. The computa

tional results reported in ERAN-57 were confined to examples in which K/rr = 0.1 

and A1 = A/rr = 0.1 

We recently have returned to examine this problem somewhat further, 

aided by the availability of a TEKTRONICS memory 'scope available for interactive 

use with the LBL CDC-6600 computer (double-precision program RFBUK). For 

mathematical or computational reasons it has proven convenient to employ the 

new variables 

X= X 

y = Y - ~ K sin(rrX) 

in this recent work, so that, in tenns of these new variables, the transformation 

asst.nnes the form 

xn+l = xn + A' [Yn - ~ K sin(~)] 

Yn+l = Yn - ~ K [sin(rrxn+l) + sin(rrxn)]. 

The change of variables, from X,Y to x,y is characterized by a functional 

determinant of unity and the transformation written in terms of the new 

variables again is area preserving. It will be seen that in terms of these 

new variables possible phase-point trajectories will be symmetrical about both 

the x- and the y-axes. In execution of the program RFBUK, the generalized 

7-154 



coordinate x is moduloed so as always to remain between -1 and +1. 

For fixed-points of order-1, such as occur at~ 1,0 (and at± 1, m ~ ), 

the eigenvalues are given by 

EIG1 2 = 1 - Q ~ SQ 
' 

and the associated eigenvector slopes by 

(dy/dx) 1 2 = + SQ/A', 
' 

where 

Q = ~ KA' cos(TIXpp) and SQ = ~(Q-2) 

The transformation en~loyed here of course permits harmonic passage 

through the (tl1in)cavity, with homologous phase trajectories occurring at 

intervals ~y = 2/A'. With A' = 0.1 and K/~- 0.1 (as in ERAN-57), 

buckets with fairly clean sepatrices (and apparent half-height 0y ~ 1.98331) 

make their appearance. The eigenvalues and eigenvector slopes associated 

with the unstable fixed point at -1,0 are, in this case, 

EIG = 1.36735945464072 (and its reciprocal) 

and 

dy/dx = ! 3.18011432635279, 

respectively. Additional structures are present in the phase diagram, however, 

as is illustrated by the order-2 fixed-point systems that develop at y = 10. 

These order-2 syste~ become more clearly evident on plots made to a larger 

scale -- the stable fixed points are 
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0,10 + and - 1,10, 

while the unstable fixed points are close to 

± 0.507851592430673, 10. 

The apparent separatrix formed by extension of the outgoing eigenvector 

direction from the fixed point at -1,0 (with K/rr = 0.1 and A1 = 0.1) is 

found, on close examination, to be not a simple smooth curve traversing the 

vertical axis at right angles -- and hence does not join smoothly with the 

reverse extension of the ingoing eigenvector direction that approaches 1,0. 

This failure to intersect smoothly is made evident by a large-scale graph 

showing the extended eigenvector-directions in the immediate neighborhood 

of the y-axis. [To achieve a reasonable graph, some of the curvature has 

been removed by plotting 

Yc = 1011 (y-1.98330928669 + 2.34117x2) vs. 105x.] 

By virtue of the symmetry of the transformation, the reverse extension of 

the incoming eigenvector direction to 1,0 can be constructed by reversing 

the sign of x, and it is apparent that the two curves cross at x = 0 

with an angle 2(dy/dx) ~ 7 x 10-9• Such a failure of these curves to join 

smoothly· of course necessarily will require that their further extensions 

(forward or backward, respectively) will lead to the development of loops 

that become increasingly slender and elongated-- see ERAN-57, esp. Figs. 2 

or 6. This irregularity, for the parameters mentioned, seems, however, to 

be ratl1er minor -- the area of one of the half-loops just mentioned has been 

estimated in ERAN-57 as roughly 10-ll x,y-units in this case. 

If we now increase considerably the value of the parameter K lit the 

· transformation, the dimension of the main buckets will become a larger fraction 

of the distance between such buckets, and the smoothness (or lack of smoothness) 



K/rr = 0.1 

A.' = 0.1 
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K/rr = 0.1 

).' = 0.1 

.2.2. .I r-
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K/rr = 0.1 

A' = 0.1 

SCALE· 
X, 0.4 TO 
y, 9.S TO 

0.6 
10.2 1 

10. r 

.. 

9.8 L. 
o.-1-

.. 
... ·. ·. 

. . . .· .. 

. .... . . · .·.: . . .. : .· .. ··=·5"·-··<: ..... 
. . ·::·:~ ............... ·::·.·: ·.·. .. . . . .. , 
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K/rr = 0.1 

A.' = 0.1 

SCALE• 
X• -1.0 TO 
Y· 9.8 TO 

1.0 
1\).2 "' ee.Aor 

. . 

'"\. . 

·" 
. . .. 

9.8'
-1.0 
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.. 
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K/TI = 0.1 

A.' = 0.1 

SCALE· 
X, -1.0 TO 1.0 
V' -2. 1 TO 2 • 1 

~.lr , 

·. 
~~------------~-----------r-:) 

-2..1 L. 

-1.0 
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of the apparent separatrices can become significantly modified.* This is 

illustrated by computations in which K/~ was increased eight-fold** to the 

value 0.8 (wl1ile A1 remained equal to 0.1). 

In computational work with these parameters (K/~ = 0.8, A' = 0.1 -

again with Program RFBUK) we immediately find that phase trajectories launched 

near the unstable fixed points of the main bucket system (e • .&,., near .,1,0 or 

-1, 20) are distinctly ragged (although this raggedness does not appear to 

extend much into the interior of the bucket region). The fixed-point system 

of order-2 (~·£·,near y = 10), moreover, opens up so that its general 

structure appears evident on a phase diagram that extends from y = -6 to 

y = + 26. The unstable fixed points of this system at y = 10 appear to lie 

approximately at x = ± 0.5616567 and evidence for higher-order systems is 

readily found (e.g., with stable fixed point near 0,6.61)~ 

In summary, we have confirmed the existance of the some\',rhat subtle 

structure of tl1e R.F. phase plots described in ERAN-57 and have indicated, 

by an example, that tl1is structure and the complexity of the phase diagram 

become more obvious as the heights of the major buckets become an increasingly 

large fraction of the spacing between these buckets.t 

* A situation of this nature has been discussed by G.M. Zaslavskij and 
B.V. Chirikov, Soviet Physics Uspekhi 14 (No. 5), 549-672 ~rch-April 
1972); Usp. Fix. Nauk 10~, 3-39 (Septemoer 1971). 

** The result, quite roughly, should be an increase of the height of the 
"bucket" by the square root of this factor. 

t Reference was made to synchrotron-oscillation modes that might arise in 
a rather more complicated R.F. acceleration system in L. Jackson Laslett, 
"Problems and Advances in High-Energy Accelerator Design", Physics Today 
(Nov. 1964), pp. 42-48, esp. p. 44 and Fig. 5. 
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Conference on High Energy 
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CA, May 2-7, 1974 

"STOCHASTICITY"* 

L. Jackson Laslett 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 

Detailed examination of computed particle trajec
tories has revealed a complexity and disorder th~t is 
of increasing interest to accelerator specialists. To 
introduce this topic, I would like you to consider for 
a moment the analysis of synchrotron oscillations for a 
particle in a coasting beam, regarded as a problem in 
one degree of freedom. A simple analysis replaces the 
electric field of the RF-cavity system by a traveling 
wave, having the speed of a synchronous reference parti
cle, and leads to a pair of differential equations of 
the fonn 

dy/dn = -K sin rrx, (la) 

where y measures the fractional departure of energy 
from the reference value, rrx measures the electrical 
phase angle at which the particle traverses the cavity, 
and K is proportional to the cavity voltage; and 

dx/dn = ).'y, (lb) 

in which A1 is proportional to the change of revolu
tion period with respect to particle energy. It will 
be recognized that these equations can be derived from 
a Hamiltonian function 

H = (1/2) A •y2 - (K/rr) cos rrx . (2) 

Because this Hamiltonian function does not contain the 
independent variable explicitly, it will constitute a 
constant of the motion and possible trajectories in the 
x,y phase space will be just the curves defined by H = 
Constant, namely the familiar simple curves in phase 
space that are characteristic of a physical (non-linear) 
pendulum. · 

If we note, however, that a localized cavity can 
affect the energy of a particle only when the particle 
encounters the cavity, it is natural to replace the 
differential equations by difference equations. Thus, 
measuring energy Yn at the nth entry to the cavity, 
we write the transfonnation 

Yn+l = Yn- Ksinrr~} 

xn+l = ~ + A'Yn+l 
~3a,b) 

(which can readily be .shown to be area-preserving). 
Although alternatively the motion in this case could 
again be expressed by differential equations derivable 
from a Hamiltonian function, the Hamiltonian now would 
contain a periodic o-function of the independent varia
ble as a factor multiplying the tenn - (K/rr) cos rrx and 
hence could not be taken as a constant of the motion. 
(The differential equations, moreover, would be non
linear, so that Floquet theory could not be applied.) 
The use of such a Hamiltonian formulation nonetheless 
can be helpful in analytic work, but difference equa
tions of course are attractive for computational inves
tigations. 

It is of interest to take a quick look at some com
putational results obtained through use of a transforma
tion equivalent to (3a,b) but written in terms of work-

Work supported by the U.S. Atomic Energy Commission. 
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ing variables Y = y - (K/2) srn rrx, X = x, so that the 
transformation assumes the fonn 

~+l = ~ + A' (Yn - (K/2) sin rr~] } 
(3a',b') 

Yn+l = Yn - (K/2) [sin rr~ + sin rr~+l] , 

with the result that the resulting phase diagrams will 
necessarily have a desirable symmetry about both the 
X- andY-axes. With K/rr = 0.1 and A' = 0.1 we find 
what appear to be conventional bucket diagrams with 
buckets separated in Y by 2/A' for successive hannonic 
modes, although we may wish to return to the question of 
whether the bucket boundaries are as simple and definite 
as appears on Fig. 1. 

R F Phase Plot 

22.1 -

<:: c:::. ·::::.) 

-2.1 
-1.0 

K I Tr = 0.1 
I X = 0.1 

:::> 

1.0 

Fig. 1. - X,Y phase plot for a coasting beam under the 
influence of an R.F. cavity with K/rr = 0.1, A1 = 0.1 
as computed by Eqns. (3a' ,b'). X is plotted mod. 2. 

We also find evidence of some "sub-hannonic" structure 
(with higher order fixed points) that, if enlarged some 
60X, has the appearance shown in Fig. 2. 3 · . _ .. 



10.2 

.;· 

9.8 
-1.0 

RF Phase 

I 

\ / 
,X 

Plots 

..... 
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/\ 
[ \ 
\. j 

'..../ 

.... 

K/rr=O.I 

>!. = 0.1 

' ; 

X 
/ \. 

·. 

.. . 

f 

l 

1.0 

Fig. 2. - Circa 60-fold vertical enlargement of central 
portion of Fig. 1, near Y = 10.0, showing sub-harmonic 
structure. 

If the cavity voltage is increased eight-fold (so 
K/n = 0.8), the bucket ~reas are expected to become 
larger, and we indeed find this to be the case (Fig. 3), 
with an accompanying very marked increase of complexity 

26.0 

-6.0 

RF Phase Plots 
K /rr =0.8 

>...' = 0.1 

~ ----=-------·····-----=-----·-... 

- 1.0 1.0 

Fig. 3. - Phase plot similar to Fig. 1, but for opera
tion with K/n = 0.8, showing the obvious development of 
complex structure. 

that is immediately apparent in the phase plot. Of 
particular interest is the evident diffuse character of 
phase trajectories generated by points launched close to 
the first-order unstable fixed politts situated at 
X = ±1, since the bucket boundary in consequence no 
longer appears clearly defined. 

In the first example (K/n = 0.1), on the other hand 
where the bucket width is some two and one-half times ' 
smaller in relation to the bucket separation, the pre
sene~ of structure in the separatrix can be ~evealed 
computationally only with considerable care.4 To do 
this, one can extend from the unstable fixed points the 
eigenvector directions of the transformation linearized 
about these fixed points, and examine whether such 
curves intersect smoothly. One finds in fact that they 
do not quite do so, but generate loops (of a nature to 
be illustrated later) that in this instance (K/n = 0.1) 
have a very small area that amounts to only about 
1/(5 x 10 11

) of the area of the bucket itself. 

Similar questions concerning the character of phase 
trajectories and the possible erratic or stochastic be
havior of canonical mappings can arise in problems with 
more than one degree of freedom. As an ex3ll1Ple, Henan 
and HilesS and subsequently Walker and Ford0. studied a 
model of an astronomical system, for which the Hamilton
ian function was taken to be 

H = icP12 +pz2 +ql2 +qz2 ) + ql2 qz - ~ qz3 (4) 

The cubic terms appearing here as coupling terms become 
increasingly significant for increasingly large values 
of H -- which is itself a constant of the motion. With 
the coupling terms present, however, and in the absence 
of any simple constant of the motion other than H, a 
given phase trajectory might be expected to wander 
(ergodically) over virtually all of a three-dimensional 
surface specified by H = Constant (and that will be a 
closed surface for values of H below the dissociation 
energy). If, on the other hand, some additional inte
gral of the motion were in fact also acting, the phase 

points of a given trajectory then would be constrained 
to lie on a two-dimensional surface, and graphs of the 
intersection of such surfaces with some selected plane 
or other surface (a "surface-of-section") would lead to 
simple curves in this plane rather than to a scattering 
of points. Computations of this nature indicated that 
for sufficiently small values of energy C~·R·• H ~ 1/12) 
only curves that to computer accuracy were smooth (and 
relatively simple) were formed by intersection with the 
plane ql = 0 (and p1 ~ 0). Examples in which the energy 
of the particles was successively raised, however, re
sulted in the development of ragged island structures or 
of apparent stochastic behavior over increasingly large 
portions of this surface-of-section (Fig. 4). 

E=0.083333 

p2 

E=O.I0629166 

2 

Fig. 4. - Phase plots, in the surface of section q1 = 0, 
resulting from the equations implied by the Hamiltonian 
function (4) -- for increasing values of the energy. 
[After Walker and Ford.6] 
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Such behavior appears concordant with the, "KAM'' 
(Kolmogorov-Arnol'd-Moser) theory (see Refs.' 58, 59, & 
60 of our Ref. lc), which suggests that many of the in
variant curves or surfaces present in the absence of 
the perturbation will persist, with only minor distor
tion, in the presence of a sufficiently small perturba
tion (see, however, Note 7). It is of interest, of 
course, to determine or to estimate the circumstances 
C~·R·• perturbation strength) at which the KAM theory 
becomes inapplicable and extended regions of erratic 
(or stochastic) behavior develop. As was suggested by 
our first examples, and has been etgo~ded more exten
sevely by Zaslavskij and Chirikov, ' one means for 
obtaining such estimates may be by determining the ratio 
of resonance width [ow=(dw/dl)rol] to the distance (6w) 
to the nearest neighboring resonance. 

Additional tests (to be. mentioned below) may be re
quired to determine the degree of disorder associated 
with the movement of phase points in such stochastic 
regions. We may first note, however, that the existence 
of nested closed invariant curves in a plane -- as 
suggested by the KAM theorem for a problem in one degree 
of freedom -- prevents phase points from moving outward 
or inward to regions of substantially different "ampli
tude" (in the absence of noise). With more than one 
degree of freedom, however, stochastic layers may inter
sect, to form an intricate system of channels along 
which a phase point can slowly diffuse and result in 
instability. The possibility of such "Arnol 'd diffu
sion" has been demonstrated by Arnol'd [Ref. 35 of our 
Ref. lc; stated simply the example considered by Arnol'd 
is comprised of a physical pendulum and a simple-harmonic 
oscillator, with a time-dependent coupling (that also 
depends on the phases, or angle variables, of these 
oscillations)]. 

It should be pointed out that some non-linear trans
formations -- say for a system with one degree of free
dom -- will not lead to the disappearance of some or all 
of the invariant phase curves at substantial amplitudes. 
Thus for transformations of the form 

~+1 = yn; Yn+l = -~ + f(yn)' (5a,b) 

McMillan9 has shown that if f(y) can be written as 
~(y) + ~- 1 (y) (where ~- 1 denotes the function inverse to 
~), then the curves y = ~(x) and x = ~(y) will consti
tute invariant curves. Such curves will pass through 
the first-order fixed point(s) situated at the inter
section(s) of y = (l/2)f(x) with the principal diagonal. 
An enclosed area can thereby be formed from which phase 
points cannot escape even if the behavior in portions of 
the interior becomes highly stochastic. This is illus
trated by an example (Fig. 5) in which 

and 

1 1 k 2 ~ f(y) = -2(3y-l) - -- + ~ 1 +"-2 y+l 

<!> (x) = x - 1 + R+P . 

(6a) 

(6b) 

S~ch a_situation also can develop when f(y) is a step
W1Se l1near function of y with discontinuities of 
slope, as has been noted by Dr. Judd [see, for example 
Figs. 13 and 14 (pp. 27-28) of Ref. 10]. If f(y) is' 
of the form 

f(y) = -(By2 + Dy)/(Ay2 +By+ C), (7) 

moreover, the entire phase plane will be covered by a 
family of simple invariant curves -- see, for example, 
the cases9 f(y) = 2ky/(l+y2

), with the invariants 
x2y2 + x2 + y2 2kxy =Constant, and f(y) = 2ky/(l-y2), 

with the invariants x2y2 -x2 -y2+2kxy = Constant illus-
trated by Figs. 6-8. ' 
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x-
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Fig. 5. - Phase diagram for the transformation (5a,b), 
with f(y) given by Eqn. (6a). The scattered points 
result from computations initiated with x0 = y0 = 0.25, 
but must remain within the separatrix defined by the 
function~ [Eqn. (6b)]. · 

X--

Fig. 6. - Invariant curves for the transformation (5a,b) 
with f(y) = 2ky/(l+y 2

) and k = 2/3. [Figs. 6-10 after 
McMillan. 9] 



2 

' 
-I 

-2 -I 0 

x--

Fig. 7. - Invariant curves for the same transformation 
as in Fig. 6, but with k = 1.36. 

Fig. 8. -
with f(y) 

Invariant curves for the transformation (Sa,b) 
2ky/(l-y 2

) and k = 0.64. 

It is of interest to examine the mechanism whereby ir
regular behavior can develop in the neighborhood of un
stable fixed points, taking as an illustration an exam
ple suggested by Progessor deVogelaere that [when gen
eralized and rewritten in variables leading to the form 
(Sa,b) advocated by McMillan] employs 

f(y) = Z[Ty + (1- T)y2 ]. (8) 

First-order fixed points appear at (0,0) and at (1,1). 
For T = 0, this transformation, when linearized about 1 

the unstable fixed 1oint at (1,1), can be represented 

by the matrix[-~ ~J· with eigenvalues and eigenvector 
slopes 

A = 2 ± /3, . dy/dx = A. (9) 

A line segment extending downward from the fixed point 
(1,1) with the slope 2 + 13, if subjected to repeated 
applications of the transformation, generates the loops 
shown in Fig. 9; similarly a line segment of slope 
2 - 13, if extended by the inverse transformation, gen
erates the mirror-image curve (mirrored about the prin
cipal diagonal). Points such as A, B, C ···progress 
toward the fixed point in smaller and smaller steps and, 
since the transformation is area-preserving, the associ
ated loops clearly must become increasingly elongated 
as they become increasingly narrow from repeated appli
cations of the forward transformation. The evolution 
of such loops clearly will become quite intricate (Fig. 
10)' 

Fig. 9. - Plot of the extensions of the eigenvector 
directions from the unstable fixed point at (l,l), for 
the deVogelaere transformation expressed in ~1cMillan' s 
variables [Eqns. (Sa,b) and (8), with T = 0]. The areas 
of the loops marked L are all equal, by virtue of the 
area-preserving character of the transformation and the 
inherent symmetry about the principal diagonal. 

-o8 

-!0~~---L--~--~~--~~~--~--~~~~--~. 
1.0 -08 -0.6 -0.4 -0.2 0 0.2 04 06 0 8 I 0 1.2 1.4 

x-

Fig. 10. - A partial extension of the curves shown on 
Fig. 9. 
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but the loops apparently need not permeate the entire 
"interior" -- portions of an inward loop can, in fact, 
enter, on a later iteration, into the interior1of an 
outward-lying loop (as indicated on Fig. 10). It is 
clear, however, that the development of such a loop 
system can readily give rise to an apparent stochastic 

· motion of phase points in portions of the phase diagram 
- - most particularly near an unstable fixed point such 
as that mentioned here. 

The existence of a firm separatrix, or of an exten
sive family of invariant curves generally, can be ex
tremely sensitive to the exa~t fo:m of the t:ansf?rma
tion.l2 A case of some phys1cal Interest arises 1n 
computational studies relating to the Toda Lattice.l3 
This one-dimensional lattice consists of particles 
interacting through exponential pair potentials and can 
propagate certain non-linear wave forms ("solitons") 
with£~t change of shape. One computational investiga
tion of stability for a three-particle lattice (with 
periodic boundary conditions) has commenced with a 
Hamiltonian function 

H = lcP 2 +P 2 +P 2 )+e-(Ql-Q3)+e-CQ2-Ql)+e-CQ3-Q2) (10) 
2 1 2 .3 • 

By a canonical transformation of variables, in recog
nition of the invariance of this system to translation 
-- so that r1 = P1 + P2 + P3 constitutes a constant. 
of the motion -- the Hamiltonian (10) becomes expressible 
as a function of two pair of conjugate variables in the 
form 

H = l(p 2 +P 2 )+ 1 [e(2q2+2/3ql)+e(2q2-2/3ql)+e-4q2J (11) 
2 1 2 24 ' 

which is identical to the Henon-Heiles Hamiltonian 
function (4) through terms of third order. It is of 
interest to examine whether in the present case con
stants of the motion other than H act to restrict the 
motion. Computationally it was found -- again using 
the surface-of-section ql = O(p1 > O) -- that in this 
case simple invariant curves apparently continued to 
exist in the q2p2, plane, even for very15arge v~lues 
of H. Stimulated by this result, Henon has directed 
attention to an additional integral of the motion that 
is valid in this case; the constants of the motion for 
the three-particle lattice then can be written in a form 
that we may express asl6 

H = Constant 

P1 + P2 + P3 = Constant, and 

PlP2P3 - Ple-CQ3-Q2) - P2e-(Ql-Q3) 

· = Constant. 

(12a) 

(12b) 

_ p e- (Q2-QI) = 
3 

(12c) 

[Evidently15 further analytic work in fact has now 
established that the n-particle Toda lattice with per
iodic boundary conditions (or with fixed ends) is a 
"completely integrable" system.] 

It is of some interest to seek means for anticipating 
whether stochastic behavior will occur in various por
tions of a phase diagram and to examine the character of 
such stochastic behavior as does occur. What we here 
have loosely termed stochastic behavior can be catalogued 
with respect to a hierachy of properties (ergodicity, 
mixing, ···),indicative of increasing disorder, that 
are fundamentally significant for statistical mechan
ics. a,e Of particular interest to the accelerator de
signer, of course, is the determination of a threshold 
beyond which stochastic behavior will set in and may 
act to carry a phase point to unacceptably large ampli
tudes. As noted earlier, stochastic behavior

1
appears 

to be associated with overlapping resonances, c and this 
concept has served as the basis for some analytic esti-
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mates of stochasticity limits.lc,l? It has been noted 
by Ren~ geVogelaere and confirmed in subsequent compu
tations! that for a particular class of fixed-point 
families -- say those with rotation of the form m/(4m+l) 
-- there is a closely linear relationship

1
between the 

order of the resonance (4m+l) and tn/1 c 2 Trace/ 
through many decades ("Trace" denoting the trace of the 
tangential-mapping or differential matrix associated 
with the 4m+l iterations required to map a given fixed 
point onto itself). Such regularities, and others re
lating to the apparent size of the stable areas about 
high-order fixed points (~.g., as estimated from the 
intersection angle of eigenvectors), have been consider
ed u~eful indica~ors of. the ch~gg ~B character of a 
mapping at certa1n amplitudes. ' ' 

A computational procedure of considerable interest 
for recognizing stochasticity is that in which one 
follows the evolution of the distance between two ini
tially very close points in phase space. In practice 
it can prove desirable to reduce the separation from 
time to time by a recorded factor whenever the separa
tion becomes excessive during the computations, or, 
perhaps preferably, to evaluate the growth of an infin
itesimal vector through use of the cumulative tangential
mapping matrix. A,high degree of stochasticity can be 
ascribed to the behavior of the transformation if there 
are such vectors whose length generally grows beyond the 
first iteration by a factor greater than unity (while 
others may similarly contract). (Ref. la, p. 55; for 
examples, see Ref. 21.) An analogous procedure -- that 
can be more attractive, although possibly of a less 
direct basic significance -- is an investigation of the 
growth of the eigenvalue(s) of the cumulative tangential 
mapping. Such eigenvalues can change sign repeatedly 
during the course of many iterations, and hence will be 
seen to decrease from time to time, but an exponentially 
increasing trend in eigenvalue magnitude is likely to be 
associated with a similar type of increase for the len" 
gths of the vectors mentioned previously. The nature 22 of eigenvalue growth h~3 been illustrated by Froeschle 
for the transformation 

xn+l = xncosa- (y11-~
2 ) sina} 

Y +l = x sin a + (y -x 2
) cos a . n n n n 

(l3a,b) 

The general characteristics of this transformation, 
expressed in variables such that the transformation has 
the symmetry of McMillan's form, is seen on Fig. 11. 
On an expanded scale (XlO), we see (Fig. 12) the sudden 
onset of erratic behavior as the starting values for the 
transformation are successively increased (in steps 
~x = 0.0025, for Yo= 0), and on a scale expanded by 
a ~urther factor 100/6 we see (Fig. 13) the presence of 
a great deal of additional structure within a portion 
of this "stochastic" region. Associated with the tran
sition to the stochastic region there appears to be a 
marked change in the manner of growth of ~ = log/An/ 
(linear, vs. n, in the stochastic case -- ~ndicative 
of an exponential trend. for /An/) or of the "Cesaro 

n 
mean" lJ = .!_ l: .!_ \ji (constancy in the stochastic case, 

n n m=l m m 

monotonically decreasing otherwise -- Fig. 14). 24 Such 
methods indeed may prove useful in investigating compu
tationally the possible development of stochastic motion 
in storage-ring devices. Extended computations of this 
nature can present challenging problems with respect to 
computer accuracy.2~ 



Fig. 11. - Apparantly-smooth phase curves and a scatter
ing of points resulting from iteration of the transfor
mation (lla,b), with cosa = 0.22 and coordinates X,Y 
appropriate to expressing the transformation in the 
form (5a,b). 23 Five islands of stability (containing 
stable fixed points of order 5) are seen surrounding 
the area associated with the order-1 fixed point at the 
or1g1n. The outermost smooth curve, shown as bounding 
this inner area, resulted from the starting values 
x = 0.5350, y

0 
= 0 (Froschle notation), and the scatt

e~ed points result from x0 = 0.5375, y0 = 0. Scale 
(as indicated by the coordinate axes): -1.0 to 1.0 

Fig. 12. - Enlarged portion (lOX) of Fig. 11, showing 
seven smooth phase trajectories resulting from starting 
values x0 = 0.5200, 0.5225, · .. 0.5350 (and y0 = O) 
and a scattering of points resulting from x0 = 0.5375, 
Yo = 0. Note the occurrence of open areas within the 
region covered by the scattered points -- for example 
the area surrounding an (unplatted) stable fixed point 
of order 65 at X; 0.476, Y; 0.521 
Scale: 0.38 to 0.58 

Fig. 13. - Detailed multiple-island structure in the 
immediate neighborhood of an order-65 stable fixed 
point (shown here just below the center of the diagram) 
of which mention has been made in the caption to Fig. 12. 
Scales: 0.470 to 0.482 for X, 0.516 to 0.528 for Y. 

t 
;:::. 

cos a= 0.22 
X0 = 0.5375 
Matrix elements 
become inaccurate 

cos a= 0.22 
X0 = 0.5350 
Continued downward 

through 106 iterations 

Fig. 14. - Plots of the "sliding mean", Vn (Note 24), 
vs. n, obtained from computations begun (i) with initial 
conditions leading to the last smooth curve of Fig. 12 
(x0 ~ 0.5350) and (ii) with initial conditions leading 
to the scattered points on that Figure (x0 = 0.5375), 
of which only the results for the latter case indicate 
a general exponential upward trend of I Ani. 
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(1) 
I. INTRODUCTION. The suggestion of S. van der Meer for stochastic cooling or 
feedback damping of a circulating charged particle beam offers promise of increas
ing the luminosity of a storage ring and may be a particularly attractive technique 
if antiprotons are to be employed as one of the beams in such a device. Encourag
ing initial tests of such a system have been reported from CERN by P. Bramham 
et al.,(2) and further tests are in progress in that Laboratory. (3) 

The original report of van der Meer(l) considered the repeated use of a 
kicker to suppress the transverse phase-space displacement of the centroid of a 
group of particles detected at a pick-up station situated up-stream (e.g., by 
SAS/4), (2) and the report estimated the expected rate of damping of the mean-square 
oscillation amplitude. In the present report we extend this analysis so as topro
vide information on the manner in which the character of the amplitude distribution 
function may be affected by the damping procedure mentioned above. It is believed 
that information concerning the evolution of the form of the distribution function 
may be of particular interest in cases in which a "halo" is imposed oh the distri
bution by injection of a group of particles to supplement those in a beam that has 
already be~n subjected to appreciable feedback damping. Results of the analytic 
work will be illustrated, and compared with the results of simulation .computations. 

For consistency with the approach of van der Meer, we continue to assume that 
the kicker truly results in a zero transverse phase-space displacement for the 
centroid of the group of particles to which it is applied--although with a single 
pick-up device, capable of detecting spatial displacements only, the time scale of 
the damping process in fact may be doubled. We further ignore such potentially 
significant complications as imperfect amplifier performance, extraneous noise, or 
loss of particles to the chamber walls, and we restrict the analysis to the case 
in which complete "mixing" (or phase decoherence) is assumed to occur between suc
cessive applications of the correction procedure. 

II. ANALYSIS. A single application of the full van der Meer correction .leads to 
new particle amplitudes A~ aiven, for N particles, by 

~ -
,2 2 

Ai = Ai- (2/N)A.~.A. cos (<fJ.-c/J.) + (l/N2 )~.~kA.Ak cos (<fJ.-<fJk). (1) 
~]] ~ J J J J 

Thus, for random relative phases and N >> 1, the average change of the A~ is 
expected to be ~ 

<~(A2 )>=-(2/N) <A2 > + (1/N) <A2 > =-(1/N) <A2 >, (2) 

as given by van der Meer.(l) Accordingly, with u = A2 , T = t/N, and time (t) meas
ured in units of the time between successive corrections, 

d< u>/dT = -< u> 

with the solution < u> = C exp(-T) [where C = < u>l ] 
t=O 

(3) 

(4) 

--regardless of the form of the initial distribution, provided only that complete 
phase mixing occurs between successive corrections. A similaranalysis [AppendixA] 
can be performed for a beam considered to be composed of (say) two groups for 
which the evolution of their individual mean square amplitudes is of interest. 

A binominal development of Eq. (1) to obtain ~(u.P) suggests the relations 
~ 
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d< uP>IdT = -2p <up>+ p 2 < u> < uP-1 >, (5) 

at least for integer p ~ O, thus providing a soluble sequence of ordinary differen
tial equations for the (even) amplitude moments [with < u>, corresponding to p=l, 
given by Eq. (4)]. A distribution function f(u;T), of squared amplitude that sat
isfies the partial differential equation 

() fl () T = 2 () (uf) I d u + C exp (-T) d (u d fl d u) I d u (6) 

will be found (by integration over the distribution and the assumptio,n of reason-
able characteristics for f and for() fl () u at the limits) to""be c~nsist~nt with the 
moment equation (5). (4) Numerical or analytic solution of Eq. (6) thus may provide 
a useful means for predicting the evolution of the form of a prescribed initial 
distribution and indeed (Sect.III) has been found in test examples to provide re
sults consistent with simulation computations. 

A formal analytic solution to Eq. (6) can be written in terms of Laguerre poly
nominals in the form<6,7) 

f (u;T) = < u >-1 exp (-v) E
0 

a exp(-mT) L (v) 
m= m m 

(7a) 

(as can be readily ·confirmed, term-by-term, by reference only to the Laguerre diff
erential equation) , where we have written 

v = ul < u > and < u > is as given by Eq. (4) • (7b) 

With the adoption of this solution, the coefficients a are to be evaluated in 
terms of the initial distribution function (making usemof the weighted orthonormal
ity of the Laguerre polynominals) as(8) 

00 

a = J f(u;O) L (uiC)du. m m (7c) 
0 

The formal solution, Eq. (7a) , is attractive, and informative, in that it immediate
ly suggests that as time increases (and the higher order factors exp(-mT) become 
increasingly small), the form of the distribution f(u;T) will approach a pure ex
ponential function, of width characterized by < A 2 > = < u > = C exp ( -:T) -- as was 
found in initial simulation computations. We note, however, the alternative 
closed form solution given in(7). 

III. EXAMPLE. As an example we consider the evolution of the two-group distri
bution function 

f(u;O) = n exp(-uiC) + n exp(-uiC ) , (Sa) 
1 1 2 2. 

with n + n = 1 and the initial mean square amplitude then given by 
1 2 

C=<u>J =nC +nC. 
T=O 1 1 2 2 

(8b) 

Such an initial distribution may typify a beam composed of a core and a halo com
ponent, of which mention has been made in the Introduction. Simulation computa
tions performed with the initial distribution specified by Eq. (8a) indicate the 
expected melding of the groups to form ultimately a composite group of simple ex
ponential form whose mean square amplitude continues to damp in the expected manner 
( < u > = C exp (-T)). Figures la-d illustrate this behavior, with results for the 
individual groups indicated by dashed lines and results for the total distribution 
shown by a solid line. [Note that, because of the shrinkage of amplitude as the 
damping progresses, we have plotted < u > f (u;T) vs. ul < u > .] 

Results in agreement with those depicted on Figs.la-d are obtained through use 
of the formula given in(7) for f(u;T). With the initial distribution considered 
here, this formula gives(9) (with< u>= C exp(-T)) 

2 
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-u/< u > 

[ n, 
c 

exp{-
c-c 

) f(u;T) e __ 1_ u 

< u> ( -T -T c -T -T 1-e > c + e C (1-e )C + e c 
1 1 

l] c 
exp{-

c-c 
+ n 

__ 2._ u 
2. -T -T -T -T (1-e )C + e c c (1-e )C + e c 

2. 2. (9) 

The distribution f(u;T) can also be computed, with identical results, from Eqs.(7) 
in cases for which the convergence of Eq. (7a) permits numerical evaluation. (10) 
The change of form of the distribution function for the composite beam is directly 
shown, by a comparison of results for T = 0 and for T = 1.0, on Fig.2. The ap
proach of this distribution function to an exponential form is most clearly appa
rent from the semi-logarithmic plot of Fig.3. 

The behavior of the mean square amplitudes of the individual groups is most 
readily computed from the results presented in Appendix A. The convergence of the 
associated root-mean-square amplitudes, for the individual groups and for the com
posite group, to a common value is illustrated graphically in Fig.4. Similarly, 

< (A(T)) 2 >~and higher root-moments approach constant ratios, characteristic of an 
exponential distribution function f(u;t) as illustrated in Fig.S. 

IV. ACKNOWLEDGEMENTS. It is a pleasure to acknowledge the encouragement and help 
received, through many discussions, from P. Channell, A. Faltens, Glen Lambertson, 
H. Levine, and Lloyd Smith. We also are indebted to Dr. Smith for suggesting the 
form of the two-group distribution adopted in Eq. (Sa) for purposes of illustration. 

APPENDIX A 

Evolution of the Mean Square Amplitudes 
of the Individual Groups of a Two-Group Distribution 

For a distribution regarded as comprised of two groups, 

+ (l/N2 )LjLkAj~ cos (~j-~k) 

for the i1hparticle of Group 1. The random phase assumption then leads to 
1 

or 
d~ < (A(I))z>= -2<(A(I))z>+ [n <(A(I})z> 

1 

(where, as in the text, N( 1 )= n N and N(z) = n N), 
1 2. 

+ n < (A ( 2 ) )2 >] 
2. 

and similarly for d<(A( 2 )) 2 >/dT. 

Accordingly, with C , C 
1 2. 

denoting the initial respective mean square amplitudes of 

groups 1 and 2, we may write the solution of these equations as 

<(A(Il) 2 >=[C + n (C-C)(l-e-')]e-', <(A( 2 )} 2 >=[C +n(C -C)(l-e-)]e-'. 
122.1 2112 
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APPENDIX B 

Equation (6) as a Fokker-Planck Equation 

With f(u;T) denoting the distribution function for u = A2 and W(u,ou) denot
ing the probability of an increment ou to the quantity u in a time interval ot, 

00 

f(u;t + ot) = L f(u-ou;t) w<u-ou,ou) d(ou) I 

-u 
as is characteristic of a Markoff rrocess. A Taylor development of this relation 
then leads to 

q_!_ =- .l._ [f . < ou>] +! ~ [f . < (ou) 2 >], 
at au 2 a u2 

where the quantities < ou > and < (ou) 2 > are functions of u that represent aver
ages (over the permissible range of ou) of changes or squared changes of u expected 
per unit interval ot. 

In the present application, with ou for an ith particle given by 

ou= o(A2
) = -(2/N)A.E.A. cos (<fJ.-<P.l + (l/N2 )E E A.A.J. cos (<fJ -<P ), 

1JJ 1 J mnmn m n 

the presumption of random phase leads to 

<ou>=-2A2/N+ <A2 >/N=-(2/N)u+ <u>/N. 

Similarly, 
< o(u2 )> = -(4/N)u2 + (4/N)u < u>. 

Accordingly, 

< (ou) 2 >:: < o(u2
) > -2u < ou > = (2/N)u < u >. 

[It may be worth noting that we have found< (ou)p>to be zero through order 
1/N for all integer p > 2.] The partial differential equation then becomes 

or 

af 
at 

_li_= 2 a a af a T au (uf) + < u > au: (u a-u> I 

u <u > f 
(2 N 

. ( . . . 11 b d (l)) < > b t k [ . t tl where1n as g1ven or1g1na y y van er Meer u may e a en cons1s en Y 
with Eq. (6)] to be given by Eq. (4) of the text. 
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6. In finding the solution shown by Eq. (7a) we originally commenced with the 
moment equations (5) and introduced an amplitude distribution function g(A;T) 
[ =2A f (A2

; T)] that should satisfy the partial differential equation 

7. 

ag/aT =a (Ag)/aA + (C/4) exp(-T) a[Aa(g/A)/aA]/aA. 

We then wrote z = (A2 /C) exp(T) and regarded g(A;T) as a function G(z;T) to 
obtain a partial differential equation in which none of the coefficients was 
explicitly T-dependent. We next replaced G by the dependent variable 
S = [(1/~) exp(z -T/2)]G to obtain a partial differential equation that, by 
separation of variables, led to a solution in terms of Laguerre polynominals. 
Transcription of this solution into the original variables led to a result 
equivalent to Eq. (7a). For numerical solution of the partial differential 
equation, it may be convenient to introduce the independent variable 
w =A exp(T/2) and to employ as the dependent variable a function 
H(w;T) = [ exp(-T/2)]g. The partial differential equation for His 

a H/ aT = (1/2) a (wH)/ a w + (C/4) a [wa (H/w)/ a w]/a w 

--again an equation in which none of the coefficients is T-dependent--and it 
is expedient to seek solutions that have the formal character of being odd 
with respect to w. 

An alternative, closed-form solution may be written 

f(u;T) = < u>-1exp( -u/< u >) exp[-(1 -e-T)-1u/C] X 
l-e-T 

00 

where I is the zero-order modified Bessel function of the first kind--see 
0 

I. S. Gr~dshteyn ~nd I. M. Ryzhik, Table of Integrals ... (Acaciemic Press, 
New York; 1965), Sec. 8.976 (1), p.l038 (with a= 0) to relate this solution 
to that proposed by Eq. (7) in the text. 

8. Since f(u) is normalized to unity and L (u/C) 
0 

initial value of < u >is C and L (u/C) -L(U/C) 

1, a l. Also:, since the 
0 

u/C, we find a -a = 1 and, 
0 1 

9. 

10. 

0 1 

hence, a 0. 
1 

00 

Note that J -Sx 
e I 

0 
(Y.,P:) dx = (1/Sl exp (~y 2 /S) . 

For the example of Sec. III, 

n (1 -c /C)m--see Gradshteyn 

evaluation of Eq. (7c) leads to a = n (1 -C /C)m + 
· m 1 1 

and Ryzhik (cited in (7)), Sec. 7.414 (6), 
2. 2. 

p. 844. The resultant Eq. (7a) may not have suitable convergence characteris
tics for small T under certain circumstances however--thus consider, for ex
ample, an initial distribution (8a) with n = 0.75, n = 0.25, c = 4.0, and 

C = 16.0 (C = 
2. 

am ultimately 

ing sign). 

1 2. 1 
7.0), for which the factor 1 -C /C = -9/7 and the coefficients 

2. 

increase essentially in geometrical progression (with alternat-

*Work supported by the u.s. Energy Research and Development Administration. 
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A complex, and apparently stochastic, character frequently can be seen 

to occur in the solutions to simple Hamiltonian problems. Such behavior is 

of interest, and potentially of importance, to designers of particle acceler-

ators -- as well as to workers in othe~ fields of physics and related disci

plines. Even a slow development of disorder in the motion of particles in a 

circular accelerator or storage ring could be troublesome, because a practi

cal design requires the beam particles to remain confined in an orderly manner 

within a narrow beam tube for literally tens of billions of revolutions. The 

material I shall present is primarily the result of computer calculations I 

and others have made to investigate the occurrence of "stochasticity," and is 

organized in a manner similar to that adopted for presentation at a 1974 accel

erator conference. 1 

As an introductory example, one can consider the longitudinal motion of 

a particle subjected to the radio-frequency electric fields employed to bunch, 

and sometimes accelerate, a beam within a synchrotron type of accelerator. If 

the electric field is regarded as equivalent to a simple travelling wave, having 

the. speed of a reference particle in a "coasting beam," the motion is character-

ized by the pair of differential equations . 

.!!l = -K s imrx dn 

dx = .).'y 
dn 

wherein y - fractional departure of energy from the reference value, 

rrx = electrical phase angle of field vs.particle, 

K 0C applied voltage, and 

.). ' ex: derivative of revolution period with respect to energy. 

* Uork supported by the u.s. Dept. of Energy, Office of Energy Research. 
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K and A1 will be regarded as specified constants. The differential equations 

will be recognized &s derivable from a Hamiltonian function 

H 1 1 I 2 K = - A y - - cos TIX 2 TI ' 
(2) 

in which the independent variable (n) is the revolution number and does not 

appear explicitly in the Hamiltonian. Because n does not appear explicitly, 

the Hamiltonian of course is a constant of the motion. One accordingly obtains 

simple phase trajectories (in x,y space) -- of the familiar type character

istic of a physical (non-linear) pendulum (as was recognized by McMillan in 

connection with discovery of the principle of phase stability4). 

In practice, however, the radio-frequency fields in fact are provided by 

localized cavities, so that the travelling-wave description constitutes an 

idealization and the motion is more appropriately represented by difference 

equations: 

(3a) 

(3b) 

with yn measuring energy at the entrance to the nth cavity. These transfor

mation equations are readily shown to be area preserving [a (xn+l ,yn+l )/ 

a (xn,yn) = 1] -- the motion in fact could be described through use of a 

Hamiltonian function, but one that would contain a periodic a-function of 

the independent variable as a factor multiplying the term - ! cos nx. There 
TI 

thus is no evident simple constant of the motion, and the non-linearity of 

the equations precludes application of Floquet theory to this problem. (The 

use of a Hamiltonian formulation nonetheless can be helpful in analytic work, 

but differ.ence equations of course are convenient for computational investi

gations.), 

It i~. of interest to take a quick look at some computational results 

obtained through use of a transformation equivalent to (3a,b) but written in 
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terms of working variables Y = y - (K/2) sin~x. X = x, so that the trans

formation assumes the fonn 

xn+l =X + ).'[Y- (K/2) sin•X0 ] } (3a') n n 

Yn+l = Yn -(K/2)[sin~xn + sin~xn+l] , (3b') 

with the result that the resulting phase diagrams wi 11 necessarily have a 

desirable symmetry about both the X- and Y-axes. With K/~ = 0.1 and 

).' = 0.1 we find what appear to be conventional bucket diagrams with buckets 

separated in Y by 2/).' for successive hannonic modes, although we may wish 

to return to the question of whether the bucket boundaries are as simple and 

definite as appears on Fig. 1. 

22.1 -
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R F Phose Plot 

.. <···· -··· ......... ) 

K l1r = 0.1 
I ). = 0.1 

.. 
. . . :::. 

-

1.0 

XBL 744·741 

Fig. 1 -- X, Y phase plot for a coasting bear.1 under the influence of an 
R.F. cavity with K/~ = 0.1, ).' = 0.1 --as computed by Eqns. 
(3a',b'). X is plotted mod •. 2. 
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We also find evidence of some "sub-harmonic" structure (with higher order 
5 

fixed points) that, if enlarged some 60X, has the appearance shown in Fig. 2. 

RF Phase Plots 

10.2 

. .. . 
~ .. 

\ 

; 

"" . ·' ~~ \ .. \ / . . 

.X 
. . . . . . ... . . . . . . . . 
1 : 

... \ \ i , "-J 

.... 

9.8 
- 1.0 

'. 

K/ rr = 0.1 
)..' = 0.1 

. . 

. . . 
\ 

: 

X 
... · \. 

.. . . 

I 
! . . . . 
\ . . 

.-· · ... . . . . 
.• 

. . .. 

1.0 

XBL 744-737 
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near Y = 10.0, showing sub-harmonic structureo lg. ' 

If the cavity voltage is increased eight-fold (so K/n = 0.8), the 

bucket areas are expected to become larger, and we indeed find this to be the 

case (Fig. 3), with an accompanying very marked increase of complexity 
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Fig. 3. - Phase plot similar to Fig. 1, but for operation with K/n = 0.8, 
showing the obvious development of complex structure. 

that is immediately apparent in the phase plot. Of particular interest is the 

evident diffuse character of phase trajectories generated by points launched 

close to the first-order unstable fixed points situated at X= ±1, since the 

bucket boundary in consequence no longer appears clearly defined. 

In the first example (K/n = 0.1), on the other hand, where the bucket 

width is some two and one-half times smaller in relation to the bucket 

separation, the presence of structure in the separatrix can be revealed com

putationally only with considerable care. 6 To do this, one can extend from 

the unstable fixed points the eigenvector directions of the transformation 

linearized about these fixed points, and examine whether such curves intersect 
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smoothly. One finds in fact that they do not quite do so, but generate 

loops (of a nature to be illustrated later) that in this instance (K/n = 0.1) 

have a very small area that amounts to only about l/(5 x 1011 ) of the area 

of the bucket itself. 

Another example of a "time-dependent" non-linear problem in the phase 

plane arose in connection with the development of spiral-sector fixed-field 

accelerators (as have now evolved into very effective cyclotrons for physical 

research). The equations for particle motion in these devices again required 

a time-dependent Hamiltonian and were distinctly non-linear. The limitations 

of computer performance at that time (1956) understandably motivated us to 

study the behavior of simple algebraic transformations that at least would 

duplicate approximately the short-term particle motion. Such an area

preserving transformation is 

xn+l = Axn ± (1 - A2)yn + (1 - A) [xn ± (l-A)yn]2 (4a) 

yn+l =;x + Ay ± [x ± (1-A)y J2 
n n n n ' (4b) 

where the ± signs refer to the forward or inverse transformation, respec-

tively, and A represents the cosine of the phase advance per iteration for 

solutions to the linearized (small-amplitude) transformations. The constant A 

normally would be taken to have an absolute value less than unity and, to 

avoid a one-third resonance when the quadratic terms are present, one al:so 

should avoi_d the value A= -1/2 (for which cos-1A = 2ir/3). 
The region of interest to the accelerator designer at that time is that 

contained within the roughly triangular area indicated on Fig. 4, sketched for 

A = -5/8 [cos-l A= (0.35745)(2n)], wherein the apparent separatrices through 

the fixed points F1, F2, F3 are associated with the 2/3 resonance and also illus

trate the synmetry of the transformation (4a,b) with respect to the x-axis. It 

was only by rather careful computations [aided by Mrs. H. (Barbara) levine --

see Ref. 12] that I could establish that the trajectories extending from the 

fixed points F1, F2, F3 do not intersect smoothly and hence give rise to (rather 

modest) regions of erratic behavior similar to those seen in phase diagrams for 

the earlier example .. Outside the area F1, F2, F3 indicated in Fig. 4, however, 
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Sketch for A=- 5;8 

cos-1A ~ (0.35745)(2rr) 

Area~ 5.5 x 10-3 
(would shrink to zero 

if A~ - l /2) 

F l : ( - /IT-5 , 0 ) = ( -0 • 05 3 9 6 6 • · · , 0 ) 
26 

(0.03846···, + 0.05688···) 

XBL 7712-11142 

Fig. 4 - Apparent separatrices through the third-order unstable fixed points 
of the transformation (4a,b), with A = -5/Ba 

£=0.083333 

p2 

E=QI0629166 

p2 

£=0.12500000 

XBL 744-740 

Fig. 5 - Phase plots, in the surface of section ql = O, resulting from the equation 
implied by the Hamiltonian function (5) --for increasing values of the 
energy· [After Ua 1 ker and Ford. 8] 
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the transformation (4a,b) develops gross loops in phase trajectories extending 

from an order-1 fixed point at (1,0), and in this respect exhibits a behavior 

similar to that shown by a transformation of deVogelaere which will be mentioned 

later. 

Similar questions concerning the character of phase trajectories and the 

possible erratic or stochastic behavior of canonical mappings can arise in 

problems with more than one degree of freedom. As an example, H~non and Hiles7 

and subsequently Walker and Ford8 studied a model of an astronomical system, for 

which the Hamiltonian function was taken to be 

( 5) . 

The cubic terms appearing here as coupling terms become increasingly significant 

for increasingly large values of H -- which is itself a constant of the motion. 

With the coupling terms present, however, and in the absence of any simple con

stant of the motion other than H, a given phase trajectory might be expected to 

wander (ergodically) over virtually all of a three-dimension~l surface specified 

by H =Constant (and that will be a closed surface for values of H below the. 

dissociation energy). If, on the other hand, some additional integral of the 

motion were in fact also acting, the phase points of a given trajectory then would 

be constrained to lie on a two-dimensional surface, and graphs of the intersection 

of such surfaces with some selected plane or other surface (a .. surface-of-section") 

·would lead to simple curves in this plane rather than to a scattering of points. 

Computations of this nature indicated that for sufficiently small values of 

energy(~.~., H < l/12) only curves that to computer accuracy were smooth (and 

relatively simple) were formed by intersection with the plane q1 = 0 (and p1 > 0). 

Examples in which the energy of the particles was successively raised, however, re- · 

sulted in the development of ragged island structures or of apparent stochastic 

behavior over increasingly large portions of this surface-of-section (Fig. 5). 
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'Fig. 6- Phase diagram for the transformation (6a, b), with f(y) given by Eqn. (7a). 
The scattered points result from computations initiated with x0 = y0 = 0.25, 
but must remain within the separatrix defined by the function ~ [Eqn. (7b)]. 
k = 0.1. 

Such behavior appears concordant with the "KAM" (Kolmogorov-Arnol'd-Moser) 

theory (see Ref. 58, 59.& 60 of our Ref. 2c), which suggests that many of the in-

variant curves or surfaces present in the absence of the perturbation will 

persist, with only minor distortion, in the presence of a sufficiently small 

perturbation (see, however, Note 9). It is of interest, of course, to deternHne 

or to estimate the circumstances (~·.9.·, perturbation strength) at which the 

KAM theory becomes inapplicable and extended regions of erratic (or stochastic~ 

behavior develop. As we suggested by our first examples, and has been expounded 

more extensively by Zaslavskij and Chirikov, 2c,lOone means for obtaining such 

estimates may be by determining the ratio of resonance width [ow=(dw/di)rol] to 

the distance (~w) to the nearest neighboring resonance. 

Additional tests (to be mentioned below) may be required to determine 

the degree of disorder associated with the movement of phase points in such 
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stochastic regions. We may first note, however, that the existence of nested 

closed invariant curves in a plane -- as suggested by the KAM theorem for a 

problem in one degree of freedom -- prevents phase points from moving outward 

or inward to regions of substantially different 11 amplitude 11 (in the absence of 

noise). With more than one degree of freedom, however, stochastic layers may 

intersect, to form an intricate system of channels along which a phase point 

can slowly diffuse and result in instability. The possibility of such 11 Arnol'd 

diffusion .. has been demonstrated by Arnol'd [Ref. 35 of our Ref. 2c; stated 

simply the example considered by Arnol'd is comprised of a physical pendulum 

and a simple-harmonic oscillator, with a time-dependent coupling (that also 

depends on the phases, or angle variables, of these oscillations)]. 

It should be pointed out that some non-linear transformations-- say for 

a system with one degree of freedom -- will not lead to the disappearance of 

some or all of the invariant phase curves at substantial amplitudes. Thus for 

transformations of the form 

xn+l = yn; Yn+l = -xn + f(yn), (6a,b) 

McMillan11 has shown that if f(y) can be written as ~(y) + ~-l(y) (where ~-l 

denotes the function inverse to~), then the curves y = ~(x) and x = ~(y) 

will constitute invariant curves. Such curves will pass through the first

order f\_Xed point(s) situated at the intersections(s) of y = (l/2)f(x) with 

the principal diagonal. An enclosed area can thereby be formed from which 

phase points cannot escape even if the behavior in portions of the interior 

becomes highly stochastic. This is illustrated by an example (Fig. 6) in which 

1 1 k2 /2-2 
f (y) = -( 3y-1) - - - + v y'- + k 2 2 y+l 

and r·------ -----
~(x) = X - 1 + yx2 + k2 • 

Such a situation also can develop when f(y) is a stepwise linear function 

of y with discontinuities of slope, as has been noted by Drs. Judd and 
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McMillian [see, for example, Figs. 13 and 14 (pp. 27-28) of Ref. 12]. If 

f(y) is of the form 

f(y) ~ -(By2 + Dy)/ (Ay2 +By+ C), ( 8) 

moreover, the entire phase plane will be covered by a family of simple in

variant curves-- see, for example, the cases 11 f(y) ~ 2ky/(l+y2), with the 

invariants x2y2 + x2 + y2 - 2kxy ~Constant, and f(y) ~ 2ky/(l-y2), with the 

i11v.ni,ml:. //-/-/t?kxy Constc1nt, illustrated by Figs. 7-8. 

1t is of interest to examine the mechanism whereby irregular behavior can 

develop in the neighborhood of unstable fixed points, taking as an illustration 

an example suggested by Professor deVogelaere that [when generalized and re

written in variables leading to the form (6a,b) advocated by McMillan] employs 

f(y) = 2[Ty + (1 - T)y2]. (9) 

,, _ .. v·• 
··-
-1-

'-

I-

'H:;;-K --':--~~--'--""--'---'-~~-'---'--L--..._._L___J~..,!_ 
0 I II II 

X--

XBL 744-680 

Fig. 7 - Invariant curves for the transformation (6a, b) with f(y) = 2ky/(l+y2) and 
k = 2/3. [Figs. 7 - 11 after McMillan.ll] 
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Fig. 8 - Invariant curves for the same transformation as in Fig. 7, but with 

k -:: 1.36. 

-1 

-2 !r? 
··I () 2 

X·-
XRT. 744-682 

Fig. 9 - Invariant curves for the transformation (6a, b) with f(y) = 2ky/(l-y2) 
and k = Oo64. 
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- 1 Ot;:-~:---:-':--..___._ _ _.__..___._ _ _.__..____.~,_-'---J 

-10 -08 -06 -04 -02 0 02 04 06 08 10 1? 14 

x-
Fig. 10 - Plot of the extensions of the eigenvector directions from the unstable 

fixed point at (1,1), for the deVogelaere transformation expressed in 
Hd1illan•s variables [Eqns. (6a, b) and (9)~ with T = 0]. The areas 
of the loops marked L are all equal, by virtue of the area-preserving 
character of the transfonnation and the inherent syn111etry about the 
principal diagonal. 

First-order fixed points appear at (0,0) and at (1,1). ForT= 0, this 

transformation, when linearized about the unstable fixed point at (1,1), can 
. 0 0 

be represented by the matrix :-l 4 , with eigenvalues and eigenvector slopes 

A = 2 ± 13, dy/dx = A. 

A line segment extending downward from the fixed point (1,1) with the slope 

2 + 13, if subjected to repeated applications of the transformation, generates 
I 

the loops shown in Fig. 10; similarly a line segment of slope 2 - 13, if 

extended by the inverse transformation, generates the mirror-image curve 
' 

(mirrored about the principal diagonal). Points such as A, B, C ... progress 

toward the fixed point in smaller and smaller steps and, since the transformation 

is area-preserving, the associated loops clearly must become increasingly 

elongated as they become increasingly narrow from repeated applications of the 

forward transformation. The evolution of such loops clearly will become quite 

intricate (Fig. 11), but the loops apparently need not permeate the entire 
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11 interior 11
• Portions of an inward loop can, in fact, enter, on a later 

iteration, into the interior of an oub1ard-lying loop, as indicated on Fig. ll. 

A wealth of island structure, of course, can develop throughout the area of 

such phase diagrams. 

14 
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Fig. 11 - A partial extension of the curves shown on Fig. 10. 
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In some instances a family of unstable fixed points for which the 

eigenvalues are negative may arise (in place of a stable family, for which A 

is purely imaginary), and the appearance of phase trajectories can thereby 

be drastically affected. Phase trajectories in the neighborhood of two such 

eighth-order ( 11 tune11 = 2/8) fixed points are shown on Fig. 12 for the trans

formation of deVogelaere written to exhibit symmetry about the x-axis 
2 

xn+l = Yn + Txn + (1- T)xn (lOa) 
2 

Yn+l = -xn + Txn+l + (1-T)xn+l , (lOb) 

with T = -1/8. In any case it is clear, however, that the development of a 

loop system such as that shown on Fig. 11, can readily give rise to an apparent 

stochastic motion of phase points in portions of the phase diagram -- most par

ticularly near an unstable fixed point. 

The existence of a firm separatrix, or of an extensive family of invariant 

curves generally, can be extremely sensitive to the exact form of the transforma

tion.14 A case of some physical interest arises in computational studies relating 

to the Toda Lattice. 15 This one-dimensional lattice consists of particles 

interacting through exponential pair potentials and can propagate certain non

linear wave forms ( 11 solitons 11
) without change of shape. One computational in

vestigation16 of stability for a three-particle lattice (with periodic boundary 

conditions) has commenced with a Hamiltonian function 

H = l(p 2 + P 2 + P 2) + e -(Ql-Q3) + e -(Q2-Ql) + e-(Q3-Q2). (11) 
2 .. 1 2 3 

By a canonical transformationofvariables, in recognition 'of the invariance of 
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this system to translation -- so that I1 = P1 + P2 + P3 constitutes a constant 

of the motion-- the Hamiltonian (11) becomes expressible as a function of 

two pair of conjugate variables in the form 

(12) 

which is identical to the H~non-Heiles Hamiltonian function (5) through terms 

of third order. It is of interest to examine whether in the present case con

stants of the motion other than H act to restrict the motion. Computationally it 

was found -- again using the surface-of-section q1 = O(p1 > 0) -- that in this 

case simple inVariant c~rves apparently continue to exist in the q2p2, plane, 

even for very large values of H. Stimulated by this result, H~non17 has directed 

attention to an additional integral of the motion that is valid in this case; 

the constants of the motion for the three-particle lattice then can be written 
18 in a form-that-we may express as 

H = Constant 

P1 + P2 + P3 = Constant, and 

P P P - P e-(Q3-Q2)- P e-(Ql-Q3) P e-(Q2-Ql )= Constant 
123 1 2 -3 • 

( 13a) 

( 13b) 

(13c) 

Evidently17 further analytic work in fact has now established that the 

n-particle Toda lattice with periodic boundary conditions (or with fixed.ends) 

is a .. completely integrable .. system. 

It is of some interest to seek means for anticipating whether stochastic 

behavior will occur in various portions of a phase diagram and to examine the 

character of such stochastic behavior as does occur. What we here have loosely 

termed stochastic behavior can be catalogued with respect to a hierarchy of properties 

(ergodicity, mixing, ···), indicative of increasing disorder, that are fundamentally 

significant for statistical mechanics. 2a,e Of particular interest to the 

accelerator designer, of course, is the determination of a threshold beyond 
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Fig. 12- Phase trajectories tor the transformat;ion (lOa,b) with T = -l/8, in 
the neighborhood of two fixed points for which the eigenvalue is negative. 
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which stochastic behavior will set in and may act to carry a phase point to 

unacceptably large amplitudes. As noted earlier, stochastic behavior 

appears to be associated with overlapping resonances, 2c and this concept 

has served as the basis for some analytic estimates of stochasticity limits. 2c· 19 

It h b t d b R ~ d v 1 d f. d . b t t t. 20 as een no e y enc e oge aere an con 1rme 1n su sequen compu a 1ons 

that for a particular class of fixed-point families say those with rotation 

of the form m/(4m+l) --there is a closely linear relationship between the 

order of the resonance (4m+l) and R.nll -~Trace! through many decades ("Trace" 

denoting the trace of the tangential-mapping or differential matrix associated 

with the 4m+l iterations required to map a given fixed point onto itself). Such 

regularities, and others relating to the apparent size of the stable areas about 

high-order fixed points (~.~·, as estimated from the intersection angle of 

eigenvectors), have been considered useful indicators of the change in character 

of a mapping at certain amplitudes. 21 •10•22 

A computational procedure of considerable interest for recognizing stochasticity 

is that in which one follows the evolution of the distance between two initially 

very close points in phase space. In practice it can prove desirable to reduce 

the separation from time to time by a recorded factor whenever the separation 

becomes excessive during the computations, or, perhaps preferably, to evaluate 

the growth of an infinitesimal vector through use of the cumulative tangetial

mapping matrix. A high degree of stochasticity can be ascribed to the behavior 

of the transformation if there are such vectors whose length generally grows 

beyond the first iteration by a factor greater than unity (while others may 

similarly contract). (Ref. 2a, p. 55; for examples, see Ref. 23.) An analogous 

procedure that can be more attractive, although possibly of a less direct basic 

significance -- is an investigation of the growth of the eigenvalue(s) of the 

cumulative tangential mapping. Such eigenvalues can change sign repeatedly 

during the course of many interations, and hence will be seen to decrease from 
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time to time, but an exponentially increasing trend in eigenvalue magnitude 

is likely to be associated with a similar type of increase for the lengths 

of the vectors mentioned previously. The nature of eigenvalue growth has 

been illustrated by Froeschle24 for the transformation 25 

( 14a) 

( 14b) 

The general characteristics of this transformation, expressed in variables 

such that the transformation has the symmetry of McMillan's form, is seen 

on Fig. 13. On an expanded scale (XlO), we see (Fig. 14) the sudden onset 

of erratic behavior as the starting values for the transformation are successively 

increased (in steps ~x0 = 0.0025, for y
0 

= 0), and on a scale expanded by 

a further factor 100/6 we see (Fig. 15) the presence of a great deal of additional 

structure within a portion of this "stochastic" region. Associated with the tran-

sition to the stochastic region there appears to be a marked change in the manner 

of growth of ~n = logiAnl (linear, vs. n, in the stochastic case-- indicative 

of an exponenti a 1 trend for I An I) or of the "Cesaro 

mean" 11 = l n n 
n 1 
~ m ~m (constancy in the stochastic case, monotonically decreasing 

m=l 

otherwise Fig. 16). 26 Such methods indeed may prove useful in investigating 

computationally the possible development of stochastic motion in storage-ring 

devices. Extended computations of this nature can present challenging problems 

with respect to computer accuracy. 27 
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XBB 744-2448 

Fig. 13 - Apparently smooth phase curves and a scattering of points resulting 
from iteration of the transformation (14a,b), with cos a= 0.22 and 
coordinates X~Y appropriate to expressing the transformation in the 
form (6a,b).2~ Five islands of stability (containing stable fixed 
points of order 5) are seen surrounding the area associated with 
the order-1 fixed point at the origin. The outermost smooth curve, 
shown as bounding this inner area, resulted from the starting values 
x0 = 0.5350, y0 = 0 (Froschle notation), and the scattered points 
result from x0 = 0.5375, y0 = 0. Scale (as indicated by the coordin
ate axes): -1.0 to 1.0 
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Fig. 14 - Enlarged portion (lOX) of Fig. 13, showing seven smooth phase 
trajectories resulting from starting values x0 = 0.5200, 0.5225, 
••• 0.5350 (and y

0 
= 0) and a scattering of points resulting from 

x
0 

= 0.5375, Yo = 0. Note the occurrence of open areas within the 
region covered by th.e scattered points -- for example the area 
surrounding an (unplatted) stable fixed point of order 65 at 
X ~ 0.476, Y ~ 0.521 
Scale: 0.38 to 0.58 
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XBB 744-2447 

Fig. 15 - Detailed multiple-island structure in the immediate neighborhood 
of an order-65 stable fixed point (shown here just below the center 
of the diagram) of which mention has been made in the caption to 
Fig. 14. 
Scales: 0.470 to 0.482 for X, 0.516 to 0.528 for Y. 
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cos a= 0.22 
X0 = 0.5375 
Matrix elements 
become inaccurate 

, cos a= 0.22 
X0 = 0.5350 
Continued downward 

through 106 iterations 

Number iterations 
XBL744• 2184 

Fig. 16- Plots of the 11 sliding mean 11
, vn (Note 26), Y.2_. n, obtained from 

computations begun (i) with initial conditions leading to the last 
smooth curve of Fig. 14 (x0 = 0.5350) and (ii) with initial conditions 
leading to the scattered points on that Figure (x0 = 0.5357), of 
which only the results for the latter case indicate a general exponen
tial upward trend of !Ani· 
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points shown are situated on the x-axi s at x ~ 0.4562733 and 0.6130793, with the 

negative eigenvalue A~ -8.369 (in addition to its reciprocal, A~ -0.1195) 

for this family, and the point An+8 is the eighth iterate of point An. For 

discussion of the occurrence and consequences of loop systems, see S. Smale, 

"Diffeomorphisms with Many Periodic Points .. o", (Princeton University 

Press, Princeton, N.J.; 1965); E. Zehnder, Comm. Pure Appl. ~1ath. 26, 131-182 

(1973); Ref. 2c, Sect. 6.1; and Ref. 2d, Secto 2.6. 
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14. The loss of a firm separatrix can be illustrated computationally for 

the transfonnation (6a, b) by modifying the function f(y) of (7a) so 

as to introduce the quantity 1 - b as a factor multiplying the second 

tenn on the right and setting b 1 0 (for example, b = Oo05) -- L. 

Jackson Laslett, ERAN-239 (1974). 

15o See, for example, M.~ Toda, Prog. Theoret. Physo (Kyoto) Suppl. 45, 

174-200 (1970); references cited therein; and related papers in this 

issue of the Supplement. 

16. J. Ford, S.D. Stoddard, and J.S. Turner, Prog. Theoret. Phys. (KYoto) 

50, 1547-1560 (1973). 

17o Cited in Ref. 16, p. 1558. 

18. The validity of these (time-independent) expressions as constants of 

the motion of course can be confirr~ed directly by forming their Poisson

bracket expressions with the Hamiltonian function (ll)o. 

19. B.V. Chirikov, Eo Keil, and A.M. Sessler, CERN Report ISR-TH/69-59 (CERN, 

Geneva, Switzerland; 15 October 1969). 

20. _;_.g_., Ref. 12, PPo 42-43, where is also listed a quantity AI = A - 1 for 

fixed-point families that have rotation 4m:l • 

21. John M. Greene, J. Math. Phys. ~' 760-768 (1968). 

22o James U. Bartlett, 11Stability of Area-Preserving Mappings 11
, Paper III-3 

of Ref. 3. 

23o J. Ford and G.H. Lunsford, Phys. Rev. !L, 59-70 (1970). 

24. C. Froeschle, Astron. and Astrophyso i, 15-23 (1970); C. Froeschle and 

J.Po Scheidecker, Ibid. 22, 431-436 (1973); and other references cited 

therein. 

250 This transformation, (14a,b), can be put into t·1cMillan•s form11 by the 

change of variables x = Is in a Y, y = (X - Y cos a)/ Is in a, 'r'lith f(Y) 

then becoming 2Y cos a + v2 sin3 /2a.. 
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26. The curves of Fig. 16 are plots of 

n 1 n-m n n m 
v = r - '!' exp(- -)/ r exp(- ---) with 1/T = 0.015, the n 1 mm T 1 T m= m= 

sliding exponential factor being designed to provide some smoothing of the 

results (L. Jackson Laslett, unpublished LBL Report). Extended computations 

of this nature can present challenging problems with respect to computer 

accuracy. 27 

27. C. Froeschl~ and J.-P. Scheidecker, J. Comp. Phys. ll' 423-439 (1973); 

Astrophys. & Space Sci. 25, 373-386 (1973). 

28. I am deeply indebted to Paul J. Channell for many stimulating and helpful 

conversations concerning topics discussed here. Responsibility for 

the views expressed in this paper, however, remains exclusively my own. 
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NONLINEAR DYNAMICS 
A PERSONAL PERSPECTIVE* 

L. Jackson Laslett 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

INTRODUCTION AND OUTLINE 

The earlier talks in this Conference have given us a welcome insight into the 

phenomena that I shall call collectively by the term stochasticity. It is good to 

see the attention that this field now is receiving, since I have had the feeling 
that for many years 1t was rather unfashionable in the West. The increasing 
availability of digital computers during the last few decades certainly has 

assisted in providing illustrative examples that serve to spread an awareness of 
the characteristics of these phenomena, but we should not overlook that many of 

the basic features and concepts were appreciated by early workers such as 

Poincar~. Maxwell,(l)t and the elder Birkhoff. 

I was asked to present a "Personal Perspective• relating to work in this 

field, which might be interpreted as an invitation to mention historical instances 

in which, of my personal knowledge, the evolution of accelerator technology led to 
accelerator designers developing certain specific issues related to possible sto

chastic behavior. The phenomena encountered in studying such issues have a very 

captivating intrinsic interest; with the increasing availability of personal com
puters and interactive terminals, some may wish to review such issues or to pursue 

related issues partly for enlightenment but also partly for fun. 

In this connection, a few comments or caviats may be in order: 

(1) For execution of some problems, a high-precision capability may be 

essential, but 

(2) There are some issues that (as we shall see) can be illustrated 

quite usefully with the aid of no more than a simple desk calcula

tor; 

(3) An interactive graphic capability can be exceedingly convenient, 

and revealing ("serendipity"); 

(4) Algebraic transformations can be more convenient to study than the 

evolution of solutions to differential equations, and yet provide 

*This work was supported by the Office of Energy Research, Office of Basic Energy 
Sciences, Department of Energy under Contract No. D£-AC03-76SF0009B. 

tReferences are given at the end of the this Introduction (p. 3). 
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equally valid illustrations of significant phenomena, but 
(5) If one wishes to examine solutions to differential equations, 

adoption of a "Hamiltonian" or "canonical" integration 

algorithm would be reassuring. Such an algorithm has been pre

sented, as a 3rd_order algorithm, by R. Ruth,( 2) and it is un-
th derstood that Dr. Ruth has since developed a similar 4 -order 

integration algorithm -- at least for equations derivable from a 

Hamiltonian function of the form 

-+ -+ 

H = f(p) + V(q, t) 

With integration procedures of more conventional type (e.g., for Runge-Kutta al

gorithms), features such as conservation of phase-space area are not precisely 

maintained for Hamiltonian systems, and one must guard against the development of 

significant consistent spurious damping of phase-space area in extended runs. One 

may reasonably presume that physical systems of interest to us may differ, perhaps 
inadvertently, from those postulated for our computations but that, nonetheless, 

the physical systems in fact will be canonical. 

The phenomena we have heard discussed in these recent sessions of our Confer
ence of course have their implications in fields that extend far beyond the dy
namics of particles in accelerators and storage rings. The field of astronomy 

certainly presents situations of obvious interest in this regard. To move outside 

of fields of physical science, it is noteworthy that quite simple and reasonable 
models for the annual change of populations of prey and predator can lead to as

tonishing oscillatory or erratic variations of the representative popula

tions. (3) I suspect that similar effects might be seen in economic models. The 

sensitivity of behavior with respect to details of even quite simple models, as we 

have begun to recognize in some of our own work, surely should lead model makers 

to view their results with less than complete assurance. 

Issues I hope to discuss are:(4) 

Development of Stochasticity 

from Area-Preserving Transformations; 

Limiting (Resonant) Frequencies 

for Particle Motion in the Median Plane 

of a Strong-Focusing Ring -- Examples; 

Bifurcation. 
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I. CANONICAL TRANSFORMATIONS 

The direct use of canonical transformations can be convenient for the in

vestigation and illustration of trajectory behavior in particle accelerators or 

storage rings ("tracking studies"). McMillan has proposed(l) a convenient form 

for a transformation, that we shall generalize to several degrees of freedom, and 

is such that 

(1) it is canonical, 

(2) it· is readily obtained from a transformation for which there is a 

simple particle-optics interpretation, and 

(3) it exhibits interesting (and useful) symmetries. 

One may start by considering a linear homogeneous transformation followed by 

a thin-lens abrupt non-linear change of slope (or "momentum"): 

I 

Qi aiQi + biPi l ( 1 ) 
I I I 

Pi= ciQi + diPi + Fi(Q1 , 02 , ... ) 

wherein primes denote iterates. We require that 

(la) 

and 

( 1 b) 

(so that, if one wishes, one may write F1 
a I I 

- -~ V(Ql •02• ... )) 
aQi 

in order that the transformation be canonical. 

[In numerical work with transformations such as (1) it is desirable that the co

efficients a1 , b1 , etc., and coefficients entering into the functions F i in 

multi-dimensional cases, be so selected and employed that the above conditions for 

canonical behavior are satisfied exactly. Small errors in the specification of 

such constants can result in a troublesome progressive and consistent failure of 

solutions to ,satisfy conservation theorems (such as. those that pertain to phase

space areas or volume).] 
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One may now rewr1te the trans format ion ( l) in terms of other vari ab 1 es, in

troduc 1 ng 

Xi 
b-1/2 Q 

l 1 1 

-1/2 
Qi + bl/2 P; Y; "' aibi 1 

(2) 

to obtain 

Xi Y; 

). Y; -Xi + f; (y1,y2 , ... ) 
(3) 

where f;(Yl,y2, ... ) = 
1/2 1/2 

(a 1+ d;)Y; + b; F1(b1 y1, 
1/2 

b2 y2' ... ) ( 3a) 

and wherein we require (in multi-dimensional cases, in correspondence to 

Eqn. (lb)) that 

(3b) 

The transformation (3) is in the McM,illan form, generalized to perm1t its applica

tion in cases that involve more than a single conjugate pair of var1ables.< 2> 

As an area-preserving transformation for a single pair of canonical variables, 

the McMillan transformation (3) has several interesting and potentially helpful 

simple characteristics:(l) 

( 1) Geometrically, an application of the transformation can be repre

sented on the x,y diagram by a reflection about the principal diago

nal followed by a vertical reflection (parallel to the y axis) about 

the curve y = 1/2 f(x). 

(2) If two points are 1teratively related, by one application of the 

transformation, such points mirrored about the principal diagonal 

also are lteratively related (in the inverse order). 

(3) If two points are 1teratively related, by one application of the 

transformation, such points mirrored vertically about the curve y = 
1/2 f(x) also are iteratively related (in the inverse order). 

(4) Order-1 fixed point(s) lie on the intersection of the curve y 

1/2 f(x) with the principal diagonal y = x. 
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(5) If the function f(n) = -1 -1 
<t>(n) + ctJ (n), where <t> denotes the .ill-

~ function, then curves y = ¢ (x) and x = <t> (y) each constitute 

invariant curves ( intersectlng at order-1 fixed points). When such 

curves completely enclose an area of the phase plane, phase points of 

course then are unable to move into or out from such an area as a re

sult of applications of the transformation (although erratic motion 
(4) nonetheless may develop within the area) --see Fig. 1.1. 

It is interesting that several area-preserving transformations of which use 

has been made in the past can be put into McMillan's form (3) by means of some 

simple (sometimes linear) change of variables. We list some examples of this 

equivalence in Note 5 at the end of this Chapter. 

It can be informative to employ a simple algebraic transformation to illus

trate a mechanism for the development of stochasticity. It is convenient for this 

purpose to consider a quadratically nonlinear transformation proposed by de-

Vogelaere and rewritten in McMillan's form (with f(y) 2y2): 

X y 

y• = -x + 2y2 (4) 

This transformation possesses a stable order-1 fixed point at the origin and 

an unstable (hyberbolic) order-1 fixed point at 1, 1 -- as illustrated in Fig. 1.2 

by intersections of the curve y=l/2 f(x) = x2 with the principal diagonal. The 

motion of points in the illlllediate neighborhood of the unstable fixed point is 

governed by the tangential-mapping transformation evaluated at that point. This 

local linearization leads to eigenvector directions dy/dx = .2± [3 along which 

points will move directly away from or directly toward the fixed point, with dis

tances from the fixed point then changing by the respective factors >.. = 2 ± J3 
per iteration. 

It is now instructive to depict, as on Fig. 1.2, the evolutionary track fol

lowed by line segments orig_inating with these slopes close to the unstable fixed 

point and extended by repeated applications of the transformation or its inverse. 

A line segment such as GFE thus transforms to a segment EOC as a result of one ap

plication of the forward transformation, and the points COE likewise lead to 

points EFG under the application of the inverse transformation. The line segments 

that in this way are extended from the fixed point, by repeated application of 

this transformation and of its inverse, do not, however, intersect smoothly (e.g., 

at points such as 0 on Fig. 1.2) and thus result in the formation of the "loops• 

designated by l on Fig. 1.2. Such loops are all of equal area, as a result of the 

area-preservation and diagonal syllllletry of the transformation. Accordingly, as a 

line segment such as GFE i_s advanced by repeated applications of the forward 

transformation, it will develop loops that become increasingly elongated as their 

Intersection points (such as points C, B, and A) approach the 
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0 
x-

XBL 8410-4188 

F1g. I. 1. The case f(x) = (3x - l )12 - k2/2(x + l) 

+~x2 + k2, with 0.1 as the value of k. The 
invariant boundary consists of two hyperbo
las. The results of two computer runs are 
shown. A run starting at x = y = -0.5 gen
erates the apparently smooth curve sur
rounding the stable fixed point at x 
y;:; -0.326, and a run starting at x = y = 
0.25 gives, for the first 400 iterations, 
the scattered points indicated as dots. 
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X6l 6410-4169 

Initial portion pf trajectpries under the 
transformation x = y, y = -x + 2y2, 
leading away from (or toward) the unstable 
fixed point at x = 1, y = 1. The arrows 
indicate the directions in which points are 
moved by the transformation. The point 
pairs AG, BF, CE illustrate the first sym
metry, the point pairs AE, BD the second 
sy~m~etry. The areas of the loops marked L 
are'all equal. 
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fixed point with a closer and closer spacing. 

As a result of these loops developing into •worms" that are progressively nar

rower and more elongated, the phase-plane diagram can rapidly develop a great com

plexity (Fig. I .3) and repeated applications of the transformation to a phase 

point situated in this region will lead to a "stochastic" or apparently irregular 

scatter of tts Iterates. The region affected by such stochastic behavior need 

not, however, extend fully into the "interior• of the diagram. Thus, smooth 

closed phase trajectories may exist in this example at small amplitudes, as is 

suggested by some simple curves drawn near the origin on Fig. 1.3. [These latter 

curves are characterized by a distinctive four-pointed shape as a result of the 

phase advance per iteration for this transformation approaching 2•/4 as the ampli

tude approaches zero.) 

Similar stochastic behavior of course can originate in association with un

stable fixed points of higher order. Fig. 1.4 illustrates such features of the 

H~non-Froeschle mapping( 5b, J) (wtth cos Q = 0.22), re-expressed in the McMillan 

form. Additional details of this example have been shown in Refs. (lO) (Figures 

on p. 399) and(ll) (Figures on pp.342 and 343). 

Synchrotron motion, although frequently described by means of simple nonlinear 

differential equations, is most appropriately described by means of a transforma

tion that recognizes the impulsive character of the forces applied at discrete 

cavity locations. The construction of a Hamiltonian function for such a problem 

thus strictly requires the inclusion of 6-functions or similar location-dependent 

functions to specify the localization of these forces and the Hamiltonian will not 

constitute a constant of the motion. 

A transformation to describe synchrotron motion for a coasting beam may be 

written, in the form of the •standard mapping•,< 5c,S) as 

wherein 

y = y - K sin "'}. (5) 

X X + ky 

y Fractiohal departure of energy from the reference 

value at the entrance to the cavity, 

•x = electrical phase angle of field relative to the 

part i c 1 e, 

K ~ applied voltage, and 

k a: derivative of revolution ·period with respect to 

energy. 

To obtain a convenient symmetry in the phase plots, it is useful to introduce the 

variables X = x and Y = y - (K/2) sin •x, thereby measuring energy departures at 

mid-passage through the cavities. One accordingly then employs the transformation 
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Fig. 1.3 A partial extension of the curves of 
Fig. 1.2, showing "tentacles" reaching off 
the figure and "worms• in the interior. 
Since the entrance channel for the "worms• 
becomes very narrow, the figure becomes 
difficult to draw completely as the itera
tion progresses. Some apparently closed 
curves around the stable fixed point at x = 
0, y = 0 are also shown. The peculiar be
havior near the orgin seems less mysterious 
if one recalls that the function 
y = l/2f(x) approaches the ltmit of zero 
slope, where the curve degenerates to four 
points, and where the slightest perturba
tion can cause a slow migration about the 
center and a concomitant slow change in ra
dius. 
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XUB 840-7763 

Fig. 1.4. Apparently smooth phase curves and a scat
tering of points resulting from iteration 
of the Henon-Froeschle transformation, with 
cos o. = 0.22 and coordinates x,y appro
priate to expressing the transformation in 
the McMillan form. Five islands of stabi
lity (containing stable fixed points of or
der 5) are seen surrounding the area as
sociated with the order-1 fixed point at 
the orgin. The outermost smooth curve, 
shown as bounding this inner area, resulted 
from the starting values X0 0.5350, 
Y0 0 (Froeschle notation), and the 
scattered points result from X0 = 0.5'17:, 
Y0 = 0. Scale (as indicated ll~: !~.c co
ordinate axes): -1.0 to 1.0. 
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I 

X X + k [ y - (K/2) sin ,..x ] 

l } 

(6) 
I 

y y - (K/2) [ sin ,..x + sin •X 

and plots y vs. X modulo 2. A stable first-order fixed point occurs at X = 0, 

Y 0; other similar fixed points, that correspond to harmonic operation, occur at 

X 0 and Y equal to any integer multiple of 2/k. 

ForK and k small, the phase advance of small-amplitude synchrotron oscilla

tions from one cavity transit to the next is approximately as = ~ radian and 

substantially-smooth separatrices appear to extend between unstable fixed points 

at X = ±1 to enclose stable "bucket areas• of half height 6Y i! 2 JK!wk -- see 

Fig. 1.5, plotted forK= 0.1• and k = 0.1, wherein one also sees depicted indica

tions of sub-harmonic trajectories in the region between the major buckets shown 

at Y = 0 and at Y = 20. The ratio of bucket height to the separation of major 

2 
buckets thus may be measured by- a and will be small when the phase advance a is , s s 

small. 

For substantially larger values of K (or of k), corresponding to values of 

as very much greater than normally employed in accelerator operation, bucket 

heights may become comparable with the separation between major buckets. The de

velopment of stochasticity, especially in the neighborhood of the unstable fixed 

points at X= ±1, then becomes very pronounced-- see Fig. 1.6, plotted forK 

0.811' and with k = 0.1 (as before). In the case to which Fig. 1.5 applies (K = 

0.1•, k = 0.1), however, the development of stochasticity is so subtle that it can 

be demonstrated computationally only with considerable care and it results in the 

formation of loops whose ·estimated individual areas are a fraction only 

- 1/(5 x 1011 ) of the full area ol a major bucket [result reported in unpub

lished 1960 Lawrence Berkeley Laboratory Report ERAN-57 and cited in A. I. P. Pro

ceedings No. 46, p. 226 (197B)(ll)]. 

An algebraic transformation may be employed as a means of obtaining an ap

proximate representation of solutions to differential equations. As an example, 

we may note a transformation cited earlier ( 5d, 9) 

I 2 2 
X =AX+ (1-A )Y + (1-A)[ X + (1-A)Y ] l 
Y

1 

= -X + AY + [ X + (1-A)Y ] 2 J 
(7) 

that was originally introduced in the expectation that it would depict approxi

mately the median-plane motion of charged particles in a spiral-sector accelera

tor. First-order fixed points occur at the origin (0,0) and at (1,0). With the 

parameter A assigned the value A = -5/8, 
-1 

(small-amplitude tune, a = cos A = 
0 

times 2• radian), while the point 

the fixed point at the origin is stable 

128.68 deg., or approximately 0.35745 

at (1,0) is unstable. The region 
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XBL 851-826 

F1g. 1.5 X,Y phase plot for a coasting beam under the 
influence of an R.F .. cav1ty w1th Khr = 0.1, 
k = 0.1 -- as computed by Eqs. (6). X 1s 
plotted mod. 2. 
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Fig. 1.6 Phase plot similar to Fig. 1.5, but for 
operation with Khr = 0.8, showing the ob
vious development of complex structure. 
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considered to be of interest for accelerator operation was the roughly triangular 
region enclosed by the apparent separatrices that connect the third-order unstable 
fixed points F1, F2, F3 shown on Figs. 1.7 and 1.8 (and for which the area 
approaches zero if the small-amplitude tune approaches 2~/3). 

It then was of interest to inquire whether these curves can be demonstrated to 
be imperfect separatrices and, 1f so, to investigate the extent to which the re
sulting stochastic1ty permeates into the interior. Eigenvector directions ex
tended toward the x-axis from the fixed points F2, F3, were found,(&) upon 
careful examination, not to intersect smoothly. The areas of the loops so genera

ted constituted, however, only a very small fraction (circa 1/108) of the area 
F1 F2 F3 and no evidence was found to indicate stochasticity within any sig
nificant portion of the region of interest. 
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-0.5 

t 
~l-8 

II 
a. 

0.5 

A-- 0.625 

-0.5 

Fig. I. 7 Phase diagram for the area-preserving 
transformation (7) with A = -5/B. Large 
loops are seen to develop from eigenvector 
directions extended from the first-order 
unstable fixed point situated at (1 ,0). 
Points denoted by squares ([!]) are related 
by the transformation, as are also points 
denoted by diamonds <0>. Our interest 
will be confined primarily, however, to 
the roughly triangular area sketched near 
the third-order unstable fixed points 
F1, F2 , F3 shown by small circles 
near the center of the diagram. Points 
denoted by crosses (X) are third-order 
fixed points that are strongly unstable 
with reflection. 
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Sketch for A.- 5;8 

cos-1A ~ (0.35745)(2w) 

~ Area • 5.5 x 10-3 
(would shrink to zero 

if A-+ - 1/2) 

(- v'!!-5 , 0) = (-0.053966···, 0) Fl: 26 

F2,.,._: c..L , + 4/IIT-16
> - co.o3846· • ·, .:!: o.os688· · · > 

., 26 - 169 

Fig. 1.8. Detail of Fig. 7, showing the apparently 
stable area bounded by the third-order fixed 
points F1, F2, F3. [Transformation (7), with 
A= -5/8.] 
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REFERENCES AND NOTES 

l. Edwin H. McMillan, "A Problem in the Stab111ty of Periodic Systems," l!!. 
"Topics in Modern Physics--A Tribute to Edward V. Condon," pp. 219-244 (Colo
rado Assoc. University Press, Boulder, Colorado; 1971). 

2. McMillian's original work, (1) pertaining to a single pair of working varia

bles, introduced the change of variables 

X = Q 
y = aQ + bP 

(a "scaling" transformation, for which the Jacobian although constant is not 
necessarily equal to unity) to obtain his form 

:: = _: + f(y) } • 

with f(y) =(a+ d)y + bF(y). The phase advance a per iteration of y vs. x os-

cillatory motion is given, for small amplitude motion by cos a= 1/2 Qfiyll 
dy y=O 

and, 1f F(y) is restricted to terms of order higher than the first, cos a 

= (a+ d)/2 .. The canonical character of the transformation (3) given in the 

text can be verified through evaluation of the fundamental Poisson bracket ex

pressions or, alternatively, by rewriting the equations (3) in the form 

X; -y; + f;(Y1.Y2 •... ) 

-yi - aV(y1,y2, ... )/ay1 

X; = Y; 

and noting that such equations are derivable from a 

I I 

G(yl,y2, ... ; yl,y2, ... ) 

by application of the relations 

- aG/ay. 
1 

l 

generating function 

As a multi-dimensional illustration of a transformation of the form (1) intro

duced in the text, we may refer to a form that (with a change of notation, inc 1 ud

ing interchange of "old" with "new" variables) was employed by Meier and 

Symon( 3) in a study of coupling resonances: 
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c 

I 

Q
1 

(cos a1 )Q1 +(sin a1)P1 

P~ (-sin a 1)Q1 + (cos a 1)P1 - ~ (Q;)
2 

I 

Q
2 

(cos a 2)Q2 + (sin a2)P2 

I I I 

P
2 

= (-sin a
2

)Q
2 

+ (cos a
2

)P
2 

- kQ1Q2 

I I I I 2 
Th1s transformation is seen to be of the form (1) with V(Q

1
,Q

2
) (k/2)Q

1
(Q

2
) . 

3. H. Meier and K. R. Symon, Proc. 1959 Internat. Conf. on High-Energy Accelera

tors, p. 253-262 (C.E.R.N., Geneva; 1959). 

4. Figure 1.1 has been presented by McMillan as Fig.' 8 of Ref. (1). The trans

formation illustrated is for f(x) = (112) (3x - 1) - (l/2)k
2
t(x + 1) + 

Jx2. + k2 with 0.1 as the value of k. This function is expressible as f(x) 
-1 J 2 2 -1 = c:l>(x) + c:t> (x), withc:t>(x) = x- 1 + x + k and c:t> (x) = (112) (x + 1)-

(1/2)k 2/(x + 1). The curves y =c:t>(x) andy= c:t>-1(x) are shown as bound

ary curves passing through the two order-1 unstable fixed points. The erratic 

distribution of points that fall within a portion of the region interior to 

this boundary originated from x = y = 0.25. McMillan has also shown, 
0 0 

and illustrated by Figs. 4-7 of Ref.(l), that a function of the form f(x) = 

-(Bi + Dx)/(Al + Bx + C) employed in his area-preserving transformation 

will lead to the phase plane being covered by nested invariant curves of the 

form 

5. We list here several area-preserving transformations that can be put into 

McMillan's form by means of a suitable change of variables. 

a.) The DeVogelaere Transformation (generalized, cf Refs. 1 and 6): 

I 

X = y + F(X) 

I 
y = -X + F(X ) 

With introduction of variables such that 

X = X 

Y y - F(x) 

the transformation assumes the area-preserving McMillan form with 

f(y) = 2 F(y). 
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b.) A Transformation of H~non and Froesch1~:( 7 ) 
I 2 

X = X cos ~ - (Y - X ) sin ~ ~ 

I 2 
Y = X sin ~ + (Y - X ) cos ~ 

With introduction of variables x,y such that 

X 
112 

(sin ~> y 

(> - y <OS o)) Y = (sin ~> -l/2 

(a 1 inear 
transformation), 

the transformation assumes the area-preserving McMillan form with 

f(y) = 2 (cos ~>Y + (sin a)
312 y2. 

c.) A "Generalized Standard Mapping":(B) 

I 

I = I + g(e) } . 

I I 

e = e + I 

With the linear change of variables given by 

e = Y f 
I=y-x r 

we obtain the area-preserving McMillan transformation with F(y) 

= 2y + g(y). 

d.) A transformation cited in Note 9: 

I 2 
X =AX + (1 -A )Y + (1 - A) X + (1 - A)Y ]

2 
} 

Y = -X + AY + [ X + (l - A)Y ]2 

We introduce variables x,y by a linear "scaling transformationu such that 

X l ( 1 + A }3/4 
(x + y) 4 ( l - A ) l/4 

y l ( l + A }3/4 
(-X + y) 4 

( 1 - A )5/4 
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1 (.Lt..A) 312 to obtain the area-preserving For which the Jacobian has the value 8 1 _ A 

McMillan transformation with 

f(y) = 2 Ay + ( 1 - A 2)314 y2 

6. L. Jackson Laslett, Edwin M. McMillan, and Jurgen Moser, "Long-Term Stability 
for Particle Orbits," Couran.t Institute Report NY0-1480-101 (New York Univer
sity, N.Y.; 1968). 

7. 
I M. Henon, Q. Appl. Math. XXVII, 291-312 (1969). See also C. Froeschle,. As-

tron. and Astrophys. i. 15-23 (1970). 

8. A. Lichtenberg and H. A. Lieberman, "Regular and Stochastic Motion,• p. 156 

(Springer; 1983). 

9. This transformation was employed in the expectation that it would depict the 
median-pJane motion of charged particles in a spiral-sector FFAG accelerator 
operated near a third-integral resonance. Some properties of this transforma
tion have been described and discussed in Ref. 6. 

10. L. Jackson Laslett, Proc. 1974 Internat. Conf. High Energy Accelerators, 

pp. 394-401 (Stanford, California; 1974). 

11. L. Jackson Laslett, A.I.P. Conference Proceedings, No. 46 (Siebe Jorna, Ed.), 

pp. 221-247 (Amer. Inst. Physics, N.Y.; 1978). 
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II. LIMITING (RESONANT) FREQUENCIES FOR PARTICLE MOTION IN THE MEDIAN PLANE 

Erratic dynamical behavior can impose definite limits to the permissible am

plitudes of individual-particle oscillations in alternating-gradient focusing sys

tems when nonlinearities are present. Thus, the limiting amplitude for motion in 

the median plane of a strong focusing ring typically occurs in association with a 

system of fixed points in the phase plane, with a detectable stochasticity first 
making its appearance in the neighborhood of the unstable fixed points of the sys

tem. 
Stochasticity in the phase plane for motion with a single spatial degree of 

freedom of course may be contained by the occurrence of a surrounding KAM (Kolmo

gorov-Arnol'd-Moser) closed curve, but regions of sufficient amplitude can be 

found wherein stochastic behavior will carry a phase point to markedly greater, 

and totally unacceptable, amplitudes. [An associated phenomenon is that of pe

riod-doubling bifurcation (to be illustrated in Chapter III), wherein a change of 
a parameter of a focusing system leads to a previously stable fixed-point system 

becoming unstable with reflection and to a new fixed-point system of double period 

becoming created. A sequence of such period-doubling bifurcations, occurring for 

smaller and smaller increments of the governing parameter, results in a bifurca

tion lattice or "tree" that may be claimed to terminate in "chaos".] 

Informative illustrations of amplitude limitations for stable motion accord

ingly may be obtained by the examination of solutions to simple differential equa

tions representative of median-plane motion in an idealized alternating-gradient 
ring. Examples of such equations, for which results are presented below, are 

- A (X + 1/8 x2) cos Z (1) 

and 

-A (X + 1/12 X + 1/384 X ) COS Z, (2) 

wherein the factor cos Z results in a alternating gradient focusing action with a 

period scaled to 2•. With appropriate scaling of the dependent variable, Eqn. (1) 

is intended to represent the effect of alternati~g sextupole fields (to supplement . ' 
the quadrupole focusing), while Eqn. (2) represents x motion (suitably scaled) in 

a Maxwellian magnetic field for which the y component in the median plane is taken 

to be proportional to I2(x)/x prior to truncation. (l) It will be recognized 
that, for simplicity in construct\ng these equations, the obliquity of the tra

jectories has been neglected to the extent that the longitudinal component of ve

locity is treated as constant. Trajectories computed from such equations should 
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be strictly area-preserving when plotted on a x, x' "' dx/dZ plane. Use of a ca
nonical integration algorithm thus in principle would be preferable for such com
putations, but application of a fourth-order Runge-Kutta-G1ll algorithm with a 
suitably small step size has appeared also to be satisfactory for the present il
lustrative purposes. 

The coefficient A that appears in Eqns. (1) and (2) serves to determine the 
utune• (or the phase advance, o , per period) for small-amplitude oscillations. 

0 
For a fixed value of A that results in reasonable stable motion about the origin, 
the solutions to Eqn.(l) are found to exhibit tunes that decrease with increasing 
amplitude, while the tunes for solutions to Eqn. (2) become greater for large 
amplitude solutions. In either case, 1t is of interest to examine, for various 
values of o

0
, the extent to which the tune assumes a different value at the 

limit of stable motion and to attempt to identify the fixed-point system that ap
pears to be assodated with the onset of instability in such cases. (2) Such in
vestigations are conveniently conducted by means of phase plots wherein values of 
x, x' for solutions to the equation of interest are plotted at one-period inter
vals--~.~ .• for the present equations, at Z = 0 mod. 2•. 

W1th Eqn. (1), the synvnetry is such that plots made at Z=O mod. 2• (or, al
ternatively , at Z = • mod. 2•) will exhibit a synvnetry in x' about the x axis, 
and solutions to Eqn. (2) when so plotted will exhibit also a symmetry in x about 
the x' axis. In directing attention here to instabilities associated with motion 
confined to the x, Z plane, one, of course, must recognize that motion occurring 
in two transverse directions will be subject to additional limitations, perhaps of 
a different character (Arnol'd diffusion?), that well may merit investigation. 

d2x -A(x + 1/8 x2) cos Z 
dZ2 

Median-plane motion of the type of interest here is illustrated by Fig. II.l 
for solutions to Eqn. (1) with A = 0.2736, for which the small-amplitude tune is 
such that o

0 
~ 74.59 deg. One notes the appearance of a pronounced order 5/1 

fixed-point system (o = 72 deg.) at an intermediate amplitude. Some stochasticity 
indeed may be present in association with this system -- and, if so, might be de
monstrable computationally with sufficient care -- but one sees that in any case 
this system is surrounded by an apparently smooth closed phase trajectory 
(launched at x = 1.55, x' = 0). At a somewhat larger amplitude, however, an 

0 0 
order 16/3 system (~ = 67.5 deg.) becomes evident, for which some small loops may 

be seen on the Figure near the stable fixed points of this system, but for which 
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XBL 851-827 

Fig. 11.1 x' ~· x phase plot, at Z=O mod.211, for 
solutions to £qn. (1) with A= 0.2736 
(a0 = 74.59 deg.) to the scales: 

Horizontal: -3.0 to 3.0, for x; 
Vertical: -0.3 to 0.3, for x'. 

Instabllity is seen to arise from sto
chasticity associated with a fixed-point 
sys tern of order 16/3 (a = 3 X 360/16 = 
67.5 deg.). The apparently smooth phase 
trajectory situated somewhat inside this 
fixed-point system resulted from a com
putation launched at x0 = 1.55, x0 ' 

= o. 
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Phase plot for the runs of Fig. 1, 
plotted at Z = •/2 mod. 2•. Scales: 

Horizontal: -2.0 to 2.0, for x; 
Verttcal: -0.& to 0.&, for x•. 
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it is more notable that stochasticity associated with the unstable fixed points 
develops to reveal a gross instability. 

Figure 11.2 illustrates the manner in which the computational runs portrayed 
in Fig. II .1 appear 1f plotted at the quarter-period points Z = tr/2 mod 2tr. One 

expects maximum spatial excursions to occur near the centers of focusing regions, 
and phase plots constructed for Z -= 0 mod. 2tr accordingly seem most appropriate 

for the present work. 

It is of interest to examine in a similar manner the character of solutions 

to Eqn. (l) for various values of the parameter A. Results are shown by a se

quence of phase plots (Figs. II.3-II.8a) and are summarized in the following Table. 

In some instances the fixed-point system associated with the first onset of gross 

stochastic instability appears to be of a rather high order (and indeed in such 

cases may become more difficult to specify). It may be particularly notable that 

with variations of A covering a fairly small range in this sequence of cases, many 

distinctly different fixed-point systems appear to be associated in turn with the 

stability limit. 

Parameter Sma 11-Amp litude Estimated Range of x Nearby Fixed-Point 
A Tune, a0 (deg) at Z=O mod. 2tr & System Order, & Tune(deg) 

Associated Tune (deg) 

0.23 61.303277 -2.4 to 1.69 7/l , 1 X 36017=51 . 4286 
(-52.6 deg) 

0.24 64.265071 -2.3 to l .72 13/2, 2 X 360/13=55.3846 
(-56.0 deg) 

0.25 67.273942 · -1 . 7 to 1 . 43 6/1, 1 X 360/6=60. 
(-61.6 deg) 

0.26 70.334408 -1.89 or- 1.9 to 23/4, 4 X 360/23=62.6087 
1. 61 (-62.8 deg) 

0.26525 71.963493 -1.86 to 1.65 3917, 7 X 360/39=64.6154 
(-64.7 deg) 28/5, 5 X 360/28=64.2857 

0.26670 72.416288 -1.82 to 1.57 ll/2, 2 X 360/11=65.4545 
(-65.9 deg) 
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Phase plot for A = 0.23; Scales: 
Horizontal: -3.25 to 3.25 for x; 
Vertical: -0.30 to 0.30, for x'. 

Shown are an apparently limiting phase tra
jectory (launched w1th .x0 -2.4, x~ 
= 0), a sequence of order 7/1 stable fixed 
points, and an erratic run resulting from a 
launch substantially at an order 7/1 un
stable fixed point (taken to be at approxi
mately x0 = -2.465, x~ ~ 0). 
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Fig. 11.3a Detail related to Fig. 11.3 (A=0.23); Scales: 
Horizontal: -3.0 to -2.0, for x; 
Vertical: -0.08 to 0.08, for x'. 

Shown are a portion of the apparently limit
ing trajectory launched with x0 = -2.4, 
two members of the stable order 7/1 fixed
point system (with surrounding loops), and 
an unstable sequence of points resulting 
from a launch substantially at an unstable 
order 7/l fixed point. 
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XBL 851-831 

Fig. 11.4 Phase Plot for A= 0.24; Scales: 
Horizontal -3.25 to 3.25, for x: 
Vertical: -0.30 to 0.30, for x•. 

An apparently stable limiting trajectory fs 
shown that results from a launch with x0 = 
-2.3, x~ = 0. Features of stable and un
stable order 13/2 fixed-point systems also are 
shown. A run launched subs tant fa lly at an un
stable fixed point of this system (x0 
-2.3844070663• x~ 0) shows evident 
stochasticity and a run launched on the x-axis 
at x0 = -2.5 shows a pronounced blow_ up in 
the course of traversing some 714 periods of 
the structure (see Detail, Fig. 11.4a). 
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fig. 11.4a Detail related to fig. 11.4 (A= 0.24); Scales: 
Horizontal -3.0 to -2.0, for x; 
Vertical -0.08 to 0.08, for x'. 

Shown are a portion of the apparently stable 
trajectory launched with x0 = -2 .3, two mem
bers of the stable order 13/2 fixed-point sys
tem (with surrounding loops), an evidently 
stochastic trajectory originating near an un
stable order 13/2 fixed point, and the pro
nounced instability of a run launched on the 
x-axis at x0 = -2.5 (a small distance beyond 
the order 13/2 system). 

7-239 



A • ('1.25 

XBL 851-833 

Fig. 11.5 Phase plot for A= 0.25; Scales: 
Horizontal: -3.25 to 3.25, for x; 
Vertical: -0.30 to 0.30, for x'. 

A 1 imiting apparently stable phase trajectory 
is shown, as a result of a launch at x0 = 
-1.7, x~ = 0. Stable order 6/1 fixed 
points also are shown, together with the re
sults of a clearly stochastic run originating 
in the immediate neighborhood of an unstable 
fixed point of the order 6/1 system. 
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Fig. ll.5a Detail related to Fig. 11.5 (A= 0.25); Scales: 
Horizontal: -3.0 to -1.5, for x; 
Vertical: -0.08 to 0.08, for x'. 

Shown are a portion of the limiting stable 
trajectory launched with x0 = -1.7, a member 
of the stable order 6/1 fixed-point system, 
(with a surrounding small loop), and the sto
chastic instability resulting from a launch at 
an unstable fixed point of order 6/1. 
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XBL 851-835 

Phase plot for A = 0.26; Scales: 
Horizontal:· -3.25 to 3Ts:'f"or x; 
Vertical: -0.30 to 0.30, for x'. 

A limiting apparently stable phase trajectory 
is shown, as a result of a launch at x0 = 
-1.9 and x~ = 0. Also shown is a sur
rounding order 23/4 fixed-point system from 
which stochastic instability is seen to de
velop. 
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Detail related to Fig. II.6 {A= 0.26); Scales: 
Horizontal: -2.10 to -1.85, for x; 
Vertical: -0.05 to 0.05, for x'. 

An apparently smooth phase trajectory, ori
ginating on the x-axis at x0 = -1.89, is 
shown and evidently indicates substantially 
the limit of stability. Portions of an order 
40/7 system have been added, at smaller ampli
tude, to the right of this trajectory seg
ment. At larger amplitude a distinctly sto
chastic motion, ultimately leading to blow-up, 
is seen to result from a launch at x0 = 
-1.903935420 and x~ 0 from an unstable 
fixed point of the order 23/4 system. 
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A • ''·.265cS 

XBL 851-837 

Fig. 11.7 Phase plot for A= 0.26525; Scales: 
Horizontal: -3.25 to 3.25, for x; 
Vertical: -0.30 to 0.30, for x'. 

For this value of A, the small-amplitude tune is such that 
a = 71.963493 deg. When examined on an enlarged scale 
(see Figs. II.7a-d), several fixed-point systems become 
evident at amplitudes near to the stab1l ity boundary -
e.g., systems of order 11/2, 50/9, 39/7, and 28/5, for 
which the respective tunes become a = 65.4545, 64.80, 
64.6154, and 64.2857 degrees. A limiting boundary curve 
appears to result from a launch with x0 = -1.86, x~ 
= 0, just outside the system of order 50/9, and is shown as 
the outermost closed curve on this figure (together with 
two additional closed curves, of considerably smaller am
plitudes, that are also shown encircling the origin). The 
presence of stable fixed points of an order 11/2 system 
(together with small surrounding loops) and of unstable or
der 11/2 fixed points also is indicated; some stochasticity 
may be associated with these unstable order -11/2 fixed 
points (see Fig. II.7d). but the order 11/2 system is con
tained within the apparently smooth limiting boundary curve 
mentioned above. The features of the order 50/9 fixed
point system are not readily depicted on the present rather 
coarse scale, but one sees an evident instab1l ity that re
sults from a run originating near an unstable fixed point 
of the order 28/5 system (here taken to be at x0 = 
-2.05607625, X~= 0.0520677). 
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Fig. II.7a Detail related to Fig. II.7 (A= 0.26525); Scales: 
Horizontal: -2.00 to -1.80, for x; 
Vertical: -0.02 to 0.02, for x'. 

This figure shows a portion of the presumed 
smooth "limiting boundary curve" that results 
from a launch at x0 = -1.86, x~ = 0, 
and to which reference was made in the caption 
to Fig. II.7. At smaller amplitudes, to the 
right of this trajectory segment, one sees 
portions of order 50/9 fixed-point systems, 
with some evident stochasticity noticeable in 
the neighborhood of the unstable fixed points 
of this system. It of course is a matter of 
judgement whether the so-called boundary 
curve, as computed here, is truly sufficiently 
smooth that phase points are precluded from 
crossing into regions of larger amplitude. 
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fig. 11.7b Detail related to fig. 11.7 (A= 0.26525); Scales: 
Horizontal: -2.00 to -1.80, for x; 
Vertical: -0.02 to 0.02, for~·. 

Portions of order 39/7 fixed-point systems, 
with evidence of some stochastic behavior in 
the neighborhood of the unstable fixed point 
shown for this system. 
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Fig. II.7c Detail related to Fig. 11.7 (A= 0.26525); Scales: 
Horizontal: -2.00 to -1.80, for x; 
Vertical: -0.02 to 0.02, for x'. 

Highly stochastic instability associated with 
unstable fixed points of an order 28/5 system, 
shown together with a stable fixed point (and 
surrounding loop) of this same order. 

7-247 



A • 0.2~5a5 

( 

\ 

'· 

... 

' 

. 
. -··· ····· l ··. ·, 

\ '•. 
• • . . . . • • . . 

.. . ·... I . . .. ...,. 
... 

'\ . . . 
··~i , 
.~. 

,·· \ 

,. 
,' .... , _,. ' -,, . , : , . , . , . 

I ' . . 
\ .. ·· ............ •· 

•· 

\ . 
\\ 
\ 
\ 

I 
i 
I 

i 
i 
i 

I 
I 

XBL 851-841 

Fig. Il.7d Detail related to Fig. 11.7 (A= 0.26525); Scales: 
Horizontal: -2.00 to -1.50, for x; 
Vertical: -0.06 to 0.06, for x•. 

Detail of fixed points of order 1112 systems, 
indicating possible stochasticity near the un
stable order 11/2 fixed point. Also shown is a 
portion of an apparently smooth phase tra
jectory of somewhat smaller amplitude that 
results from a launch with x0 = -1.7, x~ = 0. 

7-248 



A • eo • .ass7e 
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Fig. 11.8 Phase plot for A= 0.26670; Scales: 
Horizontal: -3.25 to 3.25, for x; 
Vertical: -0.30 to 0.30, for x'. 

Shown is the erratic and clearly unstable phase 
motion that results from a launch with x0 = 
-1 .8377526, x~ 0, just beyond an un
stable fixed point of order 11/2. Also shown 
are stable fixed points (and encircling loops) 
of order 11/2. The limiting closed phase tra
jectory appears to be that which results from a 
launch with x0 = -1.82, x~ = 0 -- shown 
here together with additional curves that en
circle the origin with a smaller amplitude. 
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Fig. 11.8a Detail related to Fig. 11.8 (A= 0.26670); Scales: 
Horizontal: -2.50 to -1.50, for x; 
Vertical: -0.08 to 0.08, for x'. 

This detail shows a portion of the apparently 
smooth curve, resulting from a launch at x0 
= -1 .82, x~ = 0, that may be regarded as 
situated at the edge of the region of stabi
lity [plotted for 2500 periods]. At only 
slightly greater amplitude clearly unstable 
stochastic motion is seen to develop from a 
launch at an unstable order 11/2 fixed point 
(x0 = -1.83775252, x~ = 0). Two of the 
stable order 11/2 fixed points also are shown, 
together with small surrounding loops. 
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d
2

x -A ( x + 1/12 x
3 

+ 1/384 x5 ) cos Z 

dZ 2 

The character of solutions to Eqn.(2) also could be examined in the manner in 

which solutions to Eqn. (l) were examined in the preceding sub-section. An over

all indication of the nature of solutions to Eqn. (2) is shown, for A= 0.2088, in 

Fig. 11.9. With this value of the parameter A, the tune for small-amplitude mo

tion is such that o
0 

= 55.1621 degrees and o increases with increasing amplitude 

with the result that a pronounced order 6/l fixed-point system (a= 60 deg.) is 

seen to occur at intermediate amplitudes. 

The largest simple, apparently smooth, closed phase trajectory shown on Fig. 
I 

11.9 resulted from a launch with x
0 

= 1.6 and x
0 

= 0 (a "' 68.87 deg.), and 

shortly beyond this curve systems of order 5/1 fixed points make their appear

ance. It is of interest to note that there are, in fact, two systems of stable 

order 5/1 fixed points (and similarly two systems of unstable order 5/1 fixed 

points). Thus, one system of stable order 5/1 fixed points has one member of this 

family situated on the positive x-axis (x "'1.782071) and the remaining four mem

bers situated symmetrically above and bel ow the x-ax is, wh 11 e the second family 
( 

has its members similarly situated save for a reversal of sign for the x-coordi

nate of each member. With respect to the unstable order 5/1 fixed points, one 

member of one family is situated on the positive X 1 -axis (X 1 
"' 0.19289322) with 

other members of that family symmetrically situated to the right and left of that 

axis, while the second unstable family is similar save for a reversal of sign of 

x 1 for each member. The mapping of phase points in the neighborhood of the un

stable order 5/1 fixed points presents, moreover, a distinctly stochastic charac

ter, and a run launched on the x-axis with x
0 

= 1.89 is found to lead to a gross 

instability ("blow-up", not shown). 

At still larger amplitudes on Fig. 11.9 one finally sees the locations of 

stable and unstable fixed points of order 14/3 (a<= 77.1429 deg.). with two mem

bers of the stable syst:em lying on the X 1 -ax1s at X 1 = ± 0.22460743 and two mem

bers of the unstable system on the x-axis at x "'± 1.99832577. The unstable order 

14/3 system is locally very strongly unstable (half trace of tangential-mapping 

transformation = 16.2579), while the stable family (HTR = 0.91026484) can be of 

interest in giving rise to a bifurcation (without period doubling) when the para

meter A is slightly reduced (Chapter III). 

Figure II.9a shows some detail of the phase plane in the near neighborhood of 

the stable order 511 fixed point situated (as on fig. II.9) on the x-axis at x = 
1. 782071. The outermost trajectories indicate the presence of 11 stable and ll 

unstable order 55/11 fixed points, arranged to surround the order 5/1 fixed 
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CUBIC & lliJlttTIC NONLINEARITY, WITH A • 0.a088 

XBL 851-844 

Fig. 11.9 Phase plot, at Z = 0 mod. 2•, for solutions to Eqn. (2) 
with A= 0.2088 (a0 = 55.1621 deg.). Scales: 

Horizontal: -2.25 to 2.25, for x; 
Vertical: -0.25 to 0.25, for x'. 

Distinctive features include systems of stable 
and unstable order 6/1 fixed points, two sta
ble and two unstable order 5/1 systems, and 
the locations of stable and unstable order 
14/3 fixed points. The largest simple, ap
parently smooth, closed phase trajectory ori
ginated from a launch with x0 = 1.6 and 
X~ "' 0. . 
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point situated near the center of this diagram. The stochastic evolution of phase 

points for a run launched near an unstable order 5/1 fixed point (e.g., near x 
I 0 

= 1.68129339, x
0 

= 0.04744928) would carry such points to regions further re-

moved from the stable order 5/1 fixed point shown here. 
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•:'UBIC ~ .. OIJitiTIC NONLINEARIT'I, WITH A • e.e0B8 

DETAIL 

XBL 851-845 

F1g. 11.9a Detail related to Fig. 11.9, for Eqn.(2) with 
A ; 0.2088, Scales: 
Horizontal: 1.60 to 2 .00, for x; 
Vertical: -0.06 to 0.06, for x'. 

Phase trajectories surrounding a stable order 
5/l fixed point are shown, together with indica
tions of stable and unstable fixed points of or
der 55/11 in this vicinity. 
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REFERENCES OR NOTES 

1. A curl-free, divergence-free magnetic field that is longitudinally peri

odic with period P and is of a quadrupole character with respect to its 
dependence on f can be constructed from terms of the form 

I 

Br k 12 (kr) cos kZ sin 2f 

Bf (2/r) I2(kr) cos kZ cos 2f 

Bz -k I2(kr) sin kZ sin 21 

with k any integer multiple of 2~/P. The nonlinearities necessarily in
troduced thereby into median-plane motion (f = 0) accordingly are such as 
arise from terms of the form I2(kr)/r. 

2. Convergence to a numerical evaluation of phase-plane coordinates for 

fixed points of interest, and the evaluation of the local tu~e or stabi
lity characteristics for small-amplitude oscillations about the periodic 
orbit corresponding to any such fixed point, can make use conveniently of 

the •tangential-mapping transformation• that tracks an infinitesimal dis
placement ( 6x, 6x 1

) through the appropriate i nterva 1 in Z. For other 
phase trajectories, estimates of tune are obtainable by the technique of 

counting axis crossings in the x, X1 phase plane. 
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III. BIFURCATION-- ILLUSTRATIONS 

For Area-Preserving Transformations and Solutions to Differential Equations 

A distinct change can occur in the nature of the fixed-point systems charac

terizing area-preserving transformations, or solutions to canonical differential 
equations, as a parameter of the transformation is changed. One finds such 

changes to occur when a fixed-point system that previotisly was locally stable be

comes unstable as a result of a parameter change and new (stable) fixed points 

split off to make their appearance. In cases such that the previously stable sys

tem becomes unstable with reflection, the new system is found to have a period 
twice that of tts predecessor. A sequence of such period-doubling bifurcations, 
occurring for smaller and smaller changes of the governing parameter, results in 

a bifurcation lattice or •tree• that may be claimed to terminate in "chaos•. 

Illustrations of bifurcation are conveniently obtained by examination of sim

ple area-preserving algebraic mappings, (l) and also can be found in phase-plane 

mappings that represent solutions to canonical differential equations characteris

tic of median-plane motion in alternating-gradient particle accelerators or stor
age rings. 

A. An Area-Preserving Quadratic Mapping 

The area-preserving quadratic mapping (H) 

( 1 ) 

wtth F(x) = Tx + (1-T)/ [a generalized .deVogelaere form, with parameter T], 
serves conveniently to illustrate the development of a sequence of period-doubling 

bifurcations as the parameter T is varied. The transformation (1) results in 

phase diagrams that exhibit a convenient symmetry about the x-axis. For 

IT I< l the origin constitutes a stable first-order fixed point and the point 

(1, 0) is an unstable first-order fixed point. 

For T somewhat negative, phase points representing small-amplitude motion en-
-1 circle the origin somewhat more rapidly than once per four iterations (cos 

T > 90 deg.), but at larger amplttudes one can find solutions that are locked into 

order -4/1 fixed-point systems. Such order - 4/1 fixed-point systems are illus

trated on Fig. l for T = -0.1030. The half-trace (HTR) for the tangential-mapping 

transformations, for H4 linearized about a stable fixed point of the sys

tem, (
2

) then may be computed to be circa -0.9883
57 

so that while 
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this fixed-point system is stable, it is close to being unstable with reflection. 

It accordingly becomes of interest to examine the structure of the phase-space 

diagram, in the vicinity of such a stable fixed point as that seen in F1g. 111.1 

to 11e on the positive x-ax1s, as the parameter T is varied (to become somewhat 

more negative). 

For T = -0.1030 (as in Fig. 111.1) the character of the phase trajectories 1n 

the neighborhood of the stable order - 4/1 fixed point on the positive x-ax1s 1s 

shown to an enlarged scale on Fig. III.2. One notes close to this stable fixed 

point the occurrence of apparently smooth surrounding phase trajectories that in

dicate the general nature of flow under action of H4 in this region of phase 

space. 
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Fig. III .1 T = -0.1030 De-Vogelaere Vari.ables 
Scales: -0.60 to +0.60 
Locations of 4-th Order unstable'and stable fixed 
points. 
The 4 stable fixed points are indicated by arrows. 
We shall follow the behavior in the neighborhood 
of the fixed point on the positive x-ax1s (x = 
0.532268206310) as T becomes more negative. 
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Fig. III .2. T = -0.1030 De-Vogelaere Variables 
Enlarged plot of neighborhood about stable fixed 
point on the positive x-ax1s 
(x-scale: 0.45 to 0.60). 
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ForT assigned the slightly more negative value T = -0.1034, the order- 4/1 

fixed point on the positive real axis not only sh1fts its location slightly but, 

more significantly, becomes locally unstable, with reflection (HTR < -1). Because 

of this local instability, phase points tend to move away from (or toward) the 

fixed point, along eigenvector directions, while jumping from one side of the 

fixed point to the other in the manner characteristic of motion In the neighbor-

hood of a hyperbolic fixed point with reflection (negative eigenvalues). The.· 

general circulatory character that was noted earlier for flow in this region evi

dently remains, however, to take effect at an appreciable distance from the fixed 

point and results in the diagrams shown (forT= -0.1034) on Fig. III.3 and (to a 

further enlarged scale) on Fig. 111.4. 

New (stable) fixed points are seen to occur within the loops of the "lazy-a• 

features that Figs. 111.3 and 111.4 show developing from the unstable fixed point. 

Because the unstable fixed point is unstable with reflection (under action of 

H4), the phase-space coordinates will jump from one of these new stable fixed 

points to the other under action of H4 . The new fixed-point system (of which 

two members are seen on each of Figs. III.3 and III.4) thus constitutes a system 

of order - 8/1 (period = 8) and illustrates the occurrence of a period-doubling 

bifurcation. / 
' 

It is of some interest to note the qualitative change in character of a dia-

gram such as Fig. 111.4 when further reductions are made in the parameter T. Such 

a change is illustrated by Figs. 111.5- 111.14, with T = -0.11125 for the final 

Figure of this sequence. One notices, in progressing through this sequence, the 

development of an increasingly pronounced stochasticity about the unstable order -

.4/l fixed points and an enlargement of the area of the lazy-8 loops that surround 

the stable ~rder- 8/2 fixed points. 

When the existence of the order - 8/2 fixed-point system first became ap

parent (g_.g., for T = -0.1034), the half-trace of the tangential-mapping trans

formation for the order - 4/l system was just slightly more negative than -1 (for 
4 

H ) and the half trace for the new order - 8/2 system was just slightly less 

than +1 (for M8). With selection of increasingly negative values of the para

meter T, the half-trace for the order - 4/1 system becomes driven to increasingly 

negative values and the half-trace of the order - 8/1 system is driven from values 

near +1 downward toward the critical value HTR = -1. 

For T = -0.11126, the order - 8/2 fixed points have themselves become un

stable (HTR < -1 for H8) and generate loops within which new fixed points of an 

order - 16/4 system can be found. Such loops are illustrated in Figs. 111.15 and 

III .16 for fixed points situated on the positive x-axis near x = 0.581 and 

X = 0.486. 
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Fig. III .3 

--

T = -0.1034 
Scales: 0.45 to 0.60 

±0.003 

Development of bifurcation 
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XBL 851-849 

Fig. 111.4 T = -0.1034 De-Vogelaere Variables 
Scales: 0.48 to 0.5& 

±0.0025 
Enlarged view of bifurcation. 
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F1g. III .5 T = ·-0.1035 
Scales: 0.45 to 0.60 
-- ±0.003 
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Fig. 111.6 

••• . . ... ' . . .· · .. 
• 0 • :) '·. • • • 

• 
• 

T = -0.0136 
Scales: 0.45 to 0.60 

±0.003 
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Fig. III.7 T = -0.1040 
Scales: 0.45 to 0.60 
-- ±0.003 

XBL 851-852 

De-Vogelaere variables 

Note extensions of eigenvector directions from the unstable 
fixed point appear to form smooth closed curves. 
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F1g. III .a. T = -0.1040 De-Vogelaere Variables 
Scales: 0.45 to 0.60 

±0.003 
Plot w1th inclusion of stochastic boundary. 
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Fig. 111.9. 

. · ... . 
• 

T = -0.1045 

. . 
.. 
.. 

• 0 •• •• 

• ••• 

. . 

.••e 
- . •• 

. . . 

Scales: 0.45 to 0.60 
-- ±0.003 

· . 

XBL 851-854 

De-Vogelaere Variables 

Note development of evident stochasticity about 
the unstable fixed point at x = 0.534416773867 
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Fig. 111.10 
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T = -0.1045 
Scales: 0.53 to 0.54 

±0.001 
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c::::········· ... ........ . ... .. .... ... .. ..::::::.. 

XBL 851-855 
De-Vogelaere Variables 

Detail -- to emphasize stochastic region about 
the unstable fixed point at x = .53441&7738&7 
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XBL 851-856 

T = -0.1050 De-Vogelaere Variables 
Scales: 0.45 to 0.60 
--- ±0.003 

Note the violent instability at the fixed point 
(x = 0.535127642205). 
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Fig. III.12. T = -0.1075 De-Vogelaere Variables 
Scales: 0.45 to 0.60 
--- ±0.003 

Some stochastic . points, associated with the unstable fixed 
point, are shown (x = 0.538642977693 for this fixed point). 
Also shown are two of the stable 8-th order fixed points, to
gether with a surrounding phase trajectory . 

. • 
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F 1 g . II I. 13 . T = -0 . 11 00 

I 

Scales: 0.45 to 0.60 
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XBL 851-859 

Fig. 111.14. T = -0.11125 Oe-Vogelaere Variables 
Scales: 0.45 to 0.60 
--- ±0.003 

Neighborhood of 4th order (unstable) and 8-th order (stable) 
fixed points just prior to additional bifurcation. 
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F1g. 111.15. 

XBL 851-860 

T = -0.11126 Oe-Voge1aere Var1ab1es 
Scales: 0.581340 to 0.581355 

±0.0002 
After the second b1furcat1on (lead1ng to Order-16 
f1xed po1nts), one of the (now unstable) Order-a 
f1xed po1nts develops vert1cal loops, that con
ta1n stable Order-16 f1xed po1nts. 

The f1xed po1nts shown are 
2/8: 0.581347619364, 0. 
4/16: 0.581346959845, ±0.000068014914 
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Fig. 111.16 

XBL 851-861 

T = -0.11126 De-Vogelaere Variables 
Scales: 0.4852 to 0.4860 

± 0.000001 
After the second bifurcation (leading to Order-16 
fixed points), one of the (now unstable) Order-a 
fixed points develops horizontal loops, that con-· 
tain stable Order-16 fixed points. 

The fixed 
2/8: 
4/16: 

points shown are 
0.485601872680, 0. 
0.485356977954, 0. 
0.485849305665, 0. 

7-274 



Following this second bifurcation, a further reduction of T leads to a third 
period-doubling bifurcation, generating a fixed-point system of order - 32/8, that 

is illustrated forT= -0.11223 by Figs. 111.17 and 111.18. 

As new stable fixed-point systems become created and then are driven toward 

instability (with reflection) by continued change of the parameter T, a regular 

convergent sequence of successive period doublings appears to become established 

-- as is suggested schematically by the sketch of Fig. 111.19. Some sequential 
regularity in the locations or separations of the fixed points also may develop, 

as is indicated for the present example by the bifurcation tree shown in 

Fig. 111.20 to depict the locations of such fixed points as are situated on the 
positive x-axis. Under circumstances SUJh that a sequence of this nature has been 
carried to completion, one may expect the phase-plane motion in such a region to 
appear particularly "chaotic". 

B. A Differential Equation with Quadratic Nonlinearity 

The differential equation 

d2x = -A (X + 1/8 x2) cos Z, 

dZ
2 

(2) 

that has been used to show the effect of a quadratic nonlinearity, can be used to 

provide solutions that illustrate the occurrence of bifurcations. Such examples 
include, for the parameter A in the range 0.265 < A < 0.275, fixed-point systems 

that develop from fixed points of order 6/1 (tune: a= 1 X 360/6 = 60 deg.) and of 

order 11/2 (tune: 2 X 360/11 = 65.45 ... deg.). 
It must be stated, with respect to each of the systems mentioned, that the 

bifurcation process occurs somewhat outs ide of the normal region of stability in 
the x, x' phase plane. Thus, with A = 0.2651, for which the small-amplitude tune 

is a
0 

$ 71.9167, the range of stable motion may be judged to be given by -1.93 < 

x < 1.67 (measured for x' = 0, at Z = 0 mod. 2w) and the tune has dropped to a"' 
64 deg. at such amplitudes. With this value of A, two members of the stable order 

- 6/1 fixed-point system that is close to becoming unstable and generating a pe

riod-doubling bifurcation, are found to lie on the x-axis at x= -2.6916782 and at 

x = 2.0097530. Similarly, with A = 0.2735 (a "' 74.5570) the range of stability 
. 0 

may be estimated as lying within the limits -1.72 < x < 1.64 and the tune has 

dropped to a~ 68.1 deg. at such amplitudes. With this value of A one member of 

the stable order - 11/2 fixed-point system that is close to giving rise to a pe

riod-doubling bifurcation is found to lfe on the positive x-axis at x = 1.80151231. 
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Fig. 111.17. 

. ' I 

' 

XBL 851-862 

T = -0.11223 De-Vogelaere Variables 
Scales: 0.4965 to 0.4990 

±0.000002 
After the third bifurcation (leading to Order-32 
fixed points), one of the (now unstable) Drder-16 
fixed points develops horizontal loops, that con
tain stable Order-32 fixed points. 

The fixed points shown are 
4/16: 0.497936225267, 0. 
8/32: 0.497335279454, 0. 

0.498484243334, 0. 
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Fig. 111.18. 
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XBL 851-863 

T = -0.11223 Oe-Vogelaere Variables 
Scales: 0.4737 to 0.4738 

±0.0001 
After the thjrd bifurcation (leading to Order-32 
fixed points), one of the (now unstable) Order-16 
fixed points develops vertical loops, that con
tain stable Order-32 fixed points. 

The fixed points shown are 
4/16: 0.473728930908, 0. 
8/32: 0.473741772757, ±0.000044371638 
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Characteristics of fixed-point systems of order-6/1 are listed in Table I for 

0.2650 ~ A ~ 0.2670, together with the values of small-amplitude tune (a
0

) asso

ciated with these values of A. The values given. for HTR refer to the half trace 

of the tangential-mapping transformation (for 6 periods, 6Z = 6(2•)). For the un

stable systems with HTR > +1, phase-plane coordinates are given as x
0

, ±x~ for 

such order-6/1 fixed-points lying close to the negative x-axis. For the systems 

with HTR < +1, x coordinates are given for the members of such systems that lie on 

the negative x-axis and for the members that lie on the positive x-axis. It is 

this latter type of fixed-point system for which, when HTR becomes less than -1, 

the order-6/1 system becomes unstable with reflection and an additional (origi

nally stable) system of order 12/2 becomes created. x-values for fixed points of 

such a fixed-point system, and that lie on the negative x-axts, are tabulated in 

Table II (together with the half trace of the 12-period tangential-mapping trans

formation). Such an order 12/2 system will in turn become unstable, with reflec

tion, for A sufficiently great -- leading to a fixed point system of order 24/4. 

Fixed points situated on the negative x-axis are given in Table III for a few va

lues of the parameter A, and 1t is seen that one may expect a further peri ad

doubling bifurcation to develop from this order - 24/4 system for values of A 

slightly greater than 0.266847. 
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-.1 
I 

N 
00 .... 

A 

0.2650 

0.2651 

0.2652 

0.2653 

0.2654 

0.2655 

0.2657 

0.2660 

0.2665 

0.2666 

0.2667 

0.2670 

Small-Amp'l. 
Tune, a0 

(Deg.) 
xo 

71.8856 -2.343555 

71.9167 -2.346288 

71.9479 -2.349017 

71.9791 -2.351741 

72.0103 -2.354459 

72.0415 -2.357173 

72.1039 -2.362587 

72.1975 -2.370672 

72.3538 -2.384051 

72.3850 -2.386713 

72.4163 -2.389371 

72.5101 -2.397315 
- ----

TABLE I 

Order-6/1 Systems 

HTR > +1 HTR < +1 

I tx0 HTR Xleft Xright HTR 

0.072379 2.409455 -2.688509 2.008182 -0.980123 

0.072410 2.421250 -2.691678 2.009753 -0.998529 

0.072441 2.433116 -2.694840 2.011317 -1.017065 

0.072472 2.445054 -2.697996 2.012874 -1.035730 

0.072502 2.457065 -2.701145 2.014424 -1.054527 

0.072533 2.469148 -2.704288 2.015968 -1.073454 
' 

0.072593 2.493531 -2.710553 2.019035 -1.111705 ! 

0.072682 2.530658 -2.719902 2.023585 -1.170082 

0.072827 2.594021 -2.735355 2.031037 -1.270082 

0.072856 2.606920 -2.738426 2.032508 -1.290493 

0.072884 2.619894 -2.741491 2.033972 -1.311043 

0.072969 2.659276 -2.750648 2.038326 -1.373531 
---



TABLE II 

Order - 12/2 System, 1 nc 1. fp's on negative x-ax1s 

A X1 x2 HTR 

0.2&52 -2.738&76 -2.&4&999 0.8&4839 

0.2&53 -2.759982 -2.627&68 0. 720072 

0.2654 -2.776328 -2.613297 0.577487 

0.2655 -2.790168 -2.601434 0.437093 

0.2&57 -2.813553 -2.582010 0.1&2918 

0.2660 -2.842510 -2.559010 -0.231&60 

0.2665 -2.882070 -2.52941& -0.844114 

0.2666 -2.889138 -2.524347 -0.959735 

0.26&62 -2.89052& -2.5233&0 -0.982582 

0.26&63 -2.891216 -2.522870 -0.993971 

0.26664 -2.891904 -2.522381 -1.005336 

0.26665 -2.892591 -2.521895 -1.016678 

0.2667 -2.895992 -2.519495 -1.073042 

0.2670 -2.915447 -2.506055 -1.398966 
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Table III 

Order 24/4 System, incl. fp's on negative x-axis 

A X] X2 HTR 

0.26664 -2.529700 -2.515630 0.95723 

0.26665 -2.535224 -2.510339 0.86600 

0.26670 -2.549481 -2.497244 0.40488 

0.26675 -2.558737 -2.489151 -0.06446 

0.26680 -2.566240 -2.482813 -0.54199 

0.26684 -2.571515 -2.478471 -0.92988 

0.266843 -2.571891 -2.478165 -0.95918 

0.266844 -2.572015 -2.478064 -0.96896 

0.266846 -2.572264 -2.477862 -0.98851 

0.266847 -2.572388 -2.477761 -0.99830 

0.266848 -2.572512 -2.477661 -1 . 0081 

0.26685 -2.572759 -2.477461 -1 .028 
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Figure 1II.2l, sketched for A= 0.2667, indicates the locations of such as
sociated fixed points as lie in the neighborhood of the order - 6/l fixed point 

situated on the negative x-axis at x = -2.741491. This plot is to the scales: 

Horizontal: -3.0 to -2.4, for x; 

Vertical: -0.002 to 0.002, for x'. 

The fixed points shown on the negative x-axis are explicitly: 

For order - 6/l system: x = -2.741491 

For order- 12/2 system: x ~ -2.895992 & x - -2.519495 

For order- 24/4 system: x - -2.549481 & x - -2.497244 

The development of the order - 12/2 system is illustrated by Figs. 111.22 -

111.24, each plotted to the scales: 

Horizontal: -3.0 to -2.5, for x; 

Vertical: -0.005 to 0.005, for x'. 

Fig. III.22, for A = 0.2651, shows the order - 6/l fixed point (stable for this 
I 

value of A) at xo -2.691678 ... , xo 0, together with two surrounding 
phase trajectories. 

Fig. III.23, for A = 0.2652, shows the order - 6/l fixed point (now unstable, 

for this value of A) and two of the order - 12/2. fixed points that result from the 

period-doubling bifurcation. Also evident is the presence of nine small order -
54/9 islands surrounding the fixed points in this region of the phase plane. 

Fig. 111.24, for A = 0.2653, presents a diagram similar to that shown (for A 

= 0.2652) in Fig. 111.23, wherein the unstable order - 6/l fixed point and two or

der - 12/2 stable fixed points are again seen and for which some stochasticity ap

pears evident in the neighborhood of the unstable fixed points of the order - 54/9 
system. 
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Somewhat more detail may be seen on Figs. 111.25 and 111.26, with the scales: 

Horizontal: -2.9 to -2.5, for x; 

Vertical: -0.003 to 0.003, for x'. 

Fig. Ill.25, for A = 0.26520, is similar to Fig. 111.23 (to a somewhat enlarged 

scale), but also suggests the presence of members of an order- 96/16 fixed-point 

system at the outer edge of the plot. 

Fig. 1II.26 for A= 0.26525, illustrates in somewhat greater detail features 

such as were evident (for A = 0.26520) on Fig. 1II.25. The strong scatter of 
points seen on the present figure results from a run launched substantially at one 
of the fixed points of the unstable order - 96/16 fixed-point system. 

The bifurcation leading to an order - 24/4 system is illustrated by 

Figs. 111.27 and 111.28, to the scales: 

Horizontal: -2.60 to -2.45, for x; 

Vertical: -0.0002 to 0.0002, for x'. 

Fig. III.27 for A = 0.26663, shows an order - 12/2 f1xed point (stable for this 

value of A) situated on the negative x' axis (at x ~ -2.522870) and two surround

ing phase trajectories. 
Fig. III.28, for A = 0.26665, shows the order - 12/2 fixed point (now un

stable, and situated at x = -2.521895) and the associated development through 
0 

bifurcation of an order - 24/4 system of which two fixed points are shown. 

Figure 111.29 shows the trend, vs. A, of the tangential-mapping half trace 

for the f1xed-poir.t systems just discussed. On sees, as the half trace of one 

system passes to values more negative than -1, the genesis of a new system of 

double period. 

Figure III.30 indicates the development of a bifurcation tree that depicts, 

for f1xed points situated on the negative x-axis, the locations (and hence the 

spacings) of the fixed points for the systems just discussed. 

One also finds a fixed-point system of order 11/2 (o = 2x360/11 = 65.4545 ... ) 

from which, as the parameter A is increased, period-doubling bifurcations devel9P 

-- seeTables IV and V. The transition leading to the birth of an order - 22/4 
system is illustrated by Figs. 111.31 and 111.32, to the scales: 

Horizontal: 1.795 to 1.805, for x; 

Vertical: -0.01 to 0.01, for x'. 
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Table IV 

Coordinates on x-axis of Order -- 1112 Fixed-Point Systems 

Small-Amp'l HTR > +1 HTR < +1 
A Tune, "o 

(Oeg.) X HTR X HTR 

0.2500 67.27394 -0.999353 1.000189 0.903246 0.999810 

0.2550 68.79742 -1.347417 1.005812 1.193517 0.994174 

0.2600 70.33441 -1.600037 1 . 050365 1. 409902 0.949182 

0.2650 71 .88555 -1.786583 1.247550 1.581892 0.746606 

j0.2667 72.41629 -1.837753 1.391172 1.632457 0.595998 

0.2668 72.44756 -1.840593 1.402071 1 . 635320 0.585177 

0.2670 72.51013 -1.846219 1 . 423348 1 .641007 0.562794 

0.2675 72.66665 -1.859973 1. 480681 1.655016 0.502310 

0.2680 72.82332 -1.873297 1.544336 1. 668729 0.434871 

0.2700 73.45155 -1.922605 1. 873355 1.720731 0.081897 

0. 2725 74.24035 -1 .97&496. 2.500251 1. 779691 -0.608400 

0.2734 74.52529 -1.994150 2.800794 1.799374 -0.946613 

0.2735 74.55698 -1.996062 2.837019 1.801512 -0.987672 

0.27355 74.57283 -1.997014 2.855352 1.802578 -1.008476 

0.2736 74.58868 -1.997964 2.873835 1.803641· -1.029466 

0.2737 74.62039 -1.999857 2.911251 1 .805761 -1.072004 

0.2738 74.65210 -2.001741 2. 949273 1.807871 -1. 115298 

0.2739 74.68382 -2.003615 2.987909 1 .809971 -1.159359 

0.2740 74.71554 -2.005481 3.027166 1.812062 -1.204199 

0.27425 74.79488 -2.010106 3.128075 1.817249 -1.319776 

0.2745 . 74.87426 -2.014678 3.233031 1.822317 -1.440468 

0.2750 75.03314 -2.023668 3.455560 1. 832462 -1.697941 
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TABLE V 

Some Coordinates of Order - 22/4 Systems 

Small Amp '1 
A Tune, a0 X ±x' HTR 

(Oeg.) 

0.27355 74.57283 1.801872 0.003584 0.932590 

0.273& 74.588&8 1 .801200 O.OO!i!i!i7 0.769102 

0.2737 74.62039 1.799858 0.010374 0.452546 

0.2738 74.65210 1.798516 0.013068 0.150275 

0.2739 74.68382 1.797176 0.015292 -0.137238 

0.2740 74.71554 1 . 795837 0.017231 -0.409504 

0.2742 74.77901 1.793162 0.0205&4 -0.90&304 

0.27424 74.79171 1.792627 0.021167 -0.997749 

0.27425 74.79488 1.792494 0.021315 -1.020187 

0.2745 74.8742& 1.789158 0.024729 -1.524411 

Fig. 111.31, for A= 0.27350, shows a stable order- 11/2 fixed point situ

ated on the positive x-axis and surrounded by a small closed phase trajectory. 

Fig. 111.32, for A= 0.27360, shows the evolution of eigenvector directions 

extended from the order - 11/2 fixed point (now unstable, with reflection) situ

ated on the positive x-axis. Small loops are seen to be generated in this way, 

within which one sees two fixed points (and surrounding curves) of a stable order 

- 22/4 system that has come into existence for this value of A. 

Fig. 111.33, again for A = 0.273&0, presents information related to that of 

Fig. 111.32, but to the somewhat more extended scale: 

Horizontal: 1.1 to 1.9, for x; 

Vertical: -0.15to0.15, forx'. 

One sees now three small loops of the type for which one was shown on Fig. 111.32, 

save that now the width of the loops is scarcely noticeable on the present scale. 

Also shown are two order - 11/2 fixed points for which HTR > +1 (indicated by 
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arrows) and an indication of the stochastic behavior that rapidly develops from a 
launch in such a region of the phase plane. 

The fixed-point system of order 22/4 itself becomes unstable, with reflec

tion, when the parameter A becomes as large as 0.27425 (as may be seen from Table 

V). The resulting additional bifurcation is illustrated on Fig. 111.34 to the 

scales: 

Horizontal: 1.785 to l.BOO, for x; 

Vertical: 0.015 to 0.025, for X1
• 

Fig. 111.34, for A = 0.27425, shows a narrow loop that develops from an ex

tension of the eigenvector directions associated with the unstable order - 22/4 
fixed point (unstable with reflection) situated near the center of the diagram. 

Such loops encircle stable fixed points of an order - 44/8 system, of which two 
are seen on the diagram (as indicated by arrows at, approximately, 

X = 1 . 789457' X I 
and 

X = 1. 795888, X I 

0.022340 

0.020075 

The trend, Yi· A, of HTR (the tangential-mapping half trace) for the order - 11/2 
and order - 22/4 systems mentioned above is illustrated by the graph of 

Fig. 111.35. 
Additional fixed-point systems that lead to period-doubling bifurcation of 

course also can be found. We cite here, without further illustration, an order -

23/4 system that becomes unstable with reflection for A as great as 0.2&28: 

A Small Amp 1 1 Coordinate on 
Tune, "o Positive x axis 

( Deg. ) 

0.2&27 71 .17022 1.&73937 

0.2&28 71.2012& l .&75894 

For A = 0. 2&28 an order - 4&/8 stab 1 e sys tern is formed (with HTR 

which one fixed point is found to be situated at 

x = 1.&74 107, X1 = 0.00&399 
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C. A Differential Equation with Cubic and Quintic Nonlinearity 

The differential equation 

d2x - A ( x + 1/12 x3 + 1/384 x5 

dZ 2 
cos z 

also can be used to provide solutions that illustrate the occurrence of bifurca

tions. One sequence of examples can be introduced conveniently by considering two 

systems of order - 14/3 fixed-points for a range of values of the parameter A such 

that 0.200 ~ A ~ 0.2088. One of these fixed-point systems will be strongly un
stable for any value of A within the range mentioned, and for such a system two of 

the 14 fixed-points can be found to lie on the x-axis (at equal values of I xl). 

The other of these fixed-point systems is such that two members of any such system 

lie on the x'-axis (at equal values of lx'l) and will be locally stable for the 

larger values of A (such as A= 0.2087 and A= 0.2088). For values of A equal to 

0.2086 or less, however , this second system also becomes locally unstable (HTR > 

+l) and one finds, as shall be illustrated, that additional fixed-point systems 
(at first, once again, only of order 14/3) then occur. Characteristics of the two 
order - 14/3 fixed-point systems mentior.ed earlier are listed in Table VI, wherein 

the columns headed HTR provide the half trace of the tangential-mapping trans

formation (for AZ = 14(2•)). [For the second type of fixed-point system cited in 

Table VI, it is of interest to note that further increases of the parameter A 

carry the value of HTR to -1.0 (at A~ 0.21619) but not beyond, since further in
creases of A then lead to HTR becoming less negative!) 
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Table VI 

Order -- 14/3 Systems 

Sma 11-Amp' 1 Fixed point at x0 =0 Fixed point 
at x=O 

A Tune, o0 
( Oeg 0 ) ±X HTR ±x' HTR 

Oo200 52o6619 2o132726 48o025758 00242921 l7o885314 

00201 52o9447 20117613 42o423ti93 Oo240836 14.320294 

Oo202 53o2278 2o102467 37o475516 Oo238752 llo318874 

Oo203 53o5113 2o087283 33 0 107939 Oo236670 8o806001 

00204 53o7951 2o072057 29o255340 00234589 60715351 

Oo205 54o0792 20056788 25o859036 00232509 4o988429 

Oo206 54o3637 2o041473 22o066618 Oo230429 3o573762 

Oo2068 54o5915 2o029186 20o731897 Oo228766 20636284 

Oo2069 54o6200 20027648 20o480026 00228558 2o530064 

Oo207 54o6485 - 20026109 20o231347 Oo228350 2o426151 

Oo2075 54 0 7911 2o018409 190034446 Oo227310 10939918 

Oo208 54o9337 20010695 170911591 0 0 226271 1 0 506006 

Oo 2081 54o9623 20009151 17.695506 Oo226063 10425130 

002082 54o9908 2o007606 17 0 482168 00225855 1 o346147 

Oo2083 55o0194 2o006061 170271542 Oo225647 10269025 

002084 55o0479 20004515 17 0063595 00225439 10193734 

Oo2085 55o0765 2o002968 16o858294 00225231 1 0 120243 

Oo2086 55 01050 2o001421 160665604 00225023 1 0048520 

002087 55o1336 1 0 999874 160455495 Oo224815 00978538 

002088 55o1621 1 0 998326 160257932 00224607 Oo910265 

Oo209 55o2193 1 0 995228 150870323 Oo224192 00778733 

Oo210 55o5052 1o979704 140074649 Oo 222112 Oo214188 
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A change in the character of phase-plane motion in the neighborhood of an or
der- 14/3 fixed-point is indicated on Figs. III.36-III.39 as a consequence of the 

system becoming unstable (HTR > +1) when the parameter A is reduced from A = 
0.2087 to A = 0.2086. These plots are to the scales: 

Horizontal: -0.001 to 0.001, for x; 

Vertical: 0.223 to 0.227, for x'. 

Fig. III.36, for A = 0.2087, shows three small smooth phase trajectories 

encircling the stable order- 14/3 fixed point situated on the positive x' axis. 

Fig. III.37, for A = 0.2086, shows a single loop that develops from a launch 

quite close to the now unstable order - 14/3 fixed-point situated on the x' axis 

at x' s 0.225023. Because this fixed point has become unstable without reflec

tion, it is possible for a single loop to be formed in this way. 
Fig. III.38, again for A = 0.2086, shows the addition of an additional loop 

that arises from a separate run launched from the neighborhood of the unstable or
der - 14/3 fixed point. Each of these two loops encircles a fixed point of a new 

fixed-point system, but such fixed points constitute separate periodic orbits--and 
hence are members of separate new fixed-point systems, each of order 14/3 (no pe
riod doubling}. 

Fig. III.39, again for A = 0.2086, shows further detail in the motion of 

phase points close to the unstable order - 14/3 fixed point and to the two new 

(stable) order - 14/3 fixed points present on this diagram. 

The result of the change from A = 0.2087 to A = 0.2086 thus has been seen to 
involve the change of one order - 14/3 system from stable to unstable (HTR > +1) 

and the creation of two new stable systems of the same order. It is of interest 

now to follow the locations and stability characteristics of these new systems as 
the parameter A is further reduced. The fixed points of one of the new systems 

have phase-plane coordinates identical to coordinates of the other system, save 

for a reversal of sign for x'. Thus, for one of the stable fixed points shown on 

f1g. 111.38 (for A= 0.2086) the coordinates are approximately 

x = 0, x' = 0.226004 

with a second member of this family at 

x = 0, x' = -0.223995, 
while for the other.stable family fixed points occur at 

x = 0, x' = 0.223995 

and, for a second member of this family at 

x = 0, x' = -0.226004 
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Fig. III .39 A 0.2086, with cubic and quintic nonlinearity. 
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The locations of such fixed points on the positive x' axis are plotted, vs. 
A, on Fig. III.40 (together with similar information for one of the systems pre

sented in Table VI). Table VII lists these x' values for the new order- 14/3 
system, together with the associated value of the half trace (HTR) for the tan
gential-mapping transformation. It is seen from this tabulation that with reduc

tions of the parameter A to 0.2069, and beyond, the value of HTR for these systems 

becomes less than -1. Associated with this transition into instability with re

flection one may now expect to find (as will be illustrated) the occurrence of pe

riod-doubling bifurcation. 

TABLE VII 

Additional Order - 14/3 Fixed Points on x'-Axis 

Sma 11 Amp '1 
A Tune, a0 ±X' +x' HTR 

(Oeg.) 

0.2068 54.5915 0.233266 0.222992 -1.090469 

0.2069 54.6200 0.232957 0.222952 -1.007070 

0.2070 54.6485 0.232643 0.222916 -0.920183 

0.2075 54.7911 0.230997 0.222818 -0.435180 

0.2080 54.9337 0.229147 0.222930 0.129613 

0.2085 55.0765 .0.226742 0.223602 0. 768309 

0.2086 55.1050 0.226004 0.223995 0.904419 
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Figures III.41 and III.42, for A = 0.2070, respectively indicate the phase 
motion about the fixed points that Table VII shows to be situated on the x' axis 
at x' ~ 0.232643 and at x' = 0.222916 -- plotted to the scales: 

For Fig. III.41 Horizontal: -0.004 to 0.004, for x; 

Vertical: 0.2326 to 0.2327, for x'. 

For Fig. III .42 Horizontal: -0.0005 to 0.0005, for x; 

Vertical: 0.22235 to 0.22345, for x'. 

For A = 0.2069, the fixed points shown on Figs. III.41 and III.42 have become 

unstable with reflection, and are situated on the x' axis at the respective loca

tions x' ~ 0.232957 and x' = 0.222952. The extension of eigenvector directions 

from such fixed points then indicates that each has given rise to an order - 28/6 

fixed-point system (period-doubling bifurcation). The stable order - 28/6 fixed 

points close to x = 0, x' = 0.232957, are found to lie at x = ± 0.001123, x' = 
0.232949, as indicated on Figs. III.43 and III.44 to the scales: 

Horizontal: -0.004 to 0.004, for x; 

Vertical: 0.2329 to 0.2330, for x'. 

The stable order - 28/6 fixed points close to x= 0, x' ~ 0.222952 are found to lie 

on the x'-axis at x' ~ 0.223175 and x' ~ 0.222750 (constituting a second stable 

system of order 28/6), as can be seen on Figs. III.45 and III.46 to the scales: 

Horizontal: -0.0001 to 0.0001, for x; 

Vertical: 0.2224 to 0.2235, for x'. 
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Fig. III .43 A = 0.2069, with cubic and quintic nonlinearity. 
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A 0.2069, with cubic and quintic nonlinearity. 
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2. The tangential-mapping transformation about the fixed po1nts (x
0
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MN is represented by the matrix product 
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The Application of a Magnetic Lens Spectrometer to the Measurement 
of Gamma-Radiation from Zn66 and Co60 

ERLING N. jENSEN, L. jACKSON LASLETT, AND WILLIAM w. PRATT 

Institute for Atomic Research and Department of Physics, Iowa Slate College, Ames, Iowa• 

(Received September 29, 1948) 

A thin. magnetic lens spectrometer for the investigation of gamma-ray spectra is described. 
!he effect of the thickness of the radiator used for the production of photoelectrons and the 
mfiuence of the earth's magnetic field are reported. Based on a calibration of the instrument 
by means of annihilation radiation and the F line of ThB, energy values of 1.106 Mev for the 
gamma-ray of Zn66, and 1.15, and 1.31, Mev for the two lines of Co40 are obtained. The probable 
error is estimated as 0.5 percent. 

I. INTRODUCTION 

THE use of a thin magnetic lens spectrom-
eter for the study of beta- and gamma

radiations has been reported by several investi
gators.1-4 The flexibility of such an instrument 
and, if iron-free, the convenience of its linearity 
have been pre-..:iously indicated.1 It is the pur
pose of this paper to describe briefly a magnetic 
lens spectrometer which we have constructed, to 
present the results of studies to determine the 
corrections which should be made to data ob
tained with it, and to give the energies found 
for the gamma-radiations from Zn 66 and coso. 

ll. DESCRIPTION OF SPECTROMETER 

The spectrometer is shown in Figs. 1 and 2. 
The design is similar to that employed by previ
ous workers,1- 3 save that the instrument is 
mounted with its axis parallel to the magnetic 
field of the earth and, to minimize scattering, 
the chamber proper has been constructed of 
aluminum tubing. To preserve linearity, nonfer
romagnetic materials have been used throughout. 

The spectrometer chamber is 7 inches in 
diameter and 40 inches long, evacuated by means 
of a two-stage oil diffusion pump backed by a 
mechanical pump. The baffles, shown in Fig. 2, 
are of micarta, !-inch thick, except for the 

• Paper No. 42 from the Institute for Atomic Research. 
Work performed at the Ames Laboratory of the Atomic 
Energy Commission. 

1 M. Deutsch, L. G. Elliott, a nd R. D . Evans Rev. Sci . 
Inst. 15, 178 (1944 ). ' 
( 1 ~~'). Rail and R. G. Wilkinson, Phys. Rev. 71, 321 

3 L. C. Miller and L. F. Curtiss, j. Research Nat. Bur. 
of Standards 38, 359 (1947). 

4 E. A. Quade and D. Halliday, (a) Phys. Rev. 72, 
181(A) (1947) ; (b) Rev. Sci. Inst. 19, 234 (1948). 

gamma-ray shields, which are of lead sheathed 
with aluminum. Baffle C, which is adjustable by 
means of a brass rod passing out of the chamber 
through a Wilson seal, serves to delimit the 
electrons analyzed and so, for a given diameter 
of source and counter window, determines the 
intensity and resolution obtained. The lead 
shield surrounding the counter is primarily for 
the purpose of absorbing scattered gamma
radiation and was designed to lie within the 
shadow of the lead shield in the center of the 
spectrometer. An indication of the small extent 
of electron scattering obtained with the arrange-
ment described is seen from the fact that, with 
no current in the coil, the counting rates ob
tained with and without a 10 microcurie beta
ray source in the instrument were, respectively, 
21.1 ±0.4 and 20.7 ±0.2 cts/ min. 

Radioactive sources are mounted on Lucite 
holders at the end of a brass tube which enters 
the upper end of the spectrometer through a 
Wilson seal and through a 2j-inch gate valve 
modified to be suitable for vacuum service. The 
counter is mounted within a similar brass tube 
at the lower end of the instrument, where Wilson 
seals are again used to facilitate assembly and 
adjustment. The counter was originally used 
with a mica window of 4 mg/cm2 surface density; 
for the ThB measurements a 1.1 mg/ cm2 window 
was used and for the most recent work a thin 
Formvar-polystyrene film (,.......0.3 mg/ cm2) was 
employed. 

The coil for producing the magnetic field con
sists of 2799 turns of No. 12 single cotton
covered enameled copper wire, wound on a 
form consisting of a brass hub and two aluminum 
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459 MAGNETIC LENS SPECTROMETER 

castings. Every fourth layer of wire is followed 
by a copper sheet, 0.030-inch thick, provided 
with 12 tabs which are soldered to water-cooled 
brass blocks mounted on the exterior surface of 
the castings. The completed coil has an inside 
radius of 9.9 em, an outside radius of 28.3 em , 
and an axial length of 10 em. When the full 
number of turns is used with 220 volts across the 
coil, a focal length of 25 em is obtained for 
electrons of approximately 3.4 Mev energy. 

The focusing current for the coil is provided 
by a 2 kw motor-generator set. To stabilize the 
current, a portion of it is passed through a 
bridge circuit which has as one of its elements a 
60-watt tungsten lamp bulb to serve as a non
linear resistance. Changes in the coil current 
affect the balance of the bridge and the resulting 
error-signal, when amplified, is used to. correct 
the generator field . The magnetic field is thereby 
maintained constant within a probable error of 
0.1 percent. The coil current is measured by 
means of a series resistance and a potentiometer. 

ill. DETERMINATION OF GAMMA-RAY ENERGIES 

A. General Method. In the work described in 
this paper, the gamma-ray energies were deter
mined by a study of the spectra of photoelectrons 
produced in radiator foils. For calibration, use 
was made of photoelectrons produced by the 
annihilation radiation from Zn 86 and of con
version electrons from ThB (F line) . Each 
gamma-ray source S (Fig. 2), a few mm thick, 
was mounted in a Lucite holder H and covered 
by an aluminum cap G, which carried the 
radiator R. 

The spectra obtained from Zn 66 and Co80 

sources are shown in Figs. 3 and 4. In addition 
to the photoelectric conversion lines generated in 
the lead by gamma- and annihilation radiation, 
a broad distribution of Compton electrons is also 
obtained. 

To permit an accurate determination of the 
energies of the photoelectrons ejected from the 
radiator, attention must be given to the effect of 
radiator thickness and to the influence of the 
earth's magnetic field, which is in the direction 
of the spectrometer axis. 

B. Effect of the Magnetic Field of the Earth. 
For a focusing field of a given shape the momen
tum· of the focused electrons will quite generally 
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FIG. 1. The magnetic lens spectrometer, aligned with its 
axis parallel to the magnetic field of t he earth. 

FIG. 2. Diagram of spectrometer chamber. 
Insert: Source holder. 

be proportional to the strength of the field and, 
if the field in question is proportional to the coil 
current, we may write for this momentum 

P=I · F, (1) 

where I is the current in the coil and F is de
pendent upon the shape of the field. In the 
presence of an additional magnetic field H, super
posed upon that produced by the coil current, F 
may be regarded as a function of the ratio H / I, 
since the shape of the field would remain un-
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FIG. 3. Spectrum of Zn86, showing the photoelectric
conversion peaks produced in a lead radiator by annihila
tion radiation and the 1.11 Mev gamma-ray, in addition 
to the broad distribution of Compton electrons. The sharper 
peaks shown separately were obtained with an adjustment 
which permitted the K and L lines to be resolved. The 
annulus is the width of the electron beam at the center of 
the spectrometer. 

changed if Hand I were to vary in a mutually 
proportional manner. The relation between the 
current 11 required to focus electrons of a given 
energy in the presence of the field H, and the 
current 10 required in its absence may therefore 
be written, 

(2) 

One then finds, to a first approximation, that 

!1-lo= -HF'(O)/ F(O), (3) 

indicating that this difference is independent of 
the energy of the electrons. This is in agreement 
with the conclusions of Quade and Halliday,4b 

who have shown experimentally that for their 
spectrometer very little error is made by apply
ing Eq. (3) to electron energies as low as 10 kev. 

In the use of the spectrometer, it is the current 
necessary to focus electrons in the absence ofan ex
ternal field which is to be taken as proportional to 
the momentum, so the difference 11 -lo must be 
determined and applied as a correction. This 
correction is most readily found by observing 
the change in the focusing current required 
when the eurrent in the coil is reversed. It is, 
however, of interest to note that an approximate 
calculation, described in the Appendix, leads to 
a value for the correction which is independent 
of the energy and is in good numerical agreement 
with that found empirically. When all the turns 
on the focusing coil are employed, the current 
required to focus a particular conversion line 
is found to change by 0.012 amp when the cur
rent is reversed, so the correction then to be 

applied because of the presence of the magnetic 
field of the earth has been taken as ±0.006 amp. 

C. Effect of Radiator Thickness. The photo
electrons ejected from a radiator will, for a 
particular gamma-ray energy, have energies 
which depend upon the depth of the point from 
which they originate. The momentum distribu
tion of the emergent electrons will, to a first 
approximation, be rectangular, with a width 
equal to the momentum loss associated with a 
full traversal of the radiator foil.** Figure S(A) 
shows a momentum distribution of this type, 
which extends from a momentum Po to the 
maximum momentum P m· The result of the 
combination of this distribution function with 
the transmission curve of the spectrometer must 
be considered and will indicate the manner by 
which the experimental data may be corrected 
in cases for which the effect of radiator thickness 
is not completely negligible. The result of an 
analysis of this character will be applicable with 
equal validity to internal conversion lines which 
arise from a source of non-vanishing thickness. 

The transmission curve of a magnetic lens 
spectrometer has been investigated by Deutsch 
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FIG. 4. Spectrum of Co80, showing the photoelectric
conversion peaks produced in a lead radiator by the two 
gamma-rays present. 

**To a higher order of approximation it might be sup
posed that, because of the change of the rate of momentum 
loss as the electrons lose energy in the foil, a trapezoidal 
distribution should be considered. In addition, the scatter
ing of electrons in their passage through the foil would 
cause the distribution to drop and tail off on the low mo
mentum side. An approximate analysis of these phenomena, 
as well as the experimental results reported here, indicates, 
however, that these effects are not of importance in the 
energy range with which we are concerned in the present 
paper. At lower energies scattering will certainly play a 
prominent role [cf. Bethe, Rose, and Smith, Proc. Am. 
Phil. Soc. 78, 573 (1938)]. 
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et al. 1 and has approximately the shape of an 
isosceles triangle for the case in which the image 
and counter windows have the 'same size. As the 
current is changed in the coil of the spectrometer, 
the width of the transmission curve will vary in 
direct proportion to the momentum of the elec
trons which it passes. For a triangular transmis
sion curve, we therefore take the half-width b 
as equal to a constant K multiplied by the mo
mentum Po corresponding to the point of maxi
mum transmission. This is illustrated by Fig. 
5(B). The constant K evidently serves as a 
measure of the resolution of the instrument. 
When, in order to obtain the expected line shape, 
we pass such a transmission curve across the 
momentum distribution for the electrons, there 
are two cases to consider. The first of these is 
that for which the momentum spread of the 
electrons is less than the full width of the trans
mission curve, as illustrated by Fig. 5(C); the 
other is that for which the momentum spread is 
greater than the width of the transmission curve 
and is shown in Fig. 5(D). 

In the case of a thin radiator, specifically one 
for which the momentum spread P m-P .. is less 
than 2b, the maximum transmission is found to 
occur when 

Po""'(P .. +Pm)/2, (4) 

neglecting terms small compared to Pm-Pa. 
Thus 

Pm""'Po+a/2, (5) 
where 

a=Pm-P ... (6) 

The effect of radiator thickness is, therefore, 
to give maximum transmission at a momentum 
which is less than the maximum momentum of 
the electrons by an amount which is equal in a 
first approximation to one-half the momentum 
loss experienced by electrons which traverse the 
full thickness of the radiator. 

For a thick radiator,. for which Pm-Pa>2b, 
maximum transmission is to be expected when 
the transmission curve lies just inside the mo
mentum distribution, if terms in K 2 are neg
lected. Thus 

Pm""'Po(l+K), (7) 
where 

K=b/Pa. (8) 

ilL; c -., ., 
c c .. .. 
£ £ 

H• HP 
Po Pm 

B 0 -

FrG. 5. Momentum distribution and transmission curve 
of spectrometer, as assumed for the purposes of the 
analysis given in the text. 

In determining, from the current correspond
ing to maximum transmission, the upper limit 
of the momentum distribution of electrons gen
erated by an unknown gamma-ray, the factor 
(1 + K) may be absorbed into the calibration 
constant of the spectrometer provided the radia
tor thickness is such that Eq. (7) is applicable. 
It should be noted that, owing to the variation 
of the rate of momentum loss, a radiator which 
can be correctly regarded as a thin foil for high 
energies may, on the other hand, be effectively a 
thick.foil at lower energies. We shall, therefore, 
apply the correction indicated by Eq. (7) in an 
explicit fashion in those cases to which it applies. 
In analyzing the data reported in this paper, we 
have based the energy determinations on the 
positions of the maxima of the curves obtained, 
subject to the corrections indicated above, since 
the maximum appears to be the point most 
accurately located for every line. 

The complete line shape which results from a 
combination of a rectangular momentum dis
tribution and a triangular transmission curve 
has been calculated for the case that a/Pm, the 
relative momentum spread from the radiator, is 
0.03 and the resolution of the spectrometer is 
such that K =0.021. The calculated curve is 
represented by the broken line in Fig. 6 and may 
be compared with the solid line, which gives the 
results experimentally obtained under these con
ditions with photoelectrons produced in lead 
by Zn 6• radiation (Pm"'4800 gauss-em). The 
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FIG .. 6. Resultant line shape obtained with electrons 
for w):uch Pm~4800 gauss-em. The dotted curve represents 
the lmt: shape calculated for a/Pm=0.03 and K=0.021; 
the sohd curve represents the shape obtained experi
mentally under comparable conditions. 

two curves were made to fit at their peaks and 
it is felt that their shapes are in satisfactory 
agreement. The somewhat larger counting rate 
obtained experimentally on the low momentum 
side of the line may be ascribable to straggling 
and scattering phenomena, the importance of 
which is indicated, for example, by the work of 
White and Millington. s 

An experimental study was made of the posi
tions of the points of maximum intensity when 
various radiator thickness are used. For this 
purpose the 1.1 Mev gamma-ray of Zn65 was 
again used, with the results shown in Figs. 7 and 
8. It is seen that, in agreement with our previous 
discussion, the shift of the peaks obtained with 
thin foils is proportional to the thickness of the 
radiator, but becomes constant when the foil 
thickness exceeds a value of approximately 
65 mg/cm2• The slope of the initial part of the 
curve in Fig. 8 corresponds to 1. 7 6 gauss-em/ 
mg-cm-2• The theoretical rate of energy loss in 
lead, as obtained from a formula given by 
Heitler, 6 is 1.0 Mev/gm-cm-2 for electrons of 
the energy with which we are concerned here. 
This theoretical energy loss corresponds to a 

6 B. A. White and B. A. Millington· Proc. Roy. Soc 
(London) A120, 701 (1928). ' · 

6_W. ~eider, The Quantum Theory of Radiation (Oxford 
Umverstty Press, London, 1936), p. 219. 

momentum loss of 3.5 gauss-cm/mg-cm-2 and, 
when compared with the slope of the experi
mental curve, affords confirmation of the state
ment that the peaks should be shifted by an 
amount which is half the momentum loss associ
ated with a full traversal of the radiator foil. 

The horizontal portion of the curve of Fig. 8 
occurs at a current value which is 2.3 percent 

· below the extrapolated value for zero foil thick
ness. This implies that K = 0.023, which is con
sistent with the expected resolution for the 
spectrometer at the time the data were obtained. 
The break in the curve of Fig. 8 occurs, as ex
pected, at a radiator thickness for which a= 2b. 
Similar data obtained with a lower energy 
gamma-ray, for which the photoelectrons have 
an energy of 0.177 Mev, indicate that the break 
occurs for a foil thickness between 6.6 and 11.3 
mg/cm2• In this case the condition a= 2b would 
imply a thickness of 10 mg/cm2

• 

IV. RESULTS 

The photoelectric conversion lines obtained 
with lead radiators were measured for the Zn 65 

and Co60 radiations at each of two settings of 
the adjustable baffle. For these baffle positions, 
the radial width of the effective aperture at the 
center of the spectrometer assumed the value,; 
2.1 and 1.4 em. The resolution of the spec
trometer was characterized by K =0.023 and 
K =0.021 in these two cases. As may be seen 
from Figs. 3 and 4, lines were obtained from 
both the K and L shells of the lead in the second 
series of measurements. 

For calibration, the F line of ThB and the 
photoelectric line produced by the Zn 65 annihila
tion radiation were measured at each of the two 
adjustments of the instrument. For the two ad
justments the calibrations from the annihilation 
radiation and the F line cif ThB agree to 0.1 
percent and 0.3 percent, respectively. The ThB 
sample was deposited on an aluminum foil 
0.00025 inch thick and mounted on the Lucite 
source holder by means of a thin Formvar
polystyrene film. The line obtained with this 
source is shown in Fig. 9. 

The results of the measurements are summar
ized in Table I. Lines which are similar in char
acter and for which the intensity measurements 
are made with equal precision can, presumably, ' 

8-5 



463 MAGNETIC LENS SPECTROMETER 

be located with the same relative accuracy, 
although the lines are of different momenta and 
occur at different current values. In the work 
reported here, however, the data obtained were 
such that the location of the various lines could 
not be determined in all cases with the same 
relative accuracy; accordingly, the estimated 
weighting factors indicated in Table I were 
applied to the current/momentum ratios. 

In calculating, from the data of Table I, the 
momenta of the photoelectrons generated in the 
lead radiator by the Zn65 gamma-ray, a correc
tion of 74 gauss-em was taken as appropriate to 
the foil thickness employed. For the Co60 deter
minations the correction was assigned the values 
51 and 64 gauss-em for the thinner and thicker 
Ph radiators, respectively. The correction made 
for the Th radiator was 48 gauss-em and that 
for the U foil was 70 gauss-em. Upon converting 
from the resulting momenta to the corresponding 
energy values and adding the binding energy 
appropriate to the photoelectric process in
volved, the gamma-ray energies shown in the 
final column of Table I resulted. Averaging for 
each line the energy values so found, taking into 
account the weights assigned to the individual 
determinations and to the calibration measure
ments, the following gamma-ray energies are 
obtained: 

and 

1.10a Mev; 
I, 1.15sMev; 

Co60 , II, 1.3h Mev. 

A conservative estimate of the probable error for 
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radiator. 
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the values of the gamma-ray energies is ±0.5 
percent. The constant of the spectrometer has 
the values 1063 and 1074 gauss-em/amp. for the 
two adjustments used. 

It is that seen the value found for the energy 
of the Zn 65 radiation is below the energy for either 
of the Co60 gamma-rays. Because of the possible 
interest7 in the use of these radiations as stand
ards, a direct comparison of the energies was felt 
to be desirable. To this end a source with both 
activities was put into the spectrometer. As re
ported8 previously, the individual peaks in the 
composite spectrum were readily identified and 
indicated that the gamma-ray from Zn65 is of 
lower energy than either of the Co60 lines. 

The energies found for the Co80 gamma-rays 
are in good agreement with those given by 
Miller and Curtiss,3 although somewhat higher 
than the values of Deutsch et al. 7 The energy 
found for the Zn65 gamma-ray is lower than the 
value given in an early report by Deutsch, 
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FIG. 9. The F line of ThB. 

7 M. Deutsch, L. G. Elliott, and A. Roberts, Phys. Rev. 
68, 193 (1945). 

s E. N. Jensen, L. J. Laslett, and. W. W. Pratt, Phys. 
Rev. 73, 529 (1948). 
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TABLE I. Positions of conver~ion lines measured in 
magnetic-lens spectrometer. 

Relative 
weight Gamma-

Aperture Radiator Coil (of curr./ ray 
Momentum width thickness current momentum energy 

Line (gauss-em) (cml (mg/cm') (amp.)• ratio) (Mev) 

Annih. 2608 /1.023"" 2.1 42.5 Pb 2.401 (av.) 5 
TbB 1385t Negligible 1.303 10 
Zn .. (K) 42.5 Pb 4.454tt 20 1.10. 
C(/tl, I (K) 29.7 Pb 4.624 10 1.15o 
C(/tl, II (K) 29.7 Pb 5.174 10 1.317 

.\nnih. 2608/1.021"" 1.4 42.5 Ph 2.374 3 
ThB 1385t Negligible 1.291 10 
Zn'" (Kl 42.5 Ph 4.409 10 1.10. 

(L) 42.5 Pb 4.644 5 1.10. 
Co"', I (K) 42.0 u 4.501 10 1.16e 

(K) 28.5 Tb 4.524 10 !.!5o 
(K) 37.0 Pb 4.58.1 10 !.!5o 
(K) 29.7 Pb 4.594• 10 1.15o 
(Ll 29.7 Pb 4.849 5 1.16, 

C(/tl, II (K) 42.0 u 5.0ll 10 1.3lo 
(K) 28.5 Tb 5.045 10 1.31t 
(K) 37.0 Pb 5.104 10 1.3h 
(Kl 29.7 Pb 5.134 10 1.321 
(L) 29.7 Pb 5.369 5 1.321 

• 0.006 amp. has been subtracted from the observed current values to correct 
for the magnetic field of the earth. 

•.• Since the radiator is thick, in the sense a>2b, .for electrons of the energy with 
which we are concerned here, the momentum value of 2608 gauss-em corresponding 
to 0.5108 Mev must be divided by I+K to correct for radiator thickness. 

t C. D. Ellis, Proc. Roy. Soc. (London) Al38, 318 (1932). 
tt Obtained from the sloping portion of the curve of Fig. 8, so that data ob

tained with several foil thicknesses are, in effect, included. 

Roberts, and Elliott9 and that obtained by 
Mandeville and Fulbright10 through a study of 
Compton electrons. 
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APPENDIX: APPROXIMATE CALCULATION OF THE 
CORRECTION FOR THE MAGNETIC FIELD 

OF THE EARTH 

The solution of the differential equations for 
the trajectories of paraxial electrons in an axial 
magnetic field H.=Ho/[l+(z/a) 2] has been 
given by Glaser. 11 When the object distance and 
image distance are equal (u=v=2J), the focal 
length f may be written 

(i) 

where A is a numerical coefficient, calculable in 
terms off/a; which takes on values extending 
from A=4 for f/a large (thin lens) to 1r2 for J/a 
small (solenoid). Here [Hp] serves as a measure 
of the momenta of the electrons in question in 
terms of their radius of curvature in a uniform 
magnetic field. 

Assuming that to a field of the shape men
tioned above, there is added a small constant 
axial field H, one can attempt to fit the resultant 
field in an approximate way to an equation of 
the original form and so obtain new values, Ho' 
and a' for the parameters. In this way we find 
that H 0'-H0"'8H/7 and a'-a"'(12a/7)(H/Ho). 

Introducing a constant A which connects the 
current in the coil with the magnetic field pro
duced, so that 

J"H2coildz=AJ2, 
-u 

(ii) 

we then write the approximate relation for the 
total field as 

f"H, 2dz::=Af2+2H fuHcoiidZ. (iii) 
-u -u 

The currents 11 and 10, which are respectively 
required to focus electrons of a given momentum 
in the presence and absence of the external field, 
are then, by Eq. (i), connected by the relation 

(iv) 

From this it follows that the difference lo-ft is 

u W. Glaser, Zeits. f. Physik 117, 285 (1941). 
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approximately 

I o- I 1 = H[ (~) f_~ (Hcoil/ I)dz 

dInA ] 
+(6/7)(!/Ho) . 

d ln(j/a) 
(v) 

Through the use of Eqs. (i) and (ii) an approxi
mate value of A is readily estimated experi
mentally by fucusing electrons of known energy, 
while Ho/ I and f::u (Hcoil/ I)dz may be calcu
lated from the geometry of the coil, the latter 
quantity being given closely by 41r/10 times the 
number of turns on the coil. 

For the spectrometer described in the present 
paper, the following values apply when all the 
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turns on the coil are employed: 

!=25 em, a"'13.6 em, f/a= 1.84, 

dinA 
A=5.1, dA/d(f/a) = -0.65, -0.23, 

· d ln(J/a) 

A= 2.27 X 105 gauss2-cm/amp.2, 

Ho/ I =93.5 gauss/amp., 

J'' (Hcoil/ I)dz = 3230 gauss-cm/a~p., 
-u 

and H= 0.56 gauss. 

With the substitution of these values in Eq. (v) 
we find Io-I1=0.007 amp., in close agreement 
with the correction found experimentally. 
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On the Iralf-Life of Na22 
L. jACKSON LASLETT 

I nstitUle for Atomic Research and Department of Physics, 
Iowa State College, Ames, Iowa* 

August 8, 1949 

T HE radioactivity of Na22, first discovered by Frisch,1 has been 
described by the present writer2.3 as producible by the 

deuteron bombardment of magnesium and the half-life estimated 
as 3.0 years. 3 More recently, Saha4 has given a value of 2.8 years 
for the half-life of this activity. During the past three years the 
decay of a Na22 sample has been followed in this laboratory and 
it is the purpose of the present note to report the value obtained 
for the half-life. 

The Na22 sample used was produced in 1937 by the bombard
ment of magnesium metal with deuterons produced by the cyclo
tron in Professor Lawrence's laboratory at Berkeley. The mag-
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FIG. I. Logarithmic decay curves of Na" activity, measured with respect 
to that of an uranium oxide standard, for two source positions. Insert: 
Aluminum absorption curves (logarithmic scale of ordinates) taken (I) at 
the beginning and (2) after completion of the decay measurements. 

nesium target was subsequently mounted in the recess of a brass 
plate, covered with a mica sheet hermetically sealed to the brass, 
and, by means of a Lauritsen electroscope,5 its activity was com
pared at intervals with that from a standard uranium oxide source 

The resultant decay curves, for two different source positions, 
are shown in Fig. 1 and indicate a half-life of 948 days or 2.6o 
years. 6 It should be mentioned that diffusion of the active material 
from the surface into the magnesium metal would, if appreciable, 
result in an underestimation of the half-life, since the greater 
portion of the activity measured was readily absorbable (posi~ 
trons). Some confirmation of the belief that diffusion and similar 
processes played no significant role in the present work is afforded, 

· however, by the observation that absorption curves taken at the 
beginning and end of the measurements (curves 1 and 2 of the 
insert, Fig. 1) appeared entirely similar and were in agreement 
with one obtained3 shortly after the sample was first prepared . 

It is a pleasure for the writer to indicate once again his gratitude 
to Professor Lawrence for the privilege of.using the cyclotron in 
connection with the preparation of the sample used in the work 
reported here. 

*Contribution No. 80 from the Institute for Atomic Research. Work 
performed at the Ames Laboratory of the AEC. 

'0. R. Frisch, Nature 136, 220 (1935). 
2 L. ]. Laslett, Phys. Rev. 50, 388(A) (1936). 
• L. J. Laslett, Phys. Rev. 52, 529 (1937). 
'N. K. Saha, Trans. Bose Res. Inst. (Calcutta) 14, 57 (1939-41): cited 

in Chern. Abstracts 42, 450i (1948). 
5 The electroscope, manufactured by the F. C. Henson Company 

(Pasadena), was used to measure the ionization in a chamber approximately 
2 t inches in diameter and 3 inches long, into which the radiation passed 
through an aluminum window of 1.2 mg/cm2 surface density. The surface 
density of the mica covering the source was 5.2 mg/cm2• We are indebted 
to Dr. A. F. Voigt for making available to us this electroscope in its 
modified form. 

' A value of 2.6 years was provisionally communicated to Dr. G. T. 
Seaborg during the course of this work and has subsequently appeared in 
the review article of Sea borg and Perlman (Rev. Mod. Phys. 20,585 (1948)). 
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Secondary Electron Spectrum of Pr142t 
ERLING N. JENSEN, L. JACKSON LASLETT, AND D. J. ZAFFARANO 

Institute for Atomic Research and Department of Physics. 
Iowa State College, Ames. Iowa 

(Received April 21, 1952) 

I N a previous publication concerning the radiations of Pr142, the 
authors1 reported the presence of one gamma-ray, having an 

energy of 1.57 a Mev, and two beta-groups, with maximum energies 
of 2.154 Mev and 0.63, Mev. Other investigators2 have reported 
a number of low energy gamma-rays for Pr142. In the original 
work of the present authors1 a search was made for low energy 
gamma-rays, but none was found. If these gamma-rays existed, 
however, they would have been observed as photoelectric lines 
superposed on a broad distribution of electrons which was ascribed 
to secondary electrons produced by bremsstrahlung. 

Dr. Alburger' of Brookhaven National Laboratory has sug
gested that the broad distribution of electrons ascribed to second
ary electrons produced by bremsstrahlung, as reported in our 
original paper,1 might be due to beta-rays that have passed 
through part of the Lucite holder and then scattered from another 
part of the source holder. On repeating the experiment with 
Sr90- yoo it was found that a substantial fraction, but not all, 
of the electron distribution attributed to bremsstrahlung was, 
in fact, due to scattered beta-particles, as suggested. 

It seemed worthwhile, therefore, to re-examine the secondary 
electron spectrum of Pr142 in order to make a search for low energy 
gamma-rays under more favorable circumstances and also to 
determine the existence or nonexistence of an appreciable number 
of secondary electrons produced by bremsstrahlung. A sample of 
spectrographically pure (contaminants of Nd, La, and Ce less 
than 0.1 percent) PreOu made available through the courtesy of 
Dr. F. H. Spedding and Mr. T. A. Butler of this laboratory was 
irradiated in the Argonne pile and then examined with a thin-lens 
spectrometer4 modified to incorporate ring focusing.6 

The irradiated praseodymium was placed in a brass holder and 
covered with a copper cap, of surface density 2.92 g/cm2, on 
which was fastened a uranium foil of surface density 42 mg/cm2• 

The secondary electron spectrum obtained with this source is 
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FIG. !. The solid line. given by the circles. is the secondary electron 
spectrum of Pr"' as obtained with the arrangement shown in the insert. 
The broken line, given by squares, was obtained from the Compton distri
bution produced by the Zn" gamma-ray (1.12 Mev) normalized to the 
Compton distribution from Pr•u. N is the number of counts per minute. 

shown by the solid line in Fig. 1. The insert in Fig. 1 shows a 
scale drawing of the arrangement of the Pr142, brass holder, copper 
cap, and uranium foil. Spectra were obtained with and without 
the solder ring on the shoulder of the brass holder and no change 
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FIG. 2. The curve given by the solid circles is the secondary electron spec
trum from the copper capsule and uranium foil, as produced by bremsstrah
lung arising in the copper capsule due to the absorption the of beta-particles 
from Sr"-v••. The arrangement of source, copper capsule, and uranium 
foil is shown in the insert. N is the number of counts per minute for this 
distribution. The triangles were obtained by subtracting the two curves 
shown in Fig. 1 and multiplying by an appropriate normalizing factor. 

in the shape of the spectrum was observed. Only one gamma-ray 
was observed, having an energy of 1.578 Mev as reported pre
viously.1 

Since no low energy gamma-rays were observed and the material 
surrounding the source was sufficient to absorb completely elec
trons with an energy greater than 5 Mev, it was concluded that 
the broad distribution of electrons observed at the low energy 
end of the spectrum, in addition to the expected Compton dis
tribution, is due to secondary electrons that are produced in the 
copper cap and uranium foil by the bremsstrahlung arising in the 
copper cap as a.result of the absorption of the beta-particles. 

As a check of the foregoing interpretation for the broad distri
bution of electrons at the low energy end of the spectrum shown 
in Fig. 1, a source of Sr90- yoo was placed in a copper capsule to 
which was fastened the same uranium foil as that used with the 
Pr142 source. This copper capsule had the same diameter as the 
copper cap used with the praseodymium source. The Sr110 - Y110 

source, which is gamma-free and emits beta-particles with a 
maximum energy6 (2.23 Mev) close to that for Pr142, was found to 
give a secondary electron spectrum as shown by the circles and 
solid line in Fig. 2. The insert in Fig. 2 shows a scale drawing of 

. the arrangement o( source, copper capsule, and uranium foil. 
The end of the capsule on which the uranium foil was fastened 
had a surface density of 2.43 g/cm2 while the sides of the capsule 
had a surface density o£2.12 g/cm2• This was sufficient to absorb 
completely electrons with an energy of about 4 Mev. 
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The broken line shown in Fig. 1 was obtained from the Compton 
distribution produced by the Zn86 gamma-ray (1.12 Mev).7 This 
was obtained under conditions similar to those for the Compton 
distribution for Pr'•z. The scale of the Zn86 curve has been ad
justed to match the Pr142 Compton distribution at the maximum 
ordinate and at the Compton high energy "edge." The triangles 
shown in Fig. 2 were obtained by substracting the two curves 
shown in Fig. 1 ·and normalizing the ordinates. It may be seen 
that the two secondary electron distributions produced by 
bremmstrahlung are in good agreement. It appears, then, that 
the broad distribution of electrons at the low energy end of the 
Pr142 spectrum shown in Fig. 1 is due to bremsstrahlung. 

The secondary electron spectrum of Pr142, shown in Fig. 1, 
is therefore regarded as a composite of the photoelectrons and 
Compton electrons arising from a single gamma-ray, plus the 
electrons produced by bremsstrahlung. This conclusion; accord-

8-12 

ingly, in no way alters the final results and conclusions regarding 
the radiations from Pr142 nor the decay scheme reported in the 
previous publication.' 

The authors wish to express their appreciation to Messrs. Earl 
W. McMurry and James T. Jones, Jr. for their assistance in 
obtaining part of the data. 

t Contribution No. 183 from the Institute for Atomic Research and 
Department of Physics, Iowa State College, Ames, Iowa. Work was per
formed in the Ames Laboratory of the AEC. 

'Jensen, Laslett, and Zaffarano. Phys. Rev. 80, 862 (1950). 
'C. E. Mandeville, Phys. Rev. 75, 1287 (1949); Cork, Schreffler, and 

Fowler, Phys. Rev. 74, 1657 (1948); E. R. Rae, Proc. Phys. Soc. (London) 
63A, 292 ( 1950). 

a D. E. Alburger (private communication). 
• Jensen, Laslett, and Pratt. Phys. Rev. 75, 458 (1949). 
• Pratt. Boley. and Nichols, Rev. Sci. Instr. 22, 92 (1951); Keller. 

Koenigsberg. and Paskin, Rev. Sci. Instr. 21, 713 (1950). 
• E. N. Jensen and L. J. Laslett, Phys. Rev. 75, 1949 ( 1949). 
'Jensen, Laslett, and Pratt, Phys. Rev. 76, 430 (1949). 
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On the Electromagnetic Analogy 
to Sound Propagation 

L. JACKSON LASLETT* 

Department of Physics and Institute for Atomic Research, 
Iowa State College, Ames, Iowa 

(Received April 8, 1956) 

KRAICHNANI has developed an interesting correspondence 
between the paths of sound rays in fiuids undergoing shear 

fiow and the trajectories of charged particles in magnetic fields. 
To establish this analogy one assumes (i) the eddy size to be large 
compared to the sound wavelength and (ii) the velocity (w) of 
the fiuid fiow to be small in comparison to the speed of sound (c). 
Kraichnan's development then makes use of the wave equation 
for sound propagation and the Hamilton-Jacobi theory of particle 
dynamics, while referring in the discussion to the associated 
principles of Fermat and of least action. It is felt that the 
following brief derivation, which proceeds directly from these two 
variational principles, may be of interest. 

For the ray description of sound propagation, one may employ 
Fermat's principle 

&f ds O· 
c+w cos(w,ds) ' 

(1) 

for w<<c, this becomes 

of (ds-ds·w/c)=O. (2) 

Similarly, for the trajectory of a particle of charge q (emu or mks 
units) in a magnetic field B= V XA, the principle of least action 
may be applied in the form 

af(p+qA)·ds=O, (3) 

where p, denoting the mechanical momentum, is parallel to ds 

and is constant in magnitude (since no work is done on the 
particle). This last equation may then be written 

of (ds+czds·A/p)-=0. (4) 

There is an evident correspondence between Eqs. (2) and (4) if 

wfc=-qA/p. (5) 

Sound rays are accordingly seen to be influenced by the fiuid 
motion if V Xw;;CO; the relation between the vorticity ('F) of 
the fiuid motion and the magnetic field governing the analogous 
particle trajectory is obtained by forming the curl of Eq. (5). We 
thus find 

or 
'F/c= -qBjp 

B=- (pfq)('F /c) 
= -[Bp](\11' /c), 

(6) 

(7) 

where [Bp] denotes the magnetic rigidity of the charged particle 
whose trajectory is under consideration. This result is identical 
with that of Kraichnan, who considers a charge e=cotJ. 

The writer would like to express his appreciation to Dr. K. U. 
Ingard and Mr. W. W. Lang for their interest in the development 
presented here. 

* Presently at the University of Illinois. on leave from Iowa State College. 
to work with the Midwestern Universities Research Association. 

t R. H. Kraichnan. ]. Acoust. Soc. Am. Z7, 527 (1955). 
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Attainment of Very High Energy by Means 
of Intersecting Beams of Particles 

D. W. KERST,* F. T. CoLE,t H. R. CRANE,t L. W. JoNEs,t L. J. 
LASLETT,§ T. OHXAWA,II A.M. SESSLER,~ K. R. SYMON,** 
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Midwestern Universities Research Association,U University 
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I N planning accelerators of higher and higher energy, 
it is well appreciated that the energy which will 

be available for interactions in the center-of-mass 
coordinate system will increase only as the square root 
of the energy of the accelerator. The possibility of 
producing interactions in stationary coordinates by 
directing beams against each other has often been 
considered, but the intensities of beams so far available 
have made the idea impractical. Fixed-field alternating
gradient accelerators1 offer the possibility of obtaining 
sufficiently intense beams so that it may now be 
reasonable to reconsider directing two beams of 
approximately equal energy at each other. In this 
circumstance, two 21.6-Bev accelerators are equivalent 
to one machine of 1000 Bev. 

The two fixed-field alternating-gradient accelerators 
could be arranged so that their high-energy beams 
circulate in opposite directions over a common path in 
a straight section which is common to the two accele
rators, as shown in Fig. 1. The reaction yield is propor
tional to the product of the number of particles which 
can be accumulated in each machine. As an example, 
suppose we want 107 interactions per second from 
10-Bev beams passing through a target volume 100 em 
long and 1 cm2 in cross section. Using SX 10-26 cm2 for 
the nucleon interaction cross section, we find that we 
need SX 1014 particles circulating in machines of 
radius 104 em. · 

There is a background from the residual gas propor
tional to the number of particles accelerated. With 
lQ-6 mm nitrogen gas, we would have 15 times as 
many encounters with nitrogen nucleons in the target 
volume as we would have with beam protons. Since 
the products of the collisions with gas nuclei will be in 
a moving coordinate system, they will be largely 
confined to the orbital plane. Many of the desired p-p 
interaction products would come out at large angles to 
the orbital plane since their center of mass need not 
have high speed in the beam direction, thus helping 
to avoid background effects. 

FIG. 1. The target straight section. B and A can be adjacent 
or concentric fixed-field alternating-gradient accelerators. 

Multiple scattering at 1Q-8 mm pressure is not 
troublesome above one Bev; but beam life is limited 
by nuclear interaction with residual gas to "'1300 
seconds. Consequently, in about 1000 seconds the high
energy beam of SX 1014 particles must be established 
in each accelerator. The fixed-field nature of the accel
erator allows it to contain beams of different energy 
simultaneously. It may be possible to obtain this high 
beam current in this time by using ,_,1()3 successive 
frequency modulation cycles of radio-frequency accel
eration, each cycle bringing up SX 1011 particles. It is 
encouraging to learn that Alvarez and Crawford2 

succeeded in building up a ring of protons by succes
sively bringing up several ·groups of particles to the 
same final energy by frequency modulation in the 184-
in. Berkeley cyclotron. 

The number of particle groups which may be suc
cessively accelerated without leading to excessive beam 
spread can be estimated by means of Liouville's 
theorem.3 One can readily convince himself that there 
is adequate phase space at high energy to accommodate 
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the necessary number, N, of particle groups. Assume 
for simplicity that synchrotron and betatron phase 
space are separately conserved, so that for the former 

(t::..p )J(t::..S)t= N (t::..p) ;(t::..S) ;, 

where t::..S and t::..p are the arc length and momentum 
spread at injection and final energy. Then, employing 
the fact that P""R~c-H, where R is the radius and k is 
the field index, one obtains 

N = 2(k+ 1) (t::..R/R) (p,/ p;) (t::..S,/ t::..S;) (EJ t::..E;). 

Using typical numbers such as 

(p1/ p;)"'-'100, k"'-'100, R"'-'0.5 em, 
R"'-'1()4 em, (t::..E;/ E;)"'-'10-3, 

one finds that there is room for N"'-'103 frequency
modulation cycles. 

The betatron phase space available is so large that 
it cannot be filled in one turn by the type of injectors 

used in the past which can inject 1011 particles. Thus 
there is the possibility of attaining and exceeding the 
yield used for this example by improving injection. 

The more difficult problem of whether one can, in 
fact, use all of the synchrotron and betatron phase 
space depends in detail upon the dynamics of the 
proposed scheme and this is presently under study. 

*University of Illinois, Urbana, Illinois. 
t State University of Iowa, Iowa City, Iowa. 
t University of Michigan, Ann Arbor, Michigan. 

~
Iowa State College, Ames, Iowa. 
University of Tokyo, Tokyo, Japan. 
The Ohio State University, Columbus, Ohio. 

** University of Wisconsin, Madison, Wisconsin. 
tt Norwegian Institute of Technology, Trondheim, Norway. 
U Supported by the National Science Foundation. 
1 Keith R. Symon, Phys. Rev. 98, 1152(A) (1955); L. W. Jones 
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Rotation of Mercury: Theoretical 
Analysis of the Dynamics of a 
Rigid Ellipsoidal Planet 

Abstract. The second-order nonlinear 
differential equation for the rotation of 
Mercury implies locked-in motion when 
the period is within the range 

2T [ 2,-t 2 J 3- 1 - ~ cos T- .±: } (2/ ~el 2) l 

where e is the eccentricity and T is the 
period of Mercury's orbit, the time t 

is measured from perihelion, and A is 
a measure of the planet's distortion. For 
values near 2T I 3, the instantaneous 
period oscillates a hour 2T I 3 ll'ith period 
(21Ael 2)-~T. 

Radar (1) and visual (2) observ<~

tions of the planet Mercury indicate a 
rotation period Tr = 58.4 ± 0.4 days, 
close to 213 of the orbit period T = 
87.97 days. Colombo (3) and Liu and 
O'Keefe ( 4) have surmised that a 
stable "locked-in" motion of this type 
can occur as a result of the inverse
cube term in the planetary potential 
(5, 6) that arises for a body with un
equal moments of inertia in the orbital 
plane. The existence of such a solution 

to the equations that govern the rotation 
of a rigid distorted planet has been dem
onstrated by Liu and O'Keefe by means 
of digital computations. In this report 
we present approximate analytic for
mulas that may afford further physical 
insight into the character of locked-in 
motion, that could facilitate the inter
pretation of observational data, and that 
indicate the dependence of the results 
upon the various parameters of the 
model. For simplicity, and for clarity 
in exposition. the analysis is carried to 
no higher order than is required to 
exhibit the salient features of the phe
nomenon. 

The differential equation for the 
orientation, fl. of the planet is given by 
equation 4 of the report by Liu and 
O'Keefe {4). In terms of the variable 
T = 21f'tl T it becomes. after inseryion 
of the equation for the Keplerian orbit 
( 7) of eccentricity r. 

d"o+ ~~ [1 + e cosf(T)]' 
dT' 2 1- r 2 X 

sin 2[0- f(T)] = 0 (I) 

with the largest of the principal mo
ments of inertia (C) taken perpendic
ular to the orbital plane, A = (B -
A) I C measuring the difference between 
the two smaller moments of inertia (B 
and A l. and f denoting the true an
omaly. (Since damping effects have 
been ignored in this analysis, Eq. I 
is derivable from a simple Hamiltonian 
function. with periodic coefficients. in 
which p = dfJ I dT is the canonical mo
mentum conjugate to (}, and Liouville's 
theorem concerning the conservation of 
phase-space area applies to the variables 
(} and p.) 

Substitution of the explicit variation 
of the true anomaly with time, as given. 
by 

f( T) = T + 2e sin T (2) 

through the first-order term in e, con
verts Eq. I to the approximate form 

d
2
1! 3 [ . 

dT" + 2 ~ ( 1 + 3 e co~ T)sm 2( o- T)-

4esinTCOs2(11-T)]=0 (3) 

which forms the basis of the remainder 
of our analysis. [It is noted, from Eq. 2, 
that T is to be regarded as measured 
from the time of perihelion passage, 
and e is the angle made by the smallest 
of the moments of inertia (A) with the 
major axis of the orbit.] One expects 
that there may be periodic (locked-in) 
solutions to Eqs. I or 3 that are stable, 
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in the sense that neighboring solutions 
describe oscillatory motion about these 
periodic solutions. 

We consider, specifically; solutions 
for which 

dfJ/dt.,. (3!2)(2n'/T) 

and write 

3 
fJ=2T+'Io 

so that Eq. 3 becomes 

cr., 3 [ 1 
dT• + i ~ (cos T + 2 e -

i e cos 2T) sin 2., + 

( . 1 . J sm T- 2 e sm 2T )cos 2., = 0 

(4) 

(5) 

When 11 is small, Eq. 5 may be linear
ized, to assume the form 

cr., 3 
dT" +2 ~ (2 cosT+ 7e- e cos 2r)., 

3 ( . I . 2 ) = - 2 ~ sm T - 2 e sm T (6) 

For A2 ~ 1, an approximate particular 
integral to the inhomogeneous Eq. 6 is 
readily obtained, and the solution to 
the corresponding linear homogeneous 
equation may be derived (8) by ignor
ing terms of average value zero in the 
coefficient of 11 • The solution thus in
cludes a periodic motion, of period T, 
and a long-period osciliation of am
plitude a 11 : 

., -~~(sin T- _!_,sin h)+ 
-2 8 

ao sin[<~ ~e)1 T +a,] (7a) 

or, for an ~ 71', 

3,-t 3 . 2,-t I . 4rrt 
fJ = T + 2 >.. ( sm T -8 e sm T) + 

(7b) 

where a 11 and a 1 are arbitrary constants. 
If au is not small. so that the slow 

excursions of 11 preclude linearization, a 
similar averaging of the coefficient of 
sin 217 in Eq. 5 suggests that these oscil
lations are essentially described by an 
equation of the form applicable to the 
motion of a physical pendulum: 

d2
n, 21 . 0 

dT• + - 4- ~ e sm 2., = (8) 

for which one may write the first in
tegral 

1 d., • 21 z ( dt) - -8 · ~ e cos 2., = c (9) 

where c is a constant. With the excur· 
sions of 11 limited to ± 71'/2 for oscilla
tory motion, the maximum value that 



dr/ dr can assume for locked-in motion 
(9) occurs when r1 = 0, and is 

ld71/dTJ.,,., = ( 2
2
1 

>.e)l 

With inclusion of the contributions 
from the first terms on the right-hand 
side of Eq. 7b, therefore, the values of 
dOl dt for locked-in motion are ex
pected to lie between the limits 

[~~],,..._min = 
3
; [I+>. cos.l:f ::!: ~ (-2j >.e)~ J ( 10) 

where we have neglected the term pro
portional to Ae. 

The foregoing analysis serves to con
firm that locked-in rotational motion 
with a period approximately 21 3 the 
period of revolution is dynamically 
possible. The form of the solution 
shown in Eq. 7b suggests, however, that 
observations of the rotation will indi
cate rates that vary during the course 
of a planetary year and that, in addi
tion, slower variations of the rotational 
rate may occur with a period given by 

T""=(~f>.e)-)T (II) 

when the amplitude (a 11 ) of this libra
lion is not large. An expression of the 
form given by Eq. 7b may be useful 
for interpretation of data obtained by 
the sequential observation of surface 
features on the planet. More simply, the 
instantaneou.f periods-as could be in
ferred from radar observations-would 
be (by differentiation of Eq. 7b when 
the term proportional to >..e is neglected) 

2,. 
T, = diJ-/dt 

_2) 1 2,.r 2 (21 , -- ->.cos-·- -a., ->.e)' X 
3 1 T 3 2 

(12) 

for a 11 small, and, for any au compatible 
with locked-in motion, would lie be
. tween the limits obtained from Eq. 10: 

[ T,] = 
mai.nlin 

2[1->.cosht :;::2(]_!.>-e))J T (13) 
3 T 3 2 

For favorable values of ao a determina
tion of ,\ may be feasible through ob
servation of the slow libratory motion, 
with a period close to that expressed by 
Eq. 11, that is represented by the last 
term of Eq. 12. If, however, ao is very 
small-as could well result from the 
action of damping mechanisms-the 
term 

2 2,./ - 3 >. cos T-

in Eq. 12 will represent the larger con
tribution to the variation of the instan
taneous period. 

Substitution of the values T = 87.97 I 
365 yr. e = 0.2, and A = 5 X I o---·. as 
suggested by Liu and O'Keefe ( 4), into 
Eq. I I leads to a libration period T1;h 

= 23.5 yr for small-amplitude varia
tions, in substantial agreement with 
their computational results. Correspond
ingly, from the last term of Eq. 13, the 
maximum variation of the instantaneous 
period of rotation that could arise from 
this libratory motion would be approx-. 
imately ::!:: 0.40 day, in good agreement 
with recent computational results of Liu 
and O'Keefe (10). It is highly unlikely, 
of course, that such large variations are 
now actually occurring. because of the 
damping that would have resulted from 
tidal effects. 

Although the detailed results pre
sented in this report have been with 
reference to motion for which the rota
tion period is close to 213 the period 
of revolution, the existence of other 
stable modes of locked-in motion 
should not be overlooked. The possible 
range of variati~n for the rotational 
speed in general will be substantially 
smaller for the higher-order modes, for 
reasonable values of the parameter ,\, 
and this feature will have significant 
implications concerning the magnitude 
of the damping present at times when 
the speed of planetary rotation may 
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have been considerably greater than 
that now observed. Lower limits. which 
depend on A. can be set to the rate of 
decrease of the rotational energy 
through the agency of damping if the 
rotational motion has passed through 
the higher-order modes during the past 
history of the planet. Similarly, an up
per limit can be set on the amount of 
damping that will permit the rotation 
to remain locked in to the mode ana
lyzed in this report. Other work ( 11) in
dicates, moreover. that damping torques 
acting at present would shift the phase 
of the periodic solutions presented here. 
and this result suggests that information 
concerning the current magnitude of 
such torques may be inferred from 
more detailed observation of the rota
tional motion. 

L. JACKSON LASLETT 

ANDREW M. SESSLER 

Lawrence Radiation Laboratory, 
University of California, Berkeley 
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Trajectory for Minimum Transit Time 
Through the Earth 

L. JACKSON LASLETT 

Lawrence Radiation Laboratory* and Department of Physics, 
University of Califo~nia. Berkeley, California, 

T HE tantalizing theoretical possibility of very rapid 
transit between points on the Earth's surface by 

gravitational fall through frictionless tunnels•-s has 
recently been discussed by Cooper} The differential equa
tion for the plane curve leading to a minimum transit time 
between two given points on the surface is given in Cooper's 
note, and the results a of computer solution are presented 
graphically. The differential equation may be written 
conveniently in a form that expresses the dependence of 9 
as a function of r, and in these terms it becomes 

(d/dr){r2[R2 -r2J-i[1 +r2(d9/dr)2]-i(d8/dr)} = 0. ( 1) 

A solution to Eq. (1), symmetric about 9=0, may then be 
· obtained as 

ro f.' 1 (J?l- y2)t 9=±- - -- dr 
R 'Or y2-ro2 

(2a) 

= ±{sin-•[!!_(r2-ro2 )'] -~sin-•(r2-ro2 )'}. 
r R2-ro2 R R2-ro2 

(2b) 

in which the constant of integration ro may be identified 
with the radius of closest approach to the Earth's center. 

For class presentation, Eq. (1) is most directly obtained 
from the variational statement 

of: ds/v=of: [(g/R)(R2-r2)J-+[(dr)2+(rd9)2Jt=0 (3) 

,[in which we neglect the rotation of the earth and employ 
the speed acquired from the potential-energy change 
ll V= -!mg(R2-r2)/R] by writing the Euler-Lagrange 
equation that results from regarding r as the independent 
variable. The first integral 

then follows immediately, and the resulting explicit 
expression for d9/dr may be integrated as shown by Eqs. 
(2a,b). The solution given by Eq. (2b) corresponds to a 
diametrical trajectory (9= ±.,../2) in the limiting case for 
which ro vanishes. 

For journeys between points separated by more than a 
few kilometers, very high maximum speeds will be attained 
on a path of the form given by Eq. (2b). An interesting 
problem for the student is an evaluation of the "number of 
g's" experienced by a passenger (or the force with which 
he presses on the seat of the train) at the lowest point of the 
trajectory. In addition, an elementary evaluation of the 
integral in Eq. (3) provides the transit time as a function 
of ro. 

*Work assisted by the U. S. Atomic Energy Commission. 
'L. K. Edwards, Sci. American 213, 30 (Aug. 1965). 
'M. Gardner, Sci. American 213, 10 (Sept. 1965). 
'See. L. Lessing, Fortune 71, 124 (Apr. 1965). 
• P. W. Cooper, Am.]. Phys. 34, 68 (1966). 
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