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Multidimensional Scaling Using Majorization:

SMACOF in R

Jan de Leeuw
University of California, Los Angeles

Patrick Mair
Wirtschaftsuniversität Wien

Abstract

In this paper we present the methodology of multidimensional scaling problems (MDS)
solved by means of the majorization algorithm. The objective function to be minimized
is known as stress and functions which majorize stress are elaborated. This strategy to
solve MDS problems is called SMACOF and it is implemented in an R package of the
same name which is presented in this article. We extend the basic SMACOF theory in
terms of configuration constraints, three-way data, unfolding models, and projection of the
resulting configurations onto spheres and other quadratic surfaces. Various examples are
presented to show the possibilities of the SMACOF approach offered by the corresponding
package.

Keywords: smacof, multidimensional scaling, majorization, R.

1. Introduction

From a general point of view, multidimensional scaling (MDS) is a set of methods for discov-
ering“hidden”structures in multidimensional data. Based on a proximity matrix derived from
variables measured on objects as input entity, these distances are mapped on a lower dimen-
sional (typically two or three dimensions) spatial representation. A classical example concerns
airline distances between US cities in miles as symmetric input matrix. Applying MDS, it
results in a two-dimensional graphical representation reflecting the US map (see Kruskal and
Wish 1978). Depending on the nature of the original data various proximity/dissimilarity
measures can be taken into account. For an overview see Cox and Cox (2001, Chapter 1)
and an implementation of numerous proximity measures in R is given by Meyer and Buchta
(2007). Typical application areas for MDS are, among others, social and behavioral sciences,
marketing, biometrics, and ecology. For introductory MDS reading we refer to Kruskal and
Wish (1978) and more advanced topics can be found in Borg and Groenen (2005) and Cox
and Cox (2001).

The traditional way of performing MDS is referred to as classical scaling (Torgerson 1958)
which is based on the assumption that the dissimilarities are precisely Euclidean distances
without any additional transformation. With further developments over the years, MDS
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techniques are commonly embedded into the following taxonomies (see e.g. Cox and Cox
2001):

• 1-way vs. multi-way MDS: In K-way MDS each pair of objects has K dissimilarity
measures from different “replications” (e.g., repeated measures, multiple raters etc.).

• 1-mode vs. multi-mode MDS: Similar to the former distinction but the K dissimilarities
are qualitatively different (e.g., experimental conditions, subjects, stimuli etc.)

For each MDS version we provide metric and non-metric variants. Non-metric MDS will
be described in a separate section since, within each majorization iteration, it includes an
additional optimization step (see Section 4). However, for both approaches, the particular
objective function (or loss function) we use in this paper is a sum of squares, commonly called
stress. We use majorization to minimize stress and this MDS solving strategy is known as
SMACOF (Scaling by MAjorizing a COmplicated Function).

Furthermore we will provide several extensions of the basic SMACOF approach in terms of
constraints on the configuration, individual differences (i.e., three-way data structures), rect-
angular matrices, and quadratic surfaces. From early on in the history of MDS its inventors,
notably Torgerson (1958) and Shepard (1962a,b), discovered that points in MDS solutions
often fell on, or close to, quadratic manifolds such as circles, ellipses, or parabolas. Fitting
quadratics with SMACOF will be one of the focal points of this paper (see Section 5). Some
of the first examples analyzed with the new techniques were the color similarity data of Ek-
man (1954) and the color naming data of Fillenbaum and Rapaport (1971). Another early
application were triadic comparisons of musical intervals (Levelt, Van De Geer, and Plomp
1966), where the points appeared to fall on a parabola. A critical discussion can be found in
Shepard (1974, p. 386-388). Around the same time, the triadic comparisons of Dutch political
parties (De Gruijter 1967) were carried out, which showed a curved left-right dimension, with
parties ordered along an ellipse.

2. Basic majorization theory

Before describing details about MDS and SMACOF we give a brief overview on the general
concept of majorization which optimizes a particular objective function; in our application
referred to as stress. More details about the particular stress functions and their surrogates
for various SMACOF extensions will be elaborated below.

In a strict sense, majorization is not an algorithm but rather a prescription for constructing
optimization algorithms. The principle of majorization is to construct a surrogate function
which majorizes a particular objective function. For MDS, majorization was introduced by
De Leeuw (1977a) and further elaborated in De Leeuw and Heiser (1977) and De Leeuw
and Heiser (1980). One way to think about this approach for optimizing objective functions
is as a generalization of the EM-algorithm (Dempster, Laird, and Rubin 1977). In fact,
Lange (2004) uses the term MM-algorithm which stands for either majorize/minimize or
minorize/maximize. De Leeuw (1994) puts it (together with EM, ALS and others) into the
framework of block-relaxation methods.

From a formal point of view majorization needs the following definitions. Let us assume we
have a function f(x) to be minimized. Finding an analytical solution for complicated f(x)
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can be rather cumbersome. Thus, the majorization principle suggests to find a simpler, more
manageable surrogate function g(x, y) which majorizes f(x), i.e. for all x

g(x, y) ≥ f(x) (1)

where y is some fixed value called supporting point. The surrogate function should touch the
surface as y, i.e., f(y) = g(y, y), which, at the minimizer x? of g(x, y) over x, leads to the
inequality chain

f(x?) ≤ g(x?, y) ≤ g(y, y) = f(y) (2)

called sandwich inequality.
Majorization is an iterative procedure which consists of the following steps:

1. Choose initial starting value y := y0.

2. Find update x(t) such that g(x(t), y) ≤ g(y, y).

3. Stop if f(y)− f(x(t)) < ε, else y := x(t) and proceed with step 2.

This procedure can be extended to multidimensional spaces and as long as the sandwich
inequality in 2 holds, it can be used to minimize the corresponding objective function. In
MDS the objective function (i.e. stress) is a multivariate function of the distances between
objects. We will use majorization to solve σ(X) for various SMACOF variants as described in
the following sections. Detailed elaborations of majorization in MDS can be found in Groenen
(1993); Borg and Groenen (2005).

3. Basic SMACOF methodology

3.1. Simple SMACOF for symmetric dissimilarity matrices

MDS input data are typically a n × n matrix ∆ of dissimilarities based on observed data.
∆ is symmetric, non-negative, and hollow (i.e. has zero diagonal). The problem we solve is
to locate i, j = 1, . . . , n points in low-dimensional Euclidean space in such a way that the
distances between the points approximate the given dissimilarities δij . Thus we want to find
an n× p configurations X such that dij(X) ≈ δij , where

dij(X) =

√√√√ p∑
s=1

(xis − xjs)2. (3)

The index s = 1, . . . , p denotes the number of dimensions in the Euclidean space. We make
this more precise by defining stress σ(X) by

σ(X) =
n∑
i=1

n∑
j=1

wij(δij − dij(X))2. (4)

Here, W is a known n×n matrix of weights wij , also assumed to be symmetric, non-negative,
and hollow. We assume, without loss of generality, that

n∑
i=1

m∑
j=1

wijδ
2
ij = 1 (5)



4 SMACOF in R

and that W is irreducible (De Leeuw 1977a), so that the minimization problem does not
separate into a number of independent smaller problems. W can for instance be used for
imposing missing value structures: wij = 1 if δij is known and wij = 0 if δij is missing.
However, other kinds of weighting structures are allowed along with the restriction wij ≥ 0.

Following De Leeuw (1977a), stress, as given in (4), can be decomposed as

σ(X) =
n∑
i=1

n∑
j=1

wijδ
2
ij +

n∑
i=1

n∑
j=1

wijd
2
ij(X)− 2

n∑
i=1

n∑
j=1

wijδijdij(X) =

= η2
δ + η2(X)− 2ρ(X).

From restriction (5) it follows that the first component η2
δ = 1. The second component η2(X)

is a weighted sum of the squared distances d2
ij(X), and thus a convex quadratic. The third

one, i.e. −2ρ(X), is the negative of a weighted sum of the dij(X), and is consequently concave.

The third components is the crucial term for majorization. Let us define the matrix Aij =
(ei − ej)(ei − ej)′ which elements equal 1 at aii = ajj = 1, -1 at aij = aji, and 0 elsewhere.
Furthermore, we define

V =
n∑
i=1

n∑
j=1

wijAij (6)

as the weighted sum of row and column centered matrices Aij . Hence, we can rewrite

η2(X) = tr X ′V X. (7)

For a similar representation of ρ(X) we define the matrix

B(X) =
n∑
i=1

n∑
j=1

wijsij(X)Aij (8)

where

sij(X) =

{
δij/dij(X) if dij(X) > 0,
0 if dij(X) = 0.

Using B(X) we can rewrite ρ(X) as

ρ(X) = tr X ′B(X)X (9)

and, consequently, the stress decomposition becomes

σ(X) = 1 + tr X ′V X − 2tr X ′B(X)X. (10)

At this point it is straightforward to find the majorizing function of σ(X). Let us denote the
supporting point by Y which, in the case of MDS, is a n×p matrix of configurations. Similar
to (8) we define

B(Y ) =
n∑
i=1

n∑
j=1

wijsij(Y )Aij (11)

with

sij(Y ) =

{
δij/dij(Y ) if dij(Y ) > 0,
0 if dij(Y ) = 0.
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The Cauchy-Schwartz inequality implies that for all pairs of configurations X and Y, we have
ρ(X) ≥ tr X ′B(Y )Y . Thus we minorize the convex function ρ(X) with a linear function.
This gives us a majorization of stress

σ(X) = 1 + tr X ′V X − 2trX ′B(X)X
≤ 1 + tr X ′V X − 2tr X ′B(Y )Y = τ(X,Y ). (12)

Obviously, τ(X,Y ) is a (simple) quadratic function in X which majorizes stress. Finding its
minimum analytically involves

∂τ(X,Y )
∂X

= 2V X − 2B(Y )Y = 0. (13)

To solve this equation system we use the Moore-Penrose inverse V + = (V +n−111′)−1−n−111′

which leads to
X = V +B(Y )Y. (14)

This is known as the Guttman transform (Guttman 1968) of a configuration. Note that if
wij = 1 for all i 6= j we have V = 2n(I−n−111′) and the Guttman transform simply becomes
X = n−1B(Y )Y .

Since majorization is an iterative procedure, in step t = 0 we set Y := X(0) where X(0) is
a start configuration. Within each iteration t we compute X(t) which, for simple SMACOF,
gives us the update X(t). Now the stress σ(X(t)) can be calculated and we stop iterating if
σ(X(t)) − σ(X(t−1)) < ε or a certain iteration limit is reached. Majorization guarantees a
series of non-increasing stress values with a linear convergence rate (De Leeuw 1988).

3.2. SMACOF with restrictions on the configurations

De Leeuw and Heiser (1980) introduced a SMACOF version with restrictions on the config-
uration matrix X which Borg and Groenen (2005, Chapter 10) call confirmatory MDS with
external constraints. The basic idea behind this approach is that the researcher has some
substantive underlying theory regarding a decomposition of the dissimilarities. We start with
the simplest restriction in terms of a linear combination, show the majorization solution and
then present some additional possibilities for constraints. The linear restriction in its basic
form is

X = ZC (15)

where Z is a known predictor matrix of dimension n × q (q ≥ p). The predictors can be
numeric in terms of external covariates or one can specify an ANOVA-like design matrix. C
is a q × p matrix of regression weights to be estimated.

The optimization problem is basically the same as in the former section: We minimize stress
as given in (4) with respect to C. The expressions for V and B as well as τ(X,Y ) can
be derived analogous to simple SMACOF and, correspondingly, the Guttman transform is
X = V +B(Y )Y . It follows that Equation 12 can be rewritten as (see De Leeuw and Heiser
1980, Theorem 1)

τ(X,Y ) = 1 + trX ′V X − 2trX ′V X

= 1 + tr(X −X)′V (X −X)− trX ′V X (16)
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where the second term denotes the lack of confirmation fit and becomes zero if no restrictions
are imposed. Thus, in each iteration t of the majorization algorithm we first compute the
Guttman transform X

(t) of our current best configuration, and then solve the configuration
projection problem of the form

min
X∈S

tr
(
X −X(t)

)′
V
(
X −X(t)

)
. (17)

In other words, we project X(t) on the manifold of constrained configurations. With linear
restrictions this projection gives us the update

X(t) = ZC(t) = Z(Z ′V Z)−1Z ′V X
(t)
. (18)

with σ
(
X(t+1)

)
< σ

(
X(t)

)
.

Basically, the smacof package allows the user to implement arbitrary configuration restric-
tions by specifying a corresponding update function for X as given in (18). Nevertheless,
we provide additional restriction possibilities which are commonly used. Besides the clas-
sical linear restriction described above, for the special case of number of predictors equal
number of dimensions, i.e. q = p, the square matrix C can be restricted to be diagonal:
C = diag(c11, c22, . . . , css, . . . , cqq). For each column of Z we suppose z′sV zs = 1. For ma-

jorization, let x(t)
s be the s-th column of the Guttman transformed matrix X(t) in iteration t,

the corresponding C diagonal update is given by

c(t)
ss = z′sV x(t)

s . (19)

Combining unrestricted, linearly restricted and the diagonally restricted models leads to a
framework of a partially restricted X. De Leeuw and Heiser (1980) use the block notation

X =
[
X1 ZC1 C2

]
(20)

in which X1 is the unrestricted part and of dimension n × q1. ZC1 is the linearly restricted
part of dimension n× q2 and C2 is a diagonal matrix of order n which can be either present
or absent. The corresponding models are commonly coded as triples (q1, q2, q3) denoting
the number of dimensions contributed by each component: q1 is the number of unrestricted
dimensions, q2 the number of linearly restricted dimensions, and q3 is either zero or one,
depending on presence or absence of the diagonal matrix C2. In important special case and
the one which is implemented also in smacof is (q, 0, 1) which is a q-dimensional MDS model
with uniquenesses (Bentler and Weeks 1978).

Further specifications of this partially restricted framework can be found in De Leeuw and
Heiser (1980) and additional elaborations in Borg and Groenen (2005, Chapter 10).

3.3. SMACOF for individual differences

The last version of our basic SMACOF routines is SMACOF for individual differences (also
known as three-way SMACOF). It is a somewhat natural extension of the classical MDS set-
ting from Section 3.1 in terms of k = 1, . . . ,K separate n×n symmetric dissimilarty matrices
∆k. A typical situation is, e.g., that we have K judges and each of them produces a dissimi-
larity matrix or that we have K replications on some MDS data. The very classical approach
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for MDS computation on such structures is INDSCAL (INdividual Differences SCaling; Car-
roll and Chang 1970). An elaborated overview of additional algorithms is given in Borg and
Groenen (2005, Chapter 22).

We will focus on the majorization solution and collect the ∆k matrices in a block-diagonal
structure

∆∗ =


∆1

∆2

. . .
∆K

 .
The corresponding observed distances are denoted by δij,k. Similarly, we merge the resulting
configurations Xk into the configuration supermatrix

X∗ =


X1

X2
...

XK

 .
Correspondingly, V ∗ is block diagonal and one block consists of the submatrix Vk based on the
configuration weights Wk and is computed according to Equation 6. Based on these weight
matrices Wk with elements wij,k, the total stress to be minimized, consisting of the single
σ(Xk)’s, can be written as

σ(X∗) =
K∑
k=1

n∑
i=1

n∑
j=1

wij,k(δij,k − dij(Xk))2. (21)

In individual difference models there is an additional issue regarding the distance computa-
tions. We compute a configuration matrix Xk for each individual, but we constrain the Xk

by only allowing differential weighting of each dimension by each individual. If we think of a
linear decomposition of Xk, as described in the former section, we have

Xk = ZCk (22)

with the Ck diagonal matrices of order p. The weighted Euclidean distance can be expressed
as

dij(ZCk) =

√√√√ p∑
s=1

(css,kzis − css,kzjs)2 =

√√√√ p∑
s=1

c2
ss,k(zis − zjs)2. (23)

Z is the n× p matrix of coordinates of the so called group stimulus space or common space.
If Ck = I for all k we get the so called identity model.

Regarding majorization, we have to minimize stress in (21) with respect to Z and Ck. The
optimization procedure is basically the same as in the former section. Within each iteration
t we compute the Guttman transform X

∗(t). Analogous to Equation 17 we have to solve the
configuration projection problem

min
X∈S

tr
(
X −X∗(t)

)′
V ∗
(
X −X∗(t)

)
. (24)
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over X to obtain the update X(t).

In brief, we present three extensions of the classical INDSCAL approach above. Carroll and
Chang (1970) extend differential weighting by means of the generalized Euclidean distance,
allowing the Ck in (22) to be general, and not necessarily diagonal. This means

dij(Xk) =

√√√√ p∑
s=1

p∑
s′=1

(xis − xjs)hss′,k(xis′ − xjs′), (25)

with Hk = CkC
′
k. This is known as the IDIOSCAL (Individual DIfferences in Orientation

SCALing) model. For identification purposes Hk can be decomposed in various ways. The
spectral decomposition (Carroll-Chang decomposition) leads to

Hk = UkΛU ′k (26)

where UkU ′k = I and Λk = diag(λij). The Tucker-Harshman decomposition implies

Hk = DkRkDk (27)

where Dk is a diagonal matrix of standard deviations and Ri a correlation matrix. This is
often combined with the normalization

1
K

K∑
k=1

Hk = I (28)

proposed by Schönemann (1972). The models currently implemented in smacof are ID-
IOSCAL, INDSCAL with Ck restricted to be diagonal, and the identity model with Ck = I.
Additional models can be found in Cox and Cox (2001, Chapter 10).

3.4. SMACOF for rectangular dissimilarity matrices

The prototypical case for rectangular MDS input matrices is that we have n1 individuals or
judges which rate n2 objects or stimuli. Therefore, MDS becomes a model for preferential
choice which is commonly referred to as unfolding model. The basic idea is that the ratings
and the judges are represented on the same scale and for each judge, the corresponding line
can be folded together at the judge’s point and his original rankings are observed (Cox and
Cox 2001, p.165). This principle of scaling is sometimes denoted as Coombs scaling (Coombs
1950). Detailed explanations on various unfolding techniques can be found in Borg and
Groenen (2005, Chapters 14-16). We will limit our explanations to the SMACOF version of
metric unfolding.

Let us assume an observed dissimilarity (preference) matrix ∆ of dimension n1 × n2 with
elements δij . For rectangular SMACOF the resulting configuration matrix X is partitioned
into two matrices: X1 of dimension n1 × p as the individual’s or judge’s configuration, and
X2 of dimension n2 × p as the object’s configuration matrix. Consequently, stress can be
represented as

σ(X1, X2) =
n1∑
i=1

n2∑
j=1

wij(δij − dij(X1, X2))2 (29)
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with

dij(X1, X2) =

√√√√ p∑
s=1

(x1is − x2js)2. (30)

Let X be the (n1 + n2)× p joint matrix of configurations. It follows that we can accomplish
the same simple SMACOF representation as in (10). The weights wij are collected into the
n1×n2 matrix W12 of weights having the same properties as in the former section. The reason
we use W12 is that, due to the decomposition of X, W has the following block structure:

W =
[
W11 W12

W ′12 W22

]
=
[

0 W12

W ′12 0

]
The input data structure X does not allow for within-sets proximities. Therefore, W11 and
W22 have 0 entries.
V is computed following Equation 6 and B(X) following Equation 8. Based on the decom-
position of X, V can be partitioned into

V =
[
V11 V12

V ′12 V22

]
,

and B(X) into

B(X) =
[
B11(X) B12(X)
B12(X)′ B22(X)

]
.

B11(X) is a n1 × n1 diagonal matrix with the row sums of B12(X) in the diagonal. Corre-
spondingly, B22 is n2 × n2 with the column sums of B12(X) on the diagonal.
To apply majorization we need to define the supporting matrix Y which for rectangular
SMACOF consists of the two blocks Y1 and Y2. In analogy to B(X) the block structure

B(Y ) =
[
B11(Y ) B12(Y )
B12(Y )′ B22(Y )

]
results. The sandwich inequality is the same as in (12). To optimize the majorizing function
we compute the Moore-Penrose inverse V + and the updating formula (Guttman transform)
within each iteration t is again X(t) = V +B(Y )Y . It should be mentioned that because of the
special structure of W the computation of the Moore-Penrose inverse simplifies, especially in
the case where the (off-diagonal) weights are all equal

4. Nonmetric SMACOF variants

Looking at various loss functions as for instance given in (4), (21), and (29), we see that we do
not have any transformation on the dissimilarities δij . If the dissimilarities are on an ordinal
scale, we can think of transformations that preserve this rank order. If such a transformation
f obeys only the monotonicity constraint δij < δi′j′ ⇒ f(δij) < f(δi′j′), it is referred to as
nonmetric.
The resulting d̂ij = f(δij) are commonly denoted as disparities which have to be chosen in
an optimal way. Straightforwardly, the stress function (for the symmetric case) becomes

σ(X, D̂) =
n∑
i=1

n∑
j=1

wij(d̂ij − dij(X))2 (31)
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which we have to minimize with respect to the configurations X and, simultaneously, with
respect to the disparity matrix D̂. Regarding majorization, there is one additional step after
each Guttman transform in iteration t: The computation of optimal d̂ij

(t)
(with subsequent

normalization) such that the monotonicity constraint is fulfilled. If the order of dij(X(t)) is

the same as the order of d̂ij
(t)

, the optimal update is clearly d̂ij
(t)

= dij(X(t)). If the orders
differ, the optimal update is found by monotone regression which we will discuss in brief
below.

Before that, we have to consider the case of ties in the observed ordinal dissimilarity matrix
∆, i.e., the case of δij = δi′j′ . Having this case, we distinguish between three approaches: the
primary approach does not necessarily require that d̂ij = d̂i′j′ ; whereas the (more restrictive)
secondary approach does. An even less restrictive version is the tertiary approach from De
Leeuw (1977b), in which we merely requite that the means of the tie-blocks are in the correct
order. More details can be found in Cox and Cox (2001).

When solving the monotone (or isotonic) regression problem in step t, one particular tie
approach has to be taken into account. In MDS literature this problem is referred to as
primary monotone least squares regression and smacof solves it by means of the pooled-
adjacent-violators algorithm (PAVA, Ayer, Brunk, Ewing, Reid, and Silverman 1955; Barlow,
Bartholomew, Bremner, and Brunk 1972). This package performs monotone regression using
weighted means (i.e., weighted with elements wij). For a detailed description of the PAVA
approach in general we refer to the corresponding paper in this special issue volume.

5. Extended SMACOF: Quadratic Surfaces

The fact that quadratic surfaces frequently show up empirically leads to some interesting
technical and methodological problems. In some cases it may be appropriate to require that
the points computed by MDS are indeed located exactly on some parametric surface. If
we measuring distances between cities on earth, for example, an exact spherical or elliptical
representation of the cities makes perfect sense (Cox and Cox 1991). Furthermore, it may be
appropriate for these nonlinear configurations to measure distance as the shortest geodesic
on the non-linear manifold. Again, using the earth as an example, the Euclidean distance,
which goes through the earth, may not be as relevant as the geodesic distance measured
over the surface of the earth. In addition, since a sphere in three dimensions is really two-
dimensional, we could look for ways to portray non-linear structures in higher dimensions
locally faithfully in fewer dimensions. This is basically the classical problem of cartography,
in which we compute a suitable projection of the surface of the earth on the plane.

Much more recently, the problem of finding the best MDS representation with points on a
sphere came up in computer vision. Ron Kimmel and his group at the Technion in Haifa
have published a number of papers in which approximate geodetic distances along arbitrary
surfaces are used in MDS with great-circle distances along a sphere. The two-dimensional
spherical coordinates are then used to flatten the sphere. A representative paper is Elad,
Keller, and Kimmel (2005).

5.1. Basic Formulations for MDS-Q

As mentioned above, in this section we are interested in the case in which the points in the
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configuration are constrained to lie on a quadratic surface in Rp. In R2, important special
cases are a circle, ellipse, hyperbola, and parabola; in R3, corresponding special cases are a
sphere and an ellipsoid.

We call the technique of placing the points on the MDS with quadratic constraints MDS-Q.
Borg and Groenen (2005) call this type of MDS weakly constrained MDS since the external
quadratic restrictions are not necessarily forced. In the most general form of MDS-Q the
vector of configurations xi, each of length p, must satisfy

x′iΛxi + 2x′iβ + γ = 0, (32)

for some p × p matrix Λ, some p-element vector β, and some constant γ. Because of the
invariance of the distance function under translations we can put the center of the surface in
the origin. And because distance is invariant under rotation, we can also require, without loss
of generality, that Λ is diagonal. This covers conics (ellipse, hyperbola, parabola) in R2, and
the various kinds of ellipsoids, hyperboloids, paraboloids, and cylinders in R3. In the case
of ellipsoids and hyperboloids we can choose β = 0 and γ = −1, such that the constraints
become x′iΛxi = 1. For ellipsoids, the matrix Λ is positive semi-definite which means that we
can also write

xi = Λ1/2zi, where ‖zi‖ = 1 for all i. (33)

And, of course, spheres are ellipses in which the matrix Λ is scalar, i.e. Λ = λI.

5.2. Geodesic distances on quadratic surfaces

Analogously to simple MDS in Section 3.1, we want to find configurations X such that
dij(X) ≈ δij . Having a quadratic surface we can use the Euclidean distance dij(X). Al-
ternatively, we can also think of using geodesic distances which leads to geodesic MDS-Q.
In this case, again, the points are required to lie on a quadratic surface, but now we define
distance to be the length of the shortest geodesic along the surface.

In the simple case of a sphere with radius λ these are commonly referred to as great-circle
distances. The metric embedding problem for spherical space is discussed extensively by Blu-
menthal (1953, Chapter VII). Define

d̆ij(X) = λ arccos
(x′ixj
λ2

)
(34)

with d̆ij(X) as the great-circle distance between the points measured along the sphere. Spher-
ical distance is monotonic with Euclidean distance. The two distance scales are quite different
at the higher end, because Euclidean distance between two points on the sphere is bounded
above by 2λ, while spherical distance is bounded by 2λπ. If points are close together the two
distances are, of course, approximately equal.

Unfortunately, matters become more complicated if we go from the sphere to the ellipsoid. In
R2 computing the length of an elliptical arc means evaluating an incomplete elliptic integral
of the second kind. Suppose the ellipse is x2

a2 + y2

b2
= 1. The length of arc from point (0, 1) to

point (a sin θ, b cos θ), with 0 ≤ θ ≤ 1
2π, is

d̆(θ) =
∫ θ

0

√
a2 sin2 t+ b2 cos2 tdt. (35)
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Arc length distances between arbitrary points on the ellipse can be computed by adding and
subtracting integral terms of this form. Distance along the ellipse is still monotonic with
Euclidean distance, but the relationship is no longer simple.

For a parabola y = x2

a the situation is somewhat simpler because we can measure along the
horizontal axis. We find

d̆(x0, x1) =
1
2a

∫ 2x1

2x0

√
a2 + u2du =

=
u

4a

√
a2 + u2 +

1
4
a log(u+

√
a2 + u2)

∣∣∣∣2x1

2x0

,

and thus the integral can be evaluated in closed form.

Computing geodesics on the ellipsoid in R3 is even more complicated than the ellipse. Since
the work of Jacobi and Weierstrass we know what the geodesics on ellipsoids look like, and we
know how to compute them, but the analytic expressions are complicated and difficult to work
with in an MDS context (Knörrer 1980; Tabanov 1996; Perelomov 2000). In geodesy there are
many programs easily available to do the computations, but for now we have found no easy
way to fit geodesics on ellipsoids with MDS. The same thing is true for higher dimensions,
and for hyperboloids and paraboloids.

Summarizing, it looks like MDS-Q may be feasible for any dimension and for any quadratic
surface. Geodesic MDS-Q, however, seems limited for now to spheres in any dimension, with
the possible exception of ellipses and parabolas in R2.

5.3. Primal Methods for MDS-Q

There are several strategies for fitting MDS-Q. The package smacof allows for the following
approaches: Primal methods, in which the constraints are incorporated in parametric form
directly into the loss function, and dual methods, where constraints are imposed at convergence
by using penalty or Lagrangian terms. In this section we will focus on the primal method.

We start with primal gradient projection and how this can be solved using majorization. The
constraints (33) lead to the problem of minimizing tr (λZ − Y )′V (λZ − Y ) over all scalars λ
and over all Z with diag ZZ ′ = I. The optimum λ for given Z is

λ̂ =
tr Y ′V Z
tr Z ′V Z

, (36)

and the problem we need to solve is equivalent to the maximization of

ρ(Z) =
[tr Y ′V Z]2

tr Z ′V Z
. (37)

In order to maximize the function ρ(Z) we use the fractional programming technique of Dinkel-
bach (1967). Suppose Z̃ is our current best configuration. Define

η(Z, Z̃) = [tr Y ′V Z]2 − ρ(Z̃)tr Z ′V Z. (38)

If we find Z+ such that η(Z+, Z̃) > η(Z̃, Z̃) = 0, then ρ(Z+) > ρ(Z̃). Thus for global
convergence it is sufficient to increase η(Z, Z̃).
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We increase η(Z, Z̃) by block relaxation (De Leeuw 1994), i.e. we cycle through all zi, opti-
mizing over each of the zi in turn, while keeping the others fixed at their current best values.
Various different strategies are possible. We can perform a number of cycles updating Z, while
keeping ρ(Z̃) fixed at its current value. Or we could compute a new ρ(Z̃) after computing the
update of each single row zi of Z. It is unclear which strategy is best, and some numerical
experimentation will be useful. Expanding we find

η(Z, Z̃) = z′iuiu
′
izi + 2z′ihi + terms not depending on zi, (39)

where U = V Y and

hi = ui

 n∑
j 6=i

u′jzj

− ρ(Z̃)
n∑
j 6=i

vijzj . (40)

Differentiate and introduce a Lagrange multiplier θ for the side condition z′izi = 1. The
stationary equations are

(u′izi)ui + hi = θzi. (41)

Premultiplying both sides by z′i shows that if there are multiple solutions, we want the one
with the largest value of θ.

The stationary equations have the solution zi = −(uiu
′
i − θI)−1hi. Thus if we define

F(θ) = h′i(uiu
′
i − θI)−2hi (42)

we can find θ by solving the equation F(θ) = 1. Such equations, often called secular equations,
have been studied systematically in great detail in numerical mathematics, possibly starting
with Forsythe and Golub (1965); Spjøtvoll (1972). There are excellent reviews of secular
equation theory in Tao and An (1995) and of solvers in Conn, Gould, and Toint (2000,
Chapter 7).

Since we are dealing with a simple special case, we can actually solve the secular equation
quite simply. Define τi = u′iui, the projector Pi = uiu

′
i/τi and its orthogonal complement

Qi = I − Pi. The equation becomes

F(θ) =
pi

(τi − θ)2
+
qi
θ2

= 1, (43)

where pi = h′iPihi and qi = h′iQihi. We can find the solutions by solving the quartic equation

θ2pi + (τi − θ)2qi − θ2(τi − θ)2 = −θ4 + 2τiθ3 + (pi + qi − τ2
i )θ2 − 2τiqiθ + τ2

i qi = 0 (44)

for its largest real root.

This makes it possible to describe the behavior of the function F and to show where the
relevant roots are located. The plot in Figure 5.3 is typical. It has τi = 1. The function is
always positive, it has a horizontal asymptote at zero and two vertical asymptotes, one at zero
and the other at τi. Between 0 and τi it has its unique stationary value, a local minimum, at

θ̂ =
3
√
qi

3
√
qi + 3

√
pi
τi, (45)
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equal to

F(θ̂) =
( 3
√
pi + 3

√
qi)3

τ2
i

. (46)

Thus the equation F(θ) = 1 has one negative root and one root larger than τi. There may or
may not be two additional roots, depending on whether the value of the function at the local
minimum is smaller than or larger than one. Correspondingly, the quartic (44) has either two
real roots (and two complex conjugates) or four real roots (of which two could be equal).

5.4. Dual methods: CMDA

The dual method which is used in smacof is known as CMDA. It was proposed by Borg and
Lingoes (1979, 1980) and further discussed in Borg and Groenen (2005, Section 10.4). The
idea is to impose the restrictions directly on the distances and not on the configurations. This
makes the method more specific to MDS.

For Euclidean MDS, with points constrained on a circle or a sphere, Borg and Lingoes (1979)
introduce an extra point x0 into the MDS problem, and define the family of penalized loss
functions

σκ(X) = min
∆∈DL

σL(X,∆) + κ min
∆∈DC

σC(X,∆) (47)

The whole set D = DL ∪DC consists of all non-negative and hollow symmetric matrices that
satisfy the constraints. ∆ ∈ DL is the observed dissimilarity matrix and ∆ ∈ DL expresses
the side constraints. Correspondingly, we have two stress functions σL(X,∆) and σC(X,∆).
The non-negative quantity κ is a penalty parameter. If κ → ∞ the second term is forced to
zero, and we minimize the first term under the conditions that the second term is zero, i.e.



SMACOF in R 15

that the xi are on a sphere with center at x0 and with radius λ.

The CMDA approach has the advantage that it can be implemented quite simply by using the
standard Euclidean MDS majorization method. It has the usual disadvantage that we have
to select a penalty parameter, or a sequence of penalty parameters, in some way or another.
Moreover the Hessian of stress will become increasingly ill-conditioned for large penalties,
and convergence can consequently be quite slow.

The majorization algorithm for the penalty function (47) uses the iterations

X(k+1) = (V + κI)−1(V X(k) + κX̃(k)), (48)

where x̃(k)
i = λx

(k)
i /‖x(k)

i ‖. For large κ this means

X(k+1) ≈ X̃(k) +
1
κ
V (X(k) − X̃(k)), (49)

which indicates that convergence will tend to be slow.

The stress functions for additional quadratic surfaces are the following. We know that an
ellipse can be defined as the locus of all points that have equal sum of distances from two
focal points. Focal points can be chosen on the horizontal axis, at equal distances from the
origin. This means that we can fit and ellipse with CMDA by introducing two additional
points x0 and −x0 on the horizontal axis into our MDS problem, and minimize

σκ(X,λ) = σ(X) + κ

n∑
i=1

(d(xi, x0) + d(xi,−x0)− λ)2. (50)

The hyperbola is the locus of all points that have equal difference of distances from two focal
points. Thus, analogous to the case of the ellipse, we minimize

σκ(X,λ) = σ(X) + κ
n∑
i=1

(|d(xi, x0)− d(xi,−x0)| − λ)2. (51)

The parabola is the locus of all points that have equal distance to a line (the directrix ) and a
point (the focal point). The directrix can be chosen to be the horizontal axis. More generally,
for any conic section, the distance to the focal point must be a constant multiple of the
distance to the directrix. This multiple, the eccentricity, is equal to one for the parabola,
large than one for the hyperbola, and less than one for the ellipse.

Suppose x0 is the focal point, and xi is the projection of xi on the horizontal axis. Then we
must minimize

σκ(X,λ) = σ(X) + κ

n∑
i=1

(d(xi, x0)− λd(xi, xi))2. (52)

6. The R package smacof

So far there does not exist a comprehensive R package for MDS. The are functions in MASS
to perform classical MDS, Sammon mapping, and non-metric MDS. For the latter variant
there are also some functionalities in vegan (Oksanen, Kindt, Legendre, O’Hara, Henry, and
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Stevens 2007), labdsv (Roberts 2006), ecodist (Goslee and Urban 2007), and xgobi (Maechler
2005). Individual differences MDS is implemented in the SensoMineR (Husson and Le 2007)
package.

In the current version of smacof ellipsoids, parabolas, hyperbolas as well as geodesic distances
are not implemented. The main functions are smacofSym() for basic (symmetric) SMACOF,
smacofIndDiff() for three-way data, smacofConstraint() for SMACOF with external con-
straints, and, finally, smacofSphere.primal() and smacofSphere.dual() for sphere projec-
tions. Print, summary, and residual S3 methods are provided. The two-dimensional plot
options are the configuration plot, Shepard diagram, residual plot, and stress decomposition
diagram. The configuration plot is provided for three-dimensional solutions as well (static
and dynamic).

6.1. SMACOF for Ekman’s color data

Ekman (1954) presents similarities for 14 colors (wavelengths from 434 to 674 nm). The
similarities are based on a rating by 31 subjects where each pair of colors was rated on a
5-point scale (0 = no similarity up to 4 = identical). After averaging, the similarities were
divided by 4 such that they are within [0; 1].

We perform a two-dimensional basic SMACOF solution using smacofSym(). First, we trans-
form the similarities into dissimilarities by subtracting them from 1. Then we perform a
two-dimensional basic SMACOF and a quadratic SMACOF, projecting the configurations on
a sphere. Both computations are performed in a non-metric manner.

> library(smacof)

> ekman.d <- sim2diss(ekman, method = 1)

> res.basic <- smacofSym(ekman.d, metric = FALSE)

> res.sphere <- smacofSphere.primal(ekman.d, metric = FALSE)

> plot(res.basic, main = "Configurations Basic SMACOF")

> plot(res.sphere, main = "Configurations Sphere SMACOF")

The resulting configuration plots are given in Figure 1. For the nonmetric basic SMACOF
solution we see that the wavelength configurations are approximately circularly arranged.
Starting with the lowest wavelength we see that the pairs 434-445 and 465-472 correspond to
bluish, 490 to turqoise, the set of 504-555 to greenish, 584-610 to yellow-orange, and finally
628-674 to reddish. Since the color palette is commonly represented as circle, it is somewhat
natural to compute a two-dimensional (nonmetric) spherical SMACOF solution which can
be found on the right-hand side of Figure 1. Obviously, the configurations lie perfectly on a
circle with a radius λ = .0714.

6.2. Breakfast rating for rectangular SMACOF

As a metric unfolding example we use the breakfast dataset from Green and Rao (1972)
which is also analyzed in Borg and Groenen (2005, Chapter 14). 42 individuals were asked
to order 15 breakfast items due to their preference. These items are: toast = toast pop-up,
butoast = buttered toast, engmuff = English muffin and margarine, jdonut = jelly donut,
cintoast = cinnamon toast, bluemuff = blueberry muffin and margarine, hrolls = hard
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Figure 1: Configuration plots and color wavelengths.

rolls and butter, toastmarm = toast and marmalade, butoastj = buttered toast and jelly,
toastmarg = toast and margarine, cinbun = cinnamon bun, danpastry = Danish pastry,
gdonut = glazed donut, cofcake = coffee cake, and cornmuff = corn muffin and butter. For
this 42× 15 matrix we compute a rectangular SMACOF solution.

> data(breakfast)

> res.rect <- smacofRect(breakfast, itmax = 1000)

> res.rect

Model: Rectangular smacof
Number of subjects: 42
Number of objects: 15

Final stress value: 4945.132
Number of iterations: 114

> plot(res.rect, joint = TRUE, xlim = c(-10, 10))

> plot(res.rect, plot.type = "Shepard")

The configuration plot on the left hand side in Figure 2 generated by the method plot.smacofR()
represents the coordinates of the breakfast types and the rater jointly. First, let us focus on
the breakfast configurations. At the top and top-right we see a large toast cluster or, since
hard rolls are there too, we could characterize it also as bread cluster. At the bottom we
can identify a muffin cluster including the cinnamon toast. Moving more to the right the
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Figure 2: Joint configuration plot/Shepard diagram for breakfast data.

cinnamon bun of the coffe cake are grouped together. Finally, at the top-right corner the jelly
and glazed donut form a donut cluster with the danish pastry close to them.

Examining the raters we see, from a general perspective, that the individuals lie pretty much
in the center of the configuration plots. This is reasonable since each rater was supposed
to rate each breakfast type on an ordinal level. An interesting group of individuals (raters
32, 36, 37, 39) appears in the toast cluster. Looking closer at their ratings in the data file,
their preferences in general are very similar, and, of course, the toasts are among their first
preferences.

The Shepard diagram on the right-hand side in Figure 2 represents the observed distances on
the absciassae and the resulting configuration distances based on the final SMACOF solution
on the ordinate. An isotonic regression is fitted through the corresponding pairs of observa-
tions. The Shepard diagram is useful for the goodness-of-fit examination of the results.

6.3. Three-way SMACOF based on bread ratings

The data set we provide for three-way SMACOF is described in Bro (1998). The raw data
consist of ratings of 10 breads on 11 different attributes carried out by 8 raters. Note that
the bread samples are pairwise replications: Each of the 5 different breads, which have a
different salt content, was presented twice for rating. The attributes are bread odor, yeast
odor, off-flavor, color, moisture, dough, salt taste, sweet taste, yeast taste, other taste, and
total. First we fit an unconstrained solution followed by a model with identity restriction.

> data(bread)

> res.uc <- smacofIndDiff(bread, itmax = 1000)

> res.uc

Model: Three-way SMACOF
Number of objects: 10
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Metric stress: 0.207133

Unconstrained stress 0.2071321
Number of iterations: 251

> res.id <- smacofIndDiff(bread, constraint = "identity", itmax = 1000)

> res.id

Model: Three-way SMACOF
Number of objects: 10

Metric stress: 0.5344036

Constrained stress 0.5344026

Unconstrained stress 0.3987125
Number of iterations: 70

> plot(res.uc, main = "Group Configurations Unconstrained", xlim = c(-0.15,

+ 0.1))

> plot(res.id, main = "Group Configurations Identity", xlim = c(-0.2,

+ 0.15))

> plot(res.uc, plot.type = "resplot", ylim = c(-0.4, 0.4), main = "Residuals Unconstrained")

> plot(res.id, plot.type = "resplot", ylim = c(-0.4, 0.4), main = "Residual Constrained")

The identity restriction leads to the same configurations across the raters. The stress value
for the identity solution is considerably higher than for the unconstrained solution. The
unconstrained solution reflects nicely the bread replication pairs. Their configurations at
the top of Figure 3 are very close to each other. The residual plots on the bottom show a
descending trend for both solutions. Though, for unconstrained SMACOF they are closer to
the horizontal 0-line.

6.4. Constrained SMACOF on kinship data

As an example for SMACOF with external constraints we use a data set collected by Rosenberg
and Kim (1975). Based on their similarity, students sorted the following 15 kinship terms into
groups: aunt, brother, cousin, daughter, father, granddaughter, grandfather, grandmother,
grandson, mother, nephew, niece, sister, son, and uncle. Thus, the data set has some obvious
”pairs” such as sister-brother, daughter-son, mother-father etc.

Based on this grouping they created a dissimilarity matrix according to the following rule: 1
if the objects were sorted in different groups, 0 for the same group. Based on these values we
can compute the percentages of how often terms were not grouped together over all students
(see Borg and Groenen 2005, p. 83).

As external scales we have gender (male, female, missing), generation (two back, one back,
same generation, one ahead, two ahead), and degree (first, second, etc.) of the kinship term.
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Figure 3: Group configuration and residual plots for bread data.

Using these external scales we fit a two-dimensional SMACOF solution with linear constraints
and an ordinary smacof solution without covariates.

> data(kinshipdelta)

> data(kinshipscales)

> res.sym <- smacofSym(kinshipdelta, itmax = 1000)

> res.lin <- smacofConstraint(kinshipdelta, constraint = "linear",

+ external = kinshipscales, itmax = 1000)

> plot(res.sym, main = "Configuration Plot SMACOF")

> plot(res.lin, main = "Configuration Plot SMACOF Constraint")

> plot(res.sym, plot.type = "stressplot", main = "Stress Decomposition SMACOF",

+ xlim = c(0, 12), ylim = c(4, 12))
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> plot(res.lin, plot.type = "stressplot", main = "Stress Decomposition SMACOF Constraint",

+ xlim = c(0, 12), ylim = c(4, 12))

In Figure 4 we see clearly the effect of the external scale on the SMACOF solution. The left
hand side, i.e. the ordinary SMACOF solution, shows the typical circular alignment of the
objects. Especially in negative x-direction the natural pairs such as sister-brother, daughter-
son, and mother-father are quite distant from each other. The stress decomposition charts
show the proportions of each object to total stress.

The plot for the constrained solution shows a far more consistent picture. All these natural
pairs have almost the same x-coordinates. The distance in y-direction reflects a gender effect
(males are always above females). Cousin is somewhat apart from the other star-like con-
figurations. This makes sense since cousin, which is genderless (covariate gender is missing),
consequently does not have any natural pair.
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Figure 4: Configuration plots without/with external scales.
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6.5. 3D spherical SMACOF

Cox and Cox (2001) took data from the New Geographical Digest in 1986 on which countries
traded with other countries. For 20 countries the main trading partners are dichotomously
scored (1 = trade performed, 0 = trade not performed). Based on this dichotomous matrix the
dissimilarities are computed using the Jaccard coefficient. The most intuitive MDS approach
is to project the resulting distances to a sphere which gives us a “trading globe”. In this
example we use the dual algorithm for spherical projection.

> res.sphere <- smacofSphere.dual(trading, ndim = 3, itmax = 1000)

> plot3d(res.sphere, plot.sphere = FALSE)

Figure 5: 3D sphere projection of trading data.

Note that if we apply the dual algorithm, the first row in the configuration object res.sphere$conf
corresponds to the center of the sphere. However, on the left circumference of the globe we
have a cluster of Commonwealth Nations (New Zealand, Australia, Canada, India). China is
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somewhat separated which reflects its situation in 1986. For this time, the cluster of the com-
munist governed countries USSR, Czechoslovakia, and Eastern Germany is also reasonable.
Around the “south pole” we have Japan, USA, West Germany, and UK.

7. Discussion

In this final section we will discuss some relations to other models in this special issue as well
as some future extensions of the package. The homals package allows for the computation
of various Gifi models (Gifi 1990). Meulman (1992) incorporates the MDS approach into
Gifi’s optimal scaling model family. Takane, Young, and Leeuw (1977) developed ALSCAL
(Alternating Least Squares SCALing) for stress minimization can be regarded as an alternative
to majorization. Note that Gifi mainly uses ALS (alternating least squares) to minimize the
corresponding loss functions. Especially, by looking at the restricted models in Section 3.2
the similarity between SMACOF and the Gifi approache becomes obvious (see also Borg and
Groenen 2005, p. 233). A general discussion can be found also in Cox and Cox (2001, Chapter
11).

MDS is also related to correspondence analysis (CA) which, within the context of this special
issue, is provided by the package anacor. CA is basically a two-mode technique, displaying
row and column objects. From this point of view CA is related the unfolding MDS, or, in our
framework, to rectangular SMACOF from Section 3.4.

Similar to CA, so far the smacof package can only handle positive dissimilarities. In subse-
quent versions we will allow also for negative dissimilarities. Furthermore, projections onto
ellipsoids, hyperbolas and parabolas will be possible. The formal groundwork was given in
Section 5.4. This also includes the implementation of geodesic distances from Section 5.2.

Furthermore, we can think of implementing additional plot types as given in Chen and Chen
(2000) and boosting the majorization with various accelerators as for instance via sharp
quadratic majorization.
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