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Generalized-Kohn-Sham (GKS) orbital energies obtained self-consistently from

the random phase approximation energy functional with semicanonical projection

(spRPA) were recently shown to rival the accuracy of GW quasiparticle energies

for valence ionization potentials. Here we extend the scope of GKS-spRPA corre-

lated one-particle energies from frontier-orbital ionization to core orbital ionization

energies, which are notoriously difficult for GW and other response methods due to

strong orbital relaxation effects. For a benchmark consisting of 23 1s core electron

binding energies (CEBEs) of second-row elements, chemical shifts estimated from

GKS-spRPA one-particle energies yield mean absolute deviations from experiment

of 0.2 eV, which is significantly more accurate than standard GW and comparable

to ∆ self-consistent field theory without semi-empirical adjustment of the energy

functional. For small ammonia clusters and cytosine tautomers, GKS-spRPA based

chemical shifts capture subtle variations in covalent and non-covalent bonding envi-

ronments; GKS-spRPA 1s CEBEs for these systems agree with equation-of-motion

coupled cluster singles and doubles and ADC(4) results within 0.2-0.3 eV. Two per-

turbative approximations to GKS-spRPA orbital energies, which reduce the scaling

from O(N6) to O(N5) and O(N4), are introduced and tested. We illustrate the ap-

plication of GKS-spRPA orbital energies to larger systems by using oxygen 1s CEBEs

to probe solvation and packing effects in condensed phases of water. GKS-spRPA

predicts a lowering of the oxygen 1s CEBE of approximately 1.6-1.7 eV in solid and

liquid phases, consistent with liquid-jet XPS and gas phase cluster experiments. The

results are rationalized by partitioning GKS-spRPA electron binding energies into

static, relaxation, and correlation parts.

a)Electronic mail: vamsee.voora@tifr.res.in
b)Electronic mail: filipp.furche@uci.edu
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I. INTRODUCTION

The change in core electron binding energies (CEBEs) due to changes in the local chem-

ical environment, also known as the chemical shift, provides valuable information about

the electronic structure and chemical bonding of atoms and molecules in gas, liquid, and

solid phases.1 Experimentally, molecular CEBEs are accessible by X-ray photoelectron spec-

troscopy (XPS); recent advances in high vapor pressure liquid-jet experiments have extended

the scope of XPS measurements to solvents such as water and ammonia.2–4 Chemical shifts

of solvated molecules in liquid water provide important clues for concentration profiles near

the vapor-liquid interface.5–8

Ab initio calculation of core ionization potentials provides a means to predict CEBEs and

rationalize chemical shifts.9 Theoretical modeling can help analyze the experimentally mea-

sured peaks, which are often broadened due to vibrational effects and sometimes unresolved

due to background scattering processes; the vertical ionization energy is then interpreted

using various fitting schemes.10 Compared to modeling valence electron ionization poten-

tials, core ionization poses special challenges due to large relaxation effects, high ionization

energies, and strong relativistic effects for heavy nuclei.11–14 The widely used delta (∆) meth-

ods obtain CEBEs from separate iterative and/or self-consistent total energy calculations

of the (N)-electron ground state and an (N − 1)-electron core excited state; for example,

∆SCF, refers to the use of Hartree–Fock (HF) self-consistent field (SCF) theory for individ-

ual energy calculations.15,16 In addition to one-electron electrostatic and exchange effects,

∆ methods include relaxation effects, which are a significant fraction of the CEBE and the

most important contribution to the chemical shifts.15,16 Correlation effects can be included

by using various density functional approximations (DFAs) or post-HF methods to compute

the two states.17–19
∆SCF and ∆DFAs have a low computational cost of O(N3), but suffer

from variational collapse and convergence issues20 in the absence of additional constraints.

Direct or response methods compute the CEBEs using the energy functional of N -electron

system only, and hence avoid similar convergence-related issues as ∆ methods. Direct ap-

proaches such as the algebraic diagrammatic construction (ADC)21 and equation-of-motion

coupled cluster (EOM-CC),22,23 include high-order correlation effects.24–26 However, the

steep O(N7) computational cost of ADC(4) hampers large-scale applications, even with ad-

ditional approximations such as core-valence separation (CVS)24,27. Quasiparticle methods
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based on Hedin’s equations28,29 use the one-body Green’s function as basic variable. With an

O(N5) scaling, G0W0 is the simplest among the quasiparticle methods but requires nonlin-

ear eigenvalue iterations. The linearized-G0W0 approach (lin-G0W0)), avoids the iterations,

but produces errors in CEBEs of the order of several eVs.30,31 When based on a noninter-

acting Kohn-Sham (KS)32 reference determinant, G0W0 and lin-G0W0 may be viewed as

post-KS approaches. As such, they depend on the KS potential and the density matrix,

which can render the results sensitive to the choice of a specific approximate functional.

While semi-empirical adjustment of the hybrid exchange mixing parameter was found to

substantially improve CEBEs from lin-G0W0,31 the optimum amount of hybrid exchange

varies from 35–40% for valence ionization33,34 to 50% or more for core ionization.31 This

initial state dependence is remedied to some extent by self-consistent GW methods such as

quasiparticle GW 35 and self-consistent GW ,28 but apart from the overhead for carrying out

multiple iterations, these nonlinear iterative methods are limited by pervasive initial-state

dependence and spurious solutions.36–38

On the other hand, effective one-particle theories such as the HF method, and KS and

generalized KS (GKS)39 approaches to density functional theory (DFT) provide one-particle

energies as eigenvalues of a self-adjoint, energy-independent single-particle Hamiltonian. KS

approaches use a local or semi-local potential in the single-particle Hamiltonian while GKS

approaches use a non-local one. These one-particle-energies or orbital-energies, which can

be related to derivatives of an energy functional w.r.t occupation numbers of the one-particle

states,40,41 can provide meaningful estimates of ionization energies directly. The meaning of

orbital-energies in HF theory is well established through the Koopmans theorem (KT) which

states that all orbital energies are related to approximate IPs; correlation and relaxation

effects are neglected in this approach.42 While lowest ionization energies are well estimated

using HF orbital energies, due to cancellation of correlation and relaxation effects, core-

orbital energies overestimate the actual CEBEs by tens of eVs due to large relaxation effects

compared to correlation effects. Within the KS and GKS schemes the highest occupied

molecular orbital (HOMO) energy is related to negative of the ionization potential.43,44 In

addition, within the GKS scheme, the lowest unoccupied molecular orbital energy is related

to negative of electron affinity.41,45 For both schemes, the relevance of other orbital energies

w.r.t ionization potentials is unclear. Core orbital energies from semi-local functionals, such

as PBE46 in the KS framework, and hybrid functionals, such as B3LYP47,48 in the GKS
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framework, underestimate the CEBEs by tens of eVs.30,49 The orbital energy estimation

from HF, PBE and B3LYP energy functionals requires only O(N3)steps.

Recently, a GKS scheme was applied to semicanonical projected random phase ap-

proximation (spRPA) energy functional, which includes non-local exact-exchange and

correlation.50 The orbital energies from GKS-spRPA were found to approximate the frontier

ionization potentials and fundamental gaps of atoms and molecules more accurately than

semi-local DFAs or G0W0 and correct the spurious behavior of semi-local DFAs for negative

ions. Here we assess the accuracy of GKS-spRPA orbital energies for CEBEs. A partitioning

scheme for analyzing the chemical shifts is proposed to core-orbital energies in GKS-spRPA,

and helps rationalize its applicability for CEBEs.

In Sec. II, we summarize the GKS-spRPA method and present a diagonal-approximation

to GKS-spRPA to reduce the computational cost as well as a partitioning scheme for analyz-

ing different contributions to GKS-spRPA orbital energies. Computational details are given

in Sec. III, followed by benchmarks for CEBEs and chemical shifts based on experimental

results and correlated wavefunction methods in Sec. IV A. In Sec. IV B, we demonstrate

how GKS-spRPA CEBEs can be used in conjunction with XPS measurements to probe the

local chemical environment of water. Conclusions are presented in Sec. V.

II. THEORETICAL BACKGROUND

A. Generalized Kohn–Sham semicanonical projected random phase

approximation

In the GKS-spRPA method, the spRPA energy functional

EspRPA[D, H̃KS
0 [D]] = EHF[D] + EC spRPA[D, H̃KS

0 [D]] (1)

is minimized with respect to the non-interacting GKS density matrix

D =
∑

λ

Pλnλλ′Pλ. (2)

D is constrained to be normalized to N electrons and have eigenvalues between 0 and 1. Pλ

denotes orthogonal projectors belonging to blocks of KS orbitals with degenerate occupation

numbers, and nλλ′ = nλδλλ′ is diagonal, with nλ denoting occupation number matrices.50
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For integer KS occupations nλ has eigenvalues nλ = 1, 0. The semicanonical projected (sp)

KS Hamiltonian

H̃KS
0 =

∑

λ

PλHKS
0 Pλ, (3)

contains only the diagonal (λ = λ′) blocks of the KS Hamiltonian

HKS
0,ij = hij +

∑

pq

VipjqDpq + VXC
ij [D] . (4)

h is the one-electron Hamiltonian, the second term denotes the Hartree or Coulomb potential

and VXC is the exchange-correlation potential. The subscripts i, j, .. denote orbital indices.

V is the matrix of two-electron integrals

Vpqrs =
∫ ∫

d3r1d3r2
φ∗

p(r1)φ∗
q(r2)φr(r1)φs(r2)

|r1 − r2|
. (5)

The first term in Eq. 1 is the HF energy evaluated at a given density matrix and the second

term is the RPA correlation energy51–55

EC spRPA =
1

2
ℑ

∫ ∞

−∞

dω

2π
〈ln(1 − Π0(ω)V) + Π0(ω)V〉. (6)

Π0(ω) denotes the (time-ordered) non-interacting Kohn-Sham (KS) propagator; brackets

stand for traces. Π0(ω) factorizes,56

Π0 pqrs(ω) =
∫ ∞

−∞

dω′

2πi
G0 ps(ω

′)G0 qr(ω
′ − ω), (7)

into a product of one-particle semicanonical KS Green’s functions

G0(ω) = n1/2(ω − H̃0 − iη)−1n1/2

+ (1 − n)1/2(ω − H̃0 + iη)−1(1 − n)1/2; (8)

where the subscripts p, q, ... represent general orbital indices, and η is small positive contour

distortion.

Requiring stationarity of the spRPA energy functional under variations of D leads to the

canonical GKS SCF equations

HspRPA[D]φp = εGKS-spRPA
p φp, (9)

which are solved iteratively. φp and ǫGKS-spRPA
p are the one-particle GKS-spRPA orbitals

and orbital energies, and HspRPA[D] is the density matrix derivative of the RPA energy

functional

HspRPA[D] =
δEspRPA[D]

δD
= HHF[D] + VC spRPA[D] (10)
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where, the first term is the Fock matrix, and the second term is the RPA correlation potential

VC spRPA[D] =
∫ ∞

−∞

dω

2π
Σ

C(ω)
δG0

δD
. (11)

The functional derivative of G0 is a rank-four tensor, and its properties are described in

Appendix B of Ref. 50. The frequency-dependent RPA correlation self-energy is given as

Σ
C(ω) = −

∫ ∞

−∞

dω

πi
WC(ω′)G0(ω

′ − ω) . (12)

WC(ω) = −δEC RPA/δΠ0(ω), is the frequency (ω)-dependent screened-Coulomb interac-

tion matrix

WC(ω) = V[1 − Π0(ω)V]−1
Π0(ω)V . (13)

The inverse matrix in Eq. 13 is the frequency-dependent dielectric screening matrix57

κ(ω) = 1 − Π0(ω)V. (14)

B. Diagonal approximation to GKS-spRPA

HspRPA[D] has the following block-matrix structure

HspRPA[D] =







HspRPA
11 HspRPA

10

HspRPA
01 HspRPA

00





 . (15)

The underlined subscripts of the blocks correspond to occupation-number degeneracy. The

occupied-virtual blocks, HspRPA
10 and HspRPA

01 , correspond to the orbital-rotation gradient,

whereas the HspRPA
11 and HspRPA

00 blocks are relevant to the ionization potentials and electron

affinities, respectively.

At the stationarizing solution, the occupied-virtual block vanishes, thus decoupling the

occupied-occupied and virtual-virtual (vv) blocks. The computational cost for evaluating

the complete oo block is O((Nocc)3Nvirt(Naux)2) within the resolution-of-the-identity (RI)

approximation, and imaginary frequency integration.54 Naux, Nocc and Nvirt denote the

total number of auxiliary functions, occupied and virtual orbitals, respectively. For frequency

integration, we use Clenshaw-Curtis quadrature,58 and the number of quadrature points is

denoted by ng. The diagonalization of the oo block provides orbital energies that correspond

to all principal ionization energies. Since we are interested in the the core-ionization energies

7
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only, which are well-separated from other valence ionization energies, we can assume a

diagonal approximation to the occupied-occupied (and virtual-virtual) blocks

(Hd-spRPA
λλ )ij = δij(H

spRPA
λλ )ij . (16)

The resulting approximation, called d-GKS-spRPA, has a computational cost of O((Nocc)2Nvirt(Naux)2)

for computing a single orbital energy of interest, which is an order of magnitude cheaper

than computing the full ionization spectrum in GKS-spRPA.

C. Interpretation of one-particle energies from GKS-spRPA

From equations (1),(9) and (15), the GKS-spRPA (or d-GKS-spRPA) orbitals energies

has three main components

ε
GKS-spRPA
i = HspRPA

ii [D]

= HHF
ii [D] + VC,r

ii [D] + VC,s
ii [D] . (17)

where,

HHF[D] =
δEHF[D]

δD

VC,r[D] =
δEc spRPA[D, H̃KS

0 [D]]

δD

VC,s[D] =
δEc spRPA[D, H̃KS

0 [D]]

δH̃KS
0 [D]

δH̃KS
0 [D]

δD
, (18)

HHF[D] is the HF one-particle Hamiltonian, VC,r and VC,s are the response and static

portions of the RPA correlation-potential.

The HF Hamiltonian

HHF
ii = hii +

Nocc
∑

j=1

(Vijij − Vijji) (19)

accounts for the static (or frozen) Coulomb and exchange effects that the electron in orbital

i “feels” due to all other other electrons. It is the dominant contribution to the CEBEs but

not necessarily to chemical shifts as discussed below.

VC,r[D] results from the functional derivative of EC RPA with respect to D at fixed H̃KS
0

VC,r
ii =

∫ ∞

−∞

dω

π

∑

p

WC
ippi(ω)G0 pp(ω + ǫ̃i) . (20)
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ǫ̃i are the eigenvalues of H̃KS
0 . This term accounts for response of the system due to ionization

of an electron. The response effects can be further separated into orbital-correlation (Voc)

and orbital-relaxation (Vor) components

VC,r
ii = Voc

ii + Vor
ii , (21)

where,

Voc
ii =

∫ ∞

−∞

dω

π

∑

p 6=i

WC
ippi(ω)G0 pp(ω + ǫ̃i)

Vor
ii =

∫ ∞

−∞

dω

π
WC

iiii(ω)G0 ii(ω + ǫ̃i) . (22)

Our rationale for this partitioning is that upon neglecting screening effects, i.e imposing

κ(ω) = 1, we obtain the familiar second-order correlation and relaxation contributions from

Green’s function theory59–61

V
oc(2)
ii =

∫ ∞

−∞

dω

π

∑

p 6=i

W
C(2)
ippi (ω)G0 pp(ω + ǫ̃i)

V
or(2)
ii =

∫ ∞

−∞

dω

π
W

C(2)
iiii (ω)G0 ii(ω + ǫ̃i)

WC(2) = VΠ0(ω)V . (23)

Thus Voc and Vor are screened versions of their second-order counterparts. Vor recovers

most of the relaxation obtained from ∆ approaches, and its computational cost is only

O(NoccNvirt(Naux)2) i.e. an order of magnitude less than that of the complete correlation-

potential within d-GKS-spRPA.

VC,s represents additional static corrections to the potential due to correlation effects,

that is “felt” by an electron in the ith orbital

VC,s
ii [D] =

Nocc
∑

j=1

TijFHXC
ji . (24)

FHXC = δH̃KS
0 /δD is the semi-local Hartree-exchange-correlation kernel. T = δEc spRPA/δH̃KS

0

is the spRPA correlation density matrix,50,62 whose matrix elements in the semicanonical

basis are given by

Tij =
∫ ∞

−∞

dω

2π

1

ω − ε̃i − iη
Σ

C
ij(ω)

1

ω − ε̃j − iη
. (25)

9

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
16

90
8



This term is similar to the static part of the self-energy in Green’s function methods such

as ADC(4).63–65
∆SCF, which is missing correlation effects, and GW approximation do not

account for this term.50 The resulting partitioning of the orbital energies,

ε
GKS-spRPA
i = HHF

ii [D] + Vor
ii [D] + Voc

ii [D] + VC,s
ii [D] , (26)

will be used to analyze and understand the variations in CEBEs for various cases below. For

the case of water-clusters, we use the orbital-relaxation-only approximation, that neglects

Voc and VC,s terms, and has a computational scaling of O(NoccNvirt(Naux)2).

Unlike post-KS approaches, the GKS-spRPA method is a variational energy minimization

technique that removes dependence on the initial state. It however is not functional self-

consistent,50 and hence has a dependency on the choice of the KS potential via H̃KS
0 . Our

approach therefore involves two approximations: (i) the choice of KS potential, H̃KS
0 , and

(ii) the choice of the energy functional for which we choose spRPA. Additional dependence

on basis-sets, ng and η parameters is investigated below.

III. COMPUTATIONAL DETAILS

The GKS-spRPA and d-GKS-spRPA methods were implemented in a local version of

TURBOMOLE66 and are scheduled for a future release. The PBE,46 BHLYP,67 TPSS,68

and lin-G0W0 calculations were carried out using TURBOMOLE V7.3.69,70 All calculations

were carried out using m5 grids71 for numerical integration of the KS exchange-correlation

potential. Relativistic corrections, tend to be a constant correction for a given element and

hence contribute to absolute CEBEs but do not affect the chemical shifts.72 Except when

explicitly stated, all reported CEBEs are non-relativistic. For ammonia clusters, the geome-

tries were obtained from Ref. 73. For the small molecule testset and cytosine tautomers,

the geometries were optimized using PBE functional and def2-TZVPP basis-sets. For geom-

etry optimization calculations, an energy convergence criterion of 10−7 a.u. and a gradient

convergence of 10−3 a.u. were used. For GKS-spRPA energy calculations, all electrons were

correlated and an energy convergence criterion of 10−7 a.u. was used.

To determine the sensitivity of chemical shifts on the choice of basis-sets, DFAs for KS

potential, η and ng, we analyzed the core orbital energies from d-GKS-spRPA for a set

of molecules shown in Table I. Use of def2-TZVPP, def2-TZVPPD, def2-QZVPP,74 and a
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modified def2-TZVPP basis-sets where the two tight 1s functions are uncontracted, led to

MAEs of 0.2 eV, 0.2 eV, 0.3 eV and 0.2 eV, respectively (see SI for further details). Similarly,

use of aug-cc-pVTZ and aug-cc-pVQZ75,76 basis-sets leads to identical MAEs of 0.2 eV. Thus,

the choice of basis-sets leads to variations of 0.1 eV in MAE, which is less than the method

error. For our studies, which are mainly focused on chemical shifts, we therefore choose to

use def2-TZVPP basis-sets, except for large water cluster where a combination of basis-sets

is used. Finally, we analyzed the dependence of CEBEs and chemical shifts on the choice of η

and ng. In general, all ǫ
GKS-spRPA
i values need to be carefully converged w.r.t η and ng. For a

given η value, we found that for cases with nearly degenerate core-orbital energies required a

larger number of grid points than non-degenerate cases. For example, with η = 0.01 a.u., to

converge ǫ
GKS-spRPA
i to within 0.01 eV, N2 and CO2 required about 400 grid points whereas

the non-degenerate cases, i.e. all other molecules in Table I, required only 60, see SI.

IV. RESULTS AND DISCUSSION

A. Benchmark calculations

1. Small molecules

To test the accuracy of GKS-spRPA and d-GKS-spRPA methods, CEBEs and chemical

shifts were computed for a small set of molecules for which accurate experimental data were

available, see Table I. All calculations were carried out using the def2-TZVPP basis sets. We

found that the diagonal approximation to GKS-spRPA changes the CEBEs by <0.01 eV,

hence the remaining assessment will be based on the computationally cheaper d-GKS-spRPA

method. To analyze the impact of choice of potential, we report the results d-GKS-spRPA

method using PBE and TPSS potentials. For comparison, lin-G0W0 results based on three

different functionals — PBE, TPSS, and BHLYP — are also reported. For CEBEs, d-GKS-

spRPA based on the PBE potential has a mean absolute error (MAE) of 0.2 eV, which is

an order of magnitude less than that of the lin-G0W0 method using PBE (MAE = 7.9 eV).

Using TPSS potential, the MAEs in CEBEs do not change for d-GKS-spRPA but the errors

for lin-G0W0 reduce by 1.2 eV. The strong dependence of lin-G0W0 on the reference orbitals

is further exemplified by the BHLYP results showing a dramatic reduction of the MAE

to 0.4 eV; BHLYP contains 50% hybrid exchange, which seems to be optimal for CEBEs
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TABLE I. Core (1s) electron binding energies (eV) using lin-G0W0, and core orbital energies from

d-GKS-spRPA, and GKS-spRPA methods. The mean absolute errors (MAEs) and mean signed

errors (MSEs) for non-relativistic CEBEs, CEBEs with relativsitic corrections and chemical shifts

w.r.t experimental reference values (Ref.) are also shown. The MSEs are computed as the difference

between theoretical and experimental values. For chemical shifts, N(1s) of NH3, O(1s) of OCS,

B(1s) of BCl3 and C(1s) of HCN are taken as reference. All calculations were carried out using

def2-TZVPP basis sets. For d-GKS-spRPA calculations we used η = 0.01 a.u and ng = 400; PBE

and TPSS potential based results are reported. For lin-G0W0 calculations, we report the results

for PBE, TPSS and BHLYP starting points.

Moleculea lin-G0W0 d-GKS-spRPA Ref.

PBE TPSS BHLYP PBE TPSS

BCl3 −194.10 −195.18 −200.32 −199.57 −199.72 −199.877

BF3 −197.80 −198.65 −202.88 −202.28 −202.43 −202.877

HCN −287.02 −288.08 −293.67 −293.33 −293.48 −293.578

CH3CN −286.39 −287.61 −293.03 −292.80 −292.96 −292.979

CH3CN −286.25 −287.23 −293.01 −292.62 −292.77 −292.679

OCS −288.29 −289.43 −296.43 −295.44 −295.58 −295.280

CO2 −291.25 −292.24 −298.44 −297.45 −297.58 −297.781

CO −289.67 −290.76 −296.40 −295.91 −296.08 −296.282

H2CO −288.14 −289.32 −295.01 −294.62 −294.79 −294.578

Cl2CO −289.83 −290.93 −297.58 −296.66 −296.79 −296.878

NH3 −397.96 −399.20 −405.73 −405.77 −405.93 −405.683

NF3 −406.68 −407.86 −415.72 −414.64 −414.79 −414.283

N2 −402.11 −403.24 −410.07 −409.73 −409.88 −409.983

N2 −402.15 −403.29 −410.14 −409.72 −409.87 −409.983

HCN −398.34 −399.60 −407.02 −406.75 −406.91 −406.883

ClCN −397.39 −398.76 −406.75 −406.29 −406.45 −406.584

CH3CN −396.83 −398.17 −405.96 −405.69 −405.86 −405.679

OCS −529.22 −530.80 −540.52 −540.22 −540.39 −540.380

CO2 −531.34 −532.71 −541.28 −541.03 −541.20 −541.381

CO2 −531.34 −532.71 −541.28 −541.19 −541.35 −541.381

CO −532.73 −534.00 −542.13 −542.25 −542.42 −542.682

H2CO −529.18 −530.59 −539.22 −539.34 −539.55 −539.578

Cl2CO −528.66 −530.22 −539.84 −539.56 −539.74 −539.778

CEBEs

MSE 7.9 6.7 −0.3 0.1 −0.1

MAE 7.9 6.7 0.4 0.2 0.2

CEBEs (with relativistic corrections) b

MSE 7.8 6.6 −0.4 0.0 −0.2

MAE 7.8 6.6 0.4 0.2 0.3

Chemical shifts

MSE 0.0 0.0 −0.1 0.1 0.1

MAE 0.5 0.5 0.4 0.2 0.2

a The reported CEBEs and chemical shifts correspond to the atoms in bold
b Relativisitic corrections of −0.06 eV, −0.13 eV, −0.25 and −0.45 eV were used for B, C, N, and O (1s)
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of second-row elements.31 However, with an MAE of 0.2 eV, d-GKS-spRPA performs even

better without any semi-empirical adjustments to the energy functional. For d-GKS-spRPA,

the change of potential from PBE to TPSS has no affect on the MAEs. For chemical shifts,

d-GKS-spRPA maintains consistent accuracy with almost identical mean signed and mean

absolute deviations for PBE and TPSS functionals, while lin-G0W0 has MAE of 0.5, 0.5 and

0.4 eV for PBE, TPSS, and BHLYP functionals, respectively. ∆SCF produces a MAE of 0.38

eV for CEBEs of organic molecules while ∆DFAs have MAE errors in the range of 0.16–0.24

eV depending on the choice of DFA.85 The quality of chemical shifts from GKS-spRPA is

thus similar to or better than ∆ methods and lin-G0W0. Inclusion of relativistic corrections

based on ∆SCF values,72 changes the mean errors for CEBEs by ≤ 0.1 eV.

2. Ammonia clusters

-430

-420

-410

-400

-390

-380

-370

NH
4 +

NH
4 +

..NH
3

NH
4 +

..NH
3

NH
3

NH
3 ..NH

3

NH
3 ..NH

3

NH
2 -

NH
2 -..NH

3

NH
2 -..NH

3

C
E

B
E

 (
eV

) 

HHF

HHF + Vor

HHF + Vor + Voc

HHF + Vor + Voc + VC,s

EOM-IP-CCSD-S(D)

FIG. 1. N(1s) core-electron binding energies for ammonia clusters. The reported ionization po-

tentials correspond to the atoms in bold. For d-GKS-spRPA calculations, we used PBE potential,

def2-TZVPP basis sets, m5 grids, η = 0.01 a.u and ng = 400. The molecular structures and

EOM-IP-CCSD-S(D) values were taken from Ref. 73.

To further benchmark d-GKS-spRPA approach, we studied small ammonia clusters in

different protonation states for which reference EOM-IP-CCSD-S(D) values73 are available,

see Fig. 1 and Table. II. Here the variations in CEBEs occur via changes in covalent

and non-covalent effects. The former effect is due to changes in protonation states and
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the latter due to clustering. The trends in reference CEBEs are adequately described by

the HHF component of the GKS-spRPA Hamiltonian, however the MAE for chemical shifts

is 1.23 eV, see Table II. The inclusion of remaining three components of the GKS-spRPA

Hamiltonian reduces the MAE in chemical shifts to 0.26 eV while maintaining the trends.

Of the three components, Vor was the most important in reducing the MAE in chemical

shifts. This study shows that d-GKS-spRPA adequately captures the chemical shifts due to

variations in intramolecular- and intermolecular-bonding environments. Changing the KS

potential from PBE to TPSS changes the chemical shifts by < 0.02 eV (see Table II and SI).

TABLE II. The N(1s) chemical shifts (in eV) of ammonia clusters using d-GKS-spRPA orbital

energies. Contributions from HHF (HF), HHF + Vor (+OR), and HHF + Vor + Voc (+OC) to d-

GKS-spRPA chemical shifts are also reported. MSE and MAE for the chemical shifts in each case

are shown; the MSE is computed as the difference between theoretical and reference (Ref.) values

obtained from EOM-IP-CCSD-S(D) method.73 def2-TZVPP basis-sets, PBE potential, ng = 400,

η = 0.01 a.u. and m5 grids were used for d-GKS-spRPA calculations. The molecular geometries

reported in Ref. 73 were used.

Moleculea HF +OR +OC d-GKS-spRPA Ref.73

NH+
4 0.00 0.00 0.00 0.00 0.00

NH+
4 ..NH3 2.42 3.01 3.02 3.02 3.20

NH+
4 ..NH3 5.05 5.96 5.98 5.89 5.97

NH3 11.02 11.59 11.61 11.55 11.61

NH3..NH3 11.03 11.82 11.84 11.77 12.27

NH3..NH3 11.30 12.08 12.11 12.03 12.53

NH−

2 21.00 22.37 22.42 22.30 22.69

NH−

2 ..NH3 19.76 21.78 21.84 21.59 21.78

NH−

2 ..NH3 17.10 18.37 18.40 18.36 18.43

MSE −1.23 −0.19 −0.16 −0.25

MAE 1.23 0.19 0.17 0.25

a The reported chemical shifts correspond to the atoms in bold
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3. Tautomers of Cytosine

TABLE III. C(1s) CEBEs (in eV) of cytosine tautomers using d-GKS-spRPA, CVS-ADC(4) and

experimental (Expt.) values. Only six resolved features are present in the experimental C(1s)

spectrum.86

d-GKS-spRPAa CVS-ADC(4)86 Expt.86

B(C5) −290.45 −290.46 −290.6

A(C5) −290.77 −290.61

C(C5) −291.00 −290.78

B(C6) −291.81 −291.56 −291.7

A(C6) −292.58 −292.39 −292.4

C(C6) −292.69 −292.46

B(C4) −293.23 −293.03 −293.2

A(C4) −293.41 −293.14

C(C4) −293.31 −293.18

B(C2) −293.89 −293.75 −293.9

A(C2) −294.08 −294.10

C(C2) −295.16 −295.24 −295.1

a def2-TZVPP basis-sets, PBE potential, ng = 400, η = 0.01 a.u. and m5 grids were used. The molecular

geometries were optimized using PBE energy functional.

FIG. 2. Tautomers of cytosine considered in this study. The following color scheme was used for

the atoms: H(white), C(grey), N (blue), and O(red).

Different protonation states can also result from tautomerization. Cytosine, for example,

at ∼ 450K exists as three tautomers — A, B and C (Fig. 2) — as demonstrated in a
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FIG. 3. Errors in d-GKS-spRPA based C(1s) CEBEs for cytosine tautomers. The reference

values are from CVS-ADC(4).86 For the d-GKS-spRPA calculations, def2-TZVPP basis-sets, PBE

potential, ng = 400, η = 0.01 a.u. and m5 grids were used. The molecular geometries were

optimized using PBE energy functional.

combined experimental and theoretical study.86 The study showed that the variations in the

position of the proton in these three tautomers leads to only six resolved-features in the

C(1s) XPS.(see Table III) Accurate simulation of the C(1s) XPS spectrum of cytosine is,

therefore, a stringent test to the quality of any theoretical approach. The previous study

showed that C(1s) theoretical spectrum obtained from shifted CVS-ADC(4) was in close

agreement with the experiment indicating that the CVS-ADC(4) is a reliable benchmark for

CEBEs of these tautomers.

For all three tautomers, we find that the d-GKS-spRPA based C(1s) CEBEs are within

0.2 eV of CVS-ADC(4) values. Unlike the case of ammonia clusters, here we find that VC,s

component is crucial for reducing relative errors in CEBEs and MAE errors in chemical

shifts, see Fig. 3. For example, inclusion of just HHF + Vor components leads to an error of

0.5 eV for B(C5) (atom C5 of tautomer B, see Fig. 2) while A(C4) has an error of -0.3 eV,

i.e. a relative error of 0.8 eV. The contribution of Voc to the net CEBE is about 0.5 eV for

each case and hence does not improve the relative errors. Similarly, any other constant shift

to the CEBE will not lead to a reduction in the relative errors in CEBEs. The inclusion of

VC,s component, however, reduces the maximum relative error to within 0.4 eV. We notice

similar trends for MAE in chemical shifts, where we find that the VC,s component is crucial
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for reducing the MAE to within 0.2 eV. Overall, this study underlines the importance of VC,s

in describing subtle variations in CEBEs with changes in covalent-bonding environment.

B. Solvation induced chemical shifts

FIG. 4. (H2O)17 cluster from ice-Ih structure.87 The reported chemical shifts correspond to the

O(1s) of central water molecule (highlighted in blue).

Finally, we use the d-GKS-spRPA approach to analyze the impact of solvation on chemical

shifts. As a pilot application we studied the change in O(1s) CEBE of water molecules from

the gas (H2O(g)) to liquid (H2O(l)) and solid (H2O(s)) phases. This study is important

given the increasing number of liquid-jet XPS experiments being carried out in aqueous

medium. Unlike for the previous cases, the chemical shifts due to hydration result solely

from non-covalent hydrogen-bonding interactions and dielectric screening. While the impact

of hydrogen-bonding is captured by the electrostatic contribution from HHF, the impact of

dielectric screening is captured by the remaining terms of HRPA. To model the CEBE of

H2O(s) we use a single cluster cut-out from the Ih phase of ice (Fig. 4), and for modeling

H2O(l) we use 22 clusters cut-out from a molecular dynamics (MD) snapshot.88 For each of

these clusters, we focus on a central water molecule as a representative of the bulk solvated

state.
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TABLE IV. Individual and total contributions to the d-GKS-spRPA chemical shifts (eV) of Ice-Ih

clusters, (H2O)n. The calculations were carried out using PBE potential, def2-TZVPP basis sets,

m5 grids, ng = 60 and η = 0.01 a.u. The reported shifts correspond to the difference of the O(1s)

CEBEs of the central-water molecule in the cluster and in its isolated gas-phase form.

n = HHF Vor Voc VC,s Total

5 0.28 1.13 0.00 −0.02 1.39

17 0.18 1.47 0.00 −0.02 1.62

1. Ice-Ih

For ice-Ih, we are unaware of any available estimates of O(1s) chemical shifts w.r.t gas

phase water. But given the well-defined O-atom lattice for ice, compared to H2O(l), we can

analyze the impact of various solvation shells on the chemical shift. This will be insight-

ful for studying H2O(l) discussed below. To model the chemical shift, we use a (H2O)17

cluster, consisting of a central water molecule, surrounded by four water molecules which

are hydrogen-bonded to it. Each of these four water molecules are hydrogen-bonded to

three other water molecules, see Fig. 4. For this model, the d-GKS-spRPA O(1s) chem-

ical shift w.r.t the isolated central water molecule is 1.62 eV, see Table. IV. Including

only the first hydrogen-bonding shell leads to a shift of 1.39 eV of which HHF contributes

about 0.28 eV, VR contributes about -0.02 eV, while Vor contributes about 1.13 eV. The

orbital-correlation component, Voc, remains the same upon the inclusion of additional water

molecules, and hence does not contribute to the chemical shift. The addition of the second

hydrogen-bonding shell increases the chemical shift by 0.23 eV ; of this change HHF con-

tributes -0.10 eV and VR contributes 0.34 eV. We estimate that the addition of next-set of

hydrogen-bonding water molecules does not change the chemical shift. We thus see that (i)

the major fraction of the chemical shift results from the dielectric effects of water-medium

(estimated using the Vor term), and the effect of hydrogen-bonding is secondary (estimated

using HHF term); inclusion of these two components, i.e. the orbital-relaxation-only ap-

proximation, is sufficient for studies of chemical shift of water clusters, and (ii) inclusion of

the first and second hydrogen-bonding shells (which approximately equals the size of second

hydration-shell) is sufficient to account for the chemical shift. Using a non-polarizable SPC
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point-charge model89 to represent the second hydrogen-bonding shell led to no significant

change in the binding energies, suggesting that at least polarizable-models may be necessary

to represent the chemical environmental effects.

TABLE V. Chemical shifts (eV), computed using the orbital-relaxation-only approximation (HHF +

Vor), of 22 water clusters, for different radial sizes (R (in Å)) of the clusters. For R = 5.0 Å we use

def2-TZVPP basis sets, while for larger clusters we use a combination of def2-SVP and def2-TZVPP

basis sets to obtain the chemical shifts. All calculations were carried out using PBE potential and

m5 grids. Reported shifts correspond to the difference between the O(1s) CEBEs for central water

molecule in the cluster and gas-phase.

Shift R (in Å)

5.0 5.5 6.0

Avg. 1.52 1.64 1.65

Max. 2.63 2.75 2.59

Min. 0.26 0.15 0.26

2. Liquid water

For H2O(l), the liquid-jet XPS experiments by us (in the present work, see SI for ex-

perimental details) and that by Winter et al.90 indicate an O(1s) chemical shift of 2.0 eV

and 1.8 eV, respectively, w.r.t H2O(g). An XPS study of large water clusters indicates that

the chemical shift is 1.6 eV.91 To model this shift we use 22 water clusters that were cut-

out of a snapshot obtained from a classical MD simulation using the SPC-water model.89

Each cluster was constructed by randomly selecting a central water molecule from the MD

snapshot, and then selecting all water molecules present within a certain radius, R, of the se-

lected central water molecule. For a chosen R we computed the chemical shift of the central

water-molecule in the cluster w.r.t its isolated form (i.e. no geometry relaxation between the

cluster and isolated forms). Only HHF +Vor components were included in the estimation of

chemical shifts as other components were unimportant for water clusters(Sec. IV B 1). The

average chemical shift for these 22 clusters w.r.t R converges to 1.65 eV, see Table V, which

is within reported range of experimental values (1.6–2.0 eV), and indicates the suitability
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of our methods for studies of chemical shifts in liquids. A more reliable estimate would re-

quire better sampling and use of MD simulations based on accurate force-fields or ab initio

methods.92

V. CONCLUSIONS

GKS-spRPA orbital energies yield CEBEs that are more accurate than those from lin-

earized GW theory at comparable computational cost without any empirical adjustments.

From a many-body perturbation theory viewpoint, the success of GKS-spRPA for CEBEs

can be rationalized by correlation and relaxation contributions beyond second-order cap-

tured by GKS-spRPA orbital energies. Furthermore, the accuracy of GKS-spRPA does not

rely on the scale-dependent error cancellation between approximate exchange and correla-

tion typical of semi-local DFAs, thus producing uniformly accurate results for valence and

core states with vastly different density scales and interaction strengths. Compared to tra-

ditional ∆ methods, GKS-spRPA has the distinct advantage of variational stability. For

the systems investigated here, GKS-spRPA CEBEs agree with EOM-CCSD-IP and ADC(4)

results within a few tenths of an eV. GKS-spRPA orbital energies are less sensitive to the

choice of DFA for the KS potential than conventional KS or GKS results, but further steps

towards complete independence from a DFA reference are desirable.50

Our results for water in different environments suggest that GKS-spRPA is a useful tool

for interpreting the results of XPS experiments in complex systems such as liquids or in-

terfaces. The relatively moderate computational cost of GKS-spRPA allows for calculations

including explicit solvent in conjunction with MD simulations. The relative importance of

dielectric screening, hydrogen bonding, or electrostatic interaction can be assessed using the

partitioning scheme introduced in this work. The results for cytosine and ammonia clusters

illustrate that GKS-spRPA chemical shifts capture subtle variations in covalent and nonco-

valent bonding environment within solvents, for e.g., due to changes in pH or intermolecular

association.
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SUPPLEMENTARY MATERIAL

See supplementary material for parameter and basis-sets dependency tests of GKS-spRA;

CEBEs of small molecules, ammonia clusters, cytosine tautomers and water clusters; carte-

sian coordinates of small molecule testset, cytosine tautomers, and ice cluster.
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