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ABSTRACT 

It is shown that the presence of a singularity inBrueckner's 

t matrix for an infinite àystem of Ferxnions is a sufficient (but not 

necessary) condition for the existence of a gap in the energy spectrum 

of the sytem. On the other hand t.tere are singularities in Galitskii's 

t-matrix if and only if the system has an erterr gap. 

Furthermore there are both singularities and an energy gap If 

th solution of a Schrodinger equation with modified kinetic energy 

has a positive phase shift 	at the Fermi momentum. 

The results are illustrated by durivirig approximate expressions 

for the energy.. gap and the distances of the singularities from the Fermi 

surface in terms of the phase shift 
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1 INTRODUCTION 

In a previous paper (hereafter called I), it was shown that, 

for a wide class of potentials, the.l3rueckner t-matrix for an infinite 

system of fermions possesses singularities. At that time, it hi been 

speculated that these singularities were associated with the existence 

of a gap in the energy spectrum of the system and that the low-lying 

states had a highly collective character - although the relationship 

between the various phenomena had not been clarified. 

Recently, however, Cooper. Mills and sessier2 ) and Bogo1iubov, 

using a generalization of the superconductivity theory of Bardeei, 

Cooper and Schrieffer, derived a criterion for the existence of an 

energy gap which appears to be quite different from the condition for the 

existence of a singularity of the Brueckner t-matrix, discussed in .1. 

It is therefore of great interest to compare the two criteria in order 

to see if they are indeed related and to determine the range of validity 

of the Brueckner method. 

In this paper, it will be shown that, if the Brueckner, t-natrix 

possesses singularities, then the Fermi system is in a highly correlated 

state, but that, in general, the converse is not true. 
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On the other hand, it will be seen that the t-matrix introduced 

by Ga1itskii 	is singular if and only if there is an energy gap. This 

result is physically reasonable since, in ôontrast to the convential 

Bruec1aer method, both Galitskiits theory andthe Bardeen, Cooper, 

Schrieffer theory treat holes and particles symmetrically (see also 

Iwamoto ), 

It is therefore to be expected that Galitskii's approach provides 

a more accurate description of the normal state in that, in the absence 

of an energy gap, it may well be a good approximation to a more general 

theory which is applicable to both correlated and uncorrelated states.: 

This conclusion is of interest since the ccsllective effects are not 

expected to be of importance far away from the Fermi surface or when two 

particles have a total moinentuirt very different from zero, so that 

calculations with the Galitskii t-matrix could give some useful results 

even when there is an energy gap. 

In Section 2,  the criterion for the existence of a phase.tranaition 

of a Fermi system to a highly correlated state is introduced and it is 

e.xpressedin a form suitable for the comparison with the t-niatrix equations 

which is effected in Sections 3  and  4.  In Section 5 the maiitude of the 

energy gapand distances of the singularities from the Fermi surface are 

expressed in terms of the Schrdinger equation phase shift to illustrate 

the results of the previous sections. Section 6 contains a discussion 

of the results. 
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2 	THE EXISTENCE OF AN ENERGY GAP 

-In order to avoid the use of the non-linear equation whose 

solution determines the existence of an energy gap2),  we use the criterion 

that an infinite Fermi system will undergo a phase transition to a 

highly correlated state at a temperature 	T 	= 1/k 0  . 	 If thiscriteron 

is satisfied, the energy spectrum possesses a gap. 

A Fermi system has a phase 	transition if 

C> 	H 0 

- 	tarih 1AP H0 
vj  

has a non-trIvial solution for some value 	of 

Here, v is the two-particle potential and, in momentum representation, 

<k ) nOIk 	,> =j( 	(k)J g(k - k g ),  

• 	with 

e(k) - e(kF), 
	

(3) 

where 

= k + 2V(k) 
	

(4) 

is th&'normal. statefl energy of a pair of particles with relative 

momentum k and total momentum zero. V(kJ is the single-particle 

potential, kF the Fermi momentum, 1 	1 and the particle mass is 

unity, 
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In eq.(2), t k> is the radial part of the solution with 

angular momentum and moirtentulTt k of the free-particle Schrodinger 

equation, i.e. 

L= kt1 Jk-) 
	 (5) 

- 

for somei Here 1  r is the separation of the particles and 

is the spherical Bessel function of order . (In the following, the 

angular momentum label, .j, will be suppressed and it is to be understood 

that all states refer to a fixed but arbitrary angular moinentum.) 

Eq.(l) may be rewritten, as an eigenvalue equation, 

4 = - 
	

tarihl/4H0 	
(6) 

and the condition for a phase transition is that there be a value 

of 	for which 

for some value of 1. 

Throughout the discussion it will be assumed that the matrix 

eleznents<kv j k> 
 of v are finite although they may be arbitrarily 

large so that.there is no essential physical restriction on V. 

Then, by using the methods of I s  it may be shown that, for each 

value of 	there is a set of eigenva1ues.(,) (having the following 

properties 
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I. 	The eigenvalues are real and discrete andKl(() 0 

for finite 

II. jJKj 	0 for all and i. 
67/3  

(a) When <kFj vi  kF') "  O,>4h ((!)-0 	as 

OD 	for one and only one value, n, of i. If 

	

v k) <0,  ".Kn 	through positive values, 

otherwise through negative values. 

	

(b) When \kF I V j kF '. 	'-Ki 	) - 0 as -- 

for at least two values of  . In general, thois are 

exactly two such values and one tends to zero from above 

and the other from below.. 

jAK1 (fa) 	~ ° 

It follows at once that when <kFv 	0, eq (7) can 

be satisfied for at lcat one value n of J )  3D thBtthere is a phase traisiton. 

Whn<kFj v)kF>)0, every positive eigenvaiue_,4 	3), 
remains non-zero as 	oo so that it is nocesary to show that, for 

some value old, at least one eigenvalue is less than unity at 	Q. 

This possibility is most conveniently discussed by transformina eq. 46). 

Defino 

<kILjk o (k)I 	c(k - k) 
	

(8) 

and 
- 	LN 	j  Ki > 	for 	

(9) 

C 
	

for kkF 



U CRL-9076 

- 7- 

for all i n (Lim,a () = 0). By using the methods of I. it can 

be shown that (kF (VKj_U as- 	for i n (so that  
CO,  

is a continuous function of k) and that in thd linit as A~-^zrall ejenfunctions 

and einva1ues of eq.), exco.:t tiio 	it 	I 	n, re ivr b solutions 

of 

Ki/ J. 	 (10) 

where 

\ / 

<kvkF) 
( 

16 ) 
and,IK.. 	 (? ) 

. We have now to determine the conditions 
640 

under which the lowest positive eienvalu 	is less than unity. 

3 THE t-Mi\TRIX AND FREE-SPACE EQUATIONS 

In this section, we introduce the t-rnatrix and free-space equations 

which are to be compared with eqs. (10) and (11). 

In I, it was shown that the criterion 2 or the existence o f a. 

singularity in the Brueckrier t-ruatrix for total momentum zero and relative 

momentum 	F is that the equation 

	

74'Bi(m) H1(m). VJ Bj> 

	
(12). 

have a non-trivial solution with 

Bi 1 

	
(13)  

for some values of m and i, 
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Here 

kJH1 (m)I k') 	S(k - k') 6 (k,m), 	 (a). 

1(k 3m) 	e(k)  

and 

J Sk-k) for 	k)k. 

• (16) 

0 for 	k,k <'kr.. 

Eq. (12) refers 	to a state of any fixed angular mornentuni 

(although it was derived iorl= 0 in I). 

Galitskii's 	t-ivatrix (which inc1ies 	thole_holetl 	scattering 

as well as ".partic1e-partic1e' 	scattering (see also 	Iwamoto6 ) has 

a singularity for total momentum zero and relative momentum m, if the 

equation 

I £ G1 > 	Gi (ni) 	 - VjG> 

has a non-trivial solution with 

1 (1R) 

for some values of 	m<kF 	and 	1. 

Here 
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k) 	 for k>kF 
<kJP.k >= 

S(k 	k') 	 for "kkF. 	() 

Using the methods of I, it may be shown that both eqs. (13)  and (18) can 

be satisfied if <kj  vj kF) <0  and. that when <kj vj k.) )Q, it is 

necessary to show, tha8 >4(kF)  and 	 are 

less than unity for, some value 	of 1. 

Now define 

(Lirn 	 v .L 	> 	for k k. 

ki 	
m—>k1, 

/ 0 	 fork=k 

and 	, 

\ 	fl—k 	
'kL VG..\ 	 for 	

(21) 

/0 
	

for 

for all i ri 	= 0). Then, as in section 2,(kI 1 	and 

G1) are continu DUS furctions of k and in the limit as in - kF. 

all eigenfunctions and eigenvalucs of eqs. (12) and (17)  are given by 

* It is also necessary that bothB (0) ' and4(0) be greater than 

unity. A sufficient condition for this would be that v have no bound 

state or at most a weakly bound state. . This property is a feature of 

systems of physical interest so it will be assumed here. 
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I Bi'ABijBi) 	 (22) 

and 

I X) .AGi  G) G1) 	 (23) 

respectively. Finally, for purposes of comparison with a Schrodinger 

equation phase ahiftS, we introduce the factor 	by which v has 

to be multiplied in order that the Schrodinger equation 

J 	Jk) - i 0 . 0 vj') 	 (24) 

with kinetic energy e(k)  should have zero phase shift for momentum 4, 
i.e. that 

(4/ v/  .> = 0. 	 (25) 

Using eqs. (8) and (26) and defining 

kAv)) 	 for 

(26) 

( 	
0 	 for 

eq. (24)  may be rewritten 

1Y>=oG11>. 	 (27) 

It is not hard to see that if 	&4 ) > 0 and <kF jv/kF ),0 

then )c(lj  for consider the arbitrary coupling constant )... When 
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tan(kF) 	4F1 v IkF), 	 (2) 

which is small and negative so that £(kF)<  0., However, when >. 1 0  

(k).O by assumption, so that there is a value of 	of 	. 

in 	0 4 0 1 for which 
	

(kr ) is zero for the potential 	V. 

Eqs. (22), (23 and (27)  are to be used in the next. section. 

4 CONDIT1ON5 FO? AN ENERGY GAP 

In this section, it will be assujned that 	Gj(0) . 1 and 

1 for all i. This condition is satisfied very well for 

systems of physical interest and is sufficient to ensure that the t 

matrices, are singular wherGj  <1 an,AA < 1. 

By using the results ol' Section 3 the following theorems may 

be proved (for all relative angular raoriientum states). 

The conditions for a singularity in the Galitskii t-matrix 

and for an energy gap are identical. 

The presence of a singularity in Brueckner's t-matrix is a 

sufficient (but not necessary) condition. for the existence oi' 

and energy gap. 

A sufficient condition for the existence of a singularity in 

Bruecknerts t-znatrix and hence for an energy gap is that the 

phase shift at momentum kF  in the solution of Schro.dinger 

equation with kinetic energy 	(k) be positive. 

The remainder of this section is devoted to proving the theorems. 
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Eqs. (10) and (23) are identical, which is Just the content of theorem A. 

LStABP and./?.IGP be the smallest positive values °VBi 

and 	Gi 
respectively. It is not hard to show that 

1 > /stJGJc (29) 
Kp 

arid 

1 > 4Cj QGQJ') 	 (0) 

A4BP — aii> 
for any trial function/1. Then, replacing Jac)in the inequality (29) 
by 1 	from eq. (22), we find that 

1 	1 	. 

.> 	
/ 0, 	 (31) 

so that 

(32) 

and theorem B foflow.s at once. 

Finally, consider the elgenvalue equation 

	

)i>(GP  + 
	 (33 

Then, using the trial wave function QJ'1 ) in the inequality 

(30), we find 

,1 	
(34) 

2  
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(since 2Q 1 + F). 

Then, using I 1> of eq. '(27) as trial wave function, 

..L> GP+PG> 	2 > 	 (35) 

80 that 

.O*/Bp  

which is tantaniount to theorem C, since 

5 .  EXPIESSION FOR TRE ENERGY GAP 

The rather formal results of Section 1 may be tiade plausible' 

by deriving an expression for the nagnitude of the energy gap and also 

for the distance of the singularities from the Fermi surface. 

First an expression for the transition temperature is obtained. 

We int.ruce the function JØ> as the solution of 
JØ> 	jJ 	+ Fvj 0> 
	

(36) 

where 	
tanh i/4pH 0 + 	

(37) 

'a. 

ço 	tanh l/4fl50  (k) 
L() 	 6 (k) 	

0 	
(38) 

Then, from eqs. (1) and (3), 

(0 J 4 	- <01 	
tanh 4 H 	vf K) 
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=jvj)+<øiv Kv). 

Thus 

KkF I v 1K 	- L3 ) <01 V 	 F I vXK) 
	

(39) 

and either 

<kF VXK> =0 
	

(40) 

or 

= øv1k> : 
	 (41) 

For finite 3, eq. (40) is not satisfied in general unleesa 1 ) 

is identically zero i.e. there is no phase tranBition. When there is 

a phasetransition, the transition temperature is given by the vaJue 

.ofi? for which eq. (41) is satisfied. 	 - 

Since L(4) is positive, <0 v k,,>rnust be negative. This 

requirement could be satisfied by a repulsive potential, but then 1 ) 

would be zero and eq. (41) would not follow. For a very strongly attractive. 

potential, <0 I v k) could be positive for large values of 	but It would 

then be singular for some value 	of 	and negative for some 	00  

L(0) has been evaluated elsewhere and it is found to be 

sensitive to the form of e(k) only through the effective mass M at 

the Fermi surface. It is found that 
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kT0  2.28. 2 exP[ 1/2 	v IkF> 	
(42) 

In situations of physical interest, v is weakly attractive in 

that I K) is not zero and 	v /k 	is negative and the calculated 

value of 4, 	is very large. For 1arge,. F is only weakly dependent 

on 	and, to a good approximation, we may letfl—'.cx' in eq. (37). 

Let 	

dk 	 (4 

and let 
10

be the solution of the equation obtained by replacing 

K, by K0  in eq. (36)0. 

(44) 

then the equation for the wave matrix .. for the Schrodinger equation 

with kinetic energy 4.(k) is 

Ji 1 + F1  vfL, 	 (45) 

from which 

v.1 kF 	+Jv (F1 _F0 )v)00 \ . 	 . 	(46) 

This integral equation may be expressed as a convergent iteration 

series in vjL of which the first term gives a good a approximation, so 

that ' 	 . 	 . 
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<0 jvj 	<00  I v I kF 	KkF LvJ1kF 	tan 	 (47) 

Using the result of ?ardeen, Cooper, and Schrieffer for the 

relationship between the magnitude 4E of the energy gap and the transition 

temperature, (which is obtained by linearizing the equation2)  for the energy 

gap) and, cornining. eqs. (42)  and  (47),  we find 

cot £kF 

	

4 E = 3.5 kT ' - 	exp) - 1772 	 . 	 (48) 

In a similar manner, it may be shown that if the singularities in 

t matrix and the real part of Oalitskiis t-rnatrix occur 

for momentam1  and rn2  respectiyely, then 

2 	2 	2 	 C 

	

- 	4k 	 cot 
) £0(m1 ))qJ F 	

M 	
exp 	 (49) 

and 

	

o ()j _F 	
2 	4k 2 e 
	2 

cOtS(s) 	
() 

14 	M 	L 	14 	J 
in the effective mass approximation and for M, and  m2  near to 

Within the range of validity of the approxirn:tions (48), (49) and 

(50), it Is clear that 	(kF)  has to be positive for there to be both an 

energy gap and t-rnatrix singularities. 	Io(m2)/ is equal to 1/2 	L 

but ) & (in1) j is s]ler than 1/2 E (as a result of the absence of 

the factor 1/2 in the exponent of eq. (49) compared to eqs. (48) and (50). 

This fact suggests that, in a more correct expression, •.a weaker interaction 

would be required to give an energy gap than to give a singularity in 

Brueckner's t-matrix. These results are an approxineWe expression of the 
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content of the theorems proved in section 4.. 

Eq8. (48), (49), and (50) cannot be used directly to obtain 

approximate expressions for Ej 1CO(ml ) J., and 16()  (m2 ) from 
known phase shifts since £'(kF)  is to be calculated with kinetic energy  

e(k). The further approximation of replacing e(k) by k2  is too drastic 

in general (since it introduces.an errorinto the exponent) although it 

may be useful for discussing the qualitative features of actual physical 

systems. (For applications to liquid He3  and to Nuclear Matter see 

78) Emeryand Sessler'.) 

Finally it should be noted that, in the low-density limit, we 

can put M equal to unity and replace tan (kF)  by ( 	(a being 

the scattering length) in eq. (49) to obtain the result of Van Hove9 . 

6 DISCWION 

The results of Sactions 3 , 4 , and 5 show that Bruecirner's 

theory of an infinite Fermi system and Galitskii's extension of the thry 

meet with difficulties when the low-lying energy statts of the system have 

a significantly collective character. 

At the same time, if the energy gap is small, Brueeknerts approach 

probably gives an adequate description, of states ar away from the Fermi 

surface 0'.r of pair states with total momentum appreciably different from 

zero and so it should be able to reproduce many properties of Ue system. 

For this purpose, it seems to be more accurate to use Galitskii's 

t-matrix instead of Bruecimer's t-matrix and, indeed, the former has summed 

more terms of, the complete perturbation series (a1thougi it isriot 

obvious without further discussion that this would result in an improved 

value of the energy). Consequently it is important to see if the two 



t-matricea predict significantly different properties of many-Fermion 

syatems, since it may be necessary to amend the extensive calculations 

already carried out 10,11) 

In this connection it should be noted that exclusion principle 

in intermediate states is doubled in the Galitskii equation vjith the result 

that total potential energy would be decreased, in magnitude and the 

rearrangement energyl2)  increased. These two effects compensate to some 

extent and,- without further calculation, it is not possible to give a 

quantitative estimate of the changes. 
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