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Abstract 

 
Diabetes Mellitus in California: Complications, Modifiers and Spatial Determinants 

 
 

by 
 

Jayant V. Rajan 
 

Doctor of Philosophy in Epidemiology 
 

University of California, Berkeley 
 

Professor Lee W. Riley, MD, Chair 
 
 
Diabetes mellitus (DM) is a metabolic disease whose prevalence has steadily risen in 
the United States and globally over the last three decades. In addition to its direct 
effects on hyperglycemia, DM has a variety of associated complications, ranging from 
an increased risk of cardiovascular disease to an increased risk for multiple infectious 
diseases. Because of these complications, DM remains a major source of disease 
burden in the United States and globally. Even as the prevalence of DM has risen, so 
too have awareness of the disease and the armamentarium of medications available for 
its treatment. These changes in both awareness and the ability to treat the disease have 
ostensibly had an impact. Rates of some of the most important complications of DM, 
including cerebrovascular accident (CVA) and myocardial infarction (MI) have declined 
in the United States while at the same time, the prevalence of DM has leveled off.  
 
In this dissertation, I focus on three separate, but linked issues about DM. All of the 
work I present here was done either at the state level in California or at the level of the 
city of San Francisco. In chapter 1, I examine whether the decreases that have been 
observed for non-infectious complications of DM are also true for its infectious 
complications in California overall. In chapter 2, in a cohort of patients in San Francisco, 
I examine the potential role of medications that are frequently used to treat other 
conditions in persons with DM in driving the increased risk of infection in persons with 
DM as well as the findings I describe in chapter 1. Finally, in chapter 3, working with the 
same cohort studied in chapter 2, I examine the role of distance to the primary care 
clinic, a potentially modifiable factor, in determining diabetes control. 
 
In chapter 1 of this dissertation, I show that in California, rates of hospitalization for 
infectious diseases among persons with DM have steadily increased. This result 
contrasts both with what has been reported for non-infectious disease complications of 
DM nationally as well as with my own findings for two important non-infectious disease 
complications of DM, CVA and MI. My results suggest that other factors beyond the 
level of control of DM could drive the risk of infection among persons with DM. In 
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chapter 2, I show that while one such potential factor, collateral effects of medications 
used to treat other conditions (e.g. hyperlipidemia,hypertension) in persons with DM, 
does not appear to drive the increase risk of infection in persons with DM, two 
medication classes, angiotensin converting enzyme inhibitors (ACEI) and angiotensin 
receptor blockers (ARB) could actually reduce the risk of developing in infection. Finally, 
in chapter 3, I show that minimizing the distance between patients and their primary 
care clinics has the potential to result in a significant improvement in control of DM, as 
measured by the glycated hemoglobin level. Together, the three chapters of this 
dissertation provide a comprehensive view of DM in California as a whole and in San 
Francisco in particular. My findings shed new light on one of DM’s most important 
complications, infectious diseases, while at the same suggesting two potential methods 
to limit the development of these and potentially other DM-related complications.  
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BACKGROUND 
 
The burden of diabetes mellitus 
 
Diabetes Mellitus (DM) is a metabolic disease whose global prevalence has steadily 
risen over the last three decades. The most recent Global Burden of Diseases Survey, 
ranked it as the eighth highest cause of both Years of Life Lost (YLL) and Years Lived 
with Disability (YLD) [1]. In the most recent United States Burden of Diseases survey, 
DM was ranked as the seventh highest cause of YLL and the eighth highest cause of 
YLD [2]. It is important to note, however, that because of DM’s ability to affect multiple 
organ systems, examining DM burden alone may underestimate its actual impact on 
morbidity. 
 
Pathophysiology of DM 
 
DM has classically been divided into two forms: type I (juvenile) and type II (adult-
onset). The pathophysiologies of type I and type II DM are distinct. Type I DM is thought 
to be an autoimmune disease, with destruction of the islet cells of the pancreas resulting 
in the loss of glucose homeostasis [3]. Prior viral infection, particularly by enteroviruses, 
is thought to be a potential trigger for the autoimmune destruction of the islet cells [4]. 
The pathophysiology of type II DM is different than that of type I DM, with insulin 
resistance occurring in the setting of obesity recognized as the primary underlying 
disease mechanism. It is now known that this insulin resistance is caused by obesity-
induced activation of the NLRP3 inflammasome, making type II DM a disease of 
inflammation [5-12].  
 
Diagnosis and management of DM 
 
The primary clinical manifestation of DM is dysglycemia, which remains the cornerstone 
of diagnosis. In the past, fasting hyperglycemia was used to diagnose DM but has now 
largely been replaced by the measurement of the glycated hemoglobin level (HbA1c) 
[13]. The development of point of care HbA1c testing has facilitated this transition [14]. 
One of the collateral effects of using the HbA1c level as a diagnostic test for DM is that 
it has led to the recognition of a large number of persons with pre-diabetes/glucose 
intolerance, all of whom are at increased risk of progression to DM [15].  
 
Clinical management of DM necessarily focuses on glycemic control. Extreme 
dysglycemia can cause severe complications, including diabetic ketoacidosis (DKA) and 
hyperglycemic hyperosmolar state (HHS), both of which are considered medical 
emergencies [16]. Although both of these complications continue to occur, morbidity 
and mortality related to both conditions has steadily decreased presumably because of 
the wide availability of effective treatment [17]. 
 
DM and its complications 
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DM produces other complications/sequelae in addition to the direct effects of 
dysglycemia. One of its most important complications is an increased risk of infectious 
diseases, including tuberculosis, urinary tract infections (UTI), skin and soft tissue 
infections (SSTI), fungal infections, pneumonia and sepsis [5, 7, 18-25]. The biological 
basis of this increased risk of infection is unknown, but is thought to be due to defects in 
both the innate and adaptive immune responses [5, 7]. DM is also associated with 
coronary artery disease (CAD), ocular disease (diabetic retinopathy), renal disease 
(diabetic nephropathy), and dyslipidemia [26-30]. CAD, retinopathy and nephropathy 
are all thought to be caused by microvascular damage and are thus a direct 
consequence of DM-associated inflammation. Infections, CAD, retinopathy and 
nephropathy together cause the majority of DM-related morbidity.  
 
As demonstrated by a large, national study from the CDC in 2014, however, the 
incidence of non-infectious DM-related complications steadily decreased in the United 
States between 1990 and 2010 [31]. A related study provided a potential explanation for 
this decrease, showing that the prevalence of diabetes, which had been steadily rising 
in the United States, has now plateaued and may be declining [32]. An important 
question that remains unanswered, however, is whether the trends that have been 
reported for DM’s non-infectious complications are also true for its infectious 
complications.  
 
Medication use in persons with DM and collateral effects 
 
Treatment for DM has been available for decades, starting with the the recognition of 
the central role of insulin in glycemic control. In addition to insulin, a variety of other 
classes of medication, including sulfonylureas, biguanides, thiazolidinediones, and GLP-
1 inhibitors are available for the treatment of DM. Each of these medications targets the 
dysglycemia which is the defining characteristic of DM. 
 
Because of its multiple complications, however, pharmacotherapy targeting risk factor 
modification is common in persons with DM. The increased risk of cardiovascular 
disease in persons with DM leads to treatment with aspirin, statins and beta-blockers. 
Similarly, the risk of renal disease in persons with DM leads to treatment with either 
angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor blockers 
(ARB). While each of these medications acts on a specific system or even cell-type, 
some may have collateral effects, with effects on the immune system being of particular 
importance. 
 
Statins have been shown to be directly immunomodulatory and glyburide has been 
shown to be associated with a decreased risk of gram negative sepsis in a cohort of 
hospitalized patients in Thailand [33, 34]. Whether these two examples are isolated 
phenomena or are indicative of a broader phenomenon is unknown. Little is also known 
about the effects of medication combinations on the risk of infection and whether some 
combinations might be synergistic or antagonistic. Determining the effect of individual 
medications and medication combinations on infectious risk in persons with DM is 
important because it has immediate implications for clinical management of DM. 
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The effect of location on DM and its complications 
 
Rates of both infectious and non-infectious complications of DM vary by race, income, 
and neighborhood [35-38]. In the case of race, minority groups have higher rates of both 
types of complications compared to persons of white race. In the case of income, lower 
income persons have higher rates of both types of complications compared to higher 
income persons. Because neighborhoods are often a proxy for race and/or income, it is 
unsurprising that different neighborhoods, with different demographic and 
socioeconomic characteristics also can have different rates of DM-related 
complications.  
 
A variety of factors likely drive these differences in rates of DM complications, but one 
particularly important one is access to care. The risk of all DM-associated complications 
increases with worsening DM control. Consistent access to care is a pre-requisite for 
optimal DM control because it facilitates the tight monitoring and medication dose 
adjustment needed to achieve this goal. One measure of access in a city is the distance 
to the primary care clinic. If an individual requires frequent visits to adjust medication 
dosing, for example, being closer to the site of primary care is likely to increase the 
chance that such visits will happen. Surprisingly, few studies have formally examined 
and measured the impact of distance on DM control and, by extension, on DM 
complications. Distance to the clinic, like medications, is something that can be modified 
(e.g. by ensuring that patients are seen in clinics that are physically close to them), 
therefore quantifying its impact on DM control is an actionable item that, like 
modification of medications, could have an impact on DM-related complications. 
 
A multi-level of view of DM and its complications 
 
This dissertation has three primary aims: 1) to determine and compare the rates of 
infectious and non-infectious diseases complications among hospitalized adults with 
and without DM in California, 2) to quantify the association between commonly used 
medication classes and infections, 3) to understand and quantify spatial variation in DM 
control. While aim 1 is at the state level, aims 2 and 3 focus on a cohort of patients in 
San Francisco, CA. 
 
Chapter 1 of this dissertation addresses aim 1, examining statewide hospital discharge 
data from California spanning a 25-year period (1986-2011). It lays the foundation for 
the work described in chapters 2 and 3 by identifying a trend in DM-related infectious 
complications, one with multiple potential causes. In chapter 2, I address aim 2 and, in 
doing so, address one potential cause of the trends observed in chapter 1: collateral 
effects of medications on infectious risk in persons with DM. Unlike chapter 1, chapter 2 
is done at the city and not at the state level, a necessary compromise in order to obtain 
the kind of highly detailed, individual-level data used here. I elected to focus on 
medications as a potential driver of the trends in infections because they are a 
potentially modifiable risk factor. In chapter 3, I address aim 3. In this chapter, instead of 
focusing directly on a specific outcome (infections) as I do in in chapters 1 and 2, I 
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examine DM control and how it is affected by distance to the site of primary care. As 
has already been noted, the level of DM control is an important determinant of an 
individual’s risk for DM-related complications, including infections. Like medications, DM 
control is thus also a potential cause of the trends that are described in chapter 1, 
particularly if trends in DM control over time match the trends in infections among 
persons with DM over time as described in chapter 1. The latter question is not 
specifically addressed in this dissertation as the necessary data (longitudinal individual-
level measurements of glycemic control) are not available at a state-wide level. I elected 
to focus on the impact of clinic distance on DM control because clinic distance, like 
medications, is a potentially modifiable factor. 
 
Together the three aims of this dissertation provide a global view of the interaction 
between DM and infectious disease in the state of California (aim 1), as well as a local-
level view in a single city within the state focusing on potentially modifiable drivers of 
this interaction. While the results presented here are specific to a single state and a 
single city within that state, both the state and the city have large, diverse populations.  
Therefore, the findings that I report here could apply in many other settings in the United 
States.	
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Chapter 1: Rising Rates of Hospitalization for Infection Among Persons with 
Diabetes Mellitus in California from 1986-2011 
 
Introduction 
 
The prevalence of diabetes mellitus (DM) has risen over the last several decades in the 
United States [39]. In California, DM has been linked to up to one third of all 
hospitalizations and is thought to be a driver of increasing healthcare costs [40]. These 
rises parallel global increases in DM burden, with the most recent Global Burden of 
Diseases survey reporting that DM is the eighth highest cause of both years of life lost 
(YLL) and years lost to disability (YLD) [41]. Because DM is an underlying cause of 
cardiovascular disease, this ranking may underestimate its contribution to morbidity and 
mortality. 
 
DM is a multisystem disease. In addition to associated cardiovascular complications, 
DM is associated with an increased risk of infection, peripheral arterial disease, and 
neuropathy, the last of which can lead to lower extremity infections, as well as with 
bladder dysfunction, which can lead to urinary tract infections (UTI) [18-22, 42, 43]. 
Fungal infections, skin and soft tissue infections (SSTI), osteomyelitis and tuberculosis 
are all more common in persons with DM when compared to those without DM [23-25, 
44, 45]. Immune dysregulation is thought to play a role in DM-mediated susceptibility to 
infections, although the precise mechanisms remain unknown [46, 47]. 
 
In 2014, a large study by the Centers for Disease Control and Prevention (CDC) 
examining trends in non-infectious disease complications of DM showed that despite 
the increasing prevalence of DM, rates of hospitalization for such complications 
dramatically declined in the United States between 1990 and 2010 [31]. This decline 
may reflect more effective treatment of the non-ID complications, as well as earlier and 
better treatment of DM. Whether a similar decline in rates of hospitalization for the 
infectious disease complications of DM has occurred, however, is unknown. Here, I 
examine trends in the rate of acute-care hospitalization for infections in adults with and 
without DM in California from 1986 to 2011. 
 
Methods 
 
Study Design 
 
In this study, I employed a time trend study design. I obtained hospital discharge data 
for the state of California for the years 1986, 1991, 1996, 2001, 2006 and 2011 and 
calculated the annual rate of hospitalization by primary discharge diagnosis. For each 
year studied, rates for persons with and without DM were calculated separately but in 
both cases were calculated relative to the entire adult population of Californa. California 
adult population estimates were obtained from the United States Census Bureau 
(http://www.census.gov/data.html; Appendix B Table 1). 
 
Data Source 
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The California Office of Statewide Health Planning and Development (OSHPD) releases 
individual-level, de-identified data on all hospital discharges in the state annually. These 
data include discharge diagnosis coding information which, for the data used in this 
studt, follow the ninth International Classification of Diseases Clinical Modification (ICD-
9-CM). 
 
Study Population 
 
The study population consisted of persons aged 18 years or older hospitalized in an 
acute care setting in California. I excluded non-acute hospitalizations to skilled nursing 
facilities or inpatient hospice. I also excluded pregnant patients because they are a 
distinct population with a different spectrum of infections than other hospitalized adults. 
In addition, it was not possible using the available data to distinguish between 
gestational and non-gestational diabetes mellitus, the former being a distinct clinical 
entity [48]. Finally, institutionalized adults were excluded. Their numbers were low (<1% 
of all hospitalizations per year) and their exclusion did not affect my rate calculations 
(data not shown). 
 
Data analysis 
 
Each observation (hospitalization) in the data used had a maximum of twenty-five 
diagnosis codes, one of which was the primary discharge diagnosis (reason for 
hospitalization). For each observation, all diagnosis codes were scanned for the 
presence of DM or a DM-associated complication ICD-9-CM code (250, V58.67) and all 
observations were classified as having DM or not (type 1 or type 2). Next, I prepared a 
master list of ICD-9-CM codes for infectious diseases based on the 2011 edition of the 
ICD-9-CM (Appendix B, Table 2). This master code list was cross checked against ICD-
9-CM code definitions for all years of data examined here (obtained from the CDC 
http://www.cdc.gov/nchs/icd/icd9.htm) and modified to ensure that discharge diagnosis 
codes for each year were correctly classified and comparable. I used this master code 
list to classify each observation as having an infectious disease primary discharge 
diagnosis or not, focusing on the following known DM-associated infectious and non-
infectious diagnoses: pneumonia (480-486, 487.0), SSTI (680-686, 695.3, 614.3, 
728.86, 608.84), UTI (590.0, 595.0, 595.3, 595.4, 595.8, 597.0, 599.0, 601.0, 601.2, 
601.3, 601.4), sepsis (038, 995.91, 995.92), myocardial infarction (MI; 410), and 
cerebrovascular accident (CVA; 430-434, 436). 
 
My primary disease burden measure was the number of hospitalizations/100,000 adult 
population in each year for each specific diagnosis. Because the data used here were 
de-identified, all hospitalizations were treated as independent events. For 1986-2011, I 
calculated both age adjusted as well as age and age-group specific DM prevalence 
adjusted hospitalization rates in order to account for, respectively, changes in both the 
adult population age distribution and the prevalence of DM. Age adjustment was done 
by calculating age-group specific rates for the following age groups: 18-34 years, 35-64 
years and 65 and older. These age group categories were selected because they were 
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available for all observations for all years of data. Age-group specific rates for each year 
were subsequently weighted by the 2011 population age distribution and summed to 
generate the population rate for a given year. 
 
To calculate rates adjusted for both age and age-group specific DM-prevalence, it was 
necessary to use different age-group categories in order to match those used in data on 
DM prevalence in California obtained from the CDC 
(http://gis.cdc.gov/grasp/diabetes/DiabetesAtlas.html). The CDC’s DM prevalence 
estimates were divided into the following four age categories: 18-44 years, 45-64 years, 
65-74 years, and 75 and older. These age-group specific DM prevalence estimates 
were available from the CDC for California starting with 1994. Therefore, it was only 
possible to calculate rates that accounted for changes in the prevalence of DM for the 
years 1996-2011. In addition, because of data masking by OSHPD, for 1996-2011, 10-
15% of observations from each of these years were not classifiable into the CDC’s age 
categories. These unclassifiable observations were excluded from rate calculations. 
After age-group specific DM prevalence adjusted rates were calculated, they were 
subsequently weighted by the overall adult population age distribution for 2011 and 
summed to give the final age and age-group specific DM prevalence adjusted annual 
rate of hospitalizations per 100,000 adults in California for 1996-2011. 
 
After rates were calculated for all years studied, I fit linear regression models with the R 
glm function to examine rate trends. Trends were determined for age adjusted rates 
spanning 1986-2011 as well as for age and age-group DM prevalence adjusted rates for 
1996-2011. In each of these models, the rate of hospitalization was the dependent 
variable and time in years was the independent variable. I examined data fit/linearity 
with the R cor function, calculating the correlation coefficient based on the method of 
Spearman. I also assessed the impact of data exclusion on rate trends for the age and 
age-group specific DM prevalence adjusted rates for 1996-2011. To do so, I determined 
age adjusted rates for all disease categories for this subset of patients using both the 
complete data as well as the incomplete data excluding the 10-15% of observations with 
missing data as described previously. I fit linear models to both the complete and 
incomplete datasets to determine the effect of data exclusion on rate trends. All data 
analysis was conducted with R version 3.1.1 (www.r-project.org) with R Studio version 
0.98.507 (www.rstudio.org). All figures were made using the R ggplot2 package. 
 
Results 
 
Between 1986 and 2011, there were a total 9.72 million adult hospitalizations in 
California, of which 2.05 million (21%) were identified as having a diagnosis of DM 
(Appendix B, Table 3). The proportion of adult hospitalizations with DM increased 
steadily from 10% in 1986 to 31.3% in 2011. 
 
Age-adjusted annual rates of hospitalization for pneumonia, SSTI, UTI, sepsis, MI and 
CVA increased among hospitalized adults with DM in California between 1986 and 2011 
(Appendix B, Table 4 gray rows; Appendix B, Figure 1 top). The rate of hospitalizations 
for pneumonia increased by 2.08 hospitalizations/100,000 adults per year (p = 0.03), for 
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SSTI by 1.52 hospitalizations/100,000 adults per year (p=0.001), for UTI by 1.3 
hospitalizations/100,000 adults per year (p=0.001), for sepsis by 5.4 
hospitalizations/100,000 adults per year (p=0.02), for MI by 1.08 
hospitalizations/100,000 adults per year (p=0.03) and for CVA by 0.83 
hospitalizations/100,000 adults per year(p=0.006).  
 
I observed the opposite trend for age-adjusted population rates of most infectious and 
all non-infectious diagnoses in hospitalized adults without DM (Appendix B, Table 4 
white rows; Appendix A, Figure 1 bottom). The rate of hospitalization for pneumonia 
decreased by 5.96 hospitalizations/100,000 adults per year (p=0.02), for UTI by 0.61 
hospitalizations/100,000 adults per year (p=0.25), for MI by 3.62 
hospitalizations/100,000 adults per year (p=0.002) and for CVA by 3.14 
hospitalizations/100,000 adults (p=0.001). The rate of hospitalization for SSTI increased 
by 0.32 hospitalizations/100,000 adults per year (p=0.55) and that of sepsis by 6.6 
hospitalizations/100,000 adults per year (p=0.05). 
 
CDC estimates of age group specific DM prevalence were available for 1994-2011. 
Therefore, for 1996-2011 I was able to adjust rates of hospitalization for both age and 
background prevalence of DM. As noted earlier, it was not possible to classify all 
observations into CDC age categories, resulting in an incomplete dataset. To assess 
the potential impact of these missing data, I performed a sensitivity analysis by 
calculating age adjusted rates for 1996-2011 on both the whole dataset as well as the 
incomplete dataset. I found that the missing observations had minimal impact on both 
hospitalization rates for each year as well as on the rate change trends for each disease 
category examined (Appendix B, Table 5). 
 
When adjusted for the prevalence of DM, I found that from 1996-2011 the trends in the 
rates of hospitalization for pneumonia, UTI, MI and CVA among adults with DM 
reversed (Appendix B, Table 6; Appendix A,  Figure 2 top). Instead of increasing, from 
1996-2011, the rate of hospitalization for pneumonia decreased by 23.3 
hospitalizations/100,000 adults with DM per year (p=0.04), for UTI by 5.9 
hospitalizations/100,000 adults with DM per year, for MI by 24.2 
hospitalizations/100,000 adults with DM per year (p=0.06) and for CVA by 26 
hospitalizations/100,000 adults with DM per year (p=0.11). Rates of hospitalization for 
SSTI increased by 5.0 hospitalizations/100,000 adults with DM per year (p=0.11) and 
for sepsis by 34.9 hospitalizations/100,000 adults with DM per year (p=0.26). No 
change was observed in the trends of rates of hospitalization for the 6 conditions 
examined among hospitalized adults without DM (Appendix B, Table 5; Appendix A, 
Figure 2 bottom). The rate of hospitalization for pneumonia decreased by 6.4 
hospitalizations/100,000 adults without DM per year (p=0.147), for MI by 3.6 
hospitalizations/100,000 adults without DM per year (p=0.137), and for CVA by 2.6 
hospitalizations/100,000 adults without DM per year (p=0.081). Rates of hospitalization 
for SSTI increased by 1.3 hospitalizations/100,000 adults without DM per year 
(p=0.190), for UTI by 1.2 hospitalizations/100,000 adults without DM per year, and for 
sepsis by 13.1 hospitalizations/100,000 adults without DM per year (p=0.121). 
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Discussion 
 
A 2014 CDC survey reported a steady decrease between 1990 and 2010 in the rate of 
hospitalizations due to non-ID complications of DM in the United States [31]. Here, I 
show the opposite trend in the rates of hospitalization for pneumonia, sepsis, SSTI and 
UTI in adults with DM in California between 1986 and 2011. I found that age-adjusted 
rates of hospitalization for pneumonia, sepsis, SSTI and UTI all increased significantly 
in adults with DM while they decreased or remained unchanged in adults without DM. 
Rates of hospitalization for MI and CVA also increased among adults with DM, but at a 
slower rate. When adjusted for age-group specific DM prevalence as well as age, 
however, rates of hospitalization for pneumonia, UTI, MI and CVA decreased. In 
contrast, the rates of hospitalization for both SSTI and sepsis continued to increase 
even after adjustment for age-group specific DM prevalence.  
 
My results have important implications. They suggest that at a population level, 
infections may be increasing as a cause of hospitalization among persons with DM even 
as they are decreasing or remain stable as a cause of hospitalization among persons 
without DM. With both an aging population and a continuing increase in the prevalence 
of obesity, both drivers of DM, there is some reason to believe that this trend will 
continue. A second implication of my results is that the profile of infections seen among 
hospitalized adults with DM is changing, with rates of hospitalization for certain types of 
infections (sepsis, SSTI) increasing, while rates for other types of infections 
(pneumonia, UTI) decrease. 
 
Our primary finding of an increase in the rate of hospitalizations for known DM-
associated infections among persons with DM in California is surprising. While the 
simplest explanation would be to attribute it to an overall rise in hospitalizations of 
persons with DM, the fact that the two non-infectious complications of DM I examined, 
MI and CVA, decreased over the same time period argues against this possibility. There 
may be a simple explanation for this discrepancy: risk factor modification. Both MI and 
CVA are cardiovascular diseases with proven risk factor modification strategies, 
including smoking cessation, treatment with aspirin and treatment with statins [49]. No 
such strategies, other than improving DM control, exist for infectious diseases in 
persons with DM. In addition, because of both risk factor modification and the 
development of more effective treatment, mortality as a result of cardiovascular disease 
has steadily declined in all persons [50]. Therefore, where in the past persons with DM 
who developed cardiovascular disease may have had higher mortality, they now live 
longer, increasing the effective number of persons with DM who could go on to develop 
an infectious complication.  
 
There are several potential ways to explain the shift in the profile of infections I 
observed after adjusting for DM prevalence. The decrease in rates of hospitalization for 
pneumonia may in part be explained by increased rates of pneumococcal vaccination 
among adults over the 25 year study period [51-53]. Supporting this possibility is the 
fact that the rate of hospitalization for pneumonia declined in persons without DM as 
well, indicating that this decline is independent of DM status. In contrast to pneumonia, 
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rates of SSTI and sepsis increased. Unlike pneumonia, neither of these conditions is a 
vaccine preventable illness, which could in part explain the discrepancy in the observed 
rate trends. In addition, the rise in the rates of hospitalizations for sepsis may be due to 
more aggressive diagnosis, since much of the increase occurred between 2001 and 
2011, coinciding with prominent national anti-sepsis campaigns [54]. Unlike both SSTI 
and sepsis, rates of UTI decreased after adjustment for DM prevalence. Like both SSTI 
and sepsis, however, UTI is not a vaccine preventable illness. As such, my results 
suggest that the increase in UTI hospitalizations seen in unadjusted rates may simply 
reflect an increase in the number of persons with DM. Further work is required to 
determine other potential causes for the non-significant decline in the rate of 
hospitalization for UTI after adjustment for DM prevalence. 
 
As is true of any study based on hospital discharge data, my results rely on accurate 
diagnosis coding. A systematic bias in discharge diagnosis coding, including under- or 
over- reporting of both DM and/or specific infections, could result in under- or over-
estimation of the rates of infections in persons with DM. If this bias increased or 
decreased over time, it alone could explain the trends I observed. A second limitation of 
my work is the absence of any clinical information about the degree of DM control in 
individuals, such as a glycosylated hemoglobin level. Because the risk of infection in 
DM is thought to correlate with glycemic control, there may be considerable variability in 
rate trends among patients with DM stratified by severity of disease. A final limitation of 
my results is that they represent a single state, thereby limiting their generalizability. 
Although California is the largest state in the United States in terms of population, I 
cannot say with certainty that the findings I report here will hold in other stayes or 
countries. 
 
Over a time period when both awareness and treatment of DM improved in the United 
States, as indicated by declining rates of non-infectious complications of DM, I found 
that rates of hospitalization for sepsis, pneumonia, UTI and SSTI in adults with DM rose 
in California [31]. As Americans with DM live longer because of continued 
improvements in the management of DM, my results suggest that hospitalizations of 
persons with DM for infectious complications may continue to rise. In addition to its 
implications for individual health, this rise has public health ramifications in part because 
of the economic impact of infections in adults with DM [24]. There is an urgent need to 
improve efforts at prevention of DM while simultaneously improving early 
treatment/detection of DM and redoubling efforts to understand the biological basis of 
the risk of infectious diseases in adults with DM. Such understanding could lead to the 
development of novel diagnostic and therapeutic strategies that, along with a robust 
prevention effort, could blunt a potential syndemic of infectious disease and DM. 
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Chapter 2: Angiotensin Converting Enzyme Inhibitor and Angiotensin Receptor 
Blocker Use is Associated with a Lower Risk of Infectious Disease in a Cohort of 
Adults with Diabetes Mellitus in San Francisco, California 
 
Introduction 
 
As noted in chapter 1 of this dissertation, persons with diabetes mellitus (DM) are 
known to be at increased risk for several different types of infections, including 
pneumonia, skin and soft tissue infections (SSTI), urinary tract infections (UTI), and 
sepsis [19-22, 24]. The biological basis of this increased risk of infection among persons 
with DM remains unknown, but is thought to be related to alterations in both the innate 
and adaptive immune responses [5-7, 55]. 
 
A defining feature of persons with DM is treatment with multiple medications [56-58]. 
This treatment is often for DM-associated complications, including hyperlipidemia, 
hypertension, and chronic kidney disease. Some of the medications that are used to 
treat these conditions are thought to have immunomodulatory properties, with statins, 
which are used to treat hyperlipidemia, being a leading example [33, 59, 60]. 
Medications that are used to treat DM itself and not its complications have also been 
shown to affect specific components of the immune system. One good example of such 
a medication is glyburide, an oral sulfonylurea that promotes increased insulin secretion 
in persons with DM. Glyburide has been shown to inhibit the NLRP3 inflammasome in 
vitro and is associated with a decreased risk of death from gram negative sepsis due to 
Burkholderia pseudomallei (the pathogen that causes melioidosis) in a cohort of 
hospitalized patients in Southeast Asia [34, 61]. Whether the effects of statins and 
glyburide are isolated examples or suggest that many other classes of medications that 
are used to treat persons with DM is unknown. 
 
In chapter one of this dissertation, I show that the rate of hospitalizations for several 
known DM-associated infectious diseases rose steadily between 1986 and 2011 among 
adults with DM in California. This rise could not be explained by an increase in the 
prevalence of DM alone and was surprising, as it occurred during a time period of both 
rising DM awareness and wide availability of medications to treat DM complications. I 
hypothesized that one potential explanation for this observation might be modulation of 
the immune response by single medications or by groups of medications that are used 
to treat DM complications. While for some medications, this modulation could be 
beneficial, for others or in combination, it could potentially further raise the risk of 
infectious disease. In this chapter, I address this possibility by systematically examining 
the associations between several medication classes that are commonly used among 
persons with DM and their combinations with acute infections in a cohort of persons 
with DM in San Francisco, California. 
 
Methods 
 
Study Population 
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The study population consisted of persons aged 18 years and older with DM. All cohort 
members received care between January 2008 and March 2009 in a San Francisco 
Health Network (SFHN) clinic. Persons who were not assigned to a primary care clinic 
within the SFHN and thus did not receive primary care within the system were excluded. 
 
Cohort identification and data extraction 
 
I obtained a list of all prescriptions between January 1, 2008 and December 31, 2008 
from the San Francisco General Hospital (SFGH) outpatient pharmacy for the following 
four medications: glyburide, glipizide, metformin and insulin. No SFHN clinic has its own 
pharmacy and while some prescriptions are filled at outside pharmacies, a record of all 
prescriptions is maintained by the SFGH outpatient pharmacy. We identified a list of 
unique medical record numbers (MRN) from the list of prescriptions and extracted all 
outpatient, inpatient and emergency visit data between January 1, 2008 and March 31, 
2009 for each MRN. Extracted clinical data included: age, race/ethnicity, gender, visit-
associated ICD-9-CM diagnosis codes, and all hemoglobin A1c measurements made 
for each individual between January 1, 2008 and March 31, 2009. The data extraction 
was performed by the University of California, San Francisco Health Records Data 
Extraction Service (THREDS). In addition to medications used to treat DM, prescriptions 
for the following medication classes, frequently used in persons with DM were obtained 
for all cohort members from the SFGH outpatient pharmacy: β-blockers (including 
metoprolol, atenolol and carvedilol), Angiotensin Converting Enzyme Inhibitors 
(including enalapril, captopril, lisinopril and benazepril), statins (including lovastatin, 
simvastatin, pravastatin and atorvastatin), and aspirin. For all medications, both the 
prescription date and the duration of the prescription were available. Only prescriptions 
that were documented as having been filled were included int his study. 
 
Data analysis 
 
For each visit for each individual in the cohort, I reconstructed visit-specific medication 
histories by examining the date of a visit (in the case of inpatient admissions, this was 
considered the date of admission) and reconciling this with all medication prescriptions 
for each individual. I classified an individual as being ‘on’ a medication for a given visit if 
the visit date fell between the start date and end date (determined by the number of 
days for which the prescription was written) for at least one prescription of the 
medication being considered. 
 
I scanned all visit-associated ICD-9-CM diagnosis codes for each individual in the 
cohort. The following ICD-9-CM codes were used to classify individuals as having had 
an acute infection: 038, 995.9, 790.7, 451 (sepsis); 680-686, 695.3, 614.3, 728.86, 
608.4 (skin and soft tissue infections); 590.1-590.9, 595.0, 595.3, 595.4, 595.8, 599.0, 
601.0-601.4 (urinary tract infection); 465, 462, 382, 461, 466, 380.1 (upper respiratory 
infection); 110 (dermatophyte infection); 079, 004, 112, 421 (other acute infection). 
 
For each visit, I determined whether the individual had a hemoglobin A1c measurement 
within one month (before or after) of the visit. If only one of the two hemoglobin A1c 
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measurements was present, this value was assigned as the visit-specific A1c 
measurement. If both measurements were present, the mean of the two measurements 
was assigned as the visit-specific A1c measurement. 
 
All statistical models to examine the association between medication use and acute 
infections were done using a general effects estimation approach (GEE) as 
implemented by the R gee package. Observations (visits) were clustered by MRN. The 
dependent variable in all models was a binary indicator of whether a visit was for an 
acute infection or not with a logistic link function. Odds ratios (OR) were calculated by 
exponentiating linear model coefficients. Robust error estimates for each coefficient 
were used to calculate 95% confidence intervals. 
 
All models were built step-wise. I began with the simplest model predicting whether a 
visit was for an infection or not as a function of each of the eight medications studied 
here. The second step was to adjust these models for age (continuous scale); the third 
step was to adjust for race (coded as a set of binary ‘dummy’ variables, with the largest 
group serving as the reference category); the fourth step was to adjust for hemoglobin 
A1c level (continuous scale); and the fifth step was to adjust for all three factors 
simultaneously. Of the four medications used to treat DM complications, only those for 
which the odds ratio (OR) estimate did not cross null (1.0) in the model adjusted for age, 
race and hemoglobin A1c were retained for the next stage. 
 
Because treatment of DM often involves the use of multiple medications and because I 
observed this to be the case in our cohort, I incorporated this fact into our final models. 
As before, the final set of models was constructed step-wise. The dependent variable 
remained the same, i.e. a binary indicator of whether a specific clinical visit was for an 
acute infection or not. All models included binary indicators for treatment with glyburide, 
glipizide, insulin and metformin and binary interaction terms of each of the first three 
medications with metformin. Indicators for three of the medications used to treat DM 
complications, ACE inhibitors/Angiotensin Receptor Blockers, β-blockers, and statins 
were added stepwise, along with all pair-wise interaction terms for each. In total, for 
each DM treatment regimen, 15 different regression models, incorporating all of the 
medication interaction permutations were run to assess the stability of the generated 
predictions (Appendix B, Table 6).  
 
Results 
 
Our cohort of persons with DM was composed of 743 unique individuals (Appendix B, 
Table 7). The cohort was evenly divided between men and women, had a mean age of 
53.7 years +/- 9.9 and a mean Hemoglobin A1c of 8.3 mg/dl +/- 2.1. Persons of 
Hispanic ethnicity comprised the single largest group (41.6%) in the cohort, followed by 
Asians (29.4%) and African Americans (13.9%). Together, these three groups 
represented 84.9% of persons in the cohort. The cohort accounted for a total of 4776 
visits, the majority of which were outpatient (88.4%). Of the 4776 visits, 236 (4.9%) were 
for an acute infection. Skin and soft tissue infections (28.8%), dermatophyte infections 
(21.1%) and upper respiratory infections (20.3%) accounted for 70.2% of all infections. 
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Several medications were significantly associated with acute infection, even after 
adjustment for age, race and hemoglobin A1c level (Appendix B, Table 8). Persons on 
insulin, were 1.75 (95% confidence interval: 1.18, 2.56) times more likely to present with 
an acute infection than persons not taking insulin. Persons on an Angiotensin 
Converting Enzyme Inhibitor (ACEI) or an Angiotensin Receptor Blocker (ARB) were 
1.92 (1.39, 2.70) times more likely to present with an acute infection than those not on 
an ACEI or an ARB. Persons on a β-blocker were 1.64 (1.08, 2.50) times more likely to 
present with an acute infection than persons not taking a β-blocker. Finally, persons 
taking a statin were 1.72 (1.23, 2.44) times more likely to present with an acute infection 
than persons not taking a statin. 
 
Because many persons with DM are on multiple medications, both for the treatment of 
DM and for the treatment of DM-associated complications, and because of the potential 
for synergistic and/or antagonistic interactions between these medications, I next 
examined the impact of these interactions on our results (Appendix B, Table 9). In 
models adjusting for age, race, hemoglobin A1c level, interaction between DM 
medications and interactions between pairs of medications used to treat DM 
complications, I found that only treatment with either an ACEI or ARB had a significant 
association with presentation for an acute infection. This association was consistent 
regardless of the DM treatment regimen persons were on. Persons on 
Glipizide/Metformin, Glyburide/Metformin and Insulin/Metformin who were also treated 
with an ACEI or ARB were respectively 1.64 (1.05, 2.56), 1.82 (1.16, 2.86) and 1.61 
(1.04, 2.44) times less likely to present with an acute infection as compared to persons 
on the same DM treatment regimen who were not on an ACEI or ARB. 
 
Discussion 
 
Treatment of persons with DM is directed towards management/prevention of its 
complications, as well as treatment of DM itself. One potential ramification of the 
treatment of the complications of DM is the secondary effects of the medications used. I 
hypothesized that some of these medications and/or their combinations could increase 
the risk of infection in persons with DM and thus in part explain my observations in 
chapter 1 of this dissertation. Instead, in a cohort of adults with DM cared for in an 
urban safety-net, I show that treatment with an ACEI or ARB is associated with a 
reduced risk of presenting with an acute infection in the outpatient, inpatient or 
emergency setting. This protective effect of an ACEI/ARB did not vary with different DM 
treatment regimens and persisted even after adjustment for age, race, hemoglobin A1c 
level and other medications. Of these other medications, I initially observed a protective 
effect for both β-blockers and statins as well, although this effect was not robust to 
adjustment for age, race, hemoglobin A1c level and other medications. No other 
medications examined, including glipizide, glyburide, metformin or aspirin, had had a 
significant positive or negative association with presentation for an acute infection. 
 
There are two plausible explanations for our results. The first possible explanation is 
that both ACEI and ARB are immunomodulatory. Consistent with this possibility is prior 
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work showing decreases in circulating levels of inflammatory cytokines (IL-6, TNF-α, IL-
18), levels of anti-inflammatory cytokines (IL-10, IL-1Ra) and levels of non-specific 
markers of inflammation (CRP) in response to ACEI and ARB treatment [62-72]. 
Additional support for an immunomodulatory role for ACEI and/or ARB comes from 
other work showing a decreased risk of pneumonia in persons treated with these 
medications [73-75]. The second potential explanation for our findings is that an 
unmeasured factor that is highly correlated (negatively or positively) with ACEI or ARB 
treatment is responsible for our observation that treatment with these medications is 
associated with a lower risk of infection in persons with DM. Such factors could include 
administration of other immunomodulatory medications (e.g. glucocorticoids), variation 
in exposure to infectious pathogens in persons who are treated with an ACEI or ARB 
compared those not treated with either, or a higher prevalence of conditions that 
increase the risk of infection in persons who are not treated with an ACEI or ARB. For 
instance, if persons who are not treated with an ACEI or ARB are more likely to have 
HIV or to have had an organ transplant compared to persons treated with an ACEI or 
ARB, all other factors being equal, they would be expected to have a higher risk of 
infection. 
 
When I examined each of the eight medications I studied here individually, I found that 
both β-blockers and statins, even after adjustment for age, race/ethnicity and 
hemoglobin A1c level, were associated with a reduced risk of infection. In my final 
models accounting for multiple medication classes and interactions, these associations 
did not remain significant. These results are unsurprising. Prior studies of the 
relationship between β-blockers and the risk of infection have produced mixed results 
[76-78]. This fact, coupled with my results, suggests that any potential effect of β-
blockers on the risk of infection is likely to be small. Studies reporting larger effects may 
not have accounted for the effects of other medications and medication interactions as 
rigorously as I did in this study. In contrast to the data on β-blockers, evidence from 
observational studies suggesting that statin treatment globally reduced the risk of 
infection is strong. It led to several randomized controlled trials (RCT) for different 
infections, including each of the infectious syndromes I examined here [79]. The results 
of RCTs examining whether statins could reduce infections show that statin therapy 
does not do so, consistent my results. Finally, similar to my results for both β-blockers 
and statins, I did not find that treatment with glyburide reduced the risk of infection. 
Again, as was true for both β-blockers and statins, the two prior studies that specifically 
address this question are inconsistent, with one reporting glyburide treatment in patients 
with DM was associated with a lower risk of sepsis due to Burkholderia pseudomallei, 
and another reporting the opposite result [34, 80]. For all three classes of medication, β-
blockers, statins and glyburide, the heterogeneity of prior study results may be due to 
differences in the study populations and design. Regardless, they all suggest that at a 
population level, none of the three medication classes is likely to modify the risk of 
infection in persons with DM, consistent with my findings. 
 
Although the consistency of my primary observation that ACEI/ARB treatment suggests 
that my finding is robust, it is important to recognize the limitations of my work. First, as 
was true of the results presented in chapter 1, the diagnosis of an infection in the 
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patients in the cohort was based on discharge diagnosis codes and not on objective 
clinical criteria such as laboratory, microbiologic or radiographic data. This lack of 
clinical information could result in misclassification of the outcome, identifying persons 
as having or as not having an infectious disease such as UTI or SSTI. If biased, such 
misclassification could lead to lead to either an erroneous association or non-
association. This limitation can be addressed in future work by using objective clinical 
data such as cultures (urine, wound), urinalysis and radiography (chest x-ray or CT-
scan) instead of diagnosis codes to identify persons with infections. A second limitation 
of my work is that I treated prescriptions as a proxy for medication use, leading to 
potential misclassification of the exposure. Unlike misclassification of the outcome, 
misclassification of the exposure wen the exposure is medication use is not easily 
addressed in a study involving outpatients without either directly observing therapy or 
measuring drug levels. One potential solution to this problem is to focus a follow-up 
study exclusively on inpatients, since medication administration records are available 
and medication use can be confirmed. Alternatively, an outpatient study of the risk of 
infection could incorporate directly observed therapy, although the logistics of doing 
such a study would be challenging. 
 
A central feature of the care of persons with DM is the treatment with multiple 
medications. These medications are directed at both the primary disease process as 
well as at secondary complications. Although I had hypothesized that some of these 
medications could increase the risk of infection and might in part explain the increasing 
rates of hospitalization for infections in persons with DM I describe in chapter 1, my 
results do not support this possibility. Instead, I found that the use of two commonly 
used classes of medications, ACEI and ARB are associated with a reduced risk of acute 
infections, that this protection occurs is independent of the level of DM control, and that 
it is not affected by treatment with other medications. Future work is required to confirm 
these findings and to determine the biological basis of my observation, its specificity by 
type of infection and whether the effect of ACEI/ARB is specific to persons with DM or is 
present in a general population. 
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Chapter 3: Where You Live Matters: The Effect of Residence on Control of 
Diabetes Mellitus in an Urban, Underserved Population in San Francisco, 
California 
 
Introduction 
 
The risk of diabetes mellitus (DM) related complications, including infections, coronary 
artery disease, diabetic nephropathy and retinopathy, is directly related to the degree of  
control of the DM [26, 81-89]. In clinical practice, this control is typically measured by 
tracking capillary blood glucose as an indicator of short-term control and the 
glycosylated hemoglobin level (HbA1c) as a measure of long-term control. In response 
to these measurements, medication doses and regimens are adjusted. Optimal 
management therefore requires steady contact with healthcare providers and 
personalized care planning [90].  
 
One potential barrier to regular contact with healthcare providers for persons with DM is 
the physical distance between them and the clinics where they receive care. Although 
this barrier presumably exists for all persons with DM, it can be particularly problematic 
for persons served by safety-net institutions [91]. Specific examples of the potential 
barriers faced by persons who receive their care in safety-net institutions include not 
having a car, limitations in mobility and limited access to public transportation. Few 
studies have specifically examined the relationship between distance to the site where 
one receives primary care and DM control. 
 
In chapter one of this dissertation I showed that the rate of hospitalizations for infections 
has risen among adults with DM in California. This rise was consistent across all types 
of institutions, public, private and safety net (data not shown). In chapter two, I 
examined the hypothesis that collateral effects of medications commonly used in 
persons with DM, which have increased in use over time, could in part account for these 
trends. In this chapter, I complement the analysis presented in chapter two by 
examining the relationship between DM control and the spatial distribution of patients in 
a cohort of patients served by an urban safety-net healthcare system in San Francisco, 
CA. I focus on this relationship because another potential explanation for the trends 
described in chapter one could be that even as the number of persons with DM has 
increased over time, mean DM control in these persons has not improved. A potential 
driver of worsening control of DM might be access to care, as measured by distance. 
Therefore, in this chapter, I determine both how DM control varies by location in the 
cohort studied here and how this variation may be a function of the distance of patients’ 
homes to their primary care clinics. My findings provide insights that could have 
implications for the management of DM and other chronic illnesses, particularly in 
patient populations served by urban safety net systems. 
 
Methods 
 
Study Population 
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I identified a cohort of patients with DM by searching San Francisco General Hospital 
(SFGH) outpatient pharmacy records from 1/1/2008 to 12/31/2008 for the following four 
medications: insulin (all types), glyburide, glipizide and metformin. Only non-homeless 
adults, aged 18 years and older who received outpatient care at a San Francisco Health 
Network (SFHN) clinic were included. Patients whose residence was not located in San 
Francisco county were excluded. 
 
Extraction and processing of clinical data 
 
I used unique medical record numbers (MRN) for each patient in the cohort to extract 
the following information from the electronic medical record (EMR): home address, age, 
gender, race/ethnicity, and hemoglobin A1c. Hemoglobin A1c measurements for all 
patients in the cohort were obtained for calendar years 2008, 2009 and 2010. EMR data 
extraction was done by the UCSF Clinical and Translational Science Institute’s The 
Health Records Data Service (THREDS). Patients’ primary care clinics were determined 
by examining visit frequencies. 
 
Mapping of patients and clinics 
 
I geocoded all patient addresses using Google’s mapping application programming 
interface (API) with the R geocode function from the ggmap package. I used the same 
method to geocode the locations of all SFHN outpatient clinics. 
 
Data analysis 
 
All data analysis was done using a combination of Matlab R2016a (Mathworks, Inc.), 
the Matlab mapping toolbox, R version 3.2.3 and R Studio version 0.99.486. For spatial 
analysis, I obtained a shapefile for San Francisco county at www.diva-gis.org and 
approximated San Francisco county by a raster-grid of 0.001’x0.001’ polygons. 
 
I determined the number of patients in 5.6 square miles polygons (0.02’ x 0.02’) 
overlapping windows centered at each pixel in the raster grid covering San Francisco 
county. To isolate the effect of ones residence on HbA1c level, I used the same 
approach, but instead of summing the number of patients, I fit two regression models in 
each window. Both models featured Hemoglobin A1c level as the outcome and varied 
only by the set of predictors used. The first model used age alone as a predictor (A1c = 
β0 + β1*age), while the second model used age and distance to the assigned primary 
care clinic as predictors (A1c = β0 + β1*age + β2*distance). Straight-line distances in 
miles from patients’ residences to their assigned primary care clinics were calculated in 
Matlab using the distance function.  Race/ethnicity was not included as a covariate 
because of the small number of observations in many of these models. For all models, 
we interpreted the intercept term (β0) as a measure of the effect of a specific location on 
HbA1c level. I visualized the results of all moving window analyses as a scaled color 
image with the Matlab imagesc function. 
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I quantified the impact of the distance to an individual’s primary care clinic on HbA1c 
level cross-sectionally by modelling HbA1c as a function of age and distance to the 
assigned primary care clinic (HbA1c = β0 + β1*age + β2*distance + β3*race indicator). I 
modeled hemoglobin A1c with the R SuperLearner package, training the model using a 
library of machine learning algorithms and using 20-fold cross validation to assess 
model performance. The library of algorithms included: generalized linear model (glm), 
random forest, step-wise glm, step-wise glm with interaction terms, generalized additive 
model (gam), neural networks (nnet), ridge regression, and support vector machines. 
 
I next determined the closest SFHN primary care clinic for each patient in the cohort. I 
used the Matlab plot function to visualize the observed network of patients and clinics 
as well as the distance-optimized network of patients and clinics. Next, for each patient, 
I generated a predicted HbA1c based on reassignment to his or her closest SFHN 
primary care clinic using the trained ensemble model. I calculated the observed mean 
HbA1c for each individual in the cohort and used the Matlab histogram function to 
visualize the distribution of both the observed mean HbA1c and the predicted mean 
HbA1c in individuals with poorly controlled DM (mean HbA1c > 8.0, N=356). I next 
determined the effect of clinic reassignment on the mean HbA1c in the subpopulation of 
persons with poorly controlled DM. I used the non-parametric bootstrap to determine a 
95% confidence interval for the weighted mean difference in the observed HbA1c and 
the predicted HbA1c. Specifically, for each bootstrap iteration, I sampled individuals in 
the cohort with replacement. I calculated the weighted mean observed HbA1c 
(weighting each cluster equally) as well as the weighted mean predicted HbA1c. From 
these two values, I determined the weighted mean difference in the observed and 
predicted HbA1c. A total of 10,000 bootstrap iterations were run. 
 
Results 
 
I identified a cohort of 735 unique patients with presumed DM who received a 
prescription for glyburide, glipizide, metformin or insulin from the San Francisco General 
Hospital outpatient pharmacy between January 1, 2008 and December 31, 2008. From 
January 1, 2008 until December 31,2010, these patients had a total of 4174 outpatient 
visits at a San Francisco Health Network primary care clinic for which a HbA1c 
measurement could be associated within a one month window of the visit. The mean 
age of persons in this cohort was 54.3 years, 51.7% were female and 48.3% were male. 
The racial/ethnic distribution of the cohort was 41.8% Hispanic, 31.3% Asian, 12.2% 
Black, and 9.5% White. The weighted mean HbA1c in the full cohort of patients was 
8.30 mg/dl. 
 
Residences of patients in the cohort were concentrated in downtown San Francisco and 
in the immediate vicinity of San Francisco General Hospital (Appendix A, Figure 3). 
Most of the sectors of the city were represented. The strongest age-adjusted, location-
related effects on DM control occurred in downtown San Francisco (upper right corner 
of the city polygon) and in the city’s periphery (Appendix A, Figure 4). These regions 
were ‘hot spots’ (colored yellow-green to red) of poor DM control. 
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A majority (78.1%) of patients lived more than one mile from their primary care clinic. 
The weighted mean HbA1c among patients living more than one mile from their primary 
care clinic was 8.30 and 8.30 in persons who lived within one mile of their clinic. 
Visually, however, the first group appeared to account for the majority of persons living 
in or near DM hot spots (Appendix A, Figure 5), with the only exception being the hot-
spot located in downtown San Francisco (Appendix A, Figure 6). The locations of DM 
hot spots in the two groups of patients remained unchanged even after adjustment for 
distance to a patient’s assigned primary care clinic was included in the prediction model 
(Appendix A, Figures 7-9). 
 
When I visualized the network of patients and their assigned clinics, I noted a highly 
centralized structure (Appendix A, Figure 10). This observation indicated that the 
majority of the patients in this cohort of persons with DM received their care at one of 
three hospital-based primary care clinics. Assignment of patients to their closest clinic 
resulted in a more dispersed network structure (Appendix A, Figure 11).  
 
Focusing on the the subset of patients with poorly controlled DM (mean HbA1c > 8.0 
over the study period), I determined the potential effect of reassigning these patients to 
their closest clinic by predicting the effect of doing so using an ensemble model of 
HbA1c as a function of distance and age trained on the full set of data (see Appendix for 
cross validation results and model weights). I found that reassignment could have a 
significant effect on HbA1c control, shifting the distribution of mean HbA1c to the left 
(Appendix A, Figure 12). The observed weighted HbA1c in persons with poorly 
controlled DM was 9.43 mg/dl (95% confidence interval: 9.29, 9.59). After reassignment 
to the closest clinic, the weighted HbA1c in persons with poorly controlled DM was 8.39 
mg/dl (8.29, 8.48). The difference between the two means was 1.14 mg/dl (0.90, 1.20). 
Few of the patients with poorly controlled DM were assigned to a clinic within one mile 
of their respective residences (Appendix A, Figure 13), with the majority having been 
assigned to a clinic more than one mile away (Appendix A, Figure 14), resulting in a 
highly centralized patient-primary care clinic network. As was true for the entire cohort, 
re-assigning patients to their nearest clinic resulted in a more dispersed network 
structure (Appendix A, Figure 15). 
 
Discussion 
 
DM can result in a variety of different complications, including infections, coronary artery 
disease, and chronic kidney disease. The risk of each of these complications is thought 
to increase with worsening DM control. In a cohort of patients served by an urban 
safety-net institution in San Francisco, CA, I show that how far patients live from their 
primary care clinic can have a major impact on long-term DM control, as measured by 
HbA1c level. I found that reassigning persons with poorly controlled DM (HbA1c > 8.0 
mg/dl) to the closest primary care clinic would have a major impact, resulting in a full 
unit (1.0 mg/dl) improvement in the HbA1c level in this group of patients. One of the 
main effects of such a reassignment would be the transformation of the existing patient-
primary care clinic network in the cohort of patients examined from a centralized to a 
more decentralized structure. 
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As noted earlier, few studies have formally examined the relationship between distance 
to the primary care clinic and DM control and none have done so in an urban healthcare 
safety net setting as I do here. Prior studies that have addressed the relationship 
between distance to the site of care and DM control have all been done in rural 
underserved populations [91-96]. These studies show that increasing distance between 
a patient and his or her primary care clinic is associated with both poorer disease 
control and adherence to care, consistent with my results. One important difference 
between urban and rural populations, however, is the magnitude of the distances 
involved in the two settings. In the cited studies, mean travel distances in rural 
populations often spanned tens of miles, as opposed to less than five miles in my study 
population. This difference in the distance travelled might suggest that distance is in 
practice a proxy for travel time. While in a rural setting, travel time would primarily be a 
function of distance, in urban settings such as San Francisco, it may reflect a 
combination of factors, including congestion and the relative efficiency of the local public 
transit system.  
 
The mechanism(s) by which increasing distance to the clinic results in poorer control of 
DM are unclear. One potential mechanism is that it directly leads to fewer visits with a 
healthcare provider and that this reduced contact in turn leads to poorer control of DM. 
Even if correct, it remains to be determined whether this mechanism is driven by lack of 
access to transportation (public or car), concerns about time or other factors. A second 
potential mechanism by which increasing distance to the clinic directly could lead to 
poorer control of DM is that it may influence the management choices made by 
providers. For example, a provider could elect to treat a patient with very poor DM 
control who clearly needs insulin therapy with oral agents because the patient in 
question has a consistent history of poor follow-up. Further work is required to 
distinguish between these possibilities as well as to identify other potential mechanisms 
for how increasing distance to the clinic results in poorer control of DM. 
 
Although I believe that my observations about the impact of distance on DM control are 
correct, my work does have some limitations. First, because I used medication 
prescriptions to identify patients with DM, it is possible that some of the patients in the 
cohort did not have DM. Metformin, for example, is used to treat other conditions, 
including non-alcoholic fatty liver disease [97]. Very few patients (<5%) in the cohort, 
however, were on metformin alone and the effect of excluding these patients was 
negligible (data not shown). A second limitation of my study is the way in which I 
calculated distances. I used Euclidean distances, which may not accurately represent 
the actual distances people travel over city streets. A third limitation of my study is 
analytical: the moving window regression models I used to determine the effect of 
residence on DM control included a limited set of covariates. Not adjusting for 
confounders such as comorbidities and medications could result in over-estimation of 
the strength of the association between the location of an individual’s residence and 
DM. This same criticism could apply to my predictive models of A1c as a function of 
distance to the primary care clinic, which were equally parsimonious. Finally, all of the 
regression modeling in this study did not account for correlation between multiple 
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measurements on the same individual. Not accounting for this correlation could lead to 
incorrect error estimates and therefore to incorrect statistical inference. Each of these 
limitations will be addressed in future work, in part by making a concerted effort to 
improve both the quality (e.g. identifying patient’s with DM by HbA1c level and not by 
medications) and quantity (a requirement in order to fit more complex regression 
models) of the data. 
 
Management of chronic diseases such as DM is challenging, especially so in an urban, 
underserved patient population. I show here that distance to the primary care clinic can 
be a major barrier to achieving optimal DM control. In populations such as the one 
studied here, where the patient-primary care clinic network is highly centralized, one 
potential solution is enforced decentralization of services. The simplest way to create a 
decentralized patient-primary care clinic network is to limit choice by assigning patients 
to the clinic closest to their residences. I show here that the potential effect of doing so 
on control of DM, as measured by the HbA1c level, could be substantial. In practice, 
however, this approach might be ineffective, as limiting choice, even when justified, 
would likely be unpopular. An alternative means to achieve the same end is to push 
services out of the clinic and into the community through home nurse visits and/or 
telemedicine visits. Telemedicine in particular has already been shown to be a 
potentially effective strategy for management of DM [98]. While such approaches would 
not directly affect the distance between patients and their clinics, they would increase 
contact with providers and the healthcare system, thereby addressing one potential 
direct effect of the distance between patients and their primary care clinics. Whether the 
findings I report here are generalizable to other settings or not remains to be seen. 
Regardless, my work highlights the need for a more holistic view of chronic disease 
management among the urban underserved that takes into account potentially 
modifiable factors that are often not taken into account, such as the distance between 
patients and their clinics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

	 23 

Discussion and future steps 
 
Together, the three chapters of this dissertation make an important contribution to our 
understanding of DM and its complications. In chapter 1, I describe the evolving 
landscape of DM-related complications in California. I show that in adults with DM, rates 
of hospitalization for infectious diseases have increased even as those for non-
infectious complications complications of DM have decreased. Although a number of 
different factors have presumably driven this rise, in chapter 2 I examine one potential 
cause in a cohort of patients in San Francisco, CA: modulation of the immune response 
because of collateral effects of medications that are commonly prescribed for the 
treatment of associated conditions in persons with DM. I chose to focus on medications 
for two primary reasons: 1) they can be modified and thus intervened upon, 2) the 
biology of their effects is amenable to laboratory investigation. Although my results did 
not support a major role for collateral effects of medications in driving the rising rates of 
hospitalizations for infections among persons with DM in California, I did find that both 
angiotensin converting enzyme inhibitors (ACEI) and angiotensin receptor blockers 
(ARB) were strongly associated with a decreased risk of infection. As I discuss below, 
this information is potentially actionable and has important implications. Finally, while 
understanding the biology of why infections appear to be more common in persons with 
DM is important, improving control of DM is the key to preventing any DM-association 
complication, including infections. Therefore, to complement chapter 2, I examined the 
interaction between residence and distance to the primary care clinic in chapter 3. Like 
chapter 2, chapter 3 focuses on a factor that can be intervened upon. Unlike chapter 2, 
the implications of the results of chapter 3 are much broader, since all complications of 
DM, not just infections, are directly related to the severity of disease [26, 81-89]. I show 
that minimizing the distance between patients and their primary care clinics can result in 
substantial improvements in the control of DM as measured by the HbA1c level.  
 
Strengths. The work presented in this dissertation has a number of strengths. First, 
although the association between DM and infectious disease is well established, no 
prior studies have examined long-term trends in infectious diseases among persons 
with DM. This fact stands in contrast to the non-infectious complications of DM, for 
which such trends have been examined [31]. While further work is required to confirm 
the findings described in chapter 1, I believe that they are unlikely to change, in part 
because of the large data set used. The findings I report in chapter 1 are based on all 
adult hospitalizations in the state of California. They thus represent the entire universe 
of hospitalizations for each year examined, thereby reducing the likelihood of bias. 
 
A second major strength of this dissertation is that in chapter 2 I move beyond the 
epidemiological observations of chapter 1 (increasing rates of hospitalization for 
infections in persons with DM) to examine one plausible biological factor (modulation of 
the immune response by medications) that could explain what I observed. The design of 
the analysis presented in chapter 2 is its greatest strength. By reconciling the date and 
duration of medication prescriptions with the dates of patient visits, I establish 
temporality, strengthening the case for a potential causal link for any associations 
observed. Unfortunately, my results did not support my hypothesis that medications 
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used to treat other conditions in persons with DM might increase the risk of infection. In 
fact, I found the opposite result for two medication classes, since both ACEI and ARB 
were associated with a significant reduction in the risk of infection. It should be noted, 
however, that two medications, glyburide and aspirin, were associated with an 
increased risk of infection. Neither of these associations was significant, although this 
lack of significance may mainly be a result of insufficient statistical power. Whatever the 
case, the results I present in chapter 2 provide a basis to justify further examination of 
the medications used to treat other conditions in persons with DM. Such investigation 
could lead to novel therapeutic uses (e.g. using an ACEI or ARB in women with DM with 
recurrent UTI) and, can be used as a tool to better characterize the defects in immunity 
that underlie the increased risk of infection in persons with DM.  
 
A third major strength of this dissertation is that the spatial analysis I present in chapter 
3 represents a novel contribution to the body of work on DM. As described earlier, while 
some prior studies have examined the association between distance and the control of 
DM, most of this prior work is descriptive and does not go beyond reporting an 
association. In formally quantifying the effect of distance on control of DM by combining 
causal inference methods, machine learning and spatial analysis, my work represents a 
novel synthesis and makes a substantial new contribution to our understanding of DM. 
More importantly, in quantifying the impact of reducing the distance between patients 
and their clinics, it demonstrates the potential benefit of intervening on this factor. 
 
Limitations. Although I believe that the results I report here are robust and represent a 
valuable contribution to the existing literature on DM and its complications, my work 
does have some important limitations. The work I present in chapter 1 suffers from the 
limitation of all work that is based on claims/discharge data: the absence of clinical 
information. The identification of persons with DM and the determination of the 
infections that they have in chapter 1 is dependent on accurate diagnostic coding but 
without clinical information to corroborate diagnoses (e.g. a urine culture to confirm that 
a patient has a UTI) it is impossible to confirm this accuracy. Because of this inability to 
confirm diagnoses, it is not possible to determine if there is any systematic bias in 
discharge diagnosis coding that could lead to a spurious association. For example, it is 
possible that for a patient presenting with a cough and fever but a negative chest x-ray, 
that providers may be more inclined to classify him or her as having pneumonia if he or 
she has DM because providers know that persons with DM have a higher risk of 
infection. Such a bias could easily be in the other direction as well. While my 
expectation is that the scale of the data used, consisting of all adult hospitalizations in 
all hospitals in California, may nullify all such biases, future work is required to assess 
whether this is true or not.  
 
Like the work I present in chapter 1, the work I present in chapter 2 also has some 
important limitations. The first limitation of the work presented in chapter 2 relates to 
exposure assessment, in this case medication use. I make the assumption that having a 
prescription for a medication is equivalent to taking it. Even though the study design of 
the work ensures that the criterion of temporality is met, no causal inference can be 
made without making this assumption. Fortunately, this limitation is addressable through 
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small changes in study design, either by incorporating the measurement of drug levels 
or by directly observing therapy, although the logistics of doing either are not trivial. A 
second limitation of the work I present in chapter 2 is that the models I used do not 
account for all possible medication interactions. This limitation is also addressable and 
in the case of the analysis I present, the lack of accounting for all possible medication 
interactions was deliberate. More complex models, accounting for all pairwise 
medication interactions could easily be implemented, but also require a much larger 
data set to fit. As before, this limitation will be addressed in future work. 
 
Like the work presented in chapters 1 and 2, the work I present in chapter 3 also has 
some limitations. The first of these limitations is that the spatial regression analyses 
adjusted for a small set of potential confounders. Other, unaccounted-for factors, 
including medications, could have played an important role in determining the 
relationship between location and control of DM. For example, prescribing patterns 
could vary by location within the city and, unaccounted for, this variability could result in 
overestimation of the effect of residence on control of DM. A second limitation of the 
spatial analysis I present in chapter 3 is that I did not account for correlation between 
repeated measures on the same individual. It is important to note, however, that not 
doing so would not affect the estimate of the effect of residence on control of DM, only 
the error estimate. Because my analysis of the effect of residence on control of DM was 
intended to be qualitative/descriptive and does not attempt to make any kind of 
statistical inference, however, inaccuracy in the error estimate did not affect my results. 
Nevertheless, future work could incorporate analytical techniques designed for 
repeated-measures data, such as the general effects estimation (GEE) approach used 
in chapter 2 applied to the spatial analysis presented in chapter 3. To do so, however,  
will again require increasing the size of the data set used in order to be able to fit such a 
model. 
 
Finally, all three chapters of this thesis share two limitations. The first of these common 
limitations is generalizability. In the case of chapter 1, whether trends on hospitalization 
for infections in persons with DM in California apply in other states of the United States 
with a different demographic make-up is unclear. Similarly, in the case of chapters 2 
and 3, whether the findings from a cohort of patients served at an urban safety-net 
institution in a single city will apply in other cities and hospitals in California and/or the 
United States is unclear. The second common limitation shared by all three chapters in 
this dissertation is that each makes use of secondary data sources. The lack of control 
over the data collection process that is a defining characteristic of all secondary data 
sources thus remains a major concern. As was true of the other limitations identified, 
however, each of the limitations I identify here are addressable. In this case, a new 
study with a prospective, multi-center design could directly address both the 
generalizability of the work presented here while generating high-quality, primary data.  
 
Future steps. The work I present in this dissertation provides a solid foundation for 
future investigation. One starting point for such work is to confirm the results I report in 
chapter 1. One potential approach is to use national hospital discharge data (such as 
the HCUPS dataset), while an alternative approach is to leverage the growing 
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availability of electronic medical record (EMR) data. While the second of these two 
approaches might initially need to be limited to a single health system or hospital, it 
offers one significant benefit: it would allow for accurate assessment of the outcomes 
because of the availability of diagnostic test results (e.g. cultures and imaging). 
 
EMR data have further advantages that would strengthen the work presented here. One 
of the biggest advantages opf EMR data is that they are linked to medication 
administration records. This fact would address one of the primary limitations of the 
analysis in chapter 2, since it would be possible to know for certain if a patient had 
taken a specific medication or not. This confirmation would strengthen the case for a 
causal interpretation of any observed association between a medication and an 
infection, thus justifying laboratory-based experimentation to determine the mechanisms 
of how a specific medification might modify the risk of infection. Finally, EMR data 
include residence information, are longitudinal and, in some cases, are available at a 
national scale in the United States. In short, future studies based on the use of EMR 
data have the potential to address all of the limitations of the analyses presented in the 
three chapters of this dissertation. 
 
A final, and possibly the most important, future direction based on the results reported 
here is the development of interventions to improve the control of DM. At least two 
strategies result directly from the work presented in chapters 2 and 3: 1) use of either 
ACEI or ARB to reduce infection risk in persons with DM who develop recurrent 
infections, 2) the development of geographically targeted interventions and/or health-
system re-design to de-centralize care, particularly in urban safety-net institutions. The 
effectiveness of each of these interventions could be assessed by a clinical trial and, if 
proven to be effective, become part of routine management. In short, the work I present 
in this dissertation opens up multiple avenues for future inquiry on the interaction 
between DM and infectious diseases, the development of novel interventions to reduce 
the risk of infectious diseases in persons with DM, and the development of interventions 
to improve control of DM. 
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Appendix A: Figures 
 
Figure 1. Age adjusted rates of hospitalization for complications of diabetes 
mellitus in California, 1986-2011. The upper panel shows rate trends for 
cerebrovascular accident (CVA), myocardial infarction (MI), pneumonia, sepsis, skin 
and soft tissue infections (SSTI), and urinary tract infections (UTI) in adults with 
diabetes. The lower panel shows rate trends for the same conditions in adults without 
diabetes. All rates are relative to the entire adult population of California. The light gray 
areas around each trend line show the 95% confidence intervals of the rate estimates. 
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Figure 2. Age and diabetes prevalence adjusted rates of hospitalization for 
complications of diabetes mellitus in California, 1996-2011. The upper panel shows 
rate trends for cerebrovascular accident (CVA), myocardial infarction (MI), pneumonia, 
sepsis, skin and soft tissue infections (SSTI), and urinary tract infections (UTI) in adults 
with diabetes mellitus. Rates are for the estimated adult population with diabetes 
mellitus. The lower panel shows rate trends for the same conditions in adults without 
diabetes mellitus. Rates are for the estimated adult population without diabetes mellitus. 
The light gray areas display 95% confidence intervals. 
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Figure 3. Density within San Francisco County of patients from the cohort of 
patients with diabetes mellitus. Patient density was estimated using moving window 
averages over the area of San Francisco County. The size of each window was 
approximately 5.6 miles2, with warmer colors indicating a higher density. 
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Figure 4. Unadjusted effect of residence on mean hemoglobin A1c level in San 
Francisco. Hemoglobin A1c level was modeled as a function of patient age and 
smoothed over San Francisco County city limits using a series a moving window 
regression models. Warmer colors  indicate a stronger effect. 
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Figure 5. Unadjusted effect of residence on mean hemoglobin A1c level in San 
Francisco and network of patients who live within one mile of their primary care 
clinic. Hemoglobin A1c level was modeled as a function of patient age and smoothed 
over San Francisco County city limits using a series a moving window regression 
models. Warmer colors indicate a stronger effect. Individual patients are represented by 
black open circles and straight lines connect patients to their respective primary care 
clinics. 
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Figure 6. Unadjusted effect of residence on mean hemoglobin A1c level in San 
Francisco and network of patients who live more one mile of their primary care 
clinic. Hemoglobin A1c level was modeled as a function of patient age and smoothed 
over San Francisco County city limits using a series a moving window regression 
models. Warmer colors indicate a stronger effect. Individual patients are represented by 
black open circles and straight lines connect patients to their respective primary care 
clinics. 
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Figure 7. Distance-adjusted effect of residence on mean hemoglobin A1c level in 
San Francisco. Hemoglobin A1c level was modeled as a function of patient age and 
distance to the primary care clinic and smoothed over San Francisco County city limits 
using a series a moving window regression models. Warmer colors indicate a stronger 
effect. 
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Figure 8. Distance-adjusted effect of residence on mean hemoglobin A1c level in 
San Francisco and network of patients who live within one mile of their primary 
care clinic. Hemoglobin A1c level was modeled as a function of patient age and 
distance to the primary care clinic and smoothed over San Francisco County city limits 
using a series a moving window regression models. Warmer colors indicate a stronger 
effect. Individual patients are represented by black open circles and straight lines 
connect patients to their respective primary care clinics. 
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Figure 9. Distance-adjusted effect of residence on mean hemoglobin A1c level in 
San Francisco and network of patients who live greater than one mile from their 
primary care clinic. Hemoglobin A1c level was modeled as a function of patient age 
and distance to the primary care clinic and smoothed over San Francisco County city 
limits using a series a moving window regression models. Warmer colors indicate a 
stronger effect. Individual patients are represented by black open circles and straight 
lines connect patients to their respective primary care clinics. 
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Figure 10. Existing patient and primary care network.  Each individual patient in the 
cohort (black circles) and each of the primary care clinics (red crosses) in the San 
Francisco Health Network (SFHN) were mapped. Lines in the figure connect each 
patient to his or her primary care clinic. 
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Figure 11. Distance optimized patient and primary care network. The closest 
primary care clinic was determined for each individual patient in the cohort (black 
circles). As before, a line connecting a patient to their nearest (distance-optimized) clinic 
in the San Francisco Health Network (SFHN) was drawn. 
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Figure 12. Distribution of observed Hemoglobin A1c and predicted Hemoglobin 
A1c after reassignment to nearest clinic in persons with poorly controlled 
diabetes mellitus. The blue histogram shows the observed distribution of hemoglobin 
A1c (HbA1c) values in persons with poorly controlled diabetes mellitus in the cohort, 
defined as a mean HbA1c > 8.0. The red histogram shows the predicted effect of 
reassigning all persons in the cohort to their nearest clinic on the distribution of HbA1c 
values. 
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Figure 13. Patients with poorly controlled DM living within one mile of their 
primary care clinic. Patients in the cohort with poorly controlled DM (defined as a 
hemoglobin A1c >= 8.0 mg/dl) who live within one mile of their primary care clinic were 
selected and mapped. Each patient is connected to his or her primary care clinic (red 
crosses) by a straight line. 
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Figure 14. Patients with poorly controlled DM living greater than one mile from 
their primary care clinic. Patients in the cohort with poorly controlled DM (defined as a 
hemoglobin A1c >= 8.0 mg/dl) who live more than one mile from their primary care clinic 
were selected and mapped. Each patient is connected to his or her primary care clinic 
(red crosses) by a straight line. 
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Figure 15. Distance optimized patient-primary care clinic network. The nearest 
clinic was determined for all patients in the cohort with poorly controlled DM (defined as 
a hemoglobin A1c >= 8.0 mg/dl). Each patient was mapped (black circles) and 
connected to their closest primary care clinic (red crosses) by a straight line. 
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Appendix B: Tables 
 
Table 1. Population estimates for the state of California, by age group. All data 
were obtained from the United States Census Bureau, with links provided in the last 
column of the table. Age categories were selected to correspond to the age categories 
available for each year of hospital discharge data 
 
 

 18-34 
(%) 

35-64 
(%) 

65+ (%) Total Source 

1986 8608655 
(42.9) 

8593345 
(42.8) 

2855000 
(14.2) 

20057000 https://www.census.gov/popest/data/hi
storical/1980s/state.html, 
https://www.census.gov/popest/data/st
ate/asrh/1980s/tables/s5yr8090.txt, 
https://www.census.gov/popest/data/st
ate/asrh/1980s/tables/estage80.txt 

1991 9034477 
(40.7) 

9962939 
(44.8) 

3203956 
(14.4) 

22201372 https://www.census.gov/popest/data/hi
storical/1990s/state.html, 
https://www.census.gov/popest/data/st
ate/asrh/1990s/tables/ST-99-09.txt, 
https://www.census.gov/popest/data/st
ate/asrh/1990s/tables/ST-99-08.txt 

1996 8330389 
(36.4) 

11034261 
(48.2) 

3519180 
(15.4) 

22883830 https://www.census.gov/popest/data/hi
storical/1990s/state.html, 
https://www.census.gov/popest/data/st
ate/asrh/1990s/tables/ST-99-09.txt, 
https://www.census.gov/popest/data/st
ate/asrh/1990s/tables/ST-99-08.txt 

2001 8723334 
(34.7) 

12779012 
(50.8) 

3651646 
(14.5) 

25153992 https://www.census.gov/popest/data/in
tercensal/state/tables/ST-EST00INT-
02/ST-EST00INT-02-06.csv 

2006 9025589 
(33.5) 

13973084 
(51.8) 

3927830 
(14.6) 

26926503 http://factfinder.census.gov/bkmk/table
/1.0/en/ACS/06_EST/DP5/0400000US
06 

2011 9153059 
(33.1) 

14344790 
(51.8) 

4167833 
(15.1) 

27665682 http://factfinder.census.gov/bkmk/table
/1.0/en/ACS/11_5YR/DP05/0400000U
S06 
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Table 2. ICD-9-CM diagnosis codes. All codes come from the ICD-9-CM (clinical 
modification). They represent the conditions that were scanned for in the primary 
diagnosis code field for all hospital admissions. These were: all infections, pneumonia, 
sepsis, urinary tract infection, skin and soft tissue infection, myocardial infarction and 
cerebrovascular accident 
 
All infections: 001-139, 320, 321, 323, 324, 325, 326, 360.00, 360.01. 360.02, 360.03, 
360.04, 360.13, 370.05, 370.55, 372.00. 372.15, 372.2, 373.0, 373.1, 373.4, 373.5, 
373.6, 376.01, 376.02, 376.03, 376.12, 376.13, 379.09, 380.0, 380.1, , 382, 383.0, 
383.1, 383.2, 386.33, 386.35, 390, 391, 415.12, 420, 421, 422, 424.9, 451, 460, 461, 
462, 463, 464, 465, 466, 473, 475, 480-488, 490-491, 510, 511.1, 513, 521.0, 522.0, 
522.1, 522.4, 522.5, 522.6, 522.7, 523.0, 523.1, 523.3, 523.4, 527.3, 528.3, 528.5, 
529.0, 530.19, 540-542, 562.01,562.11, 562.03, 562.13, 566, 567.0, 567.1, 567.2, 
567.3, 569.5, 569.71, 572.0, 572.1, 573.1, 573.2, 574.0, 574.3, 574.6, 574.8, 575.0, 
575.1, 576.1, 590, 595.0-4], 595.89, 595.9, 597.0, 599.0, 601.0, 601.1, 601.2, 601.3, 
601.4, 601.9, 604, 608.0, 608.4, 611.0, 614.0-5, 614.7-9, 615, 616.0-1, 616.3-4, 680-
686, 695.3, 696.3, 696.4, 696.5, 711.0, 711.4, 711.5, 711.6, 711.7, 711.8, 711.9, 728.0, 
728.86, 730.0, 730.1, 730.2, 730.3, 730.8, 790.7, 790.8, 958.3, 996.6, 997.31, 997.62, 
998.5, 999.0, 999.3, V02, V08, V09 
 
Sepsis: 038, 995.91, 995.92 
 
Pneumonia: 480-486, 487.0 
 
Skin and soft tissue infection (SSTI): 680-686, 695.3, 614.3, 728.86, 608.4 
 
Urinary tract infection (UTI): 590 (except 590.0), 595.0, 595.3, 595.4, 595.8, 597.0, 
599.0, 601.0, 601.2-4 
 
Myocardial infarction (MI): 410 
 
Cerebrovascular accident (CVA): 430-434, 436 
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Table 3. Demographic characteristics of adult hospitalizations in California, 1986-
2011. All demographic characteristics were available hospitalizations, although 
beginning in 1996, gender was randomly masked for twenty percent of all observation in 
the publically available data used here. In the bottom row, the number of 
hospitalizations for which a diagnosis of diabetes was present is listed. 
 
 

 1986 
N (%) 

1991 
N (%) 

1996 
N (%) 

2001 
N (%) 

2006 
N (%) 

2011 
N (%) 

Total 1613983 
(100) 

1668539 
(100) 

1407614 
(100) 

1581543 
(100) 

1669897 
(100) 

1783145 
(100) 

Male 801294 
(0.5) 

823372 
(0.49) 

566721 
(0.40) 

640924 
(0.41) 

686558 
(0.41) 

742833 
(0.42) 

Female 812626 
(0.5) 

845138 
(0.51) 

658347 
(0.47) 

755189 
(0.47) 

790303 
(0.47) 

846160 
(0.47) 

Unknown 63 
 (< 0.01) 

29 
 (< 0.01) 

182546 
(0.13) 

185430 
(0.12) 

193036 
(0.12) 

194152 
(0.11) 

White 1160161 
(0.72) 

1156210 
(0.69) 

814302 
(0.58) 

890060 
(0.56) 

876063 
(0.52) 

865693 
(0.48) 

Black 160691 
(0.10) 

163548 
(0.10) 

99275 
(0.07) 

104152 
(0.06) 

110386 
(0.07) 

126714 
(0.07) 

Latino 209391 
(0.13) 

248998 
(0.15) 

148992 
(0.11) 

194002 
(0.12) 

235378 
(0.14) 

303554 
(0.17) 

Asian 55415 
(0.03) 

78994 
(0.05) 

43539 
(0.03) 

62253 
(0.04) 

76389 
(0.04) 

90878 
(0.05) 

Native 3109  
(< 0.01) 

3977  
(< 0.01) 

1139 (< 
0.01) 

1343 (< 
0.01) 

1365 
(<0.01) 

1808 
(<0.01) 

Other 14673  
(< 0.01) 

9025  
(< 0.01) 

8557 (< 
0.01) 

15103 
(<0.01) 

23426 
(0.01) 

32218 
(0.02) 

Unknown 10543  
(< 0.01) 

7787 
 (< 0.01) 

291810 
(0.21) 

314630 
(0.20) 

346890 
(0.21) 

362280 
(0.20) 

18-34 yrs 281657 
(0.17) 

257645 
(0.15) 

165555 
(0.12) 

139697 
(0.09) 

149155 
(0.09) 

165211 
(0.09) 

35-64 yrs 527601 
(0.33) 

565749 
(0.34) 

529402 
(0.38) 

604262 
(0.38) 

673988 
(0.40) 

733250 
(0.41) 

65yrs+ 804725 
(0.50) 

845145 
(0.51) 

712657 
(0.50) 

837584 
(0.53) 

846754 
(0.51) 

884684 
(0.50) 

Diabetes 161824 
(0.10) 

216804 
(0.13) 

266736 
(0.19) 

375224 
(0.24) 

474092 
(0.28) 

559018 
(0.31) 
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Table 4. Age adjusted rates of hospitalization for diabetes mellitus-associated 
infectious and non-infectious syndromes among hospitalized adults in California, 
1986-2011. The rates for each year, along with the overall trend (mean change in the 
rate) are presented. The following abbreviations are used: myocardial infarction (MI), 
cerebrovascular accident (CA), pneumonia (PNA), skin and soft tissue infection (SSTI), 
urinary tract infection (UTI). 
 
 

 DM Rate (Hospitalizations/100,000 persons) Rate Trend 
(change in 
hosp/year) 

p Correlation 
(Spearman) 

1986 1991 1996 2001 2006 2011 

MI + 42.1 48.8 55.8 72.8 65.8 66.2 1.08 .03 0.83 

 - 190.4 178.3 158.9 158.6 115.9 101.0 -3.62 .002 -1.0 

CVA + 46.1 51.9 59.9 65.1 61.9 68.4 0.83 .006 0.94 

 - 204.1 192.6 178.6 168.8 135.4 130.5 -3.14 .001 -1.0 

PNA + 28.4 48.2 61.4 86.0 84.9 74.3 2.08 .03 0.77 

 - 293.1 342.8 268.5 278.9 211.6 160.8 -5.96 .02 -0.88 

SSTI + 19.1 24.7 26.2 37.4 51.1 54.3 1.52 .001 1.0 

 - 105.3 97.0 87.4 92.7 114.1 105.4 0.32 .55 0.43 

UTI + 19.9 26.7 30.3 41.7 49.7 49.4 1.30 .001 0.94 

 - 113.3 115.9 88.8 101.9 104.2 96.4 -0.61 .25 -0.54 

Sepsis + 11.5 21.1 38.1 35.5 81.9 163.2 5.4 .02 0.94 

 - 60.4 81.0 98.3 72.2 137.5 264.7 6.6 .05 0.83 
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Table 5. Comparison of rates for all conditions in adults with DM. Rates were 
calculated using all data (gray columns) as well as a subset (white columns) of the data 
for which it was possible to classify observations into CDC age categories (age 
categories not masked). All rates reported are per 100,000 adults with DM. Trends for 
the full and subset data (rate change/year) are provided in the final two columns. 
 

 1996  2001  2006  2011    

 Full 
data 

Subset Full 
data 

Subset Full 
data 

Subset Full 
data 

Subset Trend 
(Full) 

Trend 
(Subset) 

Sepsis 38.1 33.7 35.5 34.2 81.9 76.5 163.2 152.3 8.4 8.0 

UTI 30.3 26.5 41.7 39.0 49.7 46.0 49.4 45.6 1.3 1.3 

Sepsis 61.4 54.2 86.0 82.2 84.9 79.7 74.3 69.8 0.76 0.89 

UTI 26.2 22.2 37.4 32.8 51.1 43.2 54.3 45.8 1.96 1.62 

Sepsis 55.8 49.4 72.8 70.4 65.8 61.7 66.2 60.9 0.48 0.51 

UTI 59.9 53.1 65.1 63.4 61.9 58.5 68.4 63.4 0.44 0.52 
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Table 6. Rates of hospitalization for DM-associated infectious and non-infectious 
complications adjusted for DM prevalence among adults. All rates in the table are 
adjusted for DM prevalence in the specified year. Unlike the prior tables, the rates 
reported here are not relative to the entire adult population of California but, rather, to 
the adult populations of California with and without DM. Rates for persons with DM are 
shown in the rows shaded gray, while those for adults without DM are in unshaded 
rows. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 DM 
Status 

Rate (Hospitalizations/100,000 
persons) 

Rate Trend 
(change in 
hosp/year) 

p Correlation 
(Spearman) 

1996 2001 2006 2011 

MI + 711.0 577.5 365.2 378.8 -24.2 .06 -0.8 

 - 155.6 169.1 128.5 109 -3.6 0.137 -1 

CVA + 763.8 518.4 339.0 390.2 -26.0 0.11 -0.8 

 - 177.7 180.0 151.9 144 -2.6 0.081 -1 

PNA + 767.4 701.3 480.6 453.1 -23.3 0.04 -1.0 

 - 265.5 288.0 236.0 176 -6.4 0.147 -1 

SSTI + 340.2 340.6 404.2 403.1 5.0 0.11 0.8 

 - 82.0 80.0 100.1 96 1.3 0.190 1 

UTI + 397.7 358.9 310.1 315.1 -5.9 .07 -0.8 

 - 87.2 100.8 111.7 103 1.2 0.255 1 

Sepsis + 477.0 292.5 467.2 1000 34.9 0.26 0.4 

 - 97.9 75.6 154.7 291 13.1 0.121 1 
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Table 6. Effect of medication interaction terms on odds ratio estimates for the 
associations of three classes of medications with presentation for an infection at 
an outpatient, inpatient or emergency room visit. Columns represent the different 
medication classes (ACEI, ACE inhibitor; ARB, angiotensin receptor blocker; STAT, 
statin; BB, beta-blocker. Binary interaction terms are represented by an ‘*’ between two 
medication classes. Rows marked as ‘included’ (in black), indicate the variables 
included in the model for which the odds ratio estimates for a specific class of 
medication are given. Ninety-five percent confidence intervals are given in parentheses. 
 

    Medications and Interaction terms  

  ACEI/ARB BB STAT 

ACEI/ARB 
* 

BB 

ACEI/ARB 
* 

STAT 

BB 
* 

STAT 
Glipizide + 
Metformin Included             

 OR 
0.55 (0.40, 
0.75)           

 Included             

 OR   
0.66 (0.43, 
1.00)         

 Included             

 OR     
0.62 (0.44, 
0.88)       

 Included             

 OR 
0.58 (0.42, 
0.81) 

0.81 (0.52, 
1.25)         

 Included             

 OR 
0.56 (0.38, 
0.81) 

0.72 (0.35, 
1.45)         

 Included             

 OR 
0.60 (0.43, 
0.84)   

0.73 (0.50, 
1.05)       

 Included             

 OR 
0.61 (0.40, 
0.91)   

0.74 (0.44, 
1.24)       

 Included             

 OR   
0.74 (0.48, 
1.16) 

0.66 (0.46, 
0.95)       

 Included             

 OR   
0.71 (0.39, 
1.27) 

0.64 (0.42, 
0.98)       

 Included             

 OR 
0.62 (0.44, 
0.87) 

0.86 (0.55, 
1.35) 

0.74 (0.51, 
1.09)       

 Included             

 OR 
0.60 (0.41, 
0.87) 

0.76 (0.38, 
1.53) 

0.75 (0.51, 
1.09)       

 Included             

 OR 
0.62 (0.42, 
0.94) 

0.86 (0.55, 
1.35) 

0.76 (0.45, 
1.27)       

 Included             

 OR 
0.62 (0.44, 
0.87) 

0.84 (0.47, 
1.51) 

0.74 (0.48, 
1.14)       

 Included             

 OR 
0.61 (0.40, 
0.93) 

0.76 (0.38, 
1.52) 

0.77 (0.46, 
1.29)       

 Included             
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 OR 
0.60 (0.41, 
0.88) 

0.76 (0.37, 
1.58) 

0.75 (0.48, 
1.16)       

 Included             

 OR 
0.63 (0.42, 
0.94) 

0.84 (0.47, 
1.50) 

0.75 (0.44, 
1.27)       

 Included             

 OR 
0.61 (0.39, 
0.95) 

0.75 (0.36, 
1.56) 

0.77 (0.46, 
1.30)       

        
Glyburide+
Metformin Included             

 OR 
0.51 (0.37, 
0.70)           

 Included             

 OR   
0.64 (0.42, 
0.97)         

 Included             

 OR     
0.61 (0.43, 
0.86)       

 Included             

 OR 
0.56 (0.38, 
0.81) 

0.72 (0.35, 
1.45)         

 Included             

 OR 
0.51 (0.35, 
0.75) 

0.70 (0.35, 
1.40)         

 Included             

 OR 
0.56 (0.40, 
0.77)   

0.73 (0.51, 
1.06)       

 Included             

 OR 
0.55 (0.36, 
0.83)   

0.72 (0.43, 
1.18)       

 Included             

 OR   
0.72 (0.47, 
1.12) 

0.65 (0.46, 
0.93)       

 Included             

 OR   
0.66 (0.37, 
1.17) 

0.62 (0.40, 
0.94)       

 Included             

 OR 
0.57 (0.41, 
0.81) 

0.86 (0.55, 
1.34) 

0.75 (0.52, 
1.09)       

 Included             

 OR 
0.55 (0.37, 
0.80) 

0.74 (0.37, 
1.48) 

0.75 (0.52, 
1.09)       

 Included             

 OR 
0.56 (0.37, 
0.85) 

0.86 (0.55, 
1.34) 

0.73 (0.44, 
1.21)       

 Included             

 OR 
0.57 (0.41, 
0.81) 

0.81 (0.46, 
1.43) 

0.72 (0.47, 
1.43)       

 Included             

 OR 
0.55 (0.35, 
0.84) 

0.74 (0.38, 
1.47) 

0.75 (0.46, 
1.22)       

 Included             

 OR 
0.55 (0.37, 
0.81) 

0.72 (0.35, 
1.48) 

0.73 (0.47, 
1.13)       

 Included             

 OR 
0.57 (0.38, 
0.86) 

0.81 (0.46, 
1.43) 

0.72 (0.43, 
1.20)       

 Included             
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 OR 
0.55 (0.35, 
0.86) 

0.72 (0.35, 
1.48) 

0.74 (0.44, 
1.22)       

        
Insulin+ 
Metformin Included             

 OR 
0.57 (0.42, 
0.78)           

 Included             

 OR   
0.69 (0.45, 
1.05)         

 Included             

 OR     
0.66 (0.46, 
0.94)       

 Included             

 OR 
0.51 (0.35, 
0.75) 

0.70 (0.35, 
1.40)         

 Included             

 OR 
0.58 (0.40, 
0.83) 

0.75 (0.37, 
1.51)         

 Included             

 OR 
0.61 (0.44, 
0.85)   

0.76 (0.52, 
1.10)       

 Included             

 OR 
0.62 (0.42, 
0.92)   

0.77 (0.46, 
1.28)       

 Included             

 OR   
0.76 (0.49, 
1.18) 

0.70 (0.48, 
1.01)       

 Included             

 OR   
0.73 (0.41, 
1.30) 

0.68 (0.44, 
1.04)       

 Included             

 OR 
0.63 (0.45, 
0.88) 

0.87 (0.55, 
1.37) 

0.77 (0.53, 
1.14)       

 Included             

 OR 
0.61 (0.42, 
0.88) 

0.78 (0.39, 
1.58) 

0.77 (0.52, 
1.14)       

 Included             

 OR 
0.64 (0.43, 
0.95) 

0.87 (0.55, 
1.37) 

0.78 (0.47, 
1.31)       

 Included             

 OR 
0.63 (0.45, 
0.88) 

0.86 (0.48, 
1.53) 

0.76 (0.49, 
1.19)       

 Included             

 OR 
0.62 (0.41, 
0.94) 

0.78 (0.39, 
1.56) 

0.80 (0.48, 
1.32)       

 Included             

 OR 
0.61 (0.42, 
0.89) 

0.78 (0.38, 
1.62) 

0.77 (0.49, 
1.20)       

 Included             

 OR 
0.64 (0.43, 
0.95) 

0.85 (0.48, 
1.52) 

0.78 (0.46, 
1.31)       

 Included             

 OR 
0.62 (0.41, 
0.96) 

0.77 (0.37, 
1.60) 

0.80 (0.48, 
1.33)       
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Table 7. Demographic and clinical characteristics of cohort of persons with 
diabetes. All patients in the cohort were identified from pharmacy records to identify 
patients with diabetes by querying for prescriptions for one of four medications: 
glyburide, glipizide, metformin and insulin. All visits between 1/1/2008 and 1/31/2009 
were extracted for all of the patients thus identified. 
 

 N (%) Mean +/- Standard Deviation 
Total Persons in cohort 743 (100) -- 
   
Gender   
Male 368 (49.5) -- 
Female  375 (50.5) -- 
   
Age -- 53.7 +/- 9.9 
   
Race   
Asian 219 (29.4) -- 
Black 103 (13.9) -- 
Hispanic 309 (41.6) -- 
Native American/Pacific Islander 17 (2.2) -- 
White 81 (9.4) -- 
Other/Unknown 27 (3.3) -- 
   
Clinical characteristics    
A1c -- 8.3 +/- 2.1 
   
Total visits for persons in cohort 4776  -- 

Inpatient 283 (5.9) -- 
Outpatient 4226 (88.4) -- 
Emergency/Urgent care 267 (5.6) -- 

   
Visits for an infection 236 -- 

Dermatophyte 50 (21.1) -- 
Pneumonia 23 (9.7) -- 
Sepsis/Bacteremia 2 (0.8) -- 
Skin and soft tissue infection 68 (28.8) -- 
Upper respiratory infection 48 (20.3) -- 
Urinary tract infection 32 (13.6) -- 
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Table 8. Association of commonly used classes of medications in persons with 
diabetes with hospital, clinic or emergency visit for an infection. All odds ratio 
estimates are from longitudinal multiple regression models. Ninety-five percent 
confidence intervals for all estimates are shown in parentheses. The first column shows 
the unadjusted odds ratio estimates, while subsequent columns show the effect of 
adjusting for age, race, hemoglobin A1c level and all three simultaneously. 
 
 

 Odds Ratios 
(95% Confidence Interval) 

 Adjustment 
Medication Unadjusted  Age Race A1c Age, Race, A1c 
Glipizide 0.56  

(0.34, 0.92) 
0.59  

(0.36, 0.98) 
0.57 

(0.35, 0.95) 
0.58  

(0.35, 0.94) 
0.63 

(0.38, 1.03) 
Glyburide 1.33  

(0.89, 1.98) 
1.39  

(0.93, 2.08) 
1.43 

(0.96, 2.13) 
1.30  

(0.87, 1.94) 
1.44 

(0.95, 2.18) 
Insulin 0.66  

(0.44, 1.00) 
0.64  

(0.42, 0.96) 
0.62 

(0.42, 0.92) 
0.63  

(0.42, 0.94) 
0.57 

 (0.39, 0.85) 
Metformin 0.69 

 (0.50, 0.96) 
0.68 

 (0.49, 0.95) 
0.75 

(0.53, 1.05) 
0.71  

(0.51, 0.98) 
0.76 

(0.54, 1.06) 
ACEI/ARB 0.50 

 (0.36, 0.70) 
0.53  

(0.37, 0.74) 
0.49 

(0.36, 0.68) 
0.51  

(0.36, 0.72) 
0.52 

(0.37, 0.72) 
ASA 1.34  

(0.79, 2.28) 
1.41 

 (0.83, 2.40) 
1.24 

(0.77, 2.02) 
1.35  

(0.80, 2.28) 
1.30 

 (0.80, 2.12) 
Beta Blocker 0.62  

(0.39, 1.00) 
0.66 

 (0.41, 1.08) 
0.57 

(0.37, 0.87) 
0.64  

(0.40, 1.02) 
0.61 

 (0.40, 0.93) 
Statin 0.55 

 (0.39, 0.78) 
0.57  

(0.40, 0.81) 
0.56 

(0.40, 0.78) 
0.56  

(0.40, 0.79) 
0.58 

 (0.41, 0.81) 
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Table 9. Adjusted associations of adjunctive medications commonly used in 
persons with diabetes by diabetes treatment regimen. All odds ratio estimates are 
from longitudinal multiple regression models that account for medication interactions 
and are adjusted for age, race, and hemoglobin A1c. 
 

Diabetes Treatment Regimen Medication Odds Ratio  
(95% Confidence Interval) 

Glipizide/Metformin ACEI/ARB 0.61  
(0.39, 0.95) 

 Beta Blocker 0.75  
(0.36, 1.56) 

 Statin 0.77  
(0.46, 1.30) 

   
Glyburide/Metformin ACEI/ARB 0.55  

(0.35, 0.86) 
 Beta Blocker 0.72  

(0.35, 1.48) 
 Statin 0.74  

(0.44, 1.22) 
   
Insulin/Metformin ACEI/ARB 0.62  

(0.41, 0.96) 
 Beta Blocker 0.77  

(0.37, 1.60) 
 Statin 0.80  

(0.48, 1.33) 
 
 
 
 
 
 




