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Systems/Circuits

Feature-Selective Attention Adaptively Shifts Noise
Correlations in Primary Auditory Cortex

X Joshua D. Downer, X Brittany Rapone, X Jessica Verhein, X Kevin N. O’Connor, and X Mitchell L. Sutter
Center for Neuroscience, University of California, Davis, California 95618

Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing
for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept.
How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is
typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of
feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant
features. We measured noise correlations (rnoise ) within small neural populations in primary auditory cortex while rhesus macaques
performed a novel feature-selective attention task. We found that the effect of feature-selective attention on rnoise depended not only on
the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed
effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in
rnoise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a
novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments.
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Introduction
Listening is a challenging task. Multiple mixed sound sources
arrive at the ear and the auditory system must then select relevant
sound features from this mixture for further processing while
suppressing irrelevant features. This is often called the “cocktail

party problem” and humans and other animals can solve this
problem (Bee and Micheyl, 2008) despite its computational com-
plexity (Haykin and Chen, 2005). Recent work has demonstrated
that listeners do this in part by shifting attention between sound
features (Woods and McDermott, 2015), although the mecha-
nism of this adaptive feature selection is unknown (Shamma et
al., 2011).

Recent work has highlighted attentional modulation of noise
correlations (rnoise) as a potential mechanism to enhance percep-
tion (Cohen and Maunsell, 2009). rnoise arises between neurons
when their response variability (“noise”) to repeated presenta-
tions of the same stimulus is correlated. These correlations are
thought to affect the information bearing capacity of a neural
population (Averbeck et al., 2006), although theoretical studies
of the effect of rnoise on population coding suggest that the vari-
ables that mediate the impact of rnoise on coding are complex
(Ecker et al., 2011; Hu et al., 2014; Moreno-Bote et al., 2014;
Kanitscheider et al., 2015). One theory, the sign rule (SR) (Hu et
al., 2014), posits that the effect of rnoise on coding accuracy can be
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Significance Statement

Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases
remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations
(rnoise ) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on rnoise

depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning to the distractor
feature as well. We suggest that these effects represent an efficient process by which sensory cortex simultaneously enhances
relevant information and suppresses irrelevant information.
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determined based on the joint tuning or tuning correlation (rtuning)
between the pairs of neurons in the population: when rtuning and
rnoise have identical signs, sensory coding performance is im-
paired and, when they have opposite signs, performance is en-
hanced (Oram et al., 1998; Abbott and Dayan, 1999; Averbeck et
al., 2006). However, despite theoretical disagreements regarding
the effects of rnoise on coding, the effects of attention on rnoise have
been remarkably reliable across studies; namely, studies have
found that attention globally decreases rnoise (Cohen and Maun-
sell, 2009; Mitchell et al., 2009; Cohen and Maunsell, 2011; Her-
rero et al., 2013; Doiron et al., 2016; Nandy et al., 2017). Further,
recent studies have shown that attention can modulate rnoise de-
pending on rtuning, consistent with the SR (Ruff and Cohen,
2014a; Downer et al., 2015). Importantly, the studies mentioned

above, both theoretical and empirical, have only dealt with the
detection or discrimination of a single sensory variable in isola-
tion (Fig. 1A,B). How rnoise contributes to coding in multifeature
settings and how feature-selective attention may rely on dynamic
changes in rnoise remains unexplored.

Modulation of rnoise presents a compelling potential mecha-
nism for feature-selective attention. In cases in which a relevant
(target) feature must be selected among competing irrelevant
(distractor) features, attentional modulation of rnoise may allow
for simultaneous enhancement of target detection alongside sup-
pression of distractor detection. According to the SR, this would
be possible between populations of neurons with opposite rtuning

signs for the target and distractor features (Fig. 1C,F); for exam-
ple, positive rtuning for the target feature and negative rtuning for

Figure 1. Effect of rnoise in the presence of irrelevant (distractor) stimuli. A, B, Two graphic illustrations of the relationship between rnoise and rtuning, according to the SR. Within each panel, we
represent the mean (points) and variance (dotted ellipses) of the joint response distributions of two neurons in response to a standard (gray) and target (red) stimulus. In A, this pair of neurons
exhibits negative rtuning; that is, as the mean of neuron 1 increases, the mean of neuron 2 decreases. When rnoise is negative (i.e., the same sign as rtuning; A, left), the variance of the joint response
distributions lies along approximately the same dimension as the signal, so this pair does not perfectly detect the target due to the overlap of the joint response distributions. However, when rnoise

and rtuning have opposite signs (A, right), target detection is enhanced, with no overlap in the joint response distributions. This rule can also be seen in B for a pair with positive rtuning. C–F, Addition
of a distractor stimulus (blue) necessitates an extension of the SR. Namely, when target and distractor rtuning have the same sign (D,E), changes in rnoise will affect targets and distractors similarly
(enhance or suppress detection of both) and thus nullify any benefit of modulating rnoise. However, when target and distractor rtuning have opposite signs (C,F ), modulating rnoise can simultaneously
enhance target detection and suppress distractor detection.
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the distractor feature (Fig. 1F). In such
cases, a given shift in rnoise would have op-
posite effects on the detection of the target
and distractor. For example, an increase
in rnoise between pairs with negative target
rtuning and positive distractor rtuning could
simultaneously enhance target informa-
tion and decrease distractor information
(Fig. 1C).

We tested the effects of feature-
selective attention on rnoise in a popula-
tion of neurons with heterogeneous target
and distractor tuning. To do so, we re-
corded from small populations of primary
auditory cortical (A1) neurons from two
rhesus macaques while they performed a
feature-selective attention task. We found
that attention’s effects on rnoise depended
upon both target rtuning and distractor
rtuning in a manner consistent with simul-
taneous enhancement of target detection
and suppression of distractor detection.
Therefore, modulation of rnoise appears to
support feature-selective attention effi-
ciently. These results demonstrate a novel
mechanism for listening in cluttered envi-
ronments and contribute to an active de-
bate on the role of rnoise in population
coding.

Materials and Methods
Subjects. Our research subjects were two adult
rhesus macaques, one male (Monkey U, 12 kg)
and one female (Monkey W, 8 kg). All proce-
dures were approved by the University of Cali-
fornia–Davis animal care and use committee
and met the requirements of the United States
Public Health Service policy on experimental
animal care. We implanted each animal with a
head post centrally behind the brow ridge and a
recording cylinder over an 18 mm craniotomy
over the left parietal lobe using aseptic surgical
techniques. Placement of the craniotomy was
based on stereotactic coordinates of auditory
cortex to allow us vertical access through pari-
etal cortex to the superior temporal plane (Sal-
eem and Logothetis, 2007).

Stimuli and task. We presented sounds that
varied along two feature dimensions, spectral
and temporal, as well as an unmodified broad-
band noise sound (Fig. 2B). The unmodified
sound was broadband (white) Gaussian noise
with a 9 octave (40 to 20480 Hz) range. We
used four different seeds to create noise signals
and these were frozen across recording ses-
sions. To introduce variance along each feature
dimension, this sound was narrowed in terms
of the spectral bandwidth (�BW) or sinusoi-
dally amplitude modulated (AM). We also ma-
nipulated the degree (value) of variation in
each dimension to measure behavioral and
neural responses near the perceptual threshold
for detecting each feature.

Single-feature threshold determination. We
first assessed the behavioral thresholds for de-
tecting each feature in isolation using a yes/no

Figure 2. Rhesus macaques perform a novel auditory feature-selective attention task. A, Subjects use a joystick to initiate trials
and to respond. We present two sequential sounds after subjects initiate a trial. The first sound (S1) is always a broadband (9 octave
wide) noise burst. The second sound (S2) could be any of the stimuli in the set (B). After S2 offset, the subject was required to make
either a “yes” or a “no” response (to indicate target detection or rejection, respectively) with a vertical joystick movement (up or
down). Correct responses were rewarded with liquid and incorrect responses were penalized with a timeout. B, Broadband noise
burst (“unmodified sound”), as well as sounds that deviate from the unmodified sound along the temporal and/or spectral sound
feature dimensions (x and y axes, respectively). The temporal feature is amplitude modulation (AM; sinusoidal modulation of the
sound envelope). We parametrically increase the value of AM by increasing its depth. To introduce spectral variation, we change
(decrease) the bandwidth of the unmodified sound (�BW). We parametrically increase the value of �BW by narrowing the width
of the band-pass filter used to synthesize these sounds. Changes in spectral BW are schematized in B with increasing lightness
relative to the unmodified sound. When subjects attend to AM, the sounds within the black box are targets; that is, AM depth �
0. Likewise, when subjects attend BW, all the sounds in the green box are targets: �BW �0. Here, and throughout the text,
whenever feature values are collapsed across subjects, AM and �BW values are given as ranks. The exact values presented to each
subject were determined separately for each subject and this process is described in detail in the main text. C, Performance of both
subjects (� for Monkey W and � for Monkey U) in each condition represented as regression coefficients that correspond to the
influence of each feature on subjects’ behavioral responses. An increased value of a given coefficient corresponds to an increased
probability that the subject will report “yes” as the value of that feature increases. Subjects’ behavioral responses are more strongly
influenced by the target feature than the distractor feature, a hallmark of feature-selective attention.
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task (Fig. 2A). Subjects moved a joystick laterally to initiate a trial, after
which the 400 ms S1 sound (always the 9-octave wide unmodified sound)
was presented, followed by a 400 ms interstimulus interval (ISI), followed
by the 400 ms S2 sound. Subjects then reported whether the S2 contained
the target feature by either moving the joystick down (up) to report
detection or up (down) to report no detection. The response contingen-
cies were counterbalanced between subjects. For determining �BW
thresholds, the S2 was either the unmodified sound or one of six sounds
that differed in spectral BW from the unmodified sound. We varied the
value of �BW from a minimum of 0.25 octaves (8.75 octave spectral BW;
440 –18,780 Hz) to a maximum of 2 octaves (7 octave spectral BW; 800 –
10,240 Hz), with 4 other intermediate �BW values in between (0.5, 0.75,
1.0, 1.5 �BW; 480 –17,222, 520 –15,792, 570 –14,482, 670 –12,177 Hz).
Both the high- and low-frequency changes of the �BW sounds fall in
sensitive areas of the rhesus macaque audiogram (Pfingst et al., 1978).
After S2 offset, the subject used the joystick to report whether s/he de-
tected �BW. Hits and correct rejections were rewarded with water or
juice and misses and false alarms resulted in a penalty (5–10 s timeout).
Animals were rewarded (penalized) equally for all correct (incorrect)
trials regardless of trial difficulty. Threshold was determined as the �BW
at which subjects’ average sensitivity (d’) was 1. Subjects’ thresholds for
detecting �BW value were similar between each other (�0.4 octaves
from Monkey U, �0.5 octaves for Monkey W). It is important to note
that, with some methods, changing the spectral BW of a sound induces
variations in that sound’s envelope. However, we have implemented a
noise synthesis method that constructs noise using a single-frequency
additive technique and thereby avoids introducing envelope variations
that may serve as cues for �BW (Strickland and Viemeister, 1997).

We used an identical procedure for determining thresholds for detect-
ing AM: the S2 was either the unmodified sound, or 1 of 6 sounds with
AM depth �0%, with values from 6% to 100%. For this pilot experiment,
we presented AM at a fixed frequency of 30 Hz. For the full experiment,
in which we presented AM at other frequencies, we only used frequencies
for which the established average detection thresholds for rhesus ma-
caques were similar to those found for 30 Hz AM noise (O’Connor et al.,
2011).

Feature attention task. For feature attention (e.g., during recording
sessions), we presented only three values of each feature because we
presented sounds that varied along both feature dimensions and we
needed to keep the size of our stimulus set small enough to obtain rea-
sonable power for analyzing neural data (Fig. 2B). We also reduced the
stimulus space by presenting only a subset of the possible co-modulated
stimuli (stimuli with modulation in each feature dimension). Within
each recording session, we presented 13 total stimuli (Fig. 2B; the blank
diagonals indicate co-modulated sounds that were not used in the task).
To equilibrate difficulty between the two features, we presented values of
each feature so that one was near threshold, one was slightly above, and
one far above threshold. For Monkey U, �BW values were 0.375, 0.5, and
1 octave and AM depth values were 28%, 40%, and 100%. For Monkey
W, �BW values were 0.5, 0.75, and 1.5 octaves and AM depth values were
40%, 60%, and 100%. For all analyses in which data are collapsed across
subjects, �BW values and AM values are presented as ranks (�BW0-3 and
AM0-3) (e.g., Fig. 2B). Within a given session, we presented AM sounds at
only a single frequency. Across sessions, we used a small range of frequen-
cies, for which behavioral detection thresholds were similar to 30 Hz (15,
22, 30, 48, and 60 Hz). The AM frequency was selected randomly each
day.

All sounds were 400 ms in duration (5 ms cosine ramped at onset and
offset). We have reported our sound generation methods previously
(O’Connor et al., 2011). Briefly, sound signals were produced using an
in-house MATLAB program and a digital-to-analog converter (Cam-
bridge Electronic Design [CED] model 1401). Signals were attenuated
(TDT Systems PA5, Leader LAT-45), amplified (RadioShack MPA-200),
and presented from a single speaker (RadioShack PA-110 or Optimus
Pro-7 AV) positioned approximately 1 m in front of the subject centered
at the interaural midpoint. Sounds were generated at a 100 kHz sampling
rate. Intensity was calibrated across all sounds (Bruel Kjaer model 2231)
to 65 dB at the outer ear.

The task structure for feature attention was identical to that for the
single-feature task described in the section “Single-feature threshold de-
termination” except that the S2 could be any of the 13 sounds in the set.
The subject was cued visually via an LED above the speaker as to which
feature to attend (green or red light, counterbalanced between subjects).
Moreover, each block began with 60 “instruction” trials in which only the
unmodified sound and sounds only containing the target feature were
presented (i.e., sounds containing the distractor feature were not pre-
sented). Subjects were to respond with a “yes” (up or down joystick
movement) on any trial in which the attended feature was presented (Fig.
2B: sounds in black brackets during Attend AM and sounds in green
brackets during Attend BW). Otherwise, the correct response was “no.”
The S2 was the unmodified sound on 25% of trials, co-modulated on
25% of trials, contained only �BW on 25% of trials, and only AM on 25%
of trials. Sounds in the set were presented pseudorandomly such that,
over sets of 96 trials, the stimulus set was presented exhaustively (includ-
ing all four random noise seeds). Block length was variable, based in part
on subjects’ performance, to ensure sufficient correct trials for each stim-
ulus. Not including instruction trials, block length was at least 180 trials
and at most 360 trials to ensure that subjects performed in each attention
condition at least once during the experiment. Subjects could perform
each attention condition multiple times within a session. Only sessions in
which subjects completed at least 180 trials per condition (excluding
instruction trials) were considered for analysis in this study. We analyze
neural data from both correct and incorrect trials in this study; excluding
error trials makes no qualitative difference in the results because they
make up a relatively small fraction of the overall trials.

Recording procedures. All recordings took place within a sound-
attenuated, foam-lined booth (IAC: 9.5 � 10.5 � 6.5 feet) while subjects
sat in an acoustically transparent chair (Crist Instruments). We advanced
three quartz-coated tungsten microelectrodes (Thomas Recording, 1–2
M�; 0.35 mm horizontal spacing; variable, independently manipulated
vertical spacing) vertically to the superior surface of the temporal lobe.
During electrode advancement, we isolated sound-responding neurons
as follows. We presented sounds to the subject while the experimenter
monitored neural responses to various sounds, including the tested stim-
uli (described above) and other natural and synthetic sounds. When
neural signals from the electrodes exhibited responsiveness to sound, we
then attempted to isolate single neurons. When at least one single neuron
was well isolated from at least one of the electrodes, we measured spike
count responses for the two sound features while the animal sat passively
awake. We presented at least 10 repetitions each of the following stimuli:
the unmodified sound, each of the 3 �BW stimuli, as well as 100% depth
AM across the range of frequencies (15, 22, 30, 48, and 60 Hz). After we
measured the responses of the isolated neurons, we cued the subject via
cue light to begin the task and continued recording throughout task
performance. When possible, we also measured responses to the tested
stimuli after task performance in part to ensure stability of electrodes
throughout the recording. Only recordings in which neurons were well
isolated for at least 180 trials within each condition (excluding instruc-
tion trials) are included in this report.

We estimated our recording locations using established measures of
neural responses to pure tones (Merzenich and Brugge, 1973; Petkov et
al., 2006). Across recordings, we mapped neurons’ best pure tone fre-
quency and drew boundaries around A1 based on the tonotopic fre-
quency gradient and reversal (caudal–rostral axis), the width of neurons’
frequency response areas (medial–lateral axis), and response latency. Re-
cordings were assigned to their putative cortical fields post hoc. Here, we
present data from 92 single neurons assigned to A1.

Extracellular signals were amplified (AM Systems model 1800), band-
pass filtered between 0.3 Hz and 10 kHz (Krohn-Hite 3382), and then
converted to a digital signal at a 50 kHz sampling rate (CED model 1401).
Contributions of single units to the signal were determined offline using
principal components analysis-based spike sorting tools from Spike2
(CED). Spiking activity was at least 4 –5 times the background noise level.
Fewer than 0.1% of spike events assigned to single unit clusters fell within
a 1 ms refractory period window. In the present study, we report data
from 92 individual neurons (57 from Monkey W, 35 from Monkey U)
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and 434 simultaneously recorded pairs of neurons (274 from Monkey W,
160 from Monkey U).

Analysis of single neuron feature tuning. Spike counts (SCs) were calcu-
lated over the entirety of each 400 ms stimulus. Each neuron was catego-
rized as “increasing” or “decreasing” for each feature based on its SC in
response to the presence of a feature (�BW or depth of AM). To charac-
terize a neuron’s response function, we calculated a feature-selectivity
index (FSI) for each feature. This index characterizes a neuron’s change
in spike count in the presence of a feature, normalized over its full spike
count distribution across both features. It is calculated as follows:

FSIAM � �SCAM�0�BW0
� SCAM0�BW0

	/�SCAM�0�BW0
� SCAM0�BW0

	

FSI�BW � �SCAM0�BW�0
� SCAM0�BW0

	/�SCAM0�BW�0
� SCAM0�BW0

	

where SCx is the mean SC in response to the class of stimuli designated by
the subscript. We performed a Kruskal–Wallis rank-sum test between the
distribution of SCs in response to sounds with a feature value above 0
(e.g., AM�0 for AM) and the distribution of SCs in response to sounds
with a feature value of 0 (e.g., AM0 for AM) to determine the significance
of each FSI for each neuron.

Analysis of rnoise and rtuning. We measured AM rtuning, �BW rtuning and
rnoise for each pair in each condition. We calculated rtuning as the Pearson
correlation between the mean spike count of each neuron in a pair to the
set of four stimuli along each feature axis (each axis includes the unmod-
ified sound). It is worth noting that Pearson correlation provides a noisy
measure of the overall fit between the mean responses, it is not sensitive
to relationships between means that are not linear, and it is affected by
outliers. For the purposes of this study, we do not intend this corre-
lation metric to provide an exact account of the relationship between
mean responses; rather, we use it to approximate the relationship be-
tween neurons’ selectivity to a given feature. For instance, if a given
neuron tends to increase its spike count in the presence of AM depth
�0%, then it will have a positive AM rtuning with other neurons that
increase their spike count in the presence of AM, and a negative AM
rtuning with neurons that decrease their spike count in the presence of
AM. We also calculated rtuning using two other methods, Spearman cor-
relation and the weighted least-squares coefficient on the normalized
mean spike counts, both of which are more robust to outliers than Pear-
son correlation. The results obtained with those metrics (not reported
here) are qualitatively quite similar to those obtained using Pearson cor-
relation and do not alter our major findings or conclusions.

We calculated rnoise across all presentations of the unmodified stimu-
lus separately within each condition to allow for analyses of rnoise due to
changes in attention. We calculated rnoise using spike counts calculated
over the entire 400 ms S2 presentation epoch within each trial. We se-
lected the unmodified stimulus (i.e., S2 
 S1) as the stimulus upon which
to calculate rnoise due to the fact that its behavioral “meaning” and asso-
ciated behavioral response were consistent across contexts. These factors
have been shown to modulate nonsensory variability in A1 neurons and
this nonsensory variability may modulate rnoise because it is, on average,
shared across neurons (Nienborg and Cumming, 2010; Niwa et al.,
2012). Moreover, rnoise is also often affected by stimulus drive, so restrict-
ing our analyses to responses to a single stimulus type should increase the
reliability of our rnoise estimate. We calculated rnoise over an average of 85
trials of spike count responses to the unmodified sound (range 48 –168).
When we calculated rnoise by collapsing across all stimuli, the results that
we observed were qualitatively similar and statistically indistinguishable
from the analyses conducted when only the unmodified sound was used
to calculate rnoise. This implies that the effect of attention on rnoise is, on
average, consistent across all stimuli. Those analyses are not presented
here. To calculate rnoise collapsed across stimuli, spike counts within each
stimulus were z-scored, combined into a single vector of normalized
spike counts within each condition, and then the Pearson correlation
between these vectors was calculated. Low spike counts reduce the reli-
ability of rnoise estimates. We therefore excluded 16 pairs due to low
average pairwise spike counts (�1 spike/s).

Results
Rhesus macaques perform an auditory feature-selective
attention task
We developed a feature-selective attention task in which subjects
must listen for the occurrence of a target feature while ignoring a
concurrent distractor feature (Fig. 2A,B). The task simulates
feature-based tracking of relevant information in a crowded en-
vironment (Shamma et al., 2011; Mesgarani and Chang, 2012;
Woods and McDermott, 2015). We assessed subjects’ perfor-
mance by calculating, within each attention condition within
each session, the influence of each of the two features on subjects’
responses. To do so, we use a binomial logistic regression to
calculate coefficients that quantify the degree to which the value
of a given feature affects the probability of a “yes” response, ac-
cording to the following logistic function:

P�“Yes”	 � 1/�1 � e�reg	

reg � �AM�VALAM	 � �BW�VALBW	

� �AM�BW�VALAM � VALBW	 � �

where VALAM and VALBW are the ranked values of AM and �BW
(from 0 –3), respectively, � is the coefficient for the value term,
and � is an offset term to capture response bias. Intuitively, as the
influence of a given feature on the subject’s probability of re-
sponding “yes” increases, the value of the coefficient will increase;
when a given feature has no impact on the behavioral response,
the value of the coefficient will be �0. We calculated �AM and
�BW within each condition for each recording session [n 
 16
sessions; 9 Monkey U (circles, Fig. 2C) and 7 Monkey W (crosses,
Fig. 2C)] and then compared these coefficient values collapsed
across sessions (Fig. 2C). We found a significant increase in the
average coefficient value for the target versus the distractor fea-
ture (t(31) 
 7.89, p 
 6.59e�9) revealing that animals were using
feature-selective attention, although imperfectly (as evidenced by
nonzero coefficients for the distractor feature). Specifically, this
nonzero distractor coefficient arises because animals increase
their likelihood to make a “yes” response in the presence of the
distractor feature for both single feature stimuli (Fig. 1B, margin-
als) and co-modulated stimuli. We emphasize that this analysis is
meant to estimate the strength of selective attention, rather than
assess task accuracy. Both the analysis and behavioral results are
similar to those from a feature-selective attention study in the
visual system (Sasaki and Uka, 2009).

Single neurons exhibit heterogeneous selectivity for the two
sound features
We measured single neurons’ selectivity to each feature by ana-
lyzing whether the presence of the feature significantly changed a
given neuron’s spike count. We assessed this by performing a
Mann–Whitney rank-sum test comparing spike count distribu-
tions in response to the unmodified sound with spike count dis-
tributions in response to each of the single-feature AM and �BW
sounds (Fig. 2B, marginals of the stimulus matrix) in each of the
two conditions. For each neuron, we performed 12 tests and used
the false discovery rate method to correct for multiple compari-
sons at an � level of 0.05 (Benjamini and Yekutieli, 2001).

We found that 73/92 of recorded neurons exhibited selectivity
(either increasing or decreasing spike count) to at least one fea-
ture. Only one of these 73 neurons exhibited increasing spiking to
at least one value of a feature and decreasing spiking to another
value of the same feature; therefore, we classify selectivity as ei-
ther “increasing” or “decreasing.” In addition, although neurons

5382 • J. Neurosci., May 24, 2017 • 37(21):5378 –5392 Downer et al. • Feature-Selective Attention



did show some change in spike count between conditions, the
valence of selectivity was constant across conditions. The re-
sponses of four example neurons are shown in Figure 3A. As
illustrated, neurons may exhibit increased spike count to both
AM and �BW (Fig. 3A, Neurons 1, 4), they may exhibit decreased
spike count to both (Fig. 3A, Neuron 3), or they may increase for
one feature and decrease for the other (Fig. 3A, Neuron 2).

The distributions of selectivity profiles for each feature are
summarized in Figure 4. For AM, neurons overwhelmingly tend
toward increasing selectivity (median FSIAM 
 0.095; sign-rank
test, p 
 1.21e-9) and, for �BW, neurons are approximately
evenly distributed between increasing and decreasing selectivity
(median FSI�BW 
 0.010; sign rank test, p 
 0.327) (Fig. 4A,B).
There is no significant relationship between a neuron’s AM selec-
tivity and �BW selectivity (Fig. 4A; r(91) 
 0.17, p 
 0.102).

Figure 4B illustrates the frequency with which we observed each
of nine possible classes of neurons (increasing, decreasing, or
nonselective for each feature). In our sample, we found multiple
neurons within each of these classes. Such a diverse population
of neurons allows for the possibility of heterogeneous feature-
specific joint tuning, which is crucial to the type of simultane-
ous modulation of target and distractor detection illustrated
in Figure 1.

Neural pairs exhibit heterogeneous feature-specific rtuning

in A1
We calculated feature-specific rtuning for both AM and �BW for
each of the 418 pairs, as described in the Materials Methods. We
found that approximately equal numbers of pairs exhibited op-
posite (188/418) versus the same (230/418) rtuning sign for AM

Figure 3. Heterogeneous selectivity for AM and �BW leads to heterogeneous feature-specific tuning correlations. A, Peristimulus time histograms of four single neurons in response to three
stimuli: (1) the largest value AM-only stimulus (red; AM3, �BW0), (2) the largest value �BW only stimulus (blue; AM0, �BW3), and (3) the unmodified sound (black; AM0, �BW0). We display only
the largest value stimulus for each feature for clarity. Neuron 1 (top) exhibits an increased spike count for both AM and �BW; neuron 2 increases for AM, but decreases for �BW; neuron 3 decreases
both AM and �BW; neuron 4 increases for both (similar to neuron 1). Whereas in A, we only used the largest AM and �BW values, in B, we show responses to all single-feature stimuli because these
were the stimuli used to calculate feature-specific rtuning. In each panel is plotted the mean spike count for each of the three single feature sounds (red and blue circles), as well as the unmodified
sound (black square). The lines correspond to weighted least-squares regression fits and illustrate the sign of rtuning (the upper and lower bounds of each fit’s 95% confidence interval have the same
sign). There is one panel for each of the six possible pairings of the four neurons in A. Pairs can have positive rtuning for both features (Biii; similar to Fig. 1D), negative rtuning for both features (Bii and
Bvi; similar to Fig. 1E), or positive rtuning for one and negative rtuning for the other (Bi, Biv, and Bv; similar to Fig. 1C,F ).

Downer et al. • Feature-Selective Attention J. Neurosci., May 24, 2017 • 37(21):5378 –5392 • 5383



and �BW. The pairs with opposite AM and �BW rtuning are es-
sential for allowing the neural population to exploit a mechanism
by which selective shifts in rnoise can simultaneously enhance tar-
get detection and suppress distractor detection (Fig. 1C–F). The
feature-specific rtuning between the four example neurons in Fig-
ure 3A is shown in Figure 3B. Each point corresponds to the joint
mean for a given stimulus and the lines correspond to weighted
least-squares fits, which illustrate the rtuning sign. Among this
small population of four neurons with diverse feature tuning,
three of the six resulting pairs exhibit feature-specific rtuning pro-
files that would allow for efficient attentional modulation of rnoise

to support feature-selective attention.
The frequency distribution of feature specific rtuning across the

418 pairs is displayed in Figure 5. As we have reported previously,
AM rtuning tends to be positive in A1 (Downer et al., 2015). Con-
versely, �BW rtuning appears to be approximately evenly distrib-
uted between positive and negative. There is no significant
relationship between AM and �BW rtuning (r(417) 
 �4.8e-4, p 

0.99; Fig. 5A). We observe approximately equal numbers of pairs
within each of the four rtuning classes (positive or negative for each
feature; Fig. 5B). Figure 5C shows the distribution of rtuning dif-
ferences (AM rtuning � �BW rtuning). We found a large number of
pairs with very large differences between AM and �BW rtuning.

Feature-selective attention modulates noise correlations
between pairs with opposite feature-specific rtuning signs
We hypothesized that feature-selective attention may operate by
modulating rnoise between pairs with opposite feature-specific
rtuning signs, as in Figure 1, C and F, because a single shift in rnoise

between these pairs can efficiently enhance target detection and
suppress distractor detection. Namely, the SR predicts that atten-
tion should decrease rnoise when the rtuning for the target feature is
positive and increase rnoise when the rtuning for the target feature is
negative (Fig. 1C). In the absence of distractors, such modula-
tions have been argued to enhance coding (Romo et al., 2003;
Averbeck et al., 2006; Jeanne et al., 2013; Hu et al., 2014; Ruff and
Cohen, 2014a). We therefore compared the average rnoise be-
tween attention conditions and tested for influences of both

feature-specific rtuning similarity (whether the pair had the same
or opposite rtuning sign for AM and �BW) and the sign of rtuning of
the target feature. We used an independent-means ANOVA for
these analyses, with two levels each of three factors (factor 1: AM
rtuning sign, positive or negative; factor 2: �BW rtuning sign, posi-
tive or negative; and factor 3: attention condition, AM or BW).

Our results support adaptive modulation of rnoise to enhance
representation of the attended feature and suppress representa-
tion of the distractor feature. We found no main effect of atten-
tion on rnoise across the population (F(1,1,835) 
 0.01, p 
 0.92),
but we did find a significant interaction between attention con-
dition and target rtuning when collapsing across distractor rtuning

(F(1,1,835) 
 5.01, p 
 0.025). When we analyzed the nature of this
interaction more deeply, we found that feature-selective atten-
tion shifts rnoise based not only on the target rtuning, but also on the
distractor rtuning, as our illustrations in Figure 1, C and F, would
predict to enhance performance. Figure 6 shows rnoise values in
each attention condition across four groups (classified based on
both AM and �BW rtuning). Among pairs with opposite feature-
specific rtuning signs (Fig. 6A,D), we observed that rnoise is lower
when the rtuning of the target feature is positive and higher when
rtuning of the target feature is negative (F(1,1,375) 
 8.64, p 
 0.003;
one-sided pairwise Tukey’s HSD tests, p � 0.05). Among pairs
with the same feature-specific rtuning signs (Fig. 6B,C), we ob-
served no effect of attention on rnoise (F(1,1,459) 
 0.09, p 
 0.76).

We also analyzed these data using multivariate linear regres-
sion, treating rtuning as a continuous variable, to ensure that our
findings are robust across the range of rtuning values. Similar to the
ANOVA, the regression analysis revealed a significant interaction
between attention and rtuning. Namely, attention modulates the
relationship between rtuning and rnoise depending on both target
and distractor rtuning (t(417) 
 3.65, p 
 0.0003). To better visu-
alize this interaction, we show the effect of attention on rnoise

(attend AM � attend BW) across the range of AM and �BW
rtuning values (Fig. 6E). We calculated the rnoise difference (attend
AM � attend BW) between attention conditions for each pair,
calculated the average rnoise difference value within bins of width
0.33 for both AM and �BW rtuning, and then smoothed these

Figure 4. Distributions of feature-specific single neuron tuning. In A, we plot each neuron’s AM selectivity against each neuron’s �BW selectivity and show the marginal distributions for single
feature selectivity. For AM, the majority of neurons exhibit AM selectivity above 0 (i.e., primarily Increasing AM functions), whereas �BW selectivity is approximately equally distributed about 0 (i.e.,
�equal occurrence of increasing and decreasing�BW functions). We found no significant relationship between a neuron’s AM selectivity and�BW selectivity, although across the population, there
was a preponderance of neurons with increasing selectivity for both AM and �BW. B, We classify neurons’ selectivity for each feature as increasing (Inc.), decreasing (Dec.), or nonselective (n.s.), for
both AM and �BW. There is quite some heterogeneity in feature-specific single neuron selectivity, with approximately half of the neurons (45/92) exhibiting differential selectivity for the two
features.
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averages with a Gaussian kernel of width 0.5. The heat map in
Figure 6E shows increased rnoise difference values in the upper left
quadrant and decreased rnoise difference values in the lower right
quadrant, with average rnoise difference values near 0 in the upper
right and lower left quadrants. However, it is worth noting that,
in the lower left quadrant, we found a local increase in rnoise

difference in pairs with slightly negative AM rtuning and strongly
negative �BW rtuning. This local anomaly arises due to effects in
�20 pairs and therefore has little impact when folded into the
coarser category shown in Figure 6C.

These results suggest that feature-selective attention can op-
erate by selectively modulating rnoise in specific subnetworks
within sensory cortex. The observed effects are consistent with
feature-selective attention operating by simultaneous enhanced
detection of the target feature and decreased detection of the
distractor via a single shift in rnoise.

Potential impact of changes in spike count on rnoise

Previous studies have shown both that rnoise and spike count
covary (de la Rocha et al., 2007; Cohen and Maunsell, 2009; Hu et
al., 2014; Zylberberg et al., 2016) and that attention affects spike
counts in A1 (Sutter and Shamma, 2011; Osmanski and Wang,
2015). Therefore, we analyzed the relationship between the effect
of attention on spike count and the effect of attention on rnoise to
determine whether attention uniquely affects rnoise or, alterna-
tively, if the observed effects can be attributed to attention-
mediated changes in spike count. We calculated the spike count
of a pair separately for each stimulus within each condition as the
geometric mean between each neuron’s mean spike count. Figure
7A shows the relationship between the attention-related changes
in spike count and attention-related changes in rnoise across all
pairs (attend AM � attend BW). Using a Pearson correlation, we
found a nonsignificant negative relationship between the two

Figure 5. Distributions of feature-specific rtuning. In A, we plot each pair’s AM rtuning against each neuron’s �BW rtuning and show the marginal distributions for single feature rtuning. Similarly to
single neuron tuning, we find that most pairs exhibit positive AM rtuning, whereas �BW is approximately evenly distributed between positive and negative rtuning. B, Pairs classified according to their
AM rtuning sign and �BW rtuning sign, yielding four groups. We show the frequency of occurrence of each of those groups because our hypothesized potential mechanism for modulating rnoise to
support feature-selective attention requires pairs with opposite AM rtuning and �BW rtuning signs. We found that approximately equal numbers of pairs exhibit opposite AM rtuning and �BW rtuning

signs as exhibit identical AM rtuning and �BW rtuning signs. In C, we show the distribution of rtuning differences, calculated as AM rtuning � �BW rtuning. We see a small peak near 0, indicating many
pairs for which AM and �BW rtuning is very similar, as well as a large proportion of pairs at each tail, indicating many pairs for which AM and �BW rtuning are very different. The large peaks on the
right and left of the distribution correspond to pairs for which rtuning sign differs between AM and �BW.
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Figure 6. Attention-related effects on rnoise depend on both target and distractor rtuning. A, Average rnoise (bars represent means, whiskers represent 
 SEM here and throughout the figure)
between attention conditions for pairs with negative AM rtuning and positive �BW rtuning. Figure 1, C and F, would predict attention to enhance task performance by increasing rnoise between these
pairs during AM attention (because this may concurrently enhance AM detection and suppress �BW detection) and decreasing rnoise during BW attention (because this may concurrently suppress
AM detection and enhance �BW detection). We found that rnoise was significantly higher during AM attention (black) and lower during BW attention (green), consistent with our predictions ( p �
0.05). For the pairs in B and C, AM rtuning and �BW rtuning are the same sign, either both positive (B) or both negative (C). We predicted that, for these pairs, shifts in rnoise will have the same effect
on both target and distractor detection and therefore may provide no benefit to task performance. We found no effect of attention on rnoise in either group ( p � 0.05). In D, these pairs are similar
to those in A in that their AM and �BW rtuning have opposite signs. Our finding here is similar to what we observed in A: when the attended feature (AM) has positive rtuning, rnoise is lower than when
the attended feature has negative rtuning (BW) ( p � 0.05). In E, we used smaller rtuning bins to show how the effect of attention on rnoise depends on rtuning (Figure legend continues.)
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variables (r(417) 
 �0.047, p 
 0.342). We also conducted this
analysis separately for each of the feature-specific rtuning groups
(Fig. 7B–E) and found no significant relationship between
attention-related changes in spike count and attention-related
changes in rnoise in any of the 4 groups (Fig. 7B: r(79) 
 0.026, p 

0.817; Fig. 7C: r(159) 
 �0.062, p 
 0.444; Fig. 7D: r(69) 
 �0.094,
p 
 0.41; Fig. 7E: r(107) 
 �0.036, p 
 0.738). Therefore, we
could find no evidence that the observed effects of attention on
rnoise could be explained by changes in spike count.

Attention-related rnoise changes during the ISI
Differences between stimulus-driven and non-driven rnoise have
been reported in multiple studies across a range of cortical struc-
tures (Kohn and Smith, 2005; Cohen and Maunsell, 2009;
Churchland et al., 2010; Doiron et al., 2016; Nandy et al., 2017).
Stimulus-related changes in rnoise provide insights into the neural
mechanisms that give rise to rnoise. In the present study, we have
observed highly selective attention-related changes in rnoise that
may be due to changes to feedforward inputs to A1, changes in
connections among neurons within A1, changes in the structure
of top-down inputs, or some combination thereof. To begin to
address the source of the observed stimulus-driven rnoise effects,
we analyzed the effect of attention on rnoise during the ISI between
S1 and S2 (Fig. 1A, ISI).

The results of these analyses are shown in Figure 8. Interest-
ingly, the effect of attention on nondriven rnoise is quite similar to
the effects of attention on driven rnoise (Fig. 6). Factorial ANOVA
reveals no significant main effect of attention (F(1,1,835) 
 0.12,
p 
 0.73), but a trending nonsignificant interaction effect be-
tween attention and target rtuning when collapsing across distrac-
tor rtuning (F(1,1,835) 
 3.47, p 
 0.0625). Moreover, we also find
that for pairs with opposite feature-specific rtuning signs (Fig.
8A,D), attention inverts the relationship between rtuning and
rnoise, similar to the observed effects on driven activity (F(1,1,375) 

8.14, p 
 0.0044) and elicits no interaction between target rtuning

and attention on rnoise in pairs with the same feature-specific
rtuning signs (Fig. 8B,C; F(1,1,459) 
 0.02, p 
 0.897). We also
represent these results in a more continuous manner in Figure 8E
(similar to Fig. 6E). Although these results are consistent with
what we found during driven neural activity, we did observe some
differences. For instance, there was an interaction between AM
rtuning and attention wherein attending to AM decreases average
rnoise when AM rtuning is positive (Fig. 8B,D) and exhibits a non-
significant increase in rnoise when AM rtuning is negative (Fig.
8A,C) (F(1,1,459) 
 4.6, p 
 0.02). Moreover, the pairwise test of
the effect of attention between pairs with positive AM and �BW
rtuning reveals a reduction in rnoise during the attend AM condition
(Fig. 8B). Finally, we find a significant main effect of stimulus on
rnoise: consistent with previous reports, stimulus-driven rnoise is
significantly lower than nondriven rnoise (F(1,1,835) 
 32.34, p 

1.52e-8) regardless of rtuning or attention condition, consistent
with previous reports (Kohn and Smith, 2005; Churchland et al.,
2010; Snyder et al., 2014).

These results show that highly selective attention-related ef-
fects of rnoise in A1 are mainly consistent throughout a trial and
are distinct from nonselective stimulus-related decreases in rnoise.
Together, these findings support distinct sources of rnoise in A1
and suggest that attention can target distinct network mecha-
nisms selectively to modulate rnoise according to specific task de-
mands. Frontal cortex inputs to A1 appear particularly poised to
modulating rnoise selectively relative to rtuning because these inputs
have been shown to shift the relationship dynamically between
rtuning and rnoise in A1 pairs (Winkowski et al., 2013).

Discussion
Perception is a fundamentally constructive process in which at-
tention plays a critical role (Rensink et al., 1997). One proposed
role for attention is in the selection of the sensory features that
compose perceptual objects (Treisman, 1998). Although the
study of feature-selective attention has a rich history, its mecha-
nisms remain obscure. We present a novel mechanism by which
different features of the same object can be adaptively selected or
discarded based on the ongoing sensory needs of the organism.
Importantly, this mechanism extends the current framework for
studying how attention affects neural populations in two ways.
First, we present an extension of the SR that is of potential value
in understanding how populations may encode sensory informa-
tion when more than one feature or object is present, an area of
study that is currently lacking (Orhan and Ma, 2015). Second,
although effects of feature attention on rnoise have been reported
previously (Cohen and Maunsell, 2011), we present the first
known mechanism for how attention may shift rnoise to affect both
target and distractor sensitivity simultaneously, rather than simply
enhancing detection of a single object or feature in isolation.

Across modalities, early sensory neurons represent constitu-
ent features of stimuli (Hubel and Wiesel, 1962; Merzenich and
Brugge, 1973; Fuss and Korsching, 2001), whereas later stages
tend to integrate over multiple features (Barlow, 1972). Research-
ers debate whether the features that constitute perceived objects
must be either selected or rejected at early stages or if both rele-
vant and irrelevant features are passed from early to late stages
(Chun et al., 2011). There is strong evidence that multiple mech-
anisms may be at play and that the brain can change its strategy
based on task demands (Chen et al., 2012; David et al., 2012;
Mante et al., 2013; Bacigalupo and Luck, 2015; Woods and Mc-
Dermott, 2015). In the auditory domain, feature attention sup-
ports “cocktail party” listening, in which sound features such as
the fundamental frequency of a speaker’s voice can be used to
listen selectively to one speaker over another (Cherry, 1953;
Shamma et al., 2011; Mesgarani and Chang, 2012). Feature atten-
tion has long been understood to constitute one of the primary
skills required to solve the cocktail party problem, but has re-
ceived less attention than other skills such as preattentive sound
segregation (Shinn-Cunningham, 2008; McDermott, 2009). Our
results suggest an efficient mechanism by which auditory neu-
rons can prioritize relevant features to facilitate tracking an at-
tended sound source to solve the cocktail party problem.
Moreover, our findings contribute to a growing literature sug-
gesting that heterogeneous joint tuning in a population allows for
efficient coding of complex signals (Pagan et al., 2013).

Relationship to previous studies of the effect of behavior
on rnoise

Our results support adaptive modulation of rnoise among specific
neural networks as a property of effective listening. The dynamic

4

(Figure legend continued.) across the range of values. We calculated rnoise difference values
(attend AM � attend BW), calculated the average rnoise difference within bins of width 0.33 for
both AM and �BW rtuning , and then smoothed the binned averages. We observed increased
rnoise difference values (rnoise higher during attend AM) in the upper left quadrant and decreased
rnoise difference values (rnoise lower during attend AM) in the lower right quadrant, consistent
with our findings using coarse categorization using rtuning sign. In A–D, inset histograms show
the distribution of rnoise in each condition. All statistical analyses performed are described in the
main text.
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selection and suppression of sound features is a crucial aspect
of this problem, the neural implementation of which has been
elusive. Our results suggest that network noise can be reshaped
by the ongoing sensory demands of the listener to simultane-

ously enhance relevant and suppress irrelevant representa-
tions. Importantly, our results suggest that this can be done
efficiently and without changes in the level of overall neural
activity.

Figure 7. Attention-related effects on rnoise are independent of attention-related changes in spike count. A, For each pair in our sample, we plotted the spike count difference against the rnoise difference
(attend AM�attend BW). We found no significant relationship between the effect of attention on spike count and the effect of attention on rnoise ( p�0.05). B–E, Same analysis as in A, but for pairs from each
of the four rtuning categories. For none of these groups did we find any significant relationship between attention-related rnoise effects and attention-related spike count effects.
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Figure 8. Attention-related effects on rnoise during spontaneous spiking. Conventions in this figure are same as for Figure 6. Similarly to rnoise measured during stimulus-driven activity (Fig. 6),
we found a significant interaction among attention, target rtuning, and distractor rtuning. Namely, in pairs with opposite rtuning signs (A, D), there is higher rnoise when attending the feature with
negative rtuning and lower rnoise when attending the feature with positive rtuning. We observe one compelling difference between the effect of rnoise during spontaneous spiking and driven spiking:
in B (pairs with positive AM and �BW rtuning), we found that attending to AM reduces rnoise during spontaneous spiking, but not during stimulus driven activity. However, the (null) effect observed
in C mirrors that observed during driven activity. In E, we reiterate these results using narrower bins. We calculated the average rnoise difference value (attend AM � attend BW) within bins of width
0.33 and then smoothed these binned averages. The matrix in E exhibits similar structure to that in Figure 6E, illustrating similar effects of attention on rnoise during driven and spontaneous spiking.
In A–D, inset histograms show the distribution of rnoise in each condition.
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There has been recent interest in the optimal relationship be-
tween rtuning and rnoise. That rnoise could be modulated selectively
according to rtuning has only recently been shown (Jeanne et al.,
2013; Ruff and Cohen, 2014a; Downer et al., 2015). Previously,
many studies have revealed that, in situations of increased sen-
sory demand, rnoise would globally decrease in a population (Co-
hen and Maunsell, 2009; Mitchell et al., 2009; Gu et al., 2011;
Herrero et al., 2013; Issa and Wang, 2013; Ruff and Cohen, 2014b;
Nandy et al., 2017). According to the SR, the effect of rnoise on
coding accuracy depends on the sign of rnoise relative to the sign of
rtuning, namely that coding is enhanced when they have opposite
signs but impaired when they have the same sign (Oram et al.,
1998; Abbott and Dayan, 1999; Averbeck et al., 2006). Therefore,
according to the SR, the global reduction of rnoise across a popu-
lation of neurons could enhance coding only if a large majority
of neurons exhibited similar tuning (yielding mainly positive
rtuning). Widespread similar tuning may very well have been the
case in many studies. Recently, Ruff and Cohen (2014a) pre-
sented evidence that a more demanding attention task, in which
the activity of distinct neural populations code for different per-
ceptual decisions, can increase or decrease rnoise in a manner
consistent with the SR. Similarly, we show that attention can
either increase or decrease rnoise depending on pairs’ rtuning, as the
SR predicts. Moreover, our results provide the first evidence that
we know of that rnoise can be modulated, not only based on target
rtuning, but also distractor rtuning.

Multiple theoretical studies have pointed out that the effect of
rnoise on neural coding may depend on other factors in addition to
those described by the SR, including heterogeneity of tuning
functions (Ecker et al., 2011), stimulus dependence of rnoise (Zyl-
berberg et al., 2016), rnoise with a very large magnitude (Hu et al.,
2014), and the slopes of neurons’ tuning curves (Moreno-Bote et
al., 2014). These studies tend to assume different population
codes than those that might be at work coding AM and �BW in
A1. Namely, AM depth and �BW are largely encoded by mono-
tonic changes in spike count in A1, whereas most studies of the
effect of rnoise on population coding assume bell-shaped feature
coding. In addition, these studies tend to measure population
coding accuracy in terms of discrimination whereas we focus on
feature detection. We find that neurons exhibit monotonic, as
opposed to bell-shaped, feature tuning for the features we present
in the current study; this difference in single neuron coding strat-
egy can significantly change how a population’s activity is de-
coded. In addition, as we mentioned earlier, most studies of
population coding and the effect of rnoise thereupon have not
considered cases in which a relevant feature must be detected in
the presence of irrelevant features, so our study presents a step
toward understanding the role of rnoise in more naturalistic sen-
sory settings. Moreover, because rnoise cannot be manipulated
precisely in a behaving animal, evidence for a role of rnoise in
perception is only correlative. Although we believe that our find-
ings support the SR as a valid model of the effect of rnoise on
coding accuracy, future work is needed to test these ideas directly
both theoretically and experimentally.

Feature attention and the cocktail party problem
Feature attention likely plays a special role in listening for two
primary reasons. First, the spatial acuity of the auditory system is
poor relative to the visual system (Alais and Burr, 2004), so the
ability to attend to nonspatial features is likely more important in
sound perception than, say, visual or tactile perception. Second,
the soundscape undergoes constant change such that a given fea-
ture may uniquely define a target sound in one instance but not

the next (Woods and McDermott, 2015). Therefore, experiments
in which listeners alternate attention between different nonspa-
tial sound features provide insights into one of the most challeng-
ing aspects of listening in crowded environments.

A few studies examining the neural basis of nonspatial feature
attention during cocktail party listening have been performed in
humans. In one prominent study, Mesgarani and Chang (2012)
presented monaural mixtures of two talkers, one of which sub-
jects attended to . Using electrocorticography (ECoG) to measure
brain activity, they found that local field potential activity in
nonprimary (parabelt) auditory cortex selectively represented
the attended speaker relative to the unattended speaker. More-
over, they provide evidence that the auditory cortex selectively
represents the spectral feature values that may best segregate the
attended from the unattended speaker. Other studies in humans
have examined shifts in attention between nonspatial features
such as duration, pitch and loudness (for review, see Caporello
Bluvas and Gentner, 2013). These studies used methods coarse in
spatial or temporal resolution due to limitations inherent in mea-
suring human brain activity. The primary finding has been that
brain areas that putatively code the attended feature exhibit
greater activity. Our results would not be detectable using meth-
ods without very fine spatial and temporal resolution (such as
that available with microelectrode recording) and thus would
not be apparent in these human studies. We argue that our
results provide evidence of a novel and independent property
of auditory cortical function in enhancing listening in crowded
environments.

Future work should focus on bridging the gap between meso-
scopic measures of human neural activity (e.g., ECoG high-
gamma signals) and microscopic measures obtained in animals
(e.g., single neurons) in the context of rnoise and attention. Al-
though there is evidence that the high-gamma local field poten-
tial signal indexes multiunit neuron activity (Steinschneider et
al., 2008; Ray and Maunsell, 2011; Chang, 2015), the direct rela-
tionship between ECoG high-gamma signals recorded at the pial
surface and correlated single neuron activity recorded across the
depth of cortex remains unknown. A promising and feasible av-
enue for future studies is the simultaneous acquisition of ECoG
and single neuron data during complex attention tasks in mon-
keys. Heretofore, simultaneous acquisition of ECoG and single
neuron data in rhesus macaque auditory cortex has been ham-
pered by difficulties in recording from the exposed superior tem-
poral gyrus corresponding to parabelt, where ECoG recordings
are most feasible. Recent advances in the ability to record from
the surface of the superior temporal gyrus in rhesus macaques
provide an excellent opportunity to both address the relationship
between ECoG and single neuron activity in the auditory cortex
and understand hierarchical changes in the effects of attention in
the auditory cortex (Kajikawa et al., 2015).
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