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Systems/Circuits

Feature-Selective Attention Adaptively Shifts Noise
Correlations in Primary Auditory Cortex

Joshua D. Downer, “Brittany Rapone, “Jessica Verhein, “Kevin N. 0’Connor, and “Mitchell L. Sutter
Center for Neuroscience, University of California, Davis, California 95618

Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing
for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept.
How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is
typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of
feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant
features. We measured noise correlations (r,;.) within small neural populations in primary auditory cortex while rhesus macaques
performed a novel feature-selective attention task. We found that the effect of feature-selective attention on r, ;.. depended not only on
the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed

effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in

T

noise

can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a

novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments.

Key words: amplitude modulation; attention; auditory cortex; feature-selective attention; noise correlation
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ignificance Statement

(rnoise

relevant information and suppresses irrelevant information.

Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases
remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations
) in rhesus macaque Al during task performance. Unlike previous studies showing that the effect of attention on .
depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning to the distractor
feature as well. We suggest that these effects represent an efficient process by which sensory cortex simultaneously enhances

~

noise

J

Introduction

Listening is a challenging task. Multiple mixed sound sources
arrive at the ear and the auditory system must then select relevant
sound features from this mixture for further processing while
suppressing irrelevant features. This is often called the “cocktail
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party problem” and humans and other animals can solve this
problem (Bee and Micheyl, 2008) despite its computational com-
plexity (Haykin and Chen, 2005). Recent work has demonstrated
that listeners do this in part by shifting attention between sound
features (Woods and McDermott, 2015), although the mecha-
nism of this adaptive feature selection is unknown (Shamma et
al., 2011).

Recent work has highlighted attentional modulation of noise
correlations (7,,.;.) as a potential mechanism to enhance percep-
tion (Cohen and Maunsell, 2009). r,,.;.. arises between neurons
when their response variability (“noise”) to repeated presenta-
tions of the same stimulus is correlated. These correlations are
thought to affect the information bearing capacity of a neural
population (Averbeck et al., 2006), although theoretical studies
of the effect of ,,.;,. on population coding suggest that the vari-
ables that mediate the impact of r,;,. on coding are complex
(Ecker et al., 2011; Hu et al., 2014; Moreno-Bote et al., 2014;
Kanitscheider et al., 2015). One theory, the sign rule (SR) (Hu et
al., 2014), posits that the effect of 1, ;.. on coding accuracy can be

noise
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Figure1. Effectofr,, in the presence of irrelevant (distractor) stimuli. A, B, Two graphic illustrations of the relationship between r, ., and ry,,,g, according to the SR. Within each panel, we
represent the mean (points) and variance (dotted ellipses) of the joint response distributions of two neurons in response to a standard (gray) and target (red) stimulus. In 4, this pair of neurons

exhibits negative r,

uning: tat is, as the mean of neuron 1increases, the mean of neuron 2 decreases When r, ;.. is negative (i.e., the same sign asr,

A, left), the variance of the joint response

uning’

distributions lies along approximately the same dimension as the signal, so this pair does not perfectly detect the target due to the overlap of the joint response distributions. However, when r, ;..
and Tuning have opposite signs (4, right), target detection is enhanced, with no overlap in the joint response distributions. This rule can also be seen in Bfor a pair with positive Tuning: (—F, Addition
of a distractor stimulus (blue) necessitates an extension of the SR. Namely, when target and distractor r,,,,;,, have the same sign (D,E), changes inr, ;. will affect targets and distractors similarly
(enhance or suppress detection of both) and thus nullify any benefit of modulating r, ;... However, when target and distractor 1., have opposite signs (C,F), modulating 7, can simultaneously

enhance target detection and suppress distractor detection.

determined based on the joint tuning or tuning correlation (g )
between the pairs of neurons in the population: when 7, and
Thoise Nave identical signs, sensory coding performance is im-
paired and, when they have opposite signs, performance is en-
hanced (Oram et al., 1998; Abbott and Dayan, 1999; Averbeck et
al., 2006). However, despite theoretical disagreements regarding
the effects of r,,;. on coding, the effects of attention on r,;,. have
been remarkably reliable across studies; namely, studies have
found that attention globally decreases 7, ;. (Cohen and Maun-
sell, 2009; Mitchell et al., 2009; Cohen and Maunsell, 2011; Her-
rero et al., 2013; Doiron et al., 2016; Nandy et al., 2017). Further,
recent studies have shown that attention can modulate r,, ;.. de-
pending on 7y, consistent with the SR (Ruff and Cohen,
2014a; Downer et al., 2015). Importantly, the studies mentioned

above, both theoretical and empirical, have only dealt with the
detection or discrimination of a single sensory variable in isola-
tion (Fig. 1A, B). How r,, ;. contributes to coding in multifeature
settings and how feature-selective attention may rely on dynamic
changes in r,,;, remains unexplored.

Modulation of r,;. presents a compelling potential mecha-
nism for feature-selective attention. In cases in which a relevant
(target) feature must be selected among competing irrelevant
(distractor) features, attentional modulation of ;. may allow
for simultaneous enhancement of target detection alongside sup-
pression of distractor detection. According to the SR, this would
be possible between populations of neurons with opposite 7, g
signs for the target and distractor features (Fig. 1C,F); for exam-
ple, positive 7, for the target feature and negative ;g for
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the distractor feature (Fig. 1F). In such
cases, a given shift in r, ;.. would have op-
posite effects on the detection of the target
and distractor. For example, an increase
in 7, between pairs with negative target
Teuning aNd positive distractor ry,,;,, could
simultaneously enhance target informa-
tion and decrease distractor information
(Fig. 1C).

We tested the effects of feature-
selective attention on 7, in a popula-
tion of neurons with heterogeneous target
and distractor tuning. To do so, we re-
corded from small populations of primary
auditory cortical (A1) neurons from two
rhesus macaques while they performed a
feature-selective attention task. We found
that attention’s effects on r, ;. depended
upon both target r.,, and distractor
Ttuning IN @ Manner consistent with simul-
taneous enhancement of target detection
and suppression of distractor detection.
Therefore, modulation of r,, ;.. appears to
support feature-selective attention effi-
ciently. These results demonstrate a novel
mechanism for listening in cluttered envi-
ronments and contribute to an active de-
bate on the role of r,;. in population
coding.

Materials and Methods

Subjects. Our research subjects were two adult
rhesus macaques, one male (Monkey U, 12 kg)
and one female (Monkey W, 8 kg). All proce-
dures were approved by the University of Cali-
fornia—Davis animal care and use committee
and met the requirements of the United States
Public Health Service policy on experimental
animal care. We implanted each animal with a
head post centrally behind the brow ridge and a
recording cylinder over an 18 mm craniotomy
over the left parietal lobe using aseptic surgical
techniques. Placement of the craniotomy was
based on stereotactic coordinates of auditory
cortex to allow us vertical access through pari-
etal cortex to the superior temporal plane (Sal-
eem and Logothetis, 2007).

Stimuli and task. We presented sounds that
varied along two feature dimensions, spectral
and temporal, as well as an unmodified broad-
band noise sound (Fig. 2B). The unmodified
sound was broadband (white) Gaussian noise
with a 9 octave (40 to 20480 Hz) range. We
used four different seeds to create noise signals
and these were frozen across recording ses-
sions. To introduce variance along each feature
dimension, this sound was narrowed in terms
of the spectral bandwidth (ABW) or sinusoi-
dally amplitude modulated (AM). We also ma-
nipulated the degree (value) of variation in
each dimension to measure behavioral and
neural responses near the perceptual threshold
for detecting each feature.

Single-feature threshold determination. We
first assessed the behavioral thresholds for de-
tecting each feature in isolation using a yes/no
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Figure2. Rhesus macaques perform a novel auditory feature-selective attention task. A, Subjects use a joystick to initiate trials
andto respond. We present two sequential sounds after subjects initiate a trial. The first sound (S1) is always a broadband (9 octave
wide) noise burst. The second sound (S2) could be any of the stimuli in the set (B). After S2 offset, the subject was required to make
either a “yes” or a “no” response (to indicate target detection or rejection, respectively) with a vertical joystick movement (up or
down). Correct responses were rewarded with liquid and incorrect responses were penalized with a timeout. B, Broadband noise
burst (“unmodified sound”), as well as sounds that deviate from the unmodified sound along the temporal and/or spectral sound
feature dimensions (xand y axes, respectively). The temporal feature is amplitude modulation (AM; sinusoidal modulation of the
sound envelope). We parametrically increase the value of AM by increasing its depth. To introduce spectral variation, we change
(decrease) the bandwidth of the unmodified sound (ABW). We parametrically increase the value of ABW by narrowing the width
of the band-pass filter used to synthesize these sounds. Changes in spectral BW are schematized in B with increasing lightness
relative to the unmodified sound. When subjects attend to AM, the sounds within the black box are targets; that is, AM depth >
0. Likewise, when subjects attend BW, all the sounds in the green box are targets: ABW >0. Here, and throughout the text,
whenever feature values are collapsed across subjects, AM and ABW values are given as ranks. The exact values presented to each
subject were determined separately for each subject and this process is described in detail in the main text. ¢, Performance of both
subjects (+ for Monkey W and © for Monkey U) in each condition represented as regression coefficients that correspond to the
influence of each feature on subjects’ behavioral responses. An increased value of a given coefficient corresponds to an increased
probability that the subject will report “yes” as the value of that feature increases. Subjects’ behavioral responses are more strongly
influenced by the target feature than the distractor feature, a hallmark of feature-selective attention.
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task (Fig. 2A). Subjects moved a joystick laterally to initiate a trial, after
which the 400 ms S1 sound (always the 9-octave wide unmodified sound)
was presented, followed by a 400 ms interstimulus interval (ISI), followed
by the 400 ms S2 sound. Subjects then reported whether the S2 contained
the target feature by either moving the joystick down (up) to report
detection or up (down) to report no detection. The response contingen-
cies were counterbalanced between subjects. For determining ABW
thresholds, the S2 was either the unmodified sound or one of six sounds
that differed in spectral BW from the unmodified sound. We varied the
value of ABW from a minimum of 0.25 octaves (8.75 octave spectral BW;
440-18,780 Hz) to a maximum of 2 octaves (7 octave spectral BW; 800—
10,240 Hz), with 4 other intermediate ABW values in between (0.5, 0.75,
1.0, 1.5 ABW; 480-17,222, 520-15,792, 570-14,482, 670-12,177 Hz).
Both the high- and low-frequency changes of the ABW sounds fall in
sensitive areas of the rhesus macaque audiogram (Pfingst et al., 1978).
After S2 offset, the subject used the joystick to report whether s/he de-
tected ABW. Hits and correct rejections were rewarded with water or
juice and misses and false alarms resulted in a penalty (5-10 s timeout).
Animals were rewarded (penalized) equally for all correct (incorrect)
trials regardless of trial difficulty. Threshold was determined as the ABW
at which subjects’ average sensitivity (d’) was 1. Subjects’ thresholds for
detecting ABW value were similar between each other (~0.4 octaves
from Monkey U, ~0.5 octaves for Monkey W). It is important to note
that, with some methods, changing the spectral BW of a sound induces
variations in that sound’s envelope. However, we have implemented a
noise synthesis method that constructs noise using a single-frequency
additive technique and thereby avoids introducing envelope variations
that may serve as cues for ABW (Strickland and Viemeister, 1997).

We used an identical procedure for determining thresholds for detect-
ing AM: the S2 was either the unmodified sound, or 1 of 6 sounds with
AM depth >0%, with values from 6% to 100%. For this pilot experiment,
we presented AM at a fixed frequency of 30 Hz. For the full experiment,
in which we presented AM at other frequencies, we only used frequencies
for which the established average detection thresholds for rhesus ma-
caques were similar to those found for 30 Hz AM noise (O’Connor et al.,
2011).

Feature attention task. For feature attention (e.g., during recording
sessions), we presented only three values of each feature because we
presented sounds that varied along both feature dimensions and we
needed to keep the size of our stimulus set small enough to obtain rea-
sonable power for analyzing neural data (Fig. 2B). We also reduced the
stimulus space by presenting only a subset of the possible co-modulated
stimuli (stimuli with modulation in each feature dimension). Within
each recording session, we presented 13 total stimuli (Fig. 2B; the blank
diagonals indicate co-modulated sounds that were not used in the task).
To equilibrate difficulty between the two features, we presented values of
each feature so that one was near threshold, one was slightly above, and
one far above threshold. For Monkey U, ABW values were 0.375, 0.5, and
1 octave and AM depth values were 28%, 40%, and 100%. For Monkey
W, ABW values were 0.5, 0.75, and 1.5 octaves and AM depth values were
40%, 60%, and 100%. For all analyses in which data are collapsed across
subjects, ABW values and AM values are presented as ranks (ABW,,_; and
AM,, ;) (e.g., Fig. 2B). Within a given session, we presented AM sounds at
onlya single frequency. Across sessions, we used a small range of frequen-
cies, for which behavioral detection thresholds were similar to 30 Hz (15,
22, 30, 48, and 60 Hz). The AM frequency was selected randomly each
day.

All sounds were 400 ms in duration (5 ms cosine ramped at onset and
offset). We have reported our sound generation methods previously
(O’Connor et al.,, 2011). Briefly, sound signals were produced using an
in-house MATLAB program and a digital-to-analog converter (Cam-
bridge Electronic Design [CED] model 1401). Signals were attenuated
(TDT Systems PA5, Leader LAT-45), amplified (RadioShack MPA-200),
and presented from a single speaker (RadioShack PA-110 or Optimus
Pro-7 AV) positioned approximately 1 m in front of the subject centered
at the interaural midpoint. Sounds were generated at a 100 kHz sampling
rate. Intensity was calibrated across all sounds (Bruel Kjaer model 2231)
to 65 dB at the outer ear.

J. Neurosci., May 24, 2017 - 37(21):5378 =5392 + 5381

The task structure for feature attention was identical to that for the
single-feature task described in the section “Single-feature threshold de-
termination” except that the S2 could be any of the 13 sounds in the set.
The subject was cued visually via an LED above the speaker as to which
feature to attend (green or red light, counterbalanced between subjects).
Moreover, each block began with 60 “instruction” trials in which only the
unmodified sound and sounds only containing the target feature were
presented (i.e., sounds containing the distractor feature were not pre-
sented). Subjects were to respond with a “yes” (up or down joystick
movement) on any trial in which the attended feature was presented (Fig.
2B: sounds in black brackets during Attend AM and sounds in green
brackets during Attend BW). Otherwise, the correct response was “no.”
The S2 was the unmodified sound on 25% of trials, co-modulated on
25% of trials, contained only ABW on 25% of trials, and only AM on 25%
of trials. Sounds in the set were presented pseudorandomly such that,
over sets of 96 trials, the stimulus set was presented exhaustively (includ-
ing all four random noise seeds). Block length was variable, based in part
on subjects’ performance, to ensure sufficient correct trials for each stim-
ulus. Not including instruction trials, block length was at least 180 trials
and at most 360 trials to ensure that subjects performed in each attention
condition at least once during the experiment. Subjects could perform
each attention condition multiple times within a session. Only sessions in
which subjects completed at least 180 trials per condition (excluding
instruction trials) were considered for analysis in this study. We analyze
neural data from both correct and incorrect trials in this study; excluding
error trials makes no qualitative difference in the results because they
make up a relatively small fraction of the overall trials.

Recording procedures. All recordings took place within a sound-
attenuated, foam-lined booth (IAC: 9.5 X 10.5 X 6.5 feet) while subjects
satin an acoustically transparent chair (Crist Instruments). We advanced
three quartz-coated tungsten microelectrodes (Thomas Recording, 1-2
M(); 0.35 mm horizontal spacing; variable, independently manipulated
vertical spacing) vertically to the superior surface of the temporal lobe.
During electrode advancement, we isolated sound-responding neurons
as follows. We presented sounds to the subject while the experimenter
monitored neural responses to various sounds, including the tested stim-
uli (described above) and other natural and synthetic sounds. When
neural signals from the electrodes exhibited responsiveness to sound, we
then attempted to isolate single neurons. When at least one single neuron
was well isolated from at least one of the electrodes, we measured spike
count responses for the two sound features while the animal sat passively
awake. We presented at least 10 repetitions each of the following stimuli:
the unmodified sound, each of the 3 ABW stimuli, as well as 100% depth
AM across the range of frequencies (15, 22, 30, 48, and 60 Hz). After we
measured the responses of the isolated neurons, we cued the subject via
cue light to begin the task and continued recording throughout task
performance. When possible, we also measured responses to the tested
stimuli after task performance in part to ensure stability of electrodes
throughout the recording. Only recordings in which neurons were well
isolated for at least 180 trials within each condition (excluding instruc-
tion trials) are included in this report.

We estimated our recording locations using established measures of
neural responses to pure tones (Merzenich and Brugge, 1973; Petkov et
al., 2006). Across recordings, we mapped neurons’ best pure tone fre-
quency and drew boundaries around Al based on the tonotopic fre-
quency gradient and reversal (caudal-rostral axis), the width of neurons’
frequency response areas (medial-lateral axis), and response latency. Re-
cordings were assigned to their putative cortical fields post hoc. Here, we
present data from 92 single neurons assigned to Al.

Extracellular signals were amplified (AM Systems model 1800), band-
pass filtered between 0.3 Hz and 10 kHz (Krohn-Hite 3382), and then
converted to a digital signal at a 50 kHz sampling rate (CED model 1401).
Contributions of single units to the signal were determined offline using
principal components analysis-based spike sorting tools from Spike2
(CED). Spiking activity was at least 45 times the background noise level.
Fewer than 0.1% of spike events assigned to single unit clusters fell within
a 1 ms refractory period window. In the present study, we report data
from 92 individual neurons (57 from Monkey W, 35 from Monkey U)
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and 434 simultaneously recorded pairs of neurons (274 from Monkey W,
160 from Monkey U).

Analysis of single neuron feature tuning. Spike counts (SCs) were calcu-
lated over the entirety of each 400 ms stimulus. Each neuron was catego-
rized as “increasing” or “decreasing” for each feature based on its SC in
response to the presence of a feature (ABW or depth of AM). To charac-
terize a neuron’s response function, we calculated a feature-selectivity
index (FSI) for each feature. This index characterizes a neuron’s change
in spike count in the presence of a feature, normalized over its full spike
count distribution across both features. It is calculated as follows:

FSIyy = (EAMNABWO - EAMOABWO)/(EAMNABWQ + EAA/IUABWO)

FSIzgw = (EAMOABWM - EAMOABWD)/(EAMOABWM + EAMOABWO)

where SC, is the mean SC in response to the class of stimuli designated by
the subscript. We performed a Kruskal-Wallis rank-sum test between the
distribution of SCs in response to sounds with a feature value above 0
(e.g., AM_, for AM) and the distribution of SCs in response to sounds
with a feature value of 0 (e.g., AM,, for AM) to determine the significance
of each FSI for each neuron.

Analysis of 1,,g15e AN Ty ping. We measured AM 7000 ABW 1,0, and
Tnoise fOT €ach pair in each condition. We calculated r,,;,, as the Pearson
correlation between the mean spike count of each neuron in a pair to the
set of four stimuli along each feature axis (each axis includes the unmod-
ified sound). It is worth noting that Pearson correlation provides a noisy
measure of the overall fit between the mean responses, it is not sensitive
to relationships between means that are not linear, and it is affected by
outliers. For the purposes of this study, we do not intend this corre-
lation metric to provide an exact account of the relationship between
mean responses; rather, we use it to approximate the relationship be-
tween neurons’ selectivity to a given feature. For instance, if a given
neuron tends to increase its spike count in the presence of AM depth
>0%, then it will have a positive AM r,,,;,, With other neurons that
increase their spike count in the presence of AM, and a negative AM
Ttuning With neurons that decrease their spike count in the presence of
AM. We also calculated 7,,;,, using two other methods, Spearman cor-
relation and the weighted least-squares coefficient on the normalized
mean spike counts, both of which are more robust to outliers than Pear-
son correlation. The results obtained with those metrics (not reported
here) are qualitatively quite similar to those obtained using Pearson cor-
relation and do not alter our major findings or conclusions.

We calculated r,, ;. across all presentations of the unmodified stimu-
lus separately within each condition to allow for analyses of 1, ;.. due to
changes in attention. We calculated r,, ;. using spike counts calculated
over the entire 400 ms S2 presentation epoch within each trial. We se-
lected the unmodified stimulus (i.e., S2 = S1) as the stimulus upon which
to calculate r, ;.. due to the fact that its behavioral “meaning” and asso-
ciated behavioral response were consistent across contexts. These factors
have been shown to modulate nonsensory variability in Al neurons and
this nonsensory variability may modulate r, ;.. because it is, on average,
shared across neurons (Nienborg and Cumming, 2010; Niwa et al.,
2012). Moreover, 1,,.;.. is also often affected by stimulus drive, so restrict-
ing our analyses to responses to a single stimulus type should increase the
reliability of our r, ;. estimate. We calculated r, ;.. over an average of 85
trials of spike count responses to the unmodified sound (range 48—168).
When we calculated r,, ;. by collapsing across all stimuli, the results that
we observed were qualitatively similar and statistically indistinguishable
from the analyses conducted when only the unmodified sound was used
to calculate ;... This implies that the effect of attention on r, ;. is, on
average, consistent across all stimuli. Those analyses are not presented
here. To calculate r,;, collapsed across stimuli, spike counts within each
stimulus were z-scored, combined into a single vector of normalized
spike counts within each condition, and then the Pearson correlation
between these vectors was calculated. Low spike counts reduce the reli-
ability of r;,. estimates. We therefore excluded 16 pairs due to low

average pairwise spike counts (<1 spike/s).

Downer et al. @ Feature-Selective Attention

Results

Rhesus macaques perform an auditory feature-selective
attention task

We developed a feature-selective attention task in which subjects
must listen for the occurrence of a target feature while ignoring a
concurrent distractor feature (Fig. 2A,B). The task simulates
feature-based tracking of relevant information in a crowded en-
vironment (Shamma et al., 2011; Mesgarani and Chang, 2012;
Woods and McDermott, 2015). We assessed subjects’ perfor-
mance by calculating, within each attention condition within
each session, the influence of each of the two features on subjects’
responses. To do so, we use a binomial logistic regression to
calculate coefficients that quantify the degree to which the value
of a given feature affects the probability of a “yes” response, ac-
cording to the following logistic function:

P(“Yes”) = 1/(1 + 7%

reg = Bam(VALyy) + Bpw(VALgy)
+ Barssw(VAL % VALgy) + «

where VAL, and VALyg,y are the ranked values of AM and ABW
(from 0-3), respectively, 3 is the coefficient for the value term,
and « is an offset term to capture response bias. Intuitively, as the
influence of a given feature on the subject’s probability of re-
sponding “yes” increases, the value of the coefficient will increase;
when a given feature has no impact on the behavioral response,
the value of the coefficient will be ~0. We calculated B,y and
Bgw within each condition for each recording session [n = 16
sessions; 9 Monkey U (circles, Fig. 2C) and 7 Monkey W (crosses,
Fig. 2C)] and then compared these coefficient values collapsed
across sessions (Fig. 2C). We found a significant increase in the
average coefficient value for the target versus the distractor fea-
ture (£3,, = 7.89, p = 6.5%¢ ~°) revealing that animals were using
feature-selective attention, although imperfectly (as evidenced by
nonzero coefficients for the distractor feature). Specifically, this
nonzero distractor coefficient arises because animals increase
their likelihood to make a “yes” response in the presence of the
distractor feature for both single feature stimuli (Fig. 1B, margin-
als) and co-modulated stimuli. We emphasize that this analysis is
meant to estimate the strength of selective attention, rather than
assess task accuracy. Both the analysis and behavioral results are
similar to those from a feature-selective attention study in the
visual system (Sasaki and Uka, 2009).

Single neurons exhibit heterogeneous selectivity for the two
sound features

We measured single neurons’ selectivity to each feature by ana-
lyzing whether the presence of the feature significantly changed a
given neuron’s spike count. We assessed this by performing a
Mann-Whitney rank-sum test comparing spike count