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Abstract

Two categories of evolutionary challenges result from escalating human impacts on the planet. 

The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the 

inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a 

suite of strategies to address these global challenges that threaten human health, food security, and 

biodiversity. This review highlights both progress and gaps in genetic, developmental and 

environmental manipulations across the life sciences that either target the rate and direction of 

evolution, or reduce the mismatch between organisms and human-altered environments. Increased 

development and application of these underused tools will be vital in meeting current and future 

targets for sustainable development.
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Human influence on the biosphere (1,2) has profound consequences for both the rate and 

direction of evolution (3). Among the consequences are the challenges billions of people 

face from the effects of cancers, pests and pathogens that adapt quickly to our interventions 

against them. At the same time, humans and other organisms that we value for economic, 

ecological or aesthetic reasons are often not able to adapt quickly enough to keep pace with 

human alterations of the environment. These contemporary dilemmas increasingly threaten 

human health, food security and biological diversity (4,5,6,7,8,9,10,11,12). For example, the 

World Health Organization (WHO) warns that microbial resistance to antimicrobial drugs 

threatens the achievements of modern medicine (13). Likewise, more than 11,000 

documented cases of pesticide resistance in nearly 1,000 species of insects, weeds, and plant 

pathogens jeopardize agricultural economies and food supplies worldwide (14). Failure to 

adapt may be equally dire and costly, as in the prevalent mismatch between modern human 

nutritional and lifestyle behaviors and those of our evolutionary past, which generally 

considered a major contributing factor to the high incidence of obesity and associated 

illnesses such as type 2 diabetes mellitus and cardiovascular disease (15). Meanwhile, the 

prospect of earth's sixth mass extinction of species becomes imminent as species are unable 

to adapt quickly enough to environmental change (16). A growing application of principles 

from evolutionary biology to challenges such as these may improve our ability to meet many 

of the most pressing problems of the 21st century (12,17,18,19).

Here we review current and prospective applications of evolutionary biology that may 

provide solutions for major societal challenges. We examine management approaches that 

attempt to either improve or undermine adaptation to modern environments by manipulating 

the relationships between the traits of organisms and the patterns of selection imposed by 

their environments. These manipulations include tools that may be widely considered 

evolutionary, such as selective breeding and emerging technologies in genetics, but also 

manipulations that are often overlooked as evolutionary, specifically manipulations of 

development that modify traits independent of genetic change, and altering environments in 

ways that can modulate selection itself. A conceptual framework linking all of these genetic, 

developmental and environmental manipulations is likely to lead to greater implementation 

and cross-disciplinary integration of applied evolutionary methods. We highlight how 

evolutionary strategies may be used to achieve policy targets of sustainable development for 

improved human health, food production, natural resource use and biodiversity 

conservation, including how stakeholder conflicts may be reduced to achieve desired 

outcomes. Throughout, we underscore the merits of building a more unified and integrated 

field of applied evolutionary biology to address global challenges.

Core evolutionary concepts and their relevance to global challenges

Evolution, defined as the change in genetic makeup of a population over successive 

generations, requires genetic variation, which arises from mutation and recombination (20). 

Most important for adaptation is genetic variation that affects variation in functional traits 

(21), such that alternate genotypes produce alternate phenotypes. Selection increases the 

frequency of genes that improve fitness – the ability to survive and reproduce. The specific 

genetic basis for most traits is not known, but trait differences among individuals typically 
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have a significant heritable (genotypic) basis. This basis includes heritable aspects of 

development, which also may evolve and give rise to adaptive phenotypic plasticity (22). A 

population with low fitness may experience strong natural selection that favors better- 

adapted genotypes. However, strong selection will not necessarily ‘rescue’ a population if 

there are too few adapted individuals or suitable genes for the population to persist (23). 

Movement of genes between populations (gene flow) and random changes in gene 

frequency in small populations (genetic drift) can also cause evolution and influence the 

outcome of natural selection (20). These concepts apply not only to organisms from bacteria 

to humans, but also to viruses and cancer cells (24).

The core concepts of evolutionary biology are best known for explaining the unity, diversity, 

and adaptive characteristics of organisms (17). Phylogenetic methods that establish the 

relatedness of organisms are central to understanding the patterns and processes of evolution 

underlying the function and diversity of living systems (25). The practical applications of 

phylogenetic methods have been thoroughly reviewed by others, and include such diverse 

objectives as reconstructing invasion routes of harmful organisms, conservation planning 

and combating crime (17,26). Here we focus on the manipulation of processes that 

determine the adaptedness of individuals, populations and other biological systems in order 

to meet management objectives (Fig. 1).

Agriculture, medicine, and conservation address different challenges, but nonetheless share 

common strategies to manage evolutionary mismatch and the associated risks to populations 

experiencing strong selection. Those strategies can be classified as genotypic, 

developmental, or those related to environmental manipulations (Fig. 2). The potential 

sustainability of such practices may be assessed by comparing the intensity of selection with 

the adaptive capacity of a target population (27). For example, the widespread use of 

antibiotics that exert strong selection on bacteria is typically not sustainable for controlling 

highly adaptable microbe populations because they rapidly evolve resistance (28). 

Accordingly, the sustainability of antibiotics use can be increased by either reducing s 

election, e.g. through regulated use of particularly strong antibiotics, or by attempts to 

surpass the adaptive capacity of microbes through drug combinations (29). Below, we 

review successes and emerging methods in applied evolutionary biology, highlighting 

commonalities across the sectors of health, food and environmental management (Fig. 3).

Successes and prospects in applied evolutionary biology

Applied evolutionary biology encompasses widely different manipulations that may together 

achieve a broad range of goals. From protecting biodiversity with conventional 

environmental management that increases fitness in wild environments, to medical 

recommendations for traditional diets, some methods of applied evolutionary biology have a 

long history of use even if they are not often seen as evolutionary in nature. In contrast, the 

synthesis of wholly novel genomes with emerging technologies represents obvious 

evolutionary manipulation that deliberately adds new organisms to the tree of life, but with 

little history of application, it involves unknown risks and public controversy. Here we 

review some of the most recent successes and leading prospects for the application of 

evolutionary biology, in a progression from relatively well-established methods to 
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underexplored strategies. We first consider manipulations of selection to improve population 

productivity and individual health, and to delay the emergence of resistance (Fig. 2). We 

then examine less developed methods for the cultivation of populations inherently pre-

adapted to impending environmental changes, and for innovative applications of group 

selection in crops and wildlife. We end this section with urgent considerations for managing 

evolutionary factors that span disciplinary boundaries, as in cases of emerging zoonotic 

disease.

Environmental alignment to secure biodiversity and human health

A common application of evolutionary principles is to manage current environments to be 

more like the historical habitats in which selection shaped the genetic makeup of humans 

and other species. Conventional habitat protection and restoration recognize that threatened 

species often adapt poorly to changing environments in the wild (26,30). Conversely, rapid 

adaptation to captive rearing programs used to rebuild populations of rare species, 

contributes to a 50 to 90 percent failure rate of reintroductions (31). Reintroduction success 

has been improved with enclosures and rearing methods that mimic wild conditions and by 

limiting the number of captive generations to minimize adaptation to artificial conditions 

(32).

Some of the most serious non-communicable diseases in humans may be prevented by better 

aligning current environments with those in which our hunter-gatherer ancestors evolved 

(33). Sedentary modern lifestyles and diets with high glycemic processed foods are 

increasingly implicated in the rapidly rising rates of obesity, diabetes and cardiovascular 

disorders (34). These mismatch disorders are estimated to contribute to about two-thirds of 

all deaths in Western societies (35) and to a growing proportion of deaths in developing 

countries (36,37). In 2012, the economic burden of type 2 diabetes alone was estimated at 

$500 billion globally, nearly 1% of world GDP (38). To restore conditions to which people 

are better adapted physiologically, while retaining the desired elements of a modern lifestyle 

(35), public health scientists recommend greater phys ical activity (39) with reduced 

consumption of refined carbohydrates (36), that is, diets and activity levels closer to those of 

the past, to which we are better adapted. More generally, a number of evolutionarily-based 

tools are available to prevent chronic non-communicable diseases, including the 19% of 

global cancer incidents that the WHO attributes to environmental exposure (40). These tools 

include life course approaches, which manage the timing and duration of environmental 

exposures to minimize risks of subsequent chronic disease (41). From a public health 

standpoint, environmental approaches to disease prevention may often be most cost-

effective when applied outside of health care settings and when simultaneously targeting 

groups of people rather one individual at a time, such as through price regulation on goods, 

or public information campaigns (42). Further, systematic population scans that associate 

disease phenotypes with human genotypes (43, 44) are an important tool for determining the 

genetic basis of lifestyle diseases, and therefore in assessing heritable risk and treatment 

options. Such assessments however run the risk of identifying false positives and 

underestimating the complexity of genetic and epigenetic regulation (45, 46). For example, 

it is estimated that 90% of chronic disease risk cannot currently be directly linked to genetic 

factors, but is more likely to be understood in the context of human environmental exposures 
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such as diet and toxicants (47). Thus, future prevention and treatment of chronic diseases 

will combine enhanced genotype-phenotype association scans with improved monitoring of 

toxic compounds in the surrounding environment and in human tissues (47). Such genotype-

phenotype association studies search simultaneously for associations across the hundreds of 

disease phenotypes included in electronic medical registers (45). This expanded approach 

reduces the rate of false positives and helps to identify genetic factors that contribute to 

multiple diseases as well as diseases controlled by multiple genes.

Altering genomes for improved food security and human health

Climate change and environmental degradation compromise the productivity of agricultural 

systems that must feed a rapidly growing human population (48). Genetic modification of 

crops, through enhanced artificial selection methods and perhaps genetic engineering, will 

likely be important in meeting these challenges. Genetically engineered (GE) crops were 

first grown on a large scale in 1996, and during 2013, 18 million farmers in 27 countries 

planted GE crops on approximately 10% of the world's cultivated land (175 million 

hectares) (49). More than 99% of this area was planted with soybean, corn, cotton or canola 

into which genes were inserted to confer tolerance to herbicides, protection against insects, 

or both (50). These engineered varieties are extreme examples of apparently effective 

genotypic manipulations to reduce mismatch to specific environments. However, societal 

acceptance is an important factor, and GE crops remain controversial (51,52). They have not 

been adopted widely in some regions including Europe, where alternative manipulations of 

evolutionary mismatch, such as use of non-GE lines with some degree of tolerance, pesticide 

applications and integrated pest management serve as alternative genotypic and 

environmental manipulations (53).

An alternative to GE is enhanced artificial selection and hybridization of superior cultivated 

varieties with molecular genetic tools that identify individuals and gene regions conveying 

preferred traits (54). A priority application, where GE has until now been less successful 

Carroll et al. 10 (55), is to improve abiotic tolerance due to more frequent weather extremes 

under climate change. For example, flood tolerant rice, which is grown by two million 

farmers in Bangladesh and India (49), was developed with marker-assisted breeding using 

molecular markers of quantitative traits to identify targets for hybridization and selection 

(56). At the same time, candidate drought tolerance genes for GE crops have also recently 

been identified in rice as well as corn (57,58), with corn hybrids putatively tolerant to both 

drought and herbicides brought to market in 2013 (55,59). Regardless, whether produced via 

artificial selection or genetic engineering, the potential for genetic manipulations of 

mismatch to improve food security may be greatest when technology allows growers to 

select or customize crop varieties for adaptation in their local agroecosystems (60).

In contrast to the advances in agriculture, genetic modification to treat human disease is 

currently in a trial phase. Gene therapy is under development mainly for diseases with high 

heritability and simple genetic control, in which replacing or complementing parts of a 

patient’s genome can improve their health (61,62,63). Therapies in advanced trial stages 

include the targeting of retinal cells to prevent expression of heritable blindness (64,65), and 

oral administration of p53 gene for tumor suppression (66). However, even as targeted DNA 
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analysis and whole-genome sequencing of patients becomes increasingly routine (67), few 

efforts have met the promise of their pre-clinical and clinical trials to reach final approval 

phase of ‘post-marketing’ surveillance trials (68,69).

Using environmental heterogeneity to delay resistance evolution

One of the most costly and widespread outcomes of efforts to limit populations is the rapid 

evolution of resistance to control measures in insect pests (14), weeds (70), pathogens, and 

cancers (71). For example, intensive use of the herbicide glyphosate by farmers, particularly 

those who grow glyphosate-tolerant GE crops, has selected for resistance in 24 weed species 

in 18 countries since 1996 (72,73). In contrast, strategies that vary selection in space or time 

have delayed the evolution of resistance in some pests (Fig. 3). For example, scientists and 

farmers have proactively developed and implemented strategies to slow pest adaptation to 

GE crops that produce insecticidal proteins from Bacillus thuringiensis (Bt) (74,75). The 

primary strategy employs ‘refuges’ of host plants that do not produce Bt toxins to promote 

survival of susceptible pests (74). In principle, the rare resistant pests that survive on Bt 

crops are more likely to mate with the comparatively abundant, susceptible pests from the 

nearby refuges. If resistance is inherited as a recessive trait, the heterozygous offspring from 

such matings will be susceptible and will die on the transgenic plants. The U.S. EPA and 

regulatory agencies in many other countries have mandated refuges since Bt crops were first 

commercialized (76,77). Retrospective analysis after more than a decade of monitoring 

indicates that refuges do indeed delay resistance, particularly when resistance is a recessive 

trait (77,78).

The success of refuge tactics in agriculture is now drawing attention in other management 

sectors, including fisheries, where refuges may impede costly life history and body size 

evolution resulting from harvest selection (79). Likewise, in cancer management, portions of 

tumors with low vascularization and consequently low delivery of chemotoxins may serve 

as refuges that sustain chemosensitive tumor genotypes (80,81) and slow the evolution of 

resistance to chemotherapy in metastatic cancer (82,83). Such resistance accounts for a large 

proportion of current treatment failures (84). Compared w ith typical failures when 

oncologists try to eradicate a patient's cancer with high drug doses, lower doses could be 

more successful if they favor survival of chemosensitive cell lines that can outcompete 

chemoresistant lines (85). Increasingly sophisticated models of tumor evolution may 

eventually support implementation of such non-eradication therapies (86).

While refuges delay resistance with genetic swamping of resistant lineages by susceptible 

lineages, another strategy attempts to curb resistance through selection that combines 

multiple modes of action (also known as “stacking” or “pyramiding”). In many human 

diseases, including HIV, tuberculosis, malaria and cancer, resistance frequently evolves 

under selection from individual drugs (87). Combination therapies are based on the 

evolutionary principle that if genes conferring resistance to each selection pressure are rare 

and inherited independently, individuals with all of the genes required for full resistance will 

be rare or even absent in target populations (4,14,88,89). For example, resistance evolved 

rapidly to potent antiretroviral drugs administered singly in patients with HIV, but 

combinations of three such drugs have provided long-term efficacy and have become the 
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standard of care (90,91). The potential tradeoffs associated with combining two or more 

drugs or pesticides to delay resistance include short-term increases in costs (92) and negative 

side effects (93), as well as the concern that such combinations will also ultimately favor the 

evolution of multiple resistance (87,94,95,96). For example, incorporating two or more 

toxins together in GE varieties slows resistance evolution (97,98), but this advantage may 

diminish when less resistant single-toxin varieties are planted in the same area as multi-toxin 

varieties, and provide stepping stones for multiple-resistance evolution (99). Combined 

selection pressures are most likely to be durable when implemented as a facet of more 

broadly integrated systems, such as integrated pest management (IPM). IPM combines 

selection pressures from a diverse suite of tactics for pest suppression including various 

forms of biological control and optimized spatiotemporal cropping schemes (100). By 

increasing treatment durability, combinatorial strategies are among the most important 

instruments for the control of highly adaptable pests, pathogens and cancers (Fig. 3).

Choosing population sources to anticipate climate change

While some strategies of applied evolutionary biology are established or rapidly increasing, 

other rarely used strategies are of interest because of their underexplored potential to replace 

or complement longstanding management practices. These include using non-local seeding 

sources for re-planting in environmental restoration and forestry, and the exploitation of 

group selection-based designs in crop and livestock breeding.

The mismatch of valued plants to new climates is an overarching challenge in forestry, 

agriculture and conservation biology. A widespread debate concerns whether to use local 

versus external sources of genetic material for replanting to best anticipate climate change in 

forestry, agriculture, wildlife and environmental restoration. The massive scale of many 

replanting efforts – 400,000 ha of production forest is planted each year in Canada alone 

(101) – plus the long intervals between plantings for many perennial species and restoration 

projects, means that these choices may have broad economic and ecological consequences. 

Traditionally, resident stocks have been favored to capture locally valuable adaptations. In 

forestry this approach is exemplified by established bioclimatic ‘seed-transfer zones’ that 

steer local seed sourcing for planting of some of the world’s largest production systems 

(102,103). Evidence from wild plant restoration programs indicates however that local 

sources are not always best, particularly in altered environments (104,105,106,107,108, 

109). This may arise when nearby sources share some of the vulnerabilities responsible for 

the declines of the original populations (103). In these situations, climate mismatches may 

be better relieved by translocating genotypes that are pre-adapted to expected conditions 

(110,111), for example more tolerant to heat, drought or pest stresses (112). When single 

sources do not show the range of adaptations required at a given site, reintroduction may be 

improved with propagules pooled from a diversity of sources to increase overall genetic 

variation, and thus the odds that some individuals will be suited for changing conditions 

(104,105,113). A recent meta-analysis in restoration ecology underscores shortcomings of 

the 'local-is-best' dictum (114) and comparable analyses of sourcing successes and failures 

in forestry and perennial agriculture are needed to find ways to sustain productivity under 

climate change.
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Exploiting group versus individual performance in crops and livestock

In most agriculture and aquaculture, productivity is measured at the level of groups (e.g., 

field or herd) rather than in individual performance. More attention to traits that improve 

group performance may thus offer a broader suite of tactics to increase production while 

demanding fewer resources, including pesticides, to meet basic human needs (115) (Fig. 3). 

In the majority of natural systems, group selection is considered weak relative to selection 

among individuals (116). Consequently, past natural selection in the ancestors of 

domesticated species may have favored traits that promote individual performance but are 

costly to group productivity. One important consequence may be greater current 

opportunities for artificial selection of individual traits that improve group performance 

while avoiding inadvertent evolution of ‘uncooperative’ individuals (8), such as those with 

competitive root structures in dryland field crops (117). Artificial selection for group yield 

in maize has produced lines with reduced male function and that bear more-vertical leaves, 

which reduce the shading of neighbors. Both of these traits decrease individual plant 

performance while enhancing group productivity (118,119), but in the absence of strategic 

breeding to favor these changes directly, they have evolved only slowly, requiring 60 years 

to appear as unplanned responses to selection on group yield alone (120). Weiner and 

colleagues (121) have proposed a proactive evolutionary design for wheat production that 

selects for traits that increase collective shading of weeds within specific planting 

configurations, in order to increase overall crop yield while reducing herbicide use. Similar 

group-based perspectives apply in animal husbandry, where traits like reduced 

aggressiveness favor group productivity under domestication, but might have been selected 

against in the wild (122). By combining agronomy and environmental physiology with 

evolutionary modeling, group-based agricultural systems may offer new and more 

sustainable paths to meet global production goals.

Addressing evolution across management sectors

One of the most significant outcomes of the scale of human activity is that evolutionary 

concerns in one management sector often spill over into, or depend on, others (Fig. 4). These 

connections result from novel biotic interactions due to natural, intentional or inadvertent 

transport of organisms and their genes by trade, infrastructure, and waste streams (123,124). 

Further coordination of prevention, control and monitoring will be required to address 

growing interdependencies among management sectors. Increased exchange of emerging 

pathogens between health, agricultural and natural systems is a key case in point 

(125,126,127,128). For example, while domestic pigs are the principal reservoir of ‘swine 

influenza’ (H1N1), they simultaneously host other influenza strains, including those 

associated with human hosts and domestic and migratory avian hosts (129). The intensive 

communal raising of pigs and poultry for food therefore encourages virus strains to 

exchange genes and adapt to more host species (130). One overarching concern is that pigs 

hosting highly pathogenic wild avian strains (H5N1) could contribute to selection for the 

direct mammal-to-mammal transmission that underlies human epidemics. The consequences 

of such evolution (131) are foreshadowed by the recent global outbreaks of H5N1 in 2004 

and H1N1 in 2009 (132). These events underscore the need for initiatives in prevention and 

control that cross traditional disciplinary boundaries, including coordinated surveillance of 
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viral evolution and the monitoring of pathogen reservoir species across the food, health and 

environment spectrum (127,133).

The unresolved problem of rapidly evolving antimicrobial resistance is another pressing 

example of interdependence among management sectors, particularly between systems 

managed for food production and human health. Annual estimated costs of combatting 

multidrug resistant microbes in the US alone total $35 billion (134,135), and the failure to 

produce new antimicrobials as quickly as their predecessors lose efficacy (136,137) places a 

premium on stewardship of the few drugs that remain broadly effective (138,139). Although 

overprescribing of antibiotics for human treatment is a very real concern, the major use of 

antimicrobial drugs in many parts of the world is to promote the health and growth of 

livestock (140,141). This use selects for antimicrobial resistant microbes that may infect 

humans (Fig. 4) (141,142). Antibiotic-treated animals that are raised to feed people are now 

implicated in the origins of the most extensively resistant Escherichia coli encountered in 

human sepsis (143). Particularly worrisome is that once free in the environment, resistance 

genes do not dissipate with distance like many abiotic environmental pollutants. Resistance 

genes can replicate, and thus they can transfer horizontally among bacterial taxa, travel 

intact over great distances via hosts, and rise to new abundances in the presence of 

antimicrobials with similar modes of action. As pools of resistance genes become more 

prevalent and disseminated through human activities, they are likely to become increasingly 

important in new regions and management sectors (144). Because coupled evolutionary 

dynamics operate over such large spatial scales and multiple management sectors, their 

management requires political coordination, as exemplified by the Transatlantic Taskforce 

on Antimicrobial Resistance (145). Regulatory bodies have also taken the first steps to 

restrict use of some antibiotics to single management sectors (146,147). Broader and more 

rigorous implementation of such restrictions will be needed to sustain the most critical 

public benefits of our modern antibiotic era.

Next Steps

Applied evolutionary biology in international policy

Applied evolutionary biology addresses both the rapidly evolving and the mismatched 

biological systems that underlie many global challenges (148). Meeting international 

objectives for sustainable development (Millennium Development Goals and the anticipated 

Sustainable Development Goals (149)) and biodiversity conservation (the Convention for 

Biological Diversity’s 2020 ‘Aichi’ targets (150)) will require much greater integration of 

evolutionary principles into policy than has been widely acknowledged. Box 1 summarizes 

potential policy contributions of cases reviewed here. For example, we must implement 

resistance management strategies for pesticides and antibiotics to meet newly proposed 

Sustainable Development Goals for human health, food and water security (149). Likewise, 

choices of adaptable source populations will improve the resilience of restored habitats 

(Aichi target 15: ‘restore 15 percent of degraded habitats before 2020’) and increase the 

reliability of crop supplies. Further, sustainable harvest strategies (151,152) and early 

warning signs of unsustainable harvest (153) will help to achieve lasting stocks of fish and 

aquatic invertebrates (Aichi target 6: all stocks should be harvested sustainably). The 
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identification and protection of diverse genotypes is also critical to the future of crop 

improvement and for the discovery of chemical compounds such as new therapeutics. In this 

realm, the international Nagoya protocol on Access and Benefit-Sharing of genetic resources 

(154) may assist in securing public access to resources for adaptation to local conditions 

while coordinating with global research and development efforts (155,156,157).

The extensive and targeted genetic manipulations permitted through recent advances in 

biotechnology are setting the stage for novel biological functions for which we either lack an 

understanding of potential risks, or knowledge of how best to assess them (158). Thus, 

perhaps the area of applied evolutionary biology where development of international policy 

is most urgent is the area of synthetic biology. Synthesizing wholly or partially novel 

organisms offers tremendous opportunities in many areas such as biofuels, medicine, 

environmental restoration and conservation (159,160,161), but national and international 

guidelines are needed to avert potentially harmful outcomes (158,162). Segments of 

medicine and agriculture include social scientists and economists in systematic risk 

assessment (76,163). Similar practices would benefit conservation biology and natural 

resource management, as increasingly proactive and intensive manipulations appear on the 

horizon. These prospects include resurrected species and wild populations genetically 

engineered for resistance to lethal diseases such as chytrid fungus in frogs and white-nose 

syndrome in bats (161,162).

Implementing applied evolutionary biology locally and globally

Reconciliation of individual and group stakeholder interests plays a central role in the effort 

to achieve sustainability through applied evolutionary biology (164,165,166,167). 

Anthropogenic evolutionary change often has consequences that extend beyond the 

immediate vicinity of the causal agents and pose dilemmas in achieving cooperation from 

local to global scales (168). Thus, in some applied evolutionary strategies, individuals must 

exchange their private short-term gains for the long-term public good. In managing pest 

resistance to transgenic Bt crops, farmers who plant refuges of conventional crops contribute 

to the long-term public good of sustained pest susceptibility to Bt toxin, but may incur the 

short-term private cost of pest damage to their refuges. For example, farmers that planted 

only non-Bt corn in five midwestern states of the U.S. accrued nearly two-thirds of the 

estimated $6.8 billion in Bt corn benefits between 1996 and 2009 (169). This benefit arose 

from a combination of less expensive non-Bt corn and because widespread adoption of Bt 

corn caused regional suppression of the major target pest (169). Perhaps in part due to the 

latter, farmer compliance with the refuge strategy for Bt corn in the U.S. has steadily 

declined and threatens the sustainability of resistance management (170). Such conflicts 

between individual and public good may be the rule rather than the exception in the 

implementation of applied evolutionary biology.

The economic theories of public choice provide tools for reconciling individual and group 

conflicts (171) (Box 1). Governments can tax undesirable actions, subsidize desirable ones, 

regulate activities (146,147), and create tradable property rights. For example, subsidies and 

regulated access to public schools can increase participation in vaccination programs that 

benefit public health but may increase risks to unvaccinated individuals (172). Theoretical 

Carroll et al. Page 10

Science. Author manuscript; available in PMC 2015 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



modeling suggests that an unregulated vaccination market will yield too little advance 

vaccination and too much vaccination at the time of infection, which could select for 

increased virulence (163). With pathogen resistance, both the relative fitness of resistant 

genotypes in untreated environments (173,174) and the prevalence of resistance in natural 

environments (175) may increase the cost of lost susceptibility to a drug. Improved policies 

that reduce public costs may emerge from better accounting of the causes and consequences 

of such evolutionary externalities (163,176).

Toward a unified discipline

As demonstrated by many of the examples above, applied evolutionary biology uses 

principles common to all areas of biology, and because of this, progress in one area may 

often enable solutions in others. New approaches in this developing field may best be 

generated and assessed through collaborations that span disciplinary boundaries (177) (Fig. 

3). Promoting greater adoption and consistency in the use of evolutionary terminology, 

which is inconsistent across disciplines (178), will therefore be an important first step 

toward a more unified field of applied evolutionary biology.

The global scale of human impacts is now more widely appreciated than ever before. 

Successful governance of living systems requires understanding evolutionary history as well 

as contemporary and future evolutionary dynamics. Our current scientific capacity for 

evolutionarily-informed management does not match the need, but it can be increased 

through new and more widespread training and collaboration, monitored experimentation, 

and context-sensitive implementation. Like engineering, which is a multifaceted applied 

science with common core principles, shared vocabulary and coordinated methods, applied 

evolutionary biology has the potential to serve society as a predictive and integrative 

framework for addressing practical concerns in applied biology which share at their core the 

basic evolutionary principles governing life.
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Box 1: Recommended contributions of applied evolutionary biology to 
proposed themes of new international sustainable development goals 

(149), based on examples presented in this review

Goal 1: Thriving lives and livelihoods

- Reduce chronic lifestyle disease through environmental alignment of human 

lifestyle.

- Reduce environmental levels of human toxicants through application of 

reduced selection response techniques* to pesticides/biocides.

- Apply reduced selection response techniques to maintain long-term efficacy 

of antimicrobials and avert the anbiotics crisis.

- Reconcile individual and group incentives in health systems to reduce 

virulence and resistance of emerging and re-emerging pathogens.

Goal 2: Sustainable food security

- Increase crop yield through continued selection of varieties and improved 

access to these.

- Prolong efficacy of pesticides and artificially selected or GE crops through 

reduced selection response techniques.

- Improve yields through integration of group selection in production of novel 

crop varieties.

- Reduce climate change impact by choosing crop varieties resilient to 

drought, flooding and other extremes.

Goal 3: Secure sustainable water

- Increase water security through use of reduced selection response techniques 

to water polluting pesticides/biocides

- Use genetic manipulation to produce crop varieties with improved water 

economy.

Goal 4: Universal clean energy

- Improve biofuels through genetic manipulation with the aim to reduce CO2 

emissions and land area for energy production.

- Assess risks and benefits of synthetic organisms for biofuel production taking 

taking gene flow, land use and property rights issues into account.

Goal 5: Healthy and productive ecosystems

- Reduce biodiversity extinction rates through environmental alignment and 

genetic manipulation of fitness.

- Retain naturalness of captive biodiversity through environmental alignment.
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- Choose pre-adapted or high diversity sources for increased habitat 

restoration success.

Goal 6: Governance for sustainable societies

- Incorporate externalities from rapid evolution as well as the loss of 

evolutionary history and potential into green accounting for sustainable 

governance of the earth system.

- Coordinate strategies of SDG’s in a coupled systems framework to reduce 

conflicts from inadvertent contemporary evolution and phenotype-

environment mismatch.

* Reduced selection response techniques refer to the four tactics in Figure 3 that slows 

evolution by varying selection in space and time, diversifying selection, and targeting of 

specific traits, and additionally adoption of alternatives to strong selection agents such as 

toxins.
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Fig. 1. 
The two central paradigms of applied evolution are managing contemporary evolution and 

phenotype-environment mismatch. Managing contemporary evolution is critical for rapidly 

reproducing organisms with large population sizes, such as the methicillin-resistant 

Staphylococcus aureus (MRSA) pictured in the upper left. Altering phenotype-environment 

mismatch is most relevant for organisms with relatively long generation times and low 

population sizes, such the large mammals shown the lower right. Labels in ovals refer to 
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example organisms, viruses or cell types in specified management sectors. ‘All’ indicates 

relevance to all management sectors (food, health and environment).

Carroll et al. Page 25

Science. Author manuscript; available in PMC 2015 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Phenotype-environment mismatch. (A) Mismatch between phenotypes and an environment 

occurs when a population's phenotypic trait distribution differs from the optimum; greater 

mismatch increases selection for adaptation, but also implies greater costs through reduced 

survival and reproduction. (B) Genotypic manipulations reduce mismatch by managing 

existing genetic variation or introducing new genes. For example, conventional corn is 

damaged by insect pests (left) that are killed by bacterial proteins produced by genetically 

engineered Bt corn (right). Alternatively, evolutionary mismatch can also be managed by 
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(C) Developmental manipulations of phenotypes, such as vaccination to enhance immunity 

against pathogens, or (D) Environmental manipulations, such as habitat restoration. These 

examples demonstrate methods to reduce mismatch, but these same tactics can be reversed 

to impose greater mismatch where beneficial to human interests (e.g., pest eradication).
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Fig. 3. 
Two management intervention categories of applied evolutionary biology: 1. Controlling 

adversaries and 2. Protecting valued populations. Together they are enabled by four 

strategies (boldface). A core set of eight evolutionary principles guides the execution of 

these strategies and underlies tactics (left hand columns) used to meet management 

objectives in the food and fiber production, health and environmental sectors (right hand 

columns). Colored squares show different treatments; curves show frequency distributions 

of phenotypes; double helices are genomes; green arrows show change through space or 
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time; green wedges show point interventions using selection or GE. Semicolons separate 

multiple management examples. Hypothetical applications are given in two cases that lack 

empirical examples. Expanded treatments for each cell and references are provided in 

Supplementary Table S2.
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Fig. 4. 
Emerging pathogens such as zoonoses (black arrows) and resistant bacteria (gray arrows) 

illustrate interdependencies generated by gene flow among the economic sectors of food, 

health and the environment. In zoonoses, vertebrates such as birds act as reservoirs for 

pathogens that can infect humans. Through direct transmission or via domesticated animals, 

zoonoses are passed to humans and cause regular local and rare global epidemics (such as 

the flu outbreaks of H5N1-2004 and H1N1-2009). ‘Reverse zoonoses’ are transmitted from 

infected humans to wildlife (179). Antimicrobial resistance in bacterial stains associated 
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with livestock evolves in response to widespread use of antibiotics in agriculture and to a 

lesser degree due to treatment in humans. Via food items, industry workers and waste 

disposal, resistant strains enter other human contexts. In a public health context resistant 

strains constitute a growing extra risk during treatment of illnesses, e.g., in hospitals. 

Antibiotics in human effluent cause widespread resistance selection in natural and semi-

natural environments, which together with resistance reservoirs in natural environments 

further increase the risks of resistant pathogens in humans. In the figure, the dashed line 

indicates a variety of poorly known interactions among wild species.
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