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RESEARCH

Hypofractionated proton beam radiotherapy 
in patients with unresectable liver tumors: 
multi-institutional prospective results 
from the Proton Collaborative Group
Jacob S. Parzen1†, William Hartsell2, John Chang3, Smith Apisarnthanarax4, Jason Molitoris5, Michael Durci6, 
Henry Tsai7, James Urbanic8, Jonathan Ashman9, Carlos Vargas9, Craig Stevens1 and Peyman Kabolizadeh1,10*

Abstract 

Background: Recent advances in radiotherapy techniques have allowed ablative doses to be safely delivered to 
inoperable liver tumors. In this setting, proton beam radiotherapy (PBT) provides the means to escalate radiation dose 
to the target volume while sparing the uninvolved liver. This study evaluated the safety and efficacy of hypofraction-
ated PBT for liver tumors, predominantly hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC).

Methods: We evaluated the prospective registry of the Proton Collaborative Group for patients undergoing definitive 
PBT for liver tumors. Demographic, clinicopathologic, toxicity, and dosimetry information were compiled.

Results: To date, 63 patients have been treated at 9 institutions between 2013 and 2019. Thirty (48%) had HCC and 
25 (40%) had ICC. The median dose and biological equivalent dose (BED) delivered was 58.05 GyE (range 32.5–75) and 
80.5 GyE (range 53.6–100), respectively. The median mean liver BED was 13.9 GyE. Three (4.8%) patients experienced at 
least one grade ≥ 3 toxicity. With median follow-up of 5.1 months (range 0.1–40.8), the local control (LC) rate at 1 year 
was 91.2% for HCC and 90.9% for ICC. The 1-year LC was significantly higher (95.7%) for patients receiving BED greater 
than 75.2 GyE than for patients receiving BED of 75.2 GyE or lower (84.6%, p = 0.029). The overall survival rate at 1 year 
was 65.6% for HCC and 81.8% for ICC.

Conclusions: Hypofractionated PBT results in excellent LC, sparing of the uninvolved liver, and low toxicity, even in 
the setting of dose-escalation. Higher dose correlates with improved LC, highlighting the importance of PBT espe-
cially in patients with recurrent or bulky disease.
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Introduction
The incidence of liver and intrahepatic bile duct tumors 
is increasing the most rapidly of any cancer in the United 
States [1]. Unfortunately, a minority of patients are eli-
gible for curative surgical resection at presentation for 
either medical or anatomical reasons, leading to a dismal 
18% 5-year overall survival rate [1]. Inoperable patients 
are often treated with other non-surgical local thera-
pies, such as transarterial chemoembolization, transarte-
rial radioembolization, and radiofrequency ablation. 
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However, not all patients are candidates for these pro-
cedures, and eligible patients may not have a durable 
response to treatment. The role for potentially curative 
radiation therapy has been expanding considerably in this 
patient population [2]. With conventional fractionation, 
most patients experience local progression as the first 
site of failure after treatment [3]. However, technological 
advances in radiation treatment planning including four-
dimensional respiratory motion management, image-
guided radiation therapy, and proton therapy have made 
hypofractionated and ablative regimens safe and feasible 
[4–6].

Hepatocellular carcinoma (HCC) and intrahepatic 
cholangiocarcinoma (ICC) are commonly studied 
together due to shared clinical management. For HCC, 
multiple single-arm phase II trials have established the 
safety and efficacy of hypofractionated ablative radiation 
treatment [8–10]. Similarly, there have been prospective 
studies supporting this approach in ICC [5, 10]. A dose–
response relationship for both clinical entities has been 
suggested [11, 12], but dose-escalation is ultimately lim-
ited by liver tolerance. The risk of radiation-induced liver 
disease (RILD) is influenced not only by the dose and vol-
ume of liver irradiated but also by the patient’s underly-
ing liver disease.

Proton beam therapy (PBT) has the potential to 
improve dose conformity while sparing normal liver 
when compared to photon-based radiotherapy [13, 14]. 
In contrast to photon-based therapy, the proton Bragg 
peak yields a localized high-dose region in the tumor 
without exit dose. This dosimetric advantage spares a 
greater volume of uninvolved hepatic parenchyma and 
allows safer dose escalation in target volumes. Given the 
importance of proton therapy in treating liver tumors, the 
ongoing NRG GI-003 is focusing on evaluating the com-
parative efficacy of protons versus photons in patients 
with HCC. In this study, we used a multi-institutional 
prospective registry database to evaluate the safety and 
efficacy of ablative proton beam therapy for liver tumors, 
predominantly HCC and ICC.

Methods and materials
REG001-09 (NCT01255748) is a prospective, multi-insti-
tutional registry of patients undergoing proton therapy at 
Proton Collaborative Group (PCG) institutions. Written 
informed consents were obtained from all patients before 
they were enrolled on the registry.

The registry trial was queried for patients undergo-
ing definitive proton beam radiation therapy for liver 
tumors. Patients undergoing photon therapy were 
excluded. Patient, tumor characteristics, radiation treat-
ment details, toxicity, and dosimetric information were 
all collected.

Patients underwent four-dimensional simulation with 
intravenous contrast. Immobilization method was per 
institutional discretion. All patients were treated with 
pencil beam scanning or passive scattering/uniform 
scanning. The relative biologic effectiveness (RBE) was 
set at 1.1 per institutional standard of all participating 
institutions. The dose unit Gy-equivalent (GyE) was pro-
ton dose in Gy multiplied by RBE. Fractionation schemes 
were at the discretion of participating institutions. Fol-
low-up was institutional. Toxicity was graded using the 
National Cancer Institute Common Terminology Criteria 
for Adverse Events (CTCAE) version 4.0. We assumed 
an α/β = 10 for tumor effect and an α/β = 3 for radiation-
induced liver toxicity. The linear-quadratic model was 
used for biological equivalent dose (BED) calculations.

Local control (LC), overall survival (OS), and progres-
sion-free survival (PFS) were calculated starting from the 
first day of radiation. The OS time of a patient still alive 
at the time of most recent follow-up was censored. A PFS 
event was defined as documented local or distant recur-
rence, or death, whichever was earlier, or otherwise was 
censored at last follow-up. OS and PFS rates were esti-
mated using the Kaplan–Meier method and the differ-
ences between groups were compared with the log-rank 
test. The risk of local recurrence was estimated using the 
cumulative incidence function, treating death as a com-
peting risk. Univariate analysis was performed using the 
Fine-Gray regression model [15]. Statistical analyses were 
performed using R version 3.6.2. Statistical significance 
was set to P < 0.05.

Results
Sixty-three patients signed consent forms and were 
enrolled on the registry trial database. These patients 
were treated across 9 institutions between 2013 and 
2019. The median number of patients treated per institu-
tion was 3 (range 1–17). Of the 63 patients, 30 had HCC, 
25 had ICC, 4 had carcinoid tumors, 1 had spindle cell 
carcinoma, 1 had a liver metastasis, and 2 had unknown 
lesions. Patient characteristics are listed in Table  1. 
Child–Pugh status and the number of lesions present at 
the time of radiation were not collected on the registry. 
Thirty-two patients had smoking histories (51%), 25 did 
not (40%), and smoking status was unknown for 6 (10%).

Radiation dosing
Thirteen patients (21%) were treated with 5-fraction 
regimens, 46 (73%) were treated with 15-fraction regi-
mens, and 4 (6%) were treated with 25-fraction regimens. 
Amongst patients treated with 5-fraction regimens, the 
median dose delivered was 40 GyE (range 32.5–50 GyE; 
BED range 53.6–100 GyE). Amongst the 15-fraction regi-
mens, the median dose delivered was 58.05 GyE (range 
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45–67.5 GyE; BED range 58.5–97.9 GyE). Amongst the 
25-fraction regimens, the median dose delivered was 71.1 
GyE (range 60.1–75 GyE; BED range 74.5–97.5 GyE). The 
overall median biological equivalent dose (BED) was 80.5 
GyE (range 53.6–100). The median mean dose received 
by the uninvolved liver (MLD) expressed in biological 
equivalent dose was 13.9 GyE (range 4.2–31.4). Fifty-two 
(83%) had no treatment breaks, and the remaining 11 
(17%) had breaks in treatment but ultimately completed 
their treatment courses. Seven delays (64%) were attrib-
uted to the machine being down, four delays (27%) were 
secondary to personal patient issues not related to treat-
ment toxicity, and one (9%) was due to the presence of 
bowel gas prohibiting safe delivery of treatment. One 
patient had 2 treatment breaks.

Toxicity
Acute and chronic toxicities are presented in Table  2. 
The latencies to toxicity ranged from 0–38.3  months. 
Fifty-one (81%) of patients experienced at least one radi-
ation-induced toxicity on the registry. The most common 

toxicities were fatigue (33/63, 52%), radiation dermatitis 
(21/63, 33%), anorexia (15/63, 24%), and nausea (13/63, 
21%). Only three patients (4.8%) experienced at least 
one grade ≥ 3 toxicity. One HCC patient experienced 
grade 4 hyperbilirubinemia and grade 3 back pain. One 
ICC patient experienced grade 3 sinus bradycardia and 
another ICC patient experienced grade 3 abdominal pain. 
There were no grade 5 toxicities.

Disease‑specific outcomes
Median follow-up was 5.1 months for the whole cohort 
(range 0.1–40.8  months). Patients with HCC had a 
median of 8.2  months follow-up, and their median PFS 
was 12.6 months (95% CI lower bound 8.1 months; upper 
bound not reached). The 1-year PFS rate was 60.3%. 
The median OS was 16.9  months (95% CI lower bound 
12.1 months; upper bound not reached). The 1-year OS 
rate was 71.5% (Fig.  1a). Amongst ICC patients with 
median of 4.8  months follow-up, the median PFS was 
15.6  months (95% CI lower bound 6.6  months; upper 
bound not reached). The 1-year PFS rate was 67.3%. 
The median OS was 20.1  months (95% CI lower bound 
14.7 months; upper bound not reached). The 1-year OS 
rate was 81.8%. There was no difference in OS (p = 0.2) 
or KPS (p = 0.1) between patients with HCC and ICC 
(Fig. 1a, b). For patients with HCC and ICC, the median 
OS was 18.2 months (95% CI lower bound 14.2 months; 
upper bound not reached) for those patients receiv-
ing < 75.2 GyE BED and 16.9  months (95% CI lower 
bound 12.1 months; upper bound not reached) for those 
patients receiving ≥ 75.2 GyE BED (p = 0.9) (Fig. 1c).

Five patients (four HCC and one ICC) experienced 
local failure within 2  years of follow-up. For patients 
with HCC and ICC, the 1-year LC rate was 91.1% (95% 
CI 78.4–97.8%) and the 2-year LC rate was 81.1% (95% 
CI 63.2–93.8%) (Fig.  2a). Hence, evaluating the death 
without local recurrence as a competing factor confirms 
excellent local control with escalated dose radiotherapy. 
The 1-year LC rate was 91.2% for HCC and 90.9% for ICC 
(Fig. 2b). On cumulative incidence risk analysis, LC was 
significantly higher for those patients receiving ≥ 75.2 
GyE BED than for those patients receiving < 75.2 GyE 
BED (1-year LC 95.7% versus 84.6%, p = 0.029, Fig.  2c). 
However, there was no difference in overall survival 
(p = 0.483). Factors associated with improved local con-
trol are displayed in Table 3. There was a trend towards 
a statistically significant association with BED (as a con-
tinuous variable) and local control (p = 0.057). Multivari-
ate analysis was not completed due to the low number of 
events.

Patterns of failure and death for HCC and ICC patients 
are displayed in Table 4. Amongst HCC and ICC patients, 
59% and 78% of patients were alive at last follow-up or 

Table 1 Patient characteristics

HCC hepatocellular carcinoma, ICC intrahepatic cholangiocarcinoma, TACE 
transcatheter arterial chemoembolization, TARE transarterial radioembolization, 
RFA radiofrequency ablation

Characteristic All (n = 63)
% (no.) 
or median 
(range)

HCC (n = 30)
% (no.) 
or median 
(range)

ICC (n = 25)
% (no.) 
or median 
(range)

Age (years) 69 (29–89) 70.5 (34–89) 68 (29–87)

Sex

 Male 52% (33) 73% (22) 20% (5)

 Female 48% (30) 27% (8) 80% (20)

Race/ethnicity

 White 75% (47) 73% (22) 76% (19)

 Black 5% (3) 0% (0) 8% (2)

 Asian 8% (5) 13% (4) 0% (0)

 Hispanic 6% (4) 7% (2) 8% (2)

 Unknown 6% (4) 7% (2) 8% (2)

ECOG

 0 41% (26) 43% (13) 28% (7)

 1 43% (27) 33% (10) 64% (16)

 2 8% (5) 17% (5) 0% (0)

 3 2% (1) 3% (1) 0% (0)

Tumor dimension, cm 4.4 (0.6–17.0) 4.3 (1.2–9.4) 5.5 (0.6–17)

Previous therapy

 Surgery 13% (8) 13% (4) 12% (3)

 TACE/TARE 30% (19) 53% (16) 8% (2)

 RFA 6% (4) 13% (4) 0% (0)

 Chemotherapy 30% (19) 10% (3) 60% (15)

 Radiation therapy 10% (6) 10% (3) 12% (3)

 None 40% (25) 37% (11) 32% (8)
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had expired from an unrelated cause to their cancer, 
respectively. All isolated local failures were without dis-
tant failure in both groups.

Discussion
In this prospective registry of patients undergoing defini-
tive proton therapy for liver tumors, we demonstrate 
excellent local control with low rates of toxicity. Our 
rates of local control are comparable to hypofractionated 
historical series [16–18]. In the absence of phase III data, 
this adds to the growing body of literature validating this 
approach and making a compelling case that it should be 
placed alongside other liver-directed therapies as stand-
ard-of-care in patients who are not operable candidates.

By virtue of the Bragg peak, proton radiotherapy offers 
a distinct dosimetric advantage when compared to pho-
ton radiotherapy. An earlier study through Loma Linda, 
treated 34 patients with HCC to 63 GyE in 15 fractions, 
reporting a 2-year LC of 75% [19]. Importantly, there 
were no cases of RILD. Other studies have corroborated 
low rates of RILD in patients receiving proton therapy 
when compared to photon therapy [20, 21], allowing 
for treatment of large lesions beyond 6  cm without any 

significant toxcities [22]. A recent retrospective com-
parison of proton and photon ablative radiotherapy in 
patients with unresectable HCC demonstrated an over-
all survival benefit in patients receiving proton therapy 
despite no difference in locoregional control [23]. The 
survival benefit was rather attributed to an increased 
risk of non-classic RILD, defined as an increase in the 
baseline Child–Pugh score of ≥ 2 at 3 months posttreat-
ment, in patients receiving photon-based radiotherapy. 
Through elimination of the low-dose bath associated 
with photon therapy, there is relative protection of nor-
mal liver parenchyma while still delivering ablative doses 
to the area of interest, which may have improved clinical 
outcomes.

Our study builds upon previous prospective expe-
riences treating inoperable HCC and ICC. Hong 
et  al. conducted a single-arm phase II study treating 
patients with HCC and ICC to 67.5 GyE in 15 frac-
tions for peripheral tumors and 58.05  Gy in 15 frac-
tions for central tumors with proton beam radiotherapy 
at three institutions [10]. With median follow-up of 
19.5 months, they reported 2-year LC of 94.8% for HCC 
and 94.1% for ICC. The rate of grade 3 toxicity was 

Table 2 Treatment-related toxicity

CTCAE common terminology criteria for adverse events (version 4)

Toxicity

CTCAE category CTCAE term Any grade 
% (No.)

Grade 3+ 
% (No.)

Blood/lymphatic system Anemia 2% (1)

Other 2% (1)

Cardiac Sinus bradycardia 2% (1) 2% (1)

Gastrointestinal Abdominal pain 11% (7) 2% (1)

Bloating 3% (2)

Constipaton 14% (9)

Diarrhea 6% (4)

Dysphagia 6% (4)

Nausea 21% (13)

Stomach pain 3% (2)

Vomiting 2% (1)

General Fatigue 52% (33)

Pain 19% (12)

Injury/procedural complications Radiation Dermatitis 33% (21)

Investigations Hyperbilirubinemia 2% (1) 2% (1)

Weight loss 3% (2)

Metabolism Anorexia 24% (15)

Musculoskeletal Back pain 6% (4) 2% (1)

Bone pain 3% (2)

Respiratory Cough 2% (1)

Dyspnea 6% (4)

Skin Hyperpigmentation 3% (2)
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4.8%. Though all patients on that trial were treated with 
15 fractions, the median BED of 80.4 GyE was nearly 
identical to our experience. Importantly, the 5 frac-
tion patients in our experience do not fare worse from 
a local control standpoint, supporting extreme hypof-
ractionation as long as sufficient BED is administered. 
In another similar experience at the Princess Marga-
ret Hospital, 102 patients with HCC were treated on 
a phase I/II trial from 24 to 54  Gy in 6 fractions with 
photon radiotherapy [8]. They reported a 1-year LC 
rate of 87%. However, the rate of grade ≥ 3 toxicity was 
30%, including 7 cases of grade 5 toxicity.

The differences in toxicities are likely multifactorial. 
First, the average sum of all liver lesions on the Princess 

Fig. 1 Progression-free survival and overall survival from the start 
of radiotherapy stratified by disease site (a, b) and overall survival 
stratified by dose (c)

Fig. 2 Cumulative incidence function for local recurrence for all 
patients (a); by disease type (b); and by radiation dose (c)

Table 3 Univariate analysis for local control

ECOG Eastern Cooperative Oncology Group performance status, BED biological 
equivalent dose, HR hazard ratio, GyE Gy equivalent

 ± BED considered as a continuous variable. The HR represents the effect of an 
increase of 1 GyE

Variable Level HR 95% CI P

Age 1.02 0.97–1.08 0.35

ECOG 1–3 v 0 2.50 0.29–21.80 0.41

Prior treatment Yes vs. No 0.53 0.10–2.81 0.45

Tumor size (cm) 0.87 0.65–1.17 0.36

Fractionation 15/25 vs. 5 0.39 0.07–1.99 0.26

BED, GyE ± 0.97 0.93–1.00 0.057
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Margaret study was 9.9 cm, compared to 5.8 cm on the 
Hong et al. study and 4.4 cm on our study. Caution must 
be taken when treating very large tumors with extreme 
hypofractionation. The second and more intriguing 
possibility is that proton therapy improves toxicity pro-
files by limiting dose to the uninvolved liver. Using the 
linear-quadratic model, the median MLD in BED was 
13.9 GyE amongst our patients, versus 27.4 GyE on the 
Hong et  al. trial and 30.0 GyE in the Princess Marga-
ret experience. We acknowledge that the tumors on 
this registry were smaller than the other studies, which 
would partially account for the difference. It is also 
likely that the liver-sparing afforded by proton therapy 
results in lower dose to normal liver which in turn low-
ers the deleterious effects on liver reserve. The low rates 
of grade ≥ 3 toxicity on both the Hong et al. and current 
study corroborate the importance of liver sparing. As 
previously mentioned, this is important because lower-
ing the rates of treatment-related liver decompensation 
may improve clinical outcomes [24]. While the Prin-
cess Margaret experience did also raise concerns about 
extreme hypofractionation from a toxicity standpoint, 
this was not found in our patients undergoing a 5-frac-
tion schedule, suggesting this approach is safe and fea-
sible in appropriately-selected patients.

The current study also corroborates previous find-
ings that there exists a dose–response relationship with 
respect to tumor control. This did not translate into an 
overall survival benefit most likely due to short follow-up, 
and possibly competing risks of new lesions, metastatic 
disease and liver failure. This is still of critical importance 
given the first site of progression after radiation therapy 
is predominantly local [3]. The early University of Michi-
gan experience, on which patients with primary liver 
tumors or metastases were treated to a median dose of 
58.5  Gy in 1.5  Gy twice daily fractions, demonstrated a 
median survival of 16.4 months in patients treated with 
at least 70 Gy (BED 80.5 Gy), compared to 11.6 months 
in patients treated with lower dose [25]. Early data from 
the Hong et al. phase II trial also suggested a local control 

and survival benefit with increasing BED (per NRG-GI 
003 protocol). More recently, a retrospective experience 
with inoperative ICC, on which patients were treated 
to a median BED of 80.5  Gy with both conventional 
fractionation and hypofractionation, the 3-year LC for 
patients receiving BED greater than 80.5 Gy was 73% ver-
sus 38% for those receiving less, and BED as a continu-
ous variable significantly affected both LC and OS [12]. 
An important criticism of that study is that a large sub-
set of patients were treated with 50.4 Gy in 28 fractions, 
which is not a radio-ablative regimen. Our study estab-
lishes a dose cut-off that is even lower at 75.2 GyE, but 
there was only a trend towards improvement in LC when 
BED was evaluated as a continuous variable. The lower 
threshold established herein could be explained in part 
by the uncertainly regarding an assumed RBE factor of 
1.1 [26] as is the convention in the participating institu-
tions. However, other studies evaluating proton therapy 
have established BED cut-offs as high as 90 GyE [11].

Despite the above, proton therapy as a treatment 
modality remains somewhat controversial given its cost 
and lack of level I evidence for overall survival, thus 
prompting the ongoing phase III NRG trial randomiz-
ing patients to protons versus photons in patients with 
HCC [6]. Strengths of the current study include its pro-
spective registry nature and multidisciplinary contribu-
tions, affording reasonable sample size for this relatively 
rare disease entity. Conversely, a notable weakness is 
the lack of HCC/ICC-specific data included in the reg-
istry, including but not limited to Child–Pugh scoring, 
the presence of tumor vascular thrombosis, the pres-
ence of multiple tumors, and more detailed plan infor-
mation such as volume of liver irradiated. In addition, 
the relatively limited follow-up time in some patients 
likely biased patterns of failure results. In addition, due 
to the disparity in follow-up between the HCC and ICC 
patients, any differences between the groups reported 
herein should be interpreted with extreme caution.

In conclusion, hypofractionated ablative proton therapy 
is safe and efficacious in the treatment of primary liver 

Table 4 Patterns of failure

PFS progression-free survival, HCC hepatocellular carcinoma, ICC intrahepatic cholangiocarcinoma

PFS Status All (n = 63)
% (No.)

HCC (n = 30)
% (No.)

ICC (n = 25)
% (No.)

Alive, no progression 57% (36) 43% (13) 68% (17)

Distant metastases 17% (11) 23% (7) 12% (3)

Local failure and distant metatases 0% (0) 0% (0) 0% (0)

Isolated local failure 8% (5) 13% (4) 4% (1)

Dead of this disease, no progression 3% (2) 3% (1) 4% (1)

Dead of other causes, no progression 14% (9) 16% (5) 10% (3)
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tumors. We have reaffirmed a dose–response relation-
ship and highlighted the importance of dose-escalation 
in local control. Inasmuch as it is possible while respect-
ing critical dose constraints, clinicians should attempt to 
deliver a biological equivalent dose of at least 75.2 GyE to 
unresectable liver tumors when the intent is ablation. The 
marginal clinical benefit of liver-sparing proton therapy 
is currently being investigated in a phase III trial.
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