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Abstract— Forecast errors can cause sub-optimal solutions in resource planning optimization, yet they are usually modeled 1 
simplistically by statistical models, causing unrealistic impacts on the optimal solutions. In this paper, realistic forecast errors 2 
are prescribed, and a corrective approach is proposed to mitigate the negative effects of day-ahead persistence forecast error by 3 
short-term forecasts from a state-of-the-art sky imager system. These forecasts preserve the spatiotemporal dependence structure 4 
of forecast errors avoiding statistical approximations. The performance of the proposed algorithm is tested on a receding horizon 5 
quadratic program developed for valley filling the midday net load depression through electric vehicle charging. Throughout one 6 
month of simulations the ability to flatten net load is assessed under practical forecast accuracy levels achievable from 7 
persistence, sky imager and perfect forecasts. Compared to using day-ahead persistence solar forecasts, the proposed corrective 8 
approach using sky imager forecasts delivers a 25% reduction in the standard deviation of the daily net load. It is demonstrated 9 
that correcting day-ahead forecasts in real time with more accurate short-term forecasts benefits the valley filling solution. 10 

Keywords: Electric vehicle charging; Optimal scheduling; Solar forecast errors 11 

 12 
1. Introduction 13 

1.1 Problem Statement and Literature Review 14 
 15 
The variable nature of solar power is of concern to electric grid operators, where there is substantial growth in photovoltaic (PV) 16 
installations. Variable power flow occurs primarily due to passing clouds. As a result, PV generation exhibits high variability, 17 
leading to power quality issues such as flicker, power imbalance, reverse power flow, and increased wear on conventional voltage 18 
regulator equipment at the distribution level [1, 2]. With high PV penetration, these effects aggravate and can cause challenges 19 
to grid operations.  20 
 21 
Accurate solar forecasts help grid operators integrate increased levels of solar generation while maintaining power quality. 22 
However, forecast errors are inherent to any forecasting technique, and non-linear atmospheric dynamics make it challenging to 23 
reduce or correct solar forecast errors. Forecast errors can be detrimental to reduce peak loads using energy storage [3-5], or 24 
maximizing PV self-consumption [6]. While the characteristics of forecast errors vary with time scale and location [7, 8], grid 25 
integration studies typically model forecast errors by two main approaches: 26 
 27 

i. Generate an imperfect forecast by adding a synthetic error to the actual solar generation. The synthetic error is often 28 
sampled from univariate distributions such as Gaussian, uniform, and Weibull [9-14]. Such error timeseries have zero 29 
autocorrelation, failing to capture the autocorrelation properties of real forecast errors. Days with large forecast error 30 
autocorrelation, especially persistent over-forecasts for several hours, usually present the most challenging conditions  31 
for energy storage to reduce peak load [15]. On such days the energy storage system needs to discharge continuously 32 
to make up for the shortfall in PV generation which may cause premature discharge, demand peaks, and associated 33 
demand charges.  34 

 35 
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ii. Probabilistic modeling of errors: sophisticated statistical methods such as copula functions [16], Markov model [17], 36 
enhanced Markov chain model [18] and kernel density estimation [19] are utilized to model the time series forecast. 37 
However, these models do not fully capture the autocorrelation of forecast errors due to nonlinear and higher order 38 
dependencies. For example, the transformation-based heuristic methodology in [20] captures the spatio-temporal 39 
correlation properties of forecast errors on the day-ahead time scale, but not intra-day. Other forecast error modeling 40 
considering autocorrelation include [15] where a parametric first-order autoregressive process is developed to generate 41 
autocorrelated time series forecasts and [21] where a simulated autocorrelated PV forecast error through a transformed 42 
multivariate ARMA model is presented. 43 

1.2 Objectives and Contribution 44 
 45 
While modeling forecast errors to support grid planning and operation studies has received much attention, corrections of the 46 
impact of forecast errors in real time are typically not applied. Motivated by this, we propose a corrective approach with the 47 
main contributions listed as follows: 48 
 49 

i. We avoid statistical models of forecast errors by using a day-ahead persistence and 15 min-ahead sky imager forecast 50 
to produce real forecast data which inherently preserves the temporal dependence structure of forecast errors.  51 
 52 

ii. We apply a corrective optimization framework. The baseline day-ahead persistence forecast is corrected by three short-53 
term forecasts showcasing different levels of realistic forecast errors: day-ahead perfect forecasts, day-ahead persistence 54 
forecasts corrected by imperfect short-term sky imagery forecasts, and day-ahead persistence forecasts corrected by 55 
perfect short-term forecasts. This approach captures the real forecast property of improved accuracy with shorter 56 
forecast horizon. 57 

 58 
The proposed case study to implement and validate the above framework uses EVs as mobile energy storage systems (ESS). 59 
Adopting ESS to compensate the mismatch between variable PV output and grid load [22, 23] has been extensively studied in 60 
the past decade. For example, Nottrott et al. [24] modeled ESS dispatch schedules for peak net load minimization by linear 61 
programming. Mixed-integer linear programming and quadratic programming are also commonly utilized to solve the ESS 62 
scheduling problem at the distribution level [25-28]. The adoption of EV as an alternative to ESS has received significant 63 
attention [29] because of low acquisition cost. The interaction between EVs and the power grid is comprehensively discussed in 64 
[30]. High EV penetration can provide grid services [31] such as valley filling defined as increasing load demand during the load 65 
depression [32] using unidirectional EV charging management (V1G) [33] or vehicle-to-grid (V2G) [34] schemes. We formulate 66 
a typical valley filling problem through centralized [35] EV charge scheduling in a realistic, quasi-operational case study. Since 67 
V2G still faces challenges such as market barriers and limited commercial availability we focus on V1G here. The impact of 68 
realistic forecast errors is quantified as the deviation of the resulting valley filling solution from the ideal solution. Last, we 69 
illustrate how correcting day-ahead forecasts in real time with more accurate short-term forecasts benefits the valley filling 70 
solution.  71 
 72 

1.3 Paper Organization 73 
 74 
The remainder of this paper is organized as follows. In Section 2 we introduce the methodology for determining load demand, 75 
solar forecasts, and EV charge events. Section 3.1 defines the problem statement, and sections 3.2 and 3.3 introduce a quadratic 76 
programming (QP) optimization algorithm based on [28]. We extend the work by supplementing constraints for start and end 77 
time of EV charging and energy demand satisfaction, and integrating a receding horizon framework. Section 3.4 introduces error 78 
metrics. Section 4.1-4.2 provide a validation on a sample day, and statistical results from one month of valley filling results, and 79 
the discussion of the results and limitations of the proposed methodology are given in Section 4.3-4.4. Lastly, Section 5 provides 80 
conclusions and future work. 81 
 82 
2. Problem setup and System Data 83 

2.1 Geographic Setup  84 
 85 
We select the region of San Bernardino located in Southern California, where Southern California Edison (SCE) installed 125 86 
MW of multiple rooftop photovoltaic (PV) systems under the Solar Photovoltaic Program (SPVP) [36]. This region is home to 87 
many commercial buildings, large warehouses, and abundant solar resources, which makes large PV rooftop arrays common. 88 
Local distribution feeders are therefore prone to solar variability issues, making this region an ideal location for solar power 89 
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integration studies. 90 
 91 
Figure 1 shows an overview of the area served by the 66/12 kV substation in San Bernardino, CA. The substation load demand 92 
was simulated by EnergyPlus, a building energy simulation tool developed by the U.S. Department of Energy. Power output 93 
from two SPVP systems were provided by SCE. To produce short-term solar forecasts, we use a UC San Diego Sky Imager 94 
system (USI). The USI is rooftop-mounted and its field-of-view covers all buildings within the substation service territory. It 95 
can be used to geolocate clouds, measure cloud velocity, and track cloud motion [37, 38]. These measurements are then used to 96 
predict future cloud shadow locations and solar irradiance up to 15 min ahead. For more detailed information of solar resource 97 
assessment and forecasting using the USI, refer to [39, 40]. 98 
 99 
 100 

 101 
Figure 1: Southern California Edison’s (SCE) Distributed Energy Resource Interconnection Map (DERiM) showing the San Bernardino substation service 102 
territory. The substation is marked by a blue box with orange border and feeder lines emanating from that substation are in red. Rooftop PV systems (black 103 
boxes) and sky imager (yellow star) are located up to 1,100 m apart. The map spans 12 x 6.5 km.  104 

2.2 Solar Forecasts 105 
To demonstrate the net load flattening improvement through correcting day-ahead persistence forecast by short-term forecast 106 
updates, we construct four different solar generation forecasts G in 24-hour time windows representing different forecast 107 
accuracy through a combination of persistence 𝐺$, USI 𝐺%&', and perfect forecast 𝐺$()*(+,.  108 

1. Base Forecast (𝐺$): As conventionally adopted [3, 41] as a baseline for load forecasting, a 24-hour persistence forecast is 109 
defined as solar power at the same time of the previous day. Persistence forecasts are expected to have the largest forecast 110 
error and largest autocorrelation of forecast errors.  111 
 112 

2. Operational forecasts (𝐺$-%&'): The base forecast is continually updated with the most recent USI forecast. Since USI 113 
forecast horizons are limited to 15 min, only the 𝐺$ in the first 15 min of the 24-hour time horizon is replaced with 𝐺%&' 114 
while the 𝐺$ in the remaining time horizons are left unchanged. As 𝐺%&' is more accurate than 𝐺$ (refer to Table A-2 in 115 
the Appendix), 𝐺$-%&' is expected to exhibit smaller forecast errors than 𝐺$. 116 
 117 

3. Benchmark forecast (𝐺$-$()*(+,): Similar to the operational forecast, but the first 15 min of 𝐺$ is replaced with 𝐺$()*(+, . 118 
𝐺$-$()*(+, is expected to exhibit even smaller forecast errors than the operational forecast. Thus it elucidates whether 119 
further improvements in the accuracy of short-term forecast would result in better mitigating the impact of forecast errors 120 
on the net load.  121 

4. Perfect Forecast (𝐺$()*(+,): The entire 24-hour time horizon of 𝐺$ is replaced with 𝐺$()*(+,, yielding zero forecast error.  122 
The perfect forecast brackets the net load flattening that is achievable. If EV availability was unconstrained, 𝐺$()*(+, 123 
would yield a flat net load curve. 124 
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2.3 EV Fleet 125 
 126 
We focus on workplace charging of EVs during regular business hours coinciding with times of peak PV production. A fleet of 127 
EVs connected to workplace charging stations is simulated. The EV make and models and their battery capacity and charge rates 128 
are selected based on the EV market share in the US as of 2015 (Table A-1).  129 
 130 
Arrival time, layover duration, and the initial state of charge were sampled from the following distributions: 1) EV arrival time 131 
varies between 06:00 PST and 10:00 PST centered on a mean arrival time of 07:30 PST with a standard deviation of 1 h. 2) 132 
layover duration spans from 6 to 11 hours centered on 8 hours with a standard deviation of 1 h. 3) initial state of charge (𝜒/, 133 
in %) ranges from 0-100% centered on 60% with a standard deviation of 10%. The energy demand is derived assuming a full 134 
charge by the departure time. The resulting EV charging events are replicated for all 30 days of analysis. Since most employee 135 
day-to-day schedules are repetitive, the persistence of daily charging events is a reasonable assumption.  136 

2.4 Summary of Data Sources and Availability 137 
 138 
Table 1 provides an overview of the load, PV generation, and EV energy demand datasets. Because PV generation data is 139 
complete only for April 2013, the full month is selected for our analysis. During this month, there were 2 overcast days, 13 clear 140 
days, and the remaining 15 days were partly cloudy. The simulated substation loads were scaled down by a factor of 150x from 141 
5.4 MW to 36 kW and PV data were also scaled down by 75x from 7.5MW to 100 kW so that the 31 EVs in Table A-1 are able 142 
to fill the entire energy valley on a clear day.  143 
 144 
Table 1: Catalog of the datasets and their native temporal resolution. All data are interpolated to 15 min temporal resolution. The rated EV charge capacity is 145 
determined by the sum of the charge rates in Table A-1.  146 

Data Source Rated Capacity Scale Factor Average Daily Power Type Original Time Resolution 

Loads 5.4 MW 150 23 kW Simulated 60 min 

PV Generation 7.5 MW 75 13 kW Measured 30 s to 2 min, irregularly 
spaced 

USI PV Forecast 7.5 MW 75 13 kW Measured 
Sky Images 

30 sec 

EV Charge 
Capacity 0.23 MW 1 19 kW Simulated 5 min 

 147 
 148 
3. Methodology 149 

3.1 Problem Setup 150 
 151 
To test our proposed approach, we formulate a valley filling optimization problem to schedule EV charging. Figure 2 152 
schematically illustrates the problem configuration. The load demand estimate 𝐿 for all buildings connected to the distribution 153 
feeder is offset by PV systems injecting power 𝐺. The substation is assumed to allow bidirectional power flow (i.e. net load NL, 154 
positive if delivering power and negative for reverse power flow). N EVs draw charge power 𝛽[5] from the distribution grid. The 155 
arrowheads indicate positive power flow. As V2G (i.e. Vehicle to Grid charging) still faces challenges such as market barriers 156 
and limited commercial availability, we focus on V1G (unidirectional EV charging) in this study. However, EV discharging 157 
functionality is supported in the optimization framework. 158 
 159 
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 160 
Figure 2: Notation and topology of the proposed optimization problem. 161 

 162 
From Figure 2, the following power balance between the four power variables always holds true:  163 

NL = 𝐿 + 𝜷− 𝐺, 1 

where EV charge power 𝜷 = <𝛽[=] …𝛽[5]?. As we are interested in a day-ahead optimal valley filling solution, the total length 164 
of the planning horizon is 24 hours as in 𝑠 =	96 steps at a temporal resolution ∆ of 15 min (0.25 h), consistent with the USI 165 
forecast horizon. The time index 𝑇E = 𝑘∆. The power variables in Eqn. 1 at each time index represent the average power output 166 
over the period from a time index ahead to present, expressed as ((𝑘 − 1)∆, 𝑘∆), where 𝑘	 ∈ [1… 𝑠]. For example, the power 167 
balance at the first time index 𝑇= considers the average power output between midnight 0∆	=	00:00 h and 1∆	=00:15 h. Refer to 168 
Figure 4 for detailed illustration of planning horizon, temporal resolution and time step.  169 
 170 
Figure 3 illustrates the schematic overview of the proposed study. The study solves the valley filling optimization problem with 171 
individual input of four solar forecast scenarios (section 2.2) 𝐺$,  𝐺$-%&', 𝐺$-$()*(+,, and 𝐺$()*(+,, and compares the resulting 172 
bidirectional net load NL$, NL$-%&', NL$-$()*(+,, and NL$()*(+, respectively. 173 
 174 
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 175 
Figure 3: Flowchart of the proposed corrective approach. Refer to Table A-1 for the EV charge events. 176 

3.2 Mathematical Formulation of the Optimization Algorithm 177 
 178 
Battery scheduling to reduce peak load and minimize energy bills has been implemented through a variety of optimization 179 
algorithms [42]. Considering potential future applications of implementing financial incentives and prioritizing EVs, we prefer 180 
a framework which naturally supports weighting different objectives. Therefore, quadratic programming (QP) is selected owing 181 
to its flexibility: 182 

𝑚𝑖𝑛
O
ℎ(𝑥 − 𝑓)S, 2 

where 𝑥 is a vector of grid net load NL and EV charge power 𝛽 of each EV (see Eqn. 6), and ℎ is the corresponding matrix of 183 
weighting factors. While the weighting factor is not activated in this paper, it enables future implementation of economic 184 
objectives that allow trade-off between the decision variables (e.g., price, charge power). Thus, the weighting matrix ℎ is set to 185 
a (1 + 𝑁)𝑠 × (1 +𝑁)𝑠 matrix with an s × 𝑠 identity matrix 𝑰𝒔 included in the top left corner for grid and zero elsewhere for 186 
EV.   187 

ℎ = Y
𝑰𝒔 … 0
⋮ ⋱ ⋮
0 … 0

\ 	∈ ℝ[(=-5)^×(=-5)^] 3 

In Eqn. 2, 𝑓 is a vector composed of the preferred grid net load profile followed by preferred EV charge power. It defines the 188 
power target for the objective function. Ideally, the optimized grid net load profile should be a flat line in case of perfect forecasts 189 
(i.e. load forecast and solar forecast) and unrestricted EV availability. However, as discussed earlier, real solar forecasts have 190 
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errors, and also EV availability can be restricted depending on EV owner’s work schedule. The resulting mismatch between the 191 
EV energy demand and the energy valley magnitude forces the optimized net load to deviate from a flat line (see Section 4). The 192 
preferred grid net load 𝑓 should therefore be dynamically updated to align the future charge schedule with the remaining PV 193 
generation and EV charging needs, and is defined as  194 

𝑓(E) = 	 _

𝒓
0
⋮
0

a 	∈ ℝ(=-5)^, 4 

where 𝒓 = [𝑟, … 	𝑟]c ∈ ℝ^ is the grid net load target with identical scalar element 𝑟, which is determined from the expected net 195 
load (𝐿 − 𝐺) and the cumulative EV energy demand (𝜒de) for the time period from the current time step (𝑡E) to when the last 196 
EV disconnects (𝑡(gh):  197 

𝑟 =
∑ jkl-mno
pqrs
pt
uqrskut

. 5 

r is not computed before the first EV connects (𝑡v,w),) and after the last EV disconnects (𝑡(gh), i.e. 𝑡(gh > 𝑡E > 𝑡v,w),, because 198 
we perform valley filling only during the EV layover time. As 𝒓 assumes equal EV availability and charge rate capacity from 199 
present to the departure time of the last EV, the final optimized net load is expected to deviate slightly from the dynamic 𝒓 even 200 
with a perfect solar forecast. The deviation is caused by EV departures that limit the available charging capacity. A detailed 201 
discussion is provided in Section 4. The remaining elements in Eqn. 4 are set to zero, indicating that individual EVs can draw 202 
power up to the maximum charge power capacity.   203 
To proceed, 𝑥 in Eqn. 2 is the decision variable consisting of temporal aggregated grid power load and all EV charge power. 204 

𝑥 = 	 y

NL
𝛽[=]
⋮

𝛽[5]
z ∈ ℝ(=-5)^ 6 

NL = [NL(=),… ,NL(E)]c and EV charge power follows 𝛽[5] = [𝛽(=)
[5],… , 𝛽(E)

[5]]c where 𝑘	 ∈ [1,… , 𝑠], 𝑁 is the number of EVs, 205 
and parenthesis () indicate the time index. 206 
The charge power 𝛽 of each EV in Eqn. 6 is subject to the following five constraints (i.e. Eqns. 7-11). First, the EV charge power 207 
is limited to its maximum charge capacity. Because discharging is not considered, the EV charge rate constraint for all time steps 208 
𝑘 is:  209 

0 ≤ 𝛽(E) ≤ 𝛽, 𝑘 ∈ [1,… , 𝑠]	 7 

where 𝛽 is the maximum of the rated charge capacity of the battery or charging station. 210 
Second, the state of charge (SOC) of the battery is constrained by: 211 

𝐶 ≤ 𝜒/ ∙ 𝐶 +~𝛽(E) ∙ ∆
^

E�=

≤ 	𝐶,			𝑘 ∈ [1,… 𝑠] 
8 

where  𝜒/ is the initial SOC in %,  𝐶 is maximum SOC conventionally defined as the EV battery capacity and the minimum SOC 212 
𝐶 is assumed to be 0. The EV battery capacity is assumed to equal the amount specified by the vehicle manufacturer. Battery 213 
degradation is assumed to be negligible.  214 
Third, the charging has to occur within the constraints of the EV layover time. If the EV connects at time index 𝑘�, no charging 215 
can occur during the period [𝑇=	𝑇E�]. In other words, EV charge power equals to 0 prior to connecting at 𝑘 = 	𝑘�: 216 

~𝛽(E) ∙ ∆	 = 0.
E�

E�=

 9 
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Fourth, similarly given EV departure time index 𝑘�, the EV battery charge is constrained to 0 after disconnecting at 𝑘 = 	𝑘�: 217 

~ 𝛽(E) ∙ ∆	 = 0.
^

E�E�

 10 

Last, the power supplied to the EV during the layover period equals the energy requested by the EV owner. We assume that all 218 
EV owners request a fully charged battery. 219 

~𝛽(E) ∙ ∆	 = 𝜒de

^

E�=

 11 

3.3 Receding Horizon Optimization Algorithm 220 
 221 
To support the proposed corrective approach, a RHC algorithm is required [43-45]. The RHC algorithm modifies the control 222 
action with respect to predicted solar energy generation while satisfying constraints over a time window of fixed length 24 h. 223 
We use a moving time window resembling the receding horizon mechanism of RHC. The simulations are initialized at midnight 224 
and the time window moves forward one step at a time, as presented in Figure 4.  225 

 226 
Figure 4: Illustration of receding horizon time window. Refer to Section 3.1 for definitions of the notations. 227 

The iterations in RHC demand a fast optimization solver and real time application can be limited by the number of constraints 228 
and EVs. With 31 EVs, each iteration takes 1.5 s on an Intel I5 workstation, and a full day completes in 2.5 min. The computation 229 
cost scales with the number of variables (i.e., the number of EVs).  230 

3.4 Forecast and Valley Filling Benchmark 231 
 232 
The valley filling performance is evaluated as follows. The accuracy of the solar forecasts is characterized by nRMSD 𝑒l, which 233 
is the root mean square difference normalized by the average solar power measurements:  234 

𝑒l(day) =
��
�
∑ <����q����(E)k��q��q��(E)?

��
t��

�
�
∑ <��q��q��(E)?�
t��

× 100%. 12 

Similarly, the nRMSD for optimized net load 𝑒�� is defined as: 235 

	𝑒��(day) =
� �
pqrs�p�����

∑ [�����q��q��(E)k���q��q��(E)]�
pqrs
t�p�����

��w�����q��q��(E) �
× 100%. 13 

Thus, the nRMSD of valley filling using imperfect solar forecasts NL$, NL$-%&' , and NL$-$()*(+, can be evaluated by 𝑒$��, 236 
𝑒$-%&'�� , and 𝑒$-$()*(+,��  respectively. Note that only the net load at the first time step (15 min) of all time windows is evaluated in 237 
Eqn. 13 which means that at each index 𝑘, the solar forecasts for 15+ min horizon do not influence 𝑒��.  238 
 239 
We also evaluate the net load variability as the average square of the deviation between the optimized net load and the idealized 240 
valley filling result. The resulting metric 𝜎�� is the standard deviation of the optimized net load: 241 
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𝜎��(day) = ¢
1
𝑁
~ [NL(𝑘) − NL££££]S
u�����

uqrs

, 14 

where NL££££ is the average net load from 𝑡v,w), to 𝑡(gh, and 𝑁 is the number of time indices in between. Small 𝜎 indicates smoother 242 
net load profiles, and 𝜎 = 0 indicates a completely flat net load profile. The net load standard deviations after valley filling using 243 
solar forecasts NL$, NL$-%&', NL$-$()*(+,, and NL$()*(+, are evaluated by 𝜎$��, 𝜎$-%&'�� , 𝜎$-$()*(+,�� , and 𝜎$()*(+,�� , respectively. 244 
Eqns. 13 and 14 are evaluated only during the maximum layover period (i.e. from 𝑡v,w), to 𝑡(gh) when the energy valley can be 245 
filled. 246 
 247 

4. Results and Discussion 248 

4.1 Case Study 249 
 250 
The methodology discussed in Section 3.3 is first applied to a single day with the perfect forecast scenario 𝐺$()*(+,. Apr 1, 2013 251 
was a day with broken cumulus clouds, producing high PV output variability. Figure 5 shows the valley filling results by smart 252 
charging EV 1 and EV 3 defined in Table A-1. The algorithm dynamically schedules charging during energy valleys while 253 
obeying all constraints. Specifically, the grid net load profile on the top (subtracting actual PV power 𝐺$()*(+, from the feeder 254 
load profile 𝐿) shows an energy valley during midday interrupted by episodes of cloud cover. The area between blue and red 255 
indicates the share of the energy valley that is absorbed by coordinating charging of 2 EVs.  256 
 257 
EV 3 has a small energy demand of 7.7 kWh, but the layover period of 9 hours is comparably long since EV 3 only requires 2 h 258 
20 min of charging at the highest charging rate to reach full charge. Thus, the algorithm can schedule charging to occur only 259 
during the four major energy valleys (clear periods during midday) while reducing charging power to zero in cloudy conditions 260 
and at the beginning and end of the day. EV 3 is fully charged 2 h prior to its planned departure. 261 
 262 
On the contrary, EV 1 has much less charging flexibility with a larger energy demand (76.5 kWh or 7 h 39 min of charging at 263 
maximum capacity), which is spread over a similar layover period of 9 hours 40 min. Thus, the algorithm has limited flexibility 264 
(2 hours) to shift the battery charge schedule and/or reduce the charge rate. EV 1 connects to charge at 08:00 PST, and charging 265 
occurs from 08:15 PST when PV generation starts to depress the net load profile. The 2 h flexibility is used to charge at a rate 266 
below the maximum capacity from 08:15 to 13:30 PST. By lowering the charge rate, the algorithm shifts EV charging from 267 
times of relatively large net load to times with a larger energy valley later in the day. The algorithm boosts charge power of EV 268 
1 to maximum capacity after 13:30 PST so that EV 1 can reach full charge right at its planned departure. Note that limited EV 269 
flexibility prevents the algorithm from completely shifting the EV charging to periods with larger energy valleys and it schedules 270 
charging also during off-peak solar generation (08:00 – 10:45 PST). 271 
 272 
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 273 
Figure 5: Sample optimized EV charge schedule for valley filling with 2 EVs. Top: Original grid net load profile showing an energy valley (blue), filling the 274 
valley towards a reference power (f, black) yields optimized net load (red). The PV output profiles are scaled down by a factor of 260x to create a reasonable 275 
energy valley for just two EVs. Middle: EV state of charge in %. Colors distinguish EV with their arrival time (dashed) and departure time (dotted). Bottom: 276 
EV charge power normalized by its maximum charge capacity. 277 

For this case, the power reference is unachievable due to the small number of EVs and restricted charge schedule for EV 1. But 278 
the algorithm’s functionality and ability to reduce net load variability by shifting the charge schedule with respect to the energy 279 
valley availability is confirmed. 280 

4.2 Monthly Results and Statistics of Forecast Error Correction 281 
 282 
Now we consider a full month, 31 EVs (Table A-1 in the Appendix), and four solar forecast scenarios. For readability, only 283 
scenario NL$-%&' is presented in Figure 6. On most days, valleys are completely filled, and optimized net load is closely aligned 284 
with the reference f indicating that the method works as designed. On clear days (e.g., Apr 21 – Apr 23), the energy valley is 285 
sufficiently large to charge all EVs, yielding a flat net load. On partly cloudy days (e.g., Apr 1 and Apr 4), solar variability is 286 
large, and less energy is available in the valley, resulting in increased and fluctuating optimized net load.  287 
 288 

 289 
Figure 6: Results for one month of valley filling with forecast errors corrected by USI (using 𝐺$-%&'). The original grid net load without EV (blue) is flattened 290 
by scheduling EV charging to achieve a preferred net load profile (black), resulting in reduced net load variability (red). 291 
 292 
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Table 2 summarizes the monthly performance and a detailed day-by-day performance comparison is presented in Figure 7. The 293 
statistics of PV forecast errors and resulting valley filling performance are further investigated in the following sub-sections. 294 
 295 
Table 2: Monthly summary of solar forecasts accuracy and optimized net load variability under different forecast error scenarios. 296 

 Persistence 
Forecast 

USI Forecast NL$ NL$-%&' NL$-$()*(+, NL$()*(+, 

nRMSD 𝑒 [%] 68.2 37.2 23.1 17.5 14.1 N/A 

Std. 𝜎 [kW] N/A N/A 11.7 8.8 7.3 1.1 

 297 
 298 

 299 
Figure 7: Monthly comparison of nRMSD (top, Eqn. 13) and net load variability (bottom, Eqn. 14). Line colors distinguish solar forecasts scenarios (Section 300 
2.1). See Table A-2 for the same information in tabular form. 301 
 302 

4.2.1 Persistence and USI PV Forecast Accuracy 303 
 304 

Overall, the USI solar forecast outperforms 24-hour persistence on 17 out of 30 days. While the persistence forecast outperforms 305 
USI by an average nRMSD of 6.2 percentage points (30.8%) on the remaining 13 days, the USI solar forecast lowers monthly 306 
average nRMSD by 31.0 percentage points (45.4%) placing it about halfway between persistence and perfect forecast. In general, 307 
the solar forecast results confirm our expectation that correcting persistence forecast by USI forecast reduces forecast error. 308 
 309 

4.2.2 Valley Filling with USI Forecast Correction 310 
 311 

Overall, NL$-%&' delivers monthly nRMSD and 𝜎 averages of 17.5% and 8.8 kW, which are 24.2% and 24.8% below NL$, 312 
respectively. The optimization for NL$ and NL$-%&' forecasts performs similarly for mostly clear days and errors are small; 313 
specifically, both NL$  and NL$-%&'  yield low error and variability averages less than 5.0 percentage point and 2.0 kW, 314 
respectively. On the 15 partly cloudy days NL$-%&' outperforms NL$ by 33.0% and 32.7%. While NL$-%&' performs worse than 315 
NL$ on some of the days when sky conditions in present day significantly differ from a day earlier (Apr 5, 8, 9, 14, 16, 25 and 316 
26, see Section 4.3), the average error reductions of NL$-%&' over NL$ on these days are still 7.9% and 11.2% for nRMSD and 317 
𝜎, respectively. Note that the large improvement in solar forecast accuracy by the USI over persistence forecast (45.4%) does 318 
not translate to an equal improvement in optimized net load variability, which will be discussed in Section 4.4. 319 
 320 

4.2.3 Valley Filling with Perfect Forecast Correction 321 
 322 

The error reductions by NL$-$()*(+, over NL$-%&' are relatively smaller (19.4% and 17.0% less with respect to nRMSD and 𝜎). 323 
The fact that NL$-%&' is closer to NL$()*(+, than NLp demonstrates the feasibility of operational forecast deployment of USI 324 
forecasts.  325 
 326 
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Valley filling with perfect 24-hour forecasts performs the best as expected with monthly average 𝜎$()*(+, of 1.1 kW. Although 327 
NL$()*(+, may be expected to be perfectly flat with zero variance, the optimized net load in the morning and evening usually 328 
ramps up and down over a finite time period (e.g. cyan in Figure 8a), causing non-zero variance. This ramp is a result of limited 329 
EV availability just after the first EV connects and before the last EV disconnects. For example, just the first EV by itself is not 330 
capable of dispatching sufficient charging power to follow a desired power 𝑟 that is determined by spreading the energy of all 331 
EVs over the entire charging interval.  332 

4.3 Characterization of Solar Forecast Error Impacts 333 
 334 
The proposed receding horizon optimization with forecast error corrected by more accurate short-term forecasts (𝐺$-%&') is 335 
generally effective in filling the energy valley. Exceptions are observed on Apr 5, 8, 9, 14, 16, 25, and 26 with a large peak in 336 
the optimized net load (Figure 6). To understand the challenges of the optimization on those days and further investigate the 337 
negative impact of solar forecast errors, we showcase a detailed example for Apr 14 in Figure 8.  338 

 339 
(a) 340 

 341 
(b) 342 

Figure 8: Comparison of valley filling performance using different solar forecasts (i.e. 𝐺$, 𝐺$-%&', 𝐺$-$()*(+,,𝐺$()*(+,) on Apr 14 (a) and zooming in to the period 343 
from 06:00 to 11:00 PST (b). Line styles distinguish solar forecast scenarios, and blue and black colors differentiate net load with and without EV charging, 344 
respectively. The perfect net load forecast (load minus perfect PV forecast, solid blue) yields the ideal optimized net load (cyan).  345 

On Apr 14, the baseline forecast 𝐺$ predicts large PV generation and net load valley (dotted blue) while this day is actually 346 
overcast with limited excess energy (solid blue). Between 06:30 PST and 12:00 PST, operating under the assumption of 347 
persistence forecast for >15 minute horizons, the algorithm expects a large energy valley later in the day. Therefore, it delays 348 
most of the non-critical EV charging while maintaining a flat net load profile. Because 𝐺$ is close to 𝐺$()*(+, (i.e. dotted blue 349 
follows solid blue) until 12:00 PST, the EV charging is on an ideal trajectory; if the excellent accuracy of 𝐺$ had continued, the 350 
valley filling would have flattened the net load across the day. However, after 12:00 PST, 𝐺$ deviates from 𝐺$()*(+,. Even though 351 
the energy valley is in fact not available, the forecasts still predicts an abundant energy valley from 12:00 until 18:00 PST, thus 352 
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EV charging is postponed to that time. The charge rate for each interval roughly equals the difference between f  and 𝐺$. 353 
Therefore, the variations in the resulting valley filling scenario NL$, mirror the difference between perfect net load forecast 354 
(𝐿 − 𝐺$()*(+,) and persistence net load forecast (𝐿 − 𝐺$). The peak error in 𝐺$ corresponds to the largest net load peak in NL$ at 355 
about 13:30 PST. 356 
 357 
On this day, the day-ahead forecast error correction actually worsens the net load variability. Starting from 12:00 PST, when 𝐺$ 358 
is replaced with the USI forecast 𝐺%&' or the perfect forecast 𝐺$()*(+, for the next 15 min, the energy valley forecasted by 𝐺$  for 359 
the next 15 min is no longer available. Therefore, the optimization delays scheduling EV charging at the present time step, 360 
because it still expects an energy valley 15+ minutes from now (where 𝐺$ has not been updated yet). At the next time step, the 361 
situation is similar and EV charging is again rescheduled for later. Thus, non-critical EV charging is delayed until 13:30 PST 362 
when a number of early-departure EVs start to approach their charge time limit. Since those EVs must start to charge at their 363 
maximum charge capacity immediately to be fully charged (refer to Eqn. 11 for the constraint) by their planned departure time, 364 
the algorithm has to schedule those EVs immediately, independent of load flattening objectives, causing a steep net load rise. 365 
After 16:00 PST, another set of EVs approach their charge time limit, resulting in a second peak. Overall the resulting net load 366 
profiles  NL$-%&' and NL$-$()*(+, resemble that of a maximum delay strategy, causing most EVs to concurrently charge at their 367 
full charge rate. On the contrary, operating under 𝐺$ only causes the algorithm to allocate the charge power more equally across 368 
the afternoon, reducing the peak in the corresponding optimized net load profile NL$ (dotted black). Consequently NL$ shows 369 
lower 𝜎 (24.6 kW) than NL$-%&' and NL$-$()*(+, (30.0 kW, 30.4 kW, Table A-2). Lastly, the perfect forecast 𝐺$()*(+, (solid blue) 370 
yields a perfect valley filling NL$()*(+, (cyan) during the EV layover time (𝜎 ≅ 0). 371 
 372 
The subtle difference between the impacts of the three imperfect solar forecast inputs 𝐺$, 𝐺$-%&' and 𝐺$-$()*(+, on the resulting 373 
net load profiles is further analyzed in Figure 8b by zooming into the period from 06:00 to 11:00 PST. Before 07:30 PST, the 374 
lack of PV power output makes all optimized net load profiles identical. However, the algorithm still schedules to charge early-375 
arrival EVs because of overall insufficient energy valley across the day, pushing the grid net load upward. Later on at 07:30 PST, 376 
PV starts generating power and because 𝐺$ and 𝐺%&' forecast errors differ, 𝐺$, 𝐺$-%&' and 𝐺$-$()*(+, exhibit small optimized net 377 
load valleys. The original net load differences (all in blue) carry through to the resulting optimized net load profiles NL$, NL$-%&' 378 
and NL$-$()*(+, (all in black). From 08:30 to 10:30 PST, erroneous 𝐺%&' causes a predicted net load valley (dashed blue), so the 379 
algorithm schedules EVs to charge, producing a net load peak (dashed black) at 09:00 PST. After 10:30 PST, the net load peak 380 
starts to diminish as 𝐺%&' starts to mostly follow 𝐺$()*(+, again. During the entire morning the valley filling resulting from the 381 
three imperfect solar forecasts deviates significantly from the idealized result (cyan). If the algorithm understood the true solar 382 
generation from the beginning of planning horizon, it would schedule the charging much earlier in the day and flatten the entire 383 
net load profile. This comparison further demonstrates the negative impact of forecast errors on flattening grid net load. 384 
 385 
Furthermore, the day discussed in Figure 8 illustrates the relationship between day-to-day change in sky conditions (larger and 386 
more auto-correlated error in base forecast) and net load peaks (refer to Figure 6 and Appendix Table A-2). On Apr 14 (the first 387 
of two consecutive overcast days of Apr 14 and Apr 15), the persistence solar forecast error, 𝑒$l is large (241% greater than 388 
𝑒$-%&'l ) because cloud conditions change from a clear day with few thin cirrus (Apr 13) to an overcast day with thick clouds. 389 
The high persistence error results in a large evening peak in optimized net load with 𝜎$�� of 24.6 kW. On Apr 14, correcting base 390 
forecast by better sky imagery forecasts actually worsens the net load variability (𝜎$-%&'�� = 30.0 kW). However, on the second 391 
overcast day (Apr 15), the persistence forecast performs better (74 percentage points), consequently both NL$ and NL$-%&' 392 
performs better with 𝜎$�� and 𝜎$-%&'��  reduced to 7.8 kW and 8.4 kW, and large net load peaks are eliminated. Similar load peaks 393 
occur on other days with changes in day-to-day sky conditions. If the present day is cloudier than the previous day, the day-394 
ahead persistence forecast will cause the algorithm to push the EV charging peak forward (Apr 5, Apr 8, Apr 14, Apr 25). 395 
Conversely, if the present day has less clouds than the previous day, the persistence forecast will push the peak backward (Apr 396 
9, Apr 16, Apr 26).  397 

4.4 Discussion and Potential Limitations 398 
 399 
The autocorrelation of the forecast error, i.e. persistent over- or underforecasts over a few hours, causes the largest deviations in 400 
optimized net load with erroneous forecasts from the optimized net load with perfect forecasts. Section 4.2 verifies that the 401 
forecast error structure is an important determinant of optimized net load variability. For example, as observed in Figure 8, if 402 
clear sky is predicted on a cloudy day, then the midday net load depression is over-forecast and EV charge schedule in the 403 
morning would be unnecessarily delayed. In the valley filling literature, forecast errors have mostly been modeled through 404 
statistical approaches. When forecast errors are sampled from a distribution such as in [11], then the forecast error autocorrelation 405 
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is around zero making it more likely to happen that an overforecast during one interval is balanced by an underforecast in the 406 
following intervals. While forecast errors with zero autocorrelation will result in temporary small deviations in optimized net 407 
load, these idealistic forecast errors are unlikely to produce the cumulative effects that results in dramatic optimized net load 408 
deviations. This means that simple statistical models in the valley filling literature degrade the autocorrelation of forecast data, 409 
resulting in optimistic solutions.  410 
 411 
The proposed corrective approach and the use of the realistic forecast data reveal that the deviation of practical valley filling 412 
performance from the ideal valley filling is tied to three conditions: 1) EV charging flexibility. Because of the constraint to 413 
satisfy EV energy needs, EVs with short layover periods and large energy needs limit scheduling flexibility. EV charging 414 
inflexibility prevents the load flattening objectives from being fully met even with perfect forecasts. 2) Accuracy of day-ahead 415 
forecasts. Large changes in cloud conditions on two consecutive days worsen day-ahead persistence forecasts, leading to large 416 
peaks in optimized net load. 3) Accuracy of the short-term forecast. Reducing forecast error by short-term forecast generally 417 
yields better valley filling performance (Figure 7).  418 
 419 
For a more accurate valley filling problem, the following improvements should be considered. 1) Accelerated adoption of EVs 420 
is needed to provide adequate amounts of controllable loads. In this work, the load and PV generation data had to be scaled down 421 
significantly for 31 EVs to just fully balance the energy valley. More financial incentives are necessary to encourage adoption 422 
of the smart charging standards. 2) The load demand timeseries was simulated through an energy simulation tool because feeder 423 
load data are typically not published by distribution system operators. As the simulated data may lack real power variability, the 424 
value of smart charging may be higher than shown in this paper. 3) Last, integrating economic incentive and EV battery aging 425 
models in the framework can make the study more comprehensive. 426 
 427 
5. Conclusions 428 
 429 
Electric utilities are experiencing unprecedented growth in the adoption of grid-connected solar PV. Solar forecasts are essential 430 
to the integration of PV and balancing supply and demand. This paper successfully demonstrates a corrective approach to 431 
mitigate negative impacts of day-ahead forecast errors using a sky imager based forecasting technique. The proposed 432 
methodology was tested against 24-hour persistence solar forecasts with one month of PV generation and substation load data. 433 
We showcase smart EV scheduling as a promising mechanism for absorbing the net load depression created by high PV 434 
penetration. This study differs from the literature regarding the forecast error modeling as we use real data to preserve 435 
autocorrelation characteristics of forecast errors and avoid statistical approximations. Our primary findings are:  436 
 437 

i. Realistic forecast errors prevent the optimal charge strategy from flattening the net load.  438 
 439 

ii. More accurate short-term forecasts input to the corrective receding horizon optimization reduce net load variability. 440 
 441 
Correcting the day-ahead persistence forecasts by sky imager forecasts for 15 min horizons reduces net load variability on 20 442 
out of 30 days, and presents comparable results on the remaining days which are mostly clear. On average over the month, the 443 
standard deviation of the net load profile is reduced by 24.7%. On the 15 partly cloudy days, the short-term forecast correction 444 
reduces net load variability by 32.7%. On clear days, the proposed correction scenario optimizes net load variability to be below 445 
3.0 kW given a scaled energy valley of 50 kW, which is only 1.5 kW worse than for a perfect forecast correction.  446 
 447 
For future work, we will use real EV charge events and EV charging forecasts. More accurate day-ahead solar forecasts generated 448 
by numerical weather prediction and machine learning techniques will also be pursued. Because sub-optimal charging strategies 449 
worsen the net load variability, understanding possible variations associated with forecast errors around a single deterministic 450 
strategy will be of great benefit to grid operators. Finally, a stochastic optimization framework that integrates probabilistic PV 451 
forecast and EV availability and demand forecasts allows a more robust valley filling. 452 
 453 
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Appendix:  
 
Table A-1: Daily EV charging events database. Refer to Section 3 for a detailed definition of the variable names. 
ID and EV Model Arrival 

Time 𝑘� 
[PST] 

Departure 
Time 𝑘� 
[PST] 

Charge Rate 
capacity 𝛽 
[kW] 

Initial State 
of Charge 𝜒/ 
[%] 

Energy 
Demand 
𝜒de [kWh] 

Battery 
Capacity 𝐶 
[kWh] 

1: Tesla Model S 08:00 17:40 10 10 76.5 85 
2: Toyota Prius  06:10 14:35 3.3 5 3.8 4 
3: Chevy Volt 07:00 16:00 3.3 55 7.7 17 
4: Toyota Prius  06:10 15:40 3.3 80 0.8 4 
5: Nissan Leaf 06:30 16:45 6.6 95 1.2 24 
6: Chevy Volt 08:30 19:15 3.3 15 14.5 17 
7: Chevy Volt 08:00 17:10 3.3 60 6.8 17 
8: Nissan Leaf 07:10 15:10 6.6 50 12 24 
9: Toyota Prius  09:10 17:10 3.3 40 2.4 4 
10: Toyota Prius  06:10 14:35 3.3 20 3.2 4 
11: Chevy Volt 07:30 17:30 3.3 80 3.4 17 
12: Toyota Prius  07:20 15:45 3.3 35 2.6 4 
13: Toyota Prius  08:20 18:15 3.3 55 1.8 4 
14: Nissan Leaf 08:20 16:40 6.6 20 19.2 24 
15: Tesla Model S 06:50 17:20 10.0 65 29.8 85 
16: Chevy Volt 07:30 16:10 3.3 30 11.9 17 
17: Ford Fusion Energi 07:30 15:40 3.3 70 2.1 7 
18: Toyota Prius  08:00 16:25 3.3 70 1.2 4 
19: Tesla Model S 08:10 17:30 10 75 21.3 85 
20: Toyota Prius  08:10 17:10 3.3 50 2 4 
21: Nissan Leaf 07:00 15:40 6.6 10 21.6 24 
22: Chevy Volt 08:00 18:00 3.3 30 11.9 17 
23: Tesla Model S 08:00 17:15 10.0 90 8.5 85 
24: Toyota Prius  06:40 15:50 3.3 20 3.2 4 
25: Nissan Leaf 06:30 16:55 6.6 85 3.6 24 
26: Tesla Model S 07:30 16:00 10.0 60 34 85 
27: Tesla Model S 09:10 18:55 10.0 10 76.5 85 
28: Ford Fusion Energi 07:10 16:50 3.3 50 3.5 7 
29: Nissan Leaf 07:50 16:35 6.6 15 20.4 24 
30: Chevy Volt 06:50 16:00 3.3 80 3.4 17 
31: School Bus 11:00 16:15 70.0 50 57.5 115 

 

Table A-2: Normalized RMSD for solar forcast (𝑒l) and optimized net load (𝑒��), and standard deviation of the optimized net load 𝜎�� 
under scenarios of base forecast, operational forecast, benchmark forecast, and perfect forecast. Superscripts indicate the type of validations 
and subscripts indicate the solar forecasts scenarios used in the valley filling problem.  

Date  𝑒$l 𝑒%&'l  𝑒$�� 𝑒$-%&'��  𝑒$-$()*(+,��  𝜎$��  𝜎$-%&'��   𝜎$-$()*(+,��   𝜎$()*(+,��  
MM/DD/YY [%] [%] [%] [%] [%] [kW] [kW] [kW] [kW] 

04/01/13 103.8 86.8 49.0 25.0 9.6 18.1 14.3 5.2 0.8 
04/02/13 63.6 30.6 46.4 25.9 18.8 19.8 10.7 6.9 0.3 
04/03/13 24.6 16.8 22.1 9.0 3.5 9.5 3.8 1.3 0.0 
04/04/13 29.9 42.6 17.9 20.0 9.9 8.6 9.8 4.7 0.0 
04/05/13 189.1 96.9 16.9 20.0 20.7 15.4 15.1 15.7 3.8 
04/06/13 87.1 45.5 34.0 27.9 27.3 17.4 14.3 13.7 1.2 
04/07/13 73.9 54.5 23.4 16.0 13.5 15.3 10.4 8.9 2.7 
04/08/13 210.9 99.9 23.6 20.4 21.3 20.9 17.6 18.5 3.9 
04/09/13 125.5 4.0 58.2 70.0 70.9 18.1 21.3 21.2 0.3 
04/10/13 4.4 4.9 4.4 3.9 1.4 1.7 1.5 0.5 0.4 
04/11/13 10.9 12.6 9.2 6.5 6.7 3.1 2.1 2.0 0.1 
04/12/13 34.2 38.1 31.6 22.6 4.0 12.8 9.2 1.3 0.4 
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04/13/13 89.0 58.1 40.8 17.9 11.3 25.0 11.5 9.3 3.0 
04/14/13 407.4 119.5 20.9 33.0 31.1 24.6 30.0 30.4 4.0 
04/15/13 74.1 111.1 6.5 8.2 1.8 7.8 8.4 5.8 3.5 
04/16/13 127.4 62.8 54.8 44.4 45.9 26.5 21.7 22.4 1.9 
04/17/13 62.7 6.0 59.6 29.3 33.7 18.4 9.2 10.5 0.0 
04/18/13 4.0 4.4 5.6 3.9 1.2 1.9 1.1 0.3 0.0 
04/19/13 3.4 3.8 3.7 4.1 2.9 1.2 1.1 0.7 0.0 
04/20/13 2.9 2.5 2.3 2.6 1.9 0.6 0.7 0.5 0.0 
04/21/13 1.8 7.8 1.9 5.9 0.6 0.6 2.0 0.2 0.0 
04/22/13 1.6 5.0 2.1 3.9 0.5 0.7 1.3 0.1 0.0 
04/23/13 5.6 10.6 6.5 7.4 1.5 2.2 2.6 0.4 0.0 
04/24/13 44.8 39.2 28.5 17.3 14.1 12.8 7.9 6.4 2.3 
04/25/13 124.4 75.8 33.9 19.0 19.2 22.6 12.7 12.8 3.6 
04/26/13 78.3 7.6 50.6 31.7 39.7 17.0 10.5 13.3 0.1 
04/27/13 3.1 7.0 3.7 4.6 0.9 1.3 1.6 0.3 0.1 
04/28/13 2.7 6.5 2.7 4.3 1.3 1.0 1.6 0.4 0.2 
04/29/13 4.7 6.5 3.7 3.5 2.0 1.4 1.1 0.8 0.4 
04/30/13 48.7 47.7 29.4 17.5 5.4 14.2 8.5 2.2 0.0 
All Days 68.2 37.2 23.1 17.5 14.1 11.7 8.8 7.3 1.1 
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