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Abstract 
 

Demand-side Knowledge for Sustainable Decarbonization In Resource Constrained Environments: 
Applied Research at the Intersection of Behavior, Data-Mining, and Technology 

 
by 	
	

Diego Ponce de León Barido 
 

Doctor of Philosophy in Energy and Resources 
 

University of California, Berkeley 
 

Professor Daniel M. Kammen, Chair 
 

 
Recent developments in behavioral science, machine learning, and information and communication 
technologies are fundamentally transforming the questions and methods that can be applied to 
sustainability science. Research in decision making is transitioning from rational expectations towards 
bounded rationality models, machine learning excels at prediction rather than hypothesis testing, and 
ubiquitous sensor networks can elucidate new insights regarding previously unobserved system 
dynamics. This dissertation combines these three approaches to explore demand side features and 
strategies for sustainable decarbonization through various case studies of global, national and urban 
energy systems.  
 Behavioral science provided a strong theoretical framework with which to frame many of the 
insights that I encountered through field-research and data-mining. Why and how is it that some 
relatively poor countries, with weaker traditional notions of institutional strength make significant 
progress towards decarbonization? Why do relatively wealthier countries, with supposedly stronger 
institutions, and with abundant renewable resources fail to make such progress? Why do low-income 
households fail to invest their savings from energy efficiency or long-term energy efficiency retrofits? 
Why would a low-income household prefer high-resolution information over cash? How can we 
design more effective support mechanisms for sustainability at the national and household level? Ryan 
and Deci’s insights on intrinsic motivation (and all the subsequent work by other researchers they’ve 
inspired) (1, 2), Kahneman and Tversky’s work on prospect theory, the endowment effect, and loss 
aversion (3–5), Thaler’s insights on nudging and savings (4, 6), and Mullainathan and Shafir’s work on 
the psychology of scarcity (7, 8), have all provided rich insights with which I address many of these 
questions. 
 This dissertation also places a strong emphasis on data mining and statistical inference. Data 
mining and machine learning approaches are appealing because they are theory agnostic, can deal with 
nonlinearities, and encourage the researcher to collect as much data as possible. While this dissertation 
makes no contributions to improving the accuracy of data mining and machine learning techniques, it 
does provide new ways of bringing data together for the purpose of sustainability science. Rather than 
using causal inference to explore a specific hypothesis, I organize disparate ‘long and wide’ data and 
use data mining and prediction approaches (e.g., principal component regressions, nearest neighbors, 
random forests) to extract the features that can best predict my dependent y variable. In some cases, 
I also use Bayesian inference to characterize the size and uncertainty of the outcomes measured in my 
field-work, as well as to build posterior distributions from several seemingly disparate data streams.  
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Bayes, philosophically, is particularly interesting as its usefulness increases as more data is collected, 
encouraging the researcher to continuously collect more evidence in order to test the strength and 
uncertainty of an initial hypothesis. A strong hypothesis would need a lot of data to be refuted, and 
thus, one has to collect an extraordinary amount of evidence to change a well-established norm. On 
the other hand, a weak hypothesis that is not backed up by data can be easily refuted. More 
importantly, Bayes lends itself to the evaluation of strong theories. Strong theories estimate the 
magnitude of parameter values and their credibility, not merely reject null values (9, 10). I use Bayes, 
data-mining and machine learning approaches in my work as they provide a flexible yet rigorous 
analytical tool box for which to extract meaning from data.  
 The rapid cost reduction in sensor networks suggests that in the near future they will be the 
bridge between behavioral science and data mining. While they have been used in manufacturing and 
industry for decades, they are now proving to be fundamental for research at the intersection of 
behavior, technology and sustainability. For example, sensors can be used to effectively monitor the 
efficacy and usage of cook stoves, water filters, and water delivery in field trials (11), to validate user 
responses in surveys and interviews against sensor data, and to evaluate whether or not a socio-
technical intervention geared towards sustainability is being used appropriately. While the gold-
standard for field-technology trials is randomized controlled trials (RCTs), the evaluation of an 
intervention is only valid if it was implemented without error; if not, what the RCT is truly evaluating 
is the quality of the intervention rather than the research questions themselves. Sensors allow 
researchers not only to monitor and troubleshoot, but also to uncover hidden insights about a system 
– how do rainfall and temperature affect appliance usage? What environmental factors affect the 
quality of the intervention? How can the technology be changed in the future to address usage issues 
related to environmental and behavioral factors? Similarly, information and communication 
technologies (ICTs) allow for a cost-effective two-way communication pathway with users: nudging, 
questions, complaints, AB testing, and feedback become immediately available with ICTs.  

How are these three broad and overarching themes related to sustainable decarbonization? 
Sustainable decarbonization, here, is defined as the equitable reduction in total energy demand, 
accompanied by the increased adoption and use of low-carbon life styles and technologies. Equity in 
this context, is defined as equal opportunity of access to these lifestyles and technologies, while in 
consideration of barriers to entry (e.g., gentrification, racism, affordability, income), and the design 
and implementation of mechanisms to overcome them. At the global and national-level, equitable 
reductions in energy consumption and increase in the growth of low-carbon technologies will not 
occur without contextualized knowledge of local dynamics. Here, I bring together diverse data sets to 
provide context to local characteristics ranging from soil data, to water bodies, access to mobile 
finance, and the quality of governance of local institutions, among many other variables. At the city-, 
neighborhood-, and household-level, sustainable decarbonization will not occur, or be equitable, 
without fully considering users, behavior, and co-designing technology (services and systems) that 
work for them and their communities. In this case, we use the nexus of information and 
communication technology, sensors, behavior and data mining to co-design information systems that 
simultaneously work for the user and the energy system in which they interact. 

What are resource constrained environments? Resource constrained environments, here, are 
defined as spaces that exist in relative social, infrastructural, economic, or environmental scarcity, and 
can be found anywhere. Resource constrained environments can be found in California (e.g., 
Richmond in Contra Costa county) where low-income and predominantly African American residents 
are exposed to much higher concentrations of benzene, mercury and other hazardous pollutants due 
to the nearby Chevron refinery (12, 13), or Memphis, New Orleans and Birmingham where low-
income households spend over 10% of their income on electricity (14). They can also be found in 
Kenya, where it may take a lot of time and money to reach rural communities to perform needs 
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assessments and provision of basic services. Or, Managua (Nicaragua), where low, low-middle income 
neighborhoods can only afford used appliances, and have a panoply of barriers to access energy 
efficiency and sustainable energy services. Exploring, ideating, and implementing solutions for 
resource constrained environments requires knowledge of history, local context and dynamics, and 
many aspects of top-down (e.g., institutional, political) and bottom-up (e.g., end-users, 
neighborhoods) behavior.  

This dissertation, explores demand-side, user-centered, sustainable decarbonization in 
resource constrained environments at multiple scales. The first chapter presents an analysis of global 
demand-side features that are enabling low-carbon transitions. It synthesizes 10 global energy and 
development related data sets and uses methods from data mining and concepts in behavioral science 
to propose a new methodology for the design and evaluation of long-term energy system 
decarbonization support mechanisms. Considering the nation-state as a single agent with its own 
historical intrinsic motivations for enacting change (e.g., social progress, environmentalism, economic 
efficiency, supremacy and empire), intrinsic characteristics (e.g., population size, land area, quality of 
governance), and enabling environments (e.g., local fuel and electricity prices, supporting policies) it 
uses these data to extract the features that can best explain decarbonization progress. We find higher 
local energy prices, foreign energy import dependency and absence of a large extractive resource base 
(e.g., oil and gas, mining), relative high investments in renewable energy (per km2 and capita), and early 
historical investments in geothermal energy and biomass for electricity to be key driving features. 
Policies, although widely advocated for in international frameworks, do not appear as key enabling 
drivers - especially in the rising south, and when misaligned with country specific motivators and 
intrinsic characteristics. 

The second chapter explores and develops new methods in elucidating demand for the design 
and implementation of appropriate and sustainable energy interventions. It uses a mix of high spatial 
resolution data sets, surveys, sensor data, and data mining to develop new methods for elucidating 
rural electricity demand at the household and community level, and to help close the ‘energy efficiency 
gap’ in urban resource constrained environments. It uses an extended literature review and data at 
multiple scales to create a data-driven context that energy planners can use in their supply-side models. 
Using Kenya as an example, and with colleagues from the IBM-Africa (Nairobi) research lab, we 
develop what we consider to be the first reliable data-driven approach for elucidating household 
appliance ownership and induced household demand for electricity using a mixture of large-scale 
social demographic data, spatial data, and machine learning approaches. We also use data-mining and 
an extended literature review to explore and identify the enabling conditions under which 
electrification can lead to wealth via micro-enterprise creation in rural areas. The latter also presents 
the first analysis to evaluate the drawbacks/inaccuracies of the modern use of nightlights as a panacea 
for tracking wealth in unelectrified regions. Finally, and using Nicaragua as a case study, this chapter 
develops an extended literature review and framework on how to collect data for baseline energy 
efficiency estimates in resource constrained environments using a mixed methods approach 
combining surveys, sensors, population sampling and Bayesian updating.  

The third chapter uses a field deployment pilot in Nicaragua as a case study, presenting 
opportunities and challenges for information and communication technologies (ICTs) and the internet 
of things (IOT) for demand-side flexibility and behavioral energy efficiency in resource constrained 
environments. We use ICTs and IOT to implement the first paired behavioral energy efficiency and 
flexible demand pilot in Latin America, in Nicaragua’s capital city of Managua. The chapter is divided 
in two sections, the first introduces the design, implementation, and exploratory data analysis of a 
sensor gateway (the FlexBox) for enabling behavioral energy efficiency and demand side flexibility, 
and the second is a post-implementation evaluation using Bayesian estimation for evaluating energy 
reduction, participation in demand side flexibility, impacts on welfare, and behavioral economics 
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insights. We present several novel findings related to technology implementation, development of new 
efficiency parameters, and behavioral insights (e.g., incentive types, pre-existing behaviors, 
motivations) describing the opportunities and barriers to behavioral energy efficiency and demand 
side flexibility in these contexts. More importantly, we show that ICTs and IOT are mature technology 
that can be used by low, low-middle income households and small businesses in cities like Managua 
to become important actors in city-wide resource conservation. We conclude by presenting 
opportunities for future research. 
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Structures of Power, Equity, and Ethics in this Research 
	
Throughout the creation of this work, there were numerous occasions when the structures of power, 
injustice and ethics emerged to clarify why it is difficult to scale solutions that simultaneously work 
for people and planet. The relationship between local decision makers and experts, the overwhelming 
detached nature (and some of the methods) of academic research, and the disparity in funding for 
research across geographies fosters inequality, and erodes the impact of applied research. 

Decision making, often, occurs from a top-down approach with local decision makers and 
institutions collaborating with foreign experts (e.g., academics, consultants) to move an idea forward. 
The nature of this relationship is fraught, as the experts must remain in good favor with decision 
makers (e.g., to win contracts), although many times the ideas being supported might be to the 
disadvantage of a country, a region or a community. Other times, experts come with support from a 
funding agency (e.g., World Bank, IDB) and seek to influence the path of a country, or the opinion of 
decision makers, by applying an umbrella methodology (e.g., structural adjustment programs, 
optimization frameworks, results from big data) without understanding the historical, cultural and 
political factors of why a problem arose in the first place1,2,3. Umbrella methodologies are attractive, 
as they appear to be quick to implement, but are awash with assumptions. Take for example, forestry 
conservation programs that displace entire communities3, agricultural development practices that 
engage in genocide3, or large-scale energy developments (e.g., hydropower, renewables) that displace 
communities and empower an elite4. Because decision making is co-created by foreign experts and 
local elites, root issues are never addressed (e.g., corruption, inequality), fostering solutions with vested 
interests. Academia has the freedom to inform these issues, but often leaves them untouched.  

These power structures were apparent as I began my research collaboration with the 
Nicaraguan National Engineering University. Local public universities in Nicaragua have almost no 
funding for research, and when a collaboration begins, local researchers are already at a disadvantage 
about what ideas and frameworks gain traction. Foreign researchers with more time and resources can 
often move faster than local colleagues, who are limited by a lack of research funds. Thus, at meetings 
with decision makers, it was my analysis that was presented, despite knowing less about the local 
context. Funding mechanisms that split research funds more equitably would help solve part of this 
problem, but the nature of how awards and grants are disbursed in the U.S. (e.g., overhead, 
bureaucracy) makes it even more difficult to create equitable collaborative partnerships. Streamlining 
how grants are awarded, how universities disburse funds, and bureaucratic complexities could create 
more fruitful research collaborations. Local partners often had to work for free for many months at a 
time, waiting for UC Berkeley to disburse payments. More consideration to the sacrifices that other 
institutions make to work with UC Berkeley should be considered to level the balance of power. 

My applied research at the intersection of behavior and technology also brought to light several 
issues related to equity and ethics. While working directly with household and small-businesses in 
Nicaragua in technology implementation, and although we did our best (and somewhat succeeded) to 
ensure that our participants directly benefited from our projects, we failed to fully address societal 
gaps of poverty, chauvinism, and access to education that prevented many participants from fully 
benefitting from our program. A better thought-out and perhaps more lengthy co-design period could 
have prevented some of the evident gaps that later emerged. I take all these lessons with me as I 
transition out of UC Berkeley. 

 
1. Galeano, Eduardo. The Open Veins of Latin America: Five Centuries of the Pillage of a Continent. New York: Monthly Review Press, 1973. 
2. Klein, Naomi. The Shock Doctrine: The Rise of Disaster Capitalism. New York: Pan Books Limited, 2007. 
3. Monbiot, George. No Man’s Land. Cambridge: Green Books, 2003. 
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1.1 Introduction 
	
This chapter presents an analysis of global demand-side features that are enabling low-carbon 
transitions. In the literature, there is an unspoken consensus that push supply-side mechanisms such 
as top-down policies, financing, and technology are the global drivers for decarbonization (15–19). 
Globally, and within international agreements and frameworks, this consensus is pushed across 
disparate regions, incomes, cultures, and levels of human development – without evidence that these 
blanket mechanisms are working across contexts (20). Take, for example, evidence that suggests that 
$50 billion in Illicit Financial Flows leave Africa every year, almost an equal amount to the official 
development assistance that the continent receives every year (21). Or expectations that countries like 
Mexico, Nigeria, and the United States, rampant with corruption and all with a large fossil fuel resource 
base will abide by their intended national determined contributions. This cognitive bias, arguably, has 
led to slow progress in global energy system decarbonization in a world with weak climate leadership, 
institutions, and governance. More research is needed to understand where and why decarbonization 
transitions are being successful. 

Towards this effort, this chapter synthesizes 10 global energy and development related data 
sets and uses methods from data mining and concepts in behavioral science to propose a new 
methodology for the design and evaluation of long-term energy system decarbonization support 
mechanisms. We use a data mining approach to extract the features that capture the greatest amount 
of variance in the data and find that an analysis of enabling environments, inherent characteristics, and 
intrinsic motivations could provide a more comprehensive theoretical framework for evaluating long-
term decarbonization. Higher local energy prices, foreign energy import dependency and absence of 
a large extractive resource base (e.g., oil and gas, mining), relative high investments in renewable energy 
(per km2 and capita), and early historical investments in geothermal energy and biomass for electricity 
appear as key driving features. Policies, although widely advocated for in international frameworks, do 
not appear as key enabling drivers - especially in the rising south, and when misaligned with country 
specific motivators and intrinsic characteristics.  

We present a theoretical framework – decarbonization across the motivation spectrum – that argues 
for long-term decarbonization support mechanisms to be designed at the intersection of country 
specific motivators, local enabling environments, and inherent characteristics. To exemplify the 
decarbonization motivation spectrum, we use data from the Social Progress Imperative, the Quality 
of Governance Initiative, the Yale Environmental Performance Index, the Global Footprint Network 
and the World Bank Development Indicators to create proxies for three key motivators: social 
progress, local sustainability, and desire for energy independence. We scale these metrics and assign a 
score to each country across the sum of these three motivators, and plot the score against a dependent 
variable measuring decarbonization progress between 1980 and 2014 (or latest data available) in 
enabling a low-carbon energy transition.  

Our findings demonstrate that there is not one major driver of decarbonization, but rather, a 
multitude of factors that can contribute to transformative progress. Globally, there are many countries 
around the world with suitable inherent characteristics and enabling environments for kindling 
decarbonization that remain, however, in the path towards carbon lock-in. This, we argue, can be 
prevented or reversed in order to spark a new wave of decarbonization, and we suggest four new 
opportunities to reinvigorate global decarbonization progress (expanded in the text to follow): 1) 
Identifying and tapping pockets of demand-side opportunity, 2) diversifying the types of support 
mechanisms and motivations for energy system decarbonization, 3) diversifying the change agents that 
receive support for decarbonization, and 4) thinking beyond energy and increasing the acceptance of 
non-optimal decarbonization pathways. 
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1.2 Background 
 
In global decarbonization support frameworks, there is a broad consensus that policies and goal-
setting are the preferred mechanisms for enabling energy transitions (20, 22). Furthermore, these 
mechanisms have been historically motivated by climate change mitigation, leaving out a wide range 
of reasons why countries would choose to pursue energy system decarbonization. Global leaders in 
low-carbon energy transitions now appear across a wide range of incomes, regions, and levels of 
development, suggesting that there are multiple motivations, inherent characteristics, and enabling 
environments that can foster energy system decarbonization (Figure 1) (23–25).  

Costa Rica, Nicaragua, and Kenya, are three unconventional examples of countries which have 
taken significant steps towards the goal of 80% electricity decarbonization by 2050.  Currently, these 
three countries – and with disparate motivations – have some of highest proportions of electricity 
generation from non-hydropower renewable energy (24%, 46%, and 46% respectively) amongst low 
and low-middle income countries ($13,600, $4,500, and $2,800 per capita respectively), and are over-
performers relative to other countries in their income group (Figure 1). Other global energy transition 
leaders – and over performers relative to their income group – such as Denmark, Germany, and 
Portugal had a negligible fraction of electricity generation from non-hydropower renewable resources 
when they were at a similar stage of economic development (~$7,000 GDP per capita). This trend 
highlights that renewable energy technologies have become increasingly affordable for countries 
across the entire income spectrum, and the importance of other features besides climate change 
mitigation policies to motivate decarbonization.  

This chapter integrates a mixture of data mining methods, behavioral science theory, and 
historical perspectives to uncover these key features within the global low-carbon energy system 
transition. We shed light on components of energy transitions that are once again emerging, some that 
are changing, and new themes that require attention (26, 27). Supported by our analysis and data, we 
propose a framework for decarbonization across the motivation spectrum that can be used to guide 
the design of support mechanisms that are inclusive of a range of drivers and motivations, beyond 
solely focusing on climate change mitigation. 

 
1.2.1 A Review of Energy System Transitions 
 
The importance and role of first adopters varies across technologies, with evidence and the literature 
suggesting that they are more important for wind and solar, than for the global diffusion of geothermal 
and biomass due to their inherent risks related to resource development and sustainable resource 
management (28–30). Here, we consider ‘adoption’ when a country generates at least 1% of the total 
from a non-hydropower renewable resource. Biomass for electricity generation is a resource and 
technology that has seen widespread adoption for many decades, with Europe and the Americas both 
being first adopters, albeit with different sustainability practices. While most early adopters and 
countries in Europe have slowly increased or diversified their sources of biomass production together 
with the adoption of best practices (trees, arable crops, algae and other plans, agricultural and forest 
residues, effluents, sewage sludge, manures, industrial by-products, organic municipal waste, and 
imported biomass) (31–34), first adopters in the Americas and Africa have seen a more unstable path 
with half of the first adopters experiencing a significant decline in production due to a variety of 
factors including the cost-competitiveness of other fuels and technologies, supply-chain efficiency, 
unsustainable practices, climate change impacts, and in some cases violent conflict (35–40). 
Geothermal developments have also seen early global adoption with the notable cases of Iceland, 
Kenya and El Salvador. While Central American countries (El Salvador, Nicaragua, Costa Rica, and 
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Guatemala) have continued to increase the adoption of geothermal energy in their energy mix, 
countries in the Rift Valley, which has a large geothermal potential (41), have not followed Kenya’s 
path despite the country doubling its production in 2014 (40%). All first adopters, except for the 
Philippines, El Salvador, and Mexico, whose production declined but are still pursuing the resource, 
have continued to foster and invest in further development.  Still,  despite the presence of these first 
adopters, the observed benefits to energy security and a cost-effective baseload, and nascent solutions 
to mitigate uncertainties and financial risks associated with drilling wells on green fields, the global 
geothermal resource remains largely undeveloped (42, 43).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Over and Underperformers in Electricity System Decarbonization Progress: The y-axis depicts the 
difference in a country’s energy system decarbonization progress and the progress of the cluster income group 
to which it belongs. Countries are clustered by income (low-income £ $10000 GDP/Capita, $US 10000< low-
middle income £ $20000, $US 20000 <high-middle income £$US 45,000, and $US 45000<high-income). The 
median income value of each income cluster is calculated, and a relative progress score is assigned to each 
country by subtracting its decarbonization progress since 1980 from the median progress score of the income 
cluster to which it belongs. 
 
 

The diffusion of wind and solar technologies have been explored extensively by the literature, 
with a diversity of factors being suggested as the preconditions for technological adoption including 
policies to support the growth of the power sector, local environmental, social, economic and political 
variables, support for innovation, industrial development, and technological change, learning and 
R&D support (and consequent reductions in investment costs), feed-in-tariffs, financial incentives and 
production-tax credit schemes, household social-demographics, resource potential, and spatial 
variability,  local electricity cost, and the emergence of China and India as global players in solar and 
technology development, among others (29, 44–49). While many of these motivations are in line with 
the energy transitions literature (motivated by policies and institutions, with successful policies 
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necessitating continuity and persistence, alignment and balance)(28), a different point of view is also 
offered by the wind and solar literature that views environmental groups, constituents, and civil society 
as key agents in an energy transition (44, 50). Finally, a new emerging literature is beginning to explore 
the differences in decision making around technology adoption in the rising south. This research 
suggests, that policy formulation is not sufficient in countries with an “institutional gap”, and suggests 
that clear and strong financial incentives, predictability of government decision making, and 
streamlined permitting procedures are as important (or more) as the existence of policies (51, 52). Like 
the energy transitions literature suggests, the repertoire of policies for late technology adopters should 
be very different from those established by first adopters and early pioneers, especially if the 
technology carries low risk. A recognition of this central issue is key to designing mechanisms that 
work specifically for countries who want to simply adopt technology, and do not seek to build R&D 
or development of a local industry like market leaders tend to prefer. Figure 2 presents a visual 
representation of the diffusion of renewable energy technologies in space and time. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Global Spatiotemporal Diffusion of Non-Hydropower Renewable Energy Technologies: This figure 
considers the adoption of a technology to be when at least 1% of a country’s total generation comes from a 
specific technology. It demonstrates that countries across a wide spectrum of social-demographics have 
historically invested in renewable energy (e.g., geothermal and biomass), with wind and solar now experiencing 
the latest wave of investments and development. Geothermal energy has seen very little growth in recent 
decades, despite its large potential. 
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1.2.2 Decarbonization Across a Spectrum of Policies, Institution Types and Motivations 
 
Progress in global decarbonization is now occurring across a spectrum of political and policy enabling 
environments, and diverse qualities of governance and infrastructure (Figure 3). Figure 3 shows the 
number of pro-renewable energy policies passed since 1974 (53) against the percentage point 
renewable energy change between 1980 and 2014 (54) (non-hydro renewable energy as a percentage 
of total generation) and depicts various enabling environments: countries with great carbon 
responsibility and many policies making little progress (e.g., USA and China), countries passing 
policies yet moving slowly or even going backwards (e.g., Mexico, Canada, Indonesia, and Paraguay), 
countries with few policies yet transitioning rapidly (e.g., Iceland, Nicaragua, and Kenya), and clusters 
of countries where more policies seemingly do translate into change (e.g., Germany, Spain, Denmark, 
Lithuania, Ireland, and Costa Rica).  Similarly, the figure also shows that countries with relatively low-
scores with regards to quality of infrastructure and governance are performing equally as well, and in 
some cases better, than countries with traditional notions of good governance and better 
infrastructure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Policies, Quality of Governance and Infrastructure and Decarbonization Progress. Difference between 
total percentage generation from non-hydropower renewable resources from 1980 until 2014 in countries as a 
function of the number of pro-renewable energy policies passed since 1974, and Quality of Governance and 
Infrastructure as defined by the Quality of Governance initiative. The color of the dot represents the quality of 
infrastructure (such as roads, bridges and electric grids) and the size of the dot represents the quality of 
governance. Energy system decarbonization is occurring across a spectrum of policy environments and 
infrastructural and institutional characteristics. 
 
1.3 Data 
 
We collect data for 190 countries and territories from the World Bank Development Indicators (55), 
Bloomberg New Energy Finance’s Climatescope (24), the Energy Information Administration (54), 
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the Quality of Governance Initiative (56), the International Energy Agency and IRENA’s joint policies 
and measures database for global renewable energy (53), the Global Footprint Network (57), the 
United Nations Human Development Indicators (58), Yale’s Environmental Performance Index (59), 
the Social Progress Imperative data (60), and the World Energy Council (61). These data include 
measures and a variety of proxies for sustainability, foreign energy dependence, local resource 
dependence, governance and quality of institutions, renewable and climate related policies, human 
development, energy finance (towards renewable energy and fossil fuels), resource consumption (e.g., 
electricity demand, total energy demand growth rates, electricity and total energy demand rates of 
change), and country specific characteristics such as land size, population, population density, and 
gross domestic product. We clean and merge all data sets until we have a 130 country merged data set, 
plot and analyze correlations across variables, and perform our analysis on a subset of countries that 
have increased their generation from non-hydropower renewable resources by 1% or more between 
1980 and 2014 (or year of latest data). This subset of the data (countries with progress equal to or 
greater to 1% in non-hydropower renewable energy generation between 1980 and 204) includes 76 
countries across all regions and ranges of the proxies that have been described above.  
 
1.4 Methods and Analysis 
  
We perform a simple correlation analysis among all the variables (sample in Figure 4) to explore 
variables that are correlated with each other, and variables that are correlated with progress towards 
decarbonization. We develop this correlation analysis for the full data set (all countries ³ 1% progress 
in decarbonization) and for a subset of the countries with income per capita below $US 30,000. In the 
full data set, the variables with the strongest correlation with decarbonization progress include local 
electricity prices (industrial, commercial, retail and mean electricity prices $US/MWh) and fuel prices 
($US/gallon), level of energy import dependency, aid as a percentage of GDP, and ecological footprint 
variables. Clusters of variables that are strongly correlated with each other include intrinsic country 
characteristics (e.g., population, land size), and enabling environments (e.g., number of policies in 
support of renewable energy, local subsidies to fossil fuels and electricity prices, and total investments 
in renewable energy). Quality of governance variables are strongly correlated with income, and also 
have a higher total ecological footprint than other countries. In the lower-income data set (£ $US 
30,000) ,energy prices (electricity and fuel) and the level of energy import dependency have the 
strongest correlation with decarbonization progress. 

After the data is cleaned and merged we implemented a k-means algorithm on the principal 
components that capture most of the variance in the data set. We first log-normalize skewed variables, 
perform a scaling methodology that is consistent with our dependent variable (on the dimensionality 
reduction step), implement a principal components methodology, and estimate our decarbonization 
progress dependent variable by using the principal components that capture most of the variance. We 
choose to use principal components regression (PCR) as opposed to performing a hypothesis testing 
driven analysis, as we attempt to extract the features that can capture most of the variability for better 
predicting decarbonization progress. Furthermore, we use PCR because it addresses issues related to 
multicollinearity in the data (highly correlated predictor variables) by implementing dimensionality 
reduction, removing low-variance principal components when implementing the regression step, and 
ensuring mutual orthogonality amongst the principal components. We use the libraries cluster, vtreat, 
WVplots, FactoMineR, and factoextra from the open source statistical programming language R to 
perform our analysis.  
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Figure 4 - Correlation Matrix (Data Subset, Full and Partial Income Data Set): Full data and countries below 
$30,000 per capita. 
 
 
Countries Above $US 30,000: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, 
Ireland, Israel, Italy, Japan, Luxembourg, Netherlands, New Zealand, Norway, Singapore, Spain, 
Sweden, Switzerland, United Kingdom, United States.  
 
Below $US 30,000: Argentina, Brazil, Bulgaria, Chile, China, Colombia, Costa Rica, Croatia, Cyprus, 
Czech Republic, Ecuador, El Salvador, Estonia, Ethiopia, Greece, Hungary, India, Indonesia, Kenya, 
Latvia, Lithuania, Mexico, Mongolia, Morocco, Nicaragua, Peru, Philippines, Poland, Portugal, 
Romania, Slovenia, South Africa, Thailand, Tunisia, Turkey, Uruguay. 
 

After significance pruning and dimensionality reduction on the World Bank Development 
Indicators, we implement a “y-aware” principal component analysis where the predictor variables (x) 
are rescaled to be in y-units (62). Improper scaling (absence of scaling, or simply performing x-specific 
scaling) could potentially lead to noise variables dominating the PCA loadings (direction eigenvectors 
that are endowed with the scale part eigenvalues). X-scaling (variables scaled by its own standard 
deviation) was avoided as it does not guarantee that all the data will be in the same coordinate system 
(62). By rescaling the covariates to be in y-dependent units we ensure that they all are in the same 
coordinate system allowing us to perform PCA on variables that are characterized by their effect on y 
(decarbonization progress) (62). For the figures below, we depict the implementation of PCR on the 
full data set (76 countries) and the subset of countries with GDP per capita below $US 30,000. 
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Figure 5. Magnitude of Singular Values, Principal Components 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Cumulative Contribution of Variables to the First Ten Principal Components  
(sum of each principal component column is 100%) 

	
In the full data set the first two principal components have a large portion of the signal (Figure 

5, magnitude of singular values), whereas in the lower income data the first five principal components 
capture a similar portion of the signal. As expected, the full data set needs more principal components 
to fully reconstruct the data as opposed to the lower income data, which needs 20 fewer principal 

      All Data                                                                            GDP/Capita < $US 30,000  

                 All Data                                                                   GDP/Capita < $US 30,000  
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                                 All Data                                                 GDP/Capita < $US 30,000  A B 

C D 

components. We use PCA loadings to understand the relationship and contribution of variables in 
our data to each principal component. PCA loadings depict the correlation between each component 
and the original variable, and squaring them tells us the amount of variation that each variable 
contributes to each component. Figure 6 depicts the cumulative contribution of each variable to each 
principal component (the sum of each column is 100%) with the variables that capture most of the 
variance varying between each data set. In the full data the variables that capture most of the variance 
in the first two principal components include proxies related to the quality of governance and the 
number of policies in favor of renewable energy, infrastructure, local electricity ($US/MWh) and fuel 
prices ($US/gallon), proxies for ecological footprint, the level of foreign energy dependence (imports), 
investments in renewable energy  per km2 and per capita, GDP per capita, early historical investments 
in (biomass and geothermal), amount of aid and financial assistance received, and level of dependence 
on local resource extraction.  

In the subset data, local energy prices (fuel and electricity prices), financing towards renewable 
energy per km2 and per capita, foreign energy dependence (imports), subsidies to and dependence on 
extractive industries and early historical investments in renewable energy (biomass and geothermal) 
play a larger role. Proxy variables for the quality of governance and policy support for renewable 
energy capture little to no variance for the lower income subset. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

	
	
	
	
	
	
	
	
	

 
 
 
 
 

Figure 7. Variable Significance [A,B] and Scaled Variable Ranges [C,D] 
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Statistically significant variables also change between data sets (Figure 7A and 7B, values below 
0.25). In the full data set, energy prices (fuel and electricity), resource rents (oil), aid (received net 
assistance), ecological footprint, foreign energy dependence (net energy imports), subsidies to fossil 
fuels and electricity have greater statistical significance. In the subset data, resource rents (oil), energy 
prices (fuel and electricity), renewable energy investments (per capita and per km2), and early historical 
investments in renewable energy (biomass) have greater statistical significance. Figure 7 (panels C and 
D) also depict that the signal carrying and statistically significant variables have larger scaled ranges 
than noise variables in the data. 
	
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Actual vs Estimate for Full and Subset Data 

 
 
A linear regression is fit to the first 20 principal components to estimate our dependent 

variable. On the full data set we are able to capture 55% of the variation with 20 variables, and are 
able to capture 70% of the variation with the same number of variables in the lower-income subset. 
We next determine the optimal number of clusters for the top 20 principal components in each data 
set, and extract the countries within each cluster. Because k-means is a naïve algorithm (clustering data 
into k-clusters regardless of whether or not they are optimal), we first use the elbow method and 
silhouette scores to determine the optimal number of clusters. The elbow method performs a 
sensitivity analysis on a range of k-clusters, calculates the sum of squared errors (SSE) for each k-
cluster, and provides a visual representation of where an additional cluster begins merely providing 
diminishing returns.  Silhouette scores are a similarity measure of a data point to its cluster compared 
to other clusters, ranging from -1 to 1 (high values indicating that the data point is well matched to its 
cluster). Silhouette scores are calculated as the fraction of the difference between the lowest 
dissimilarity that any data point has to another cluster to which it is not a member (bi), and the average 
dissimilarity to all data points within its assigned cluster (ai), and the maximum value between ai and 
bi. The average silhouette scores are 0.25 and 0.13 respectively, with values closer to 1 suggesting 

                 All Data                                                                            GDP/Capita < $US 30,000  



 

 

12 

greater strength in the accuracy of clustering. Our analysis suggests that the first 20 principal 
components of the full data have three clusters and five clusters respectively (Figure 9). 
 
Full Data Clusters (K-Means on 20 principal components, Silhouette Score: 0.25) 
 
Cluster 1: Aruba, Cape Verde, Falkland Islands (Islas Malvinas), Faroe Islands, Iceland, Korea, 
South, Netherlands Antilles, New Caledonia, Taiwan, Togo 
Cluster 2: Australia, Austria, Belgium, Canada, Croatia, Czech Republic, Denmark, Finland, France, 
Germany, Greece, Hungary, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, Netherlands, New 
Zealand, Poland, Portugal, Singapore, Slovakia, Spain, Sweden, Switzerland, Thailand, United 
Kingdom, United States, Uruguay. 
Cluster 3: Argentina, Brazil, Bulgaria, Chile, China, Colombia, Costa Rica, Cyprus, Ecuador, El 
Salvador, Estonia, Ethiopia, Guatemala, Honduras, India, Indonesia, Israel, Jamaica, Kenya, Malta, 
Mauritania, Mexico, Mongolia, Morocco, Nicaragua, Norway, Papua New Guinea, Peru, Philippines, 
Romania, Slovenia, South Africa, Sri Lanka, Tunisia, Turkey. 
The full data has three stable clusters with countries grouped according to land size, energy 
dependency, energy intensity of the economy, subsidies to fossil fuels and electricity, rates of economic 
growth, and clear distinctions across income and regions (despite no labels existing in the data).  
 
 Income Cluster <$US 30,000 (K-Means on 20 principal components, Silhouette Score: 0.13) 
 
Cluster 1: Aruba 
Cluster 2: Mauritania, Mongolia, Morocco, Papua New Guinea, Philippines, Thailand, Togo,Tunisia 
Cluster 3: Costa Rica, El Salvador, Guatemala, Honduras, Jamaica, Kenya, Malta, Nicaragua, Sri 
Lanka 
Cluster 4: Argentina, Brazil, China, Colombia, Ecuador, Ethiopia, India, Indonesia, Mexico, Peru, 
South Africa. 
Cluster 5: Bulgaria, Chile, Croatia, Cyprus, Czech Republic, Estonia, Greece, Hungary, Latvia, 
Lithuania, Poland, Portugal, Romania, Slovenia, Turkey, Uruguay. 
 
        The lower-income clusters divide countries across intrinsic characteristics (population, land area, 
income per capita, population density) and enabling environments (number of policies in support of 
renewable energy, level of foreign energy dependency, level of domestic economic dependency on 
resource extraction and fossil fuel exports, subsidies to fossil fuels and electricity, level of human 
development, local electricity and fuel prices, and investments in renewable energy per capita and per 
km2). Relative to other clusters, and on average, the cluster in this data subset that has made the most 
progress in decarbonization since the 1980’s is neither the wealthiest, nor the one with the most 
policies in support for renewable energy. Cluster 3, which includes all of Central America, Jamaica, 
Kenya, Malta and Sri Lanka are characterized by a small land area, large energy dependency, relatively 
high fuel and electricity prices, low income per capita, relatively higher investments in renewable 
energy per capita and per km2 and relatively historical earlier investments in biomass and geothermal 
energy as a large percentage of total generation relative to other countries. 

The full dataset has three stable clusters, and the data subset with income per capita below 
$US 30,000 has five stable clusters. For the former, countries are grouped according to land size, 
energy dependency, energy intensity of the economy, subsidies to fossil fuels and electricity, and rates 
of economic growth. For the latter, a different set of variables cluster the data including inherent 
characteristics (population, land area, income per capita, population density, quality of governance) 
and enabling environments (number of policies in support of renewable energy, level of foreign energy 
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import dependency, level of domestic economic dependency on resource extraction and fossil fuel 
exports, subsidies to fossil fuels and electricity, level of human development, local electricity and fuel 
prices, and investments in renewable energy per capita and per km2).  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. K-Means Clustering by Principal Components (Five first principal components) 
 

         While inherent characteristics of a country (e.g., population, size, resource availability, 
institutional strength, resource dependency) and its enabling environment (e.g., number of policies, 
energy prices) can allow decarbonization to foster, it doesn’t necessarily mean that a country will make 
progress. Here, we argue that countries are driven by a variety of motivations to decarbonize of which 
social progress, sustainability, and energy independence represent but three of the myriad of other 
motivations that exist. For this portion of the analysis we built a social progress proxy which is 
constructed using the Social Progress Index from the Social Progress Imperative Network (60) and a 
Quality of Governance Score from The Quality of Governance Initiative (56) (0-1, with 1 being the 
highest score), built a Sustainability score combining the Yale Environmental Performance Index (59) 
and the Total Ecological Footprint( 60) from the Global Footprint Network (0-1, with 1 being the 
highest score for sustainability), and a motivation for energy independence proxy constructed from 
net energy imports extracted from the World Bank Development Indicators (55). All variables are 
scaled between 0 and 1 and were then assigned to countries depending on their relative progress across 
each proxy. The maximum score across three-dimensional motivational spectrum was 3. Higher scores 
across the motivation spectrum indicate greater progress towards decarbonization. The three outliers: 
Kenya, Nicaragua, and Lithuania are all over performers relative to their region and income group 
across the three different proxies of the motivation spectrum. 
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Figure 10: Components of the Decarbonization Spectrum – Proxies for Social Progress, Sustainability, and 

Energy Dependence 
 

 
1.5 Results and Discussion 
 
What we find from our global data comparison is that even in the absence of major climate change 
policy instruments, the rising south has been making rapid progress, and in fact displaying a wide range 

Over performers relative to income-group and regional progress.

Countries making progress along the decarbonization motivation spectrum.

A B 

C D 
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of different approaches to building the necessary enabling environments and starting conditions.  
Some of these motivations include energy independence and security, as well as the opportunistic 
profit from regional interconnections. For the case of countries such as Nicaragua (46% non-hydro 
renewable energy generation), Uruguay (16%), and Morocco (7%)(63, 64). Others, have stand-alone 
motivations, enabling environments and inherent characteristics such as Honduras (11%), which 
recently became the first non-island country in the world to have 10% solar capacity despite its current 
violent crime crisis (65, 66), Costa Rica (24%), which  has a long tradition of conservation and 
environmental stewardship surrounding coffee and eco-tourism, and Kenya (46%), whose crippling 
droughts in the 1990s incentivized the country towards a power sector reform and early investments 
in geothermal (67). Other highlights include Brazil (10%), which, despite hydropower, oil dependency, 
and current political instability has one of the most progressive solar net-metering policies in the world 
(and one of the most progressive uses of biofuels)(68, 69), and Chile (10%), whose initial renewable 
energy progress has been motivated by the provision of cheap power to the power-hungry mining 
industry in the northern part of the country (70). Denmark, a global leader in wind energy 
development, did not begin its low-carbon transition through climate-related top-down policy (44, 
71–75). In fact, the support of civil society to revitalize rural areas using wind energy in Denmark date 
back to the 1900s, but it took the energy crisis of the 1970s, grassroots opposition to nuclear energy, 
and community-driven wind cooperatives (76) that directly benefitted from clean energy investments 
to catalyze the low-carbon transition the country observes today. 

For the United States, it is meaningful to consider change beyond the nation as a whole, and 
increasingly so as the politics of climate change become insurmountable, and cities and states continue 
to make much faster progress than the nation. States like Iowa, South Dakota, and Kansas produce 
large shares of their generation from wind energy (31%, 26%, and 24% respectively)(54), while 
Arizona, Hawaii, and Nevada have large amounts of installed solar energy per capita (167,137, and 
123 Watts per capita, respectively) (77), and California (78), New York (79) and Hawaii (80) have 
adopted aggressive renewable energy goals (50% by 2030 for CA and NY, and 100% by 2045 for 
Hawaii). Furthermore, traditionally rural and republican-majority states like Iowa, South Dakota and 
Kansas have reached this progress in a pursuit of diverse motivations, and arguably more relaxed 
policy targets than California and New York, which are often touted as the nation’s climate and 
renewable energy leaders.  

 
1.5.1 Inherent Characteristics and Enabling Environments as Drivers of Global Energy 
System Decarbonization 
 
 Our results suggest that twenty principal components describe 60% and 70% of the variance on the 
full and subset data, respectively. Although we only select the principal components with the highest 
variance as regressors, we find that low-variance components still play a large role in accurately 
capturing the full variance of the data. Analyzing the contribution of each individual variable to each 
principal component suggests that there are several underlying enabling environments and inherent 
characteristics that are driving global decarbonization progress. In the full dataset, which includes all 
countries across levels of income, regions and levels of development, several features emerge that, 
consistent with the literature, are good predictors for sparking decarbonization. These features include 
inherent characteristics (e.g., income per capita, quality of governance, human development index, 
level of foreign energy import dependency, level of dependency on resource extraction, land size, and 
population) and enabling environments (number of policies passed to foster renewable energy, 
investments on renewable energy per km2 and per capita, aid, and historical early investments in 
renewable energy such as biomass for electricity and geothermal). When we perform our analysis on 
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the subset of countries with income per capita below $US 30,000, we find that local energy prices (fuel 
and electricity), foreign energy import dependency, investments per capita and per km2, and historical 
early investments in renewable energy (such as biomass for electricity and geothermal) play a larger 
role in predicting decarbonization progress, whereas the weight and significance of variables 
describing quality of governance and policy support for renewable energy is significantly reduced.  
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[1] For governance score we consider or the “Government Effectiveness and Control of Corruption” indicators by the World Bank. 
Being part of lower governance score percentiles is indicative of weaker governance.(55) 
[2] First percentage represents 2014 data from the International Energy Agency (latest available data), second percentage represents 
latest data as reported to the International Renewable Energy Agency.(81) 
 
Table 1. Motivations and Strategies for Energy System Decarbonization: The range of motivations for 
energy system decarbonization span opportunistic investments, energy security and environmental 
sustainability. The enabling strategies range from feed-in tariffs to tax credits across a spectrum of governance 
status.  

Nation Motivations Support 
Mechanisms 

Governance 
Status (2015)1 

Non-
Hydropower 
Renewable 
Generation 
(2015)2 

Honduras Economic Growth 
Social Progress(68) 

Feed-in tariffs  
Tax credits 

20th and 35th 
percentile. 

11%, 18% 

Nicaragua Energy 
Independence 
Social Progress(69) 
 

90% Renewable 
Energy Target by 
2020 
Feed-in Tariffs 
Investment 
incentives 
 

21st and 19th 
percentile 

46%, 63% 

Costa Rica Environmental 
Sustainability  
Economic 
Growth(70) 

100% Renewable 
Energy Target by 
2030  
Feed-in Tariffs 
 

Ranked in 67th 
and 75th 
percentile 

24%, 25%  

Brazil Energy Security 
Opportunistic 
Investment 
Status(71) 

Renewable 
Energy Target (30 
GW by 2024) 
Low Interest 
Investments 
Technological 
mandates for 
bioethanol 

Ranked in 48th 
and 41st 
percentile 

10%, 12% 

Chile Energy 
Independence 
Economic Growth 
Social Progress(72) 
 

20% Renewable 
Energy Target by 
2025 
Carbon Tax 
 

85th and 88th 
percentile 

10%, 13% 

Uruguay Energy Security  
Environmental 
Sustainability(73) 

95% Renewable 
Energy Target by 
2017 
Feed-in Tariffs 

Ranked in the 
73rd and 89th 
percentile 

16%, 35% 

Kenya Economic Growth 
Opportunistic 
Investments(74) 

Renewable Energy 
Target (15000 
MW by 2030)  
Feed-in Tariffs  
Tax credits 

Ranked in the 
44th and 13th 
percentile 

46%, 48% 

Morocco Economic Growth 
Opportunistic 
Investments(75) 

50% Renewable 
Energy Target by 
2030  
Investment 
incentives 

Ranked in the 
50th percentile  

7%, 10% 
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According to our analysis, there is not one key predictor of decarbonization, but rather, a 

multitude of factors that may contribute to transformative progress. The data and our analysis suggests 
that several economic- and energy-evolution dynamics are at play in these emerging low-carbon energy 
transitions. Figure 11 represents a visual summary of some of the core features which are extracted 
from the principal component analysis. Features that are negatively correlated with decarbonization 
progress include a large dependency on natural resource rents as a percentage of GDP, a high 
percentage of fuel exports as merchandise exports, and being a large net energy exporter (Figure 11A 
and 11C). While relatively higher energy prices (e.g., fuel, commercial, retail and spot prices), relatively 
high renewable energy investments per capita and per km2, and a relatively high level of energy import 
dependency is associated with a faster pace of decarbonization (Figure 11B). Except for two outliers 
(Chile and Papua New Guinea), these data should present weariness for global decarbonization policy 
makers. In Chile, solar and wind farms are beginning to be used to displace fossil fuel expenditures in 
mining, and PNG was the first country to submit the final version of its nationally determined 
contributions at COP21 despite it being heavily dependent on hydrocarbon exports. Chile’s mines 
produce the largest amount of fine copper, the second largest amount of gold, and half the world’s 
lithium, with mining consuming approximately 85% of capacity in its northern grid (70). PNG’s 
economy is greatly reliant on the export earnings from minerals and energy (82) extraction and thus 
far has only developed about 2% of its high potential for renewable energy.   

Without specific measures such as feed-in tariffs, or green certificates, PNG – with large 
geothermal potential – has begun an attempt to shift towards the adoption of renewables in an effort 
to reduce local consumption of fossil fuels and increase revenue from the mineral and petroleum 
sectors (81–83). Other fossil fuel lock-in concerns, as they relate to countries that are major climate 
change drivers, are that the United States is set to become a net energy exporter within the next decade 
(84), China provides the largest amount of fossil fuel subsidies in the world (while almost single 
handedly having catalyzed the drop in PV prices)(85) and several top-ten CO2 emitters such as Russia, 
Iran, and Saudi Arabia are all largely dependent on resource rents (Figure 11A). In addition to the vast 
existing literature on the resource curse, new literature has begun detailing how there could be an 
emerging wave of carbon lock-in affecting the rising south through the global renaissance of coal (86, 
87).  While this scenario may seem daunting, it is important to highlight that the data also suggests 
that there are also enabling environments, and intrinsic characteristics that present pockets of 
opportunity where long-term decarbonization could be enabled. Our analysis suggests that countries 
without a strong natural-resource-rents dependency, who are energy import dependent, with relatively 
high energy prices, and with relatively higher renewable energy investments per capita and per km2, 
could make significant progress towards long-term decarbonization (Figure 11B and 11C).  
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(C) 
 

 

 

 

 

 

 

 

 

 

 

Figure 11. Data Mining Extracts: A Diversity of Key Inherent Characteristics and Enabling Environments Driving 
(or Hindering) Global Decarbonization. Our analysis and data suggests, that among several other features 
(described above), a relatively large resource rents dependency and local fossil fuel subsidies hinder 
decarbonization (4A), whereas relatively large investments in renewable energy (per capita and km2) (4B), a 
relatively larger energy import dependency, and relatively higher energy prices (gasoline pump prices and mean 
residential, industrial, commercial, and spot prices where available) provide a suitable environment for rapid 
decarbonization. Countries with positive demand side enabling environments and inherent characteristics for 
decarbonization could be pursued as targeted investments for the global diffusion of renewable energy 
technologies. 

 

1.5.2 Motivation as a Key Driver for Long Term Decarbonization Progress 
 
 Given the historical and systemic challenges (e.g., political, institutional, technological and behavioral) 
of transitioning towards a low-carbon energy system (87), it is crucial to define new strategies and 
support mechanism to rekindle and achieve goals towards global decarbonization. Climate change 
mitigation is often cited as the main motivator for decarbonization, with contingent monetary rewards, 
global meeting invitations, and capacity-building exercises made available if countries create enabling 
environments to achieve those goals. There has been little discussion, however, about the creation of 
support mechanisms geared towards other motivations that can catalyze long-term low-carbon energy 
system transitions.  

In recent years, behavioral research has brought to light the importance of understanding the 
multiple motivations that exist behind reaching climate and environment related goals, and the risks 
of using extrinsic motivators to facilitate long-term behavioral change. While this research has focused 
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on the individual level, it has come to a broad consensus that a multitude of factors exist that can 
determine the adoption of or aversion to renewable energy technologies including appeal comparisons 
of monetary vs. non-monetary incentives (e.g., morals, environmental and climate change co-
benefits)(88, 89), the benefits and caveats of using competitions to achieving goals (90), and the perils 
of framing solutions around unique political ideologies (91). For example, research in the United States 
has shown that, in some states, framing adoption of energy efficiency technology as an environmental 
beneficial solution can be detrimental to its adoption (91). A desire to understand the motivations 
through which individuals may adopt or fail to adopt a behavior change or a new technology ties many 
of these studies together, generally finding that intrinsic motivation can be one of the most effective 
mechanisms for inducing long-term behavioral change (88, 92–95). While this body of research has 
largely focused on understanding individual motivations for renewable energy or energy efficiency 
adoption, we argue that the same theories can be used to understand the multiple motivations that 
exist for a nation state to decarbonize. 

Frameworks for advancing solutions to the lack of fast-paced progress in energy system 
decarbonization could borrow intellectually from self-determination and intrinsic motivation theory 
(1, 2). Generally, the theory suggests that motivation appears across a continuum of extrinsic and 
intrinsic processes, in which pure intrinsic motivation is guided by interest, enjoyment, and inherent 
satisfaction in an activity, and pure extrinsic motivation is guided by group compliance, and the 
presence of external rewards and punishments. Within the continuum of extrinsic motivators, ego-
involvement, internal rewards and punishments, personal importance and synthesis with self all 
change the position where an individual might lie across the motivation continuum. The theory 
suggests that extrinsic motivators (e.g., monetary rewards and punishments) may often forestall 
intrinsic motivation and merely provide short-term change as compliance with a project, and an 
activity may quickly end if the incentive or reward is removed. The theory posits that truly 
understanding what motivates and drives individuals, and designing mechanisms that fit with their 
intrinsic motivation, is key for ensuring long-term behavior change. 

Considering global decarbonization, we argue that it is crucial to think about a country’s 
historical motivations when enacting change in order to design adequate support mechanisms. Local 
and global environmental challenges, climate mitigation, technological innovation and leadership, 
energy independence and national security, the creation of niche markets and new industries, 
economic efficiency, group compliance, and need for foreign direct investment are but a few of the 
motivators that may drive energy system decarbonization.  The key, we argue, is that framing 
decarbonization under the over-arching motivation of mitigating climate change might be 
disadvantageous for long-term progress. Instead, pathway catalysts must be designed by first 
understanding the unique immediate needs and motivations of countries and working with local 
change agents (e.g., entrepreneurs, local vs. federal governments, cities vs. states, and universities) to 
design strategies that best fit their intrinsic characteristics (e.g., land size, population, quality of 
governance) and enabling environments (e.g., amount of investment, number of policies, resource 
dependency).  

To exemplify the decarbonization motivation spectrum, we use data from the Social Progress 
Imperative, the Quality of Governance Initiative, the Yale Environmental Performance Index, the 
Global Footprint Network and the World Bank Development Indicators (55–57, 59, 60) to create 
proxies for three key motivators: social progress, local sustainability, and desire for energy 
independence. We scale these metrics and assign a score to each country across the sum of these three 
motivators, and plot the score against a dependent variable measuring decarbonization progress 
between 1980 and 2014 (or latest data available) in enabling a low-carbon energy transition (difference 
between total percentage generation from non-hydropower renewable resources between 1980 and 
2014, or most recent year). We find a slope change in the trend at a motivational score of 1.75 
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(observed as an elbow in Figure 10D), with countries that score higher along the motivational 
spectrum having made greater progress towards decarbonization. There are four outliers: Kenya, 
Nicaragua, Denmark and Lithuania – all over-performers relative to their income groups – and with 
different motivations for sustained decarbonization progress.  To help conceptualize the various 
features of decarbonization and to guide the design of supporting mechanisms, we propose a 
framework for a country’s decarbonization pathway (Figure 10D). First, one must understand the 
unique motivations that could drive change in different countries, then, inherent characteristics 
(unchangeable, or very hard to change) and enabling environments (constantly evolving) are taken 
into account to design and implement support mechanisms to promote decarbonization. 
 
1.5.3 New Hypotheses and Possible Ways Forward 
	
Our findings demonstrate that there is not one major driver of decarbonization, but rather, a multitude 
of factors that can contribute to transformative progress. Globally, there are many countries with 
favorable combinations of inherent characteristics and enabling environments for kindling 
decarbonization that remain, however, in the path towards carbon lock-in. This, we argue, can be 
prevented and we suggest four opportunities to reinvigorate global decarbonization progress based 
on our findings, as follows: 

1) Identify and Invest in Pockets of Demand-Side Opportunity:  Our analysis suggests that there 
are favorable enabling environments and inherent characteristics that enable decarbonization to occur 
rapidly, and unfavorable conditions that slow down or thwart decarbonization progress. We argue that 
it is essential to identify and tap into pockets of opportunity with favorable conditions in order to 
spark neighbor and technology diffusion effects to occur across a diversity of regions, incomes, and 
levels of development. While most energy system decarbonization analyses focus on supply-side 
opportunities (e.g., renewable resource potential maps), we argue that it may be equally or more 
important to focus on country-specific demand-side drivers (adequate enabling environments and 
inherent characteristics) and create a diversity of mechanisms to support them.  

2) Diversify the types of support mechanisms for decarbonization: While the COP21 meeting 
was successful due to the number of parties that submitted Intended Nationally Determined 
Contributions (INDCs), as well as the types of proposals that were put forward, recent analysis of the 
INDCs also suggests that these goals would not be sufficient to meet current global stabilization 
targets (58, 96). More importantly, there is an absence of support mechanisms that could tie a country’s 
immediate needs and intrinsic motivations to the long-term decarbonization goals and strategies stated 
in its INDCs. For example, some countries might be motivated by political and technological 
leadership, while others might be more motivated by national security, energy access and economic 
efficiency. Designing diverse support mechanisms, such as pay by performance goals, financing 
country-specific intrinsic motivators, local capacity building, and technological partnerships, that are 
reflective of the diversity of motivations could support clusters of countries unified by similar 
motivations. These clusters could encourage countries to learn from each other try new ways of 
thinking about energy transitions, while working on their country-specific goals that in turn support 
progress towards decarbonization.  

3) Diversify the change agents that receive support for decarbonization:  In some countries, 
government institutions can foster top-down enabling environments for decarbonization. However, 
in other countries, government institutions can create roadblocks to energy system transformation. 
Indeed, recent research suggests that policy formulation is not sufficient in countries with an 
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“institutional gap”, and suggests that clear and strong financial incentives, predictability of government 
decision making, and streamlined permitting procedures are as important (or more) as goal-setting 
decarbonization policies (51, 52). As the energy transitions literature suggests, the repertoire of policies 
and institution types designed to support late technology adopters should be very different from those 
for first adopters and early pioneers,  especially if the technology carries low risk (28). Recognizing the 
appropriate change agents is key to designing support mechanisms that work specifically for countries 
who want to simply adopt technology, and do not seek to build research and development capacity 
like first adopters tend to prefer. To tap these pockets of opportunity, it is crucial to identify local 
successful change agents and provide support mechanisms that help them achieve their goals.  

 
 
 

 

 

  

 

 

 

 

 

 

 

Figure 12. The Decarbonization Motivation Spectrum: The diagram illustrates how the decarbonization 
motivation spectrum could be used when evaluating or designing support mechanisms for long-term 
decarbonization. Countries are evaluated on an individual basis, analyzing their trajectories in decision making 
and spectrum of motivations surrounding energy planning. After identifying key motivators, country specific 
inherent characteristics and enabling environments are considered in the design of long-term decarbonization 
support mechanisms. 

  

4) Think beyond energy and promote non-optimal pathways: While it is useful to develop and 
analyze optimal techno-economic decarbonization pathways, in reality, most countries have complex 
political, socio-economic and cultural constraints that are not accounted for in such analyses, making 
engineered optimal pathways unattainable.  A narrow focus on techno-economic optimality could be 
detrimental to realizing modest progress on decarbonization. Take, for example, countries where local 
pollution, water scarcity and management, garbage, or deforestation pathways might be immediate 
pressing issues. A narrow focus on least-cost technologically optimal pathways could overplay the 
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promise of large-scale wind and solar developments, as compared to alternative solutions including 
methane collecting at landfills, water use efficiency programs (that in turn save energy), or funding for 
inclusive and fair conservation land management practices that may in fact be better suited for the 
particular country.  

There are many countries around the world with favorable features (inherent characteristics and 
enabling environments) for long-term decarbonization, but also many without. Our analysis suggests 
that it is crucial for change agents, policymakers, and financiers to understand the roles of intrinsic 
motivation, inherent characteristics and enabling environments in finding new pockets of investment 
for renewable energy. Our study, corroborated by recent literature (88, 89, 91, 92, 94, 95), suggests 
that there is a wide spectrum of these features for decarbonization ranging from sustainability, to 
energy independence and national security, to technological leadership and social progress (97). 
Designing support mechanisms that are encompassing of this wide spectrum of motivations is crucial 
to sparking decarbonization across incomes, regions, and levels of human development. Investing in 
pockets of change, first regional adopters, and harnessing positive neighbor low-carbon relationships 
is key for the long-term diffusion of efficient low-carbon strategies. These pockets of progress towards 
low-carbon energy systems, as historical energy transitions suggest, could spread their knowledge and 
experiences to other countries and regions that have so far been timid in stepping forward (26, 28, 
98).  

 
1.5.4 Limitations 
	
Out of 130 candidate countries, the analysis was performed on two subsets that included 76 and 45 
countries, which means that our results can only explain variability within this smaller data subset. In 
the future, and as countries and regions implement better data collection protocols, studies like this 
can be replicated on a regular basis to constantly re-evaluate the mechanisms that are being successful 
towards decarbonization, and under what conditions. A limitation of is this study is that it did not 
differentiate between all the different policy mechanisms that countries implement or design to enable 
decarbonization.  Future work could implement a similar analysis to that performed here, but with 
additional policy details, in an attempt to extract the types of policies that are most effective at sparking 
or sustaining long-term decarbonization progress, and under what conditions. 
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Chapter 2: New Methods in Elucidating Demand for the Design and 
Implementation of Appropriate Sustainable Energy Interventions 
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2.1 Introduction 
	
Predicting demand for electricity, and services, is a crucial element for designing, implementing, and 
managing appropriate and sustainable energy interventions (28, 98, 99). Demand projections inform 
planning at all levels, from traditional country-wide grid capacity expansion planning, to the provision 
of community energy services, including households and small businesses. Prediction resolution varies 
across space and time, with high-temporal resolution prediction being used to reduce grid uncertainty 
(e.g., seconds, minutes, hours), while lower-temporal resolution prediction (e.g., months, years) can 
be used for long term planning. This chapter uses a mix of high spatial resolution data sets, surveys, 
sensor data, and data mining methods to develop new methods for elucidating demand at the 
household and community level, and to help close the ‘energy efficiency gap’ in resource constrained 
environments. 
 Literature for elucidating demand can be divided into three general categories: survey driven 
studies exploring the social dynamics of demand (100–103), broad techo-economic approaches (104–
108), and machine learning approaches blending large data sets and social science (109–111). The first 
gives highly-detailed depictions of users (e.g., behavior, preferences, trade-offs) but is usually not 
generalizable due to small sample sizes.  The second generally assumes that appliance stocks, 
technological diffusion, and electricity demand are predominantly income driven, and follow western-
style development paths. They ignore micro-level dynamics (e.g., household and small business 
specific factors), country-by-country heterogeneity (e.g., clustering all ‘developing countries’ together), 
cultural context, and within-country heterogeneity (109). The last one is a mixed methods approach 
blending high-resolution data-sets (e.g., census, appliance stocks, demographic and healthcare data, 
natural and infrastructural data) and social dynamics (e.g., affordability, wealth, race, and religion) to 
explore the within-country heterogeneity of demand (109).  

Elucidating demand is also crucial for progress in energy efficiency, but here as well, the 
literature is divided. Some estimates suggest that nearly two-thirds of the economic potential of energy 
efficiency remains unfulfilled, that 70% of global energy use exists outside of existing efficiency 
performance requirements, and that the untapped efficiency resource represents approximately 40% 
of the green house abatement potential that can be realized below a cost of $US 80 per metric ton of 
tCO2e (112–114). Other analysis suggests that this energy efficiency gap is overstated by traditional 
analysis (e.g., engineering estimates and empirical estimates of returns observed to investments) that 
fails to incorporate physical, risk and opportunity costs, costs to project participants, and other 
unobserved factors that can reduce the effectiveness of energy efficiency interventions (e.g., behavioral 
aspects) (115). But, what is the efficiency gap where there are no baseline data? What about places 
with no information on appliance stocks, behavior, or household and building envelopes? How can 
reliable estimates be developed for these contexts? 
 To our knowledge, and using Kenya as an example, this chapter presents – in collaboration 
with colleagues from the IBM Africa Nairobi research lab – the first reliable data-driven approach at 
elucidating household appliance ownership and induced household demand for electricity using a 
mixture of large-scale social demographic data, spatial data, and machine learning approaches (110). 
We also use data-mining and an extended literature review to explore and identify the enabling 
conditions under which electrification can lead to wealth via micro-enterprise creation in rural areas. 
The latter also presents the first analysis to contrast and compare the drawbacks/inaccuracies of the 
modern use of nightlights as a panacea for tracking wealth in unelectrified regions. Finally, and using 
Nicaragua as a case study, this chapter develops a framework on how to collect data for baseline energy 
efficiency estimates in resource constrained environments using a mixed methods approach 
combining surveys, sensors, population sampling and Bayesian updating.  
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2.2 Background: Elucidating Residential Demand 
 
Advocates of centralized and distributed power systems are engaged in a vigorous debate over the 
economic, developmental, environmental, and ethical implications of the diversity of existing 
approaches for expanding electricity access to the un-electrified rural poor (116–118). Large, 
interconnected power systems capture significant economies of scale and resource efficiencies and 
flexible with regards to future demand growth. On the other hand, they require large upfront 
investments in generation and transmission that can be hard to justify in the absence of robust, 
accurate demand projections. Small, distributed power systems that serve individual households, 
villages, or towns are of increasing interest due to sustained technology and cost improvements in 
solar photovoltaics and other distributed generation, solid-state power conversion, and metering and 
management systems. If implemented properly, these nascent technologies may present a cost-
effective, low-carbon approach to expanding electricity access that bypasses some of the financing, 
execution, and corruption challenges that can plague large energy infrastructure projects. However, 
poorly designed and executed build-outs of distributed power systems run the risk of locking rural 
populations into small quantities of high cost, low reliability electricity with little room for demand 
growth. In order to develop sound analyses and inform rural electrification stakeholder decision-
making among various centralized and distributed approaches, accurate estimates of electricity costs 
and demand for electricity services are needed.  

Induced demand represents the potential additional electricity consumption if reliable 
electricity services were made available. Quantifying this potential for demand is critical in evaluating 
the feasibility of a particular electrification program or business in a particular location; if there is 
enough demand to generate sufficient revenue to cover operational costs, an electrification business 
can grow to serve more and more customers or the program can be expanded to more areas. Most 
approaches to off-grid electricity demand estimation, as well as studies that evaluate users’ ability and 
willingness to pay for electricity services, have traditionally used social science methods such as surveys 
(97, 98), field and longitudinal studies (100, 101), and stated preferences (contingent valuation, ability 
and willingness to pay) (121, 122). These approaches are extremely valuable as they usually provide 
detailed knowledge about a consumer and the intricacies of daily life in a region, village, or town. They 
can be used for evaluating the preference and decision making process that goes into buying and using 
different energy services (fuelwood or gas for cooking, kerosene or solar lamps for lighting, for 
example), and perhaps later be used for design of optimal tariff structures and demand-side 
management schemes. However, although extremely insightful about a particular place, they are time- 
and resource-intensive, and results are not usually generalizable.  End-use methods can allow the 
researcher to incorporate different scenarios (behavioral dynamics, energy efficient de- vices, and 
income and energy transitions, for example), and data sources (census and appliance ownership data, 
technology characteristics, and usage patterns, among others) to make assertions about electricity 
consumption in different sectors and areas of village life (123). These approaches can facilitate 
generalization across larger spatial footprints.  
 
2.2.1 A Review of Supply-side Technology Options for Electrification 
 
To further contextualize the demand side, it is important to summarize supply side approaches to rural 
electrification. These approaches can be coarsely condensed into three categories: 1) centralized grid 
extension, 2) solar home systems, and 3) micro- and mini-grids. The suitability of each electrification 
concept depends on local geographic factors (topography, renewable resources, etc.), electricity 
demand, and ability to pay for electricity services. In the absence of any of these technology options, 
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rural consumers sometimes resort to auto-motive batteries and small commercial charging services to 
meet their electricity needs. These modes of minimal access are not consistent with sustained human 
and economic development and are not considered here.  

The extension of national- or regional-scale electric power systems (“centralized grids”) to 
rural areas has traditionally been the main strategy for rural electrification. However, grid extension 
becomes significantly less cost-effective for sparsely settled areas with relatively low demand. Due to 
these fundamental factors and to the typically high cost of materials in sparse rural areas, grid extension 
into remote rural communities is often economically prohibitive, as budgets for electrification are 
constrained and utilities are unable to recoup the full costs through connection fees and revenue from 
electricity sales. The result is that grid extension becomes a negative profit endeavor, giving little 
incentive for utility companies to undertake such programs in the absence of government mandates 
or subsidies. Another major challenge with this approach is the relatively weak reliability of the power 
grid in low, low-middle income countries. In Kenya, and according to the World Bank Enterprise 
Survey, typical commercial consumers with grid electricity experience an average of 6.3 power outages 
per month, with the average outage lasting 5.6 hours (55). Outage rates and durations vary significantly 
across sub-Saharan Africa but are non- trivial in most nations. Low reliability significantly diminishes 
the value of electricity services, particularly for commercial or industrial uses and cold storage, and 
mitigating this problem requires costly investments in backup generation systems. On the positive 
side, by capturing economies of scale and efficiencies associated with large generation facilities and 
large interconnection footprints, the grid offers the lowest marginal costs for electricity and the 
greatest potential for demand growth. In 2014, Kenya’s national utility, Kenya Power and Lighting 
Company (KPLC) was charging a fixed monthly cost of KES 120 (US$1.36) and consumption tariffs 
of KES 2.50/kWh (US$0.03/kWh) for the first 50 kWh, KES 13.68/kWh (US$0.16/kWh) for 
consumption between 50 and 1500 kWh, and KES 21.57/kWh (US$0.25/kWh) for all consumption 
above 1500 kWh for residential customers (124). However, there is an additional upfront connection 
fee of KES 75,000 (US$852), which raises the barrier to entry to beyond the means of the typical 
potential rural customer. In recent years, the Kenyan Rural Electrification Authority has focused its 
efforts on electrifying health clinics, public secondary schools, and market centers and subsequently 
offering subsidized connections to nearby homes and businesses (125). Despite significant progress 
in electrifying these public facilities, financing residential and commercial connections remains a 
barrier (125).   

In Kenya, solar home systems are standalone solar energy kits that typically consist of a 5-100 
W solar panel, a charge controller, a lead-acid battery, and a suite of DC appliances like LED lights, 
phone charging connections, radios, and televisions (126). The solar panel and battery are sized to 
provide reliable electricity to power the typical usage of the associated appliances. However, while 
reliability is high, the total electricity generation is small and essentially fixed over the life of the 
equipment, limiting demand growth with time. Additionally, these systems typically only support DC 
appliances, which are less widely available and are typically more expensive than their AC counterparts. 
M-KOPA is one of the leading solar home system companies in Kenya and Uganda, with 100,000 
units sold in less than two years of commercial operation (126). Its primary product is a solar energy 
kit, consisting of a 5W solar panel, a charge controller, a sealed lead-acid battery, three LED lights, a 
hub for mobile phone charging, and a radio. M-KOPA utilizes an innovative pricing model, whereby 
customers pay a KES 2999 down payment (US$34) and KES 50 per day (US$0.57), paid via a mobile 
money platform, for one year before owning the kit outright (127). This results in electricity that is 
more than sixty times the cost of centralized grid electricity for every unit of energy consumed 
(assuming a two-year battery lifetime). However, the low-down payment cost in comparison to the 
high grid connection cost makes this option more accessible to potential rural consumers.  

Microgrids and minigrids are small electric power systems that typically comprise one or more 
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generation sources – such as solar panels, small wind turbines, or diesel gensets – a battery bank, a 
distribution network, and associated metering and management hardware (128). They are arbitrarily  
distinguished by their size, with microgrids here referring to systems of 1-100 kW and minigrids 
referring to systems larger than 100 kW. If designed and operated properly, these systems can provide 
high power quality and reliability – however, this requires substantial data on variability of load and 
renewable resources or conservative overdesign of generation and storage components. In minigrids 
and larger microgrids, the larger load footprint and power ratings of generation and storage may allow 
accommodation of sharply transient productive loads like welding and grain milling.  

In Kenya, both small village-scale and large town-scale microgrid projects are being 
implemented by a variety of private and public entities. Access Energy is a Kenya-based microgrid 
design and operation company that aims to provide affordable electricity to rural populations in East 
Africa (129). It has installed 5 systems to serve remote communities in Western and Central Kenya. 
These solar PV and/or wind turbine systems are typically 1-10 kW in generation capacity and serve 
10- 100 people in a village. The distribution network of these microgrids is currently limited to a 100m 
radius due to distribution line losses. Much like the centralized grid option, Access Energy consumers 
are charged a connection fee and then a consumption tariff. However, while the electricity is around 
KES 400/kWh (US$4.55/kWh), the connection fee is in the low thousands of KES (129). Therefore, 
while rural microgrid customers pay roughly twenty times more for every unit of electricity than their 
centralized grid counterparts, they are more easily able to afford the connection fee that allows them 
“first access” (130). A number of large towns in Kenya that are situated far from the national grid are 
served by larger-scale (130-3400 kW) minigrids built and operated by the utility, KPLC. These 
minigrids tend to be fully diesel, though recently some have been hybridized with small amounts of 
solar and wind (130).  
 
2.3 Data: Elucidating Off-grid Residential Demand  
	

The data sources used in this study are briefly described in Table 2. Two principal sources of 
socioeconomic data were utilized for this analysis. Exploring Kenya’s Inequality: Pulling Apart or 
Pooling Together (131), a joint publication of the Society for International Development and the 
Kenya National Bureau of Statistics (herein, “SID-KNBS”), includes information on household-level 
demographics, employment, education, and poverty indicators for each ward in Kenya (wards are the 
smallest administrative unit, with each covering roughly 30,000 people, and numbering 1455 in 
Kenya). These data were derived from the 2009 Kenyan census and the 2005-2006 Kenya Integrated 
Household and Budget Survey. Details on the disaggregation of the data from administrative units 
preceding a constitutional restructuring in 2010 to the current boundaries and the sampling errors 
associated with these small areas are included in the report. Table 2 summarizes the types of features 
which are incorporated in our analysis. For brevity, a full description of the 100+ features in the dataset 
is omitted.  

A subset of data from the 2008-2009 Kenya Demographic and Health Survey 
(herein,“DHS”)is also utilized (132). Specifically, detailed household-level information is available 
from ∼9000 households across ∼400 sample sites nationally on electricity access and ownership of a 
number of electricity- related assets. These data are summarized in Table 1. The 2008-2009 survey 
represents the most recent information available, though a forthcoming 2014 survey can be used to 
update results. In addition to these socioeconomic and electricity-related data, geographic data 
describing the ward boundaries of Kenya were utilized for visualization purposes and to derive 
secondary data such as population densities. These geographic data were compiled by a private 
consultant  from sources available on the website of the Independent Electoral and Boundaries 
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Commission of Kenya (133).  
 

 
 
 
 
 
 
 

Table 2. Offgrid Residential Demand Data Sources 

 
 

Table 2. Data Sources 
	
	
2.4 Methods and Analysis: Elucidating Residential Demand 
  
The electricity access and asset ownership data from DHS were transformed into a format equivalent 
to that of the SID- KNBS socioeconomic data. That is, for each variable of interest, the transformed 
data is a proportion of households in each ward possessing a certain characteristic. This was 
accomplished by first aggregating the original binary variables (e.g. possession/non-possession of a 
television, access/non- access to electricity) for each household into a proportion of households at a 
given sample site (∼400 across Kenya) that possess the relevant asset or have the relevant access. Next, 
the DHS sample sites were matched to their corresponding wards via their geographic coordinates. 
Where multiple sample sites exist within a single ward, the value for the ward was considered to the 
be the mean of the associated sample site values for lack of a more rigorously justifiable method. A 
map of Kenya’s wards and the locations of the 2008 DHS sample sites (with corresponding wards 
highlighted) is given in Figure 13. After necessary data cleaning, 1401 wards of the original 1455 
remain. This ∼4% attrition is due to missing socioeconomic or geospatial data or to irreconcilable 
differences in place names between the datasets.  

We now estimate, at a fine geographic resolution, the demand for residential electricity services 
(and implicitly, the ability to pay for such services) under two scenarios: (1) current levels of electricity 
access; and (2) expanded access to electricity services in localities which do not currently have access. 
The approach employed here is to develop estimates of electricity-consuming appliance ownership as 
a proxy for an economically sustainable level of residential electricity demand under each of these 
scenarios. We will refer to these proxies as current ownership and total ownership, respectively, for 
the current access and expanded access scenarios outlined above. Induced ownership, the additional 
appliance ownership one would expect when electricity is made available, is simply the difference 
between total ownership and current ownership (analogously, we will refer to current demand, total 
demand, and induced demand for electricity). To develop these proxy estimates, we employ k-nearest 
neighbors regression to predict detailed ownership information across a finer and wider geographic 
basis than the DHS using socioeconomic similarity from the SID-KNBS data.  

Implicit in this approach is the assumption that localities that share socioeconomic 
characteristics will also have similar demand for electricity services and similar ability to pay for them. 
Additionally, this assumes that electricity prices are uniform across the locations where ownership 
observations are available (in this case, the DHS sample sites). This price uniformity will likely not be 
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the case in a world with a diverse range of potential technologies and business models for rural 
electrification. We address this issue later on in the chapter. 
 

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 13. Kenyan Wards and 2008 DHS Sample Sites. 
 

 
We choose to employ k-nearest neighbors regression for its simplicity and intuitive 

interpretation. Other supervised approaches, such as multivariate linear regression, were explored. The 
underlying structure of the data was found to be highly non-linear, and in the absence of a domain- 
informed rationale for more complex pre-supposed relationships between the dozens of 
socioeconomic characteristics and appliance ownership levels, this technique was abandoned. 
Similarly, k-means and hierarchical clustering techniques were explored to determine whether the 
wards form natural groupings by their socioeconomic characteristics. While the resulting clusters do 
build intuition about the socio-economics of Kenya’s wards, the distributions of the data are rather 
continuous (rather than tightly clustered) so the validity of any hard-assignment clustering techniques 
is dubious. Lastly, while principal components analysis was explored, the small datasets obviated the 
need to compress the data for computational reasons, and domain knowledge- driven feature 
reduction is preferred for interpretability reasons.  

In defining a similarity metric for k-nearest neighbors regression, care must be taken to include 
characteristics that impact the quantities of interest but not to allow regional differences that are 
exclusively a function of geography to skew the analysis. For example, one might expect that economic 
status is an important predictor of asset ownership and energy appetite and that home building 
materials could be an indicator of this status. However, households in one region may build with 
grasses or reeds where those materials are widely available, while households of similar socioeconomic 
status in another region may use mud and dung because of different soils and a prevalence of cattle.  
To address this challenge, features in the socioeconomic dataset are aggregated into similar classes 
(e.g. natural building materials, improved sanitation) in an attempt to account for heterogeneity 
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of the 100+ features in the dataset is omitted.

A subset of data from the 2008-2009 Kenya Demographic
and Health Survey (herein,“DHS”) [15] is also utilized. Specif-
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was considered to the be the mean of the associated sample
site values for lack of a more rigorously justifiable method.
A map of Kenya’s wards and the locations of the 2008 DHS
sample sites (with corresponding wards highlighted) is given
in Figure 2. After necessary data cleaning, 1401 wards of the
original 1455 remain. This ⇠4% attrition is due to missing
socioeconomic or geospatial data or to irreconciliable di↵er-
ences in placenames between the datasets.
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lar demand for electricity services and similar ability to pay
for them. Additionally, this assumes that electricity prices
are uniform across the locations where ownership observa-
tions are available (in this case, the DHS sample sites). This
price uniformity will likely not be the case in a world with a
diverse range of potential technologies and business models
for rural electrification, and Section 5.5 in this work will ad-
dress the ways in which our results may be interpreted for
di↵erent electricity price regimes.
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its simplicity and intuitive interpretation. Other supervised
approaches, such as multivariate linear regression, were ex-
plored. The underlying structure of the data was found
to be highly non-linear, and in the absence of a domain-
informed rationale for more complex pre-supposed relation-
ships between the dozens of socioeconomic characteristics
and appliance ownership levels, this technique was aban-
doned. Similarly, k-means and hierarchical clustering tech-
niques were explored to determine whether the wards form
natural groupings by their socioeconomic characteristics. While
the resulting clusters do build intuition about the socioeco-
nomics of Kenya’s wards, the distributions of the data are
rather continuous (rather than tightly clustered) so the va-
lidity of any hard-assignment clustering techniques is du-
bious. Lastly, while principal components analysis was ex-
plored, the small datasets obviated the need to compress
the data for computational reasons, and domain knowledge-
driven feature reduction is preferred for interpretability rea-
sons.
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without obscuring important differentiators that may impact energy behaviors. Wherever possible, 
these aggregation choices follow accepted standard definitions in the development community (131, 
132, 134).  

Additionally, a number of extensive properties that are dependent on the absolute size or 
population of a ward are transformed into intensive properties (via normalization by population, ward 
area, etc.) to facilitate comparison across wards of somewhat arbitrary boundaries. Lastly, redundant 
features (those that are repeated or not linearly independent from the others) are removed from the 
dataset so that they do not contribute disproportionately to the determination of socioeconomic 
similarity. These choices of feature aggregation are summarized in Table 3 while choices of feature 
reduction and normalization are omitted for brevity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Feature Aggregation 
 
Next, each of the features are translated by their mean value and scaled by their standard 

deviation so that the data take the form of z-scores. This is a common choice of feature 
standardization that facilitates comparison based on the underlying structure of the data rather than 
the absolute breadths of the feature distributions. Lastly, each of the feature classes is scaled by the 
number of features in the feature class (e.g. three features in the “roof material” class: natural, 
rudimentary, and finished). This is a design choice, and reflects the fact that no more rigorous method 
for determining the importance of the various data in predicting appliance ownership is known. Some 
efforts were undertaken to establish the predictive power of the socioeconomic data in this regard via 
principal components analysis and multi- variate regression, but further work is needed to establish a 
conclusive answer.  

These choices of feature aggregation and reduction result in a 42-dimensional feature space 
for the socioeconomic dataset (each ward i is described by an observation vector xi Î R). We define 
the socioeconomic distance, or dissimilarity, between two wards to be the L-1 norm (Manhattan  
length) of the difference between the two vectors that de- scribe the ward characteristics. With this 
distance metric in hand, k-nearest neighbors regression can be performed. The training set comprises 
the socioeconomic data for wards for which labels exist (asset ownership and electricity access data 
from the DHS) and the labels themselves. We refer to these wards as wobs and the associated 
socioeconomic data and labels as Xobs and yobs respectively (obs: observations). The test set comprises 

CookingFuel Transitional Paraffin, Charcoal 
CookingFuel Advanced LPG, Biogas, Electricity 
FloorMaterial Finished Tiles, Cement 
LightingFuel Kerosene or Paraffin PressureLamp, Lantern, TinLamp, GasLamp 
RoofMaterial Natural Makuti, Grass, Mud or Dung 
RoofMaterial Rudimentary Corrugated Iron Sheets, Tin 
RoofMaterial Finished Tiles, Concrete, Asbestos Sheets 
WallMaterial Rudimentary Mud and Wood, Mud and Cement, Wood Only, Corrugated Iron Sheets, Tin 
WallMaterial Finished Stone, Brick or Block 
WasteDisposal Unimproved Sanitation Pit Latrine Uncovered, Bucket, Bush 
WasteDisposal Improved Sanitation Main Sewer, Septic Tank, Cess Pool, VIP Latrine, Pit Latrine 
WaterSource Surface Water Pond, Dam, Lake, Stream or River 
WaterSource Unimproved Sources Unprotected Spring, Unprotected Well, Water Vendor 
WaterSource Improved Sources Protected Spring, Protected Well, Borehole, Piped, Rainwater Collection, Jabia 

Original Features Aggregated Feature Feature Class 
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the socioeconomic data for wards where no labels are known. We refer to these wards as wtest and the 
associated socioeconomic data as Xtest. For each ward in the test set, the label is estimated to be the 
average of the labels of the knn nearest neighboring wards in the training set, where ‘nearest’ refers to 
those with the least socioeconomic distance from the ward at hand.  

The value of knn in the nearest neighbors regression algorithm is chosen via k-folds cross 
validation. In this non- exhaustive technique, the original training set is randomly partitioned into kf 
subsets. One at a time, each of the kf subsets are withheld from the training set, and the regression is 
performed using the withheld subset as the test set. The root mean square prediction error in 
accurately predicting the label values for each of these subsets is averaged and recorded. This is 
repeated across a range of potential knn values, and knn is chosen to the be the value that minimizes 
this error metric. The number of subset combinations needed for exhaustive cross-validation is 
intractably large, but the random partitioning in the non-exhaustive k-folds cross validation can 
produce inconsistent results. As a compromise between speed and accuracy, we perform this 
validation across a range of kf values and a number of random seedings for the partitioning process 
and average the results to arrive at a consistent choice for knn. This approach is illustrated graphically 
in Figure 14. The error metric described above is plotted against potential values for knn. This 
relationship is plotted for a range of kf values and the entire process is conducted for 20 different 
random seedings (hence the multiple lines for each kf value). The average error metric across all of 
these kf values and all of the random seedings is also shown. In the case presented in Figure 14, we 
choose knn = 20 to minimize this average error.  

Once the data have been imported and transformed, and the features in the data have been 
aggregated, normalized, selected, and scaled as discussed above, k-NN regression can be directly used 
to ascertain an estimate for current owner- ship of the relevant electricity-consuming appliances. 
Specifically, the current ownership levels are predicted for the test set socioeconomic vectors Xtest 
using the training set vectors  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Example of k-folds cross validation for prediction of current television ownership (knn = 20) 
 
and labels Xobs and yobs. However, to produce an estimate for induced ownership, a more involved 

Feature Class Aggregated Feature Original Features

CookingFuel Transitional Para�n, Charcoal
CookingFuel Advanced LPG, Biogas, Electricity
FloorMaterial Finished Tiles, Cement
LightingFuel Kerosene or Para�n PressureLamp, Lantern, TinLamp, GasLamp
RoofMaterial Natural Makuti, Grass, Mud or Dung
RoofMaterial Rudimentary Corrugated Iron Sheets, Tin
RoofMaterial Finished Tiles, Concrete, Asbestos Sheets
WallMaterial Rudimentary Mud and Wood, Mud and Cement, Wood Only, Corrugated Iron Sheets, Tin
WallMaterial Finished Stone, Brick or Block
WasteDisposal Unimproved Sanitation Pit Latrine Uncovered, Bucket, Bush
WasteDisposal Improved Sanitation Main Sewer, Septic Tank, Cess Pool, VIP Latrine, Pit Latrine
WaterSource Surface Water Pond, Dam, Lake, Stream or River
WaterSource Unimproved Sources Unprotected Spring, Unprotected Well, Water Vendor
WaterSource Improved Sources Protected Spring, Protected Well, Borehole, Piped, Rainwater Collection, Jabia

Table 2: Feature Aggregation

Figure 3: Example of k-folds cross validation for
prediction of current television ownership (choose
k

nn

= 20)

and labels X

obs

and y

obs

. However, to produce an estimate
for induced ownership, a more involved process is required.

First, electricity access is predicted across w

test

via the
k-NN algorithm using w

obs

as the training set. More specif-
ically, the estimated electricity access ŷ

test,e

is predicted for
the socioeconomic vectors in X

test

using the vectors and
labels X

obs

and y

obs,e

. Next, combining the observed and
predicted electricity access data, the wards are divided into
those ‘with’ and ‘without’ electricity access as defined by a
threshold proportion of households with electricity access.
This threshold is chosen to be 10% in this analysis, which
reflects a balance between domain knowledge considerations
and limited availability of data. This threshold is reason-
able despite its ostensibly low value because of the low pen-
etration rates of actual connections that often exist in rural
areas to which KPLC’s distribution infrastructure extends.
A higher choice of threshold value would also lead to an
unacceptably small set of wards that are deemed to have
electricity access for the next step in the induced ownership
estimation.

Next, the original training set, w

obs

, is partitioned into
wards without electricity access, w

obs,no

and wards with

With Elec. No Elec. Total
Observation Set 121 211 332

Test Set 439 630 1069

Table 3: Data Partitioning Sample Sizes (Number
of Wards)

electricity access, w
obs,yes

. Similarly, the test set is parti-
tioned into w

test,no

and w

test,yes

. The socioeconomic data
and labels are partitioned according to the same nomen-
clature. The sizes of each subset of the data are given in
Table 3. The total ownership for wards in w

test,no

is pre-
dicted using the training set X

obs,yes

, y
obs,yes

. Similarly,
the total ownership for wards in w

obs,no

is predicted using
the same. As described in Section 4.3, the induced owner-
ship is simply the di↵erence between total ownership and
current ownership.
The basic rationale for this approach is a slight extension

of the core assumption of our methods: one would expect
that a ward without electricity would have similar adoption
of electrical appliances (need or desire for the services they
provide and ability to pay for them) as a ward with electric-
ity if the two closely share socioeconomic characteristics.
This approach treats electricity access as an exogenous

factor. If an un-electrified village were to become electri-
fied, its socioeconomic characteristics and the ownership of
electricity-consuming appliances would not change overnight.
However, there would likely be some appliance adoption
transient that depends on the costs (in time, money, and
inconvenience) of the incumbent energy sources, the costs
of electricity, public awareness, the psychology of behavior
change, and other factors. The estimates made here pertain
to a steady-state level of ownership, once this transient has
decayed. One might suppose that in some communities, the
DHS may have been conducted shortly after electrification
and thus during this transient period. This phenomenon is
likely rare if it exists at all, and it is ignored here.

4.4 Residential Energy Usage Model
For the purpose of illustrating the end-to-end use of our

approach, we employ a rudimentary model for translating
electricity-consuming appliance ownership levels into resi-
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process is required. First, electricity access is predicted across wtest via the k-NN algorithm using wobs 
as the training set. More specifically, the estimated electricity access 𝑦test,e is predicted for the 
socioeconomic vectors in Xtest using the vectors and labels Xobs and obs,e. Next, combining the observed 
and predicted electricity access data, the wards are divided into those ‘with’ and ‘without’ electricity 
access as defined by a threshold proportion of households with electricity access. This threshold is 
chosen to be 10% in this analysis, which reflects a balance between domain knowledge considerations 
and limited availability of data. This threshold is reasonable despite its ostensibly low value because of 
the low penetration rates of actual connections that often exist in rural areas to which KPLC’s 
distribution infrastructure extends. A higher choice of threshold value would also lead to an 
unacceptably small set of wards that are deemed to have electricity access for the next step in the 
induced ownership estimation.  

Next, the original training set, wobs, is partitioned into wards without electricity access, wobs,no 
and wards with electricity access, wobs,yes. Similarly, the test set is partitioned into wtest,no and wtest,yes. The 
socioeconomic data and labels are partitioned according to the same nomenclature. The sizes of each 
subset of the data are given in Table 3. The total ownership for wards in wtest,no is predicted using the 
training set Xobs,yes , yobs,yes. Similarly, the total ownership for wards in wobs,no is predicted using the same. 
Induced ownership is the difference between total ownership and current ownership.  

 
 
 
 
 
 
 
 
 

Table 4. Data Partitioning Sample Sizes (Number of Wards) 
 
The basic rationale for this approach is a slight extension of the core assumption of our 

methods: one would expect that a ward without electricity would have similar adoption of electrical 
appliances (need or desire for the services they provide and ability to pay for them) as a ward with 
electricity if the two closely share socioeconomic characteristics. This approach treats electricity access 
as an exogenous factor. If an un-electrified village were to become electrified, its socioeconomic 
characteristics and the ownership of electricity-consuming appliances would not change overnight. 
However, there would likely be some appliance adoption transient that depends on the costs (in time, 
money, and inconvenience) of the incumbent energy sources, the costs of electricity, public awareness, 
the psychology of behavior change, and other factors. The estimates made here pertain to a steady-
state level of ownership, once this transient has decayed. One might suppose that in some 
communities, the DHS may have been conducted shortly after electrification and thus during this 
transient period. This phenomenon is likely rare if it exists at all, and it is ignored here.  

For the purpose of illustrating the end-to-end use of our approach, we employ a rudimentary 
model for translating electricity-consuming appliance ownership levels into residential electricity 
demand. This knowledge is essential in evaluating the viability of various technology options and 
business models for rural electrification, whether evaluating potential tariff structures or specifying 
and costing equipment. Based on evidence from rural Kenyan households in the literature (135), we 
assume a daily energy use of 210 W h/day for a 14-inch color TV, 960 W h/day for a small refrigerator, 
6 W h/day for a radio, and 6 W h/day for a mobile phone. These appliance consumption levels are 

Total No Elec. With Elec. 

1069630439Test Set 

332211121Observation Set 
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translated into an average household daily electricity demand for each ward using predicted and 
observed appliance ownership levels.  

 
2.5 Results and Discussion: Elucidating Residential Demand 
 
The relationship between reported appliance ownership (television, refrigerator, radio, mobile phone, 
and solar panel) and electricity access from the DHS is presented in Figure 15. The raw observations 
are transformed as described in the previous section into a proportion of households in the ward with 
a given appliance or with electricity access. It should be noted that the DHS appears to define 
electricity access as connection to an external power system (in this case, to the KPLC distribution 
system), and thus, household possession of solar panels does not constitute electricity access in this 
dataset.  
 
 

 

 

 

 

 

 
 
 

Figure 15. Observed Appliance Ownership Versus Electricity Access 
 

These data reflect important trends about the ‘appliance ladder,’ which describes the order 
and manner in which electrified households acquire electricity-consuming appliances (106). Radio and 
mobile phone ownership is often in excess of electricity access, which suggests that people use 
batteries and charging services (for instance, from a shop in a nearby electrified town) to power these 
devices. Levels of refrigerator ownership are significantly below electricity access levels (except for a 
handful of affluent urban wards), which reflects the high capital cost of the appliance, the relatively 
high electricity consumption, and the high reliability of electricity service needed to make cold storage 
practical. Comparing the television ownership with the other appliances, one observes that TVs are 
more common than refrigerators, but less common than radios and mobile phones. This reflects the 
moderate capital cost and energy consumption and the less stringent reliability requirements as 
compared to cold storage. Additionally, ownership levels exceeding electricity access suggest that 
televisions are sometimes powered by batteries or perhaps larger solar/battery systems, and it suggests 
a strong desire for television viewing (given the high cost or inconvenience of these approaches to 
powering TVs).  

The insights from the solar panel ownership data are less clear, as the technology and costs of 
solar photovoltaic systems have changed significantly in the years since the survey was conducted. 
However, recalling the narrow DHS definition of electricity access, one observes that the highest solar 
panel ownership occurs in wards with little to no electricity access. The presence of non-zero 

dential electricity demand. Knowledge of this demand fig-
ure is essential in evaluating the viability of various tech-
nology options and business models for rural electrification,
whether evaluating potential tari↵ structures or specifying
and costing equipment.

Based on evidence from rural Kenyan households in the
literature [13], we assume a daily energy use of 210Wh/day

for a 14-inch color TV, 960Wh/day for a small refrigerator,
6 Wh/day for a radio, and 6 Wh/day for a mobile phone.
These appliance consumption levels are translated into an
average household daily electricity demand for each ward
using predicted and observed appliance ownership levels.

5. RESULTS & DISCUSSION

5.1 Observed Trends in Ownership & Access
The relationship between reported appliance ownership

(television, refrigerator, radio, mobile phone, and solar panel)
and electricity access from the DHS is presented in Figure
4. The raw observations are transformed as described in
Section 4.2 into a proportion of households in the ward with
a given appliance or with electricity access. It should be
noted that the DHS appears to define electricity access as
connection to an external power system (in this case, to the
KPLC distribution system), and thus, household possession
of solar panels does not constitute electricity access in this
dataset.

These data reflect important trends about the ‘appliance
ladder,’ which describes the order and manner in which
electrified households acquire electricity-consuming appli-
ances [9]. Radio and mobile phone ownership is often in
excess of electricity access, which suggests that people use
batteries and charging services (for instance, from a shop in a
nearby electrified town) to power these devices. Levels of re-
frigerator ownership are significantly below electricity access
levels (except for a handful of a✏uent urban wards), which
reflects the high capital cost of the appliance, the relatively
high electricity consumption, and the high reliability of elec-
tricity service needed to make cold storage practical. Com-
paring the television ownership with the other appliances,
one observes that TVs are more common than refrigerators,
but less common than radios and mobile phones. This re-
flects the moderate capital cost and energy consumption and
the less stringent reliability requirements as compared to
cold storage. Additionally, ownership levels exceeding elec-
tricity access suggest that televisions are sometimes powered
by batteries or perhaps larger solar/battery systems, and it
suggests a strong desire for television viewing (given the high
cost or inconvenience of these approaches to powering TVs).

The insights from the solar panel ownership data are less
clear, as the technology and costs of solar photovoltaic sys-
tems have changed significantly in the years since the survey
was conducted. However, recalling the narrow DHS defini-
tion of electricity access, one observes that the highest solar
panel ownership occurs in wards with little to no electricity
access. The presence of non-zero ownership in wards with
some electricity access suggests either fuel-stacking (where
households utilize multiple energy sources to enhance reli-
ability or to navigate fluctuating prices, as for kerosene or
charcoal) or it suggests a social e↵ect in electricity usage:
households that may not be able to a↵ord a connection to
the utility nevertheless become aware of electricity and its

Figure 4: Observed Appliance Ownership Versus
Electricity Access

Figure 5: Electricity Access

uses and acquire solar panels for low energy applications
(LED lighting, radio/mobile phone charging).

5.2 Electricity Access
Predicted and observed electricity access are given in Fig-

ure 5. For wards with DHS data, the observed access is
shown, while for wards without, the predicted access is shown.
The Kenyan electricity transmission network down to 33kV [5]
and the locations of most minigrids [10] [14] are overlaid.
Sources indicate that most minigrids predate the 2008 DHS,
though the exact commissioning dates are not available.
Wards with significant predicted electricity access are mostly
in proximity to the transmission network (the 11kV distri-
bution network is not shown, but its extent outwards from
the transmission backbone is limited by loss or voltage drop
considerations) or to known minigrids. A few border towns
appear to be connected to neighboring power systems in
Ethiopia and Tanzania (Moyale, Taveta, Oloitokitok).

5.3 Current Ownership
The observed and predicted current ownership levels are

plotted for each ward in Figure 6. For wards with DHS data,
the observed ownership is shown, while for wards without,
the predicted ownership is shown. Mobile phone and radio
ownership is widespread, though noticeably higher in the
western and central regions, parts of the southern Rift Val-
ley, and the cities and large towns of the coast and northern
regions. Refrigerator ownership is low overall and concen-
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ownership in wards with some electricity access suggests either fuel-stacking (where households utilize 
multiple energy sources to enhance reliability or to navigate fluctuating prices, as for kerosene or 
charcoal) or it suggests a social effect in electricity usage: households that may not be able to afford a 
connection to the utility nevertheless become aware of electricity and its uses and acquire solar panels 
for low energy applications (LED lighting, radio/mobile phone charging).  

Predicted and observed electricity access are given in Figure 16. For wards with DHS data, the 
observed access is shown, while for wards without data (136), the predicted access is shown. The 
Kenyan electricity transmission network down to 33kV (136) and the locations of most minigrids 
(130) are overlaid. Sources indicate that most minigrids predate the 2008 DHS, though the exact 
commissioning dates are not available. Wards with significant predicted electricity access are mostly 
in proximity to the transmission network (the 11kV distribution network is not shown, but its extent 
outwards from the transmission backbone is limited by loss or voltage drop considerations) or to 
known minigrids. A few border towns appear to be connected to neighboring power systems in 
Ethiopia and Tanzania (Moyale, Taveta, Oloitokitok).  

 
 

 

 

 

 
 
 
 
 
 
 
 

Figure 16. Electricity Access 
 

The observed and predicted current ownership levels are plotted for each ward in Figure 17. 
For wards with DHS data, the observed ownership is shown, while for wards without, the predicted 
ownership is shown. Mobile phone and radio ownership is widespread, though noticeably higher in 
the western and central regions, parts of the southern Rift Valley, and the cities and large towns of the 
coast and northern regions. Refrigerator ownership is low overall and concentrated in urban areas. 
Television ownership is moderate and follows a similar regional distribution as mobile phones and 
radios. All of these appliances show higher concentrations in the large towns and small cities of the 
north and coast than the surrounding rural areas. Most of these locations, which include Wajir, 
Garissa, Marsabit, Lodwar, Mandera, and others, are sites of minigrids that provide traditional 
electricity services despite their distance from Kenya’s national grid (130, 137). Solar panel ownership 
is limited, and concentrated in rural parts of western and central Kenya.  

 
 
 
 
 

dential electricity demand. Knowledge of this demand fig-
ure is essential in evaluating the viability of various tech-
nology options and business models for rural electrification,
whether evaluating potential tari↵ structures or specifying
and costing equipment.

Based on evidence from rural Kenyan households in the
literature [13], we assume a daily energy use of 210Wh/day

for a 14-inch color TV, 960Wh/day for a small refrigerator,
6 Wh/day for a radio, and 6 Wh/day for a mobile phone.
These appliance consumption levels are translated into an
average household daily electricity demand for each ward
using predicted and observed appliance ownership levels.

5. RESULTS & DISCUSSION

5.1 Observed Trends in Ownership & Access
The relationship between reported appliance ownership

(television, refrigerator, radio, mobile phone, and solar panel)
and electricity access from the DHS is presented in Figure
4. The raw observations are transformed as described in
Section 4.2 into a proportion of households in the ward with
a given appliance or with electricity access. It should be
noted that the DHS appears to define electricity access as
connection to an external power system (in this case, to the
KPLC distribution system), and thus, household possession
of solar panels does not constitute electricity access in this
dataset.

These data reflect important trends about the ‘appliance
ladder,’ which describes the order and manner in which
electrified households acquire electricity-consuming appli-
ances [9]. Radio and mobile phone ownership is often in
excess of electricity access, which suggests that people use
batteries and charging services (for instance, from a shop in a
nearby electrified town) to power these devices. Levels of re-
frigerator ownership are significantly below electricity access
levels (except for a handful of a✏uent urban wards), which
reflects the high capital cost of the appliance, the relatively
high electricity consumption, and the high reliability of elec-
tricity service needed to make cold storage practical. Com-
paring the television ownership with the other appliances,
one observes that TVs are more common than refrigerators,
but less common than radios and mobile phones. This re-
flects the moderate capital cost and energy consumption and
the less stringent reliability requirements as compared to
cold storage. Additionally, ownership levels exceeding elec-
tricity access suggest that televisions are sometimes powered
by batteries or perhaps larger solar/battery systems, and it
suggests a strong desire for television viewing (given the high
cost or inconvenience of these approaches to powering TVs).

The insights from the solar panel ownership data are less
clear, as the technology and costs of solar photovoltaic sys-
tems have changed significantly in the years since the survey
was conducted. However, recalling the narrow DHS defini-
tion of electricity access, one observes that the highest solar
panel ownership occurs in wards with little to no electricity
access. The presence of non-zero ownership in wards with
some electricity access suggests either fuel-stacking (where
households utilize multiple energy sources to enhance reli-
ability or to navigate fluctuating prices, as for kerosene or
charcoal) or it suggests a social e↵ect in electricity usage:
households that may not be able to a↵ord a connection to
the utility nevertheless become aware of electricity and its

Figure 4: Observed Appliance Ownership Versus
Electricity Access

Figure 5: Electricity Access

uses and acquire solar panels for low energy applications
(LED lighting, radio/mobile phone charging).

5.2 Electricity Access
Predicted and observed electricity access are given in Fig-

ure 5. For wards with DHS data, the observed access is
shown, while for wards without, the predicted access is shown.
The Kenyan electricity transmission network down to 33kV [5]
and the locations of most minigrids [10] [14] are overlaid.
Sources indicate that most minigrids predate the 2008 DHS,
though the exact commissioning dates are not available.
Wards with significant predicted electricity access are mostly
in proximity to the transmission network (the 11kV distri-
bution network is not shown, but its extent outwards from
the transmission backbone is limited by loss or voltage drop
considerations) or to known minigrids. A few border towns
appear to be connected to neighboring power systems in
Ethiopia and Tanzania (Moyale, Taveta, Oloitokitok).

5.3 Current Ownership
The observed and predicted current ownership levels are

plotted for each ward in Figure 6. For wards with DHS data,
the observed ownership is shown, while for wards without,
the predicted ownership is shown. Mobile phone and radio
ownership is widespread, though noticeably higher in the
western and central regions, parts of the southern Rift Val-
ley, and the cities and large towns of the coast and northern
regions. Refrigerator ownership is low overall and concen-
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Figure 17. Current Ownership 
 
A number of large-area wards that are fairly sparsely populated appear to be outliers due to 

high ownership and access levels compared to their similarly sparse neighboring wards. Closer 
investigation reveals that these wards have towns of significant size, and the population is in fact 
relatively urban and concentrated in one part of the ward. These locations include Nyahururu, which 
sits at a major node in the electricity transmission system, Voi, a major town on the road, rail, and 
electricity transmission corridor between Nairobi and Mombasa, and parts of Lamu, a tourist 
destination and site of a KenGen-owned minigrid.  

Total ownership is shown in Figure 18. For wards with electricity access levels already above 
the threshold value, current ownership is equivalent to total ownership and is shown here. For all 
other wards, the model-predicted value of total ownership is shown. Despite differences in absolute 
ownership level, appliances share a high degree of homogeneity in predictions across wards. As one 
would expect significant socioeconomic differences to result in a broader distribution of predicted 
ownership levels, these results call into question the validity of the analysis, a topic we explore below.  
To explore the validity of induced ownership predictions, we examine the relative socioeconomic 
distance to the nearest neighbors with and without electricity access. One would expect that for a ward 
without electricity (the wards of concern here, wtest,no and wobs,no) the distance to the nearest wards of 
any kind should be less than that to the nearest wards with electricity. However, unless the latter 
distance is vastly greater than the former, the estimation of total ownership is likely reasonable. 
Conversely, a much greater distance to electrified wards would indicate that the pre- diction based on 
electrified wards is so inaccurate relative to prediction based on all wards that the results are not of 
practical value.  

Figure 19 presents one possible validation metric. On the left-hand side, each dot represents 
one ward. The value on the x-axis is the average ‘fractional distance’ to a given ward’s k-nearest 
neighbors of any kind, while the value on the y-axis is the average ‘fractional distance’ to the ward’s k- 
nearest neighbors with electricity. Fractional distance df is defined as df (d) = (d − dmin) / (dmax − dmin) 
where dmax is the distance from the ward to its furthest neighbor and dmin is the distance to its closest 
neighbor. Here we observe that as expected, distance to nearest neighbors with electricity is always 

Figure 6: Current Ownership

trated in urban areas. Television ownership is moderate and
follows a similar regional distribution as mobile phones and
radios. All of these appliances show higher concentrations
in the large towns and small cities of the north and coast
than the surrounding rural areas. Most of these locations,
which include Wajir, Garissa, Marsabit, Lodwar, Mandera,
and others, are sites of minigrids that provide traditional
electricity services despite their distance from Kenya’s na-
tional grid [10] [14]. Solar panel ownership is limited, and
concentrated in rural parts of western and central Kenya.

A number of large-area wards that are fairly sparsely pop-
ulated appear to be outliers due to high ownership and ac-
cess levels compared to their similarly sparse neighboring
wards. Closer investigation reveals that these wards have
towns of significant size, and the population is in fact rela-
tively urban and concentrated in one part of the ward. These
locations include Nyahururu, which sits at a major node in
the electricity transmission system, Voi, a major town on
the road, rail, and electricity transmission corridor between
Nairobi and Mombasa, and parts of Lamu, a tourist desti-
nation and site of a KenGen-owned minigrid.

5.4 Total Ownership
Total ownership is shown in Figure 7. For wards with

electricity access levels already above the threshold value,
current ownership is equivalent to total ownership and is
shown here. For all other wards, the model-predicted value
of total ownership is shown. Despite di↵erences in absolute
ownership level, appliances share a high degree of homo-
geneity in predictions across wards. As one would expect
significant socioeconomic di↵erences to result in a broader
distribution of predicted ownership levels, these results call
into question the validity of the analysis, a topic we explore
below.

To explore the validity of induced ownership predictions,
we examine the relative socioeconomic distance to the near-
est neighbors with and without electricity access. One would
expect that for a ward without electricity (the wards of con-
cern here, w

test,no

and w

obs,no

) the distance to the nearest
wards of any kind should be less than that to the nearest
wards with electricity. However, unless the latter distance
is vastly greater than the former, the estimation of total
ownership is likely reasonable. Conversely, a much greater
distance to electrified wards would indicate that the pre-
diction based on electrified wards is so inaccurate relative

Figure 7: Total (Current + Induced) Ownership

to prediction based on all wards that the results are not of
practical value.
Figure 8 presents one possible validation metric. On the

lefthand side, each dot represents one ward. The value
on the x-axis is the average ‘fractional distance’ to a given
ward’s k-nearest neighbors of any kind, while the value on
the y-axis is the average ‘fractional distance’ to the ward’s k-
nearest neighbors with electricity. Fractional distance d

f

is
defined as d

f

(d) = (d� d

min

) / (d
max

� d

min

) where d

max

is the distance from the ward to its furthest neighbor and
d

min

is the distance to its closest neighbor. Here we observe
that as expected, distance to nearest neighbors with electric-
ity is always further than distance to nearest neighbors of
any kind for this set of wards that does not have electricity.
The ratio of the latter distance to the former, which should
be an indication of the validity of the induced demand ap-
proach for this dataset, ranges from roughly 1.2:1 to 4.6:1.
The right-hand side of Figure 8 presents the ratio of these
distances for each relevant ward in geographic form. We ob-
serve that wards in the former central province and along the
infrastructure-rich Nairobi-Mombasa corridor often have the
lowest values because of the abundance of nearby electrified
wards with which they have significant socioeconomic sim-
ilarity (this similarity is not explicitly demonstrated here
for brevity, but visualization of the various socioeconomic
parameters and clustering analysis confirms this assertion).
Further investigation that is omitted here for brevity in-

dicates that a paucity of appliance ownership data for elec-
trified wards in certain regions is the root cause of the ho-
mogeneity of induced demand predictions (even aggregating
features to control for heterogeneity of poverty, the socioeco-
nomic characteristics are quite regional, reflecting significant
geographic patterns in incomes and access to improved wa-
ter and sanitation). For rural areas of much of the coast
and northern regions and for rural areas far from the cities
in the western and Rift Valley regions, there are so few sim-
ilar wards with electricity access that the prediction from k-
nearest regression is overwhelmed by electrified wards that
are in fact rather dissimilar. This is because the values of
k
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determined via cross validation are quite high relative
to the total number of electrified wards to learn from (these
values are given in Table 4). The current simple cross val-
idation approach presents an objective and repeatable ap-
proach to choosing the tunable parameter k
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further than distance to nearest neighbors of any kind for this set of wards that does not have 
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Figure 18. Total (Current + Induced) Ownership 
 

The ratio of the latter distance to the former, which should be an indication of the validity of 
the induced demand approach for this dataset, ranges from roughly 1.2:1 to 4.6:1. The right-hand side 
of Figure 19 presents the ratio of these distances for each relevant ward in geographic form. We 
observe that wards in the former central province and along the infrastructure-rich Nairobi-Mombasa 
corridor often have the lowest values because of the abundance of nearby electrified wards with which 
they have significant socioeconomic similarity (this similarity is not explicitly demonstrated here for 
brevity, but visualization of the various socioeconomic parameters and clustering analysis confirms 
this assertion).  

 
 

 

 

 

 

 

 

 
Figure 19. Validation of Total Demand Estimation Methodology 

 

Figure 6: Current Ownership

trated in urban areas. Television ownership is moderate and
follows a similar regional distribution as mobile phones and
radios. All of these appliances show higher concentrations
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which include Wajir, Garissa, Marsabit, Lodwar, Mandera,
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concentrated in rural parts of western and central Kenya.

A number of large-area wards that are fairly sparsely pop-
ulated appear to be outliers due to high ownership and ac-
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practical value.
Figure 8 presents one possible validation metric. On the

lefthand side, each dot represents one ward. The value
on the x-axis is the average ‘fractional distance’ to a given
ward’s k-nearest neighbors of any kind, while the value on
the y-axis is the average ‘fractional distance’ to the ward’s k-
nearest neighbors with electricity. Fractional distance d

f

is
defined as d

f

(d) = (d� d

min

) / (d
max

� d

min

) where d

max

is the distance from the ward to its furthest neighbor and
d

min

is the distance to its closest neighbor. Here we observe
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any kind for this set of wards that does not have electricity.
The ratio of the latter distance to the former, which should
be an indication of the validity of the induced demand ap-
proach for this dataset, ranges from roughly 1.2:1 to 4.6:1.
The right-hand side of Figure 8 presents the ratio of these
distances for each relevant ward in geographic form. We ob-
serve that wards in the former central province and along the
infrastructure-rich Nairobi-Mombasa corridor often have the
lowest values because of the abundance of nearby electrified
wards with which they have significant socioeconomic sim-
ilarity (this similarity is not explicitly demonstrated here
for brevity, but visualization of the various socioeconomic
parameters and clustering analysis confirms this assertion).
Further investigation that is omitted here for brevity in-

dicates that a paucity of appliance ownership data for elec-
trified wards in certain regions is the root cause of the ho-
mogeneity of induced demand predictions (even aggregating
features to control for heterogeneity of poverty, the socioeco-
nomic characteristics are quite regional, reflecting significant
geographic patterns in incomes and access to improved wa-
ter and sanitation). For rural areas of much of the coast
and northern regions and for rural areas far from the cities
in the western and Rift Valley regions, there are so few sim-
ilar wards with electricity access that the prediction from k-
nearest regression is overwhelmed by electrified wards that
are in fact rather dissimilar. This is because the values of
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to the total number of electrified wards to learn from (these
values are given in Table 4). The current simple cross val-
idation approach presents an objective and repeatable ap-
proach to choosing the tunable parameter k
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, but a more

Predict Current Induced Induced
From All Obs. Obs. with Elec. Obs. with Elec.
For All Test Test no Elec. Obs. no Elec.

Television 20 22 18
Refrigerator 14 12 14
Radio 18 24 26
Solar Panel 34 12 12
Mobile Phone 18 22 28
Electricity 12 n/a n/a

Table 4: k

nn

values determined by cross-validation

Figure 8: Validation of Total Demand Estimation
Methodology

nuanced approach could potentially yield better results from
the same limited input data.

It should be noted that while this does not appear to be
a conceptual limitation of our induced ownership estimation
method, it is a practical limitation. Data for other countries
with low rural electrification may be similarly lacking. In
the case of Kenya specifically, model performance should
improve with use of the forthcoming 2014 DHS because there
has been significant progress in rural electrification in the
intervening years.

Despite the challenges discussed above, we present the
ownership predictions in another form in Figure 9 to illus-
trate the interpretation of results produced via this method.
For each ward without electricity, total ownership is plotted
against current ownership (observed or predicted, depend-
ing on the ward). The high, tight distributions for mobile
phones and radios in total ownership suggest that regardless
of the current, unelectrified ownership level, these appliances
would be adopted broadly and that their adoption is nearly
independent of socioeconomic factors. The conclusions re-
garding television ownership are nearly the same except for
the lower average ownership level. The modest total owner-
ship in the refrigerator data (a bit wider in absolute terms,
much wider in relative terms) and its concentration on the
low current ownership end reflects the near non-existence of
residential cold storage in unelectrified wards, and limited
ownership in similar electrified areas (likely rural and rel-
atively poor). Lastly, the most marked trend in the solar
panel results is lower ownership levels in the electrified case
– this derives from the definition of electricity access as a
grid connection in the DHS.

Figure 9: Current & Total Ownership

Figure 10: Household Demand Estimation (Cur-
rently Un-Electrified Wards)

5.5 Current & Total Residential Demand
Translating the current and total ownership levels into es-

timates of residential electricity demand yields the results
in Figure 10. Due to the significant di↵erence in ownership
levels between urban and rural wards (and corresponding
di↵erence in demand estimates), currently electrified wards
are omitted to maximize the range of demand levels that can
be expressed on a linear color scale. As noted above, the es-
timates of induced demand for certain regions are likely of
limited accuracy. Nevertheless, this demonstrates the end-
to-end methodology of our data-driven approach to electric-
ity demand prediction.
The implicit assumption in this supervised learning pro-

cess that electricity prices are uniform (as discussed in Sec-
tion 4.3) presents another challenge. When evaluating po-
tential technology options and business models for sustain-
able and scalable rural electrification, prices are likely to
markedly vary for di↵erent strategies. One possible way to
address this challenge is to transform the ownership level es-
timates into a total household budget for the services these
appliances provide. By coupling this budget with data on
the ownership costs of these various appliances and with
domain-knowledge about the appliance ladder, these owner-
ship estimates (derived under one price assumption) can be
transformed into ownership estimates under arbitrary elec-
tricity rate scenarios.

6. CONCLUSION
This work represents a step towards understanding the

potential for novel technologies and strategies to enable ru-
ral electrification. We have used an approach that draws
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Further investigation that is omitted here for brevity indicates that a paucity of appliance 

ownership data for electrified wards in certain regions is the root cause of the homogeneity of induced 
demand predictions (even aggregating features to control for heterogeneity of poverty, the 
socioeconomic characteristics are quite regional, reflecting significant geographic patterns in incomes 
and access to improved water and sanitation). For rural areas of much of the coast and northern 
regions and for rural areas far from the cities in the western and Rift Valley regions, there are so few 
similar wards with electricity access that the prediction from k- nearest regression is overwhelmed by 
electrified wards that are in fact rather dissimilar. This is because the values of knn determined via cross 
validation are quite high relative to the total number of electrified wards to learn from (these values 
are given in Table 5). The current simple cross validation approach presents an objective and 
repeatable approach to choosing the tunable parameter knn, but a more nuanced approach could 
potentially yield better results from the same limited input data. It should be noted that while this does 
not appear to be a conceptual limitation of our induced ownership estimation method, it is a practical 
limitation. Data for other countries with low rural electrification may be similarly lacking. In the case 
of Kenya specifically, model performance should improve with use of the forthcoming 2014 DHS 
because there has been significant progress in rural electrification in the intervening years.  
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. knn values determined by cross-validation 
 

Despite the challenges discussed above, we present the ownership predictions in another form 
in Figure 20 to illustrate the interpretation of results produced via this method. For each ward without 
electricity, total ownership is plotted against current ownership (observed or predicted, depending on 
the ward). The high, tight distributions for mobile phones and radios in total ownership suggest that 
regardless of the current, unelectrified ownership level, these appliances would be adopted broadly 
and that their adoption is nearly independent of socioeconomic factors. The conclusions regarding 
television ownership are nearly the same except for the lower average ownership level. The modest 
total ownership in the refrigerator data (a bit wider in absolute terms, much wider in relative terms) 
and its concentration on the low current ownership end reflects the near non-existence of residential 
cold storage in unelectrified wards, and limited ownership in similar electrified areas (likely rural and 
relatively poor). Lastly, the most marked trend in the solar panel results is lower ownership levels in 
the electrified case – this derives from the definition of electricity access as a grid connection in the 
DHS.  

 
 
 

Predict Current Induced Induced 

From All Obs. Obs. with Elec. Obs. with Elec. 
For All Test Test no Elec. Obs. no Elec. 

Television 20 22 18
Refrigerator 14 12 14

Radio 18 24 26
Solar Panel 34 12 12

Mobile Phone 18 22 28
Electricity 12 n/a n/a 
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Figure 20. Current & Total Ownership 
	

Translating the current and total ownership levels into estimates of residential electricity 
demand yields the results in Figure 21. Due to the significant difference in ownership levels between 
urban and rural wards (and corresponding difference in demand estimates), currently electrified wards 
are omitted to maximize the range of demand levels that can be expressed on a linear color scale. As 
noted above, the estimates of induced demand for certain regions are likely of limited accuracy. 
Nevertheless, this demonstrates the end- to-end methodology of our data-driven approach to 
electricity demand prediction. The implicit assumption in this supervised learning process that 
electricity prices are uniform presents another challenge. When evaluating potential technology 
options and business models for sustainable and scalable rural electrification, prices are likely to 
markedly vary for different strategies. One possible way to address this challenge is to transform the 
ownership level estimates into a total household budget for the services these appliances provide. By 
coupling this budget with data on the ownership costs of these various appliances and with domain-
knowledge about the appliance ladder, these owner- ship estimates (derived under one price 
assumption) can be transformed into ownership estimates under arbitrary electricity rate scenarios.  
This work represents a step towards understanding the potential for novel technologies and strategies 
to enable rural electrification. We have used an approach that draws from socioeconomic, 
demographic, geospatial, and domain- relevant data to build a model of induced residential demand 
for electricity in Kenya. This model helps to address an important gap: understanding future demand 
for electricity is essential for evaluating the wide range of technologies and business models in this 
space. Continuing in this direction, we recognize that there is much more to the problem of 
understanding future electric demand. We aim to use a similar approach to understand the potential 
for growth in electricity demand for commercial purposes by analyzing specific industries and business 
types that emerge in these communities as electricity becomes available. Further, we aim to build a 
tool for various public and private entities to employ our model to make business, funding, and policy 
decisions. With refinement, we believe that this type of approach may be relevant in other domains as 
well, such as water and waste management, and in other countries beyond Kenya.  
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nuanced approach could potentially yield better results from
the same limited input data.

It should be noted that while this does not appear to be
a conceptual limitation of our induced ownership estimation
method, it is a practical limitation. Data for other countries
with low rural electrification may be similarly lacking. In
the case of Kenya specifically, model performance should
improve with use of the forthcoming 2014 DHS because there
has been significant progress in rural electrification in the
intervening years.

Despite the challenges discussed above, we present the
ownership predictions in another form in Figure 9 to illus-
trate the interpretation of results produced via this method.
For each ward without electricity, total ownership is plotted
against current ownership (observed or predicted, depend-
ing on the ward). The high, tight distributions for mobile
phones and radios in total ownership suggest that regardless
of the current, unelectrified ownership level, these appliances
would be adopted broadly and that their adoption is nearly
independent of socioeconomic factors. The conclusions re-
garding television ownership are nearly the same except for
the lower average ownership level. The modest total owner-
ship in the refrigerator data (a bit wider in absolute terms,
much wider in relative terms) and its concentration on the
low current ownership end reflects the near non-existence of
residential cold storage in unelectrified wards, and limited
ownership in similar electrified areas (likely rural and rel-
atively poor). Lastly, the most marked trend in the solar
panel results is lower ownership levels in the electrified case
– this derives from the definition of electricity access as a
grid connection in the DHS.

Figure 9: Current & Total Ownership

Figure 10: Household Demand Estimation (Cur-
rently Un-Electrified Wards)

5.5 Current & Total Residential Demand
Translating the current and total ownership levels into es-

timates of residential electricity demand yields the results
in Figure 10. Due to the significant di↵erence in ownership
levels between urban and rural wards (and corresponding
di↵erence in demand estimates), currently electrified wards
are omitted to maximize the range of demand levels that can
be expressed on a linear color scale. As noted above, the es-
timates of induced demand for certain regions are likely of
limited accuracy. Nevertheless, this demonstrates the end-
to-end methodology of our data-driven approach to electric-
ity demand prediction.
The implicit assumption in this supervised learning pro-

cess that electricity prices are uniform (as discussed in Sec-
tion 4.3) presents another challenge. When evaluating po-
tential technology options and business models for sustain-
able and scalable rural electrification, prices are likely to
markedly vary for di↵erent strategies. One possible way to
address this challenge is to transform the ownership level es-
timates into a total household budget for the services these
appliances provide. By coupling this budget with data on
the ownership costs of these various appliances and with
domain-knowledge about the appliance ladder, these owner-
ship estimates (derived under one price assumption) can be
transformed into ownership estimates under arbitrary elec-
tricity rate scenarios.

6. CONCLUSION
This work represents a step towards understanding the

potential for novel technologies and strategies to enable ru-
ral electrification. We have used an approach that draws
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Figure 21. Household Demand Estimation (Currently Un-Electrified Wards) 
 
 
2.6 Background: Potential for Micro-Enterprise Wealth-Creation Post Electrification  
 
Most of the literature that investigates off-grid energy demand primarily focuses on the household. 
This focus has had a positive impact on the development of novel electrification strategies through 
which many households in East Africa, and many other regions across the world, have received access 
to modern electricity services including pico power, solar home systems, and microgrids. Any single 
one of these strategies, however, is not a panacea for the problem of rural electrification as their long- 
term sustainability ultimately depends on the intertwined relationship between demand and supply, 
their fate in the context of their transitional nature, and the heretofore inexorable extension of the 
centralized grid. While the household has predominantly been a topic of interest for researchers, 
evidence from Kenya suggests that within rural communities, households could represent only 30% 
of total electricity consumption, with institutions (schools, health care centers, and NGOs, for 
example) and micro-enterprises (retail and repair shops, agricultural processing, and hotels, among 
other services) representing the remaining 23% and 46% respectively (138). Anecdotal evidence from 
microgrid developers, and personal communication with solar entrepreneurs has also shown that 
community-level demand-side concerns (estimating electricity demand potential and persistence 
accurately, and management) are some of the most immediate and pressing issues affecting the long-
term business sustainability of off-grid solutions. In particular, and despite the widespread notion that 
electricity access can in and of itself ignite entrepreneurship potential (and in turn, increase electricity 
demand), there is very little research that explores the complementary infrastructure that can ignite 
that potential. Below we briefly summarize demand- and supply-side methodologies for off-grid 
electrification, as well as provide brief introduction to the literature that explores the electricity-
entrepreneurship nexus with a particular focus on Kenya.  

Traditional approaches to off-grid electricity demand estimation, as well as those that evaluate 
users’ ability and willingness to pay for electricity services, have traditionally used social science 
methods such as surveys (119, 120), field and longitudinal studies (100, 101), and stated preferences 
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nuanced approach could potentially yield better results from
the same limited input data.

It should be noted that while this does not appear to be
a conceptual limitation of our induced ownership estimation
method, it is a practical limitation. Data for other countries
with low rural electrification may be similarly lacking. In
the case of Kenya specifically, model performance should
improve with use of the forthcoming 2014 DHS because there
has been significant progress in rural electrification in the
intervening years.

Despite the challenges discussed above, we present the
ownership predictions in another form in Figure 9 to illus-
trate the interpretation of results produced via this method.
For each ward without electricity, total ownership is plotted
against current ownership (observed or predicted, depend-
ing on the ward). The high, tight distributions for mobile
phones and radios in total ownership suggest that regardless
of the current, unelectrified ownership level, these appliances
would be adopted broadly and that their adoption is nearly
independent of socioeconomic factors. The conclusions re-
garding television ownership are nearly the same except for
the lower average ownership level. The modest total owner-
ship in the refrigerator data (a bit wider in absolute terms,
much wider in relative terms) and its concentration on the
low current ownership end reflects the near non-existence of
residential cold storage in unelectrified wards, and limited
ownership in similar electrified areas (likely rural and rel-
atively poor). Lastly, the most marked trend in the solar
panel results is lower ownership levels in the electrified case
– this derives from the definition of electricity access as a
grid connection in the DHS.
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5.5 Current & Total Residential Demand
Translating the current and total ownership levels into es-

timates of residential electricity demand yields the results
in Figure 10. Due to the significant di↵erence in ownership
levels between urban and rural wards (and corresponding
di↵erence in demand estimates), currently electrified wards
are omitted to maximize the range of demand levels that can
be expressed on a linear color scale. As noted above, the es-
timates of induced demand for certain regions are likely of
limited accuracy. Nevertheless, this demonstrates the end-
to-end methodology of our data-driven approach to electric-
ity demand prediction.
The implicit assumption in this supervised learning pro-

cess that electricity prices are uniform (as discussed in Sec-
tion 4.3) presents another challenge. When evaluating po-
tential technology options and business models for sustain-
able and scalable rural electrification, prices are likely to
markedly vary for di↵erent strategies. One possible way to
address this challenge is to transform the ownership level es-
timates into a total household budget for the services these
appliances provide. By coupling this budget with data on
the ownership costs of these various appliances and with
domain-knowledge about the appliance ladder, these owner-
ship estimates (derived under one price assumption) can be
transformed into ownership estimates under arbitrary elec-
tricity rate scenarios.

6. CONCLUSION
This work represents a step towards understanding the

potential for novel technologies and strategies to enable ru-
ral electrification. We have used an approach that draws
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(contingent valuation, ability and willingness to pay) (121, 122). These approaches are extremely 
valuable as they usually provide detailed knowledge about a consumer and the intricacies of daily life 
in a region, village, or town. They can be used for evaluating the preference and decision making 
process that goes into buying and using different energy services (e.g., fuel wood or gas for cooking, 
kerosene or solar maps for lighting, for example), and perhaps later be used for better designing tariff 
structures, or demand side management schemes, among other things. However, although extremely 
insightful about a particular place, they are also time-consuming, and results are usually not 
generalizable.  

Demand-side methodologies have also shed light into rural off- grid energy transitions at the 
household and village level, finding them to be better explained by ‘energy stacking’ or ‘energy webs’ 
(where households use different energy sources for the same or multiple purposes) rather than linear 
transitions (139–141). In South Africa, research regarding appliance ownership and grid-electricity 
access and demand also demonstrated that ownership of electric appliances did not necessarily mean 
that they were used, or that if they were used, that they were powered by the grid (or in other places, 
by solar home systems)(101, 102). Take, for example, households that might buy appliances for their 
symbolic value in a mere attempt to conceal poverty, or on the other hand, the widespread use and 
preference of dry-cell batteries for powering radios (101, 102).  

Finally, ‘end-use’ approaches are less often used, but under the right assumptions, can be very 
useful for estimating a village or town’s electricity demand. This methodology allows the researcher 
to incorporate different scenarios (behavioral dynamics, energy-efficient devices, and income and 
energy transitions, for example), and data sources (census and appliance ownership data, technology 
characteristics, and usage patterns, among others) to make assertions about electricity consumption in 
different economics sectors and areas of village life (household level, agricultural, and small 
commercial) (110, 123). Worth noting is that although many of these provide household and village 
estimates of appliance ownership and electricity demand, there has been little thought given to the 
topic of demand persistence, or long-term electricity demand potential. For many businesses and 
electricity providers in the energy access space, understanding long-term demand potential is crucial 
to ensuring growth in revenue and financial sustainability.  

Several studies have explored optimal supply-side approaches to electricity access in Kenya 
(142–144). Many of these include using spatial least-cost optimization models to determine whether 
grid electrification (and expansion) or off-grid alternatives (solar PV and diesel mini-grids) are more 
suitable to the particular demand characteristics of rural Kenya (142, 143). Results from a one-scenario 
analysis (using fixed costs and electricity demand levels, varying penetration levels) of grid vs. off-grid 
alternatives in Kenya found that under most demand and geographic conditions, extension of the 
national grid would be less costly than off-grid options (142). On the other hand, similar analyses that 
implemented several scenarios (high grid electricity costs, high PV efficiency, high demand, high/low 
diesel prices) have found that electrification strategies vary depending on the specific sub-local 
characteristics of a region (143). For example, grid extension was found to be only suitable for grid 
cells featuring high demand and population density, whereas off-grid alternatives were more suitable 
for the often scattered populations of rural Kenya (143). Recent work pushes back on several of these 
studies, suggesting that electricity access remain elusive not only in off-grid areas, but “under-grid” 
areas as well (121, 125, 145). These studies demonstrate that even in “ideal settings” with high 
population density and extensive grid coverage, electrification rates (and possibly the benefits for 
electrification) for rural households and businesses remain very low, suggesting that investments in 
grid infrastructure in some places in Kenya have not translated to equally high rates of rural 
electrification, primarily because of the relative high cost for households and businesses to obtain a 
new connection (121, 125, 145). Perhaps a reason why an ‘optimal’ electrification strategy has remained 
elusive is due to the relatively little importance that electricity demand estimation has received in these 



 

 

42 

analyses. Although these studies do take into account important proxies for electricity demand such 
as other household expenditures, education, poverty, population density and urban vs. rural 
differences, they often fail to mention or incorporate energy transition theories, complementary 
infrastructure (presence of roads and trade centers for example), and consumption preferences. In 
Kenya in particular it has been shown that the main driver of household rural electrification is not 
desire for electricity per se, but the desire for connective appliances (TVs, radios, and more recently 
cellphones) (98, 100, 141).  

Although outdated, Kenya’s only survey (1999) on the country’s diversity of small- and micro-
enterprises provides valuable insight into the relationship between electricity access and 
entrepreneurship (138). The survey highlights the great sectorial diversity of small (between 10 and 50 
employees) and micro- enterprises (up to 10 employees) in rural areas, including trade (65%, 
predominantly agricultural), manufacturing (15%), services (12%), bars/hotels/restaurants (6%), and 
construction (2%). Of these, traders represented the largest population using electrified machines 
(51%), followed by manufacturers (20%), and services (29%). At the time, rural micro-entrepreneurs 
reported that poor roads, access to markets, and lack of credit (access to finance) were some of their 
most severe constraints, with electricity not representing a major barrier, although only 33% of them 
had access to it. Similar results were found in South Africa (146, 147), where absence of electricity 
only ranked 34th out of 46 possible business problems in a micro-enterprise survey. In 2003, The 
World Bank published a large literature review and survey of productive uses of electricity in rural 
areas (148), and yet, it is not clear if off-grid entrepreneurs, and top-down energy planners incorporate 
this information into their decision making Kenya’s Lighting Africa 2008 assessment of off-grid rural 
small- and micro-enterprises also highlights the plethora of concerns faced by businesses (149). It 
finds a predominantly agricultural population primarily concerned with improving their facilities 
(55%), with only a few (11%) thinking of electricity access as a top priority (149). Within this subset, 
however, there is a clear understanding of the co-benefits of access, and how its use could be reflected 
in increased productivity and sales (149).  

More recent research in Kenya highlights the complexity of the electricity-entrepreneurship 
nexus; elucidating that access is a necessary but not sufficient condition for the creation and 
development of rural micro-enterprises (119). A 2006 study in the small town of Mpeketoni showed 
that access to electricity (availability and quality) significantly increased productivity per worker 
(quantity and quality of products) and revenues for micro-enterprises, as well as enabled mechanized 
agricultural processing and its co-benefits (increased sales, revenues, and trade) to flourish. However, 
the same article points out that electricity’s catalyzing characteristics would not have been enabled 
without natural capital, markets, road infrastructure and facilities for social amenities (schools, 
polytechnics, and communication services); all which were developed prior to, or in parallel, with 
electricity access (119). In combination, these surveys (138, 146, 147, 149) and case studies (119, 150, 
151) underscore the powerful synergy that exists between electricity access, human capital, and 
complementary infrastructure (schools, roads, and financial services, for example). With Kenya’s 
population still being predominantly rural (>75%), and off-grid electricity remaining limited (electricity 
access < 20%), local dynamics and infrastructural synergies are crucial for understanding the viability 
of electricity access solutions.  

Earlier studies in South Africa and India presented ample analysis and evidence to the range 
of social benefits (increased labor participation, time allocation for fuel collection, poverty reduction, 
and children’s schooling), that can be derived from new connections and electricity access, but often 
ignored the conditions in which electricity access led to those outcomes (103, 152). However, more 
recent work in India and Kenya has begun casting doubt on the often-assumed causal link between 
electricity access and human development (153, 154). Work in India has compared nightlights data 
before and after the country’s massive rural electrification program (2001 vs. 2011) with census data 
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(demographics, occupational status, asset ownership, school enrollments and village level 
improvements) and found no evidence of human development outcomes improving over time (153). 
The work in Kenya suggests that mass rural electrification through grid extension could have limited 
social welfare improvements, with electrification costs being at least four times higher than the ability 
and willingness to pay of households for new connections, and with consumer surplus appearing lower 
than total costs (154). Although intriguing and suggesting alternative hypotheses, neither of these 
articles explore the conditions in which willingness to pay for electricity might be higher or lower, nor 
the diversity of conditions under which electricity can lead to improvements in human development, 
or the amount of time that must pass for electrification to have its greatest impact towards improving 
social well-being and human development outcomes. We demonstrate in the following sections, what 
we consider are important data elements that need to be included in analysis of the benefits of 
electricity access. The same data and approach can be used by top town energy access planners and 
off-grid entrepreneurs to find new regions in which their services are likely to be impactful, profitable, 
and long lasting.  

2.7 Data: Potential for Micro-Enterprise Wealth-Creation Post Electrification 
 
A summary of the data used in this study is available in Table 6. Nationwide geo-spatial data for rivers 
(current), small and large- scale irrigation projects (historical and planned), crop diversity (average 
number of crops grown; 1997) and intensity (percent land under cultivation; 1997) were collected from 
the World Resources Institute (WRI), the International Livestock Research Institute (ILRI), and 
Kenya’s National Irrigation Board (155–157). We also use an agro-ecological potential score which is 
a composite index of moisture availability classification, rainfall (mm), average annual potential 
evaporation (mm), vegetation, potential for plant growth assuming that soil conditions are not limiting, 
and risk of failure of an adapted maize crop (158, 159). The agro-ecological potential score is ranked 
from one (high potential: humid forest with high potential for plant growth and extremely low risk of 
failure of an adapted maize crop) to six (low potential: arid to very arid regions, bushland or desert 
scrub, with low potential for plant growth an and high failure for maize crops). As most rural 
populations are predominantly employed in agriculture, natural capital is crucial for their livelihood, a 
stable cash flow, and for providing the basis for agricultural processing activities. The combination of 
access to fertile soils and water is reflected in greater agricultural productivity, and year-round irrigation 
access (as opposed to rain fed agriculture) can translate into a more stable cash flow throughout the 
year.  

Methods for measuring infrastructural capital include a wide diversity of variables mostly 
concerning distance to services and neighboring communities. Nationwide data for existing schools, 
health care centers, and trade centers throughout the country (electrified vs. non-electrified) were 
obtained from Kenya’s Rural Electrification Authority (2014) (160), and geo-spatial data for major 
towns, 1st and 2nd tier roads, and transmission infrastructure were obtained from the WRI and ILRI. 
Population density estimates were calculated using the highest resolution administrative unit for which 
data are available in Kenya (ward) for population and ward area (km2) from the Society for 
International Development and the Kenya National Bureau of Statistics (herein, “SID-KNBS”). Data 
for spatial location of transmission lines, solar vendor shops and micro-grid locations were obtained 
for Kenya’s Rural Electrification Authority, M-KOPA, Sun Transfer, SteamaCo, Powerhive, and the 
German Federal Ministry for Cooperation and Development. We include proxies for infrastructural 
capital because the literature suggests that social connectivity and education play a large role in 
unlocking the productive uses of electrification (141), and proximity to roads, major towns and trade 
centers allows for more vibrant local economies. Anecdotally, population density is one of the few 
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variables that is used by access entrepreneurs to identify off grid target communities. We used the 
location of all Equity Bank and MPESA agents throughout the country (2014) as proxies for access 
to finance. Equity Bank is a financial services provider based in Nairobi with branches and an agent 
network that span almost everywhere in the country, and M-PESA is a mobile- phone based money 
transfer and micro-financing service that is ubiquitous throughout Kenya. Users of M-PESA can 
deposit money into an account referenced to their phone SIM card, send balances using SMS to other 
users, and redeem cash deposits from M-PESA agents throughout the country. Equity Bank and M-
PESA are distributed extensively throughout the country and provide both mobile money and, 
increasingly, loans (M-Shwari) to a wide diversity of populations, with 80% of Kenya’s adult 
population being actively engaged with mobile money. Recent research from Kenya suggests that over 
the last decade M-PESA has increased per-capita consumption levels and lifted 194,000 households, 
or 2% of Kenyan households, out of poverty (161).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 6. Data Sources: Potential for Micro-Enterprise Wealth-Creation Post Electrification 

 
2.8 Methods and Analysis: Potential for Micro-Enterprise Wealth-Creation Post-
Electrification 
	
Our approach seeks to elucidate areas of high potential for micro-enterprise development in Kenya 
by using different proxy-variables for natural and infrastructural capital. We consider areas of high NC 
and IC to potentially have a high degree of electricity demand persistence, and thus could suggest a 
road map to guide off-grid entrepreneurs. The data suggests that natural capital is the foundation of 
wealth in rural Kenya, as access to it enables infrastructural capital to flourish. On the other hand, 
access to high quality infrastructure also allows communities and villages to increase the benefits they 
could derive from natural capital. Furthermore, and as the literature suggests, electricity access can 
under the right conditions act as a catalyst for off-grid communities to thrive. Below we describe the 

conditions act as a catalyst for off-grid communities to
thrive. Below, we describe the natural and infrastruc-
tural capital datasets used in our analysis and provide a
description of our exploratory spatial analysis and the
development of an index that measures micro-enterprise
development (MED) potential.

Data
A summary of the data used in this study is available in
Table 1. Nationwide geo-spatial data for rivers (current),
small- and large-scale irrigation projects (historical and
planned), and crop diversity (average number of crops
grown; 1997) and intensity (percent land under cultiva-
tion; 1997) were collected from the World Resources
Institute (WRI), the International Livestock Research In-
stitute (ILRI), and Kenya’s National Irrigation Board
[32–34]. We also use an agro-ecological potential score
which is a composite index of moisture availability classifi-
cation, rainfall (mm), average annual potential evaporation
(mm), vegetation, potential for plant growth assuming that
soil conditions are not limiting, and risk of failure of an
adapted maize crop [35, 36]. The agro-ecological potential
score is ranked from 1 (high potential: humid forest with
high potential for plant growth and extremely low risk of
failure of an adapted maize crop) to 6 (low potential: arid
to very arid regions, bushland, or desert scrub, with low
potential for plant growth and high failure for maize
crops). As most rural populations are predominantly

employed in agriculture, natural capital is crucial for their
livelihood, a stable cash flow, and for providing the basis
for agricultural processing activities. The combination of
access to fertile soils and water is reflected in greater agri-
cultural productivity, and year-round irrigation access (as
opposed to rain fed agriculture) can translate into a more
stable cash flow throughout the year.
Methods for measuring infrastructural capital include a

wide diversity of variables mostly concerning distance to
services and neighboring communities. Nationwide data
for existing schools, health care centers, and trade centers
throughout the country (electrified vs. non-electrified)
were obtained from Kenya’s Rural Electrification Authority
(2014) [37], and geo-spatial data for major towns, 1st and
2nd tier roads, and transmission infrastructure were
obtained from the WRI and ILRI. Population density
estimates were calculated using the highest resolution
administrative unit for which data are available in Kenya
(ward) for population and ward area (km2) from the
Society for International Development and the Kenya
National Bureau of Statistics (herein, “SID-KNBS”)
(2009). Data for spatial location of transmission lines,
solar vendor shops, and micro-grid locations were ob-
tained for Kenya’s Rural Electrification Authority, M-
KOPA, Sun Transfer, SteamaCo, Powerhive, and the
German Federal Ministry for Cooperation and Develop-
ment. We include proxies for infrastructural capital be-
cause the literature suggests that social connectivity

Table 1 Data sources
Data source Feature types used Unitsa Year

Kenya’s Rural Electrification Authority World
Resources Institute

Number of schools, trade centers and healthcare
centers per ward

Number/1000 people 2014

Major rivers km –

Agricultural development—average crop diversity Number of crops/km2 1997

Agricultural development—crop intensity Agricultural land/km2

Kenya’s National Irrigation Board Small- and large-scale irrigation schemes Number/ward 2010

Joint Research Center European Soil Data
Center, FAO Soil Database

Soil quality and agro-ecological potential zones Agro-ecological zone score (I–VII) 1980, 2008

International Livestock Research Institute Major towns km –

1st and 2nd tier roads km –

Grid access km 2004

Society for International Development and
the Kenya National Bureau of Statistics

Population density People/km2 2009

Equity Bank Number of agent branches throughout
the country

Number/1000 people 2014

Safaricom Number of agent branches throughout
the country

Number/1000 people 2014

Solar and Microgrid Entrepreneurs Solar agent or microgrid location Number/ward 2014

World Bank and Defense Meteorological
Satellite Program (DMSP)

Nightlights by county GDP per capita ($US 2005) 2015

Operational Linescan System (OLS)
aDistance is measured from ward center to the closest geometry-type feature (polygon line or point)
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natural and infrastructural capital datasets used in our analysis, and provide a description of our 
exploratory spatial analysis and the development of an index that measures Micro- Enterprise 
Development potential (MED).  

In our analysis, all geo-spatial calculations are performed with respect to the center of each of 
our highest resolution administrative units (wards). For polygon lines (rivers, 1st and 2nd tier roads, and 
transmission lines), distance (km) is calculated from the center of a ward to the closest point in a line. 
Distance (km) from ward center to the closest major town (a ‘geo-point’) is also calculated, whereas 
for other ‘geo-points’, such as irrigation projects, we sum the total number of projects per ward. M-
PESA and Equity Bank agents throughout the country are treated as geo-points and we sum their 
presence (agent branches/1000 people) by ward. Similarly, we also add the total number of schools, 
trade centers, and health care centers by ward (electrified vs. unelectrified; number/1000 people). We 
perform a geo-spatial merge using our ward and crop intensity and diversity geo-referenced data, 
resulting in a metric for ward-level agricultural potential. Finally, each variable is normalized between 
0 and 1 using feature scaling, using the maximum and minimum of each value, and then summing 
across values. The result is a non-weighted micro- enterprise potential index ranging from 0 to 7.  

The equations below explicitly describe the creation of the MED index. NC and IC data 
(described above) are first scaled between 1 and 0, and aggregated by ward. It is important to perform 
feature scaling (1-) as many of the variables have different units (e.g., people/km2, km, and unit counts) 
that would make a comparison (and aggregation) among them inaccurate.  As a result of summing IC 
and IC by ward, the MED index provides a spatial representation of the potential for rural 
electrification to create wealth throughout Kenya. Because there is no ground-truth rural wealth data 
that we can use to compare against the MED index, we do not assign weights to different variables 
within it. We provide a discussion of the benefits and limitations of the MED index data and of our 
approach in the results and discussion section. 

 
(1) NCWard = Distance to water bodies + access to irrigation infrastructure + crop intensity + crop diversity 
+ agro-ecological potential [each variable is scaled 1-0] 
(2) ICWard = Access to schools + access to healthcare + access to trade centers/markets + access to major 
towns + access to roads + access to traditional electricity infrastructure (grid) + population density [each variable 
is scaled 1-0] 
(3) MEDWard = NC + IC [sum of all variables scaled between 1-0 ] 
 

We explicitly compare the MED index between areas of high and low agro-ecological 
potential, and the MED index (and the natural and infrastructural capital) between wards with and 
without off-grid projects in areas across Kenya that do not have presence of electrified facilities (as 
for provided by the Kenya Rural Electricity Authority). We hypothesize that the MED index will score 
highly for places in Kenya that have already taken advantage of their natural and infrastructural capital, 
as well as for places that have yet to be fully developed. Thus, the MED index serves both as a tool 
to understand how development has occurred in a particular region or country (rich in natural and 
infrastructural capital), as well as a tool to map potential for wealth creation if more and better 
infrastructure were available (places with high natural capital but little infrastructural capital).  

 
2.9 Results and Discussion: Potential for Micro-Enterprise Wealth-Creation Post-
Electrification 
 
 
2.9.1 Spatial relationship between natural and infrastructural capital 
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Figure 22: Natural and Infrastructural capital in Kenya (by Wards). Natural Capital includes: [A] Small and large 
irrigation projects as well as major rivers, [B] crop diversity, [C] crop Intensity, and [D] agro-ecological potential, 
among several other variables. Infrastructural capital includes [E] finance (M-Pesa and Equity Bank locations), 
[F] electrification infrastructure, [G] electrified facilities per 1000 people, and [H] major roads and towns, among 
several other variables.  

Agro-ecological 
Potential Score

Fig. 1 Natural and infrastructural capital in Kenya (by wards). Natural capital includes a small and large irrigation projects as well as major
rivers, b crop diversity, c crop intensity, and d agro-ecological potential, among several other variables. Infrastructural capital includes e
finance (M-PESA and Equity Bank locations), f electrification infrastructure, g electrified facilities per 1000 people, and h major roads and
towns, among several other variables
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Natural capital and infrastructural capital are well paired in Kenya, and one follows the other. The 
regions with highest agro-ecological potential also have some of the greatest crop diversity and 
intensity, and natural and infrastructural capital investments, making the land more productive, and in 
turn, more populated. High agro-ecological potential, if paired with year-round water availability 
(proximity to irrigation projects and rivers), may lead to increased crop diversity and intensity, which 
may lead to the creation of towns and the build up of infrastructural capital including trade centers, 
roads, electrification infrastructure and electrified facilities, and schools. This is visually explicit both 
from the subset of maps depicted to the right, and the data. On average, the regions with highest agro-
ecological potential (composite agro-ecological index 1-4) have more natural capital infrastructure 
(four times more crop diversity, 35% more land dedicated to agriculture, six times more irrigation 
projects), and infrastructural capital (twice the number of schools, clinic, and trade centers per 
thousand people, and four times the number of electrified schools, clinics, and trade centers per 
thousand people, and twice the number financial branch agents per thousand people) than areas in 
Kenya with low agro-ecological potential (composite agro-ecological index 5- 6).  
 
2.9.2 Electrification infrastructure, natural and infrastructural capital and the MED 
index 
 
Although our off-grid projects database does not contain all off-grid electrification projects across the 
country, we are still able to compare the MED index of wards with available off-grid projects against 
the MED index of wards without off-grid projects. We define wards with off-grid projects as those 
that contain the presence of government, entrepreneur, proposed micro-grids, or the presence of solar 
home system branches. On the other hand, we define wards without projects as those without the 
presence of electrified facilities (as provided by the Kenya Rural Electricity Authority).  On average, 
wards with off-grid electrification projects (government, entrepreneur and proposed microgrids, and 
solar home system branches) are located in areas of medium-high and medium-low agro- ecological 
potential (mean: 3.2, stddev: 1.7), with average crop intensity (47% of land dedicated to agriculture, 
on average) and average crop diversity (2 crops, on average), and on average, are 4 km further away 
from rivers, and with double the number of irrigation projects than other wards in our data.  

In terms of infrastructural capital, off-grid wards have a slightly lower number of schools, 
health care clinics and trade centers facilities (8 per thousand people vs 11 per thousand people on 
average), a similar number of financial branches or agents per thousand people than the country 
average, and are almost twice as far away from major roads, towns, and transmission grid lines than 
other wards in our data. These results are not striking, as we have observed that the regions with 
higher natural capital to be more tightly correlated with higher investments in infrastructural capital. 
Consequently, off-grid electrification projects pursue opportunities in perhaps more remote regions 
(Figure 22). The average MED index of wards with presence of off-grid projects is 4 (out of 7), against 
the average MED countrywide index of 5.  

While these insights are not striking, we do find marked differences in natural and 
infrastructural capital between wards where entrepreneur-driven solar home system branches and 
entrepreneur microgrids operate versus wards where government-owned and government-proposed 
microgrid projects have settled (Figure 23 and Figure 24). On average, entrepreneur ran electrification 
projects (microgrids and solar access) have higher natural and infrastructural capital than government 
microgrids and proposed microgrid greenfield projects. 

On average, wards with entrepreneur operated off-grid electrification projects are located in  
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Figure 23: Natural and Infrastructural Capital Score, and MED Index Score Comparison between Wards with 
and without Off-grid facilities 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24: Natural and Infrastructural Capital Score, and MED Index Score Comparison between Off-grid 
electrification projects (entrepreneur vs. government electrification projects). 

 
areas of high to medium- high agro-ecological potential (mean: 2.7, stddev: 1.3), with high crop 
intensity (55% of land dedicated to agriculture) and average crop diversity (2 crops), and on average, 
are 7 km closer to rivers, and with double the number of irrigation projects than wards with 
government operated off-grid projects. Wards with entrepreneur operated off-grid electrification 
projects also have a slightly higher number of schools, health care clinics and trade centers facilities (8 
per thousand people vs 11 per thousand people), a higher number of electrified schools, clinics and 
trade center (4 per thousand people vs 7 per thousand people), and a higher number of financial 
branches or agents per thousand people than the country average (5 per thousand people vs 3 per 
thousand people, respectively). Entrepreneur electrification projects are equally as far away from major 
roads and towns, but further away from major transmission lines than wards with government 
operated off-grid projects. The MED index of wards with entrepreneur operated off-grid 

Although useful when no other data is available, using
nightlights alone can lead to underestimates of economic
activity, particularly in countries (and counties) that
heavily rely on agriculture (including subsistence agricul-
ture), herding, and other economic activity that predo-
minantly occurs during the day. In countries like Kenya
(including wards and counties), nightlights may not ap-
propriately capture economic activities like livestock
herding, farming, subsistence farming, and fishing. Yet,
this proxy for GDP per capita was one of the few avail-
able to validate and provide a qualitative and quantita-
tive comparison to our MED index.
To compare the ward-level MED index with the

country-level GDP per capita nightlights proxy by the

World Bank, we took the MED index average of all
wards within each county and scaled the scores between
0 and 1 using their minimum and maximum values.
Similarly, the GDP per capita nightlights value was nor-
malized between 0 and 1 using their minimum and max-
imum values. The MED index has a higher degree of
correlation with the areas of Kenya with high, middle-
high, and very low income, than with areas middle-low
income. Within the first group, the MED index corre-
lates well with the nightlights proxy for GDP per capita
in central Kenya, the southeastern coast, and the south-
eastern border with Tanzania. Within the first group, the
MED index provides over estimates for counties like
Murang’a, Tharaka-Nithi, and Kirinyaga, while providing

Fig. 2 Natural and infrastructural capital score and MED index score comparison between wards with and without off-grid facilities

Fig. 3 Natural and infrastructural capital score and MED index score comparison between off-grid electrification projects (entrepreneur vs.
government electrification projects)
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electrification projects is the same as the country countrywide index of 5. These data and analysis 
suggests that entrepreneurs are currently targeting regions, wards and communities with relatively high 
prospects of wealth creation and sustained electrification.  
 
2.9.3 Comparing a nightlights GDP per capita proxy and wealth creation potential 
 

We compare the MED index scores to a GDP per capita County metric ($US 2005) developed 
using nightlights by the World Bank in 2015 (Figure 25 A and B) (162). The GDP per capita metric 
for Kenya uses nightlights as a proxy for economic activity, and assumes that consumption and 
investment activities in the evening or night require lighting. Nightlights are often used to estimate 
economic activity at levels that are not usually captured in national accounts, including subnational 
administrative units such as provinces, districts, counties, cities (162).  

Although useful when no other data is available, using nightlights alone can lead to 
underestimates of economic activity, particularly in countries (and counties) that heavily rely on 
agriculture (including subsistence agriculture), herding, and other economic activity that 
predominantly occurs during the day. In countries like Kenya (including wards and counties), 
nightlights may not appropriately capture economic activities like livestock herding, farming, 
subsistence farming, and fishing. Yet, this proxy for GDP per capita was one of the few available to 
validate and provide a qualitative and quantitative comparison to our MED index.  

To compare the ward-level MED index with the country-level GDP per capita nightlights 
proxy by the World Bank we took the MED index average of all wards within each County and scaled 
the scores between 0 and 1 using their minimum and maximum values. Similarly, the GDP per capita 
nightlights value was normalized between 0 and 1 using their minimum and maximum values. The 
MED index has a higher degree of correlation with the areas of Kenya with high, middle-high, and 
very low income, than with areas middle-low income. Within the first group, the MED index correlates 
well with the nightlights proxy for GDP per capita in central Kenya, the southeastern coast, and the 
southeastern border with Tanzania. Within the first group the MED index provides over estimates 
for counties like Murang’a, Tharaka-Nithi, and Kirinyaga, while providing underestimates for Kajiado 
and Kwale counties. The latter provide useful insights into data that could make the MED index more 
accurate. Kajiado County’s most important economic activities include livestock rearing and tourism, 
with the popular Amboseli National Park being located there. Similarly, Kwale County’s most 
important economic activities include beach tourism, fisheries and trade, with the first two being 
important omissions in our data set. Future work should include the diversity of local natural beauty 
and the health of fisheries and reefs to the importance of natural capital in a country. The natural 
capital wealth of the Murang’a, Tharaka- Nithi, and Kirinyaga counties is reflected in the regional 
growth of cash crops such as coffee and tea, and yet, the difference between the MED index and 
GDP per capita proxy suggests a large gap between potential and realized wealth.  

 
2.9.4 Evaluating discrepancies between rural wealth proxy variables 
 
There are several reasons why the MED index noticeably provides an overestimate for many counties 
in the left-middle and upper-left corner of Figure 25-B. First, the data in the MED index are suggestive 
of the potential of a ward (and aggregated to counties) to derive socio-economic benefits from natural 
and infrastructural capital, and thus, it will necessarily attribute higher scores in regions that have high 
potential, but where infrastructural capital and wealth creation has yet to develop. Other reasons 
include the fact that the MED index has not been adjusted for climate stress factors (recurrence of 
droughts), population stress on available resources (deforestation, soil and land degradation, 
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prevalence of unsustainable practices in agricultural expansion, unsustainable fishing practices, and 
over dependence on wood fuels), the quality of roads and services (not only a wards proximity to 
them), the health of local water bodies (pollution affecting lakes and fisheries), the local effects of 
climate change (drought, warming water bodies, and more variable precipitation), and the quality of 
local institutional governance, as corruption can be crippling to local economies. Recent research has 
also provided evidence to suggest that ethnic favoritism in Kenya can play a significant 
disadvantageous role in local development. Between 1963 and 2011, districts sharing the Kenyan 
president’s ethnicity received twice as much expenditure on roads and five times the length of paved 
roads (163). Furthermore, the comparison with the nightlights GDP per capita proxy is difficult, as 
the latter is likely an underestimate for the economic activity in many of these counties.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
	
	
	
	
	
	
	
 
 
Figure 25: Micro-Enterprise Development Index [A] and Correlation with GDP per Capita nightlights proxy by 
County [B]: The MED index correlates well with the middle, and high-middle income regions of the country, as well as the 
poorest counties in the country. The MED index provides an overestimate for low-middle income counties (discussed below).  
	

The MED index in very-low income counties is also well correlated with the GDP per capita 
proxy except for an underestimate in Lamu, which has a vibrant fishing and tourism industry (and 
thus the MED index providing an underestimate), and an overestimate for Isiolo. Isiolo is an 

underestimates for Kajiado and Kwale counties. The lat-
ter provide useful insights into data that could make the
MED index more accurate. Kajiado County’s most im-
portant economic activities include livestock rearing and
tourism, with the popular Amboseli National Park being
located there. Similarly, Kwale County’s most important
economic activities include beach tourism, fisheries, and
trade, with the first two being important omissions in
our data set. Future work should include the diversity of
local natural beauty and the health of fisheries and reefs

to the importance of natural capital in a country. The
natural capital wealth of the Murang’a, Tharaka-Nithi,
and Kirinyaga counties is reflected in the regional
growth of cash crops such as coffee and tea, and yet, the
difference between the MED index and GDP per capita
proxy suggests a large gap between potential and rea-
lized wealth.
The MED index in very low-income counties is also

well correlated with the GDP per capita proxy except for
an underestimate in Lamu, which has a vibrant fishing

Poor counties in scarce regions

A higher degree of correlation
in already developed and relatively
wealthier areas

Underestimate by GDP per capita 
nightlights proxy and omitted variables 
(discussed in text)

Fig. 4 Micro-enterprise development index (a) and correlation with GDP per capita nightlights proxy by county (b): The MED index correlates
well with the middle and high-middle-income regions of the country, as well as the poorest counties in the country. The MED index provides
an overestimate for low-middle-income counties (discussed below)
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interesting case as it is located in central Kenya and has become an important part of Kenya’s 
economic development plan for 2030, despite it not being highly ranked in our MED index.  

The MED index provides several other overestimates for counties such as Homa Bay, 
Nyandarua, Meru, Kisumu and Bomet. Homa Bay’s most important economic activities include 
fishing and agriculture (including both staple and cash crops), agricultural processing in sugar cane 
factories, and lake tourism. Despite the presence of strong natural capital (fertile soils, water 
availability, and high crop diversity and intensity) and infrastructural capital, Homa Bay receives low 
GDP per capita estimates from the nightlights proxy, with a recent survey in Kenya putting Homa 
Bay in ninth position of the most corrupt counties in the country [40]. Nyandarua, Meru, Kisumu and 
Bomet also receive high MED index values in areas that grow both staple and cash crops, and have 
some industry and agricultural processing, but still receive low GDP per capita estimates from the 
nightlights proxy. Here, the dynamics are diverse and complex. Nyandarua County lacks a good road 
network and adequate distribution of electricity and water, Meru has high natural capital with fertile 
soils and water resources but most of the population is engaged in subsistence farming, and Bomet 
has favorable climatic conditions, fertile soil and water availability with tea farming and dairy 
production as favored economic activities, yet according to surveys, it is also the sixth most corrupt 
County in Kenya (164). Kisumu County’s privileged location next to Lake Victoria provides both 
water resources and fertile soils. Some have denominated it as the next economic hub of East Africa, 
but Lake Victoria’s pollution levels, increasing water temperature due to climate change, overfishing 
and unsustainable (and illegal) fishing practices have devastated fisheries (Chinese fish now have to be 
imported to meet local demand) (165).  

Nyamira, Kisii and Kakamega Counties provide the most startling comparisons as the MED 
index is one of the highest, and yet, the counties are poor according to the nightlights GDP per capita 
proxy. Nyamira and Kisii are highly agricultural productive neighboring counties (cash crops like tea 
and coffee, as well as staple crops), with fertile soils and water availability, but with little access to 
quality roads that provide access to markets, year-round irrigation, and reliable electric power that can 
allow for the flourishing of other industries in agricultural processing (166). Furthermore, tea and 
coffee co- operatives in both counties are heavily burdened by debt, and the counties rank as the 
second and third most corrupt counties in the country (164, 166). Kakamega County stands alone in 
its contrasts, as in 2014 it was named the poorest County in the country, but has one of the highest 
MED index scores (167). The County has similarly favorable agro-ecological potential and climatic 
conditions as Kisii and Nyamira, but its predominant agricultural activity is sugarcane. Once a 
booming industry, the sugarcane industry in Kakamega is now unsustainable due to small land 
holdings, low-yields, little efficiency in sugar production, and debt (168). Moreover, farmers find 
themselves with minimal benefits from commercial sugarcane production after continuous laboring 
in the industry (169). Cane farmers in Kakamega experience various deductions that reduce the benefit 
from their labor which includes high costs of transportation, harvesting, supervision, out growers’ 
services, levies, land preparations, and input advances costs  (169).  

The agreements and differences in the information portrayed by the nightlights GDP per 
capita proxy and the MED index is informative towards the current local use of resources (agreeing 
on areas that have already been extensively developed, and where there is poverty and very little natural 
and infrastructural potential), and provides indication of areas where the gap between realized and 
achieved potential is large, as well as highlighting areas with merely unrealized potential. The data 
shows that the combination of many of the MED elements and electricity can lead to socially beneficial 
outcomes, and highlights once again, that electricity access is a necessary but not sufficient condition 
for development. Like our previous discussion suggests, a County may have optimal natural and 
infrastructural capital requirements but can remain poor due to poor governance and corruption, poor 
cash crop selection, unsustainable agricultural and fishing practices, as well as debt. While electricity 
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access entrepreneurs cannot take on all these issues simultaneously, they can certainly incorporate 
practices that can lead to a sustainable business and socially beneficial outcomes. These could include 
partnering with organizations that work with farmers on financial management and accounting, cost-
effective and sustainable farming practices and crop selection, and climate resilience, among others. 
Furthermore, the development of infrastructural capital is crucial with access to markets as well as 
availability of communications and financial services being extremely important factors.  

We have developed an understanding of the enabling environments of entrepreneur vs. 
government run off-grid electrification projects, explore the role that NC and IC can play in 
determining wealth creation post-electrification, and attempt to develop a micro-enterprise 
development (MED) index that could be used to guide top-down energy planners and off-grid energy 
access entrepreneurs in Kenya. We gather data and use variables that are considered in the literature 
to provide appropriate conditions under which electrification can lead to long-term socially beneficial 
outcomes including access to roads, markets, schools, communications, and finance, as well as the 
natural capital that enables infrastructural capital to be transformative. The maps and data of Kenya 
show that natural and infrastructural capital are tied to each other, with their quality and health being 
essential to ensure the long term beneficial outcomes of electrification.  

Our results are confirmed by evidence and literature from Kenya and South Africa, which 
suggest that a panoply of infrastructural capital is essential for the success of rural enterprises. Poor 
roads, poorly maintained infrastructure, and lack of access to markets and financing have been 
historically burdening constraints for wealth creation in rural Kenya (146–149). Without 
complementary infrastructure, access to electricity becomes once again a necessary but not sufficient 
condition for development. If, however, electricity services are provided while taking into 
complementary infrastructure it could make the long-term financial sustainability goals of rural 
electrification more achievable. Like our discussion suggests, electricity may allow certain industries in 
agricultural processing to flourish, and may allow fishing markets to buy refrigerators for cold storage, 
but unsustainable farming practices may deplete the soil, and unsustainable fishing practices, pollution, 
and warming water bodies may havoc fisheries. Thus, this analysis also suggests that rural 
electrification projects could significantly benefit from developing best practices in environmental 
sustainability. Because in Kenya rural wealth creation is derived from the interaction of natural and 
infrastructural capita, a drop or erosion in the quality of local ecosystems (e.g., quality of water and 
soil) could significantly affect local sustainability and human development. This is evidenced in our 
discussion, which highlights several regions in Kenya where environmental degradation has 
significantly affected livelihoods and the health of the local economy.  

Natural and infrastructural capital may provide appropriate conditions for wealth creation, but 
ensuring the long-term benefits of electrification could depend on developing sustainable practices 
and good governance around the industries that may flourish post-electrification. While the MED 
index highlights regions in a country where electrification could be most transformative, our 
discussion also suggests that there are many elements that are missing from our analysis. The health 
of fisheries, water body health (e.g., pollution, temperature, pH), climate stress factors (recurrence of 
droughts), local choice of cash and staple crops, population stress on available resources 
(deforestation, soil and land degradation, prevalence of unsustainable practices in agricultural 
expansion, unsustainable fishing practices, and over dependence on wood fuels), the quality of roads 
and services (not only proximity to them), and the quality of institutional governance are but a few of 
the factors that can determine the long-term beneficial outcomes of electrification. Another missing 
data element from our analysis is ethnic favoritism, which in Kenya has shown to play a crucial role 
in development (161).  

Top-down energy planners, researchers, and off-grid energy access entrepreneurs could use 
these data and analysis in a variety of ways. Planning agencies and off-grid access entrepreneurs can 
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use these data and methodology (while keeping in mind the limitations detailed above) as input in 
supply side models of rural electrification. The use of these demand-side data and methodology could 
allow for the development of supply side scenario modeling at different levels of electricity demand, 
thus changing the strategies that are available for electrification. Furthermore, while the use of this 
methodology is obvious for planning rural electrification it also highlights infrastructural gaps 
throughout the country. Using these data to create awareness about infrastructural gaps (e.g., access 
to roads, schools, markets and major towns) in Kenya (and elsewhere) is crucial to realizing the full 
benefits of electrification. Developing collaborative and interdisciplinary planning and research teams 
that touch on the various elements of NC and IC is crucial for developing sustainable long-term 
electrification strategies. 

Practitioners, on the other hand, could use results from this analysis to find areas with large 
untapped potential for electrification, and are encouraged to develop transformative alliances with 
NGOs, institutions, and other enterprises that provide sustainable solutions around natural and 
infrastructural capital. For example, off grid-access entrepreneurs could develop alliances with 
sustainable agro-processing industries for local staple foods, sustainable farming practices, and ensure 
access to irrigation and financial services. Our analysis and literature suggests that these elements are 
key for wealth creation in rural areas. 

Our analysis and map suggest that there are many areas in Kenya with large untapped potential, 
and off- grid-entrepreneurs could find themselves well equipped to take advantage of this opportunity 
if they develop the locally appropriate transformative alliances. Knowing that electricity in and of itself 
cannot be fully transformational, developing alliances with groups that support sustainable farming 
and fishing practices, cost-effective transportation, co-ops and market access, and financial services 
could play a large role in ensuring the long-term socially beneficial outcomes that electricity access 
promises to provide.  

 
 

2.10 Background: Overcoming the Data Scarcity Challenge for Energy Efficiency 
Planning in Resource Constrained Environment 
	
Elucidating demand is a crucial element for designing and implementing short- and long-term energy 
efficiency strategies. Developing estimates on what energy efficiency goals should be and what the 
‘energy efficiency gap’ is (170), however, remains a contested topic in the literature. Some estimates 
suggest that nearly two-thirds of the economic potential of energy efficiency remains unfulfilled, that 
70% of global energy use exists outside of existing efficiency performance requirements, and that the 
untapped efficiency resource represents approximately 40% of the green house abatement potential 
that can be realized below a cost of $US 80 per metric ton of tCO2e (112–114). Other analysis suggests 
that these estimates are overstated by traditional analysis (e.g., engineering estimates and empirical 
estimates of returns observed to investments) that fail to incorporate physical, risk and opportunity 
costs, costs to project participants, and other unobserved factors that can reduce the effectiveness of 
energy efficiency interventions (e.g., behavioral aspects) (115). Thus, the literature arguing whether or 
not there is an energy efficiency gap, and how large it is, falls into three broad categories including 
market failures, behavioral explanations, and modeling flaws (171).  
 The energy efficiency gap is broadly defined as the perceived slow rate of diffusion and 
adoption of energy efficient products and practices (172). Some studies view market failures (e.g., 
energy pricing, uninternalized externalities, information asymmetries) as a central element explaining 
the slow diffusion and adoption of energy efficient solutions (115, 171, 172). Others, view systematic 
behavioral biases as the central element affecting user economic decision making, hindering the 
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realization of technical potential estimates calculated through engineering estimates (172–174). When 
estimating the efficiency gap, there are a set of competing and complementary methods. Engineering 
estimates arrive at the technical potential, but usually overstate net benefits if they do not account for 
hidden user costs (e.g., time investments, sunk costs, risk and uncertainty), heterogeneity of 
preferences and users, and long-term reductions in quality of service, among others (172). Similarly, if 
engineering estimates do not incorporate behavioral aspects, diffusion strategies might lead to 
unintended consequences, such as the rebound effect (172, 175). Acknowledgement of modeling and 
measurement flaws has been one of the most recent additions in attempting to explain the energy 
efficiency gap (171). These flaws include the lack of context with regards to appliance and product 
characteristics and attributes, and with regards to modeling it includes a failure to incorporate 
heterogeneity in costs and benefits across users, use of inappropriate discount rates, uncertainty, 
irreversibility and option value (171). Behavioral characteristics that explain the existence of a gap, and 
describe why it may be difficult to reduce it, include theories on non-standard preferences (176), loss 
aversion (177, 3, 4), non-standard beliefs (178), bounded rationality, and non-standard decision 
making (171, 172, 174, 179). Because there is a wide range of methodologies through which many of 
these hypotheses are tested, the literature has yet to arrive at a consensus regarding the existence and 
size of the efficiency gap.  
 Strategies to reduce the efficiency gap as it relates to practices and products, include user 
information feedback mechanisms and energy efficiency standards. Examples of user information 
mechanisms include energy audits, improved appliance product labeling (e.g., Energy Star), displaying 
lifetime energy costs, cueing social norms, gamifying, and a suite of energy information products (e.g., 
energy monitors, apps, SMS) to engage users in actions that can help them achieve reductions in energy 
consumption (172, 180–185). Energy efficiency standards are generally implemented as policies 
requiring new appliances to meet certain requirements and energy efficiency levels before they can be 
offered to users (172). While using standards as the sole mechanism for advancing energy efficiency 
has been often criticized in the literature (e.g., technical potential over-estimates, neglect of welfare 
effects and heterogeneity of preferences and users), they are often favored as policy instruments as 
they appear to be relatively straightforward to implement and enforce (172). As the example of LEDs 
and other efficient lighting in the U.S. may suggest, efficiency standards have a large role to play in 
achieving energy efficiency goals (186).  
 Key to designing, planning and implementing these strategies is data. However, in many 
contexts, and especially in resource constrained environments, data is scarce. Detailed appliance 
ownership surveys are performed decades apart, no surveys on user perceptions related to energy 
consumption and energy efficiency strategies are performed, there are no regularly updated market 
analyses of the appliances available for purchase (in stores as well as second-hand markets), and no 
baseline estimates of household and small business characteristics that affect energy consumption 
(e.g., building envelope, temperature, household size). While the previous descriptions only provide 
static snapshots of the state of an appliance or energy consumption marketplace, time series data that 
can depict usage patterns, behavior, and the efficiency of appliances is practically non-existent. Most 
low, low-middle income countries do not have smart meters, or provide access to 15-minute interval 
data to study consumption. This lack of data obfuscates the process through which planning for which 
cities and countries can achieve their energy efficiency goals. For example, is the efficiency gap in a 
country due to a lack of appliance standards, or due to lack of financing to enable ownership of 
efficient appliances? Do users buy appliances from stores or second-hand markets? What is the energy 
consumption profile of appliances in the field, and which appliances consume the bulk of total energy? 
What strategies are users already implementing to save energy, and how can they be fostered? How 
can product design adapt to existing local energy saving customs and practices? 

Here, we argue that sampling data from different sources (e.g., census, health and social 
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demographic, surveys and sensor data) is a critical component for evaluating the energy efficiency gap 
- informing energy efficiency policy, designing effective standards, and discovering opportunities for 
behavioral and technical energy efficiency interventions. We focus our case study in Managua, 
Nicaragua, as it exemplifies many resource constrained environments (e.g., communities that might 
exist in relative income, infrastructural, or institutional scarcity) in the global south, where most of the 
growth in electricity demand is expected to occur (187). Similarly, the approach we take here can be 
used to understand the efficiency gap in low, low-middle income neighborhoods of relatively richer 
countries. Continuously collecting data, we argue, is central to understanding the market failures, 
behavioral characteristics, and modeling flaws that fail to capture and help in the diffusion of energy 
efficient products and technologies. Because the data that is collected for any technical analysis (e.g., 
engineering or user-focused modeling) will be an important driver of results (and informing policy), 
these data (and results) must also characterize their inherent uncertainty or sampling bias (if any). 
Countries like Nicaragua have little data on existing and future appliance stocks, and thus, reliable 
estimates must be developed combining Census and household level surveys. Second hand market 
analysis to understand the state and penetration of efficient appliances should also supplement 
available web data with second hand market data to avoid sampling bias (large retailers with websites 
might only cater to the middle, and upper-middle class which is relatively small in some countries), 
should collect field random samples and build data sets with sensor networks to understand the 
current state of appliances, and when possible, capture time series of usage to understand behavior. A 
strong complement to these data would be interviews and surveys related to usage practices, and belief 
systems with regards to energy efficiency.  

We bring together several disparate streams of data to make predictions of appliance 
ownership throughout the country, use web and second-hand market data to perform a market 
analysis, and use data from sensor networks to validate market data and understand usage behavior. 
We implement machine learning algorithms to predict appliance ownership throughout Nicaragua, 
and Bayesian updating to characterize the magnitude and uncertainty of appliance characteristics in 
Nicaragua. As wealth, appliance efficiency and affordability, and social demographics change in time, 
it is important to recurrently update data streams to understand the diffusion, adoption and usage 
characteristics of energy efficient technology to meet short- and long-term demand reduction goals. 

 
2.10.1 Data  
	
We use three principal sources of socioeconomic data for this analysis: official macro-level data 
streams, web crawlers and ground-level market analysis, and sensor data. At the macro-level (country-
level), the first, is a combination of Nicaragua’s 2011 Demographic Household Survey (DHS) and the 
Nicaraguan 2005 Census. DHS data includes a statistically representative sample of 19,918 unique 
households, and 135 towns. DHS data collects detailed household characteristics including wall, floor, 
and roof type, sanitation characteristics, access to basic services (water, sanitation, and modern energy 
services), and education levels, among many other things. In addition, DHS also includes information 
regarding the ownership of electrical appliances including radios, televisions, cell phones, and 
refrigerators among others. The 2005 Nicaraguan census is a higher-spatial resolution data set, as it 
includes over 1 million households throughout the country (1,116,540), but collects less details about 
each individual household. The data includes household level characteristics albeit at a lower resolution 
than the DHS. For example, the census includes data regarding the quality (a binary variable) of access 
to basic services such as water, sanitation, and the quality of living conditions (e.g., walls, roof, and 
floor types), but doesn’t include the service access types (for example, local vs. community water wells, 
or, electrification via PV systems vs. grid extension). Because neither the DHS nor the Nicaragua 



 

 

56 

Census data contain geospatial data, a Python script written using a Google API was used to obtain  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 26. DHS and Census town locations [26.A] and [26.B] features used in this analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27. Spatial diversity of appliance ownership [27.a and 27.b] and lack of electricity access [27.b 
number of people, 27.c percent of people in town]. Note: 27.a and 27.b depict the representative 

number of households that own a particular appliance within a certain sampling region. 
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Figure 1. DHS and Census Town Locations [1.A] and [1.B] Features evaluated from each data set in our 
analysis.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Spatial diversity of appliance ownership [2.a and 2.b] and lack of electricity access [2.b number of 
people, 2.c percent of people in town]. Note: 2.a and 2.b represent the representative number of households to 
own a particular appliance within a certain sampling region. 
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town coordinates (lat-long). Only two thirds of the census data were able to be geo-spatially located, 
because the town names couldn’t be found via the API. 

To aggregate the DHS and Nicaraguan census data, socio-demographic data from each DHS 
household was transformed into a format equivalent to that of the Census. For example, if ‘water 
access’ was specified in DHS as coming from a river or stream, lake or lagoon, or a water hole, it 
would be considered of poor quality (binary value: 1). Next, the households DHS ‘weights’ were used 
to expand the size of the data set within its sampling area (a house’s weight suggests the number of 
similar households that are likely to be found within a sampling area). Because DHS is household-level 
data and the Census is town-level data, the latter was disaggregated into households. For each region 
(state) within the DHS all possible household socio- demographic characteristic combinations were 
identified and associated with a probability. Then, by using town socio-demographic characteristics 
totals, and the associated probabilities of all unique combinations, each town was disaggregated into 
distinct households. Figure 26 and 27 depicts some elements of these data. 

Our appliance market analysis was a combination of web-crawlers and ground-level market 
analysis (188). We collected web and ground-level market data related to brand, dimensions, wattage, 
and prices for plug loads such as televisions, fans, and washing machines. For refrigerators and freezers 
we collected wattage, volume, and labeled expected monthly energy consumption, when applicable. 
For refrigerators and freezers for which there was no wattage data available, we used cubic size, 
refrigerator or freezer type, and age, in combination with the fridge energy calculator available at the 
Energy Star website to determine approximate monthly energy consumption values (189). Because 
web-crawlers used on stores that are ready-available online can provide a skewed distribution geared 
towards the urban middle- and upper-middle class, we complement these data with an on-the-ground 
market survey. We surveyed two of the most popular second-hand markets in Managua, where it is 
most common for households to purchase used appliances. In total, we collected market data for 227 
appliances including televisions (35), washing machines (42), refrigerators and freezers (116) and fans 
(34).  

Sensor data is gathered from two pilot projects in Managua that were evaluating the potential 
for flexible demand and behavioral energy efficiency in households and small businesses throughout 
the city (190).  Households and small businesses participating in our pilot projects (105) were randomly 
selected from a random sample of over 700 households and small businesses throughout the city. This 
random sample was created from low, low-middle income neighborhoods of similar social and 
economic demographics such as overcrowding, access to basic services, housing quality, education 
level, economic dependency and incidence of poverty. From the flexible demand project, we use field-
data from 30 refrigerators and freezers that was collected throughout over a year of baseline and 
implementation. Data was collected through a FlexBox sensor gateway (190) that aggregated disparate 
data streams including ambient temperature, inside temperature of refrigerators and freezers, total 
household energy consumption, refrigerator-level energy consumption, and refrigerator door 
openings. The high-resolution (minute-level) refrigerator-level energy consumption data reflects the 
variability and impact of seasonal consumption (e.g., summer vs winter) as well as intra-day hourly 
variability, when aggregated. The second and most recent behavioral energy efficiency project 
provided plug-load level data for refrigerators and freezers, fans, televisions, washing machines, and 
cellphones for 75 households and small businesses. For these data, we recorded the labeled wattage, 
dimensions (e.g., screen size for television, cubic size for refrigerators), approximate age, as well as 30 
minutes of energy consumption per household or business. When measuring energy consumption at 
each house we could use from one to five ZOOZ Z-wave plug load monitoring devices to measure 
the contribution of each appliance to the household total. Table 7 summarizes these data. 
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Table 7. Data: Macro-level aggregates, market analysis, and sensor data. 
 

2.10.2 Methods and Analytical Framework 
 
To predict the ‘hypothetical’ ownership of electrical appliances for households without electricity in off-
grid Nicaragua, we use socio-demographic similarities and a decision tree framework. To build credible 
distributions of existing appliances in the country, and their energy use, we use market analysis, survey 
and sensor data, combined with Bayesian updating. 

We use the extended (un-weighted) DHS data to train our decision tree. The goal is to create 
a model that accurately predicts ownership of each electrical appliance separately, by using decision 
rules inferred from social-demographic characteristics. A random forest gradient boost algorithm then 
iterates over all possible combinations of social demographic characteristics, and hyperparameters, 
seeking to identify the optimal combination that minimizes the training error for each electrical 
appliance (radio, sound systems, television, refrigerators, microwaves, irons, fans, ACs, sewing 
machines, DVDs, video game consoles, internet, and cellphones). To improve the decision tree 
algorithm, we explored the maximum depth hyperparameter of the tree. For individual trees, we found 
that it was best to expand all nodes completely. However, for the ensemble methods described below, 
we found that the maximum depth hyperparameter played an important role in minimizing the error 
of predictions.  In addition to an individual decision tree, we tested boosting ensemble methods, 
including Gradient Boosted Regression Trees (GBRT) and Random Forests. In contrast to averaged 
ensemble methods, boosting methods build base estimators sequentially with the goal of minimizing 
the bias of the combined estimator. The GBRT, for example, is an additive model of the form:  

 

𝐹 𝑥 = 	𝛾'𝑓' 𝑥 +	𝛾*𝑓* 𝑥 +	𝛾+𝑓+ 𝑥 = 	 𝛾,𝑓, 𝑥
-

,.*
	 

Here the final GBRT classifier (F) is the sum of several decision tree classifiers (fi). The model 
is additive at each sequential boosting stage, such that:  

 
𝐹, 𝑥 = 	𝐹,.* 𝑥 + 	𝛾,𝑓, 𝑥  

where fi (x) is chosen to minimize the loss function. For the GBRT algorithm, we optimized three 
hyperparameters, namely the number of boosting stages to perform, the learning rate that sets the 
contribution of each tree, and the maximum depth of individual estimators that limits the nodes in 

Data Source Units Socio-Demographic Characteristics Appliance Data Resolution

Demographic and Health Survey (DHS) 
2011

19,918 unique 
households, and 135 

towns

wall-type, roof-type, floor-type, household type, primary energy 
source (type), primary electricity source (type), primary energy 
source (type), ownership type, sanitation access (type), state.

radio, sound system, television, refrigerator, 
microwave, iron, fan, AC, sewing machine, 

DVD, video gams, cable TV, internet, cellphone

Household level variable type (e.g., 
wall-type)

Census 2005 1,116,540 households
Binary variables (1 - adequate, 0 - inadequate): walll quality, roof 

quality, floor quality, household quality, electricity access (1 - access, 
0 - no access), water quality, sanitation quality, household 

- Town level aggregates

Web and on-the-ground appliance market 
survey

227 appliances -

Dimensions (e.g., screen size, volume), 
wattage, monthly energy consumption 
estimates, price: refrigerators/freezers, 
televisions, fans, washing machines, cell 

Appliance level

Sensor data 105 appliances -

Minute-by-minute power and energy 
consumption: refrigerators/freezers, 

televisions, fans, washing machines, cell Appliance level
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each individual decision tree. The hyperparameters were optimized by training with the full DHS 
dataset for each of the predicted output variables. For most of these variables, the optimal depth, 
which depends on the interaction of input variables, was equal to 6 nodes. There was a trade-off 
between the number of boosting stages and contribution of each tree, with an optimal of 100 and 1 
for boosting states to perform and learning rate, respectively.  

To build reliable distributions from disparate appliance level data streams we perform 
summary descriptive statistics, and use Bayesian updating to construct posterior distributions for each 
appliance characterizing their magnitude and uncertainty. We use Bayesian updating as an example of 
a methodology that can be used to improve (or update) prior knowledge to produce posterior 
probability estimates. We use web-market data as our prior (a log-normal distribution), and build the 
posterior probability estimates using data from second-hand markets and sensors. R functions 
including JAGS and CODA are used to construct the posterior distribution for each appliance’s 
characteristics (191, 192). Because our data is well described by log-normal distributions we implement 
Markov Chain Monte Carlo chains on log-normal data, and then transform the estimated parameters 
to obtain mean and uncertainty estimates for y as opposed to log(y) (y being appliance 
characteristics)(193). We perform a posterior predictive check on our data, and obtain distributions 
for the mode, mean and standard deviation of both y and log(y). We argue that using Bayes is 
appropriate to arrive at a better understanding of our baseline appliance characteristics, as using static 
data is not sufficient to understand the true distribution (and parameters) of that data. Bayes, in this 
case, allows us to arrive at parameter estimates and characterizations of uncertainty that are crucial for 
determining energy efficiency strategies.  
 

 2.10.3 Results and Discussion 
	
2.10.3.1 Appliance Ownership Prediction 
	
The variables (electrical appliances) where ownership could be predicted with the smallest error in the 
training set were AC systems (1.6%), video game consoles (5.5%), internet access (5.9%), and 
television sets (10.3%). Table 8 provides a summary of results and the optimal predictors for each 
electrical appliance in the training set. AC, video games, and internet access are likely to be the 
appliances with the most accurate predictions because they are only owned by a small and very 
particular niche of social-demographics relevant to middle-high, and high-income households in 
Nicaragua (their characteristics are very specific and easy to predict). The rest of the appliances ranging 
from televisions to radios have a high likelihood of being owned across a spectrum of social-
demographics, and thus, the prediction error is higher in the training set. Radios, for example, are very 
likely to be found in every household (80%) and thus have a much higher prediction error (194). The 
ownership of radios ranges from the highest to the lowest income bracket, and across all combinations 
of social demographics. Because our macro-level data aggregates are from 2005 (Census) and 2011 
(DHS), they don’t fully capture the rapid and evolving dynamics that have come to play with regards 
to appliance ownership. For example, in 2011, cellphone ownership in Nicaragua had only reached 
70% of the population, but by 2014 there were already 1.5 cellphones per person (more cellphones 
than people in the country)(195, 196). Although this doesn’t suggest that cellphones are equally 
distributed across social demographics, it does suggest that in recent years there are some important 
technology evolution dynamics that are not captured by historical data – and thus, our analysis. If 
there were more recent data available, we would expect the training error to be equally low (or lower) 
for cellphones as it is for radios. 
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Table 8. Accuracy of Predicting Different Appliances in the Training Set 
 
 

After training our decision tree classifier on each appliance using the full DHS extended data 
set, we predict appliance ownership based on social demographic similarity. We use each individually 
trained appliance model to predict appliance ownership for all towns (and households) in the country 
for which we have data.  Our prediction results make intuitive sense. Cellphones, televisions, and irons 
are predicted to be the appliances with the greatest diffusion based on social-demographic similarity. 
In the literature, cellphones and televisions, and other affordable connectivity related appliances, have 
been documented to be the most coveted appliances pre- and post-electrification (141, 119, 118). 
Furthermore, the growth of cellphones and televisions has been significantly documented in 
Nicaragua’s media since 2005 and 2011 (when we have the latest available data). In the absence of 
official data, web media from Nicaragua suggests that there are now more cellphones than people in 
the country, and that the growth in the ownership of televisions increases year after year (195–198).  
Figure 28 summarizes some of these results. 
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of individual estimators (max_depth) that limits the nodes in each individual decision tree. 
The hyperparameters were optimized by training with the full DHS dataset for each of the 
predicted output variables. For most of these variables, the optimal max_depth, which 
depends on the interaction of input variables, was equal to 6 nodes. There was a trade-off 
between the number of boosting stages and contribution of each tree, with an optimal of 
100 and 1 for n_estimators and learning_rate, respectively. 
 

5. Results :   
 
The variables (electrical appliances) where ownership can be predicted with the smallest 
error are AC systems (1.6%), video game consoles (5.5%), internet access (5.9%), and 
television sets (10.3%). Table 1 provides a summary of results and the optimal predicting 
variables for each electrical appliance.  

 
After training our decision tree classifier using the 
full DHS extended data set, our model allows us to 
predict what appliance ownership could be based on 
social demographic similarity. We test our model on 
one state in Nicaragua (Boaco) that has yet to be 
fully electrified, despite the fact that it is relatively 
close to the country’s transmission grid. Boaco is 
located in the central part of the country. Results 
suggest that there are only two towns with a high 
penetration of electrical appliances (the two major 
towns in the region).  
 
 

 
If this region were to be electrified, and based on the household’s social-demographic 
characteristics, cellphones and televisions would be the most prevalent loads, followed by 
irons, fans and refrigerators. Because of the nature of the data, and the lack of ‘ground 
truthing’, field surveys, or on-the-ground research we perform no further validation on the 
model. This methodology can be used and expanded to predict appliance ownership for all 
off-grid regions in Nicaragua. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Total number of appliances in one example town, and load diversity. 
 

Number of Appliances per Town
[0,4274.222)
[4274.222,8548.444)
[8548.444,12822.67)
[12822.67,17096.89)
[17096.89,21371.11)
[21371.11,25645.33)
[25645.33,29919.56)
[29919.56,34193.78)
[34193.78,38468]

7.7% 8.0% 8.0% 8.7% 8.7% 9.2% 

14.0% 
15.8% 

20.0% 

Radio Sound 
System 

Cable TV DVD Refrigerator Fan Iron TV Cellphone 

10%$

20%$

15%$

Variable  % Error Predicting Vars
AC 1.6 0, 1, 2, 3, 7, 8, 9, 10, 11

Video games 5.4 0, 1, 2, 3, 7, 8, 9, 10, 11

Internet Access 5.9 0, 1, 2, 3,  7, 8, 9, 10, 11

Television 10.3 0, 1, 2, 3, 7, 8, 9, 10, 11

Sewing Machine 12.5 0, 1, 2, 3, 7, 8, 9, 10, 11

Microwave 15.8 0, 1, 2, 3, 7, 8, 9, 10, 11

Iron 16.6 0, 1, 2, 3,7, 8, 9, 10, 11
Cellphone 18.6 0, 1, 2, 3, 7, 8, 9, 11

Fan 20.0 0, 1, 2, 3, 7, 8, 9, 10, 11
Cable TV 20.3 0, 1, 2, 3, 7, 8, 9, 10, 11

Refrigerator 20.5 0, 1, 2, 4, 7, 8, 9, 10, 11

Sound system 27.2 0, 1, 2, 3, 7, 8, 9, 10, 11
DVD 29.4 0, 1, 2, 3,  8, 9, 10, 11

Radio 31.0 0, 1, 2, 3,  7, 8, 9, 10, 11

Variable Code: [1] 0: Water quality, 1: roof quality, 2: floor quality, 
3: household quality, 7: water access qualit, 8:household 
ownership, 9:sanitation access quality, 9: firewood as primary 
cooking fuel
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Figure 28. Test Set Predictions: Spatial distribution of prediction on sample towns, percentage market share by 
appliance, and percentage population reach. Because neither the DHS nor the Census contain geospatial data, 
a Python script written using a Google API was used to obtain town coordinates (lat-long). Only two thirds of 
the census data were able to be geo-spatially located. 
 

We explore the distribution of predicted appliances in two different ways, one determines the 
market share of each appliance with respect to the total (% market share), and the other determines 



 

 

62 

the distribution of appliances with respect to population (% population with ownership of specific 
appliances). Cellphones, televisions and irons capture the largest appliance market shares with 20%, 
16% and 15% respectively (over 51% of the total appliance market), followed by refrigerators, cable 
TV and sound systems, and radios. Similarly, our prediction using social-demographics suggests that 
if communities without electricity were to be electrified, the most ubiquitous loads would be 
cellphones (97% population reach) and televisions (81%). Following relatively behind are fans (46% 
population reach), refrigerators (43%), DVDs (40%), Cable TV modems (38%), sound systems (38%), 
and radios (20%).  Based on the training data, we should expect to see a much higher distribution of 
radios, but the relatively higher prediction error associated with them produces a relatively lower 
number. Our results make intuitive sense and are aligned with small sample market analysis performed 
by newspapers in Managua, and our own field data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 29. Ownership of Appliances over Time vs. Prediction Accuracy: Air conditioners, Cable TV 

(antennas and modems), refrigerators, televisions and cellphones. 
 
 
To validate our predictions, we compare our estimates to the latest 2016 national survey of 

households in Nicaragua (199). Unfortunately, there are only five coincident appliances available for 
comparison between the 2005 Census, 2011 DHS data, and the 2016 Household level surveys: 
cellphones, televisions, refrigerators, access to Cable TV (antennas and modems), and AC ownership. 
Our most accurate predictions for total appliance ownership are for AC (prediction: 0.5% vs. actual: 
1%), cable TV (prediction 38.7% vs. actual: 35.4%), and refrigerators (prediction: 43.6% vs. actual: 
38.2%), with an average error of 3%.  Cellphones (prediction: 96.8% vs. actual: 86.5%), and televisions 
(prediction: 81.1%vs. actual: 68.5%), have an average error of 11%.  Data for computers, internet 
modems, plasma TV, and washing machines were not able to be verified either because the data was 
not available in the 2005 Census and 2011 DHS data, or because the data was not available in the 2016 

0.5%
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43.6%
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household survey. Although we have a relatively low prediction error of 7%, these comparisons are 
not fully accurate. When performing appliance predictions using social demographics, the underlying 
assumption is that the spectrum of social demographics is maintained as households become 
electrified. Thus, we consistently over predict appliance ownership as Nicaragua hasn’t reached full 
electrification (85%), with 15% of the population remaining without electricity access. If Nicaragua 
were to be fully electrified while maintaining a similar spectrum of social-demographics we would 
expect our predictions to be even closer to ground-truth. However, in reality, and as electrification, 
wealth, social-demographics, and the efficiency of appliances co-evolve, the affordability and access 
to appliances significantly changes. Figure 29 summarizes some of these results. 
 
2.10.3.2 Appliance and Usage Characteristics 
 
Using web and second-hand market data, data from appliance stickers and labels, and real-time power 
consumption measurements from randomly selected households and businesses (televisions, fans, 
washing machines, refrigerators, and cellphones), we compare wattage and energy consumption 
distributions for some of the most popular and more energy consuming appliances in the country. 
Data collected from households and small businesses regarding fans, televisions, and washing 
machines suggest that these appliances consume less power than the median rated consumption values 
through our market analysis and survey data. For example, on-mode power consumption of fans was 
55 Watts, compared to the 61 Watts median value found on the appliance labels, and the 64 Watts 
found through our market research. Televisions consumed an average of 62 Watts (on-mode power 
consumption), compared to the 65 Watts found on the appliance labels, and the 85 Watts calculated 
through market research. Washing machines consumed an average of 354 Watts, compared to the 510 
and 530 Watts found on appliance labels and through market research respectively. The large 
difference in power consumption televisions values between our field-data and the market suggests 
that there is more availability of larger screens, and relatively inefficient television models in markets 
than what the households and small businesses in our sample currently have. For washing machines, 
the difference in values is likely due to measurement, as our data collection snap shot was likely taken 
at a washing-cycle of relatively low power consumption.  

The comparison with the greatest difference was from refrigerator energy consumption values. 
For this comparison, we used energy consumption values (kWh/month) from market research and 
refrigerator labels when available, or used cubic size, refrigerator type and age, and the Energy Star 
website to calculate monthly energy consumption (189). For real-time measurements of monthly 
energy consumption we used data from the implementation of a FlexBox, which monitored real time 
parameters in Nicaragua (190). The results suggest that the appliances surveyed in the field 
(dimensions) consumed 40% more energy than the appliances available in the market (43.2 
kWh/month vs 31.6 kWh/month respectively). However, when using actual usage data as a 
comparison, we found that field refrigerators consumed 70% more energy than what is currently 
available in the Nicaraguan market (70 kwh/month).  

The power and energy consumption values collected through measurement, and gathered 
from web and field market research suggest the existence of an appliance-level efficiency gap. For 
example, 15-24 inch efficient televisions range in consumption from to 14 to 63 Watts (0.06-0.11 
W/in2)(200), suggesting that televisions in our sample are at the upper end of the spectrum. There 
exist even more energy efficient televisions (50 inches, 35 Watts, 0.014 W/in2), but these are not 
affordable ($US 900)(201). We did not find literature summarizing the most energy efficient floor fans, 
but web research suggests that some of the most efficient fans range from 40 Watts to 60 Watts, 
suggesting both that fans in our sample were also at the upper end of the efficiency spectrum (202, 
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203). Similarly, when we compare the washing machines encountered in the field (on the ground and 
market research) with Energy Star washing machines, we find that washing machines in Nicaragua 
consume from 40% to 1.08 more per year (using the same set of assumptions for calculating annual 
energy consumption as specified by Energy Star)(204). When comparing refrigerators and freezers to 
the latest and most efficient refrigerators available through Energy Star (CITE), we find that 
refrigerators in our sample consume between 36% and 1.21 more energy per year than the median 
value available from Energy Star (205). Figure 30 summarizes these data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30. Distributions of Common Household and Small Business Appliances: Densities of televisions and 
washing machines, and Cellphones [A,C,E],  and histograms of fans (Watts), and monthly energy consumption 
of refrigerators (kWh/month) [B,D]. Distribution depicted depends on data availability and quality of visual 
representation. 
 
 

While collecting disparate streams of data may be useful for simple technical comparisons, 
they provide little information about usage. For example, the engineering calculations used to estimate 
monthly energy consumption for refrigerators and freezers provided an underestimate close to 30%. 
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While volume, refrigerator type, and age can give an approximation to energy consumption, there are 
confounding elements that may affect the energy consumption of appliances (e.g., usage behavior, 
appliance physical condition, and efficiency). For example, in Nicaragua, 70% of users surveyed in 
another study suggested that users turn their refrigerator or freezer at different times of the day in an 
attempt to save energy (190), and the physical condition of many of these refrigerators and freezers 
would often be in a poor state. Door gaskets could be completely missing or broken, the inside metal 
or plastic insulation would be missing or corroded, thermostats would be set at their highest cooling 
level, leaky coolants would be present without any previous diagnosis, and in some cases, compressors 
would have been swapped two or three times. Furthermore, best practices on fridge maintenance such 
as wall spacing, cooling of food before storing it, and placing lids on all storage containers were not 
part of local user behavior. Other work in Nicaragua has found the usage efficiency of refrigerators to 
vary significantly throughout the day, leaving them particularly vulnerable to hot weather (190). 

To understand the contribution of all appliances to the household or business level 
consumption we measured power and energy trace of each unit’s major appliances at the same time. 
At each household or business, we collected three hours’ worth of total household and appliance level 
data. Figure 31 (below) depicts the distribution of each appliance’s contribution to total household- 
or business-level consumption. On average, and during the three-hour interval in which we collected 
data, refrigerators consumed between 35% to 95% of total energy consumption (median: 58%) when 
all other appliances were turned on, followed by washing machines 34%, televisions 14%, fans 12%, 
and cellphones 1.5% (‘other’ appliances had a median energy consumption of 23%). Although these 
data provide further insight into the actual energy use of these appliances, it is still not fully 
representative of actual usage. A more rigorous approach would be to have a week’s worth of fully 
labeled appliance data in order to capture weekly temporal variability, usage patterns, and the 
contribution of each appliance to the monthly total. While user surveys and appliance labels could be 
complementary used to arrive at these numbers, confounding data issues related to actual behavior 
and physical condition of appliances would create a large difference between engineering estimates 
and ground-truth. 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
Figure 31. Contribution of Different Appliances to Total Household and Small Business Energy Consumption: 
Results from 3-hour interval measurements of 75 households and small-businesses in Managua, Nicaragua. 
Refrigerators consume between 35% to 95% of total energy consumption when all other appliances were 
turned on.  
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2.10.3.3 Posterior Distributions of Appliance Characteristics 
	
We use Bayesian updating to construct posterior distributions for appliance characteristics (Watts and 
energy consumption, when appropriate) for fans, televisions, washing machines, and refrigerators. 
Web-market data is used as a prior for each appliance and we build posterior probability estimates 
using data from second-hand markets and sensors. MCMC is implemented on log-normal data, and 
the estimated parameters are transformed to obtain mean and uncertainty estimates for y as opposed 
to log(y) (y being appliance characteristics). For fans, the most likely estimate is 59 Watts, 3 Watts lower 
than what is found through web-market analysis. The distribution of the most likely values is narrowed 
from 56.3 – 71.7 Watts in the prior, to 55.9 – 62.1 Watts in the posterior. The most likely Wattage 
value in the prior (62.9 Watts) does not fall within the 95% high density interval (HDI) of the posterior. 
For televisions, the most likely estimate is 81 Watts, 9 Watts lower than in the prior distribution (web-
market analysis). Similarly, the distribution of the most likely values is reduced from 80.3 – 107 watts 
in the prior, to 74.7 – 89.6 in the posterior, and like the fans, the most likely value in the prior (92.2 
Watts) does not fall within the most likely values of the posterior. In the posterior distribution, the 
most likely value was 61 Watts lower than in the prior (530 vs. 591 Watts respectively), with a similar 
distribution width of likely values in the prior and posterior distributions. Out of the four appliances, 
energy consumption estimates were the only to have been provided an underestimate by the web-
market analysis. In the prior distribution, the most likely value of energy consumption was 33.9 
kWh/month, with a HDI of 32.5 and 35.4 kWh/month, and in the posterior distribution the most 
likely value was 40.7 kWh/month with a distribution of likely values ranging from 37.9 to 43.7 
kWh/month. The most likely value in the prior distribution, obtained through web-market analysis 
did not fall within the HDI of the posterior distribution. 
 When comparing the parameters and distributions obtained through Bayesian updating, to 
some of the most energy efficient appliances in the market we find that our estimates are towards the 
higher end of the energy consumption spectrum. Fans and televisions in the Nicaraguan market are 
at the high-end of energy consumption with respect to the most efficient appliances currently available. 
Similarly, washing machines and refrigerators consume between 35% and 110% and 30% and 125% 
more energy than the most efficient appliances available, respectively (189, 201–205).  
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Figure 32. Appliance Characteristics for Prior Distributions 
 

Fans 

Televisions 

Washing Machines 

Fridges 



 

 

68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33. Appliance Characteristics for Posterior Distributions 
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2.10.3.3 Roofing Material: Lumens and Temperature in Housing and Small 
Businesses 
 
Throughout our surveys, we also collected brightness data inside the households and small businesses 
that we visited. Low, low-income neighborhoods are the vast majority of population in Managua and 
their roofs are usually made from laminated roof, with some of them having Skylights (mean Lumens: 
88, median: 65). The median value for roofs with skylights had more visible light (68 Lumens) 
compared to laminated roofs without skylights (62 Lumens). All these values are significantly lower 
than the potential available light that they could receive with alternative and appropriate roofing 
materials. Despite Nicaragua being a tropical country, with significant natural visible light available, 
the great majority of households and businesses would turn lights on in the middle of the day to 
perform tasks, hold meetings, host family and engage in business practices. On average, our surveys 
suggested that households would turn their lights on for at least 2 hours during times of the day with 
ample available natural light. This is an energy efficiency issue, as it is relatively straightforward and 
affordable to swap laminated sheets for sheets with skylights (or install them from the outset). 
Furthermore, cost-effective innovations such as the solar bottle lamp claim that they can provide the 
Lumens equivalent of a 50 Watt non-LED light bulb (750 Lumens) – significantly more than what 
households and small businesses currently have available.   
  
 

 

 

  

 

 

 

 

 

 

 

 

Figure 34. Temperature and Available Light Data: [A] Room temperature of household and small businesses 
(red) vs. ambient weather station data (blue), and [B] Distribution of Lumens inside households and small 
businesses with laminated roofs, and laminated roofs with skylights in Managua, Nicaragua. 

 
With regards to heat and roofing materials, data from a previous implementation of flexible demand 
and behavioral energy efficiency in Managua found that households and small businesses directly 
experienced ambient temperatures throughout the day (190). Many of them, in fact, experienced 2°C 
warmer inside temperatures than the ambient data collected by an outside weather station during the 
hottest parts of the day (the laminated roof, working as an urban oven). These warm temperatures not 
only affect comfort and health of households and small businesses, but they also increased the energy 

Enabling Micro-level Demand-Side Grid Flexiblity in Resource 
Constrained Environments 
 

IoTDI’17, April 2017, Pittsburgh, Pennsylvania USA 

 

 
 

9 

pose significant problems not only for household and city-wide 
energy efficiency programs, but could also significantly affect 
city dwellers health [47]. Our data suggests that not only does 
room temperature vary significantly during the day, but also that 
the warm temperature extremes are experienced significantly by 
loads and people in houses and micro-enterprises. 

On average, TCL consumption is greatest during the middle 
day when it is the hottest and when households experience the 
majority of their door openings. Figure 8.a depicts normalized 
data (0-1) for all units to compare energy usage over time 
throughout the study period. Manufacturer information from 
refrigeration units in the field labeled the temperature set points 
of the different freezer and refrigeration units to range between -
20°C and 5°C. Field data suggests, however, that the units usually 
oscillated between -10°C and could reach up to 35°C (Figure 6, 
Table 1). This deviation could be a result of appliance losses, and 
behavioral components which include the opening and closing of 
doors and the temporary unplugging of TCLs most units engage 
in.� 

Furthermore, we find that the duty cycle (the ratio of time it 
takes for a refrigerator to traverse its dead-band in an on state 
vs. total time in compressor on and off states) fluctuates during 
the day. Here, field data suggests that the freezers and 
refrigerators spend more time in the compressor-on stage during 
the middle of the day (when it’s hottest and when there is more 
activity) than other parts of the day. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
Figure 6: Internal temperature of household and micro-
enterprise TCLS: The temperature range of households is 
similar (top), while micro-enterprise freezers display a 
wider temperature range, ranging from -10°C to room 
temperature (bottom).  
 

Evidence from these field data diverge from previous TCL 
modeling assumptions that suggest that the duty cycle (and 
energy and power capacities) is fixed throughout the day. We 
also compare the coefficient of performance, which was 
measured in an experimental setting at UC Berkeley, to an 
efficiency performance index, which was calculated from data. 
We find that while the experimental COP ranged between 0.01 
and 0.03 and stayed fairly constant throughout the day (with 
minimal heat or behavioral disturbances), the efficiency of 
performance index (EPI) observed in the field ranged drastically 
between 0.0045 (minimum) and 18 (maximum). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Room temperature of household and micro-
enterprises (red) vs. ambient weather station data (blue): 
Houses and micro-enterprises directly experience the 
ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and 
night, the weather station experiences higher 
temperatures than the households and micro- enterprises. 
 
While it would seem like the EPI index is consistent across field 
units (Fig 8), we find that the performance efficiency of the 
refrigerator (the amount of work required to remove heat from a 
cold reservoir) varies within the day. More active and hotter 
times of the day observe lower EPI values than other days. The 
rated power of these appliances ranged from 0.1 to 2.2 kW 
according to the manufacturer label and size; this would result in 
a mean annual consumption range between 280 and 6000 kWh. 
Our field data suggests that the actual mean annual energy 
consumption was 1400 kWh for the entire cluster. Findings from 
our field data and experiment could be used to better inform the 
modeling of TCLs for ancillary services as theoretical models 
usually assume constant duty cycles, energy and power 
capacities and performance efficiencies.  
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found to be moderate and strong in a few households (2 and 1 
units respectively; p<.001).  

The spread in the strength of correlation between 
ambient room temperature and fridge inside temperature and 
fridge energy consumption suggests that there is a panoply of 
user behaviors that are driving the system (Figure 5). For 
example, some units might unplug their fridge when room 
ambient temperature is very high, whereas others might leave 
their appliance ‘on’, with the fridge using more energy to 
preserve (or reduce its internal temperature) during that time. 
Similarly a strong positive correlation between fridge inside 
temperature and room ambient temperature could suggest that 
users unplug their fridge during the hottest parts of the day, 
and a negative strong correlation could suggest that these are 
the times of the day when users actually ‘plug’ their 
refrigerator (and consequently, the time of the day during 
which the refrigerator uses most of its energy). The correlation 
between total household energy consumption and room 
ambient temperature suggests that while there are a few 
households that increase their consumption at higher 
temperatures, there are also others that modify their behavior 
so as to reduce their consumption (for example, turn several 
freezers and refrigerators off). There are many more insights 
from these data, including the opportunity to target energy 
efficiency thermal insulation for refrigerators in certain units, 
as well as the development of detailed energy reports. 
 

B. TCL Parameter EDA 
There are several key parameters for determining the 

technical resource potential of thermostatically controlled 
loads and for building more accurate control algorithms for 
large-scale TCL aggregations. Room temperature, fridge 
inside temperature (of a room, or inside a refrigerator, for 
example), power consumption, and TCL characteristics 
(resistance, capacitance, and wall thickness, for example) are 
all used for the design of a smart controller. It has also been 
suggested that large-scale TCL aggregations of virtual energy 
storage can be represented through both their energy and 
power capacity [46]. To define the energy capacity (the 
maximum amount of energy that can be stored) and the power 
capacity (the full power range of an analogous storage device) 
several parameters are needed including: h (the amount of 
time it takes a TCL to traverse its deadband in ON mode), 
dead-band width (°C), temperature set points (°C), thermal 
resistance (°C/kWh), thermal capacitance (kWh/°C), 
coefficient of performance (COP), and power consumption 
(kW). While TCL models in the literature allow room 
temperature to vary when modeling air conditioners and heat 
pumps, room temperature remains fixed when modeling 
energy and power capacity in refrigerators. Though these 
dynamics may vary across regions and study sites, a fixed 
room temperature also means that a refrigerator’s duty cycle 
remains constant, and so do the power and energy capacities, 
as well as the mean annual energy consumption [46].  

When comparing room temperature and humidity inside 
households and micro-enterprises against ambient weather 
station data, we found that houses and micro-enterprises 

directly experienced ambient temperatures, and often 
experienced hotter temperatures during the hottest part of the 
days due to the absence of reflective or insulating house 
materials infrastructure.   During the early morning (0-6 am) 
all except two houses experience lower temperatures than the 
ambient temperature weather station, but this changes at 6 am 
when approximately half of the households experience higher 
temperatures than the weather station. While room 
temperature allows us to understand intra-hourly and intra day 
temporal variability, and temperature variability is well 
correlated across our weather station and all units, there was a 
wide spread of room temperature across all units (4°C). Poor 
thermal insulation could pose significant problems not only 
for household and city-wide energy efficiency programs, but 
could also significantly affect city dwellers health [47]. Our 
data suggests that not only does room temperature vary 
significantly during the day, but also that the warm 
temperature extremes are experienced significantly by loads 
and people in houses and micro-enterprises. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Internal temperature of household and micro-enterprise TCLS: 
The temperature range of households is similar (top), while micro-enterprise 
freezers display a wider temperature range, ranging from -10°C to room 
temperature (bottom). 
 
On average, TCL consumption is greatest during the middle 
day when it is the hottest and when households experience the 
majority of their door openings. Figure 8.a depicts normalized 
data (0-1) for all units to compare energy usage over time 
throughout the study period.  Manufacturer information from 
refrigeration units in the field labeled the temperature set 
points of the different freezer and refrigeration units to range 
between -20°C and 5°C. Field data suggests, however, that the 
units usually oscillated between -10°C and could reach up to 
35°C (Figure 6, Table 1). This deviation could be a result of 
appliance losses, and behavioral components which include 
the opening and closing of doors and the temporary  
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Figure 7. Room temperature of household and micro-enterprises (red) vs. 
ambient weather station data (blue): Houses and micro-enterprises directly 
experience the ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and night, the weather 
station experiences higher temperatures than the households and micro-
enterprises.  
 
unplugging of TCLs most units engage in. 

Furthermore, we find that the duty cycle (the ratio of time 
it takes for a refrigerator to traverse its dead-band in an on 
state vs. total time in compressor on and off states) fluctuates 
during the day.  Here, field data suggests that the freezers and 
refrigerators spend more time in the compressor-on stage 
during the middle of the day (when it’s hottest and when there 
is more activity) than other parts of the day. Evidence from 
these field data diverge from previous TCL modeling 
assumptions that suggest that the duty cycle (and energy and 
power capacities) is fixed throughout the day.   

We also compare the coefficient of performance, which 
was measured in an experimental setting at UC Berkeley, to 
an efficiency performance index, which was calculated from 
data. We find that while the experimental COP ranged 
between 0.01 and 0.03 and stayed fairly constant throughout 
the day (with minimal heat or behavioral disturbances), the 
efficiency of performance index (EPI) observed in the field 
ranged drastically between 0.0045 (minimum) and 18 
(maximum). While it would seem like the EPI index is 
consistent across field units (Fig 8), we find that the 
performance efficiency of the refrigerator (the amount of work 
required to remove heat from a cold reservoir) varies within 
the day. More active and hotter times of the day observe lower 
EPI values than other days. The rated power of these 
appliances ranged from 0.1 to 2.2 kW according to the 
manufacturer label and size; this would result in a mean 
annual consumption range between 280 and 6000 kWh. Our 
field data suggests that the actual mean annual energy 
consumption was 1400 kWh for the entire cluster. Findings 
from our field data and experiment could be used to better 
inform the modeling of TCLs for ancillary services as 
theoretical models usually assume constant duty cycles, 
energy and power capacities and performance efficiencies.  

 
 

 
 
 
 
 
 
 
 

 
 

Table 1. Field Data TCL Thermal Parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Normalized TCL Energy Consumption by Unit [top] and TCL 
Efficiency Performance Index for all Units [bottom]: [Top] We observe 
TCL energy consumption to be, on average, higher in the middle of the day 
than other parts of the day, and [Bottom] we find the efficiency performance 
index (the ratio between the work that is required to remove heat from a 
reservoir and the heat removed from a reservoir) also varies during the day, 
and is worst in the middle of the day when it is hottest and when the TCL 
experiences most activity.  
 

C. Communications Network EDA 
As part of a test for the reliability and capacity of the 
communications network, we installed five 3G Huawei E3531 

Parameter Symbol  
(Units)

  Mean (SD: Min -- Max)

Ambient temperature θa (°C) 30 (3: 10 -- 41)
Dead-band width δ (°C) 9 (4: -10 -- 35)
Temperature set point1 θset (°C) -20 -- 5
Duty cycle D (-) 0.52 (0.31: 0.1 -- 0.9)
Coefficient of performance2 η (-) 0.01 - 0.03
Efficiency performance index η.e (-) 1.8 (2.4: .0045 - 18)
Power consumption1 P (kW) 0.1 -- 2.2
Mean Annual Energy Consumption per TCL1 MAEC (kWh) 280 -- 6000 
Actual Mean Annual Energy Consumption per TCL AMAEC (kWh) 1400

[1] From product details found in the field and from local refrigerator and freezer providers.

[3] The rest of the data was obtained from the field.

[2] From controlled laboratory experiments.The literature suggests that the COP ranges between 
1.5 and 2.5, we did not observe this in our controlled experiment. COP is a ratio of Qc (heat 
removed from a cold reservoir) over Wref  (the work input required to remove heat from the cold 
reseroir). Experimentally, we calculated the COP for a freezer and refrigerator that were empty, but 
on the field we assumed freezers and refrigerators to be 3/4 full. That is, we used the heat capacity 
of air and water to calculate the efficiency performance index for our field data.
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consumption of cooling loads between 20% and 40% during the warmest times of the day (peak usage 
and small business sales also occurred during the warmest times of the day). Poor roofing materials 
could present a critical problem for city-wide energy efficiency programs, as warm temperatures in 
households and small businesses could reduce the benefits of energy efficient appliance swap 
programs, increasing the use of electric lights during the day, as well as the use of fans and other 
cooling appliances for comfort. 

 
 

2.10.3.4 Opportunities for Bottom-Up Data and the Energy Efficiency Gap 
 
 

Together, these data allow us to determine the impact that various energy efficiency strategies could 
have, on average, on households and small businesses in Nicaragua. For this, we build a marginal cost 
of saved energy curve (MCSE) which allows us to see the magnitude and uncertainty of different 
energy saving strategies, as well as the energy savings per dollar spent pursuing the strategy (Figure 
35). On average, pursuing all these strategies could lead to over 1000 kwh saved per year (if all actions 
were implemented), with varying rates of success and uncertainty across households and small 
businesses.  As a baseline, we consider the energy and cost savings from swapping a 40 Watt 
incandescent light bulb for a 10 Watt LED bulb, implemented in three rooms of a household or 
business (with the lights being turned on for an average of five hours a day). Energy efficiency strategy 
scenarios are then compared against the baseline including swapping old for new more energy efficient 
appliances (televisions, fans, washing machines, and refrigerators), installing solar water bottles or large 
skylights, insulating roof materials and behavioral energy efficiency interventions. The results suggest 
that some of the most cost-effective interventions include behavioral energy efficiency and allowing 
for more indoor light, while behavioral energy efficiency, insulating roofs and an efficient refrigerator 
result in the technical savings. A shortcoming, is that our calculations are only engineering estimates, 
with only the behavioral energy efficiency estimates coming from a real-world pilot (187). Ideally 
MCSE curves should be constructed using real world pilots instead of engineering estimates.  The 
uncertainty estimates for appliances come from posterior distributions, for roof materials they come 
from the estimated induced energy reduction that cool ambient temperature would have on the energy 
consumption of appliances and comfort (e.g., use of fans), and on the baseline assumptions of current 
energy consumption and efficiency strategies.  

An element that is missing from this analysis is the complexity and affordability of each of 
these interventions. While the marginal cost of saved energy provides some information about the 
cost-effectiveness of an intervention, there are several hidden costs that are no included in this analysis. 
For example, in Nicaragua, there are several barriers that would need to be removed for users to have 
access to new appliances including bank accounts and credit history, letters of recommendation from 
three colleagues or peers, 5-8% interest on two-year financing, and no help in removing old appliances 
from a household or small business. From surveys and field pilots of behavioral energy efficiency, all 
these barriers prevent many households and business to acquire new appliances although they would 
be willing to invest in long term efficiency strategies. There are no mechanisms from the government 
or entrepreneurs to remove these barriers. 

We argue that a reason why it is hard to establish the existence and the size of an efficiency 
gap in resource constrained environments is because there is little bottom-up data collected that can 
help elucidate bottle necks for the implementation of successful strategies. Table 9 depicts some of 
the data that could be useful for the implementation and success of long term strategies. Each of these 
data complement each other, and it would be hard for them to reach full technical potential without 
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knowledge of different components in the table below. For example, a market survey of appliances in 
country can tell you the availability of energy efficient appliances but doesn’t tell you whether or not 
they are actually in people’s houses and how they are used. Complementing market data with appliance 
ownership, as it is done here, provides more reliable data on the penetration of energy efficient 
appliances. Furthermore, even if analysts or planners had market data, appliance ownership and actual 
metered energy consumption data, little would be known about the efficiency of these appliances 
without sensor data (e.g., cooling loads), or any existing user behavioral energy saving practices. 
Behavioral energy efficiency, and hidden opportunities such as cool roofs and skylights are not 
obvious strategies but can have significant benefits in populations that are eager to pursue savings, 
and where retrofits could be cost-effective. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35. Marginal Cost of Saved Energy Curve for Households and Small-Businesses. Baseline assumptions 
include watching television three hours a day (every day of the year), using a fan ten hours a day for half of the 
year, using an efficient washing machine two hours a week (every week of the year), lights being turned on for 
two hours a day during time with plenty of available daylight. 
 

Without these data, we argue that it will be difficult to design and implement energy efficiency 
strategies that could lead to the necessary reductions in electricity demand for the decarbonization of 
the electricity sector. Because countries and cities with resource constrained environments have a 
multitude of pressing issues that need to be addressed, developing context-specific energy efficiency 
strategies is crucial to their long-term success. Collecting ubiquitous bottom-up data, and using 
appropriate analytical tools to determine the size and uncertainty of different implementation 
strategies is crucial for cost-effective investments and context-relevant interventions (Table 9). 

 
 
 

 

Behavioral	energy	efficiency:	
540	kWh/year	

Solar	water	bottle:	
88	kWh/year	

Large	skylight:	
88	kWh/year	

Insulated	roof:	
107	kWh/year	

Efficient	fan:	
71	kWh/year	

Efficient	television:	
58	kWh/year	

Efficient	refrigerator:	
108	kWh/year	

Efficient	washing	machine:	
50	kWh/year	
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Table 9. Useful Data in Determining the Existence, Magnitude and Strategies to Address the 
Efficiency Gap in Resource Constrained Environments 

 
 

 
 
 
 
 
 
 
 
 
 
 

Data Ideal Data Collection Mechanism Methodology if Data not Available Analysis/Insights

Appliance ownership by socio-
economic status, race, religion and 

other relevant demographics

Updated national household and small business 
survey on appliance ownership and social 

demographics

1) Census, 2) Demographic and Health Care Surveys, 
3) Critical Random Sampling (appliance and social 

demographic surveys). Machine learning to predict 
appliance ownership.

Penetration of efficient appliances, efficiency 
gap

Market survey of appliances in-
country 

National inventory of appliances available for 
sale (dissagregated by retailer types, second-

hand markets)

Web-crawlers and 2nd hand market analysis from 
representative retailers and markets throughout the 

country

Availability of efficient appliances, efficiency 
gap

Actual in-field energy use of appliances
Utility provided 'data snapshots' of smart meter 
data and appliance-level energy consumption 

profiles by region and social demographics 

Random sample of household and appliance-level 
energy consumption profiles by region and social 
demographics  (off-the-shelf sensors and metering 

devices)

Actual energy consumption profiles, actual 
min, mean, and max power consumption 

values

Efficiency of cooling loads
Utility provided appliance-level parameters for 

calculating energy efficiency.

Random sample of appliances with distributed 
ambient and temperature sensors, and energy 

consumption.

Example: Internal and ambiente 
temperatures can be used inside a 
refrigerator to calculate the amount of energy 
that is required at different times of the day. 
Sensors and infrared imagery also provide 
information of gaps in insulation inside 
refrigerators, and rooms for air conditioners.

User behavior

Utility or government provided (1) surveys on the 
perception and adoption of energy efficiency 

strategies (e.g., dispossable incom, affordability 
of appliances), (2) time-series smart-meter and 

appliance level data for a representative 
population to elucidate consumption behaviors

Random sample of (1) surveys on the perception and 
adoption of energy efficiency strategies, (2) time-
series smart-meter and appliance level data for a 

representative population to elucidate consumption 
behaviors

(1) Insights into existing user practices (e.g., 
unplugging refrigerator to save energy), (2) 

relative usage of different appliances 
('priority' appliances),

Hidden opportunities

-

Random sample of (1) sensor data collecting room 
ambient temperature, energy consumption, and load 
level data provides hidden insights into the efficiency 

gap, (2) surveys of household characteristics (e.g., 
roof type, wall type, number of windows)

Insights into overlooked energy efficiency 
strategies (e.g., cool roofs, natural light)



 

 

73 

 

 

 

 

 

Chapter 3:  

Design and Implementation of Demand-Side Information and 
Communication Technology and the Internet of Things for Inclusive 

Decarbonization 
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3.1 Introduction 
 
Future growth in urbanization will mainly occur in cities of the rising south. UN Habitat reports that 
in the past decade, the urban population in emerging economies grew on average 1.2 million people 
per week (206). By 2050, it is expected that seven out of ten people will be living in cities (206, 207). An 
accompanying technology to urbanization, the use of cellphones and smartphones has seen 
unprecedented growth in recent decades. Currently there are more active mobile connections (7.8 
billion SIM connections and 4.8 billion unique mobile subscribers) than people in the world (7.4 
billion), with penetration rates being large even in low-income economies (89 subscriptions per 100 
people) (208, 209). Similarly, the Internet of Things – an agglomeration of sensors and actuators 
connected by networks to computing systems – has been rapidly growing with a maximum potential 
market of $US 11 trillion by 2025 (210). With most energy demand, urbanization and connectivity 
growth in the coming decades occurring in low and lower-middle income countries, it is crucial to 
understand how technology will work in these diverse contexts, how it will blend with behavior, 
culture and context, understand its challenges, and highlight opportunities, to users and urban services 
(207, 211, 212).  
 Using a field deployment pilot in Nicaragua as a case study, this chapter is focused on 
opportunities for information and communication technologies (ICTs) and the internet of things 
(IOT) in resource constrained environments. We use ICTs and IOT to implement the first paired 
behavioral energy efficiency and flexible demand pilot in Latin America. This chapter is divided in two 
sections, the first introduces the design, implementation, and exploratory data analysis of a sensor 
gateway (the FlexBox) for enabling behavioral energy efficiency and demand side flexibility, and the 
second is a post-evaluation Bayesian estimation analysis evaluating energy reduction, participation in 
demand side flexibility, impacts on welfare, and behavioral economics insights. We present several 
novel findings related to technology implementation, development of new efficiency parameters, and 
behavioral insights (e.g., incentive types, pre-existing behaviors, motivations) describing the 
opportunities and barriers to behavioral energy efficiency and demand side flexibility, and a first 
estimate of the value of information for users in resource constrained environments. We demonstrate 
that ICTs and IOT are mature technology that can be used by low, low-middle income households 
and small businesses in cities like Managua to enable them as important actors in city-wide resource 
conservation.  

With regards to demand-side flexibility, we find evidence to challenge traditional theoretical 
assumptions about the behavior of thermostatically controlled loads (e.g. coefficient of performance, 
duty cycle, temperature set points and dead band width), finding that user behavior and the efficiency 
of TCLs significantly affects resource availability and the large-scale potential for demand response 
(DR) – features that are largely ignored in the literature. We suggest that there should be two efficiency 
parameters that should be considered in DR – the coefficient of performance, and the efficiency 
performance index. Concepts in behavioral economics (e.g., the psychology of scarcity, prospect 
theory and the endowment effect)(3–5, 7) are used to explain some of the challenges encountered in 
the field, and how these could potentially hinder the growth and success of future energy efficiency 
and flexible demand pilots. To our knowledge, this is the first paired behavioral energy efficiency and 
flexible demand implementation in Latin America, and the first to explain the observed field results 
related to behavioral energy efficiency using concepts from the psychology of scarcity.  

The FlexBox, the approach and system used to engage field participants and flexible 
ubiquitous loads, and the findings from our willingness to pay study, can be used to inform future 
ICT/IOT deployments and the development of new and inclusive systems for participatory low-
carbon urban environments.  
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3.2 Background: Approaches to Demand-Side Flexibility – Theory, Technology and 
Applications 
 
The penetration of uncertain and variable renewable energy is now occurring across many regions, 
incomes, and levels of development. In the immediate future, countries such as Uruguay are expected 
to produce 35% of their generation from wind energy alone (2016), Kenya expects 300 MW of wind 
to come online in 2016, Thailand will develop 3 gigawatts (GW) of rooftop and village based solar 
projects (2021), and Africa’s Clean Energy Corridor should significantly increase the penetration of 
renewable energy in the continent (187, 213). In Central America, Costa Rica has produced up to 
100% of its generation from renewable resources (~25% without large hydropower), and Nicaragua 
produces ~40% of its total generation from non-large hydropower renewable resources. Indeed, some 
research suggests that between 2015 and 2040 approximately $US12.2 trillion will be invested in global 
power generation, with two thirds of the total being dedicated to renewable energy, and with the great 
majority (78%) of this investment occurring in emerging economies (214).  

Similarly to future trends in power generation, future growth in urbanization will also mainly 
occur in cities of the rising south. UN Habitat reports that in the past decade, the urban population 
in emerging economies grew on average 1.2 million people per week, with Asia adding 0.8 million new 
urban dwellers every week, followed by Africa (0.23 million/week), and Latin American and the 
Caribbean (0.15 million/week) (206). It is expected that seven out of ten people will be living in cities 
by 2050 (206, 207). Similarly, the growth in the use of cellphones and smartphones is also 
unprecedented. Currently there are more active mobile connections (7.8 billion SIM connections and 
4.8 billion unique mobile subscribers) than people in the world (7.4 billion), with penetration rates 
being large even in low-income economies (89 subscriptions per 100 people) (208, 209). Although 
currently low, the number of 3G/4G users is expected to double by 2020 (2.5 billion users) (215). 
With most renewable energy, urbanization and connectivity growth in the coming decades occurring 
in low and lower-middle income countries, it is becoming increasingly important to understand how 
to harvest information from resource constrained environments (RCEs) to provide value both to users 
and urban services (for example, energy, water, transportation, and banking) (207, 211, 212).  

Attention towards the actuation of TCLs has grown as the penetration of intermittent 
renewable energy increases with innovations being made in theoretical frameworks, controlled 
environment pilot tests, development of new technologies, and field deployments (216–218). In this 
section, we review theoretical approaches to demand side grid flexibility, also known as demand 
response, review existing solutions to the actuation of thermostatically controlled loads to provide 
power grid services, and briefly discuss field deployments available in the literature.  

DR is related to the “end-use”, with electric loads (and users) reducing or shifting their usage 
in a given time period in response to a price signal, financial incentive, environmental condition or 
reliability signal (219). Electric loads exist under three broad categories: (1) inflexible/on-demand 
(lights, television sets, radios, desktop computers), (2) deferrable (washers, dryers, dishwashers), (3) 
and flexible (HVAC, EVs, refrigerators, water heaters) (217). Smart flexible energy loads (TCLs) 
contain enough local energy to run for an extended period of time, and an intelligent controller can 
engage with them via direct load control (DLC) to manage energy reserves without significantly 
inhibiting operation (220). Furthermore, TCLs can be controlled for the purpose of curtailment, 
substitution, storage, and/or load shifting (221). The theoretical approach to demand response has 
motivated a wide body of work that seeks to show that large aggregations of TCLs can be used both 
to bid into grid related ancillary service markets for profit as well as to maintain reliable power system 
operations (216, 222–225). Detailed end-use models explore associated uncertainties in aggregating 
TCLs, algorithmic bidding approaches toggle load switch controllers for managing wind forecast error 
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and reducing external balancing penalties, and control and differential equation approaches for 
modeling the effect of broadcasting signals for TCL set point adjustments (216, 221, 226, 227). In 
general, room temperature, inside temperature (of a room, or inside a refrigerator, for example), power 
consumption, and TCL characteristics (resistance, capacitance, and wall thickness, for example) are all 
used for the design of a smart controller (224). Although complex and highly detailed, many of these 
models make simplifying assumptions that could significantly affect model choice and development 
including the possibility of heterogeneity across micro-climates in urban areas, insulation of houses 
(or buildings) where TCLs reside, load efficiency, the size (and varying thermal mass) of TCLs, and 
random user behavioral patterns that can drive TCL cycling. Furthermore, data acquisition devices 
(sensors and power meters, for example) and communications platforms and protocols are discussed 
abstractly, with most of the effort being directed towards the development of theoretical frameworks 
to further enable greater grid flexibility.  

There exists a panoply of solutions for networking sensors and plug load devices in higher-
income countries, but the literature is scant regarding how sensing infrastructure will grow and be 
networked in countries with low internet access, and spotty communication networks. In countries 
with high internet penetration, the monitoring of loads can be done through Wi-Fi enabled large smart 
home appliances, plug- level monitors (individually installed and programmed, often with proprietary 
communication protocols), and non-intrusive load monitoring (NILM) (228, 229). NILM is an 
alternative to ubiquitous plug level monitoring, only requiring one energy meter to monitor whole 
house energy consumption, and signal processing for load disaggregation, but to date, this remains 
mostly a research effort (229–236).  

Communication protocols for energy reporting and control of devices are primarily designed 
for local area networks (LAN) (e.g. stacks such as Zigbee or Z-Wave), and APIs, such as OpenADR 
and GreenButton which are intended for use over the internet (228, 229). Zigbee’s Smart Energy 
Profile enables low-power device monitoring using 802.15.4 radios and links that support IPv6 
through an HTTP interface, and OpenADR 2.0b and GreenButton Connect are XML standards for 
energy data exchanges between utilities, consumers, and third-party service providers  (228, 229). 
Differently from Zigbee and IETF 6LowWPAN (which use IEEE 802.15.4) Z-Wave uses a 
proprietary low-latency transmission communications protocol that uses small data packets at 
100kbit/s, operating through a source-routed mesh network that helps the device avoid obstacles and 
radio dead spots in a multipath environment. Zigbee and Z-Wave differ from OpenADR and 
GreenButton in that the latter were designed for high- bandwidth network connections and large files 
sizes, making them less useful for low-power local area networks  (228, 229). Z-wave uses a source-
routed mesh network architecture. In addition, Bluetooth (communicating over IEEE 802.15.1) can 
be used for short-range applications to replace cables for computer peripherals such as mice, 
keyboards, and printers, but to date has few applications for monitoring and control of electric loads 
(236–238).  
In California, Radio Broadcast Data Systems (RBDS) have been recommended as the statewide DR 
broadcasting signaling standard, and it has been shown that RBDS can be used to broadcast one-way demand 
response messages with near 100 percent probability using merely just one FM station (239–241). RBDS use a 
57 kilohertz subcarrier to transmit over 1 kbts, with data being transmitted in groups of four blocks (26 bits 
each) (239, 240). All available FM channels (frequencies) within proximity can be used to broadcast signals, 
with the probability of message reception being dependent on signal strength and the number of message 
repeats (239). Since DR applications only add one to two percent of total average transmission station capacity 
to a channel, FM station contract costs for RBDS are relatively low (hundreds of dollars per month) (239). A 
downside, however, is the one-way nature of the FM broadcast. 

While there have been a variety of approaches that have been shown to be effective in 
simulation there are two principal questions that have largely remained unaddressed: 1) how well do 



 

 

77 

algorithms and loads behave in practice? and 2) what is the actual size of the resource that is available 
for demand response in a region or country? Research pilots have investigated the potential of deferrable 
and flexible loads to provide grid-flexibility using loads as virtual power plants and exploring 
opportunities for users to experience energy savings through real time pricing. These pilots have 
instrumented as few as one and as many as five refrigerators to study real-time behavior of loads under 
DR (217, 218, 241). A few have also developed proprietary thermal-storage eutectic phase-change 
storage systems that can be controlled (217, 241). Some of the business scenarios explored in these 
pilots include: (1) the aggregation and market-auctioning of thermal storage ‘virtual power plants’ 
(controllable tool kits are given to businesses and households for a load aggregator to make a profit 
through auctioning), (2) ‘smart refrigerators’ independently taking advantage of real time pricing 
opportunities (users buy a controllable tool kit to take advantage of real time pricing), and (3) incentives 
for supply following loads.  

In California, some research pilots have suggested that a ‘thermal storage refrigerator’ 
controlled through a load aggregation framework could have great value and a relatively fast five-year 
payback period, while others have found that Californian households would only benefit from buying 
‘controllable tool kits’ if real time prices were slightly higher than what they currently are(217, 241). 
Taneja et al (2013) found that household savings in California would be negligible due to the amount 
of energy required to freeze and control an actionable phase change material, and Taneja et al (2013) 
and Lakshmanan et al (2014) both find that the amount of savings experienced by a household depends 
substantially on the pricing tariff. In Denmark, research pilots suggest that the “micro-payments” 
provided to users for participating in a load aggregation would be too low (1 to 5 euros/month) and 
energy cost savings would be too little (1 to seven euros/year) from buying a ‘controllable toolkit’. 
The absence of business potential in Denmark depended heavily on rate structure and other fees that 
make up a large part of the electricity prices (fixed costs being a large proportion of the electricity bill, 
rather than variable costs), in addition to refrigerators being much smaller and efficient than 
Californian refrigerators, and thus, requiring a larger population to take full advantage of virtual 
storage plants. 

Manual DR (manually changing set points, with a switch or controllers, for example), semi-
automated DR (automating HVAC or other processes through the use of energy management control 
systems, with the remainder of a facility under ‘human control’), and fully automated DR (automation 
of an entire facility) are the three most popular ways to implement DR research pilots and field 
deployments. High data granularity through metering or advanced metering infrastructure (AMI) is 
essential for all DR implementations to ensure project performance and end-user compliance, 
financial settlement, and consumer satisfaction (by providing access to data), among other things(240, 
242, 243). Currently, most AMI deployments interphase with smart metering infrastructure through 
analog pulse or digital series outputs, as well as metering specific loads (242, 243). These data are for 
the most part sent back to an aggregator through existing communications infrastructure such as 
broadband or wifi (242, 243). With response times that can range from tens of minutes to milliseconds, 
DLC is an integral part of AMI kits used in pilots and research projects to ensure compliance, as it 
would be nearly impossible for users to act within some of the shortest time frames (238). Two-way 
communications have also been crucial as it allows toggling relays, sending scripts to BEMS, or 
attachment to a wide assortment of loads or industrial equipment (238). Network Operation Centers 
(NOCs), or centralized control servers, host and organize DR and are widely used in commercialized 
implementations for initiating automatic dispatch notifications, remote control and monitoring of 
customer loads and generation, and coordination technicians in the field (238).  

In the United States, OpenADR is now almost always used as the communications data model 
of choice to ‘facilitate sending and receiving DR signals from a utility or independent system operator to electric 
customers’ (238, 239). While the OpenADR specification certainly facilitates data exchanges across a 
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variety of stakeholders including consumers, utilities, regional transmission organizations (RTOs), and 
independent system operators (ISOs), it was primarily designed for high-bandwidth networks rather 
than low-power local area networks, making it perhaps less useful for smaller research tailored 
implementations or niche markets (238). Once the system is in place, providing capacity payments, 
enabling meter access, facilitating accurate and transparent measurement verification procedures 
(establishing a baseline, for example), and encouraging aggregation are seen as industry best standards 
(238).  

Research pilots and field deployments are an important next step in realizing the 
implementation of the smart grid, and future research projects will have to further investigate 
important aspects of DR implementations including two-way communications costs and/or 
challenges, and the incorporation of behavior in DR (opening and closing of doors, for example), 
which plays an important role in TCL cycling. Another important challenge to consider is that AMI 
and smart metering were not designed with DR or other ancillary services in mind. In California 
(PG&E), smart meter infrastructure may receive or send several signals per day, with the transmission 
frequency depending on its position across a mesh network, and hence, does not provide all the 
functionality that DR aggregators would like when ensuring high standards for project 
implementation. Furthermore, DLC programs have historically faced end-user challenges including 
customers becoming frustrated with service interruptions, and often times leaving programs if they 
are called on too frequently, or not offered sufficient incentives to maintain long-term project 
participation (243). Technology innovation in networking and DR technologies needs to consider 
many of these challenges.  
 
3.3 FlexBox Design and Technology Implementation 
 

In January 2015 we used the Open Data Kit platform to survey 230 micro-enterprises with 
large cooling loads in Managua. A pilot survey was tested with a small group of 20 micro-enterprises, 
adjustments were made, and a full implementation was performed immediately afterwards. Our 
surveys and conversations with micro-enterprises (MEs) with large-cooling loads (for example: 
butcheries, chicken shops, mom & pop shops, milk and cheese shops) attempted to assess whether a 
micro-level demand response implementation could be feasible in Nicaragua and touched upon 
different aspects of a micro-enterprise’s business model: income and cost structures, energy related 
expenditures, daily, monthly and seasonal variations in consumption, perceptions on electric service 
reliability, perceptions on the quality of service provided by the utility, relationship with loads and 
appliances, and perceptions on income and micro-enterprise expenditures.  

The three most salient results from this survey included learning about (1) Voluntary Load 
Disruption: 161 respondents (71% of sample), were already implementing a refrigerator ‘energy savings 
strategy’ by turning their refrigerator on or off at different times of the day, (2) Perceptions on Electricity 
Service Reliability: Despite 70% of the MEs experiencing frequent power outages, most were ‘satisfied’ 
(72%) with service reliability (our data, however, registered very low voltages across the geographic 
spectrum, affecting the performance of certain appliances such as refrigerators), suggesting a high level 
of acceptance towards loads (and service) being turned off at random, and (3) High Energy Costs and 
Perception of Electricity Related Expenditures: The MEs’ main cost concerns were related to high energy 
prices (US$ 0.33/kWh), with 60% finding their bills ‘difficult to pay’ (on a scale from 1-4: ‘easy’ to 
‘very difficulty to pay’) (207). The objective of the system is to turn everyday TCLs (refrigerators, in 
this instance) into grid-tied ‘batteries’ that have the ability to store energy via latent heat, while still 
being able to perform their intended tasks. The system gathers open access high-resolution grid and 
weather data, as well as information from micro-level users such as micro-enterprises and homes via 
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surveys and a wireless sensor gateway. Actionable signals and personalized and useful snippets of 
‘energy efficient’ information are developed in the cloud and are pushed back to users, but 
understanding the state of an aggregated ‘virtual storage plant’ (as described above) for DR simulation 
and control is the primary task of our design and implementation.  

With knowledge of previously implemented micro- level DR implementations, and taking into 
account characteristics and challenges particular to Nicaragua, a system was conceived that could scale 
across regions and levels of infrastructural development. We called this system a FlexBox. The 
FlexBox requires intelligence far beyond a power meter; its design must allow for the possibility of 
using information about household energy consumption, refrigerator energy consumption, 
refrigerator temperature, refrigerator usage, and room temperature to independently make decisions 
about turning the refrigerator on and off. Similarly, its design must also allow for the possibility of 
two-way communications with a load aggregator. These functionalities were not implemented in a 
vacuum and followed a set of design principles that fit the deployment and project context. The 
principles surrounding FlexBox design were guided by the needs of all the “users” including: 1) 
adaptability: the team of researchers (at the University of California and the Nicaraguan National 
Engineering University) who will need to develop DR control laws, sensor configurations and 
management, and data collection and transmission functionalities, 2) modularity: simple maintenance 
being performed by a local enumerator without formal training in electronics meant that the system 
components could be put together and apart with ease, and 3) user needs and acceptance: the home or 
business owners must accept the technology, and at a later stage, receive information about household 
and load consumption. The second set of design principles came from our motivational research 
questions. A compromise had to be found between the availability of low- cost sensors and the 
variables of interest, including human behavior. This set of principles, while dominating the 
motivation of the project, is often the easiest to satisfy as it is sufficiently under the control of the 
researchers.  

The FlexBox is designed for ubiquitous TCL and household sensing, monitoring and load 
control. In this section, we discuss the principles of operation, the hardware and software 
implementation. Our research pilot in Managua (Nicaragua) consists of thirty FlexBoxes attached to 
twenty freezers (micro- enterprises) and ten refrigerators (households) and a centralized server that 
stores data, performs analyses, and provides control signals. Each FlexBox collects fridge inside 
temperature, humidity, TCL energy consumption, and total household energy consumption and stores 
it in a local database. Data is sent over 3G to a centralized server where it is merged with time stamped 
open access grid and weather data. Statistical and control scripts in the server can run simulations, and 
when necessary, actionable DR signals can be sent to participating TCLs to either be turned off or 
return to their normal cycling schedules. This central server also provides web-based tools to export 
data for off-line analysis, user energy reports, and intuitive visualizations that allow interested parties 
to easily understand the state of the overall system.  
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Figure 36: FlexBox System Concept: The enumerator downloads new FlexBox software and new surveys from 
the cloud server. The enumerator also collects data from the FlexBox via Ethernet or Wi-Fi and sends it to the 
cloud server. A Huawei E3531 modem opens two-way communication streams between the FlexBox and the 
cloud server, uploading data and downloading updated control laws. Open access grid and weather data are 
stored in the cloud server as well as an archive of transmitted data. 
 
 

The FlexBox is comprised of several components: a Raspberry Pi 2B, a custom Sensor 
Gateway Board, and a variety of wired and wireless sensors. Four USB ports on the Raspberry 
Pi are used to add and test wireless communications peripherals for local device 
communications using the Z-Wave protocol, Wi-Fi, flash backup storage, and a USB Huawei 
E3531 3G modem. An onboard storage microSD card on the Raspberry PI 2B makes data 
collection much simpler. If all other avenues fail to communicate the data to our server (an 
enumerator collecting data via Wi-Fi, or a 3G modem streaming data to our cloud server) the 
card can be mounted and read using a GNU/Linux based laptop. The modem is used to stream 
a subset of the data to our server, to control the FlexBox, and to test the quality of the GSM 
network. The Ethernet port provides a fail-safe communications channel with the device. 
 There are 3 radios (Wi-Fi, Z-wave, and GSM) and 7 sensors used in each FlexBox 
(four wired and three wireless). The wired sensors (two DSB18B20 waterproof temperature 
sensors in the refrigerator, a DHT22 household temperature/ambient sensor, and a 
magnetically actuated reed switch to monitor door openings) are connected to the 
Raspberry Pi via the custom Sensor Gateway board via a set of RJ11 modular jacks. An 
mPower Ubiquiti device is used for refrigerator monitoring and control and communicates via 
Wi-Fi. A n Aeotec Home Energy Meter monitors house power consumption (located at the 
electric service panel) and communicates to the FlexBox via Z-wave protocol. Several additions 
were made to the sensors and cables, including a small cage to surround the DS18B20s 
temperature sensors to minimize thermal contact conductance when inside the refrigerator as 
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well as a thin telephone cable to extended the DS18B20s length (and allow for the refrigerator 
door to seal completely).  

FlexBox processing and data storage is managed by the Raspberry PI 2B using the Raspbian 
Wheezy operating system. This platform provides a full operating system as the development 
environment which provides a richer feature set familiar to all researchers (UC Berkeley and UNI), 
which would not be the case if a simpler system were used, such as an mBed or Arduino 
microcontroller, which use a subset of C++. All software is implemented in Python and all data is 
stored in a PostgreSQL database. The Raspberry PI 2B uses the host access point daemon (hostapd) 
to act as a WiFi access point in order to communicate with the mPower Ubiquiti device (mPower). 
This access point also allows users to more easily connect to the FlexBox for diagnostics and data 
collection. 

Values from the switch sensor are directly accessible through the GPIO ports on the 
Raspberry PI 2B. The refrigerator temperature and room temperature and humidity sensors appear as 
character devices. I2C is used to communicate with the temperature sensors and a proprietary 
protocol is used to communicate with the room temperature and humidity sensor. An open-
source repository called python-openzwave is leveraged in order to access voltage, current, power, 
power factor, and energy values from the Aeotec Home Energy Meter. The python paramiko package 
is used to communicate with the mPower over WiFi through a secure shell (SSH) connection and 
collects refrigerator voltage, current, power, power factor, and energy values. In order to maintain 
stable connections and handle communication errors, the data collection scripts incorporate 
several layers of connection and process resets. First, a separate process is created for the 
data collection script of each sensor. This allows for independent sensor reads and stores 
and prevents the failure of a single sensor from interfering with the collection of other sensor 
values. While this system is capable of collecting data every 1-3 seconds (depending upon the 
sensor), the limited storage capacity of the microSD card requires a more limited collection 
scheme. The software stores data in the PostgreSQL database under two conditions: 1) it 
detects a change in the output value that is greater than a specified threshold, and 2) one 
minute has passed. This second condition ensures that the sensor is still functional, otherwise 
it would be difficult to discern between a broken sensor and a static sensor output.  

The sensors that communicate over wireless protocols (mPower, Aeotec Home Energy 
Meter) also have an additional layer of process handling to prevent excessive data loss caused by 
wireless connection issues. The Z-Wave network and connection to  the  mPower  could  be  
very sporadic. Each hour, or if any communication error is caught, the entire system process is 
restarted. The mPower has an additional timeout for resetting the wireless network on the 
Raspberry Pi. If it cannot connect to the mPower, the wireless network is reset. After four 
retries, the Pi stops attempting to connect and waits for the process to be killed in the subsequent 
hour. This limit was imposed to allow for users to access the Raspberry Pi’s WiFi network even 
when the mPower is not functioning without having the script constantly resetting the 
connection. The Python Flask microframework is used to set up a web server on the Raspberry 
Pi. A web page on this server allows users to easily see the last several data points that were 
entered into the database from each sensor. This allows for quick diagnostics by the 
enumerator when first entering a household. Other configuration properties include setting 
a static IP address for the mPower, hard-coding the temperature sensor ids, and assigning 
unique hostnames to each FlexBox. These configurations add stability, reduce the possibility 
for error during system resets, and allow for easy identification and tracking when analyzing 
multiple households simultaneously. 
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Figure 37 FlexBox Wireless Sensor Gateway Components. 
  

Regarding communications, our approach seeks to evaluate two different network 
measurements: latency, and bandwidth. Latency represents the time interval in milliseconds 
between stimulation and response (how long it takes for data to get from one place to another), 
with bandwidth (bits per second) representing how much data can move across the network at 
a given time. Network latency is evaluated through pinging: every 30 seconds, 6 pings are sent 
which do a round trip to and from the server (FlexBox to  c lo u ld  s e rv e r  to  F l ex b o x ). 
Bandwidth is measured every 2 hours by opening a transmission control protocol (TCP) 
connection with the cloud server and streaming 3 megabits of randomly generated numbers 
from the FlexBox (to prevent compression by the network which would inflate our perceived 
bandwidth). Every four hours one row of data (sensor and meter readings) is sent to the 
cloud server to update system parameters. 
 

Household Power Metering Load Metering  
& Control 

Weather Station 

RefrigeratorTemperature Sensors Shield Raspberry PI 2B 

Ambient Sensor Magnetic Switch 

               3G Modem 



 

 

83 

3.4 Exploratory Data Analysis of Field and Sensor Data 
 
In the summer of 2015 twenty micro-enterprises and ten households in different parts of Managua 
with similar social- demographic characteristics were selected at random from a sample of 230 micro-
enterprises and households to receive a FlexBox. Five Huawei E3531 modems were installed to test 
network latency and bandwidth. This section presents an exploratory data analysis of the data collected 
to date, including TCL thermal parameter estimation and efficiencies, a brief communications network 
analysis, a cost breakdown, and a summary of field implementation challenges and opportunities that 
have been presented to date.  

Normalized micro-level energy consumption (mean and/or median) can be clustered into 5 
different daily load shapes (hourly data). The five different clustered daily load shapes (k-shape) include (1) 
those that have their highest consumption in the middle of the day, (2) those with two peaks occurring 
in the middle of the day and in the evening, (3) those whose consumption increases consistently 
throughout the day, (4) those with only high consumption in the morning and at night, and (5) those 
that have scattered consumption throughout the day, but with the highest consumption being in the 
middle of the day. On average, households and micro-enterprises consume more energy on weekends 
versus weekends (mean: 16% greater energy consumption, median: 28% greater energy consumption 
using median). 

 

 
 

 

 

 

 

 

 

 
Figure 38: Load Shapes: Five different load shapes were identified when clustering load shapes by hourly mean 
or median. The pink load shape is the load shape that most resembles Nicaragua’s characteristic daily demand 
load shape. 
 

Correlating time of day with hourly room temperatures (°C), fridge inside temperatures (°C), 
refrigerator energy consumption (Wh), and household energy consumption (Wh) allowed us to see 
that there is both a room temperature and time dependence (with varying correlation strength) across 
our cluster (Figure 39). We observe a very weak negative relationship between inside refrigerator 
temperature and room temperature (Pearson r=-.06, N=16,000, p<.001), a moderate positive 
relationship between fridge energy consumption and room temperature (Spearman non-parametric 
r=-.43, N=10,000, p<.001), a moderate positive relationship between household energy consumption 
and room temperature (Spearman non- parametric r=-.45, N=16,000, p<.001), and a very weak 
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relationship between room temperature and door openings (Spearman non-parametric r=-.16, 
N=16,000, p<.001).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 39: Controlled System Pilot Data Stream: Room ambient temperature plotted [A] fridge inside 
temperature, [B] fridge energy consumption, [C] household energy consumption, and [D] door openings. While 
the cluster only depicts weak to moderate correlations between room ambient temperature and other data 
streams, individual units experience stronger correlations between room ambient temperature and all other 
sensor data. 
 
 

While these relationships may be relatively weak across the cluster, we observe great within 
cluster variability when exploring these relationships (Figure 39). For example, Figure 39 depicts that 
8 and 3 units experience moderate (0.4 ≤ r < 0.6; p<.001) and strong (0.6 ≤ r < 0.8; p<.001)  moderate 
(p<.001) and strong (p<.001) correlations between room temperature and house energy consumption 
respectively, and while the correlation between fridge energy consumption and room temperature is 
positive, this relationship is only found to be moderate and strong in a few households (2 and 1 units 
respectively; p<.001).  

The spread in the strength of correlation between ambient room temperature and fridge inside 
temperature and fridge energy consumption suggests that there is a panoply of user behaviors that are 
driving the system (Figure 40). For example, some units might unplug their fridge when room ambient 
temperature is very high, whereas others might leave their appliance ‘on’, with the fridge using more 
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Figure 3. Load Shapes: Five different load shapes were identified when 
clustering load shapes by hourly mean or median. The pink load shape is the 
load shape that most resembles Nicaragua’s characteristic daily demand load 
shape. 

A. Exploratory Data Analysis 
Normalized micro-level energy consumption (mean and/or 

median) can be clustered into 5 different daily load shapes 
(hourly data). The five different clustered daily load shapes 
(k-shape) include (1) those that have their highest 
consumption in the middle of the day, (2) those with two 
peaks occurring in the middle of the day and in the evening, 
(3) those whose consumption increases consistently 
throughout the day, (4) those with only high consumption in 
the morning and at night, and (5) those that have scattered 
consumption throughout the day, but with the highest 
consumption being in the middle of the day. On average, 
households and micro-enterprises consume more energy on 
weekdays versus weekends (mean: 16% greater energy 
consumption, median: 28% greater energy consumption). 

Correlating time of day with hourly room temperatures 
(°C), fridge inside temperatures (°C), refrigerator energy 
consumption (Wh), and household energy consumption (Wh) 
allowed us to see that there is both a room temperature and 
time dependence (with varying correlation strength) across our 
cluster (Figure 4). We observe a very weak negative 
relationship between inside refrigerator temperature and room 
temperature (Pearson r=-.06, N=16,000, p<.001), a moderate 
positive relationship between fridge energy consumption and 
room temperature (Spearman non-parametric r=-.43, 
N=10,000, p<.001), a moderate positive relationship between 
household energy consumption and room temperature 
(Spearman non-parametric r=-.45, N=16,000, p<.001), and a 
very weak relationship between room temperature and door 
openings (Spearman non-parametric r=-.16, N=16,000, 
p<.001).  

While these relationships may be relatively weak across 
the cluster, we observe great within cluster variability when 
exploring these relationships (Figure 5). For example, Figure 5 
depicts that 8 and 3 units experience moderate (0.4 ≤ r < 0.6; 
p<.001) and strong  (0.6 ≤ r < 0.8; p<.001)  correlations 
between room temperature and internal  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Controlled System Pilot Data Stream: Room ambient temperature 
plotted [A] fridge inside temperature, [B] fridge energy consumption, [C] 
household energy consumption, and [D] door openings. While the cluster only 
depicts weak to moderate correlations between room ambient temperature and 
other data streams, individual units experience stronger correlations between 
room ambient temperature and all other sensor data. 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5. Correlation between Room Temperature and FlexBox Sensor 
Data: The figure depicts the strength of the correlation between room 
temperature and all other sensor readings (door openings, fridge energy 
consumption, fridge inside temperature, and total household energy 
consumption) for all units. The size of a point represents the strength of the 
correlation and the color depicts a visual identifier for a specific unit 
(household or micro-enterprise). While the cluster data (all units) in Figure 4 
depicts only weak to moderate correlations, individual units experience 
stronger correlations between room ambient temperature and all other sensor 
data.  
 
refrigerator temperature respectively, 6 and 3 units experience 
moderate (p<.001) and strong (p<.001)  correlations between 
room temperature and house energy consumption respectively, 
and while the correlation between fridge energy consumption 
and room temperature is positive, this relationship is only 
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energy to preserve (or reduce its internal temperature) during that time. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 40: Correlation between Room Temperature and FlexBox Sensor Data: The figure depicts the strength of 
the correlation between room temperature and all other sensor readings (door openings, fridge energy 
consumption, fridge inside temperature, and total household energy consumption) for all units. The size of a point 
represents the strength of the correlation and the color depicts a visual identifier for a specific unit (household or micro-enterprise). 
While the cluster data (all units) in Figure 40 depicts only weak to moderate correlations, individual units 
experience stronger correlations between room ambient temperature and all other sensor data.  
 

Similarly a strong positive correlation between fridge inside temperature and room ambient 
temperature could suggest that users unplug their fridge during the hottest parts of the day, and a 
negative strong correlation could suggest that these are the times of the day when users actually ‘plug’ 
their refrigerator (and consequently, the time of the day during which the refrigerator uses most of its 
energy). The correlation between total household energy consumption and room ambient temperature 
suggests that while there are a few households that increase their consumption at higher temperatures, 
there are also others that modify their behavior so as to reduce their consumption (for example, turn 
several freezers and refrigerators off). There are many more insights from these data, including the 
opportunity to target energy efficiency thermal insulation for refrigerators in certain units, as well as 
the development of detailed energy reports.  

There are several key parameters for determining the technical resource potential of 
thermostatically controlled loads and for building more accurate control algorithms for large-scale 
TCL aggregations. Room temperature, fridge inside temperature (of a room, or inside a refrigerator, 
for example), power consumption, and TCL characteristics (resistance, capacitance, and wall 
thickness, for example) are all used for the design of a smart controller. It has also been suggested that 
large-scale TCL aggregations of virtual energy storage can be represented through both their energy and 
power capacity (244). To define the energy capacity (the maximum amount of energy that can be stored) 
and the power capacity (the full power range of an analogous storage device) several parameters are 
needed including: h (the amount of time it takes a TCL to traverse its deadband in ON mode), dead- 
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Figure 41: Internal temperature of household and micro-enterprise TCLS: The temperature range of households 
is similar (top), while micro-enterprise freezers display a wider temperature range, ranging from -10°C to room 
temperature (bottom).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 42: Room temperature of household and micro-enterprises (red) vs. ambient weather station data (blue): 
Houses and micro-enterprises directly experience the ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and night, the weather station experiences higher 
temperatures than the households and micro- enterprises. 
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found to be moderate and strong in a few households (2 and 1 
units respectively; p<.001).  

The spread in the strength of correlation between 
ambient room temperature and fridge inside temperature and 
fridge energy consumption suggests that there is a panoply of 
user behaviors that are driving the system (Figure 5). For 
example, some units might unplug their fridge when room 
ambient temperature is very high, whereas others might leave 
their appliance ‘on’, with the fridge using more energy to 
preserve (or reduce its internal temperature) during that time. 
Similarly a strong positive correlation between fridge inside 
temperature and room ambient temperature could suggest that 
users unplug their fridge during the hottest parts of the day, 
and a negative strong correlation could suggest that these are 
the times of the day when users actually ‘plug’ their 
refrigerator (and consequently, the time of the day during 
which the refrigerator uses most of its energy). The correlation 
between total household energy consumption and room 
ambient temperature suggests that while there are a few 
households that increase their consumption at higher 
temperatures, there are also others that modify their behavior 
so as to reduce their consumption (for example, turn several 
freezers and refrigerators off). There are many more insights 
from these data, including the opportunity to target energy 
efficiency thermal insulation for refrigerators in certain units, 
as well as the development of detailed energy reports. 
 

B. TCL Parameter EDA 
There are several key parameters for determining the 

technical resource potential of thermostatically controlled 
loads and for building more accurate control algorithms for 
large-scale TCL aggregations. Room temperature, fridge 
inside temperature (of a room, or inside a refrigerator, for 
example), power consumption, and TCL characteristics 
(resistance, capacitance, and wall thickness, for example) are 
all used for the design of a smart controller. It has also been 
suggested that large-scale TCL aggregations of virtual energy 
storage can be represented through both their energy and 
power capacity [46]. To define the energy capacity (the 
maximum amount of energy that can be stored) and the power 
capacity (the full power range of an analogous storage device) 
several parameters are needed including: h (the amount of 
time it takes a TCL to traverse its deadband in ON mode), 
dead-band width (°C), temperature set points (°C), thermal 
resistance (°C/kWh), thermal capacitance (kWh/°C), 
coefficient of performance (COP), and power consumption 
(kW). While TCL models in the literature allow room 
temperature to vary when modeling air conditioners and heat 
pumps, room temperature remains fixed when modeling 
energy and power capacity in refrigerators. Though these 
dynamics may vary across regions and study sites, a fixed 
room temperature also means that a refrigerator’s duty cycle 
remains constant, and so do the power and energy capacities, 
as well as the mean annual energy consumption [46].  

When comparing room temperature and humidity inside 
households and micro-enterprises against ambient weather 
station data, we found that houses and micro-enterprises 

directly experienced ambient temperatures, and often 
experienced hotter temperatures during the hottest part of the 
days due to the absence of reflective or insulating house 
materials infrastructure.   During the early morning (0-6 am) 
all except two houses experience lower temperatures than the 
ambient temperature weather station, but this changes at 6 am 
when approximately half of the households experience higher 
temperatures than the weather station. While room 
temperature allows us to understand intra-hourly and intra day 
temporal variability, and temperature variability is well 
correlated across our weather station and all units, there was a 
wide spread of room temperature across all units (4°C). Poor 
thermal insulation could pose significant problems not only 
for household and city-wide energy efficiency programs, but 
could also significantly affect city dwellers health [47]. Our 
data suggests that not only does room temperature vary 
significantly during the day, but also that the warm 
temperature extremes are experienced significantly by loads 
and people in houses and micro-enterprises. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Internal temperature of household and micro-enterprise TCLS: 
The temperature range of households is similar (top), while micro-enterprise 
freezers display a wider temperature range, ranging from -10°C to room 
temperature (bottom). 
 
On average, TCL consumption is greatest during the middle 
day when it is the hottest and when households experience the 
majority of their door openings. Figure 8.a depicts normalized 
data (0-1) for all units to compare energy usage over time 
throughout the study period.  Manufacturer information from 
refrigeration units in the field labeled the temperature set 
points of the different freezer and refrigeration units to range 
between -20°C and 5°C. Field data suggests, however, that the 
units usually oscillated between -10°C and could reach up to 
35°C (Figure 6, Table 1). This deviation could be a result of 
appliance losses, and behavioral components which include 
the opening and closing of doors and the temporary  
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Figure 7. Room temperature of household and micro-enterprises (red) vs. 
ambient weather station data (blue): Houses and micro-enterprises directly 
experience the ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and night, the weather 
station experiences higher temperatures than the households and micro-
enterprises.  
 
unplugging of TCLs most units engage in. 

Furthermore, we find that the duty cycle (the ratio of time 
it takes for a refrigerator to traverse its dead-band in an on 
state vs. total time in compressor on and off states) fluctuates 
during the day.  Here, field data suggests that the freezers and 
refrigerators spend more time in the compressor-on stage 
during the middle of the day (when it’s hottest and when there 
is more activity) than other parts of the day. Evidence from 
these field data diverge from previous TCL modeling 
assumptions that suggest that the duty cycle (and energy and 
power capacities) is fixed throughout the day.   

We also compare the coefficient of performance, which 
was measured in an experimental setting at UC Berkeley, to 
an efficiency performance index, which was calculated from 
data. We find that while the experimental COP ranged 
between 0.01 and 0.03 and stayed fairly constant throughout 
the day (with minimal heat or behavioral disturbances), the 
efficiency of performance index (EPI) observed in the field 
ranged drastically between 0.0045 (minimum) and 18 
(maximum). While it would seem like the EPI index is 
consistent across field units (Fig 8), we find that the 
performance efficiency of the refrigerator (the amount of work 
required to remove heat from a cold reservoir) varies within 
the day. More active and hotter times of the day observe lower 
EPI values than other days. The rated power of these 
appliances ranged from 0.1 to 2.2 kW according to the 
manufacturer label and size; this would result in a mean 
annual consumption range between 280 and 6000 kWh. Our 
field data suggests that the actual mean annual energy 
consumption was 1400 kWh for the entire cluster. Findings 
from our field data and experiment could be used to better 
inform the modeling of TCLs for ancillary services as 
theoretical models usually assume constant duty cycles, 
energy and power capacities and performance efficiencies.  

 
 

 
 
 
 
 
 
 
 

 
 

Table 1. Field Data TCL Thermal Parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Normalized TCL Energy Consumption by Unit [top] and TCL 
Efficiency Performance Index for all Units [bottom]: [Top] We observe 
TCL energy consumption to be, on average, higher in the middle of the day 
than other parts of the day, and [Bottom] we find the efficiency performance 
index (the ratio between the work that is required to remove heat from a 
reservoir and the heat removed from a reservoir) also varies during the day, 
and is worst in the middle of the day when it is hottest and when the TCL 
experiences most activity.  
 

C. Communications Network EDA 
As part of a test for the reliability and capacity of the 
communications network, we installed five 3G Huawei E3531 

Parameter Symbol  
(Units)

  Mean (SD: Min -- Max)

Ambient temperature θa (°C) 30 (3: 10 -- 41)
Dead-band width δ (°C) 9 (4: -10 -- 35)
Temperature set point1 θset (°C) -20 -- 5
Duty cycle D (-) 0.52 (0.31: 0.1 -- 0.9)
Coefficient of performance2 η (-) 0.01 - 0.03
Efficiency performance index η.e (-) 1.8 (2.4: .0045 - 18)
Power consumption1 P (kW) 0.1 -- 2.2
Mean Annual Energy Consumption per TCL1 MAEC (kWh) 280 -- 6000 
Actual Mean Annual Energy Consumption per TCL AMAEC (kWh) 1400

[1] From product details found in the field and from local refrigerator and freezer providers.

[3] The rest of the data was obtained from the field.

[2] From controlled laboratory experiments.The literature suggests that the COP ranges between 
1.5 and 2.5, we did not observe this in our controlled experiment. COP is a ratio of Qc (heat 
removed from a cold reservoir) over Wref  (the work input required to remove heat from the cold 
reseroir). Experimentally, we calculated the COP for a freezer and refrigerator that were empty, but 
on the field we assumed freezers and refrigerators to be 3/4 full. That is, we used the heat capacity 
of air and water to calculate the efficiency performance index for our field data.
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band width (°C), temperature set points (°C), thermal resistance (°C/kWh), thermal capacitance 
(kWh/°C), coefficient of performance (COP), and power consumption (kW). While TCL models in 
the literature allow room temperature to vary when modeling air conditioners and heat pumps, room 
temperature remains fixed when modeling energy and power capacity in refrigerators. Though these 
dynamics may vary across regions and study sites, a fixed room temperature also means that a 
refrigerator’s duty cycle remains constant, and so do the power and energy capacities, as well as the 
mean annual energy consumption (244).  

When comparing room temperature and humidity inside households and micro-enterprises 
against ambient weather station data, we found that houses and micro-enterprises directly experienced 
ambient temperatures, and often experienced hotter temperatures during the hottest part of the days 
due to the absence of reflective or insulating house materials infrastructure. During the early morning 
(0-6 am) all except two houses experience lower temperatures than the ambient temperature weather 
station, but this changes at 6 am when approximately half of the households experience higher 
temperatures than the weather station. While room temperature allows us to understand intra-hourly 
and intra day temporal variability, and temperature variability is well correlated across our weather 
station and all units, there was a wide spread of room temperature across all units (4°C). Poor thermal 
insulation could pose significant problems not only for household and city-wide energy efficiency 
programs, but could also significantly affect city dwellers health (245). Our data suggests that not only 
does room temperature vary significantly during the day, but also that the warm temperature extremes 
are experienced significantly by loads and people in houses and micro-enterprises. 

On average, TCL consumption is greatest during the middle day when it is the hottest and 
when households experience the majority of their door openings. Figure 43.A depicts normalized data 
(0-1) for all units to compare energy usage over time throughout the study period. Manufacturer 
information from refrigeration units in the field labeled the temperature set points of the different 
freezer and refrigeration units to range between -20°C and 5°C. Field data suggests, however, that the 
units usually oscillated between -10°C and could reach up to 35°C (Figure 41, Table 10). This deviation 
could be a result of appliance losses, and behavioral components which include the opening and 
closing of doors and the temporary unplugging of TCLs most units engage in.  

Furthermore, we find that the duty cycle (the ratio of time it takes for a refrigerator to traverse 
its dead-band in an on state vs. total time in compressor on and off states) fluctuates during the day. 
Here, field data suggests that the freezers and refrigerators spend more time in the compressor-on 
stage during the middle of the day (when it’s hottest and when there is more activity) than other parts 
of the day. Evidence from these field data diverge from previous TCL modeling assumptions that 
suggest that the duty cycle (and energy and power capacities) is fixed throughout the day. We also 
compare the coefficient of performance, which was measured in an experimental setting at UC 
Berkeley, to an efficiency performance index, which was calculated from data. We find that while the 
experimental COP ranged between 0.01 and 0.03 and stayed fairly constant throughout the day (with 
minimal heat or behavioral disturbances), the efficiency of performance index (EPI) observed in the 
field ranged drastically between 0.0045 (minimum) and 18 (maximum). 

While it would seem like the EPI index is consistent across field units (Fig 8), we find that the 
performance efficiency of the refrigerator (the amount of work required to remove heat from a cold 
reservoir) varies within the day. More active and hotter times of the day observe lower EPI values 
than other days. The rated power of these appliances ranged from 0.1 to 2.2 kW according to the 
manufacturer label and size; this would result in a mean annual consumption range between 280 and 
6000 kWh. Our field data suggests that the actual mean annual energy consumption was 1400 kWh 
for the entire cluster. Findings from our field data and experiment could be used to better inform the 
modeling of TCLs for ancillary services as theoretical models usually assume constant duty cycles, 
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energy and power capacities and performance efficiencies.  
 
 
 

	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 43: Normalized TCL Energy Consumption by Unit [top] and TCL Efficiency Performance Index for all 
Units [bottom]: [Top] We observe TCL energy consumption to be, on average, higher in the middle of the day 
than other parts of the day, and [Bottom] we find the efficiency performance index (the ratio between the work 
that is required to remove heat from a reservoir and the heat removed from a reservoir) also varies during the 
day, and is worst in the middle of the day when it is hottest and when the TCL experiences most activity. 

 
3.5 Communications Exploratory Data Analysis 
	
As part of a test for the reliability and capacity of the communications network, we installed five 3G 
Huawei E3531 modems in both households and micro-enterprises. Monthly 1GB data plans were 
purchased for each modem and two tests were written and implemented to test network latency and 
bandwidth. Latency refers to the base overhead of establishing and responding to a connection 
request. In this context, it measures the amount it takes for the FlexBox to create a data package, send 
it to the server, the server receiving it and the server sending it back to the FlexBox. We measured 
latency through pinging: every 30 seconds, 6 pings were sent from the FlexBox to the server, and then 
returned back to the FlexBox. With regards to DR control purposes, latency is incredibly important 
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Figure 7. Room temperature of household and micro-enterprises (red) vs. 
ambient weather station data (blue): Houses and micro-enterprises directly 
experience the ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and night, the weather 
station experiences higher temperatures than the households and micro-
enterprises.  
 
unplugging of TCLs most units engage in. 

Furthermore, we find that the duty cycle (the ratio of time 
it takes for a refrigerator to traverse its dead-band in an on 
state vs. total time in compressor on and off states) fluctuates 
during the day.  Here, field data suggests that the freezers and 
refrigerators spend more time in the compressor-on stage 
during the middle of the day (when it’s hottest and when there 
is more activity) than other parts of the day. Evidence from 
these field data diverge from previous TCL modeling 
assumptions that suggest that the duty cycle (and energy and 
power capacities) is fixed throughout the day.   

We also compare the coefficient of performance, which 
was measured in an experimental setting at UC Berkeley, to 
an efficiency performance index, which was calculated from 
data. We find that while the experimental COP ranged 
between 0.01 and 0.03 and stayed fairly constant throughout 
the day (with minimal heat or behavioral disturbances), the 
efficiency of performance index (EPI) observed in the field 
ranged drastically between 0.0045 (minimum) and 18 
(maximum). While it would seem like the EPI index is 
consistent across field units (Fig 8), we find that the 
performance efficiency of the refrigerator (the amount of work 
required to remove heat from a cold reservoir) varies within 
the day. More active and hotter times of the day observe lower 
EPI values than other days. The rated power of these 
appliances ranged from 0.1 to 2.2 kW according to the 
manufacturer label and size; this would result in a mean 
annual consumption range between 280 and 6000 kWh. Our 
field data suggests that the actual mean annual energy 
consumption was 1400 kWh for the entire cluster. Findings 
from our field data and experiment could be used to better 
inform the modeling of TCLs for ancillary services as 
theoretical models usually assume constant duty cycles, 
energy and power capacities and performance efficiencies.  

 
 

 
 
 
 
 
 
 
 

 
 

Table 1. Field Data TCL Thermal Parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Normalized TCL Energy Consumption by Unit [top] and TCL 
Efficiency Performance Index for all Units [bottom]: [Top] We observe 
TCL energy consumption to be, on average, higher in the middle of the day 
than other parts of the day, and [Bottom] we find the efficiency performance 
index (the ratio between the work that is required to remove heat from a 
reservoir and the heat removed from a reservoir) also varies during the day, 
and is worst in the middle of the day when it is hottest and when the TCL 
experiences most activity.  
 

C. Communications Network EDA 
As part of a test for the reliability and capacity of the 
communications network, we installed five 3G Huawei E3531 

Parameter Symbol  
(Units)

  Mean (SD: Min -- Max)

Ambient temperature θa (°C) 30 (3: 10 -- 41)
Dead-band width δ (°C) 9 (4: -10 -- 35)
Temperature set point1 θset (°C) -20 -- 5
Duty cycle D (-) 0.52 (0.31: 0.1 -- 0.9)
Coefficient of performance2 η (-) 0.01 - 0.03
Efficiency performance index η.e (-) 1.8 (2.4: .0045 - 18)
Power consumption1 P (kW) 0.1 -- 2.2
Mean Annual Energy Consumption per TCL1 MAEC (kWh) 280 -- 6000 
Actual Mean Annual Energy Consumption per TCL AMAEC (kWh) 1400

[1] From product details found in the field and from local refrigerator and freezer providers.

[3] The rest of the data was obtained from the field.

[2] From controlled laboratory experiments.The literature suggests that the COP ranges between 
1.5 and 2.5, we did not observe this in our controlled experiment. COP is a ratio of Qc (heat 
removed from a cold reservoir) over Wref  (the work input required to remove heat from the cold 
reseroir). Experimentally, we calculated the COP for a freezer and refrigerator that were empty, but 
on the field we assumed freezers and refrigerators to be 3/4 full. That is, we used the heat capacity 
of air and water to calculate the efficiency performance index for our field data.
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as we want DR control signals to travel fast through the network. Modems can take anywhere between 
millisecond to tens of seconds to establish a connection and send one packet of data changing what 
service we can reliably provide in ancillary services or spot markets.  
 
 

Parameter Units Mean (SD: Min -- Max) 
Ambient 
Temperature 

Celsius 30 (3: 10 -- 41) 

Dead-band width Celsius 9 (4: 10 -- 35) 
Temperature set 
point1 

Celsius -20 -- 5 

Duty cycle - 0.52 (0.31: 0.1 -- 0.9) 
Coefficient of 
Performance2 

- 0.01 -- 0.03 

Efficiency 
performance 
index 

- 1.8 (2.4: 0.0045 -- 18) 

Power 
consumption1 

kW 0.1 -- 2.2 

Mean Annual 
Energy 
Consumption per 
TCL1 

kWh 280 -- 6000 

Actual Mean 
Energy 
Consumption per 
TCL 

kWh 1400 

 
Table 10: Field Data TCL Thermal Parameters 

 
[1] From product details found in the field and from local refrigerator and freezer providers 
[2] From controlled laboratory experiments. The literature suggests that the COP ranges between 1.5 and 2.5, 
but we did not see this in our experiment. COP is a ratio of Qc (heat removed from a cold reservoir) over Wref 
(the work input required to remove heat from a cold reservoir). Experimentally, we calculated the COP for a 
freezer and refrigerator were empty, but on the field we assumed freezers and refrigerators to be ¾ full. That 
is, we used the heat capacity of air and water to calculate the efficiency performance index for our field data. 
[3] The rest of the data was obtained from the field. 
 
 

Bandwidth refers to the speed at which data flows through the network after a connection has 
been established and is usually taken into account when considering bulk data transmission. We 
measured bandwidth by opening a transmission control protocol (TCP) connection between the 
FlexBox and the server and transmitting 3 megabits of randomly generated numbers. For DR control 
purposes, control signals are generally very small and communication time is dominated by latency, so 
although we measured both, latency is considered to be a more determining factor of the ancillary 
services that could be provided by TCLs within a particular communications network.  

In our tests, and in the event that the network failed and latency and bandwidth data tests 
could not be sent, the tests were stored as failures in the FlexBox. Once the network was restored, 
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data was sent to the server and analyzed to understand how many failures occurred based on how 
many sequence numbers were missing (as well as to calculate how much time had elapsed between 
successful attempts).  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 44: Latency Hourly Variability: [A] Hourly average latency variability, and [B] approximate distribution 
of these devices across Managua. is worst in the middle of the day when it is hottest and when the TCL 
experiences most activity. 
 

 
Each latency and bandwidth test had 6 pings, and the maximum and average values described 

below refer to the maximum and average value within the 6 pings that occurred within each of our 
tests. A non-parametric Kolmogorov-Smirnov test was used to compare the latency distributions 
across our five samples (for the average and maximum latency length) and found them to be all 
statistically significant different from each other (p≤0.001; with the null hypothesis being that the two 
distributions being compared are drawn from the same distribution). The mean of the average latency 
is 642 milliseconds (sd: 185 milliseconds) across all devices (Figure 45.A) and the mean of the 
maximum latency across all devices is 945 milliseconds (sd: 415 milliseconds) with the maximum 
latency value reaching 38,000 milliseconds. We also evaluated the average latency across all devices for 
every hour of the day (Figure 45.A) and found the network to be faster, on average, between 5 am 

Approximate location of devices across Managua 
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Figure 10. Latency Hourly Variability: [A] Hourly average latency 
variability, and [B] approximate distribution of these devices across Managua.  
 
Throughout the network (Figure 10.B) each device had a 
different distribution for dropped packets, and therefore also a 
different lambda value (Figure 9.A). For all dropped packet 
events, the mean duration before reestablishing connection 
was 267 seconds (~ 5 minutes) with a 352 seconds standard 
deviation (min: 60 seconds, max: 206 minutes). These values 
are deceiving, however, because the distribution is skewed due 
to several extreme outliers shifting the mean to the right. 
Removing these outliers depicted that the duration of events 
follows an exponential distribution with a mean of 258 
seconds (~4 minutes). Without outliers the median value is 
180 seconds and the most frequent value is 60 seconds. For all 
dropped packet events the mean interval time between events 
was 106 seconds with a standard deviation of 505 seconds. 
Without outliers, the mean time between events is 50 seconds 
(median is 46 seconds) with a standard deviation of 54 
seconds.  

VI. CONCLUSION 
There are several findings from our system implementation 
that can inform how theoretical models could incorporate data 
from wireless sensor gateways in the future: (1) the use of 
surveys and baseline data collection could be used for more 
realistic assumption building before modeling begins, (2) 
while some recent work has begun to calculate the uncertainty 

resource potential for demand response, little attention has 
been placed on how user behavior increases the energy and 
temperature uncertainty of DR resource availability, (3) 
control algorithms are usually top-down with a load 
aggregator assuming user and load behavior and consumption 
patterns;  we argue that a more holistic modeling approach 
could be the development of bottom-up – top-down models 
that incorporate behavior and appliance efficiencies in model 
building, (4) communication networks and enabling systems 
(such as our FlexBox) are usually discussed in the abstract, 
yet, the types of ancillary services that can be provided at the 
micro-level are conditional upon the capabilities of a specific 
system or technology, and (5) research on DR communication 
protocols are likely to affect not only what different services 
can be provided but also the design and cost-effectiveness of 
the enabling system itself. The communications network’ 
exploratory data analysis suggested that DR faces several 
communication challenges ahead which include a large 
discrepancy in the spatial quality of communications service, a 
high frequency of dropped packets across the network, and a 
high frequency in the difficulty to reestablish a connection.  
Future iterations of this work will involve the reduction in size 
of the FlexBox, the design of a system that measures 
temperature less intrusively, and a more inconspicuous way to 
measure load power consumption. In addition, future work 
will investigate what the minimum level of grid sensing is to 
recover full state information from a micro-enterprise or a 
household.  
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and 12 pm (880 milliseconds) than other parts of the day. Distance between devices does not seem to 
be a determining factor of latency as devices that are relatively close together were found to be as 
different to each other compared to devices that were further away. The latency tests show great 
variability among each other and throughout the day despite the fact that they are all connected to the 
same network (Claro 3G), are pinging the same server, are using the same technology (Huawei E3531) 
and run the same software. We also analyzed network dropped packets and evaluated both the number 
of events (binary: 1 or 0) as well as the duration of the event (seconds: 1*seconds elapsed). Because 
our dropped packet events have both known average rates and are assumed to occur independently 
of the time since the last event, we assumed a Poisson distribution to express the probability of a 
dropped packet occurring within a fixed time interval. Similarly, we used an exponential distribution 
to describe the time between dropped packets (inter-arrival times of dropped packets in the Poisson 
process).  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 45: Poisson and Exponential Distribution Characterizing Communication Tests: Probability of number 
of dropped events per hour [A], distribution of event duration in seconds [B], and time interval between events 
[C]. Panels [B] and [C] depict the distributions without outliers and fitted with an exponential distribution (red 
line). 
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modems in both households and micro-enterprises. Monthly 
1GB data plans were purchased for each modem and two tests 
were written and implemented to test network latency and 
bandwidth. Latency refers to the base overhead of establishing 
and responding to a connection request. In this context, it 
measures the amount it takes for the FlexBox to create a data 
package, send it to the server, the server receiving it and the 
server sending it back to the FlexBox. We measured latency 
through pinging: every 30 seconds, 6 pings were sent from the 
FlexBox to the server, and then returned back to the FlexBox. 
With regards to DR control purposes, latency is incredibly 
important as we want DR control signals to travel fast through 
the network. Modems can take anywhere between millisecond 
to tens of seconds to establish a connection and send one 
packet of data changing what service we can reliably provide 
in ancillary services or spot markets. 

Bandwidth refers to the speed at which data flows 
through the network after a connection has been established 
and is usually taken into account when considering bulk data 
transmission. We measured bandwidth by opening a 
transmission control protocol (TCP) connection between the 
FlexBox and the server and transmitting 3 megabits of 
randomly generated numbers. For DR control purposes, 
control signals are generally very small and communication 
time is dominated by latency, so although we measured both, 
latency is considered to be a more determining factor of the 
ancillary services that could be provided by TCLs within a 
particular communications network. 

In our tests, and in the event that the network failed 
and latency and bandwidth data tests could not be sent, the 
tests were stored as failures in the FlexBox. Once the network 
was restored, data was sent to the server and analyzed to 
understand how many failures occurred based on how many 
sequence numbers were missing (as well as to calculate how 
much time had elapsed between successful attempts). Each 
latency and bandwidth test had 6 pings, and the maximum and 
average values described below refer to the maximum and 
average value within the 6 pings that occurred within each of 
our tests. A non-parametric Kolmogorov-Smirnov test was 
used to compare the latency distributions across our five 
samples (for the average and maximum latency length) and 
found them to be all statistically significant different from 
each other (p≤0.001; with the null hypothesis being that the 
two distributions being compared are drawn from the same 
distribution). The mean of the average latency is 642 
milliseconds (sd: 185 milliseconds) across all devices (Figure 
9.A) and the mean of the maximum latency across all devices 
is 945 milliseconds (sd: 415 milliseconds) with the maximum 
latency value reaching 38,000 milliseconds. We also evaluated 
the average latency across all devices for every hour of the 
day (Figure 10.A) and found the network to be faster, on 
average, between 5 am and 12 pm (880 milliseconds) than 
other parts of the day. Distance between devices does not 
seem to be a determining factor of latency as devices that are 
relatively close together were found to be as different to each 
other compared to devices that were further away. The latency 
tests show great variability among each other and throughout 

the day despite the fact that they are all connected to the same 
network (Claro 3G), are pinging the same server, are using the 
same technology (Huawei E3531) and run the same software.  

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Poisson and Exponential Distribution Characterizing: 
Probability of number of dropped events per hour [A], distribution of event 
duration in seconds [B], and time interval between events [C].  Panels [B] and 
[C] depict the distributions without outliers and fitted with an exponential 
distribution (red line). 
 

We also analyzed network dropped packets and 
evaluated both the number of events (binary: 1 or 0) as well as 
the duration of the event (seconds: 1*seconds elapsed). 
Because our dropped packet events have both known average 
rates and are assumed to occur independently of the time since 
the last event, we assumed a Poisson distribution to express 
the probability of a dropped packet occurring within a fixed 
time interval. Similarly, we used an exponential distribution to 
describe the time between dropped packets (inter-arrival times 
of dropped packets in the Poisson process).  
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Throughout the network (Figure 44.B) each device had a different distribution for dropped 
packets, and therefore also a different lambda value (Figure 44.A). For all dropped packet events, the 
mean duration before reestablishing connection was 267 seconds (~ 5 minutes) with a 352 seconds 
standard deviation (min: 60 seconds, max: 206 minutes). These values are deceiving, however, because 
the distribution is skewed due to several extreme outliers shifting the mean to the right. Removing 
these outliers depicted that the duration of events follows an exponential distribution with a mean of 
258 seconds (~4 minutes). Without outliers the median value is 180 seconds and the most frequent 
value is 60 seconds. For all dropped packet events the mean interval time between events was 106 
seconds with a standard deviation of 505 seconds. Without outliers, the mean time between events is 
50 seconds (median is 46 seconds) with a standard deviation of 54 seconds.  

There are several findings from our system implementation that can inform how theoretical 
models could incorporate data from wireless sensor gateways in the future: (1) the use of surveys and 
baseline data collection could be used for more realistic assumption building before modeling begins, 
(2) while some recent work has begun to calculate the uncertainty resource potential for demand 
response, little attention has been placed on how user behavior increases the energy and temperature 
uncertainty of DR resource availability, (3) control algorithms are usually top-down with a load 
aggregator assuming user and load behavior and consumption patterns; we argue that a more holistic 
modeling approach could be the development of bottom-up – top-down models that incorporate 
behavior and appliance efficiencies in model building, (4) communication networks and enabling 
systems (such as our FlexBox) are usually discussed in the abstract, yet, the types of ancillary services 
that can be provided at the micro-level are conditional upon the capabilities of a specific system or 
technology, and (5) research on DR communication protocols are likely to affect not only what 
different services can be provided but also the design and cost-effectiveness of the enabling system 
itself. 

The communications network’ exploratory data analysis suggested that DR faces several 
communication challenges ahead which include a large discrepancy in the spatial quality of 
communications service, a high frequency of dropped packets across the network, and a high 
frequency in the difficulty to reestablish a connection.  Future iterations of this work will involve the 
reduction in size of the FlexBox, the design of a system that measures temperature less intrusively, 
and a more inconspicuous way to measure load power consumption. In addition, future work will 
investigate the minimum level of grid sensing required to recover full state information from a micro-
enterprise or household. 

 
3.6 Background: Behavioral Energy Efficiency and Demand Side Flexibility 
 

Energy efficiency has a large role to play in global long-term goals related to energy security, 
economic efficiency, local pollution reduction, and climate abatement (112, 246–248). While the pace 
of progress in energy efficiency has been satisfactory with a 2.1% compound annual reduction in 
primary energy intensity (the goal being -2.6% by 2030) (113, 247), and primarily led by emerging 
economies, numerous organizations still suggest that there is large unrealized potential for savings. 
Some estimates suggest that nearly two-thirds of the economic potential of energy efficiency remains 
unfulfilled, that 70% of global energy use exists outside of existing efficiency performance 
requirements, and that the untapped efficiency resource represents approximately 40% of the green 
house abatement potential that can be realized below a cost of $US 80 per metric ton of tCO2e (112–
114).  Other analysis, however, suggests that this energy efficiency gap is overstated by traditional 
analysis (e.g., engineering estimates and empirical estimates of returns observed to investments) that 
fails to incorporate physical, risk and opportunity costs, costs to project participants, and other 
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unobserved factors that can reduce the effectiveness of energy efficiency interventions (e.g., behavioral 
aspects) (115). Common programs such as weatherization and appliance swaps, according to some 
analysis, have achieved significantly smaller energy consumption reductions than anticipated(115, 175, 
249). 

The literature on flexible demand, largely, is pervasively dominated by theoretical and 
engineering analysis evaluating the mechanics, as well as the costs and benefits of large scale 
aggregations of flexible loads (190, 221). Theoretical analysis of flexible demand uses engineering 
estimates for modeling how large aggregations of thermostatically controlled loads (TCLs) can bid 
into grid ancillary service markets for profit, or help maintain reliable power system operations under 
high penetration of renewable energy (190, 221, 224, 225, 250). Other flexible demand research 
evaluates available sensing, actuation and control solutions for networking sensors for large 
aggregations of TCLs (190, 216, 217, 229, 242), and other research performs research pilots and field 
deployments to validate theoretical assumptions, and understand the physical engineering aspects, 
social dimensions, and business opportunities that can inform large-scale deployments (190, 217, 218, 
241, 243, 251). While flexible demand has begun being implemented at moderate scale in commercial 
buildings, the residential and small business market has still been largely undeveloped. In the United 
States, estimates suggest that residential demand flexibility can avoid $US 9 billion per year of 
forecasted investment costs, and a further $US 4 billion per year in avoided annual energy production 
and ancillary service costs(252). In Europe, it is estimated that only 5-15% of the flexible demand 
potential is being utilized, and that scaling the resource could cut European peak demand by 10% or 
60 GW (roughly equivalent to one-third to all European Union gas-fired power generation)(253). To 
our knowledge, there are no studies that have evaluated the potential for flexible demand in emerging 
economies; where most of the growth in global demand for electricity is expected to happen.  
Crucial yet often overlooked elements in the adoption and success of energy efficiency or flexible 
demand programs are behavior and the participatory role of users in enabling the cost-effective 
deployment of new technology. Behavioral energy efficiency research has been in vogue in recent 
years, with a diversity of theories attempting to explain the many reasons why some programs succeed 
and fail, and how. Social comparisons and access to information, social cognitive theory, moralized 
consumer choice, political ideology, monetary incentives, and loss aversion (prospective theory), 
among other theories, have all been used to explain the mechanisms through which individuals (or 
households) chose to participate and succeed (or fail) in demand side management programs (89, 91, 
180, 254–257). Similarly, these broad range of approaches have resulted in a variety of interventions 
and effect sizes of energy consumption reduction. A key aspect of behavioral interventions is that they 
are cost-effective, and if successful, can have a quick payback period for utilities, entrepreneurs and 
local governments. Table 11 depicts some notable papers, and summarizes their hypotheses,  
interventions, analyses and effect sizes.  

 Behavioral and user motivational aspects of flexible demand have been largely understudied. 
Thus far, the great majority of the literature that explores residential and small-business demand 
response considers users merely as consumers, or demand side resources, rather than active social 
agents with physical, behavioral, temporal, and budget constraints (258, 259). Within this narrow 
framework, it is assumed that rational individuals only respond to real-time or scheduled prices, easily 
adopt and use technology, and derive utility only from monetary dividends or environmental cues. 
Thus, flexible demand is being intellectually developed purely as regulatory and technical innovation 
(258, 259), rather than a tool for inclusive participatory engagement, without taking into account the 
diversity of barriers and drivers that have been uncovered by advances in behavioral economics. 
Motivation for participating in demand-side management (e.g., monetary, environmental, altruistic, 
community oriented) is as varied as concerns towards it (e.g., privacy, costs) (260), and more research  
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Table 11. Diversity of Behavioral Factors Affecting Energy Efficiency Adoption 

and the Effectiveness of Interventions 

A
uthor (Y

ear)
D

ata

D
. Schw

artz, B. Fischhoff, T. 
K

rishnam
urti, and F. Sow

ell 
(2013)

M
onthly electricity collected before, during, and 

after the experim
ental period for treatm

ent and 
control groups. 

H
. A

lcott (2011)
M

onthly electricity collected before, during, and 
after the experim

ental period for treatm
ent and 

control groups.

H
. Boudet, N

. M
. A

rdoin, J. 
Flora et al (2016)

Self-adm
inistered energy-saving behaviour surveys

O
. A

sensioa, and M
. A

. D
elm

as 
(2015)

H
ouly energy consum

ption (kW
h) appliance-level 

kW
h consum

ption categories are: (i) lighting, (ii) 
heating and cooling, (iii) plug load, (iv) 

refrigerator, (v) dishw
asher, and (v

i) other kitchen.

D
. M

. G
rom

eta, H
. K

unreuthera, 
and R. Larrick (2013)

Surveys

A
. Sudarshan (2017)

Cum
ulative consum

ption aggregated over tw
o or 

three days to create w
eekly reports. This w

as 
obtained by electronically querying the m

eter 
status for all households at the sam

e tim
e thrice a 

w
eek. W

eekly electricity collected during, and after 
the experim

ental period for treatm
ent and control 

groups. N
o baseline data collected.

S. Bagera and L. M
undaca (2017)

H
ourly energy consum

ption (kW
h)

2.7%
 energy reduction during study period 

relative to control group. N
o observed post-

treatm
ent effect.

E
ffect Size (%

) 
H

ypothesis and Intervention

H
aw

thorn E
ffect: Five w

eekly postcards sent to a random
ly selected treatm

ent group (N
=

572) 
sim

ply to notify them
 that they w

ere participating in a study about household electricity use 
(i.e., they w

ere being observed). A
 control group (N

=
329) received nothing.

O
LS w

ith robust standard errors clustered by 
household: treatm

ent vs. control dum
m

y, 
intervention m

onth, heating and cooling degree 
days.

A
nalysis and C

ontrol V
ariables:

Social C
om

parisons and T
argeted E

nergy E
fficiency Suggestions:

 A
 treatm

ent group 
(N

=
306,670) received energy reports at regular intervals w

ith a social com
parison to sim

ilar 
households (e.g., household size, square footage, heating type) w

ith labels describing them
 as 

“G
reat” “G

ood” or “Below
 A

verage" households, and energy efficiency tips based on 
historical usage patterns and dem

ographics. A
 control group (N

=
281,776) received nothing.

(1) O
LS differences-in-differences fixed effects 

estim
ator w

ith robust standard errors: treatm
ent vs. 

control dum
m

y, post treatm
ent indicator, m

onth-
year dum

m
y, household fixed effects and degree 

days. (2) D
iscontinuity regression to explore if 

different injunctive categorizations cause large 
differences in treatm

ent effects.

2%
 average treatm

ent effect (1.4%
 - 3.3%

). 
3.3 c/kW

h (1.3 - 5.4 c/kW
h)

49%
 and 29%

 self reported increase in 
residential energy-saving behaviours. 5%

 and 
3%

 savings in annual energy consutm
pion 

(estim
ated).

Social C
ognitive T

heory  Energy efficiency lessons delivered to 15 girl scout troops (N
=

159 
households) w

ith three m
ain activites: (1) household behavior reporting/m

onitoring actvity, (2) 
rehearsing and taping behavioral change activities to be taught/perform

ed, and 3) a pledge of 
behaviors to be im

plem
ented. Intervention included a parent targeted new

sletter and m
aterials 

to help im
plem

ent energy efficiency changes (e.g., rem
inder stickers, pow

er strips, and tyre 
pressure gauges). A

 control group received a sim
lar intervention targeted tow

ards a food-and-
transportation related behaviors.

M
ixed effects linear regression (Y

: Changes in 
reported behaviours betw

een baseline and post-test 
and betw

een baseline and post-intervention follow
-

up (energy savings in kW
h w

ere calculated, not 
m

easured): baseline behavior scores and baseline 
variable interactions.

19%
 and 8%

 average treatm
ent effect for 

households w
ith and w

ithout children 
receiving m

essages regarding environm
ental 

and health im
pacts. The treatm

ent group 
receiving cost related inform

ation had no 

Standard feasible generalized least squares 
estim

ator: observable household characteristics, 
and seasonal controls including w

eather (degree 
hours) and tim

e trends (tim
e dum

m
ies)

D
isclosure of environm

ent and health-based externalities (m
oralized consum

er choice): 
O

ne 
treatm

ent group (N
=

43) receiving environm
ental and health im

pacts of energy consum
ption 

(w
eekly em

issions and listing of particular health consequences; e.g., childhood asthm
a and 

cancer), another treatm
ent group (N

=
42) w

ith high-resolution inform
ation about energy costs 

(w
eekly costs), and a control group (N

=
33).

Political ideology affects energy-efficiency attitudes and choices, investigating:
 (1) Participants 

recevied a short description of energy efficiency and answ
ered questions about the 

psychological value they placed on reducing carbon em
issions that harm

 the environm
ent, 

reducing dependence on foreign oil, and reducing the financial cost of energy use to consum
ers 

(N
=

657), (2) Participants received $2 to purchase a light bulb (or keep the m
oney). In one 

condition the bulbs had the sam
e price ($0.50), and in the other condition, the CFL bulb w

as 
m

ore expensive ($1.50) than the incandescent bulb ($0.50). E
nvironm

ental salience w
as 

m
anipulated by using a “Protect the E

nvironm
ent” sticker or a blank sticker. A

side from
 the 

m
essage, the stickers w

ere identical (4 treatm
ent groups, N

=
210).

Linear and logistic regressions: ideology, age, 
education, gender, and incom

e

Relating energy-efficient products to 
environm

ental concerns can negatively affect 
the dem

and for these products, specifically 
am

ong persons in the U
nited States w

ho are 
m

ore politically conservative

7%
 average treatm

ent effect during the study 
period. W

eekly reports w
ith perform

ance 
based m

onetary incentives observed no 
detectable change in consum

ption.

O
LS linear and log fixed effects m

odel: treatm
ent 

vs. control dum
m

y

Social C
om

parisons and M
onetary Incentives (India):

 O
ne treatm

ent group (N
=

124) receiving 
a w

eekly report card w
ith an energy com

parison to other households, another treatm
ent group 

(N
=

240) received a report card in addition to perform
ance based m

onetary incentives for 
reducing energy consum

ption, and a control group (N
=

124).

5%
 - 18%

 energy reduction for treatm
ent 

group (2%
-7%

 control) depending on 
analytical approach.

Baseline to post-intervention differentces-in-
differences t-test

L
oss A

version and Prospect T
heory: T

reatm
ent group:

 (N
=

11) received a sm
art m

eter that 
provided high resolution energy and cost inform

ation fram
ed as "losses" (e.g., "M

oney lost 
from

 electricity consum
ption”, instead of M

onety saved"). A
 control group also received a 

sm
art m

eter w
ith the sam

e inform
ation but w

ithout fram
ing. A

 second control baseline 
received nothing (N

=
3000).
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in varied contexts is needed to develop approaches and technologies that can reach the greatest 
number of people. 

In this chapter we present what we believe to be the first randomized pilot of a paired behavioral 
energy efficiency and flexible demand intervention in low, low-middle income neighborhoods in Latin 
America. We find that the houses and micro-enterprises randomly assigned to the intervention (30 
units) significantly reduced their energy consumption relative to themselves and to a control (30 units), 
and participated at length in peak shaving flexible demand events. Energy education, small business 
and women empowerment, as well as reducing perceived stress of energy expenditures appear as 
potential societal co-benefits. When given the option to choose detailed energy information over 
micro-payments as a reward for participation in peak events, most participants chose information over 
money, contradicting literature that points to monetary rewards or environmental cues as the main 
motivators for participating in flexible demand programs. The results from our intervention are best 
explained by Scarcity (7) and other concepts in behavioral economics on which we expand below.  

 
3.7 Managua Pilot Study 
	
Nicaragua provided an ideal enabling environment for our implementation. It is the country in the 
western hemisphere with one of the highest penetrations of non-hydropower renewable energy, and 
is also the second poorest in the region. It is a socialist country that has made large strides to improve 
quality of life for its population after decades of civil war and political turmoil, but still suffers from 
low scores on ease of doing business and relatively low infrastructural quality. At the micro-level, 
higher energy prices, pre-existing load-controlling behavior, a relatively high-tolerance for service 
interruption, and a perceived high stress due to electricity bills could make for a suitable environment 
for behavioral energy efficiency and flexible demand strategies. On the other hand, lack of education, 
little understanding of electricity bills, mistrust of the electric utility, and lack of technological literacy 
could present serious barriers to the success of an information and technology implementation.  
 
3.7.1: Social Demographics, Energy Behavior, Perspectives and Concerns 
 

We used the urban census of Managua to select neighborhoods of similar social demographics 
(overcrowding, access to basic services, housing quality, education level, economic dependency and 
poverty) where we could perform a broad multiple objective baseline to better understand the 
household and micro-enterprise urban energy challenge. Three enumerators walked these 
neighborhoods performing a baseline survey of general population characteristics and energy 
consumption of households and micro-enterprises. The survey collected baseline characteristics (e.g., 
age, education level, gender, and appliance ownership) and performed a needs assessment, gaining 
insight on local perspectives of climate change, energy costs and grid adequacy, the perceived 
usefulness of energy information, and a variety of energy management perspectives. Our surveys and 
interviews included 216 households and 219 micro-enterprises (e.g., butcheries, chicken shops, mom 
and pop shops, milk and cheese shops).  

At a later stage, a random selection of 40 micro-enterprises and 20 households (treatment: 20 
micro-enterprises and 10 households, control: 20 micro-enterprises and 10 households) were chosen 
to be part of our study from a 435 micro-enterprise and household baseline. The treatment group was 
told that they would receive the intervention (described below) in step wise increments throughout 
the length of the study period in exchange for detailed energy information and a micro-payment of $6 
month. The control group would receive nothing but would participate in a baseline, midline and 
endline together with the treatment group. Participants (treatment and control) were told that at the 
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end of the study they would be part of a raffle to win either a new refrigerator or freezer (or the 
equivalent in cash). Participants (treatment and control) agreed to share their historical energy 
consumption profiles ($US and kWh) for up to a year. All the randomly selected participants in both 
the treatment and control group agreed to participate in the program. All baseline survey participants, 
as well as those in the treatment and control group consented to the study, and it was approved by 
University of California Berkeley’s Institutional Review Board and Committee for the Protection of 
Human Subjects (CPHS Protocol Number 2014-12-6955). 

Baseline collecting for the sensor network began in July 2015 for the treatment group and 
lasted until January 2016. During this time period, there was no interaction with the participants except 
for baseline data collection from the sensor gateway (FlexBox). From January 2016 to July 2016 the 
treatment group began receiving paper energy reports with incremental amounts of information being 
added to every report. The flexible demand and real time text-messaging intervention began in July 
2016 and lasted until December 2016. 

The survey results elucidated many themes that allowed us to design adequate project 
invitation mechanisms, and later, effective information technology systems to retain our project 
participants. Energy, food, and access to basic services were the top three self-perceived present 
concerns in our sample (23%, 20%, and 12% of the sample ranking an issue as a top concern, 
respectively) with most members finding it very-hard (18% of sample) or hard (43% of sample4) to 
pay their monthly electricity bill. The combination of relatively high electricity prices (0.21 $/kWh) 
and low incomes thus creates a constant source of stress in these neighborhoods, with 60% of the 
sample checking their energy meter on a daily basis and keeping an energy calendar, or simply taking 
“energy notes” (energy meters are sometimes located outside houses, and other times located with 
other energy meters on a street corner). Furthermore, 72% of the surveyed households and micro-
enterprises unplugged their refrigerator once, or at different times of the day, to reduce their energy 
consumption. Many of the households and MEs perform this practice on a daily basis while explicitly 
acknowledging that they don’t know if their strategies are being successful. An additional incentive for 
a careful energy management approach is that a monthly consumption below 150 kWh leads, on 
average, to a 60% reduction in the unit cost of energy $US/month (cost of energy for 150 kWh/month 
vs. 300 kWh/month). For MEs, energy expenditures represent a perceived 30% of their total monthly 
business costs, and for households this represents 8% of their total household expenditures. On 
average, households and MEs overestimated their total monthly energy costs by $US 23 (median: $US 
5, sd: $US 112), and underestimated their monthly consumption by 30 kWh (median: 16 kWh, sd: 110 
kWh), or 10% lower than their actual energy consumption. The Nicaraguan census suggests that, on 
average, electricity represents only 2% of the urban household’s budget.(261) We argue that the 
percentage in our sample is higher because it closely reflects the budget conditions of other low, lower-
middle income neighborhoods in many other countries across the world, who devote a relatively larger 
portion of their budget towards access to basic services (e.g., energy and water) (14, 262). 

Despite over half the households and micro-enterprises experiencing outages on a frequent 
basis (53%), only 43% found service reliability dissatisfactory, and only 16% found power quality 
dissatisfactory. This relatively high-tolerance for reliability issues in Nicaragua, we argue, was inherited 
from a recent time period when frequent rolling blackouts were a regular occurrence but also suggests 
another behavioral attribute that is complementary to flexible demand. With regards to the value of 
information, we found the sample to be divided between thinking the information provided by the 
utility bill to be useful (48%), and it being useless (24%) or more or less useful (42%).  According to 
a survey performed by a local think tank, the contents of an energy bill are unclear or confusing for 
70% of end users in Nicaragua. Climate change was regarded as the issue of most concern in the near 
future (36%), closely followed by foreign oil dependency (24%), and future increases in electricity 
prices (20%). Despite this concern, however, we found climate change concern to be mainly related 
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to deforestation (20%) and pollution from cars (12%), as well as wide a variety of contributing factors 
to climate change ranging from religious factors to urbanization. Pollution, or emissions, from 
electricity generation were not mentioned as one of the local contributing factors to climate change. 

In combination, we find that ubiquitous voluntary load disruption (unplugging refrigerators), 
relatively high perceptions on service reliability despite frequent outages, and relatively high-energy 
costs (and relatively high perceived energy costs) represent enabling behaviors and opportunities for 
flexible demand and behavioral energy efficiency. Perspectives on contributing factors to climate 
change and the usefulness of information allowed us to design an adequate intervention as is described 
below. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 46. Distribution of Monthly Energy Costs for Households [A] and Micro-Enterprises [B], and perceived 

vs. actual monthly costs ($US) [C] and consumption (kWh) [D] 
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Figure 47. Baseline Monthly Energy Consumption for Households [A] and Micro-Enterprises [B] 

	
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 12. Selection of baseline characteristics and perspectives on financial burden and future 

concerns. 

Sample Size
Houses N = 219

Micro-Enterprises N = 216

Age 47 (15)

Education First two-years of high school

Median Monthly Energy Consumption, Energy Costs 
and Cost per Unit of Energy

Houses 160 kWh/month, 30 $US/month,  0.19 $US/kWh

Micro-Enterprises 305 kWh/month, 71 $US/month,  0.23 $US/kWh

Total bill Houses vs. Micro-Enterprises 1 22 $US/month vs. 86 $US/month

What is a problem that is currently on your mind 
right now?

Energy 23%

Food 20%

Access to Basic Services 12%

Unemployment 10%

On a month-by-month basis, how difficult is it for 
you to pay your electricity bill?

Very hard 18%

Hard 43%

Relatively easy 18%

How do you pay your electricity bill? (how much 
time do you spend, minutes) 2

In person at bank 44% (60 min)

In person at the utility's office 34% (60 min)

By phone 5% (15 min)

In which season do you consume more energy?
Summer 94%

Winter 6%

Do you turn your refrigerator at some point during 
the day?

Yes 72%

No 28%

What do you do to monitor your electricity 
consumption? (N=67) 3

Check the meter readings on a regular basis (calendar) 30%

Check the meter readings on a regular basis (notes) 30%

Compare bill, month-by-month 11%

[1] The total monthly bill is lower than the total monthly enery cost because the total cost is reduced if the house or 

micro-enterprise achieves to be below a consumption of 150 kWh/month.

[2] Could represent a proxy for technolgy know how, as it is very easy to pay with a cellphone, yet people mistrust 

technology or do not have bank accounts.

[3] This breakdown is only for people who responded that they closely monitored their energy consumption.
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Table 13. Baseline perspectives on information and climate change 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 14. Baseline Financial and Energy Related Burden 

 
 

Of the following issues which ones do you 
consider to be of most concern in the future? 1

Climate change 36% (21%, 17%)

Oil dependency 24% (31%, 28%)

Electricity prices 20% (28%, 35%)

In your opinion, what is the main cause of 
climate change? 2,3

Deforestation 20%

Pollution from cars 12%

Humanity 1%

How concerned are you about climate change? 
How concerned are you about a future with 
more extreme hot days and extreme rain days?

Very Worried 24% (66%)

Worried 51% (26%)

Indifferent 15% (1%)

How useful is the information that is provided 
by the utility? 4

Useful 48%

Useless 24%

More or less useful 18%

[2] This question was only performed on people who answered 
"Yes, I know what climate change is" (N=132)

[3] Open answer, dozens of answer types appeared, ranging from 
'punishment from god', to sunlight, greed, forest fires, and 
urbanization as the causes of climate change.
[4] Range went from very useful, to useless. Use of information 
(electric bill) ranges from making official complaints to the utility, 
to manage business costs, and to keep a detailed control of energy 
consumption (among many others)

[1] Houses and MEs could rank future issues in first, second, or 
their place in order of importance

Micro-Enterprises
What is the biggest financial burden on your small 
business? 1

Energy 88% (5%)

Loans 5% (24%)

Employees 3% (12%)

Approximately what are your total energy costs 
and your total business costs? 2 30% (12% - 48%)

Houses
Approximately what are your total energy costs 
and your total household expenditures? 2 8% (4% - 19%)

[2] (Median 25th percentile - 75 th percentile)

[1] Houses and MEs could rank issues in first, second, or their place in order 
of importance
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Table 15. Baseline Perspectives on Prices and Reliability 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 16. Baseline Appliance Ownership (N=435) 

 
 
3.7.2 Data: Monthly Bills, Sensor Gateway and Grid-Level Open Access Data 
 

As detailed above, the intervention was a combination of energy information (paper report 
and text messages) and a sensor gateway for engaging in demand side flexibility. The first paper energy 
report was only a comparison of each participant against energy efficient participants, average 
participants, and above average participants. As the project progressed we slowly increased the amount 
of information we provided, and would include details that the participants would ask for. Information 
included hourly energy consumption values (month average and historical), weekly energy 

Have electricity prices been increasing over time?
Prices have increased 72%

Prices have stayed the same 21%

Prices have reduced 7%

Do you experience power outages?
Yes 53%

No 47%
If yes, how often do you experience power 
outages?

Once a month 60%

Once a week 30%

Everyday 7%
How satisfied are you with your service 
reliability?

It's Ok 51%

Not satisfied at all 17%

Very satisfied 16%

How satisfied are you with quality of power?
Very satisfied 50%

It's Ok 14%

Not satisfied at all 2%

[1] Only the top 1-3 results are shown per survey question

Micro-Enterprises Houses
Light bulbs 96% 96%
Cellular 84% 96%
Internet 30% 65%
Radio 52% 70%
Television 75% 96%
Computer 29% 57%
Refrigerator 97% 88%
Fan 63% 92%
Microwave 23% 45%
AC 9% 11%
Blender 40% 85%
Washing machine 11% 84%
Iron 39% 90%
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consumption (month average and historical), monthly energy consumption, fridge hourly energy 
consumption (month average and historical), fridge weekly energy consumption (month average and 
historical), relationships between ambient temperature and household and fridge energy consumption 
and fridge door openings,  and relationships between internal fridge temperature and fridge energy 
consumption and fridge door openings. In addition, we provided two figures every month that would 
show Nicaragua’s demand curve and country energy generation profile by resource. These data were 
a combination of information gathered through the participant’s monthly energy bills and information 
from the FlexBox sensor gateway. 

For real-time energy alerts, users would text an assigned project phone number and let us 
know how much energy they would like to consume in their current month (e.g., “Limit for August is 
320 kWh”). Our cloud server would receive the request via Twilio and would continuously send energy 
alerts to the user via text messages as various energy consumption thresholds were crossed (e.g., 
“You’ve consumed 10% of your total energy budget” or “Careful! You have reached 90% of your 
monthly energy budget!). Users could change their energy limit threshold any time. Furthermore, the 
text-messaging system was used to alert users one-day before a peak pricing event would occur (with 
length of the event and approximate time when it occur) and during the time of the event.  

Each sensor gateway or FlexBox had seven sensors, which collected minute-by-minute data 
on all paramenters. Two DS18B20 water proof thermocouples (measuring fridge or freezer internal 
temperature), a DHT22 temperature and humidity sensor (monitoring room environment), a 
magnetically actuated reed switch (monitoring fridge door activity), and an mPower Ubiquiti device 
that would both monitor energy and power consumption, and control an outlet switch. An Aeotec 
power meter would monitor house power consumption at the electric service panel(190). Additions 
to the sensor gateway included a small cage to surround the DS18B20s to reduce thermal contact 
conductance when inside the refrigerator, and thin telephone cable to extend their length(190). Wi-Fi 
was used to communicate with the mPower load monitor and switch control, a Z-Wave dongle was 
used to communicate wirelessly with the power meter (electric panel), and we added a 3G GSM 
modem for remote data transmission and actuation control.  

Open access data from Nicaragua’s National Dispatch Center was used to monitor day ahead 
market prices and to send text-messages when peak pricing events would be occurring. During a peak 
pricing event, if a participant hadn’t responded “No” to participating an event, it’s FlexBox would 
turn the refrigerator off. During the baseline, we captured internal thermal set points at which the 
refrigerator would be naturally oscillating (compressor on vs. compressor off). At peak pricing events 
we would turn refrigerators off, but we would use the FlexBox’s internal fridge and ambient 
temperature sensors to ensure that the internal temperature did not reach an unsafe temperature that 
was higher than previously recorded in our baseline for each of our participants (when participants 
would be plugging and unplugging their refrigerators on their own). Participants could send a text-
message to stop being part of any given peak pricing event, or could simply plug their fridge on another 
outlet on the controllable power strip that we provided to have their fridge or refrigerator working 
again. 

In the first few projects of baseline data collection the treatment group lost ten participants. 
Five participants left the study because they thought the sensor gateway was significantly increasing 
their consumption (despite receiving a small contribution that more than covered energy consumption 
of the sensor gateway at the outset), three participants had to sell their micro-enterprises to pay medical 
bills and debts (including debt to the electric utility), and two left the program because they said that 
it was not delivering on the promise of giving them high resolution information (the purpose of the 
baseline was to collect data without a formal intervention). The size of the control group did not 
change. The rest of this chapter relates to the participants that remained throughout the duration of 
the project. 
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Figure 48. Information System and Sensor Gateway (FlexBox): Key parameter data is retrieved from the 
household and thermostatically controlled loads (TCLs) via 3G to a cloud server. The cloud server collects all 
participant data, evaluates dispatch center day ahead prices and schedules peak price events; it also sends energy 
limit alerts tailored to each participant. Data is aggregated and monthly reports are sent to each participant. The 
user may override control signals at anytime manually, via SMS or, via local Wi-Fi network. 

 
3.7.3 Methods and Analysis 
	
Given balanced outcomes for treatment and control, we use Bayesian estimation for group 
comparisons, and inter-group comparisons. The approach provides complete distributions of credible 
values for group means and standard deviations (and their difference), effect size, and the normality 

 4 

interruptions, and often times leaving programs if they are 
called on too frequently, or not offered sufficient incentives to 
maintain long-term project participation [44]. Technology 
innovation in networking and DR technologies needs to 
consider many of these challenges. At the micro-level, 
networking technologies and the rapid decline in 
microprocessors and sensing technology provide ample 
opportunity to help implement successful socio-technological 
DR interventions. While a number of initiatives have already 
begun exploring the challenges of monitoring and controlling 
loads for DR at micro-level, the development of a scalable 
control methodology is still a major challenge [38]. 

III. SYSTEM CONCEPT 
In January 2015 we used the Open Data Kit platform 

to survey 230 micro-enterprises with large cooling loads in 
Managua. A pilot survey was tested with a small group of 20 
micro-enterprises, adjustments were made, and a full 
implementation was performed immediately afterwards. Our 
surveys and conversations with micro-enterprises (MEs) with 
large-cooling loads (for example: butcheries, chicken shops, 
mom & shops, milk and cheese hops) attempted to assess 
whether a micro-level demand response implementation could 
be feasible in Nicaragua and touched upon different aspects of 
a micro-enterprise’s business model: income and cost 
structures, energy related expenditures, daily, monthly and 
seasonal variations in consumption, perceptions on electric 
service reliability, perceptions on the quality of service 
provided by the utility, relationship with loads and appliances, 
and perceptions on income and micro-enterprise expenditures 
[45] 

The three most salient results from this survey 
included learning about (1) Voluntary Load Disruption: 161 
respondents (71% of sample), were already implementing a 
refrigerator ‘energy savings strategy’ by turning their 
refrigerator on or off at different times of the day, (2) 
Perceptions on Electricity Service Reliability: Despite 70% of  
the MEs experiencing frequent power outages, most were 
‘satisfied’ (72%) with service reliability (our data, however, 
registered very low voltages across the geographic spectrum, 
affecting the performance of certain appliances such as 
refrigerators), suggesting a high level of acceptance towards 
loads (and service) being turned off at random, and (3) High 
Energy Costs and Perception of Electricity Related Expenditures: 
The MEs’ main cost concerns were related to high energy 
prices (US$ 0.33/kWh), with 60% finding their bills ‘difficult 
to pay’ (on a scale from 1-4: ‘easy’ to ‘very difficulty to pay’) 
[5]. The objective of the system is to turn everyday TCLs 
(refrigerators, in this instance) into grid-tied ‘batteries’ that 
have the ability to store energy via latent heat, while still being 
able to perform their intended tasks. The system gathers open 
access high-resolution grid and weather data, as well as 
information from micro-level users such as micro-enterprises 
and homes via surveys and a wireless sensor gateway. 
Actionable signals and personalized and useful snippets of 
‘energy efficient’ information are developed in the cloud and 
can be pushed back to users, but understanding the state of an 

aggregated ‘virtual storage plant’ (as described above) for DR 
simulation and control is the primary task of our design and 
implementation. 

With knowledge of previously implemented micro-
level DR implementations, and taking into account 
characteristics and challenges particular to Nicaragua, a 
system was conceived that could scale across regions and 
levels of infrastructural development (grid flexibility enabled 
box: FlexBox). The FlexBox requires intelligence far beyond 
a power meter; its design must allow for the possibility of 
using information about household energy consumption, 
refrigerator energy consumption, refrigerator temperature, 
refrigerator usage, and room temperature to independently 
make decisions about turning the refrigerator on and off. 
Similarly, its design must also allow for the possibility of two-
way communications with a load aggregator. These 
functionalities were not implemented in a vacuum and 
followed a set of design principles that fit the deployment and 
project context. The principles surrounding FlexBox design 
were guided by the needs of all the “users” including: 1) 
adaptability: the team of researchers (at the University of 
California and the Nicaraguan National Engineering 
University) who will need to develop DR control laws, sensor 
configurations and management, and data collection and 
transmission functionalities, 2) modularity: simple 
maintenance being performed by a local enumerator without 
formal training in electronics meant that the system 
components could be put together and apart with ease, and 3) 

 
 
 
 
 
 
 

 
 

 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
Figure 1. FlexBox System Concept: The enumerator downloads new 
FlexBox software and new surveys from the cloud server. The enumerator 
also collects data from the FlexBox via Ethernet or Wi-Fi and sends it to the 
cloud server. A Huawei E3531 modem opens two-way communication 
streams between the FlexBox and the cloud server, uploading data and 
downloading updated control laws. Open access grid and weather data are 
stored in the cloud server as well as an archive of transmitted data. 
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of the data (9, 10).  We obtain both the magnitude and uncertainty of estimates related to the difference 
between central tendencies, as well as the difference in variability between two groups without making 
assumptions about the underlying distribution of the data. Bayesian inference reallocates credibility 
toward parameter values that best represent new data, and thus, the analysis necessitates a prior 
distribution of credible parameter values that could characterize our data given previous knowledge(9).  
Here, we build a prior distribution using both our baseline survey estimates (N=435), and an extended 
literature review of behavioral energy efficiency projects across the world (89, 180, 183, 184, 254–257, 
263). The credibility of the posterior estimate for differences in central tendency and variability (the 
probability of the parameters given the data) is the product of the likelihood (data, given the 
parameters) and the prior, divided by the new evidence (the data). A Marko Chain Monte Carlo 
(MCMC) algorithm estimates the posterior distribution generating thousands of combinations of 
parameter values which are graphically summarized by histograms from which one can establish the 
credibility of a result. When assessing posterior estimates, the high-density interval (HDI) and the 
region of practical equivalence (ROPE) help determine the credibility of an observed result. The HDI 
is a 95% density interval where the bulk of the most credible values fall, and ROPE represents 
parameter sizes that may be deemed negligibly different from the null. In our analysis, we use a ROPE 
ranging between -2% and 2% (representing group comparisons and the Hawthorne effect)(254),(180), 
representing a small reduction, no change, or a slight increase in energy consumption. Results within 
the HDI and outside ROPE are deemed credible. 

Bayesian estimation is used to compare pre- and post-implementation monthly energy 
consumption (kWh/month), month-by-month differences during the intervention period (e.g., 
comparing energy difference between August and September 2016) and annual differences between 
the same months one year afterwards (e.g., August 2015 vs. August 2016). Only the third analysis 
controls for group differences and seasonal consumption patterns that affect both weather and 
behavioral patterns in Nicaragua. For flexible demand, we use Bayesian estimation to identify credible 
differences in refrigerator and freezer energy consumption pre-vs. post-implementation (all hours), 
and only during peak pricing hour events. Our analysis uses the R statistical programming language 
(264), the MCMC sampling lag called JAGS (191), and the BEST program for Bayesian means tests 
in R (9, 10). 
 
3.8 Results and Discussion 
 
3.8.1 Magnitude and Uncertainty of Behavioral Energy Efficiency  
 

We use three different measurements and two methodologies to determine the magnitude, 
direction and uncertainty of our intervention. The three measures include comparing pre- and post-
implementation monthly energy consumption (kWh/month), month-by-month differences during the 
intervention period (e.g., comparing energy difference between August and September 2016) and 
annual differences between the same months one year afterwards (e.g., August 2015 vs. August 2016). 
Figure 49 depicts the posterior distribution obtained via Bayesian estimation for each of these three 
measurements. A Markov Chain Monte Carlo (MCMC) methodology is used to generate a large 
representative sample of credible parameter values from the posterior distribution.(9).   

Pre-implementation, energy consumption is balanced between treatment (µ1: 211 
kWh/month) and control groups (µ2: 207 kWh/month), with balanced education levels, 
neighborhood location, and number of appliances. The posterior distribution in Figure 49A depicts 
both the 95% high density interval (HDI) and the region of practical equivalence (ROPE). The HDI 
provides a summary of where most of the credible parameter values lie, with values inside the HDI 
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having a higher probability than those outside of it.(9) Values inside the HDI have ROPE enclose 
parameter values that are deemed to be negligibly different from the null value, with its size being 
determined by the application domain, expertise and existing literature.(9) Because we find the ROPE 
(a difference of 0-5 kWh between groups) to be fully within the HDI we can conclude our treatment 
and control groups to be not credibly different from each other pre-implementation. Bayesian 
estimation also provides credible values for the difference in standard deviations between the two 
groups, the distribution of credible effect sizes, and the credible values of the normality parameter. 
Similarly, we find the standard deviation differences and effect size to not be credibly different from 
zero (and ROPE), pre-implementation. Distributions for estimated parameters µ1, µ2, µ1 - µ2, sd1, sd2, 
sd1- sd2, normality parameter and effect size are provided in the supplemental information.  

We use three different measurements to evaluate the effect of our intervention. Post-
implementation monthly energy consumption (kWh/month) includes the months during which the 
treatment group had the intervention (June through October, inclusive). These months are different 
from the pre-implementation and baseline and are therefore affected by seasonal changes in 
consumption, federal holiday days (Figure 49B). Month-by-month differences during the intervention 
period (e.g., comparing energy difference between August and September 2016) are aimed at 
evaluating whether or not the treatment group experienced consecutive reductions in energy reduction 
post-implementation compared to the control group, but do not take into account seasonal 
consumption variation and federal holidays (Figure 49C). Finally, annual differences between the same 
months one year afterwards (e.g., August 2015 vs. August 2016) control for both seasonal variation in 
consumption and federal holidays. Thus, monthly energy consumption (kWh/month) of each 
household or micro-enterprise in the treatment and control group is compared with itself one year 
ago for every month during the intervention period (Figure 49D).  

We use a ROPE of -5 to 5 kWh for post-implementation monthly energy consumption 
comparisons and find the treatment group to consume 13.4 kWh (6%) less than the control group, on 
average. However, bayesian estimation suggests both that zero and ROPE fall fully within the HDI, 
suggesting that there is no credible difference in monthly energy consumption between treatment and 
control during the intervention months. For month-by-month and month-annual year comparisons 
we use a smaller rope (-2 to 2 kWh) as we are comparing differences in energy. A reduction of 2 kWh 
represents up to a 3% energy reduction in our sample, representing a restrictive region in which our 
results can be credible. On average, treatment vs. control month-by-month energy reductions were 
7.46 kWh (4%) lower for the treatment group with a value of zero being fully outside 95% of the most 
credible values in the distribution. However, a small portion of the ROPE falls within the most 
credible values, suggesting that our intervention could have led to a reduction merely because of 
something like Hawthorne effect (described in table 11). We consider the most important comparison 
to be the month-annual differences to be the most robust as they represent both differences within a 
household or micro-enterprise for every intervention month against itself one year ago, and a 
comparison between treatment and control groups. Parameter estimates suggests that, on average, the 
treatment group experienced a 16.2 kWh (9%) energy consumption reduction when compared to the 
treatment group. In this case, both zero and ROPE are fully outside about the HDI suggesting that 
the groups are credibly different from each other. Results for all estimated parameters with each of 
these measurements are provided in the supplementary information.  
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Figure 49.  Bayesian Posterior Estimates Treatment (µ1) vs. Control (µ2): [A] Pre-implementation monthly energy 
consumption (kWh/month), [B] during-implementation monthly energy consumption (kWh/month), 
[C]month-by-month differences during the intervention period (e.g., comparing energy difference between 
August and September 2016) and [D] annual differences between the same months one year afterwards (e.g., 
August 2015 vs. August 2016). Black line on x-axis represents the 95% high density interval (HDI), and the red 
line represents the regional of practical equivalence (ROPE).  
 
 
3.8.2 Full Results of Bayesian Estimation - Behavioral Energy Efficiency 
 
The figures below depict the full results from the Bayesian estimation of behavioral energy efficiency.  
For each figure, the top right shows histograms as representative examples of posterior predictive 
distributions for both groups superimposed (265). On each figure, the left column depicts the data 
(marginal) of the five-dimensional posterior distribution (µ1, µ1, sd1,sd2, and normality parameter). The 
lower right shows posterior distribution of mean and standard deviation differences, and effect size. 
The previous section provided comparisons and discussion on changes on energy consumption rather 
than changes in costs, as costs would be subject to other confounding factors including month-to-
month changes including monthly changes to rates performed by the regulator, rates changing due to 
energy consumption thresholds (e.g., below and after 150 kWh, below and after 300 kWh), and rates 
varying for households, small-businesses and retirees.  
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Figure 50. Pre-Implementation Monthly Energy Consumption (kWh) Treatment vs. Control 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 51. Post-Implementation Monthly Energy Consumption (kWh) Treatment vs. Control 
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Figure 52. Full Results of Post-Implementation Same Month + 1 Year Difference (kWh) 
Means test Treatment vs. Control 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 53.  Bayesian Posterior Estimates Treatment (µ1) vs. Control (µ2) Pre- and Post Intervention 
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Figure 54. Pre-Implementation Monthly Energy Costs ($US) Treatment vs. Control 
	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 55. Post-Implementation Monthly Energy Costs ($US) 
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Figure 56. Post-Implementation: Month-by-Month Difference ($US) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
 

 
 

Figure 57. Post-Implementation: Same Month + 1 Year Difference ($US) 
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3.8.3 Participation and Impact of Flexible Demand 
 

Project participants participated in two different forms of demand flexibility. In the first, 
participants were able to schedule consumption of their freezer or refrigerator at different times of 
the day based on preference (e.g., off from 20:00 to 4, or off from 12 to 8 pm). The Flexbox would 
control and keep track of the hours when the users would like their refrigerator to be disconnected, 
while allowing the user to re-establish control of the refrigerator at any time (they were also able to 
change their preferred disconnected hours at any point). For the second, participants would be told 
the schedule for daily peak price events ahead of time (one day ahead of time, and during the same 
day of the event) via SMS and they could either participate in the event (and reply nothing to the SMS), 
or not participate in the event (and reply “No” to the SMS, or simply switch outlets in the power strip 
provided). No project participants left the project once the demand flexibility intervention began. 
Figure 58 depicts freezer and refrigerator energy consumption per hour pre- and post- the demand 
flexibility implementation, the latter displaying a more scheduled and controlled fridge energy 
consumption pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 58.  Median Fridge Energy Consumption (Wh) and Median Normalized Energy Consumption (0-1) Pre-
and Post-Implementation: [A] and [B] depict fridge energy consumption pre-implementation of fridge and 
refrigerator demand flexibility. [C] and [D] depict fridge energy consumption post demand flexibility 
intervention. Post-intervention daily fridge energy consumption is more scheduled in regular daily intervals 
than in pre-intervention. 
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Pre-implementation, households and micro-enterprises would attempt to set their freezers and 
refrigerators on a regular schedule, but data and surveys suggest that users would be regularly unable 
to adhere to this schedule. For example, anecdotally, users mentioned during the pre-implementation 
baseline that they would like to turn on their fridge at 4 am but they would not usually be able to wake 
up on time to do so, and several others mentioned that they would have liked to adhere to a stricter 
schedule but were unable to do so due to absent mindedness, and multiple priorities competing for 
their attention. At implementation, all participants were requested to submit their preferred fridge 
energy consumption schedule, and while many participants preferred to stick to their old schedule, 
albeit with stricter automated control, others preferred to completely change their schedule (e.g., 
switching from having their fridge disconnected during the day, to having it disconnected at night). 
The majority (34%) of peak price events occurred from seven to nine at night, followed by peak price 
events from ten to eleven at night (17%), and five and six in the evening (15%). The rest of the peak 
events would be evenly distributed throughout all remaining hours of the day. The top two day-ahead 
highest predicted grid prices by the national dispatch center would be as high as $US 96/MWH, and 
as low as $US 45/MWH, with a median value of $US 76/MWH. Full analysis, descriptive statistics 
and extended results are available in the SI. 

Peak price events could last one, two, or three hours through which fridges and freezers would 
be called-upon to reduce their consumption. The length of the event would be determined one day 
ahead of time depending on the number of hours (1-3) that would have consecutive high-energy 
prices. Project participants would participate an average of 40 minutes for every hour of a peak pricing 
event, (median: 53 minutes, stdv:  20 minutes) or 70% of the time of every event (median: 88%, stdv: 
34%). Project participants would participate in events irrespectively of the time (there was no 
preference for participating on day vs. night peak events). When comparing all hours (0-23), there was 
no notable difference between pre- and post-intervention fridge energy consumption (mean difference 
Wh: 0.301, stdv difference Wh: 20). Figure 59B depicts a difference of zero to fall within the 95% 
HDI, suggesting that there is no credible difference between pre- and post-fridge energy consumption. 
However, when comparing consumption differences only within peak hour there was a large reduction 
in usage (mean reduction post-intervention Wh: 78.3, stdv: 48.2). Figure 59C shows the posterior 
distribution of mean differences within peak hour events falling completely outside of the 95% HDI, 
suggesting that energy consumption differences between pre- and post-intervention are both large and 
credibly different.  In both cases we use a broad uninformative prior for estimation instead of using 
and educated guess or the literature as was used earlier. Figure 59A depicts all the hours in which there 
were coincidental peak pricing events with participants who were available to respond to the event 
(the plot is predominantly blue, suggesting a significant reduction in energy consumption during peak 
event hours). Figures 59B and 59C depict the posterior distribution of mean differences pre- and post-
intervention for all hours, as well a subset of the hours during which there were events. 
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Figure 59.  Mean Differences of Pre- vs. Post Intervention Fridge Energy Consumption: [A] Differences pre-vs 
post intervention for all hours by participant id (differences in Wh), [B] Posterior distribution of mean 
differences pre- vs post-intervention for all hours (0-23), and [C] Posterior distribution of mean differences 
within a subset of hours in which there were peak price events. Figure 59B suggests that there is no difference 
between fridge energy consumption pre- vs. post intervention, and 59C suggests that there was a large credible 
reduction post-intervention during peak pricing event times.  
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Figure 60: Users and Grid Peak Price Events by Day (July 1st 2016- December 31st 2016). [A] Depicts all data, and 
[B] depicts featured scaled data that allows to observe intra-day variability. Outliers in [A] obfuscate the data. 
[C] Depicts the average amount of minutes that users would participate in 1 hour peak price event, and [B] 
depicts the average time percentage that users would be available to participate in an event. Outliers in [C] 
obfuscate the data 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 61: Distributions Depicting Participation and Impact of Flexible Demand throughout Participation Period: 
[A] depicts the percentage of time that participants were part of an event (minutes participating in an event, 
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each event would last 60 minutes), [B] depicts the amount of time that participants would be part of an event 
(in minutes, each even would last an hour), and [C] depicts the five hours that most frequently experience peak 
energy prices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 62: Distributions Depicting Fridge Energy Consumption Pre- and Post-Intervention: Distributions depict 
same hour comparisons between pre- and post-intervention fridge energy consumption. [A] Compares all hours 
(0-23) pre- and post-intervention while [B] only compares hours during which there were peak pricing events. 
Post-intervention, on average, fridges and freezers consumed more energy. During event hours, however, fridge 
energy consumption reduced significantly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 63. Bayesian Estimation Difference between pre- and post-intervention fridge hourly energy 
consumption all hours (0-23) 
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Figure 64. Difference between pre- and post-intervention hourly energy consumption during peak energy event 

hours. 
 

 
3.8.4 Social Co-Benefits and the Effect of Scarcity 
 

There are multiple benefits to pairing behavioral energy efficiency and flexible demand 
projects in enabling environments similar to Nicaragua’s. Beyond the obvious energy and cost savings 
(and associated emissions reductions) for the grid and user, we identify numerous social co-benefits 
related to education, empowerment, and stress reduction as it relates to the household budget.  

For tracking improvements related to education we tracked the accuracy of perceived vs. actual 
energy consumption ($US and kWh) at baseline, during project implementation, during a midline, and 
endline for treatment and control. We tracked changes through the use of surveys that were performed 
on a monthly basis since the baseline for the treatment group, and included the control group for 
midline and endline surveys. At baseline, the treatment group had a slightly larger overestimate of their 
energy costs relative to the control group ($US 7 vs. $US 5, respectively), representing 12% and 11% 
of their actual energy bill respectively. These values are very close to the median energy cost perception 
estimate found in our large-scale baseline (above). During implementation and before the midline, the 
treatment group increased its ability to recall its actual consumption to $US 2 and maintained this 
accuracy above the control group and throughout the midline ($US 3 treatment vs. $US 4 control) 
and endline ($US 1 treatment vs $US 3 control). Both groups increased their accuracy throughout the 
project implementation and surveys, but the treatment group observed a greater relative improvement 
in accuracy of $US 6 vs $US 2 in the control group. Furthermore, the treatment group significantly 
improved the accuracy of recalling their actual energy consumption (kWh) from a baseline error of 30 
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kWh (a 10% underestimate of their actual consumption), to a mean underestimate of 14 kWh (median: 
0 kWh, sd: 118 kWh). The control group, on the other hand switched to an overestimate of 20 kWh 
(median: 6 kWh, sd: 117 kWh), or a 10% overestimate above its actual consumption. At the endline 
we use two additional metrics to evaluate whether increased attention to energy bill data permeated to 
other non-surveyed metrics including awareness of the unit cost of energy ($US/kWh), and accuracy 
at recalling monthly water expenditures. On average, the treatment group had almost a perfect grasp 
of the unit cost of energy with little error (mean error: $US 0/kWh, median error: $US 0/kWh, sd: 
$US 0.06/kWh), while the control group had a mean error of $US 0.5/kWh (median error: $US 
0.07/kWh, sd: $US 0.99/kWh). With regards to water expenditures, the treatment group had, on 
average, a $US 2/month underestimate of their water bill (median: $US 12/month, sd: $US 
101/month), while the control group had a $US 56/month overestimate (median: $US 9.74 month, 
sd: $US 155/month).  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 65. Baseline, Mid-Baseline, Ongoing and Edline Perceived vs. Actual Monthly Energy Costs ($US) [A] 
and [B] and Energy Consumption (kWh) [C] and [D] (Treatment vs. Control) 
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Figure 66: Perceived vs Actual Accuracy: [A] Unit cost of energy in treatment group, [B] Unit cost of energy in 

control group, and [C] Monthly water expenditures. 
	
 

Although we are unable to use the same analytical approach used previously due to the paucity 
of data, these results suggest that the combination of energy reports and text messaging created 
increased awareness in the treatment group which extended beyond its immediate intention. 
Furthermore, our surveys and interviews found that the information provided to project participants 
extended beyond the household, as both energy reports and text messages were forwarded to extended 
family members and neighbors. While we are unable to explicitly measure the co-benefits of this 
information spillover (no baseline or energy consumption and cost data for neighbors or extended 
family), our results may suggest that the benefits of providing information at the household level may 
be an underestimate, as neighbors and extended family members might also be more aware of their 
consumption and therefore reduce it because of this interaction.   

In our sample, home energy management was performed solely by women. Women were 
present in households when we performed the first baseline, and were the ones managing the small 
businesses throughout the study. Only two micro-enterprises had both a man and woman attending 
their business at all times. Anecdotally, women in both households and businesses mentioned that 
respect towards their ideas of financial and energy management increased after beginning to receive 
their energy information. Women would use our detailed energy reports to highlight issues to their 
husbands and families, or to bring attention to management strategies that they implemented and were 
successful. There were a broad range of behavioral strategies implemented including unplugging 
appliances that were not used, prohibiting watching television during the day, optimizing and 
scheduling activities that require electricity (e.g., washing machine, ironing), adding a thermal mass to 
fridges and refrigerators (e.g., bottles or bags full of water), adjusting fridge thermostats to less energy 
intensive settings, and forwarding energy management text messages to the entire household to keep 
close reign over energy consumption, among many others. 

While our intervention was able to have unintended benefits such as the one described above, 
it failed at reducing the perceived high energy stress or reducing the impact on mental scarcity that 
energy management has on micro-enterprises and homes. At baseline, the most common feeling 
amongst treatment and control groups was that electricity was “very hard to pay” (1: easy to pay, 2: 
more or less hard to pay, 3: very hard to pay, 4: extremely hard to pay). Similarly, at the end of the 
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study there was no improvement at all on the ease of paying energy bills. Neither micro-payments, 
more controlled scheduling, information, or actual reductions in consumption alleviated the perceived 
stress induced by a constant thought of an energy bill.  

Furthermore, and despite the energy reports including a suite of suggestions and advice on a 
variety of non-behavioral efficiency measures (e.g., buying efficient light bulbs and a suite of more 
efficient appliances, swapping a piece of corrugated metal roof for a sun roof, insulating the roof or 
painting it white to reflect sunlight) none of the project participants implemented actions beyond 
behavioral changes, or used their micro-payments and savings from energy efficiency for investing in 
deep retrofits or long-term savings. Reasons for failure to save, or spend money in long term retrofits 
included the continued reoccurrence of immediate pressing needs (e.g., energy bill, education, health), 
the fact that micro-payments were too small to be saved (i.e., they were better used for immediate 
needs), ignorance about how to go about the purchase, retrieval and installation of new appliances, 
lack of a transportation mode to take old appliances away, lack of time, and lack of more funds for 
perceived large investments in new appliances. When asked if participants would be willing to forgo 
their micro-payments in exchange of the project purchasing and installing efficient appliances 85% 
answered “yes”, with participants willing to exchange one micro-payment month or all future 
payments to receive help in long term energy efficiency retrofits.  

The desire for something but not saving to purchase it, spending on immediate pressing issues 
rather than making investments in the future, and remaining (supposedly) inactive when faced with a 
constant stressor has been observed before, and is best explained by Scarcity (tunneling, borrowing, 
the bandwidth tax and lack of slack)(7). The relatively high accuracy of the treatment and control 
groups at recalling their bills, and the high accuracy of the treatment group at recalling the cost of 
energy ($US/kWh) and water bills ($US/month) has been observed in other low-income groups 
before.  In the U.S., experiments at the grocery store have observed that low-income individuals 
recalled what they had just bought at the store (and the value of different items) with three times the 
accuracy of high-income customers(7). Quantity surcharges are also less frequent in low-income 
stores, than in high-income stores due to heightened budget vigilance(7).  

Tunneling is a behavior that might help solve an immediate primary problem, but a heightened 
focus on immediacy can make one short sighted, leaving less attention for other less pressing issues 
that are recurrently neglected. Although our participants had good intentions (saving energy now, 
spending on other household/business needs now), they were unable to create and follow a savings 
plan that could have benefitted them in the long run due to a continuous bandwidth tax. For our 
participants, our surveys elucidated that saving energy was continuous diligent work where one missed 
text-message, an unexpected family member arriving at their house, or a child falling sick would set 
them behind, reducing the mental bandwidth (taxing it) that requires planning for the future. Despite 
the real energy savings and small cash infusions, the lack of slack (mental and financial) and constant 
external shocks (temporal and financial) would recurrently push our participants into the psychology 
of scarcity(7). More importantly, our surveys and interviews highlighted that our intervention served 
as an instrument to weather shocks, allowing participants to reduce uncertainty and instability in their 
monthly energy bills. Participants often highlighted that the greatest benefit of the project was that it 
stabilized their energy consumption, reducing the financial shock that a slight oversight over energy 
management could have on their household budget(7).  

Finally, to evaluate whether or not information was truly being of value to our project 
participants we offered a bidding game to the treatment group, and told them that from that moment 
onwards they would only be able to keep either the information or the micro-payments they were 
receiving. Our enumerators carried with them a bag with small pieces of paper that had numbers 
between 25 and 200 written down in each of them with increments of 25 Cordobas. The bag contained 
equal amounts of each value.  The project participants were explained that a bidding game would be 
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played, where they would have the opportunity to either keep or lose the information. For us, the 
bidding game would reflect the true value that our participants were placing on the information 
received. It was explained to the participants that if they bid a number that was lower than the piece 
of paper that the enumerator would draw from the bag, they would lose the information and keep 
receiving their micro-payment. On the other hand, if they bid a number that was equal or higher than 
the paper drawn from the bag they would keep the information, but lose the money. After doing one 
round of practice bidding with all participants, and ensuring that everyone understood the game, the 
actual bidding game was played. Out of 20 participants, only two participants bid a zero value, 
immediately suggesting that they would rather keep the money than the information. For the rest of 
the participants, the mean bidding value was $US 4 (median: $US 3.4, sd: $US 1.9), with 10 of them 
winning the bid, and eight of them losing the bid. Non-zero bids suggest that most participants were 
willing to lose their micro-payments in exchange for information. On average, the highest bids came 
from participants with the largest energy bills, but there were participants with relatively lower energy 
bills who also had high bids (thus, their bid as a fraction of monthly expenditures was higher). 
Rationale for keeping the information (instead of micro-payments) included the opportunity to pursue 
long-term energy savings, increasing understanding of the household budget, education, and 
increasing knowledge. Money, our participants mentioned, would simply leave them too fast. All 
participants continued being part of the flexible demand implementation, albeit this time being 
rewarded either with micro-payments or information. 

These results, we argue, bring forth elements related to the endowment effect, and prospect 
theory(5),(3),(4). While the participants were unable to put aside time and money to invest in long-
term energy efficiency strategies, they were willing to forgo micro-payments in exchange of potential 
help and high-resolution information. Prospect theory would predict that our participants would 
become risk-seeking when faced with a mixed gamble, and even more under the possibility of sure 
losses (loss-aversion)(5, 266). The endowment effect would predict that our participants would 
demand much more to give up something than they would be willing to pay to acquire it(4). Thus, 
when faced with the risk of potential future losses if the information was removed, users would rather 
lose micro-payments today and enter a gamble for potentially higher long term energy efficiency 
returns. While our participants had little value for energy information at the beginning of the study 
(and it was provided for free by the utility), by the end of the study they were willing to give $US 
4/month to keep it, significantly increasing its value. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 67: Bidding Value for Information vs. [A] Mean Cost of Electricity ($US/Month), and [B] bidding value 
as a fraction of total monthly electricity cost. 
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3.8.5 Opportunities at Scale and Root Challenges 
 

Behavioral energy efficiency and flexible demand has large cost-effective potential in a country 
like Nicaragua. We argue that at scale (2 million people, or a third of the population engaging in 
behavioral energy efficiency), the country could save $US 29 million a year using average market prices, 
and $US 7 million if only 8 percent (or 500,000 people) participated. Avoided CO2 emissions using an 
average emissions factor would be XXX tons per year at scale, and XXX with a smaller population 
participating. Developing user tailored energy information (reports and text-messaging) would require 
re-designing the existing energy bills according to needs and desires from users, and adding a very 
small information fee in every bill to cover text-messaging costs for people who chose the be part of 
a SMS energy control program. Flexible demand at scale could, on the other hand, save $US 18 million 
every year (using peak prices), and save $US 5 million if only a small fraction of the population were 
participating. Here, we argue, is where it is possible to do most of the innovation with regards to 
consumer facing business models. While in the United States and Europe, most pilot projects merely 
explore paying users for their participation in flexible demand, in settings like Nicaragua there is 
opportunity to engage in deeper energy efficiency retrofits. For example, where old appliances need 
to be changed, utilities, governments, or entrepreneurs could provide subsidized appliance swaps for 
flexible demand enabled appliances in exchange for full flexible appliance control. Or, like this project 
demonstrated, utilities and entrepreneurs could offer micro-payments and user-tailored information 
in exchange of full control of flexible appliances. Motivations for participating in low-carbon 
transitions will vary by country, city, and neighborhood. Monetary rewards, we have found, are not a 
sufficient motivator to engage flexible demand. Finding non-monetary motivators that make 
participants both willing and excited to be part of a project, are key elements to developing more-
inclusive low-carbon grids.  

Challenges for energy efficiency (behavioral and deep retrofits) and flexible demand in settings 
like Nicaragua are encountered at every level, from the household to the utility level. For energy 
efficiency and smart grid interventions at the household and micro-enterprise to succeed in low, low-
middle income countries (and low, low-middle income neighborhoods in rich countries), they will 
have to come accompanied with an accompanying suite of enabling products. These products should 
have the goal of reducing uncertainty and instability in the household or small business budget, while 
still targeting energy efficiency. The time that is required to learn about energy efficiency and its broad 
range of options, or finding time (and transportation) to buy efficient appliances (and discard old 
ones), or filling out the daunting paper work that is required for energy efficiency programs requires 
bandwidth, and if low, low-middle income neighborhoods don’t have this bandwidth they’ll be at 
disadvantage to take advantage of these programs(7). 

At the utility scale, there are large misaligned incentives for energy efficiency (behavioral or 
otherwise) to be successful at scale. In Nicaragua, there is no “de-coupling” (the separation of revenues 
from sales in places with successful efficiency programs, like California), and thus, efficiency and 
flexible demand represent lost sales (and revenue) for the electric utility. With no de-coupling, any 
large-scale efficiency intervention would not be palatable by top-down decision makers. Even a 
flexible demand strategy, that would arguably allow the utility to increase revenue through the 
purchase of cheaper energy, would not palatable as they would be forced by the regulator to reduce 
tariffs due to the very purchase of cheaper energy (‘negawatts’). The absence of “decoupling” is 
ubiquitous across many regions across the world, including states within the United States, Europe, 
Asia, Africa, and all countries in Latin America. Thus, consumer-facing strategies are essential for 
behavioral interventions and smart grid solutions to be accepted and for them to spread when faced 
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with top-down roadblocks. Technology driven solutions that take the user in mind, including his/her 
needs, desires, and motivations are key for the proliferation of sustainable energy solutions.  

Although it may seem that technology is increasingly smart and invincible, there are still no 
cross-cutting magic bullets. The challenges, motivators, and enabling environments through which 
solutions and technology propagate will vary across neighborhoods, countries and cultures. To 
develop solutions that succeed at the local level, and are adopted long term, city governments, utilities 
and development banks must embrace the role of cost-effective pilots and demonstrations(267). 
Designing systems and solutions from the top-down level is expensive and ineffective if the solutions 
are not adopted, if the results are far smaller than originally intended (or in the opposite 
direction)(175), or if the approach is missing key design elements. Recruiting entrepreneurs and local 
developers to re-imagine existing business models and technologies to local contexts and trying ideas 
in the field first, and rigorously evaluating results, lessons learned, and steps forward is crucial to 
innovation and the nurturing of scalable solutions. 

 

4. Conclusion 
 
We live in the era of big data, ubiquitous information systems, unprecedented technological 
innovation, and affordable access to sustainable technologies. Yet, large-scale transitions towards 
sustainability and sustainable living are still hard to come by. If we have all the data, technology, and 
solutions, why does progress toward sustainability remain so slow? 
 First, large-scale energy transitions can take a very long time (26, 28, 98, 268, 269). Historical 
analysis of energy transitions has found that large-scale changes can take from several decades to over 
a century to unfold, with changeover times ranging from 80 (oil/gas/electricity replacing coal steam 
power) to 130 years (coal steam power replacing pre-industrial use of biomass and wood)(28). Within 
these timeframes, “core” (first adopters), “rim” (early followers), and “periphery” (late adopters) 
countries and regions adopt, tinker, and change technology (28). Historically, core adopters have had 
much slower transition times than late adopters, which is why the most rapid adoption rates and future 
of our planet’s sustainability will likely depend on the choices made by countries and regions of the 
rising south (e.g., China, India, Brazil, Mexico, Central America, and East Africa)(270).   

Second, history and context – and all their associated correlatives – matter. Niche markets, 
affordability, fashion, scale, industry, local politics, policies (or their absence), stakeholder dynamics, 
entrenched interests, financing, knowledge, and institutional and organizational quality and structures, 
among many other factors, influence the presence and pace of transitions towards sustainability. 
Opposition to change, an intrinsic human characteristic, is as important as any of the previous enabling 
factors (26). The Luddites who destroyed knitting and textile machinery between 1811 and 1816, 
Captain Swing who resisted mechanical threshing in rural England in the 1830’s (26), and the modern 
day utility and oil industries who push back against decentralized services through climate denialism, 
lobbyists, standards, burdensome rules and regulations are all part of a historical process. Top-down 
technologists and policy makers – for the most part – ignore, or fail to explore, the various contexts 
that may allow or hinder a variety of paths towards sustainable decarbonization. Disinterest in context 
is exemplified by ‘experts’ who lump all countries of the rising south under the term ‘developing 
countries’ (e.g., China, Thailand, Mexico, South Africa, Nicaragua), glossing over a wide diversity of 
regions, situations and sub-cultures, despite their many and large differences (106, 109, 271). This 
disinterest in context, may be hindering appropriate and local-specific strategies for sustainable 
decarbonization, as we explore further on.  

Third, the end-use, and users are crucial but often disregarded elements in kindling long-term 
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transitions. Take, for example, the fact that as total emissions continue to grow, global increases in 
energy demand (2%/year) far outpace moderate improvements in global energy system carbon 
intensity (0.3%/year)(28). Or, that the recent global emissions slowdown has been attributed more to 
economic factors and energy efficiency, than to ‘explosive’ growth in wind and solar (246).  Transitions 
in end-use energy services, and users, have historically created positive feedback loops reinforcing 
transitions in supply side systems (28, 272). For example, stationary and mobile steam power expanded 
demand for coal, internal combustion engines drove the growth of the oil industry, and electrification 
of lighting, industrial drives and transport (i.e., trams and locomotives) supported the rise of the 
electric industry (28). Users have been crucial to many of the climate and technology leaders of today: 
in Denmark, community opposition to nuclear energy and community-owned wind farms led to its 
early adoption and development  in the 1960’s-70’s (44, 71, 272), car-sharing in Switzerland was 
mobilized in the 80’s by concerned citizens and cooperatives (272–274), and an advocacy coalition in 
Germany informed and influenced the German parliament towards their current energiewende (275). 
A new literature is emerging, however, which sees users and pilot demonstration projects as essential 
to making progress towards sustainable decarbonization (267, 272). Research in the area of transitions 
and the role that users play in them is now being defined as single-loop (narrow), broad, or deep 
learning. Single-loop, or narrow learning, takes user needs, preferences and behaviors for granted and 
simply tests – or models – new innovations against them (272). Broad learning occurs when actors 
developing a niche focus not only on technology, but on user preferences, regulatory barriers, as well 
as environmental and social impacts (272). Deep learning only occurs through actual use, and through 
active actor and stakeholder engagement. It questions underlying assumptions, incorporates learning 
by doing, and adapts methods, technology and approaches to the needs of users (272). The research 
presented in this dissertation has been a combination of broad and deep learning. 

Analysis and research in the themes which I’ve explored here will inevitably have more data 
in the future. As more countries, states and entire regions adopt practices related to sustainable energy 
development, data describing their enabling environments, intrinsic characteristics, and motivations 
must be recurrently collected to understand these transitions. Data-driven policy has yet to have major 
impact on long-term energy planning, with many countries still making policy around opportunistic 
investments and geo-politics. Future research would map both demand-side (e.g., enabling 
environments, intrinsic characteristics and motivations) and supply-side elements (e.g., resource 
potential maps) deemed necessary for low-carbon transitions in order to find and invest in new niche 
markets. In the future, data-mining and machine learning techniques will be used to predict which 
households and small-businesses are best suited to adopt sustainable energy technologies (e.g., smart 
energy efficiency appliances), however, many of the countries which are transitioning towards low-
carbon economies are doing so without system-wide high-resolution data. Closing the gap between 
great knowledge and inaction surrounding the low-penetration of energy efficient practices, for 
example, will require much more applied research at the intersection of behavior, data-mining and 
technology. This intersection will have to grow more in the future to understand, design and 
implement solutions to close this gap – are we designing useful technology? Is it being used? What 
behaviors and social practices have not been considered that prevent sustainable energy practices from 
becoming ubiquitous? Do we need more technology development or better targeted interventions? 
Future work in this area does not necessarily have to be performed by academics, urban practitioners, 
entrepreneurs and users to create a body of work to help us fill this gap.  
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