UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Control in Act-R and Soar

Permalink
https://escholarship.org/uc/item/9z89r0d§

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 19(0)

Author
Johnson, Todd R.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/9z89r0d6
https://escholarship.org
http://www.cdlib.org/

Control in Act-R and Soar

Todd R. Johnson (JOHNSON.25@OSU.EDU)
Department of Pathology. Division of Medical Informatics
Center for Cognitive Science
The Ohio State University
Columbus, Ohio 43210

Abstract

This paper compares the Act-R and Soar cognitive architec-
tures, focusing on their theories of control. Act-R treats con-
trol (conflict resolution) as an automatic process, whereas
Soar treats it as a potentially deliberate, knowledge-based
process. The comparison reveals that Soar can model ex-
tremely flexible control, but has difficulty accounting for
probabilistic operator selection and the independent effects of
history and distance to goal on the likelihood of selecting an
operator. In contrast, Act-R’s control is well supported by
empirical data, but has difficulty modeling task-switching,
multiple interleaved tasks, and dynamic abandoning of sub-
goals. The comparison also reveals that many of the justifica-
tions for each architecture’s control structure, such as some
forms of flexible control and satisficing, are just as easily
handled by both.

Introduction

The last decade has seen the emergence of a variety of cog-
nitive architectures. This is good for cognitive modeling,
because architectures provide a ready-made set of tools and
theoretical constraints that can assist the cognitive modeling
enterprise by constraining the possible models of a set of
phenomena or even making the “right” model an obvious
consequence of the architectural constraints (Newell, 1990).
However, these architectures make many different theoreti-
cal distinctions, which can of course have a major influence
on the nature of cognitive models supported by each. De-
spite this, very little work has been done to compare alter-
native architectures. This paper attempts to rectify this by
offering an initial comparison of two of the most well known
cognitive architectures: Act-R (Anderson, 1993; Lebiere,
1996) and Soar (Laird, Rosenbloom & Newell, 1986; Laird,
Newell & Rosenbloom, 1987; Newell, 1990).

The first goal of this comparison is to identify the simi-
larities and differences between Act-R and Soar by listing
each architecture’s fundamental theoretical distinctions. The
second goal is to assess the empirical support for the major
differences in the architectures’ control mechanisms. One
caveat: since both architectures are products of active re-
search efforts, they are always subject to change. This paper
compares the versions of Soar and Act-R available at the
end of 1996. One should not assume that this comparison
will be accurate for all (or any) future versions of the archi-
tectures. However, the major theoretical distinctions in both
architectures have been stable for the past decade, so it is
likely that portions of this comparison will continue to hold
for some time to come.

343

This is not the first effort to compare and evaluate Soar
and Act. Newell, Rosenbloom and Laird (1989) previously
compared Soar to Act*, Act-R’s precursor. Their goal, how-
ever, was more to use Soar and Act as two different exam-
ples of cognitive architectures, not to critically evaluate and
compare them. The only serious effort to critically evaluate
Soar is Cooper and Shallice’s (1995) evaluation of Soar as
both a psychological theory and an example of the method-
ology of unified theories of cognition. Their general conclu-
ston is that Soar fairs poorly as a psychological theory and
that the unified theory methodology (at least as exemplified
by Soar research) does not offer any advantages over tradi-
tional psychological research methodology. In contrast to
the Soar approach, Anderson and his colleagues have regu-
larly tested Act-R. Many of these results can help us dis-
criminate between Soar and Act-R.

Theoretical Assumptions

This section briefly reviews the theoretical assumptions for
Act-R and Soar. These assumptions are summarized in Ta-
ble 1. Due to space limitations, I only discuss those mecha-
nisms relevant to the comparison of control.

Act-R

The mechanisms proposed in Act-R are based on two foun-
dational assumptions. The first is that “the implementation
of Act-R should be in terms of neural-like computation”
(Anderson, 1993, p. 12). The second assumption is that
“cognition is adapted to the structure of the environment”
(Anderson, 1993, p.14). Consequently, many of the mecha-
nisms in Act-R are designed to reflect the statistical nature
of the environment.

Act-R is a parallel matching, serial firing production sys-
tem with a psychologically motivated conflict resolution
strategy. Act-R has a declarative memory containing a net-
work of declarative memory elements (DMEs)' and a proce-
dural memory containing production rules. DMEs have acti-
vation values and associative strengths with other DMEs.
The basic cognitive operation in Act-R is a production rule
firing. The actions of a production rule in Act-R modify
declarative memory—productions cannot directly test or
modify procedural memory.

! Anderson calls declarative memory elements chunks. Since
this conflicts with Soar’s (nonstandard) usage of the term chunk, I
will use the neutral term Declarative Memory Element (DME).

mailto:HNSON.25@OSU.EDU

Act-R

Soar

Foundational Assumptions

Mechanisms should be implemented in neural-like compu-
tation

Humans approximate knowledge level systems

Cognition is adapted to the structure of the environment

Humans are symbol systems

Control

Single goal hicrarchy

Single goal hierarchy

Goals originate from task knowledge

Goals are created automatically by the architecture

Adaptive, satisficing conflict resolution

Knowledge-based, least-commitment conflict resolution

Long-Term Memory (LTM)

Two forms of LTM: Declarative and Procedural

Uniform LTM: All LTM is in procedural form

Procedural memory is represented by production rules

Procedural memory is represented by production rules

Procedural LTM is opaque

LTM is opaque

LTM is permanent

LTM is permanent

Declarative memory is a network with activations and asso-
ciative strengths

Long-term declarative memory is represented by production
rules

Working memory

Working memory consists of the most active declarative
memory elements

Working memory is distinct from LTM

Learning

The strength of declarative and procedural memory increase
as a power function of practice and decrease as a power
function of delay

All long-term knowledge arises through chunking

Procedural knowledge is tuned based on experience

Procedural knowledge is acquired by analogy

Declarative knowledge is acquired through rules and per-
ception

| Activations and associative strengths are acquired through
| experience

[Latency Derivation

| Latencies derive from the time needed to match rules, which
is the sum of the times needed to match each condition in
the rule. The time to match a condition depends on the
strength of a rule and the strength of the memory clements it
matches.

Constant latency per decision cycle. Overall latency de-
pends on the total number of decision cycles plus the time
for external actions.

Table 1: Theoretical distinctions in Act-R and Soar

Act-R repeatedly follows three steps: 1) Instantiate pro-
ductions whose conditions match DMEs; 2) Select a single
instantiation to fire based on Act-R's conflict resolution
mechanism; and 3) Fire the selected rule.

Act-R assumes that cognitive behavior is goal-oriented
and that goals can give rise to subgoals. A goal in Act-Ris a
DME that has been pushed onto the architecturally sup-
ported goal stack. As with any other DME in Act-R, a goal
has a set of attributes (also called slots) and corresponding
values, which are just other DMEs. Goals in Act-R typically
contain slots that hold the goal's desired and current prob-
lem states. Act-R enforces goal-oriented behavior by re-
quiring every rule to match a goal.

Act-R uses a single pushdown (last-in-first-out) goal stack
to track goals. The current goal (the one at the top of the
stack) is given an activation weight of 1, which is equally
divided among the declarative memory elements in the
goal’s slots.

New goals are created by production rules that create a
DME representing the goal and then push the DME onto the
goal stack. Goal achievement is signaled by a production

rule that pops the goal off the goal stack. In addition, only
rules that match the current goal can be instantiated. As dis-
cussed later, this restriction leads to some difficulties in
modeling flexible control.

Act-R instantiates rules in parallel, but only fires one rule
on a given cycle. The time needed to instantiate a production
is the sum of the times needed o instantiate each condition
in the production. The time to instantiate a condition is a
function of the production strength and the activation of the
DME to which it matches. This means, that as time goes by
during the match process, more and more instantiations will
be available to fire. In addition, instantiations will be gener-
ated roughly in order of their likelihood of being needed,
because rule strength and DME activation increase and de-
crease as a power law of practice and delay.

Throughout the instantiation process, Act-R must decide
whether to wait for additional instantiations or fire the cur-
rent best instantiation. To determine this, as each instantia-
tion becomes available it is assigned an expected utility PG-
C, where P is the probability that the goal will be achieved if
the production is fired, G is the expected utility of the goal,

344

and C is the cost of achieving the goal by taking the move
specified by the instantiation. Act-R fires the best existing
instantiation when the expected improvement of the next
instantiation over the current best is less than the estimated
cost of the time needed to determine that instantiation.

The production parameters P and C are tuned based on
experience with each rule. The probability of a rule's even-
tual success P is estimated using a weighted average of the
prior probability and the empirical probability, which is the
experiential probability derived from a rule’s- history of suc-
cess and failure. Rule cost reflects the average cost of even-
tually achieving the goal by way of the rule. It is estimated
using a weighted average of a prior cost and an empirical
cost. A rule’s strength reflects its log odds of being needed,
based on its history of use.

Act-R's conflict resolution scheme is an adaptive satis-
ficing process. It is adaptive because a rule’s expected value
and the time to instantiate the rule depend on parameters that
are changed through the learning mechanisms discussed
below. It is satisficing because it stops instantiating rules
once it finds one that exceeds the acceptance threshold de-
fined above.

Soar

Soar is based on two foundational assumptions. The first is
that humans are (at least to some approximation) knowledge
level systems (Newell, 1990, p. 113-117). This means that
they apply their knowledge in some rational manner to
achieve their goals. The second is that humans are a symbol
system (Newell, 1990, p. 113-117). Although Newell admits
that the underlying neural level might have substantive ef-
fects on the symbol level (Newell, 1990, pp. 113-119), Soar
itself has always been based on a strong symbol level and
many of its theoretical distinctions reflect this fact.

Soar is a parallel matching, parallel firing rule-based sys-
tem. Soar's rules represent both procedural and declarative
knowledge. Soar's working memory contains only declara-
tive knowledge. Rules cannot test other rules, so they can
only match declarative knowledge that other rules have al-
ready deposited into working memory. On a given produc-
tion rule cycle, Soar fires every rule that matches. Rule ac-
tions can either propose problem solving operators, register
a preference for one or more proposed operators, or make
modifications to DMEs in working memory.

All problem solving in Soar is viewed as search in a
problem space. A problem space is defined by an initial
state, one or more goal states, and a set of operators for
transforming states. Soar solves problems by repeating the
following steps until the problem is solved or abandoned: 1)
Fire rules that propose operators to apply to the current
state; 2) Fire rules that register a preference for one or more
operators; 3) Select an operator to apply to the current state,
then apply it. If no operator can be selected, create an im-
passe. All of these decisions can be either made by knowl-
edge that is directly encoded in rules or by knowledge gen-
erated by searching another problem space.

Soar has a single goal stack that is automatically created
and managed by the architecture. Goals arise automatically
from an impasse—an architecturally detected lack of direct

345

procedural knowledge that inhibits further progress. When-
ever Soar reaches an impasse it automatically generates a
subgoal to acquire the relevant knowledge.

Conflict resolution in Soar is concerned with the selection
of an operator, not a production rule. Soar fires every pro-
duction rule that matches in a given cycle, however, only a
single operator can be applied to a state at any given time.
Unlike most rule-based systems, including Act-R, conflict
resolution in Soar is completely knowledge-based. Once
operators are proposed, other rules can register preferences
for (or against) them. A rule can reject an operator, mark it
as the best or worst operator, indicate that it is better or
worse than one or more other operators, or indicate that two
or more operators are equally good. After this preference
phase, Soar determines whether the preferences indicate a
single best operator. If so, Soar selects that operator for ap-
plication to the state’. If not, or if there are contradictory
preferences, then Soar creates a subgoal to resolve the
problem. Like any subgoal, this subgoal is achieved by
searching a problem space. Thus, Soar represents the op-
erator tie or contradiction event as declarative knowledge in
working memory, which enables Soar’s procedural knowl-
edge to detect the event and bring to bear the full problem-
solving power of the agent.

All long-term knowledge in Soar arises through chunking,
a learning mechanism that compiles the results of subgoal
search into a production rule that can produce the result
without subgoaling. This implies that Soar can only acquire
long-term declarative memory by learning a rule that en-
codes the appropriate conditions in which the declarative
memory will be needed.

Soar uses a constant latency per decision cycle, roughly
estimated at 50 msec, based on the minimum amount of time
needed to make one deliberate cognitive action. Rules that
specify external actions are assumed to take additional time
consistent with initiating those actions.

Comparison

Both Soar and Act-R organize control around a single goal
hierarchy, but their similarities end there. Act-R’s produc-
tion rules are similar to Soar’s operators: both are equivalent
to a single operator in a problem space. The goal of conflict
resolution in Soar is to select an operator, whereas in Act-R
it is to select a rule. Goals in Act-R are created by rules,
whereas goals in Soar are created by the architecture in re-
sponse to an impasse.

The distinction between task-initiated goals and architec-
turally initiated goals becomes important when we consider
the architectures’ conflict resolution strategies, which are the
major theoretical difference between control in Soar and
Act-R. Act-R uses an automatic conflict resolution strategy
that selects an action (a rule) based on the match time of the
available rules and the expected utility of each rule. Other
than the match time and expected utility, which depend on
the history of declarative and procedural memory, no other
knowledge can influence conflict resolution. In contrast,

2 If the preferences indicate a single set of equivalent operators,
then Soar will choose one of those operators at random.

Soar uses an open, knowledge-based conflict resolution
strategy that selects an action (an operator) based on all
available knowledge.

What kind of empirical support is there for these different
conflict resolution strategies? Soar's control scheme was
designed around two general characteristics of human cog-
nition. First, is the observation that people behave flexibly.
Newell argues that problem-solving methods (such as the
weak methods) emerge during problem solving as a function
of available knowledge and task demands (Newell, 1990).
Soar’s conflict resolution strategy is a least-commitment
control scheme that naturally supports this kind of behavior.
In fact, some of the earliest work in Soar showed that many
of the weak methods emerge by combining Soar’s control
strategy, a few independent bits of general problem-solving
knowledge, and various kinds of knowledge of the task do-
main (Laird et al., 1986).

Research that is more recent explores the use of Soar for
modeling interleaved tasks and interaction with the external
world (Nelson, Lehman & John, 1994). Soar’'s ability to
respond to any goal in the goal hierarchy along with its abil-
ity to replace goals anywhere in its goal stack, make it well-
suited for modeling interleaved tasks. Likewise, Soar can
respond to changes in its environment by immediately de-
tecting the changes and switching to a different goal.

The second characteristic in support of Soar is that people
generally behave in a rational manner to achieve their goals.
According to Newell, intelligent systems behave according
to the principle of rationality, which states that “the system
takes actions to attain its goals, using all the knowledge that
it has." (Newell, 1990, p. 50) Soar’s knowledge-based con-
flict resolution strategy with its automatic impasses supports
this kind of behavior.

We must next consider whether Act-R can account for the
same phenomena. At first glance, it seems that this might be
difficult for Act-R. Since its conflict resolution strategy al-
ways picks an action regardless of the number of competing
actions and how closely those actions are ranked, only a
very limited amount of knowledge is used to select actions.

On closer inspection, however, the situation for Act-R is
not as bleak. According to Act-R, cognitive skill acquisition
begins with the deliberate interpretation of instructions and
examples®, which are then proceduralized by the analogy
mechanism into production rules that directly specify appro-
priate actions. This means that Act-R must begin to solve a
task by placing declarative representations of actions into
working memory. Once these actions are in working mem-
ory, any available knowledge can be brought to bear on
them, including knowledge generated by problem solving in
a subgoal. For Act-R to reason in this way, it must have a
general set of rules for recalling instructions about the task.
Once Act-R proceduralizes some of its knowledge, the gen-
eral rules will compete with the newly formed rules, which
means that Act-R will reason deliberately on some trials and
automatically on others. However, if the task environment
changes such that the procedural knowledge is no longer
appropriate, Act-R will again fall back to deliberate reason-

* Soar adopts the same view.

346

ing. Thus, it seems that Act-R is capable of displaying at
least some flexible, knowledge-based behavior,

Unlike Soar, Act-R’s approach to flexible behavior is not
directly supported by the architecture. Soar’s conflict reso-
lution mechanism would essentially need to be programmed
into Act-R’s rules. However, the implications of this differ-
ence are unclear. B. Chandrasekaran (personal communica-
tion) has argued that the Soar architecture might emerge
from a lower level architecture because of the need to do
problem solving. It is possible that Act-R is one such lower
level architecture.

One potential source of difficulty for modeling flexible
behavior in Act-R, is that it instantiates only rules that match
the current goal. This severely limits Act-R’s flexibility in
responding to dynamic internal or external changes, because
rules related to the current goal have complete control of
problem solving, including when to surrender control.

Next, we must consider the evidence in support of Act-R
and consider how Soar might account for it. Several results
support the Act-R account. First, it is well known that peo-
ple satisfice—we tend to set an acceptance threshold and
then pick the first action that rates above that threshold. This
is modeled in Act-R by forcing a decision at each cycle
based on comparison among the expected utility of an ac-
tion, the estimated cost of searching for additional actions,
and the estimated gain of the next action. For example, if
Act-R is given only a set of rules for making the moves in
the Tower of Hanoi along with a rule for detecting the goal
state, it will quickly select one of the moves and execute it,
without doing any internal lookahead search. In contrast,
given the same knowledge, Soar (along with its default
knowledge) will do exhaustive depth-first lookahead search
until it finds a solution, at which point it will directly solve
the problem. Johnson, Zhang and Wang (1994) have pro-
duced a modified set of Soar default rules that enables Soar
to solve problems with very limited lookahead search, how-
ever, the psychological validity of their approach has not
been adequately tested.

It is important to understand that Act-R’s architectural
mechanism for producing satisficing behavior does not ap-
ply outside a single rule selection. It is also unclear whether
people actually satisfice at the rule matching level proposed
by Act-R. However, it is clear that people often satisfice at a
higher level by deliberately considering and evaluating op-
tions until, at some point, they decide to act rather than con-
tinue searching. As with Soar, it is possible to model this
behavior in Act-R by deliberately evaluating declarative
representations of moves and taking the first move that rises
above an acceptance threshold; however, this bypasses Act-
R’s architectural support for satisficing.

Anderson has also argued that Act-R’s conflict resolution
mechanism can be used to model speed-accuracy trade-offs
by altering the threshold that it uses to decide when to stop
matching additional rules. (Anderson, 1993, p. 62) How-
ever, this also applies only to the selection of a single rule,
not to more extended deliberate decisions. Thus, neither
Soar’s nor Act-R’s conflict resolution mechanisms directly
support satisficing during deliberate search. This does not
necessarily indicate a flaw with either architecture. Given
the computational importance of satisficing, it seems likely

that cognition developed to support satisficing behavior at
many different levels, using many different mechanisms,
including ones that are more deliberate.

Although the source of satisficing behavior in Soar and
Act-R are somewhat different, at present, the evidence does
not appear to favor either one. This is in part a consequence
of the generality of the evidence supporting satisficing be-
havior. More detailed quantitative evidence might discrimi-
nate between the two architectures.

A second body of evidence supports the use of expected
utility and instantiation time in Act-R’s conflict resolution
strategy. Anderson, Kushmerick, and Lebiere (1993) showed
that the distribution of an individual’s choices from among a
set of moves reflects the expected utility of those moves.
Act-R models probabilistic move selection by adding a ran-
dom amount of noise to the expected utilities of each rule
instantiation. This is difficult to model in Soar because
Soar’s control strategy is largely deterministic. The only
exception occurs when two or more operators are given in-
difference preferences (which is meant to indicate that those
operators are equally good), in which case Soar will ran-
domly select from among the operators. It is possible to use
indifference preferences to implement probabilistic operator
selection. Suppose one wants to model a situation in which
operator A is twice as likely to be chosen as operator B. By
proposing two A operators, one B operator, and making all
of them indifferent, Soar will have a 2/3 chance of selecting
an A operator, but only a 1/3 chance of selecting B.

There are four problems with the indifference technique.
First, it violates the semantics of Soar’s indifference prefer-
ence, which is supposed to mean that the operators are
equally good. Second, it requires one to avoid using many of
Soar's preferences, such as those that indicate that one op-
erator is better than another, because using such preferences
would automatically exclude one or more operators from
consideration. Third, since all operators are made indiffer-
ent, Soar will never generate an operator tie impasse, effec-
tively bypassing Soar’s knowledge-based conflict resolution
strategy for selecting among operators. Finally, the tech-
nique must be augmented with a theory of learning that
shows how chunking can learn new rules that change the
distribution of operators in a way that reflects the operators’
expected utility. Given that Soar can (theoretically) learn
any production that a programmer can write, it seems likely
that such a learning theory is possible, but it is unclear how
natural or psychologically valid the theory will be.

Anderson, Kushmerick, and Lebiere (1993) also showed
that the time to select a rule correlates with instantiation
time, not the number of alternative rules. This implies that
subjects do not evaluate all available moves, but instead take
the first move that exceeds some threshold of acceptability.
This is a direct prediction of Act-R’s satisficing conflict
resolution strategy, which sequentially considers rules,
roughly in order of their likelihood of being needed, until it
finds an acceptable one.

Soar can produce similar behavior through use of a delib-
erate satisficing technique as described above. Since this
satisficing technique can select an operator without consid-
ering all operators, the selection time will depend on the
time needed to evaluate only those operators considered

347

before one is selected. This is sufficient to reproduce the
general behavior, but it is unclear whether it can model the
detailed quantitative data. The predicted times from the Soar
and Act-R models stem from different sources. The Act-R
model depends on the instantiation time for each rule,
whereas the Soar model depends on the number of decision
cycles needed to evaluate each operator. If we assume that
Soar uses a simple evaluation metric, then each evaluation
will take a constant number of decision cycles. In contrast,
rule instantiation latencies in Act-R are governed by the
number of conditions in each rule, and in the strength of
each rule and the matched memory elements.

Lovett and Anderson (1996) showed that the likelihood of
selecting a rule instantiation is sensitive to the rule’s history
of success and distance to goal. In general, people prefer
moves that take them closer to the goal and have a higher
likelihood of success. In particular, they showed that history
and distance to goal independently affect the likelihood of
selecting a move. Once subjects gain experience with a rule,
their experience will affect their likelihood of selecting in-
stantiations of that rule, regardless of the rule instantiation’s
distance to goal. This supports Act-R's assumption that his-
tory is kept with each rule, without regard for the context in
which the rule fires.

Before considering Act-R 3.0’s explanation of these phe-
nomena, we must first look at Lovett and Anderson’s ex-
perimental task in detail. Lovett and Anderson used the
building sticks task (BST) in which subjects had to build a
stick of a desired length by adding or subtracting sticks of
three different lengths. For instance, given building sticks of
length 1, 2, and 10, and a desired stick length of 5, a subject
could solve the problem by adding two sticks of length 2 and
one stick of length 1. Alternatively, the subject could solve
the problem by first selecting the stick of length 10, then
subtracting two sticks of length 2 and one of length 1. The
first solution (2 + 2 + 1 = 5) is called the undershoot strat-
egy, because the initial stick selection is less than the desired
length. The second solution (10 - 2 - 2 - 1 = 5) is called the
overshoot strategy, because the initial stick selection is
longer than the desired length. In problems in which both
strategies are applicable, subjects tend to select the strategy
that gets them closer to the desired length. In the above ex-
ample, subjects would tend to select undershoot because 5 is
closer to 2 than it is to 10. Lovett and Anderson also showed
that the likelihood of selecting a strategy was influenced by
the magnitude of a problem’s bias, which they defined as the
difference between the distance to goal for the best under-
shoot move and the distance to goal for the best overshoot
move. In the example above, the biasis 3 5 = -2. A nega-
tive bias indicates a bias toward undershoot, whereas a posi-
tive bias indicates overshoot. As the absolute magnitude of
the bias increases, so does the likelihood of selecting the
corresponding strategy. Finally, the probability that a strat-
egy will succeed (based on its history) affects its likelihood
of being selected regardless of problem bias. Although some
BST problems can be solved by either undershoot or over-
shoot, some can only be solved by one of the strategies.
Furthermore, problems can be designed that are biased to-
ward one strategy, but solved by the other.

To model this data, Lovett and Anderson (personal com-
munication) have proposed a model that contains both dis-
tance-specific rules, which include a test for distance in their
conditions, and general rules which apply regardless of dis-
tance. The model contains four production rules: closer-
overshoot, general-overshoot, closer-undershoot, and gen-
eral-undershoot. The closer-x rules suggest x only when x
moves closer to the goal than the competing moves. The
general-x rules are identical to the rules used in the original
model: they propose overshoot or undershool moves re-
gardless of relative distance. In initial tests, this model ap-
pears to explain the phenomena. The computation of dis-
tance for BST is assumed to be directly available from per-
ception, so sensitivity to the magnitude of the bias is simu-
lated by adding perceptual noise. The model will initially
tend to prefer moves according to the bias, because closer-x
rules are given a higher prior probability of success, reflect-
ing subjects’ past experience that similarity increases prob-
ability of success. The independence of history and distance
to goal is also achieved, because the model tends to use both
the general-x and closer-x rules, although initially, general-x
rules have a lower probability of being used. If on average,
the general-x rules have more success than the closer-x
rules, the general-x rules will have a higher probability of
being selected, regardless of distance to goal.

Modeling the independent influence of history and dis-
tance to goal presents a challenge to Soar. Soar can easily
make use of distance to goal information, however, Soar
does not automatically maintain history of success informa-
tion for each operator. One could program Soar to remember
the number of successes and failures for overshoot and un-
dershoot and then use an operator evaluation metric that
combines distance to goal with history information; how-
ever, it is unlikely that subjects deliberately keep such
counts. Another possibility is to use a model that attempts to
categorize each problem as an overshoot or undershoot
problem. Soar-based Symbolic Concept Acquisition (SCA)
can perform such a task and has been shown to produce
graded performance with respect to accuracy and response
time (Miller & Laird, 1996). SCA tends to respond faster
and more accurately to concepts that are similar to fre-
quently encountered concepts. To use SCA, one could use
each BST problem and solution as a training example for
category learning. New problems are solved by categorizing
the current problem using the classification rules acquired
during previous attempts. Continued success with one strat-
egy will result in a number of classification rules for that
strategy and relatively few rules for the alternative. Thus, the
system will be more likely to classify new examples in terms
of the successful strategy, although this depends on the
similarity to previously categorized examples. Of course,
one would need to construct a detailed SCA model of BST
to adequately evaluate this solution.

Conclusions

This comparison of control reveals two problem areas for
Soar. It is difficult to see how Soar can account for prob-
abilistic move selection as well as the independent effects of
history and distance to goal on the likelihood of selecting a

348

move. In contrast, Act-R’s control mechanism appears to be
well supported by empirical data, but does not appear to
support the range of flexible control supported by Soar. The
comparison also reveals that many of the justifications for
each architecture’s control structure, such as flexible control
and satisficing, are just as easily handled by both.

Acknowledgments

I thank the members of the Soar and Act-R research
community for their detailed comments on carlier drafts of
this paper. This research was supported in part by grants
N00014-95-1-0241 and NO0014-96-1-0472 from the Office
of Naval Research, Cognitive and Neural Sciences and
Technology Division.

References

Anderson, J. R. (1983). The Architecture of Cognition.
Cambridge: Harvard.

Anderson, J. R. (1990). The Adaptive Character of Thought,
Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NI:
Lawrence Erlbaum Associates.

Anderson, J. R., Kushmerick, N., & Lebiere, C. (1993).
Navigation and Conflict Resolution. In J. R. Anderson
(Ed.), Rules of the Mind (pp. 93-119). Hillsdale, NJ: Law-
rence Erlbaum Associates.

Cooper, R., & Shallice, T. (1995). Soar and the case for
unified theories of cognition. Cognition, 55, 115-149.

Johnson, T. R., Zhang, J., & Wang, H. (1994). Bottom-up
recognition learning: a compilation-based model of lim-
ited-lookahead learning. In A. Ram & K. Eiselt (Eds.),
Proceedings of the Sixteenth Annual Conference of the
Cognitive Science Society (pp. 469-474): Lawrence Erl-
baum Associates.

Laird, J., Rosenbloom, P., & Newell, A. (1986). Universal
Subgoaling and Chunking: Kluwer Academic Publishers.
Laird, J. E., Newell, A., & Rosenbloom, P. S, (1987).
SOAR: An architecture for general intelligence. Artificial

Intelligence, 33, 1-64.

Lebiere, C. (June 1996). Act-R: A Users Manual [On-line].
Available: ftp://ftp.andrew.cmu.edu/pub/act-
r/ftp/release/beta/ ACTR3ITXT/Manual.rtf

Lovett, M. C., & Anderson, J. R. (1996). History of success
and current context in problem solving: Combined influ-
ences on operator selection. Cognitive Psychology, 31(2).

Miller, C. S., & Laird, J. E. (1996). Accounting for graded
performance within a discrete search framework. Cogni-
tive Science, 20(4), 499-537.

Nelson, G., Lehman, J. F., & John, B. E. (1994). Integrating
cognitive capabilities in a real-time task, Proceedings of
the Sixteenth Annual Conference of the Cognitive Science
Society (pp. 658-663). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Newell, A. (1990). Unified Theories of Cognition. Cam-
bridge, MA: Harvard University Press.

Newell, A., Rosenbloom, P. S., & Laird, I. E. (1989). Sym-
bolic Architectures for Cognition. In M. 1. Posner (Ed.),
Foundations of Cognitive Science (pp. 93-131). Cam-
bridge, MA: MIT Press.

ftp://ftp.andrew.cmu.edu/pub/act

	cogsci_1997_343-348

