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| INVESTIGATION

Combinatorial Approach for Complex Disorder
Prediction: Case Study of

Neurodevelopmental Disorders
Linh Huynh* and Fereydoun Hormozdiari*,†,‡,1

*Genome Center, †MIND Institute, and ‡Department of Biochemistry and Molecular Medicine, University of California, Davis,
California 95817

ABSTRACT Early prediction of complex disorders (e.g., autism and other neurodevelopmental disorders) is one of the fundamental
goals of precision medicine and personalized genomics. An early prediction of complex disorders can improve the prognosis, increase
the effectiveness of interventions and treatments, and enhance the life quality of affected patients. Considering the genetic heritability
of neurodevelopmental disorders, we are proposing a novel framework for utilizing rare coding variation for early prediction of these
disorders in subset of affected samples. We provide a combinatorial framework for addressing this problem, denoted as Odin (Oracle
for DIsorder predictioN), to make a prediction for a small, yet significant, subset of affected cases while having very low false positive
rate (FPR) prediction for unaffected samples. Odin also takes advantage of the available functional information (e.g., pairwise coex-
pression of genes during brain development) to increase the prediction power beyond genes with recurrent variants. Application of our
method accurately recovers an additional 8% of autism cases without any severe variant in known recurrent mutated genes with
a ,1% FPR. Furthermore, Odin predicted a set of 391 genes that severe variants in these genes can cause autism or other de-
velopmental delay disorders. Approaches such as the one presented in this paper are needed to translate the biomedical discoveries
into actionable items by clinicians. Odin is publicly available at https://github.com/HormozdiariLab/Odin.

KEYWORDS Autism; early disease prediction; complex disorder; neurodevelopmental disorder; de novo mutation; rare coding variant

THE start of the genomics era and sequencing of the first
human genome over a decade ago promised significant

benefits to public health (Lander et al. 2001). These include
the potential capability of early detection, pinpointing the
causes, and developing novel treatments and therapeutics
for most diseases. Although sequencing of the human ge-
nome has dramatically accelerated biomedical research,
progress has been slow in truly unlocking the promise of
genetics and genomics in direct application to human health
and disease. Notably, the translation of genetic discoveries
into actionable items in medicine has not achieved the prom-
ised potential. One of the main challenges lies in the fact that
discovering the exhaustive set of causative variants for most
diseases, except some monogenic Mendelian disorders, has

proven to be an elusive and unmet objective (Ng et al. 2010;
Bamshad et al. 2011; Yang et al. 2013).

Autism spectrum disorder (ASD) is an umbrella term used
to describe a set of neurodevelopmental disorders having a
wide range of symptoms, from lack of social interaction,
difficulty in communication/language, repetitive behavior,
and, inmany cases, intellectual disability (ID) (i.e., having an
IQ , 70) (American Psychiatric Association 2013). ASD is
typically diagnosed around the age of 2 years and is esti-
mated to affect over 1 in 68 children (1.5% of all children).
There is a well-known sex bias in ASD as there are four times
more male children affected with ASD than female children.
Twin study comparisons have shown that genetics play a
major role in ASD, and researchers have estimated the herita-
bility of ASD to be one of the highest among complex diseases
ð0:5# h2 # 0:8Þ (Sandin et al. 2014; Tick et al. 2015).

There are some known syndromic subtypes of ASD with
known genetic causes, such as Fragile X or Rett syndromes,
which are the result of single-gene mutations [FMR1 or
MECP2, respectively (Caglayan 2010)]. Furthermore, there
are known rare, large recurrent copy number variations
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(CNVs), such as the 16p11.2 deletion or Prader-Willi syn-
drome, which are known to cause ASD (Sanders et al.
2011; Girirajan et al. 2012). Recently, several autism and
ID sequencing consortia (De Rubeis et al. 2014; Iossifov
et al. 2014) performed whole-exome sequencing (WES) on
thousands of autism families (affected proband, unaffected
sibling, and parents) with the hope of finding causative var-
iants in these samples. These studies indicated that a signif-
icant fraction of ASD was the result of de novo and rare
(minor allele frequency , 0:05) variants (Iossifov et al.
2014; Geschwind and State 2015; Krumm et al. 2015). How-
ever, in many cases, it was not clear which de novo or rare
variants were the real culprit(s) underlying the phenotype.

It is becoming apparent that early treatment and interven-
tion can significantly improve the IQ, language skills, and
social interactions in children affectedwithASD (Vismara and
Rogers 2008; Howlin et al. 2009; Boyd et al. 2010). Early
diagnosis of ASD in young infants is challenging, mainly
due to the fact thatmost symptoms are not reliably detectable
at a very young age and children tend to manifest a hetero-
geneous set of phenotypes with a diverse range of severity
(Kim et al. 2016). However, it is theoretically possible to
make an accurate diagnosis of ASD or other neurodevelop-
mental disorders in a subset of children before any symptoms
appear (or even before the child is born) using (perinatal)
genetic testing and genome sequencing (Kitzman et al. 2012).

Although rare coding variants are enriched in theWESdata
of large ASD/ID proband cohorts (De Rubeis et al. 2014;
Iossifov et al. 2014), it is also important to realize the intrinsic
limitations of using these rare coding variants to predict ASD
or other complex disorders. Notably, (i) most complex dis-
orders have genetic heritability of significantly ,1 (e.g.,
0:5,h2 , 0:8 for autism), (ii) noncoding variants, which
significantly contribute to these disorders, are not found us-
ing WES, and (iii) (coding) variants alone do not have the
power to rule out the possibility of being diagnosed with a
complex disorder (such as autism) with very high accuracy.
Therefore, achieving accurate prediction for all, or evenmost,
samples (both affected and nonaffected) using solely coding
variants is theoretically not achievable. Moreover, a positive
diagnosis/prediction of a complex disorder (e.g., ASD) can
have a severe negative psychological and economic impact on
affected individuals and their family. For instance, a positive
prediction of severe developmental disability during prenatal
testing can result in a termination of pregnancy. Therefore, it
is highly desirable to not have a false positive prediction (i.e.,
an unaffected sample is predicted as an affected case) in an
early disorder prediction method.

We denote the problem of predicting complex disorders
that aims to cover a significant fraction of affected cases while
having very low FPR prediction for unaffected samples as the
Ultra-Accurate Disorder Prediction (UADP) problem. Note
that the UADP problem is different from traditional binary
classification problems where each sample is assigned to one
of the two classes (i.e., affected case or unaffected control). In
the UADP problem, the goal is to predict a subset of samples

as affected cases, while all other samples are not assigned to
any class.

In practice, this UADP problem has been addressed suc-
cessfully in handful of cases. For example, screening for severe
variants in few well-known genes with high penetrance
for neurodevelopmental disorders (e.g., screen of FMR1 or
MECP2 for fragile-X or Rett syndrome). Another example is
the screening of CNVs such as 16p11.2 deletion and duplica-
tions for autism. Although, these tests give a low FPR, they
can only discover a very small fraction of affected cases.

In this paper, we study the UADP problem in ASD. We
develop a combinatorial method that utilizes rare coding
variants and the available functional information (e.g., pair-
wise coexpression of genes during brain development) to
predict this disorder. By that, our method accurately recovers
an additional 8% of autism cases without any severe variant
in known recurrent mutated genes with a,1% FPR. Further-
more, Odin predicted a set of 391 genes that severe variants
in these genes can cause autism or other developmental delay
disorders.

Materials and Methods

Definition and notations

As we do not expect to see the same rare or de novo variant to
appear in two different samples, it has proven useful to sum-
marize the observed variants on the genes being affected.
Here, we assume that an likely gene disruptive (LGD) muta-
tion will completely knockout or disrupt the copy of the af-
fected gene in the sample.

Training data: Let n and m be the number of genes and the
total number of samples respectively. The LGDmutation profile
of the ith sample is a binary row vector xi ¼ ðxi1; xi2; . . . ; xinÞ
where

xij ¼
�
1 if the ith sample has a LGD mutation at the jth gene
0 otherwise

(1)

The diagnosis result (or class) of the ith sample is a binary
value yi where

yi ¼
�
1 if the ith sample is an affected case
0 if the ith sample is an unaffected control

(2)

A dataset D of m input samples is a set of m pairs
D ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxm; ymÞg; where each pair ðxi; yiÞ
represents the LGD mutation profile and the diagnosis re-
sult, respectively, of the ith sample. We define the unaf-
fected control set and the affected case set as Dcontrol ¼
fxijðxi; yiÞ 2 D; yi ¼ 0g and Dcase ¼ fxijðxi; yiÞ 2 D; yi ¼ 1g;
respectively.

Gene similarity score: An assumption here is that disruption
of genes with functional relationship/similarity will result in
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similar phenotypes. Thus, our method not only uses the
variant frequency of each gene in cases and controls but also
utilizes the similarities between genes as an additional signal
for predicting the disorder.Wedenote a gene similaritymatrix
P 2 ½0; 1�n3n; where Pi;j indicates the similarity between
genes ith and jth: We build this matrix from two auxiliary
matrices, P9 and P$; that are constructed from the functional
data and the mutational landscape data, respectively, of each
gene. More specifically, we construct the auxiliary matrix P9
by using the functional similarity of genes during brain de-
velopment. We set P9i; j as the Pearson correlation of expres-
sion profiles between two genes in different conditions and
tissues obtained from the Brainspan dataset (http://www.
brainspan.org) as in the previous study (Hormozdiari et al.
2015). Then, we construct the auxiliary matrix P$ by using
the similarity of likelihood of observing LGD mutation (pLI)
between the two genes in the population (Lek et al. 2016).
We set P$i; j ¼ jpLIðiÞ2 pLIðjÞj;where pLIðiÞ and pLIðjÞ are the
pLI score of genes ith and jth; respectively. Finally, we use
the minimum similarity scores of two genes to build matrix P
as Pi;j ¼ minðP9i; j; P$i; jÞ:Of course, the construction of matrix
P can be changed without any need to change the underlying
framework or the methods proposed in the next section. For
example, we can change the construction of auxiliary matri-
ces P9 or P$; construct more auxiliary matrices, or change the
way we combine these auxiliary matrices rather than taking
the minimum value.

Training data transformation: We convert every sample by
multiplying the vector xi by matrix P to produce new vectors
zi ¼ xi 3 P: We will denote the set of samples Dcontrol and
Dcases converted by the gene similarity matrix P as D9control ¼
fzi ¼ xi 3 Pjxi 2 Dcontrolg and D9case ¼ fzi ¼ xi 3 Pjxi 2 Dcaseg
Odin framework

We propose a framework, denoted as Odin (Oracle for DIs-
order predictioN), for solving the UADP problem. Intuitively,
Odin predicts an input/test sample to be an affected case if,
and only if, it satisfies two conditions:

1. The input sample is “close” to many affected case samples.
2. The input sample is “far” from any unaffected control

sample.

For testing the first condition, we simply use the nearest
neighbor approach with a distance function (e.g., Euclidean
distance). As such, an input sample passes this first condition
if its closest neighbor (among the training data) is an affected
case.

For testing the second condition, we develop a novel
algorithm that first finds a region (after dimension reduction)
containing a significant number of affected cases and does not
contain any unaffected control. This cluster is denoted as
unicolor cluster, as it only includes the affected cases. The
input sample passes the second condition if it falls inside of
this unicolor cluster. We denote the problem of finding such a
cluster as unicolor clustering with dimensionality reduction

(UCDR).We prove that this problem is a “NP-complete” prob-
lem using a reduction from equal subset sum problem (see the
Appendix section for the NP-completeness proof of UCDR
problem). Therefore, we propose a relaxation of UCDR that
we denote as weighted unicolor clustering with dimension-
ality reduction (WUCDR). In the remaining of this section,
we first formalize the UCDR and WUCDR problems, and
then present an iterative algorithm to solve the WUCDR
problem.

UCDR problem: In the UCDR problem, we have a set of red
and blue points in n-dimension space ℝn; representing un-
affected controls (i.e., D9control) and affected cases (i.e.,
D9case), respectively. Furthermore, we have an upper bound
on the number of dimensions to consider (dimension re-
duction/feature selection) denoted by k. The goal of the
UCDR problem is to discover a subset of dimensions with
cardinality k ðk � nÞ; a center point c 2 ℝjkj; and a constant
r, such that after mapping all the blue and red points to the
reduced k dimensions, the following objective and con-
straints hold:

Objective: maximize the total number of blue points with
“distance” less than r to center c:

Constraint: there is no red point with “distance” less than r
to center c.

Anymetric distance function (e.g., Euclidean distance) can
be used for the UCDR problem. However, we use the ℓ1 dis-
tance since it is concordant with the additive model used in
common variant studies. The ℓ1 distance between two points
ða1; a2; . . . ; anÞ and ðb1; b2; . . . ; bnÞ is defined as

Pn
i¼1jai 2 bij:

We denote the region limited by a distance r from center
c 2 ℝjkj as area of interest A ðc; rÞ: Furthermore, any affected
case zi 2 D9case inside the area of interest (i.e., ℓ1ðc; ziÞ# r) is
considered covered by this area. Note that the intuition be-
hind the dimension reduction is to avoid the overfitting issue
raised as a result of a large number of dimensions (. 20; 000
genes) and a smaller number of training samples. We used
fivefold cross-validation, and picked the k that had the
best true positive rate (TPR) for FPR , 0:01 (the desired
limit on false positive prediction rate). By that, the opti-
mal value k ¼ 10 was selected for all experiments in the
paper.

WUCDR problem: Since the UCDR problem is NP-complete
(see Appendix), we define a relaxation, wherewe assign (con-
tinuous value) weights to the dimensions. We denote this
problem as the WUCDR problem. More formally, in addition
to selecting k genes/dimensions, we also have to assign
weights 0#wi # 1 to each gene/dimension i and use the
weighted ℓ1 as the distance metric for clustering. In the rest
of the paper, we define the weighted ℓ1 distance function be-
tween two input points a and b with weights w (in n dimen-
sions) as wℓ1ða;b;wÞ ¼ Pn

i¼1wijai 2 bij: Note that, as we are
only allowed to select, at most, k dimensions, thus n2 k other
dimensions have weight zero.
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Iterative solution for WUCDR: Here, we propose an iterative
method consisting of two main steps to solve the WUCDR
problem. In the first step, given a set of weightsw;we find the
optimal center c and radius r to cover a maximum number of
affected cases (blue points) in the area of interest A ðc; rÞ
(note that the area of interest is considered using weighted
ℓ1 distance). In the second step, we try to find a new set of
weights w given the center c and the radius r.

First step: Given the weights w ¼ ðw1;w2; . . . ;wnÞ (all the
weights are assigned to 1 at the first iteration), find a center c
and constant r such that

1. all red points have a weighted ℓ1 distance greater than r to
center c and

2. the number of blue points, which have weighted ℓ1 dis-
tance less than r to center c, is maximized.

In general, finding such a center is a hard problem in n
dimensional space. Thus, we relax the problem to only con-
sider the blue points as a potential center c. This can be done
trivially in polynomial time by considering every blue point as
potential center and picking the optimal one. Given a center
c, radius r (easily determined from c) and the weights w we
can easily calculate the affected cases (i.e., blue points) cov-
ered by the area of interest. Let S denote the set of covered
(blue) points (i.e., affected cases), which will be used in the
next step for updating the weights.

Second step: Given a center c and the set of blue points S
covered by the area of interest found in the first step, we cal-
culate new weightsw (for each dimension). The objective is to
decrease theweighted ℓ1 distance of points in the set S to center
c, while increasing the weighted ℓ1 distance of points in the set
S to the red points ðD9ControlÞ:We solve the linear programming
(LP) problem (see below) to find these new weights.

Note that, in the LP problem, only w and r are unknown
variables, while the set S and center c are calculated in the

first step of the method. The constraints in the LP problem
help us find a set of weights that are guaranteed to have all of
the points in set S closer to the selected center c than any red
point. Furthermore, the objective function helps us find the
weights that squeeze the (blue) points in S further closer to
the center c;while increasing the distance of red points to the
(blue) points in the set S. More specifically, the objective
function of the LP problem has twomain terms. The first term
aims to reduce the average distance between points in the set
S and the center c: Simply stated, the new weights w would
try to make blue points covered in first step (i.e., point in set
S) get closer to the center c (note that both c and S are from
the previous step, not variables in this LP problem). The sec-
ond term aims to increase the average weighted ℓ1 distance of
all red points to the blue points in set S. Finally, among the
weights produced we will keep only the top k weights and
convert all of the remaining weights to 0. Note that, because
of the condition

Pn
i¼1wi # k=2; we are guaranteed to be able

to keep any dimension with value . 0:5 from the LP solution.

Odin framework using WUCDR: As mentioned above, two
conditions need to be satisfied for a sample to bepredicted as a
potential affected case by Odin. The first condition is that the
nearest neighbor of this sample must not be an unaffected
control. Odin uses the ℓ1 distance function for calculating the
nearest neighbors of any test sample. The second condition is
that the input sample needs to fall inside the area of interest
A ðc,r) after performing the same dimension reduction map-
ping using weights w (note that c; r and w are found by the
iterative solution of WUCDR).

Data availability

The code of Odin and related data are publicly available
at https://github.com/HormozdiariLab/Odin. The authors
state that all data necessary for confirming the conclusions
presented in the manuscript are presented fully within the
manuscript and the supplemental information (at https://

Table 1 The total number of ASD/ID-affected probands (cases) and unaffected siblings (controls) used in this study

Class-ASD diagnosis
(affected or unaf-
fected) Study Number of samples Number of LGD variants References

Affected ASD/ID
probands

Simons simplex
collection (SSC)

2508 492 O’Roak et al. (2012, 2014), Iossifov
et al. (2014), Krumm et al.
(2015), Turner et al. (2016)

Autism sequencing
consortium (ASC)

2270 185 De Rubeis et al. (2014)

Other studies 1329 74 Michaelson et al. (2012), Rauch
et al. (2012), Hashimoto et al.
(2016)

Total (case) 6107 751
Unaffected siblings or

controls
Simons simplex
collection (SSC)

1909 248 Iossifov et al. (2014), Krumm et al.
(2015)

GoNL 250 7 Francioli et al. (2014)
Other studies 208 11 Gulsuner et al. (2013)
Total (control) 2367 266
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figshare.com/s/ce4e4dc7210e4e4034b3). Supplemental
material available at Figshare: https://doi.org/10.25386/
genetics.7011308.

Results

Data summary

We curated a dataset of de novo LGD variants from WES and
targeted sequenced samples with ASD or ID to evaluate the
performance of Odin in predicting neurodevelopmental dis-
orders. Table 1 shows the total number of samples and LGD
variants reported from the union of several publications on
over 6000 ASD/ID probands.

We transformed themutation profile of every sample into a
vector in the new space (i.e., zi ¼ xi 3 P) by a gene similarity
matrix P constructed as in Materials and Methods. We ob-
served that such a transformation resulted in significantly
reducing the ℓ1 distance of probands with each other
ðP, 1:6e216Þ: This implied that this transformation indeed
helped in increasing the prediction power.

In our dataset (Table 1), there are nine genes (ADNP,
ANK2, ARID1B, CHD2, CHD8, DSCAM, DYRK1A, SCN2A,
and SYNGAP1) with four or more LGD variants in the union
of all ASD/ID samples and with no LGD variant in unaffected
siblings and controls. A sample with an LGD variant in any of
these genes is called a trivial case, and the remaining samples
are called nontrivial cases/samples. We only consider non-
trivial cases in our analysis, since any prediction model/
method for ASD can be extended easily to predict trivial
cases.

Naïve approach for solving UADP problem by utilizing
predicted ASD/ID genes

Weevaluated theASD/IDpredictionperformance (of samples
in Table 1) of naïve approaches that used top ranking ASD/ID
genes or used genes based on intolerance to LGD variant and
expression in the fetal cortex. We realized that none of these
approaches provided an acceptable solution to the UADP
problem. For example, considering any sample with LGD var-
iant in the top 100 genes from the recently published gene
ranking (Krishnan et al. 2016) as an affected case resulted a
FPR of .1% and TPR of , 2:5%: Similarly, predicting any

sample with LGD variant in top genes based on the intoler-
ance to LGD variant [ExAC data (Lek et al. 2016)] and high
expression in cortex region during early fetal development
(from CSEA tool http://genetics.wustl.edu/jdlab/csea-tool-
2/) as an affected case resulted a FPR of . 1% and TPR of
, 2:8%:

Unicolor clustering with dimension reduction

We first verified if the proposed iterative method for solving
the WUCDR problem actually improved the number of cases
covered in comparison to the unweighted setting (i.e., con-
sidering all dimensions with weights wi ¼ 1). As shown in
Table 2, the optimal result found using the initial setting (i.e.,
unweighted) was able to cover 45 cases (only 24 nontrivial
cases, i.e., the ones with no LGD variants in recurrently mu-
tated genes in ASD/ID samples). In contrast, our iterative
method converged in less then five iterations and was able
to cover over 71 cases (40 nontrivial cases). Thus, our
method improved the number of affected cases covered by
over 60% using ,10 dimensions. We also investigated the
“density” of cases inside each selected region. The density
was defined as the ratio between the number of affected cases
covered and the radius r. We observed that our iterative
method not only improved the number of cases covered but
also increased the density per each iteration (see Table 2).

ASD/ID disorder prediction results

We compared Odin with different classification methods in
predicting nontrivial ASD/ID cases. These methods included
the k-NN classifier ð1# k# 20Þ; support vector machines
(SVM; Chang and Lin 2011), glmnet (Lasso and elastic-net
regularization of generalized linear models; Friedman et al.
2010), and random forest (Liaw et al. 2002). For each of
these methods, their optimal parameter values were picked
and their intrinsic properties were used to control/limit the
FPR for calculating the TPR (see Appendix). Odin had only
one parameter k, and we set k ¼ 10 (seeMaterials and Meth-
ods). Note that, in Odin, the full set of samples predicted as
affected cases had a FPRof,0.01.We used the leave-one-out
(LOO) cross-validation technique to determine the highest
TPR of eachmethod given the upper bound on the FPR value.
As our stated goal was to keep the false positive prediction of
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unaffected samples as cases close to zero, we considered only
themost conservative results for eachmethod (i.e., FPR , 0:01).
Odin’s true positive rate for predicting ASD/IDwas at least two
times higher than the best k-NN result (for different values
of k) and significantly higher than SVM and random forest
for FPR , 0:01 (Figure 1). It was also significantly higher for
different regularized generalized linear models (Lasso and
elastic net) for different parameter values of a of the glmnet
implementation (Figure 1).

We also compared Odin and SVM for a very low FPR by
using fivefold cross validation. We selected the best set of
parameter values for each method and repeated .10 (inde-
pendent) times to evaluate the performance of two methods.
With FPR ,0.01, Odin was able to achieve a TPR (for non-
trivial cases) over 0.06, while SVM achieved a TPR of only
0.04 (for nontrivial cases).

Gene prediction and ranking in autism and
related disorders

Odin is a framework that predicts if a samplewill developASD
with an extremely low false positive rate. However, it can also
be used to predict some novel ASD genes. Here, we utilized
Odin to rank all genes for the potential impact of their LGD
variant on ASD. More specifically, we trained Odin with the
ASD and siblings variants (Table 1), then each gene was
ranked by the distance from the center to a sample that
had a LGD variant of this gene. We referred genes in cate-
gories “syndromic” and “high confidence” of the SFARI gene
collection (Abrahams et al. 2013) as known ASD genes. We
observed that genes closer to the center were enriched with
known ASD genes (Figure 2A). Note that, similar to the con-
servative way that Odin predicted the ASD/ID risk of a sam-
ple, if a gene was not selected it did not mean this gene was
not an ASD/ID gene.

Our analysis also indicated 391 genes (Supplemental Ma-
terial, Table S1) for which an LGD variant resulted in a sample
falling inside the predicted area of interest (illustrated as the
most inner circle in Figure 2A). In other words, Odin predicted
with high probability that the disruption of each of these
391 genes would cause significant (neuro)developmental
disorder.

We observed a significant enrichment of LGD variants in
these 391 genes in the developmental delay disorder (DDD)
sample set (which was not used in training) vs. the ASD

sample set (which was used in training) as shown in Figure
2B. Interestingly, this clearly indicated that, even after nor-
malizing based on expected LGD variants for each disease
group, the more severe samples tended to be more enriched
in LGD variants disrupting these selected 391 genes than did
their less severe autism samples (Figure 2B). In addition,
there was also an significant increase in ratio of de novo mis-
sense variants with CADD score . 25 to de novo missense
variants with CADD score , 25 disrupting these 391 genes
in comparison to the remaining genes for ASD/ID probands
(Figure 2C). Interestingly, no such enrichment was observed
for control/sibling samples (Figure 2C). Furthermore, we
used the de novo variants reported in 520 whole-genome
sequenced (WGS) samples (Turner et al. 2017) that were
void of LGD variants to investigate the de novo variants dis-
rupting the noncoding regulatory regions of these genes (see
Appendix). We observed that the noncoding regulatory ele-
ments of these 391 genes were significantly disrupted by de
novo variants in probands vs. siblings (P, 0:004 : Figure S1,
A and B in Appendix). Moreover, we also observed that genes
that were closer to the center also had more protein–protein
interaction than genes that were far from the center (Figure
S1C).

Weutilized the predicted probability of observing a de novo
missense/LGD variant per sample for each gene (O’Roak et al.
2012) to calculate the P-values of observed de novo variants
in the affected samples. We could group these 391 genes
based on observing significant de novo LGD and/or missense
variants in affected probands (Figure 2D). The set of genes
with significant de novo missense variants observed only in
cases potentially indicated ŁŁan LGD ŁŁin one of these genes
ŁŁwould be incompatible with life (i.e., essential genes).
However, amissensemutationŁ ŁŁin one of these genes could
result in a severe (neuro)developmental disorder. These
genes include CSNK2A1, SMARCA4, TRRAP, MORC2, PRPF8,
TAF1, CNOT1, SF3B1, SMAD4, UBR5, CLASP1, KDM2B, and
U2AF2.

Next, we analyzed if there was any specific enrichment of
expressionof these391genes in thehumanbrain.Weused the
online tool CSEA (Dougherty et al. 2010) (http://genetics.
wustl.edu/jdlab/csea-tool-2/) to study the expression profile
of these genes. Interestingly, the only significant expression
we observed was in early fetal development and mid-early
fetal brain development (Figure 3A). No significant expression

Table 2 Number of covered ASD/ID cases (from training dataset), density, and the number of dimensions in each
iteration

Iteration Number of cases covered
Number of nontrivial

cases covered
Density

(case/radius)
Number of dimensions
(before-after) rounding

0 45 24 0.11 $20,000
1 53 32 138.41 (15–9)
2 66 39 176.64 (7–7)
3 70 39 179.92 (10–9)
4 71 40 185.49 (10–9)
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of these genes in any tissues in adult human or mouse brain
was observed.

In the Simons Simplex Collection (SSC), we also observed
not only that probands with de novo LGD variants tended to
have a lower IQ than probands without de novo LGD variants,
but also that probands with a de novo LGD variant disrupting
one of these 391 genes had lower IQ than probands with
other de novo LGD variants (Figure 3B). It is known that there
is a large male to female bias in autism (estimated to be over
4:1). In the SSC, there was a total of 2478male probands and
396 female probands (over 6:1 ratio). However, the differ-
ence between the number of samples with de novo LGD var-
iants in the selected 391 genes was 31:16 (�2:1 ratio). This
indicated that there was a much smaller gap in sex difference
for ASD samples with de novo LGD variants in these 391
genes (Figure 3C).

Finally,weanalyzed the biological function of the topASD/
ID genes predicted by Odin. We used the tool David (Huang
et al. 2009, version 6.8) for discovery of enriched gene on-
tology (GO)-terms and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathways for top 391 genes. As we expected,
these genes were enriched in transcription, spliceosome,
chromatinmodification, andWnt pathways, which have been
indicated previously to be major contributing factors in neu-
rodevelopmental disorders (Gilman et al. 2011; Kalkman
2012; Ben-David and Shifman 2013; De Rubeis et al. 2014;
Hormozdiari et al. 2015; Lelieveld et al. 2016).

Discussion

In this paper, we formalized the problem of predicting a
complexdisorderwhileenforcingavirtually zero falsepositive
prediction to make it directly applicable in clinical diagnosis.
We denoted this specific problem as the Ultra-Accurate Dis-
order Prediction (UADP) problem. We showed that simple
approaches of utilizing the predicted ASD/ID gene rankings
were not a viable solution for the UADP problem. Then, we
introduced the frameworkOdin for solving theUADPproblem
in autism and related disorders using de novo LGD variants.

Our evaluation of experimental data showed that Odin out-
performed other approaches in this prediction task.

Note thatOdin is notmeant to replace other approaches for
disorder gene discovery and ranking, but rather for accurate
prediction of the disorder in a subset of cases given the genetic
variation. One of the drawbacks of this approach is that it can
only work if the penetrance of the genetic variation to cause
the disorder is very high. It is not applicable in caseswhere the
goal is to only predict if the probability of disorder is signif-
icantly higher than the general population.

AlthoughOdin indicated somewell-known pathways (e.g.,
Wnt and chromatin remodelers) related to autism (Ben-David
and Shifman 2013; Hormozdiari et al. 2015), it did not
indicate other important pathways (e.g., long-term potentia-
tion and synaptic function), which were also related to this
disease. The main reason is that the current formulation of
Odin only considers one center that may represent only one
module/pathway and thus other modules are not being cov-
ered. Thus, an extension of Odin that considers multiple cen-
tersmay significantly improve the complex disease prediction
and pathways covered.

In addition, other potential extensions also need to be
investigated. First, the proposed framework can be extended
to take into account not only LGDmutations but alsomissense
mutations to increase the prediction power. As we have
shown, there is clear enrichment of severe missense mutations
(CADD score .25) to genes closer to the predicted center.
We can adapt evolutionary based scores [e.g., CADD score
(Kircher et al. 2014) or polyphen-2 score (Adzhubei et al.
2010)] to define an additive summarization function to as-
sign a disruption score for each gene (i.e., a continuous value
in comparison to a binary value as done in this paper). Sec-
ond, we can integrate other information such as protein–
protein interaction (Sharan et al. 2007; Kim et al. 2011),
tissue-specific networks (Greene et al. 2015) or the regulation
of specifically related pathways [e.g., Wnt (Kalkman 2012) or
mTOR (Tang et al. 2014)] to increase prediction capability.
Furthermore, for the algorithm, we can improve the first
guessed solution of WUCDR (the first step of the iterative

Figure 1 A comparison between different methods on the ASD/ID prediction. The boxplot shows the results of different values of
a 2 f0;0:25;0:5;0:75; 1g (for glmnet) and of different values of k 2 ½1; 20� (for k-NN).
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Figure 2 ASD gene ranking by Odin. (A) The circle on the left illustrates six gene groups ranked by Odin (closer to the center means higher ASD rank)
and the enrichment of each group with known ASD gene (from SFARI gene collection), the bar chart on the right provides the number of genes, the
number of known ASD genes, and the enrichment (i.e., their ratio), respectively, of each group. (B) Enrichment of LGD variants disrupting one of top
391 genes in ASD/ID/DDD. (C) Enrichment of severe missense variants (CADD .25) of top 391 genes in ASD/ID probands. (D) Genes in the most inner
circle with at least four significant de novo variants.
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Figure 3 Further analysis of top 391 ASD genes selected by Odin. (A) Enrichment of expression of our selected genes in human brain development. The
reported P-values are calculated by the CSEA tool (http://genetics.wustl.edu/jdlab/csea-tool-2/) after Benjamini-Hochberg statistical correction. (B and C)
IQ and female:male ratio of three groups including all SSC probands, SSC probands with de novo LGD variants, and SSC probands with de novo LGD
variants in our selected 391 genes. (D) Pathway and GO term enrichment of top 391 ASD genes.
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method in Materials and Methods) by utilizing algorithmic
techniques in geometry. Finally, the framework proposed here
can be extended to predicting the risk of other neurological
disorders, such as schizophrenia, epilepsy, or Alzheimer’s
disease.
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Appendix

Complexity of the UCDR Problem

We show that an instance of the decision version of the UCDR problem is NP-complete.
Remark 1. Given a set of positive (rational) numbers. The problem of determining if there exists two disjoint nonempty

subsets whose elements sum up to the same value is NP-complete (Woeginger and Yu, 1992).
The problem in Remark 1 was called “equal subset sum problem.” Notice that the pair of two subsets in the solution is not

necessary a partition (i.e. there may be some elements that are in the original set but are not in either of these two sub-sets).
Theorem 2. Given a set of points in a n-dimension space where each point was assigned a color either blue or red. The

problem of determining if there exists a nonempty dimension subset and a center point such that all blue points are not farther
to that center point in comparison to red points (by the L1 norm in the reduced dimension space) is NP-complete. We call the
problem, the “UCDR decision problem.”

Proof. We will reduce the equal subset sum problem (Remark 1) to a special instance of the UCDR decision problem.
Assume we are given a set of positive rational numbers A ¼ fa1; a2; . . . ; ang We create two blue points

B1 ¼ ða1; a2; . . . ; anÞ;   B2 ¼ ð2a1; 2 a2; . . . ; 2 anÞ and one red point R ¼ ð0; 0; . . . ; 0Þ: We consider the UCDR decision prob-
lem of three points B1;B2; and R. Suppose that this UCDR decision problem has a solution that includes a dimension subset
I ¼ fi1; i2; . . . ; idg4f1; 2; . . . ; ng and a center C.

Now, we only consider the reduced space with d dimensions from I. We denote B19; B29; and R9 as the corresponding points of
B1; B2; and R, respectively, in the reduced space.

Let H be the smallest (by volume) L1 norm ball that has the center C and contains both B19 and B29: Thus, since B19 or B29 (or
both) must be on a facet of H, we can assume B19 is on a facet of H without losing generality. Since H is convex and
R9 ¼ ðB19 þ B29Þ=2; H also contains R9: But if B29 is not on the same facet of B19; then R9 will be inside H and thus
dðC;R9Þ, dðC;B19Þ: Therefore, both B19;B29 and R9 must be on the same facet of H. Let F be that facet, since H is a L1 norm
ball then any point ðxi1; xi2; . . . ; xidÞ 2 F must satisfy an equation that has the form

6xi16xi26 . . .6xid ¼ s

Since R9 ¼ ð0; 0; . . . ; 0Þ 2 F; so s must be 0. Thus we can rewrite the equation asX
ij2I1

xij 2
X
ik2I2

xik ¼ 0

where I1 \ I2 ¼ ∅ and I1 [ I2 ¼ I. Since B19 ¼ ðai1; ai2; . . . ; aidÞ 2 F thenX
ij2I1

aij 2
X
ik2I2

aik ¼ 0

but both aij and aik are in A that contains positive numbers only so I1 6¼ ∅ and I2 6¼ ∅: Therefore, the pair of two sets
A1 ¼ faijjij 2 I1g and A2 ¼ faikjik 2 I2g is a solution of the equal subset sum problem of the set A.

Thus, a solution of the UCDR decision problem is also a solution of the equal subset sum problem. Conversely, we can also
easily verify that a solution of the equal subset sumproblem is also a solution of theUCDRdecision problem. Therefore, ifwe can
solve the decision version ofUCDR thenwe can solve the equal subset sumproblemwhich is NP-complete (Remark 1). Since it is
easy to verify this problem is in NP, it is also NP-complete.

Further Analysis

Enrichment of non-LGD variants disrupting the selected genes and their regulatory elements in ASD probands
The whole genome of a total of 516 ASD simplex families from SSC was recently sequenced and de novo variants in the

affected probands and unaffected sibling were predicted and validated (Turner et al. 2017). Note that these families were
selected to be void of LGD variants based on WES. Thus, they were not part of the samples that contributed to Odin training.
However, we did observe a significant number of affected probands in comparison of unaffected siblings had non-LGD coding
and noncoding de novo variants disrupting the coding or the regulatory elements of the genes in the most inner circle (Figure
S1, A and B). The subset of genes in the selected 391 genes in themost inner circle, which had a de novo variant disrupting their
coding or regulatory elements in probands or siblings, is depicted in Figure S1, A and B. Furthermore, we also observed the
significant enrichment after removing the known SFARI high confidence and syndromic autism genes from the set of 391 genes
considered.

1494 L. Huynh and F. Hormozdiari



Protein interaction enrichment
We investigated the degree of change in genes in protein-interaction networks based on their weighted ℓ1 distance to the

center found using Odin. There is an interesting correlation between distance calculated byOdin for each gene and the average
degree of that gene in the protein-interaction network (Figure S1C).

Experiments Details and Commands

In the union of the ASD/ID datasets considered in this study (Table 1) there are a total of 684 affected ASD/ID cases/probands
with LGD variants, and 245 control and unaffected siblings with LGD variants. We compared the results of Odin against k-NN,
SVM, glmnet (Lasso and elastic-net), and random forest for predicting ASD/IDwith low FPR ð, 1%Þ:Weused a LOO approach
to compare these methods. We used the scores/confidence/probability outputted by each method for each prediction to
control the number of unaffected samples predicted as case by mistake (denoted as FPR). More specifically, in k-NN, we used
the difference of number of affected cases and unaffected controls in the k closest neighbor; for SVM and generalized linear
models, we used the predicted probability (or distance) given by the libSVM (Chang and Lin 2011) or glmnet (Friedman et al.
2010); for random forest, we changed the probability cut-off value for determining cases. For both glmnet and libSVM, the
optimal set of training parameters was first picked considering all the data as input. As such, parameters “gamma” and “cost” of
libSVM and the parameter s of glmnet were set to optimal values learned using the full dataset.

The exact commands used for each program is as follows:

SVM experiments
The command for training and testing used for SVM is based on libSVM version 3.21 implementation (Chang and Lin 2011).

Using the full dataset, we first found the optimal parameters for “gamma” and “cost” and set these to 0.25 and 0.03125,
respectively, for the libSVM classifier. Then, for the LOO experiment, we used the following commands in training dataset: svm-
train -b 1 -w0 5 -w1 1 -c 0.03125 -g 0.25 training-data, and, in the case of test data, we used the following command: svm-
predict -b 1 testing-data training-data.model output.

Lasso and elastic-net (glmnet) experiments
The commands used for glmnet (Lasso and elastic-net; Friedman et al. 2010). In training dataset, we use the follow-

ing command: fit=glmnet(training-data.features, training-data.class, alpha=a (we ran with parameters
a 2 f0; 0:25; 0:5; 0:75; 1g; and, in the case of test data, we used predict(fit, testing-data, s=0.042645) (the value s was
calculated as lambda:min as instructed in https://web.stanford.edu/hastie/glmnet/glmnet_alpha.html).

K-NN experiments
We implemented the k-NN classifier and tested and reported the results for k ranging from 1 to 20.

Random forest experiments
We used the package randomForest in R with the following command for training
rf ,- randomForest (training-data.features, training-data.class, ntree = 1000)
and the following command for testing
pred ,- predict(rf, testing-data, type=”vote”)
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