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Machine Learning Descriptors for Data-Driven Catalysis
Study

Li-Hui Mou, TianTian Han, Pieter E. S. Smith, Edward Sharman,* and Jun Jiang*

Traditional trial-and-error experiments and theoretical simulations have
difficulty optimizing catalytic processes and developing new,
better-performing catalysts. Machine learning (ML) provides a promising
approach for accelerating catalysis research due to its powerful learning and
predictive abilities. The selection of appropriate input features (descriptors)
plays a decisive role in improving the predictive accuracy of ML models and
uncovering the key factors that influence catalytic activity and selectivity. This
review introduces tactics for the utilization and extraction of catalytic
descriptors in ML-assisted experimental and theoretical research. In addition
to the effectiveness and advantages of various descriptors, their limitations
are also discussed. Highlighted are both 1) newly developed spectral
descriptors for catalytic performance prediction and 2) a novel research
paradigm combining computational and experimental ML models through
suitable intermediate descriptors. Current challenges and future perspectives
on the application of descriptors and ML techniques to catalysis are also
presented.

L.-H. Mou, J. Jiang
Hefei National Research Center for Physical Sciences at the Microscale
School of Chemistry and Materials Science
University of Science and Technology of China
Hefei, Anhui 230026, China
E-mail: jiangj1@ustc.edu.cn
T. Han
Hefei JiShu Quantum Technology Co. Ltd.
Hefei 230026, China
P. E. S. Smith
YDS Pharmatech
ETEC
1220 Washington Ave., Albany, NY 12203, USA
E. Sharman
Department of Neurology
University of California
Irvine, CA 92697, USA
E-mail: esharman@uci.edu

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202301020

© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202301020

1. Introduction

Catalysis plays an important role in mod-
ern chemical industry, with its many chem-
ical processes—such as energy conversion
and pollutant removal—that need catalysts
to greatly reduce input costs and increase
product yields.[1] Identifying optimal reac-
tion conditions, designing efficient cata-
lysts, and revealing catalytic mechanisms
are important research areas in the field of
catalysis. Experimental trial-and-error is the
classical research paradigm, in which one
variable is usually evaluated at a time, in-
curring the disadvantages of long timelines
and low efficiency. Moreover, traditional
experimental and computational methods
rely heavily on prior knowledge and are vul-
nerable to human cognitive biases. With
the development of computational chem-
istry, theoretical simulations mainly based
on density functional theory (DFT) calcu-
lations that incorporate simplified model

systems can capture the critical aspects of complex realistic sys-
tems and thus guide the rational design of experiments.[2] How-
ever, the dramatic increase in computational cost incurred as the
complexity of model structures increases poses a great challenge
to this approach.

Machine learning (ML) is a branch of artificial intelligence
that is capable of dramatically lowering this computational cost.
It can learn from existing data and generate a training model
for predicting results outside of the training dataset, thus pro-
viding a promising approach for accelerating catalysis research
progress.[3] Indeed, the recent trend of publications in ML-based
catalysis research obtained from the Web of Science database
(Figure 1) indicates that ML is being utilized increasingly in this
field. Some excellent reviews have summarized relevant works in
catalyst design and discovery and also have discussed the impor-
tance of the choice of suitable descriptors (also called features).[4]

Catalytic descriptors are representations of reaction conditions,
catalysts and reactants, that are extracted from original data
to describe target properties (e.g., yield, selectivity, adsorp-
tion energy, energy barriers, etc.) in a machine-recognizable
form.[5] Although the choice of ML algorithm is very important,
descriptor definitions play a decisive role in the prediction
accuracy of ML models, while algorithm optimization can
only bring the models as close to the upper limit of accuracy as
otherwise possible. Moreover, a key to the rational design of high-
performance catalysts is understanding quantitative structure–
activity relationships, which correlate catalytic descriptors
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Figure 1. Number of recent publications obtained by searching the top-
ics “machine learning/artificial intelligence” and “catalysis/catalyst” in the
Web of Science database.

with desired catalytic behavior. Therefore, mining effective
descriptors from the training data is a crucial step in ML-assisted
catalysis research. Most previous reviews focused primarily on
theoretical catalysis and related descriptors.[6] However, this
review will provide a comprehensive overview of the utilization
and extraction of descriptors derived from both experimental
data and theoretical calculations. One of its aims is to stimulate
thinking about how to use intermediate descriptors to combine
experimental and computational ML models so as to improve ac-
curacy and efficiency. We start with the introduction of common
descriptors used in ML models that can be trained on conven-
tional or high-throughput experiments or published data. Then,
the relatively plentiful descriptors extracted from computational
datasets are discussed, including their effectiveness and advan-
tages as well as their limitations. We highlight newly developed
spectroscopic descriptors for catalytic performance prediction
and a promising research paradigm combining large theoretical
and small experimental data sets through suitable intermediate
descriptors.

2. Experiment-Based Descriptors

In the 1990s, ML techniques were shown to possess high ef-
ficiency and accuracy when applied to experimental catalysis
research.[7] Kito and coworkers employed an artificial neural net-
work (ANN) to learn experimental data to predict the selectivity
of oxidative dehydrogenation of ethylbenzene on promoted and
unpromoted SnO2 catalysts. They used descriptors correspond-
ing to the nature of catalysts including the presence of unusual
valence, the amount and surface area of the catalysts, typical va-
lence, ionic radius, coordination number, electronegativity, par-
tial charges of oxygen ions, and standard heat of formation of
oxides. The selectivities of various products such as styrene, ben-
zaldehyde, CO, and CO2 were set as target properties.[7a] Their
prediction results suggested that, compared to a knowledge-
based expert systems approach, ANN requires less effort and la-
bor and gives much better predictions. Since catalytic reactions

on heterogeneous surfaces are very complex, catalytic perfor-
mance is usually determined by a multitude of factors. There-
fore, in some cases, additional factors including synthesis vari-
ables, operating conditions, and reaction conditions are also used
as descriptors in experimental ML models.[8] The relative signif-
icance of experimental factors for determining catalytic perfor-
mance can be estimated by descriptor importance analysis, which
can help researchers design new experiments more effectively by
narrowing down the search space. Taking tree-based models as
an example, importance is determined by reviewing the gener-
ated decision trees to determine descriptor prominence and fre-
quency during the decision process.

In addition to comprehensively describing a catalytic reac-
tion using different dimensions and types of descriptors, inge-
nious utilization of these descriptors is very important for guid-
ing the design of experiments. Copper catalysts are widely used
in the electrochemical CO2 reduction reaction (CO2RR) for pro-
ducing C1 species (e.g., CO, HCOOH, CH4, and CH3OH) and
C2+ species (e.g., C2H4, C2H6, C2H5OH, and C3H7OH).[9] Sub-
tle changes in morphology and surface structure of such cata-
lysts can be induced by a very wide range of additives during
catalyst preparation, leading to significant changes in product
selectivity.[10] The lack of clear structure–property relationships
associated with such a large number of possible additives ren-
ders the selection of optimal additive combinations difficult. To
solve this problem, Guo et al. developed a strategy incorporat-
ing three rounds of learning that combines experimental results
and ML,[11] and applied it to an additive library of 12 metal salts
and 200 organic molecules. Presence of a metal and/or func-
tional organic group was used to define input features of a cata-
lyst recipe for predicting its activity and selectivity. Starting from
analysis of a representative fraction of the more than 2000 com-
bination recipes from this library (Figure 2a), their method iter-
atively determined the effects on catalyst selectivity of a partic-
ular feature and of feature combinations, and finally identified
catalysts individually selective for generating predominantly CO,
HCOOH or C2+ products (Figure 2b). In the first round of learn-
ing, one-hot vectors of additives were combined to form descrip-
tors, each showing the presence or absence of a given metal or
functional group in a recipe (Figure 2b, right). The faradaic effi-
ciencies (FE) of various products were the outputs. Both qualita-
tive classification algorithms—such as decision tree, random for-
est, and XGboost[12]—and quantitative regression algorithms—
such as linear regression, the least absolute shrinkage and selec-
tion operator,[13] and gradient boost decision tree regressor[14]—
were used to predict target properties, so as to identify which fea-
tures were most critical for selectivity. The results showed Sn to
be the most significant and positive metal additive for FE-CO,
and the aliphatic OH group on an organic molecule to be the
most important feature for FE-C2+ (Figure 2c, right). To further
refine these critical features, in the second round of learning,
the local structure of the organic molecule was transformed by
molecular fragment featurization (MFF)[11,15] into a feature ma-
trix to be used as a descriptor set (Figure 2b, middle). Classifi-
cation and regression analyses suggested that besides the im-
portance of Sn for FE-CO, as found in the first round of learn-
ing, presence of a nitrogen heteroaromatic ring in an organic
molecule favors generating CO while an aliphatic amino group
favors generating HCOOH. Aliphatic amine presence was shown

Adv. Sci. 2023, 10, 2301020 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301020 (2 of 20)



www.advancedsciencenews.com www.advancedscience.com

Figure 2. a) An additive library that includes 12 metal salts (Variable 1, M) and more than 200 organic molecules (Variable 2) used to construct a set
of CO2 reduction electrocatalysts. b) The learning loop consisting of three iterative cycles of “experimental test–ML analysis–prediction and redesign”
to accelerate the search for high-performance catalysts. c) Feature importance of FE-C2+ obtained by gradient boost decision tree regressor analysis
in the first round of learning (right), the selected catalysts with maximal FE for different products after the second round of learning (middle), and the
experimentally-measured FE-C2+ values of three selected catalysts (left). FE = Faradaic efficiency; MFF = molecular fragment featurization. Reproduced
with permission.[11] Copyright 2021, American Chemical Society.

to have a positive effect on FE-C2+, as confirmed by the activ-
ity of the catalyst prepared with sorbitol as the organic additive
(Figure 2c, middle). In the third round of learning, the authors
used a “random intersection tree”[16] to examine important vari-
able combinations that have a positive or negative synergistic ef-
fect on catalytic selectivity. The results showed that combinations
of an aliphatic hydroxyl group with aliphatic carboxylic acids, an
aliphatic amine or aliphatic ammonium salts tend to enhance FE-
C2+, while combinations of aromatic rings, aromatic carboxylic
acids and nitrogen-containing heterocycles tend to reduce FE-
C2+. Following this finding, 24 molecules were designed and the
corresponding FE-C2+ was assessed by a voting regressor. Scores
of synthetic Bayesian accessibility (SYBA)[17] were also calculated
to predict whether the designed molecules were easy to synthe-
size (Figure 2b, left). Three commercially available molecules pre-
dicted to have high, medium or low FE-C2+ values were experi-
mentally tested, and found to produce FE-C2+ values of 28%, 7%
and 0% (Figure 2c, left), respectively, confirming the ML predic-
tion. This study demonstrated the potential of ML to accelerate

catalyst design by efficiently extracting information from a lim-
ited amount of experimental data.

Currently, the development of ML-assisted catalysis research
is largely limited by the scale and quality of experimental data.
High-throughput experimentation can produce large and con-
sistent datasets—which have less variability than conventionally
generated data—and is beneficial to the establishment of ML
models.[18] Nguyen et al. developed a high-throughput screening
instrument that enables the rapid, large-scale measurement of
changes in product composition produced by widely varying cat-
alytic reaction conditions maintained in a well-defined, process-
consistent manner.[18a] They exploited this instrument to auto-
matically evaluate the performance of 20 catalysts under 216 re-
action conditions and obtained a data set comprised of 12 708
data points. Such a catalyst data set covering a parametric space
of both catalysts and process conditions proved to be essential
for understanding how to optimize catalysts and processes co-
operatively to improve the selectivity of target products. In this
process, the selected descriptors encompassing the information

Adv. Sci. 2023, 10, 2301020 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301020 (3 of 20)



www.advancedsciencenews.com www.advancedscience.com

Figure 3. a) C2 selectivity versus CH4 conversion of the oxidative coupling of methane obtained by high-throughput experiments. The color represents the
temperature. b) Importance analysis by random forest classification. c) Average density, electronegativity, electron affinity, and first and second ionization
energies of predicted high-C2-selectivity catalysts. In each plot, a horizontal line represents the descriptor average over all data for comparison. ion-e_1st
= first ionization energy; ion-e_2nd = second ionization energy; e-aff-ev = electron affinity; Pauling_e-neg = Pauling electronegativity; Group = periodic
table group. Reproduced with permission.[18c] Copyright 2022, American Chemical Society.

of both catalyst design and experimental process conditions were
vital for the accurate prediction of catalytic performance. In addi-
tion to generating large datasets containing tens of thousands of
data points, the high-throughput screening instrument can also
be used to provide a bias-free dataset based on random sampling
over a huge material space. The power of bias-free datasets in
finding novel catalysts as well as generating catalyst design guide-
lines has been demonstrated.[19]

The underlying factors regulating catalytic performance can
also be revealed by employing ML tools to learn from a large
high-throughput experimental dataset. Ishioka et al. explored
descriptors for product selectivity in the oxidative-coupling-of-
methane (OCM) reaction using ML and physical quantities de-
rived from the periodic table.[18c] The large catalyst data set gen-
erated from high-throughput experiments contained 31 334 data
points, spanning a variety of process conditions (e.g., tempera-
ture and gas flow), and support and catalyst compositions. The re-
lationship between the measured conversion of CH4 (CH4_conv)
and selectivity of C2H4/C2H6 (C2s) as a function of reaction tem-
perature was visualized using a scatter plot (Figure 3a). An unsu-
pervised ML algorithm—hierarchical clustering—first classified
data at each temperature into three groups based on dendrogram
distance, where C2s was used as the objective variable. Three se-
lectivity classification groups (low, medium, and high C2s) were
then treated as objective variables for supervised classification

modeling. Nineteen physical quantities were selected as descrip-
tors for determining the relationship between these quantities
and catalyst C2s selectivity. Two classifiers—random forest clas-
sifier (RFC)[13] and support vector classifier (SVC)[20]—produced
accurate predictions with cross-validation scores of 0.67–0.84.
Feature importance analysis by RFC disclosed 5 highly important
descriptors for predicting C2s: first and second ionization ener-
gies, electron affinity, Pauling electronegativity, and density (Fig-
ure 3b). In the next step, these 5 most important descriptors and
the trained RFC and support vector classifier (SVC) models were
used to predict catalysts having high C2s from the 62 196 catalysts
that were created through permutations of three elements avail-
able from the 71 elements. By including support composition
identities as additional descriptors, the ML models predicted that
3 previously unreported catalysts (Ti-V-Ce-BaO, Y-Y-Eu-TiO2, and
La-Pr-Hf-BaO) would have high C2s values, as was then vali-
dated experimentally. Finally, the authors investigated the phys-
ical meaning of the 5 descriptors. For the set of three-metal cat-
alysts with predicted high-C2-selectivity, values for each of the 5
important descriptors are shown (Figure 3c); for each descriptor,
a line denoting the descriptor average over all three-metal com-
binations is shown for comparison. It can be concluded that cat-
alysts predicted to have high-C2s selectivities tend to have low
first ionization energies, electron affinities and electronegativi-
ties, while their high second ionization energies and densities
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Figure 4. a) Five descriptor families are obtained by factor analysis for 14 descriptors. Larger radial component indicates larger contribution of a descrip-
tor to the factor. The factors can be considered as descriptor families, related to covalency (green), electrostatics (gray), structure (yellow), exchange
interaction (red) and electron occupancy (dark gray). b) Heatmap of relative OER activity predictions for ABO3 perovskites using the least angle regres-
sion model and data mined from the Materials Project database. Warmer colors indicate higher relative OER activity. Reproduced with permission.[22]

Copyright 2015, American Chemical Society.

are comparable to the averages. This study demonstrated the fea-
sibility of using fundamental physical quantities as alternative
catalytic descriptors for designing heterogeneous catalysts.

To avoid the high cost of high-throughput experiments, obtain-
ing a large data set from published papers has been an effective
approach for mining catalytic descriptors.[21] Hong et al. collected
101 oxygen evolution reaction (OER) activities of 51 perovskites
(ABO3, where A is a rare-earth or alkaline-earth metal and B is
a transition metal) from previous works and their experimen-
tal measurements.[22] Fourteen descriptors that may control the
surface metal–oxygen bonding were explored in terms of their
relationships and predictive power using several statistical ap-
proaches including factor analysis[23] and linear regression mod-
els. Factor analysis demonstrated that these 14 descriptors could
be classified into five descriptor families, associated with the ox-
ide’s metal–oxygen covalency, electrostatics, structure, exchange
interactions and transition-metal electron occupancy (Figure 4a).
Among them, electron occupancy and covalency have the domi-
nant influences on OER activity. However, to obtain the best pre-
dictive models, a linear combination of nine descriptors was nec-
essary, demonstrating the importance of considering multiple de-
scriptors in predicting OER activity. Based on the important de-

scriptors so identified, they performed a large-scale screening of
relative OER activities of ABO3 perovskites from the Materials
Project database.[24] Figure 4b shows the heatmap of predictions
generated by the best-performing least angle regression model.
It can be seen that higher activities occur for late-transition metal
oxides, and isovalent substitutions of the A-site cation have a
moderate influence on relative OER activity. Günay et al. also car-
ried out a series of ML analyses on published data of important
catalytic reactions for the purpose of extracting additional knowl-
edge from them.[25] By using catalyst preparation variables, op-
erating variables and reaction conditions as descriptors for the
prediction of catalytic performance, the authors determined the
effects and relative significance of these features and predicted
the outcome of unstudied conditions. These studies provide a
promising approach for extracting effective catalytic descriptors
that can be used to rapidly screen OER electrocatalysts across a
wide chemical space.

To summarize, by applying descriptor-based ML techniques,
great progress has been made in experimental catalysis research.
Readily available or economically-generated parameters are usu-
ally used as catalytic descriptors for experimental ML mod-
els; these include synthesis conditions, reaction conditions, and
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physical quantities of catalysts obtained from periodic trend data
or materials databases. However, this field is still in its infancy
due to the time and cost of obtaining experimental data. More-
over, although information from structural characterization of
catalysts and reaction intermediates might be more useful, it is
very expensive and sparse, limiting the application of ML and
making the exploration of catalytic mechanisms at an atomic
level challenging.

3. Theory-Guided Descriptors

Theoretical simulations can provide rich geometric and elec-
tronic information for developing catalytic descriptors that are
largely beyond the simple observables derived from experiments.
For theoretical models of catalysis, the activity of catalysts is usu-
ally evaluated by reaction and activation energies on the potential
energy surface; catalytic mechanisms can also be unveiled by an-
alyzing the reaction path, charges, free energies, and so on. More-
over, application of Brønsted–Evans–Polanyi (BEP) relations that
link activation barriers with reaction enthalpies and scaling rela-
tionships between adsorption energies of reaction intermediates
have greatly simplified DFT computations.[26] These methods en-
able direct extrapolation of activity trends from adsorption ener-
gies of key species, thus avoiding time-consuming activation bar-
rier calculations and reaction path analyses. Although adsorption
energy is an important descriptor of catalytic activity, it is difficult
to assess experimentally, making the design of catalysts directly
based on it impractical. Descriptors that are simple and easy to
compute or measure are being actively explored to correlate ad-
sorption energy and thus catalytic activity. This process can be
accelerated by ML models for which adsorption energy is an im-
portant prediction target.

3.1. Intrinsic Atomic Property Descriptors

For predicting adsorption energy, intrinsic atomic properties that
can be obtained from the periodic table, handbooks or material
databases are of great value; their use can improve the efficiency
of catalyst discovery and make ML models more interpretable.[27]

Supported catalysts are known to perform well in many cat-
alytic reactions; however, the complicated nature of the inter-
faces between support atoms and substrates poses a great chal-
lenge to rationally design excellent catalysts by traditional re-
search methods. To overcome this challenge, Ren et al. combined
DFT calculations and ML techniques to develop a simple and
universal descriptor based on inherent atomic properties (elec-
tronegativity, electron type, and number). They employed this
method to design 2D materials supporting dual-atom electrocat-
alysts (DACs@2D) that possess superior activity and selectivity
for CO2RR.[27e] For a catalytic metal atom M interacting with the
set of coordination atoms X, the proposed descriptor 𝜑 was ex-
pressed as 𝜑 = (𝜒M + ∑𝜒 x) + Nd/p, in which the two terms
(𝜒M + ∑𝜒 x) and Nd/p represent the coordination environment
defined by electronegativities 𝜒 and the number of d or p elec-
trons, respectively, of metal atom M (Figure 5a). This descrip-
tor actually quantifies the complicated interfacial effects operat-
ing in the DACs@2D system that ultimately determine the cat-
alytic performance of the metal centers. Due to the conservation

of orbital symmetry, d electrons dominate the binding strength
between catalysts and intermediates related to CH4 or CH3OH
production, while p electrons are the determining factor for the
activity of CO2RR to HCOOH. Therefore, the descriptor 𝜑1 (𝜑1
= (𝜒M + ∑𝜒 x) + Nd) can well evaluate the activity of CO2RR
to CH4 or CH3OH, corresponding to a volcano-type curve by
plotting the onset potential Uonset

CH4∕CH3OH as a function of 𝜑1 (Fig-
ure 5b); the activity for HCOOH production can be evaluated
well by using 𝜑2 (𝜑2 = (𝜒M + ∑𝜒 x) + Np) as the descriptor, and
the onset potential Uonset

HCOOH proved to have a volcano-type lin-
ear relationship with 𝜑2 (Figure 5c). According to these linear
relationships, a design or screening procedure for DACs@2D
that produced excellent activity and product selectivity was es-
tablished (Figure 5b). The procedure commenced by first cal-
culating the values of 𝜑1 and 𝜑2 and their difference, then de-
termining differential product selectivity according to whether
their difference was larger or smaller than 6, and finally eval-
uating the activity for specific products according to the values
of 𝜑1 or 𝜑2. Following this procedure, a fast design/screening
to identify highly active DACs@2D with CO2RR product selec-
tivity for predominately either CH4/CH3OH or HCOOH was
achieved. Interestingly, although the descriptor 𝜑 was proposed
based on Cu-containing DACs@2D, it was also applicable to Cu-
free DACs@2D for CO2RR, as reflected by the accordance of
data points of Cu-free DACs@2D with the volcano relationship
established by Cu-containing DACs@2D (Figure 5c). More im-
portantly, the descriptor 𝜑 is also applicable to other electrocat-
alytic reactions such as the N2 reduction (NRR) and O2 reduction
(ORR) reactions. This study developed a simple and universal
descriptor replacing experimentally unavailable adsorption ener-
gies to predict potentially useful supported catalysts for electro-
chemical reduction reactions.

3.2. Electronic and Structural Property Descriptors

Descriptors based on intrinsic atomic properties usually fail to
describe more complex systems, as the electronic and geomet-
ric structures peculiar to the active sites have to be considered.
The d band chemisorption theory and its recent developments[28]

that relate electronic properties of active sites to adsorption en-
ergies of key intermediates have been one of the most success-
ful descriptors for pristine transition metal surfaces and their
alloys.[29] Li et al. combined DFT-calculated d-band features of
active sites and an ANN model to learn and predict adsorption en-
ergies of *CO and *OH on alloy surfaces for the rapid screening
of bimetallic catalysts.[29b] The d-band features used include fill-
ing (zeroth moment up to the Fermi level), center (first moment
relative to the Fermi level), width (square root of the second cen-
tral moment), skewness (third standardized moment), and kurto-
sis (fourth standardized moment). In addition, local electroneg-
ativity was also selected to assess the contribution of sp-electron
density to adsorption energies. Once well-trained, ANN models
for *CO and *OH data sets led to root-mean-squared errors be-
tween predictions and DFT calculations for new bimetallic cat-
alysts of about 0.2 eV, and suggest 3d-metals, for example, Fe,
Co and Ni, as promising additives in bimetallic catalysts for the
methanol electro-oxidation reaction. Feature importance analysis
was carried out using normalized sensitivity coefficients, which
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Figure 5. a) Relation between catalyst structure and the proposed descriptor pair 𝜑1 and 𝜑2 (for symbol definitions, see text). Volcano plot for b)
Uonset

CH4∕CH3OH versus the descriptor 𝜑1 and for c) Uonset
HCOOH versus the descriptor 𝜑2. d) Design/screening procedure for highly active DACs@2D’s that

possesses high product selectivity for the CO2RR using 𝜑1 and 𝜑2 descriptors. e) Relationship between the onset potentials of Cu-free DACs@2D
and the proposed descriptor for the CO2RR. Rectangles represent experimental values. MAE = mean absolute error. Reproduced with permission.[27e]

Copyright 2022, American Chemical Society.

reflect the degree of dependency of a target property on a given in-
put feature. The normalized sensitivity coefficients for *CO and
*OH adsorption energies with respect to six primary features
are shown in Figure 6. The results indicate that *CO adsorp-
tion has a strong dependence on d-band features because CO has
unoccupied 2𝜋* molecular orbitals right above the Fermi level
available for hybridization, while *OH adsorption has a strong
dependence on sp-band properties that are determined by lo-
cal electronegativity. Existence of linear dependence between the
six primary features and the *CO/*OH adsorption energies (Fig-
ure 6, inset) was affirmed by affinity propagation and graphical
lasso algorithms,[30] which confirmed that d-states and sp-states
act as distinct governing factors of *CO and *OH adsorption on
bimetallic catalyst surfaces.

Although d band theory has been widely used for metal
catalysts, it is less successful in predicting the catalytic activity of
metal oxides, such as perovskite oxides, for which the occupancy

of antibonding eg orbitals has proven to be a good descriptor in
the oxygen reduction reaction.[31a] Li et al. developed an adaptive
ML strategy to search high-performance ABO3-type perovskites
for catalyzing OER and revealed that the eg orbital characteristics
of the metal B-site are underlying factors that govern catalytic
activity.[29d] By learning the correlations between the selected
descriptors (i.e., compositional and electronic structures) and
the adsorption energies (i.e., of *O and *OH) of the ≈250
perovskites initially computed, a Gaussian process regression
(GPR) model quickly estimated the adsorption energies of ≈4000
AA′B2O6 double perovskites, and finally singled out stable struc-
tures with promising OER activity. Then, Kullback–Leibler (KL)
divergence analysis[31b,c] was performed to understand physical
factors governing the OER activity. A large KL divergence value
indicates that the corresponding descriptor is informative and
plays an important role in distinguishing the samples from
two categorical classes. The results indicated that the electronic
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Figure 6. Feature importance scores for *CO and *OH adsorption ener-
gies based on sensitivity analysis of ANN models. The inset shows the
linear dependence among input features and adsorption energies. Node
size is proportional to the degree of linear dependence of one variable on
the others. Reproduced with permission.[29b] Copyright 2017, The Royal
Society of Chemistry.

structure descriptors are more informative than the composi-
tional descriptors in distinguishing the candidates with high and
low OER activity. The topmost informative descriptors with KL
divergence higher than 0.4 are shown in Figure 7. It can be con-
cluded that the eg orbital (i.e., dz2, dx2−y2) properties, specifically
the eg electron occupancy including dz2 filling and dx2−y2 filling,
are closely related to perovskite OER activity. From the molecular
orbital point of view, this is because the dz2 orbital, one com-
ponent of eg orbitals, directly overlaps the p orbitals of oxygen
intermediates at a superficial site. This study illustrates that
electronic structure descriptors have advantages in disclosing
the underlying physical factors that govern catalytic activity.

As different electronic characteristics are derived from dif-
ferent geometric structures, effective geometric descriptors can
differentiate among the local environmental characteristics of
various active sites, thus predicting adsorption energies and
establishing structure–property relationships. Various effective
geometric descriptors have been developed for use in hetero-
geneous catalysis research, such as bond length,[32] rotational
angle,[33] Smooth Overlap of Atomic Positions (SOAP),[34] Many-
Body Tensor Representation (MBTR),[35] Atom-Centered Symme-
try Functions (ACSF),[36] Coulomb Matrix (CM),[37] coordination
number[38] and so on. Wexler et al. discovered that the Ni–Ni
bond length is the most important descriptor among many other
structural and electronic descriptors in determining hydrogen
evolution reaction (HER) activity of Ni3P2(0001) under different
doping concentrations.[32a] Further experiments that applied me-
chanical pressure to compress and expand the Ni3-hollow sites
showed that the effects of mechanical pressure and chemical
pressure via nonmetal doping are in excellent agreement, indi-
cating that the local geometry of active sites can be more im-
portant than their electronic character for determining catalytic
activity. MBTR and CM are global descriptors based on a ten-

sor representation and coulomb repulsion, respectively. In con-
trast, SOAP and ACSF are local descriptors. The former repre-
sents the local environment around a central atom by determin-
ing rotationally-invariant Gaussian-smeared positions of neigh-
boring atoms, while the latter expresses neighboring atomic dis-
tances and angular interactions by symmetry functions for each
atom in a system. Jäger et al. analyzed the performance of the
structural descriptors SOAP, MBTR, ACSF, and CM as applied
to the prediction of hydrogen adsorption energy on the surface
of nanoclusters including MoS2 and AuCu.[39] SOAP performed
significantly better than the others, so it can be a good choice
for nanocluster adsorption energy predictions. Moreover, the au-
thors found that the combination of SOAP with MBTR did not
improve the predictive accuracy over SOAP alone, indicating that
the local environment plays a dominant role in hydrogen adsorp-
tion. However, when dopants or defects were added to nanoclus-
ters, the addition of global descriptors improved the learning.
This indicates that metal identity becomes more difficult to de-
scribe as catalyst complexity increases.

High-entropy alloys (HEA) are also very complex catalysts due
to the immense chemical space that they span. Therefore, pre-
dicting catalytic performance of HEA catalysts is quite challeng-
ing due to the enormous number of active sites that may be de-
scribed by the “ligand effect” and the “coordination effect.” As
the former reflects surface electronic structure, its magnitude
is dominated by metal element identity, while the magnitude of
the latter—describing as it does surface geometric structures—
is determined by the characteristics of crystal facets and defects.
To account for both ligand and coordination effects on the cat-
alytic performance of HEA catalysts (Figure 8a), Lu et al. pro-
posed a novel and simple representation of metal identity using
elemental properties (i.e., period number, group number, atomic
radius), coordination number (CN), and the proximity to adsor-
bate (i.e., at the active site or nearest neighbor).[38c] When applied
to the ORR, the above descriptors combined with a NN model
can predict with high accuracy [the testing mean absolute error
(MAE) and RMSE are 0.09 and 0.12 eV, respectively] the adsorp-
tion energies of OH*, a key ORR reaction intermediate, on Ir-
PdPtRhRu HEA catalysts. Despite the challenges in bridging the
theory-experiment gap, general agreement was found between
experimentally measured activity and NN-predicted adsorption
energy (Figure 8b). The authors also found that using only the
simple CN descriptor can predict catalytic performance, imply-
ing that CN is the dominant influence on the adsorption energy.
By simplifying the complex NN model to a linear scaling model
at a slight loss of accuracy, a numerical relationship between CN
and adsorption energy was obtained (Figure 8d). In this simpli-
fied model, element (i) refers to the element identity of ith atom
in the IrPdPtRhRu catalyst. CNi is the coordination number of
the ith atom, and E0 (intercept), aelement( i), and belement( i) are pa-
rameters to be fitted. It shows that the contribution of each atom
to the adsorption energy is weighted by both its CN and a factor
specific to its elemental identity and its proximity to adsorbate.
After performing least-squares fitting using the same 50%/50%
training/testing dataset split as in NN model, the testing MAE
and RMSE are 0.13 and 0.16 eV (Figure 8c), respectively, slightly
higher than those from NN. This confirmed the major contribu-
tion of CN between the active site and nearest neighbor atoms to
the adsorption energy.
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Figure 7. Polar distribution plots of the most informative descriptors with Kullback–Leibler divergence >0.4. Reproduced with permission.[29d] Copyright
2020, American Chemical Society.

3.3. Multilevel Attention Mechanisms-Identified Descriptors

The above works illustrate that both intrinsic atomic properties
and electronic and geometric structures have been widely utilized
as catalytic descriptors in theoretical ML models. The choice of
appropriate descriptors usually requires expert experience with
the studied systems, and the combination of these descriptors
has proven to be a successful strategy to improve predictive
accuracy.[40] Beyond constructing effective descriptors through
human intuition, the attention mechanism of deep learning
models can help identify important features that have the poten-
tial to serve as effective descriptors for the prediction of target
variables. Ma et al. have developed a multilevel attention graph
convolution neural network (MA-GCNN) that has been applied
to predict the energies of hydroxyapatite nanoparticles[41] and
the quantum chemical properties of organic molecules.[42] For
a given molecule, the weights assigned to different effects of ad-
jacent atoms on the central atom are called “attention.” In con-
trast to other attention algorithms that use “attention” at a sin-
gle specific step, MA-GCNN applies multilevel attention at every
message-passing step, gradually capturing the influence of dif-
ferent atomic nodes at each time step.

By using MA-GCNN, Gu et al. identified the important roles
played by hydrogen bonding (HB) interactions and metal coordi-
nation (metal acidity) in predicting reaction energies of the NRR
in metal-zeolites, which motivated them to select HB features
and local acidity (LA) as descriptors for constructing explainable
ML models.[43] As shown in Figure 9a, the atom and bond of a
metal-zeolite can be regarded as the node and edge of a graph,
respectively, and then a MA-GCNN model was used to predict the
energy changes (ΔE: the relative energy to free N2; ΔΔE: energy
difference between two successive steps) of the NRR process. The
GCNN model provided good predictions with either training or
test sets as inputs, with a MAE of 0.55 eV and a coefficient of de-
termination (R2) of 0.90. The results of the attention mechanism
for the three main hydrogenation and dehydrogenation steps are
shown in Figure 9b. Attention gave large weights (red color) to the
metal centers (M, e.g., Ti), intermediates (NN*, NNH*, NH2*,
NH3*, NNH3*, N*), and HB interactions between the H atoms
of intermediates and O atoms of channels. Quantitative analysis
showed that channel O atoms have relatively high importance
values (ImO), for example, ImO = 0.65 in Ti-zeolite. By correlat-
ing the number of HBs (NHB) and the relative energy changes
ΔΔE, the effects of HB interaction were revealed. Specifically,

Adv. Sci. 2023, 10, 2301020 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301020 (9 of 20)



www.advancedsciencenews.com www.advancedscience.com

Figure 8. a) HEA catalyst example input features (green, blue and red indicate ligand, coordination and nearest-neighbor descriptors, respectively),
the NN layout, and the structure corresponding to the example input. b) Comparison between NN-predicted adsorption energy and experimentally
measured ORR activity. c) The NN model could be simplified to a linear scaling model at a slight loss of accuracy. d) The linear relationship between the
adsorption energy and the CN descriptor, where CNi is the CN of the ith atom, and E0, aelement( i) and belement( i) are parameters to be fitted. Reproduced
with permission.[38c] Copyright 2020, Cell Press.

the hydrogenation steps N2* → NNH* (ΔΔEDFT = −1.12 eV) and
NH2* → NH3* (ΔΔEDFT = −0.96 eV) in Ti-zeolite became more
exothermic as the number of HBs increased from 0 to 1 and 2 to
3, suggesting that the hydrogenation steps are HB-favorable. In
contrast, the dehydrogenation step NNH3* → N* is energetically
unfavorable, with ΔΔEDFT = +4.23 eV. These results emphasize
the important role of HB interactions in the NRR process. To
capture the significant effect of metal atoms, the LA descriptor
was defined as the combination of the electronegativity, first ion-
ization energy, and atomic radius of the embedded metal (Fig-
ure 9c). By using the number of HBs, LA, geometric and other
parameters (dMN: distance between the metal and N atom; PLD:
pore largest diameter; NH and NN: the number of H and N atoms
in the intermediate) and a charge descriptor (ΔQCT: the charge
variance of the metal center), the reaction energies (ΔE) along
the NRR pathway could be accurately predicted by the XGBoost
model, with MAE of 0.51 eV and R2 of 0.84. The predicted max-
imum energy inputs ΔΔEmax were in qualitative agreement with
the experimental NH3 yield, indicating the feasibility of the MA-

GCNN model for guiding the design of experiments. By employ-
ing SISSO (discussed in detail below), a linear equation between
SISSO descriptors and relative energies was obtained, which con-
firmed the synergistic effect on the reaction energies between
metal coordination and HB interactions. The LA descriptor has
good transferability to metal-containing and B-doped 2D mate-
rials and other porous materials, such as metal–organic frame-
works (MOFs) and covalent–organic frameworks (COFs).

3.4. SISSO Method-Constructed Descriptors

Data-driven descriptors constructed by the compressed sensing
method SISSO (sure-independence screening and sparsifying
operator)[44] have also shown effectiveness in predicting catalytic
activity. Based on a combinatorial pool of features and mathe-
matical operators, SISSO can handle high-dimensional and non-
linear relationships and identify the best descriptor out of an
immensity of even billions of candidates,[45] an impossible task
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Figure 9. a) A flowchart of ΔE (relative energy to free N2) and ΔΔE (energy difference between two successive steps) prediction by a multilevel attention
graph convolutional neural network (GCNN) applied to NRR metal-zeolite catalysts. b) The multilevel attention mechanism reveals that hydrogen
bonding (HB) interactions favor the hydrogenation step but disfavor the dehydrogenation step. DFT calculated ΔΔE values for these steps are given.
Red and blue colors denote relative weights of 1 and 0, respectively. c) Descriptors used for predicting ΔE and the results predicted by the XGBoost
model. MAE = mean absolute error; PLD = pore largest diameter; NHB = number of hydrogen bonds. Reproduced with permission.[43] Copyright 2022,
The Royal Society of Chemistry.

for either human intuition or linear models. In many cases,
SISSO-generated high-dimensional descriptors can have much
higher prediction accuracy than their low-dimensional counter-
parts, while maintaining similar levels of interpretability.

By using the SISSO method with primary features related to a
metal—its identity, bulk, surface, and adsorption site—Andersen
et al. constructed new descriptors, expressed as nonlinear func-
tions of a number of primary features, that predicted adsorption
energies with better accuracy and generality than previous ap-
proaches such as scaling relations.[45a] Comparison of the predic-
tive ability of the d-band center and scaling relations with the best

SISSO descriptors on single-atom (SA) and AB bimetallic alloys
demonstrated great improvement of the new SISSO descriptors
compared to the other two approaches (Figure 10a, left). Note
that the 8D-Φ3 descriptor was identified using the alloy valida-
tion dataset alone, while the 8D-Φ1 descriptor was identified by
including 50% of the (111), (110) and (100) facet dataset to achieve
a good compromise in accuracy between alloy composition and
facets. Indeed, the much less complex 8D-Φ1 descriptor has a bet-
ter predictive performance when applied to low-index fcc facets
than the 8D-Φ3 descriptor (Figure 10a, right)—indicating that the
SISSO descriptor has good transferability across a wide range of
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Figure 10. a) Box plots of the absolute errors for the d-band center, scaling relations, and best SISSO descriptors. The upper and lower limits of the
rectangles mark the 75th and 25th percentiles; the internal horizontal line marks the median, and the error bars mark the 99th and 1st percentiles. The
crosses mark the maximum absolute errors. SA = single atom alloy; AB = bimetallic alloy. Reproduced with permission.[45a] Copyright 2019, American
Chemical Society. b) Violin plot of the distribution of absolute validation errors for theΦ2-2D andΦ0-1D descriptors. c) Negative theoretical overpotential
𝜂the as a function of O* adsorption enthalpy. The black curve is the volcano predicted from the standard scaling relations. Selected DFT-computed (green)
and corresponding SISSO-predicted (red) theoretical overpotentials are shown. Reproduced with permission.[45b] Copyright 2021, American Chemical
Society. d) High-throughput screening of single-atom-alloy catalysts by SISSO. Promising candidates at different temperatures are highlighted. Vertical
and horizontal axes display the guest atom type and the host metal surfaces, respectively. Reproduced with permission.[47] Copyright 2021, Springer
Nature.

structural motifs. More recent work has demonstrated that the
SISSO method can also design good descriptors for adsorption
enthalpies of OER intermediates on various facets of doped IrO2
and RuO2, for which the standard scaling relations (OOH* ver-
sus O*, OH* versus O*) in the form of simple correction terms
cannot give reliable predictions.[45b] The best SISSO descriptor
5D-Φ3 based on only electronic and primary geometric features
calculated assuming a clean surface performed better than the
scaling approach in terms of accuracy and computational cost.

By adding the O* adsorption enthalpy to the set of primary fea-
tures, a less complex but more accurate 2D-Φ2 descriptor was ob-
tained, with a maximum absolute error (MAE) reaching 0.56 eV,
while the 5D-Φ3 and standard scaling relations yielded larger
MAEs of 0.65 and 1.26 eV, respectively (Figure 10b). More im-
portantly, the 2D-Φ2 SISSO descriptor containing both O* ad-
sorption enthalpy and features related to local charge transfer
provided refined scaling relations; these correctly identified Co
and Fe dopants as promising OER electrocatalysts in agreement
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with previous experimental work.[46] The SISSO-refined scaling
relation reliably captured those data points that deviated signifi-
cantly from the standard scaling relations-derived volcano curve
(Figure 10c). Compared to the actual DFT-computed theoretical
overpotential, the uncertainty of the SISSO-derived overpotential
is on average similar to the intrinsic DFT error of 0.2 V, as re-
flected by the closeness of the green (DFT) and red (SISSO) data
points. Again combining DFT calculations and SISSO, Han et al.
reported a fast yet reliable high-throughput method for screening
more than five thousand single-atom-alloy catalysts (SAACs) of
hydrogenation reactions; this method reduced the computational
time by at least a factor of one thousand compared with a pure
DFT approach.[47] Their screening criteria included the hydro-
gen binding energy, the H2 dissociation energy barrier, and the
guest-atom segregation energy evaluated in the presence of ad-
sorbed hydrogen. Accurate predictions were obtained by SISSO-
derived descriptors that were constructed based on only 19 pri-
mary features of the host surfaces and guest single atoms. Be-
sides correctly evaluating the performance of the experimentally-
tested SAACs, more than 200 yet unreported promising candi-
dates were identified as having improved stability and activity
compared to the catalysts in the original test set. As shown in
Figure 10d, 160 SAACs (in green) were predicted to be both ac-
tive and stable at 200 K, and 102 SAACs (in blue and green) were
classified as promising candidates for hydrogenation reactions at
a higher temperature (700 K).

SISSO-constructed descriptors are usually complex analytic
formulas, reflecting the complexity of the relationships between
the primary features and the target properties. While potentially
interpretable, SISSO by itself does not provide a straightforward
way of evaluating the relative importance of different features for
identifying desirable changes in target properties. However, the
data-mining method Subgroup Discovery (SGD) has proved use-
ful for facilitating a physical understanding of SISSO descriptors.
Given a data set and a target property, the SGD algorithm identi-
fies local patterns that maximize or minimize a quality function
and describes them as an intersection of simple inequalities in-
volving a defined set of features and a set of adjacent data cluster
borders (a1, a2,…), for example, “(feature1 < a1) AND (feature2 >

a2) AND ….”[48] From this, SGD identifies both the most impor-
tant subgroups and the relevant primary features for a given tar-
get property. Through a qualitative analysis of complex SISSO de-
scriptors by SGD, Han et al. revealed the actuating mechanisms
for desirable changes in the target properties, for example, in-
creasing the catalyst’s stability and reducing the reaction barrier,
in terms of basic features of the material.[47]

3.5. Spectral Descriptors

The above excellent works demonstrate the importance of pre-
dicting interactions between catalysts and adsorbates for catalyst
design or screening. Considering the large range of catalyst types
and adsorbates, exploration for efficient and general descriptors
is a long-pursued goal. An ideal descriptor should be a function
involving electronic characteristics of both catalysts and adsor-
bates and contain information on spatial electronic distribution
(and therefore must be a vector rather than a scalar), and last but
not least, produce quantitative values accessible by both experi-

mental measurement and theoretical computation. The descrip-
tors usually employed, such as basic atomic properties, and elec-
tronic and geometric structures, hardly meet any of the afore-
mentioned requirements.[49]

Recently, our group proved the effectiveness of the electric
dipole descriptor for predicting surface–adsorbate interactions
including adsorption energy (Eads) and charge transfer (Δe).[50]

The electric dipole moment parameters provide both quantitative
and spatial information about electron distributions and are both
experimentally measurable and theoretically computable. Using
a NN ML technique, the Eads and Δe of CO and NO adsorption
on an Au(111) surface were first investigated based on calcula-
tions of 10 000 adsorption configurations, generated by chang-
ing the adsorption angles 𝜑 (from 0 to 90°) and 𝜃 (from 0 to 180°)
in small steps and then performing static calculations directly.
Two descriptors were extracted from the surface-dipole (dsur) and
molecule-dipole (dmol) moments, that is, the dipole–dipole inter-
action potential energy (Vdd) and the angle 𝛼 between dsur and
dmol (Figure 11a), quantities which have been shown to have a sig-
nificant impact on charge/energy transfer.[51] In addition, two de-
scriptors widely used in catalysis research, work function (WF)[52]

and d-band center (𝜖d),[29c] were also included. The four selected
descriptors more accurately predicted Eads and Δe of CO and NO
adsorption on an Au(111) surface compared to DFT calculations.
More importantly, the trained NN model using NO/CO@Au(111)
can be applied to the interactions between molecules and addi-
tional substrates such as Au(001) and even Ag(111). Figure 11b
shows the comparison of NN-predicted and DFT-calculated Eads
and Δe values for CO adsorption on Ag(111). This comparison
indicates that very accurate predictions with high Pearson cor-
relation coefficients (r, 0.961 for Eads, and 0.954 for Δe) and low
root-mean-square errors (RMSE, 0.015 eV for Eads, and 0.005 e−

for Δe) were achieved. Feature importance analysis revealed the
effectiveness of the dipole-related descriptor 𝛼 for predicting Eads
and Δe as it had the highest importance among the four descrip-
tors.

In another, prior work, we found that the electronic spin mo-
ment is also a promising catalytic descriptor, as reflected by the
linear relationship between catalytic activity and spin moment
variation.[53] Molecular dipoles are very difficult to measure in
practice, but they have a strong association with vibrational spec-
tra, such as infrared (IR) and Raman spectra, which can be
measured experimentally, simulated theoretically and even pre-
dicted by ML tools.[54] This inspires the utilization of vibrational
spectral signals as catalytic descriptors. Indeed, we have demon-
strated that surface–adsorbate interaction properties including
adsorption energy and charge transfer can be quantitatively de-
termined directly from IR and Raman spectroscopic signals of
adsorbates.[55] As shown in Figure 11c, six vibrational modes
most relevant to CO adsorption (two bending modes 𝜔1 and 𝜔2,
two wagging modes 𝜔3 and 𝜔4, one weak metal–C stretching
mode 𝜔5, and one strong C–O stretching mode 𝜔6) and their
corresponding IR/Raman intensities (I and R) were selected as
the input features to describe target properties including Eads,
Δe, C–O bond energy (Eb), and the d-band center of the metal
surface (𝜖d). Application of these 18 vibrational spectral features
combined with ML extra-trees regression (ETR) was used to ac-
curately predict Eads, Δe, Eb, and 𝜖d for the CO@Au(111)/Ag(111)
system. Moreover, by employing SISSO, the machine-learned
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Figure 11. a) Illustration of the surface-dipole (dsur) and molecule-dipole (dmol) included angle 𝛼 and the adsorption angles 𝜑 and 𝜃. Transfer learning
was achieved from CO@Au(111) to CO/Ag(111). b) Comparison of NN predictions and DFT calculations of Eads andΔe for CO@Ag(111), along with the
corresponding feature importance analyses. Reproduced with permission.[50] Copyright 2020, American Chemical Society. c) Using spectroscopy-based
features to predict surface–adsorbate interactions. Six vibrational modes (left), computed IR/Raman absorption spectra (middle) for CO adsorbed on
Au(111), and target properties to be predicted (right). d) Pearson correlation coefficients of transfer learning applied to 34 new systems performed by
the SISSO formulas as shown, trained from CO@Ag(111)/Au(111). See text for symbol definitions. Reproduced with permission.[55] Copyright 2022,
American Chemical Society.

spectrum–property relationships can be described by mathemati-
cal formulas, with adsorbate spectral features being the variables.
Interestingly, these vibrational feature-based formulas have gen-
eralizability to a series of new surface–adsorbate systems, includ-
ing new metals, binary alloys and HEAs, with excellent predictive
ability, typically with r values greater than 0.8 and many exceed-
ing 0.9 (Figure 11d). It was also found that these spectroscopy-
based formulas allow the separation of contributions from sub-
strate and adsorbate: the variables I, R and 𝜔 are adsorbate spec-
tral signals, while the parameters a, b, c and d are constants
related to intrinsic characteristics of the substrate. The devel-
opment of spectral features as catalytic descriptors to establish
quantitative spectrum–property relationships opens a new av-
enue for investigations of catalytic activity, circumventing the

difficulties in learning detailed geometric structures of complex
catalysts.

4. Descriptors for Combining Theoretical and
Experimental Data in Machine Learning

Currently, ML has more applications in theoretical catalysis com-
pared to experimental science because a large uniform dataset
can be more readily obtained from theoretical calculations.
Although high-throughput experimentation can provide large
datasets, these experiments are time-consuming and expensive.
Therefore, ingenious utilization of the smallest dataset capable of
optimizing and discovering new catalysts is being actively stud-
ied. Karim et al. generated a uniform 36-sample experimental
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dataset using high-throughput synthesis and activity measure-
ments and then employed gradient boosting regression (GBR)
and support vector regression (SVR) models to correlate cata-
lyst synthesis conditions with ORR activity. The ML models pro-
vided better synthesis parameters for their next batch of experi-
ments, which identified a new catalyst with much higher ORR
activity than that captured in the original dataset.[56] Williams
et al. also reported a framework incorporating ML regression
algorithms with high-throughput experiments to discover inex-
pensive catalysts for ammonia decomposition.[57] Interestingly,
by using a small initial experimental data set composed of only
three catalyst compositions, they discovered a new catalyst—
3,1,12RuYK/Al2O3 (3 wt% Ru, 1 wt% Y, and 12 wt% K)—that
greatly outperformed the top-performing Ru-based catalysts re-
ported in the literature. These results show that a ML model
combined with appropriate descriptors can extract trends and
rules from relatively small data sets, especially when the data sets
are generated by autonomous experimentation in a uniform and
bias-free way.

In addition to relying only on small experimental datasets,
incorporating additional extensive computational data derived
from suitable descriptors is preferable, as this strategy can cover
a much broader catalytic space and enable the understanding
of atomic-level factors that control experimentally measured cat-
alytic performance. Artrith et al. demonstrated that the combi-
nation of ML and DFT calculations can be employed to inter-
pret experimental activity and selectivity and to predict the cat-
alytic performance of additional catalysts for reforming ethanol
to produce CO and H2.[58] They first constructed ML model 1 for
the prediction of ethanol decomposition transition-state energies
from thermochemical reaction energies using complex random
forest regression (RFR) and Gaussian process regression (GPR).
Then, these predicted transition-state energies were entered into
their ML model 2 that was trained on catalytic activities and selec-
tivities comprised of only 7 experimental datapoints using sim-
ple linear regression (Figure 12a). Results predicted by leave-
one-out cross-validation (CV) by each of the two models (Fig-
ure 12b,c) indicate that the introduction of accurately-predicted
transition-state energies leads to the very good predictive accu-
racy of model 2. Moreover, linear model 2 revealed that both ac-
tivity and selectivity are strongly positively correlated with C–C
bond-scission transition-state energy, suggesting that this reac-
tion is a key step and favors the competing ethanol decomposi-
tion reactions such as methane production. Beyond understand-
ing the reaction mechanisms, both models together allow the
prediction of catalytic activity and selectivity directly from prin-
cipal chemical properties and features that can be efficiently de-
termined with high-throughput DFT calculations. The success
of this work is probably because the knowledge of reaction ener-
gies and kinetic activation energies of different reaction pathways
is sufficient to predict both activity and selectivity. However, the
acquisition of activation energy is computationally demanding,
making it not well suited for high-throughput calculations.

Recently, our group has demonstrated that by using adsorption
energies and charge transfer as intermediate descriptors, com-
bined ML models allow the prediction of overpotentials for the
OER catalyzed by high-entropy materials. Results of these mod-
els suggested an optimal composition ratio that performed far
better than any resulting from human intuition.[59] The com-

putational dataset consisted of about 20 000 structures gener-
ated by molecular dynamics simulations;[60] the corresponding
DFT-calculated catalytic properties included Gibbs free energy
changes of key intermediates and charge transfer. Using metal
composition ratios as descriptors, these catalytic properties were
accurately predicted by a NN model trained on the extensive
DFT data. Note that the direct calculation of overpotentials based
on the reaction mechanism shown in Figure 12d resulted in
systematic errors of the absolute values compared with exper-
imental overpotentials. However, when adding the accurately-
predicted catalytic properties as descriptors, the measured over-
potentials of 207 robotically-executed experiments were matched
reasonably closely, with a Pearson correlation coefficient of 0.878
(Figure 12e). Therefore, overpotentials of all 20 000 structures
were rapidly predicted based on metal composition ratios (the
inset of Figure 12e); the optimal composition ratio predicted
by Bayesian optimization (an iterative response surface-based
global optimization algorithm)[61] over the huge search space
(553 401 options) differed greatly from the best samples ob-
tained by the trial-and-error experiments (Figure 12f, left). The
Bayesian optimization-suggested sample (B-OPT) was experi-
mentally validated to have better catalytic performance than the
best-performing samples out of the 207 experiments (Figure 12f,
right). This study showed that a small experimental dataset can
correct the absolute error of theoretical calculations, while a com-
putational dataset can expand the exploratory scope of experi-
ments. This is particularly advantageous when catalysts are dif-
ficult to synthesize or characterize under operating conditions.
Glossary of machine-language terms can be found in the Sup-
porting Information.

5. Conclusions and Perspectives

Machine learning techniques have been increasingly applied to
catalysis research and, due to their new powerful learning and
predictive abilities, have solved the many bottleneck-creating
problems encountered in traditional trial-and-error experiments
and theoretical simulations. The selection of appropriate input
features (descriptors) is crucial to the improvement of predic-
tive accuracy and the understanding of catalytic mechanisms. In
this review, we discussed the tactics for the utilization and extrac-
tion of descriptors in experimental and theoretical ML models.
For ML models based on experimental data, comprehensively de-
scribing a catalytic reaction using various dimensions and types
of descriptors is a basic strategy. When available data are limited,
performing iterative learning with a variety of descriptors can
extract key information for the discovery of new catalysts. Addi-
tionally, collecting a large amount of data from high-throughput
experimentation or published papers provides another way to
identify effective descriptors for the rational design of catalysts.
For ML models based on theoretical simulations, rationally se-
lected intrinsic atomic properties, and electronic and geomet-
ric structures such as d band features and coordination num-
ber can serve as effective descriptors for the prediction of ad-
sorption energies of key reaction intermediates. Molecular dipole
parameters, and especially vibrational spectral signals that can
be experimentally measured and theoretically simulated, have
been demonstrated to be promising catalytic descriptors, open-
ing a new window for catalysis research. The multilevel attention
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Figure 12. a) Flowchart of an approach consisting of two ML models, Models 1 and 2. b) Comparison of predicted transition state energies calculated
by ML Model 1 versus DFT. c) ML model 2 predicted and experimental ethanol reforming activity and selectivity. The plotted data points in (b) and
(c) were obtained from leave-one-out cross-validation (CV). Reproduced with permission.[58] Copyright 2020, American Chemical Society. d) Simulated
OER reaction path. e) NN-predicted compared to experimentally measured overpotentials. Inset: dimensionality reduction plot generated by principal
component analysis (PCA) for predicted overpotentials of all 20 000 samples. f) Kiviat diagram of composition ratios and polarization curves of the
optimal sample (B-OPT) suggested by the Bayesian model and the best experimental samples (Exp-149/155). Reproduced with permission.[59] Copyright
2022, China Science Publishing &Media Ltd.

mechanism of deep learning provides a feasible method for iden-
tifying novel descriptors for the prediction of reaction energies.
Further, one can use SISSO to generate an immensity of candi-
date descriptors and select the most relevant ones for handling
high-dimensional and nonlinear relationships. Finally, we dis-
cussed a promising research paradigm that combines theoretical
and experimental ML models through suitable intermediate de-

scriptors. This paradigm makes use of the respective advantages
of experimental and computational datasets, so that the small and
expensive but accurate data of the former are combined with the
rough but cheap data generated by the latter.

Despite these achievements, further efforts should be made in
many areas to unleash the power of descriptors and ML tools in
the field of catalysis. First, the development of universal and in-
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terpretable descriptors that are easy to calculate or measure, and
contain key information about catalysts and adsorbates and their
interactions is still in its infancy. In the future, integrated and
comprehensive descriptors that combine basic properties of ele-
ments with electronic and geometric structures are worthy of in-
vestigation, as a single type of descriptor usually has limitations
and cannot describe the various materials and reactions com-
pletely. Moreover, spectroscopic descriptors, including numeric
features and spectral images that can be considered as a pack-
age of geometric and electronic characteristics, also deserve at-
tention. Second, the prediction of realistic catalyst compositions
based on theoretical simulations remains a great challenge, be-
cause calculations for a catalytic reaction at this stage are usu-
ally performed assuming vacuum conditions, thus poorly mod-
eling the realistic catalytic environment. The research paradigm
of combining computational and experimental datasets provides
a solution for this issue, but this method is still underexplored
in terms of intermediate descriptors and ML models. Going fur-
ther, use of ML-based large-scale atomic simulations that rely on
evaluation of the potential energy surface is also a promising ap-
proach for predicting catalytic system performance under realis-
tic conditions.[62] However, there are still difficulties in construct-
ing ML potentials for complex multielement systems, and the
predictive accuracy is restricted by the level of DFT employed.
Third, expansion of existing material databases and establish-
ment of new comprehensive catalysis databases should be con-
sidered for facilitating the acquisition of data points and descrip-
tors. We believe that in the future, one could construct an ML
model based on sufficient information of descriptors and tar-
get properties contained in shared databases before experimen-
tation, and then calibrate the ML model using a few accurate and
consistent experimental results, finally leading to accurate pre-
diction of actual catalytic performance over the huge, entire cat-
alytic space.
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Yıldırım, Int. J. Hydrogen Energy 2014, 39, 5733; c) R. Palkovits, S.
Palkovits, ACS Catal. 2019, 9, 8383; d) R. Iwama, K. Takizawa, K. Shin-
mei, E. Baba, N. Yagihashi, H. Kaneko, ACS Omega 2022, 7, 10709; e)
R. Schmack, A. Friedrich, E. V. Kondratenko, J. Polte, A. Werwatz, R.
Kraehnert, Nat. Commun. 2019, 10, 441; f) A. Smith, A. Keane, J. A.
Dumesic, G. W. Huber, V. M. Zavala, Appl. Catal. B 2020, 263, 118257.

[22] W. T. Hong, R. E. Welsch, Y. Shao-Horn, J. Phys. Chem. C 2015, 120,
78.

[23] D. Child, The Essentials of Factor Analysis, 3rd ed., Bloomsbury Aca-
demic, London 2006.

[24] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S.
Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater.
2013, 1, 011002.

[25] a) M. E. Günay, R. Yildirim, Ind. Eng. Chem. Res. 2011, 50, 12488; b)
M. E. Günay, R. Yildirim, Appl. Catal. A 2013, 468, 395; c) M. E. Günay,
R. Yildirim, ChemCatChem 2013, 5, 1395; d) M. E. Günay, L. Türker,
N. A. Tapan, J. CO2 Util. 2018, 28, 83.

[26] a) D. Loffreda, F. Delbecq, F. Vigne, P. Sautet, Angew. Chem., Int. Ed.
2009, 48, 8978; b) J. Greeley, Annu. Rev. Chem. Biomol. Eng. 2016, 7,
605.

[27] a) T. Toyao, K. Suzuki, S. Kikuchi, S. Takakusagi, K.-i. Shimizu, I. Taki-
gawa, J. Phys. Chem. C 2018, 122, 8315; b) S. Back, J. Yoon, N. Tian,
W. Zhong, K. Tran, Z. W. Ulissi, J. Phys. Chem. Lett. 2019, 10, 4401; c)
A. Chen, X. Zhang, L. Chen, S. Yao, Z. Zhou, J. Phys. Chem. C 2020,
124, 22471; d) X. Li, B. Li, Z. Yang, Z. Chen, W. Gao, Q. Jiang, J. Mater.
Chem. A 2022, 10, 872; e) C. Ren, S. Lu, Y. Wu, Y. Ouyang, Y. Zhang,
Q. Li, C. Ling, J. Wang, J. Am. Chem. Soc. 2022, 144, 12874; f) S. Lin,
H. Xu, Y. Wang, X. C. Zeng, Z. Chen, J. Mater. Chem. A 2020, 8, 5663.

[28] a) B. Hammer, J. K. Norskov, Surf. Sci. 1995, 343, 211; b) B. Hammer,
J. K. Norskov, Nature 1995, 376, 238; c) H. Xin, A. Vojvodic, J. Voss,
J. K. Nørskov, F. Abild-Pedersen, Phys. Rev. B 2014, 89, 115114.

[29] a) X. Ma, Z. Li, L. E. K. Achenie, H. Xin, J. Phys. Chem. Lett. 2015, 6,
3528; b) Z. Li, S. Wang, W. S. Chin, L. E. Achenie, H. Xin, J. Mater.
Chem. A 2017, 5, 24131; c) J. Noh, S. Back, J. Kim, Y. Jung, Chem. Sci.

2018, 9, 5152; d) Z. Li, L. E. K. Achenie, H. Xin, ACS Catal. 2020, 10,
4377; e) S. Chen, Y. Gao, W. Wang, O. V. Prezhdo, L. Xu, ACS Nano
2023, 17, 1522.

[30] a) B. J. Frey, D. Dueck, Science 2007, 315, 972; b) J. Friedman, T.
Hastie, R. Tibshirani, Biostatistics 2008, 9, 432.

[31] a) J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Good-
enough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546; b) S. Kullback, R. A.
Leibler, Ann. Math. Stat. 1951, 22, 79; c) J. M. Joyce, Kullback-Leibler
Divergence, Springer, Berlin Heidelberg 2011.

[32] a) R. B. Wexler, J. M. P. Martirez, A. M. Rappe, J. Am. Chem. Soc. 2018,
140, 4678; b) D. Zhang, O. V. Prezhdo, L. Xu, J. Am. Chem. Soc. 2023,
145, 7030.

[33] L. Ge, H. Yuan, Y. Min, L. Li, S. Chen, L. Xu, W. A. Goddard 3rd, J.
Phys. Chem. Lett. 2020, 11, 869.

[34] S. De, A. P. Bartok, G. Csanyi, M. Ceriotti, Phys. Chem. Chem. Phys.
2016, 18, 13754.

[35] H. Huo, M. Rupp, Mach. Learn. Sci. Technol. 2022, 3, 045017.
[36] J. Behler, J. Chem. Phys. 2011, 134, 074106.
[37] M. Rupp, A. Tkatchenko, K. R. Muller, O. A. von Lilienfeld, Phys. Rev.

Lett. 2012, 108, 058301.
[38] a) F. Calle-Vallejo, J. Tymoczko, V. Colic, Q. H. Vu, M. D. Pohl, K. Mor-

genstern, D. Loffreda, P. Sautet, W. Schuhmann, A. S. Bandarenka,
Science 2015, 350, 185; b) Z. Li, X. Ma, H. Xin, Catal. Today 2017, 280,
232; c) Z. Lu, Z. W. Chen, C. V. Singh, Matter 2020, 3, 1318.

[39] M. O. J. Jäger, E. V. Morooka, F. Federici Canova, L. Himanen, A. S.
Foster, npj Comput. Mater. 2018, 4, 37.

[40] a) X. Zhu, J. Yan, M. Gu, T. Liu, Y. Dai, Y. Gu, Y. Li, J. Phys. Chem. Lett.
2019, 10, 7760; b) H. Li, S. Xu, M. Wang, Z. Chen, F. Ji, K. Cheng, Z.
Gao, Z. Ding, W. Yang, J. Mater. Chem. A 2020, 8, 17987; c) V. Fung,
G. Hu, Z. Wu, D.-e. Jiang, J. Phys. Chem. C 2020, 124, 19571; d) Q.
Zhu, Y. Gu, X. Liang, X. Wang, J. Ma, ACS Catal. 2022, 12, 12336.

[41] Z. Liu, Y. Shi, H. Chen, T. Qin, X. Zhou, J. Huo, H. Dong, X. Yang, X.
Zhu, X. Chen, L. Zhang, M. Yang, Y. Gao, J. Ma, npj Comput. Mater.
2021, 7, 142.

[42] Z. Liu, L. Lin, Q. Jia, Z. Cheng, Y. Jiang, Y. Guo, J. Ma, J. Chem. Inf.
Model. 2021, 61, 1066.

[43] Y. Gu, Q. Zhu, Z. Liu, C. Fu, J. Wu, Q. Zhu, Q. Jia, J. Ma, J. Mater.
Chem. A 2022, 10, 14976.

[44] a) R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L. Ghiringhelli,
Phys. Rev. Mater. 2018, 2, 83802; b) R. Ouyang, E. Ahmetcik, C. Car-
bogno, M. Scheffler, L. M. Ghiringhelli, JPhys. Mater. 2019, 2, 024002.

[45] a) M. Andersen, S. V. Levchenko, M. Scheffler, K. Reuter, ACS Catal.
2019, 9, 2752; b) W. Xu, M. Andersen, K. Reuter, ACS Catal. 2020, 11,
734.

[46] a) R. G. González-Huerta, G. Ramos-Sánchez, P. B. Balbuena, J. Power
Sources 2014, 268, 69; b) Y. Wu, M. Tariq, W. Q. Zaman, W. Sun, Z.
Zhou, J. Yang, ACS Omega 2020, 5, 7342.

[47] Z. K. Han, D. Sarker, R. Ouyang, A. Mazheika, Y. Gao, S. V. Levchenko,
Nat. Commun. 2021, 12, 1833.

[48] a) M. Atzmueller, WIREs Data Min. Knowl. Discovery 2015, 5, 35; b) B.
R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, L. M. Ghiringhelli,
New J. Phys. 2017, 19, 013031; c) A. Mazheika, Y. G. Wang, R. Valero,
F. Vines, F. Illas, L. M. Ghiringhelli, S. V. Levchenko, M. Scheffler, Nat.
Commun. 2022, 13, 419; d) L. Foppa, C. Sutton, L. M. Ghiringhelli, S.
De, P. Loser, S. A. Schunk, A. Schafer, M. Scheffler, ACS Catal. 2022,
12, 2223.

[49] a) B. Wang, F. Zhang, Angew. Chem., Int. Ed. 2022, 61, e202111026;
b) X. Wang, G. Zhang, L. Yang, E. Sharman, J. Jiang, Wires Comput.
Mol. Sci. 2018, 8, e1369.

[50] X. Wang, S. Ye, W. Hu, E. Sharman, R. Liu, Y. Liu, Y. Luo, J. Jiang, J.
Am. Chem. Soc. 2020, 142, 7737.

[51] a) C. Jia, X. Wang, W. Zhong, Z. Wang, O. V. Prezhdo, Y. Luo, J. Jiang,
ACS Appl. Mater. Interfaces 2019, 11, 9629; b) J. Li, M. Deng, D. V.
Voronine, S. Mukamel, J. Jiang, J. Phys. Chem. B 2015, 119, 1314.

Adv. Sci. 2023, 10, 2301020 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301020 (18 of 20)



www.advancedsciencenews.com www.advancedscience.com

[52] a) H. Radinger, V. Trouillet, F. Bauer, F. Scheiba, ACS Catal. 2022, 12,
6007; b) X. Shen, Y. Pan, B. Liu, J. Yang, J. Zeng, Z. Peng, Phys. Chem.
Chem. Phys. 2017, 19, 12628; c) Y. Bai, W. Zhang, Z. Zhang, J. Zhou, X.
Wang, C. Wang, W. Huang, J. Jiang, Y. Xiong, J. Am. Chem. Soc. 2014,
136, 14650.

[53] W. Zhong, Y. Qiu, H. Shen, X. Wang, J. Yuan, C. Jia, S. Bi, J. Jiang, J.
Am. Chem. Soc. 2021, 143, 4405.

[54] a) W. Hu, S. Ye, Y. Zhang, T. Li, G. Zhang, Y. Luo, S. Mukamel, J. Jiang,
J. Phys. Chem. Lett. 2019, 10, 6026; b) S. Ye, K. Zhong, J. Zhang, W.
Hu, J. D. Hirst, G. Zhang, S. Mukamel, J. Jiang, J. Am. Chem. Soc.
2020, 142, 19071; c) L. Zhao, J. Zhang, Y. Zhang, S. Ye, G. Zhang, X.
Chen, B. Jiang, J. Jiang, JACS Au 2021, 1, 2377.

[55] X. Wang, S. Jiang, W. Hu, S. Ye, T. Wang, F. Wu, L. Yang, X. Li, G.
Zhang, X. Chen, J. Jiang, Y. Luo, J. Am. Chem. Soc. 2022, 144, 16069.

[56] M. R. Karim, M. Ferrandon, S. Medina, E. Sture, N. Kariuki, D. J. My-
ers, E. F. Holby, P. Zelenay, T. Ahmed, ACS Appl. Energy Mater. 2020,
3, 9083.

[57] T. Williams, K. McCullough, J. A. Lauterbach, Chem. Mater. 2019, 32,
157.

[58] N. Artrith, Z. Lin, J. G. Chen, ACS Catal. 2020, 10, 9438.
[59] Q. Zhu, F. Zhang, Y. Huang, H. Xiao, L. Zhao, X. Zhang, T. Song, X.

Tang, X. Li, G. He, B. Chong, J. Zhou, Y. Zhang, B. Zhang, J. Cao,
M. Luo, S. Wang, G. Ye, W. Zhang, X. Chen, S. Cong, D. Zhou, H.
Li, J. Li, G. Zou, W. Shang, J. Jiang, Y. Luo, Natl. Sci. Rev. 2022, 9,
nwac190.

[60] S. Nosé, J. Chem. Phys. 1984, 81, 511.
[61] B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison, Y. Bai, X.

Wang, X. Li, B. M. Alston, B. Li, R. Clowes, N. Rankin, B. Harris, R. S.
Sprick, A. I. Cooper, Nature 2020, 583, 237.

[62] a) C. Shang, Z. P. Liu, J. Chem. Theory Comput. 2013, 9, 1838; b) X.-
T. Li, L. Chen, G.-F. Wei, C. Shang, Z.-P. Liu, ACS Catal. 2020, 10,
9694; c) Q.-Y. Liu, C. Shang, Z.-P. Liu, J. Am. Chem. Soc. 2021, 143,
11109.

Li-Hui Mou received her Ph.D. degree in physical chemistry from the Institute of Chemistry, Chinese
Academy of Sciences in 2022. She is currently a post-doctorate researcher in Prof. Jun Jiang’s group
at University of Science and Technology of China. Her research interests focus on understanding
complex chemistry and catalyst behavior by combining quantum chemistry calculations and machine
learning.

Tiantian Han is the senior research scientist of Hefei JiShu Quantum Technology Co. Ltd.. He received
his Ph.D. degree in theoretical chemistry from KTH Royal Institute of Technology in 2008. Then, he
started to work as researcher engineer at ABB before he joined JiShu Quantum Technology. Recently,
his research interests focus on the development and implematation of machine learning techniques
for simulating optical properties and spectrums of solid state materials in complex systems.

Pieter E. S. Smith received a bachelor’s degree in chemistry from University of North Carolina,
Asheville in 2006, and a Ph.D. degree in biophysics from the University of Michigan in 2010. Then,
he worked as post-doctorate researcher at Weizmann Institute of Science and Florida State University
before joining the Curia Research Center in New York in 2018. His research interests focus on charac-
terization and analysis of NMR spectroscopy and the employment of machine learning techniques for
spectra simulation.

Adv. Sci. 2023, 10, 2301020 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301020 (19 of 20)



www.advancedsciencenews.com www.advancedscience.com

Edward Sharman joined the Department of Neurology at the University of California, Irvine, since
2006. He received a bachelor’s degree in chemistry from the University of California, Berkeley, and
a PhD in chemical physics from the University of Southern California. He developed industrial gas
analyzers and designed combustion control systems, including two test systems based on a back-
propagation neural network.

Jun Jiang is a professor of school of chemistry and materials science at University of Science and Tech-
nology of China. He received his Ph.D. degree in theoretical chemistry from KTH Royal Institute of
Technology in 2007. Then, he worked as post-doctorate researcher at KTH Royal Institute of Technol-
ogy and University of California Irvine before joining the faculty of University of Science and Technol-
ogy of China in 2011. His research interests focus on the development and employment of multiscale
modeling methods and machine learning techniques for simulating charge kinetics in complex sys-
tems such as heterogeneous catalysts, functional materials, and proteins.

Adv. Sci. 2023, 10, 2301020 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301020 (20 of 20)




