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Antibody-based Protection Against HIV Infection by Vectored 
ImmunoProphylaxis

Alejandro B. Balazs†, Joyce Chen†, Christin M. Hong†, Dinesh S. Rao‡, Lili Yang†, and 
David Baltimore†,§

†Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 
91125

‡Dept. of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of 
California at Los Angeles, 10833 Le Conte Ave., Los Angeles California, 90095

Abstract

Despite tremendous efforts, development of an effective vaccine against HIV has proved an 

elusive goal. Recently, however, numerous antibodies have been identified that are capable of 

neutralizing the vast majority of circulating HIV strains1–5. These antibodies all exhibit an 

unusually high level of somatic mutation6, presumably due to extensive affinity maturation over 

the course of continuous exposure to an evolving antigen7. While substantial effort has focused on 

the design of immunogens capable of eliciting antibodies de novo that would target similar 

epitopes8–10, it remains uncertain whether a conventional vaccine will be able to elicit analogs of 

the existing broadly neutralizing antibodies. As an alternative to immunization, vector-mediated 

gene transfer could be used to engineer secretion of the existing broadly neutralizing antibodies 

into the circulation. Here we describe a practical implementation of this approach, vectored 

immunoprophylaxis (VIP), which in mice induces lifelong expression of these monoclonal 

antibodies at high concentrations from a single intramuscular injection. This is achieved using a 

specialized adeno-associated virus (AAV) vector optimized for the production of full-length 

antibody from muscle tissue. We show that humanized mice receiving VIP appear to be fully 

protected from HIV infection even when challenged intravenously with very high doses of 

replication-competent virus. Our results suggest that successful translation of this approach to 

humans may produce effective prophylaxis against HIV.

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
§Direct all correspondence to: Dr. David Baltimore, California Institute of Technology, Dept. of Biology, M/C:147-75, 1200 E. 
California Blvd., Pasadena, CA 91125; phone: (626) 395-3580; fax: (626) 585-9495; baltimo@caltech.edu. 

Author Contributions
A.B.B. and D.B. conceived the study with assistance from L.Y., A.B.B. designed the experiments. A.B.B., J.C., and C.M.H. carried 
out experiments. A.B.B., J.C., and C.M.H. analyzed the data. D.S.R. performed immunohistochemistry and analysis. A.B.B. and D.B. 
wrote the paper with contributions from all authors.

Author Information
Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. 
Readers are welcome to comment on the online version of this article at www.nature.com/nature.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2012 July 05.

Published in final edited form as:
Nature. ; 481(7379): 81–84. doi:10.1038/nature10660.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints
http://www.nature.com/nature


Keywords

HIV; antibody; prophylaxis; vaccine; AAV; humanized mice; T lymphocyte; VIP; engineered 
immunity

Previous efforts to engineer humoral immunity using AAV-based vectors resulted in modest 

antibody production11 which was subsequently improved through the use of alternative 

capsids12 and self-complementary AAV (scAAV) vectors13 that increase expression at the 

expense of carrying capacity. Recently, scAAV vectors were employed to direct expression 

of SIV-neutralizing immunoadhesins consisting of small, artificially fused antibody 

fragments14. However, the efficacy of this prophylaxis was limited by an endogenous 

immune response directed against the immunoadhesin proteins. To ask whether newer 

capsid serotypes and vector configurations might support long-lived expression of full-

length human antibodies from muscle, we produced AAV vectors with the capsid from 

serotype 815 that expressed either luciferase or 4E10 HIV neutralizing antibody driven from 

CMV promoters and administered them through a single injection of the gastrocnemius 

muscle (Fig. 1a). Within one week of vector administration, either luciferase or antibody 

gene expression was detectable (Supplementary Fig. 1a, left and right respectively). 

Expression continued to rise, achieving maximum levels after 12–16 weeks and then 

decreasing two- to three-fold before stabilizing for the duration of the 64-week study. Given 

the long-lived nature of this expression, it seemed possible that these vectors could be used 

to engineer lifelong humoral immunity provided by full-length, fully human antibodies. 

Hence, we carried out a systematic process of vector and transgene optimization to improve 

the expression characteristics of this system (Supplementary Information). The heavy and 

light chain variable regions of the HIV-neutralizing b12 antibody were cloned into the 

vector and AAV stock was produced for intramuscular administration of 1×1011 genome 

copies (GC) into the gastrocnemius muscle of two immunodeficient and two 

immunocompetent mouse strains: NOD/SCID/γc (NSG), Rag2/γc (RAG), B6, and Balb/C. 

Mice produced the encoded antibody at serum concentrations that were 100-fold higher than 

the levels achieved with the non-optimized vector and this level of expression persisted for 

at least 52 weeks (Fig. 1b compared to Supplementary Fig. 1a, right). In agreement with 

previous studies of AAV-induced tolerance in mice16, we detected very limited mouse 

antibodies raised against human b12-IgG in B6 mice while Balb/C animals generated 

detectable mouse antibodies against the transgene (data not shown) that did not appear to 

impact human IgG levels.

To test the ability of VIP to protect mice from challenge in vivo, we adapted a previously 

described humanized mouse model17 that exhibits CD4 cell depletion following challenge 

with replication-competent HIV (Supplementary Fig. 5). We administered vector expressing 

either luciferase or b12 antibody to NSG mice, producing stable serum b12 antibody 

concentrations of approximately 100µg/mL within six weeks (Fig. 1c). These mice were 

adoptively populated with expanded human peripheral blood mononuclear cells 

(huPBMCs), which engrafted over a period of two weeks. Mice were then challenged by 

intraperitoneal (IP) injection of the NL4-3 strain of HIV. Following HIV challenge, the 
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majority of mice expressing luciferase showed dramatic loss of CD4 cells while mice 

expressing b12 antibody showed no CD4-cell depletion (Fig 1d).

To compare the protective abilities of the historically available broadly neutralizing 

antibodies, vectors expressing b12, 2G12, 4E10, and 2F5 were produced and administered to 

NSG mice. Seven weeks after administration, NSG mice produced 20–250µg/mL of the 

indicated antibodies (Fig. 2a). Interestingly, in vivo serum concentrations of 4E10 and 2F5 

were somewhat lower than b12 and 2G12 despite comparable expression in vitro 

(Supplementary Figure 3b), perhaps resulting from the previously described self-reactivity 

of these clones18. Transduced mice were adoptively populated with huPBMCs, challenged 

by intravenous (IV) injection with HIV, and sampled weekly to quantify CD4 cell depletion 

over time (Fig. 2b). Animals expressing b12 were completely protected from infection, 

while those expressing 2G12, 4E10 and 2F5 were partially protected. Groups demonstrating 

partial protection consisted of animals with delayed CD4 cell depletion as well as animals 

that maintained high CD4 cell levels throughout the course of the experiment. Interestingly, 

mice expressing 250µg/mL of the 2G12 antibody were only partially protected despite 

antibody levels being over 300-fold higher than previously established IC50 values for this 

antibody-strain combination in vitro19. Eight weeks post-challenge, mice were sacrificed 

and paraffin-embedded spleen sections underwent immunohistochemical staining for the 

HIV-expressed p24 antigen to quantify the extent of infection (Fig. 2c). Remarkably, mice 

expressing b12 had no detectable p24 expressing cells while those expressing other 

antibodies exhibited significant positive staining (Fig. 2d).

To determine the robustness of protection mediated by VIP, a large cohort of mice 

expressing b12 antibody were adoptively populated with huPBMCs. Prior to challenge, all 

mice expressed high levels of human IgG, presumably due to engrafted human B-cells 

(Supplementary Fig. 6a), but only those receiving the b12-expressing vector produced IgG 

specific for gp120, which reached 100µg/mL (Supplementary Fig. 6b). Mock-infected mice 

expressing either luciferase or b12 demonstrated consistent high-level CD4 cell engraftment 

throughout the course of the experiment, showing that transgene toxicity was not 

contributing to CD4 cell loss (Fig. 3). In contrast, mice expressing luciferase that received 

1ng of HIV experienced rapid and extensive CD4 cell depletion. At higher doses, infection 

in luciferase-expressing mice became more consistent and resulted in depletion of CD4 cells 

below the level of detection in some cases (25, 125ng doses). Remarkably, all mice 

expressing b12 demonstrated protection from CD4 cell loss, despite receiving HIV doses 

over 100-fold higher than necessary to deplete seven out of eight control animals (Fig. 3).

As newer anti-HIV antibodies have become available, we have compared the relative 

efficacy of b12 to VRC01 antibody. VRC01 neutralizes over 90% of circulating HIV strains 

in vitro1, making it an excellent candidate for human trials. We administered decreasing 

doses of vector expressing either b12 or VRC01 to NSG mice and monitored expression of 

the antibodies over time. For both antibodies, we observed clear dose-dependent expression 

at all time points analyzed (Supplementary Fig. 7a and Fig. 4 (left)). Mice expressing 

luciferase or antibodies at various levels were adoptively populated with huPBMCs. Just 

prior to challenge, a gp120-specific ELISA confirmed the effective antibody concentration 

in each group (Supplementary Fig. 7b and Fig. 4 (middle)). Following IV challenge with 
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10ng of HIV, CD4 cells were monitored to determine the impact of antibody concentration. 

An average b12 concentration of 34µg/mL and VRC01 concentration of 8.3µg/mL protected 

mice from infection (Supplementary Fig. 7c and Fig. 4 (right)). Groups expressing lower 

concentrations of b12 and VRC01 were only partially protected, with several animals 

showing no detectable loss of CD4 cells and others exhibiting delayed CD4 cell depletion.

Here we demonstrate that broadly neutralizing human antibodies expressed by VIP are 

capable of protecting animals from even high-dose HIV exposure in vivo. Human-to-human 

HIV transmission rates vary with behavior but do not generally exceed one per hundred 

heterosexual exposures20, and recent studies have demonstrated that infections are generally 

initiated by a single founder strain21. Humanized mice with b12 serum concentrations of 

100µg/mL were resistant to HIV infection at challenge doses 100-fold higher than necessary 

to infect the vast majority of animals, suggesting that this level of protection may far exceed 

what would be necessary to provide protection against HIV infection in humans. In contrast 

to previous approaches, VIP produces full-length antibodies that are identical in sequence to 

those produced by the immune system22. Recent experiments have suggested that full-length 

antibody structures possess superior in vitro neutralization activity as compared to modified 

architectures such as immunoadhesins23. Utilization of such naturally occurring antibody 

architectures should also reduce immune responses against the transgene, which were 

previously shown to reduce the effectiveness of prophylaxis against SIV14.

Our results demonstrate that VIP administration results in long-lived production of human 

antibodies at super-prophylactic levels in immunocompetent animals. Clinical trials 

involving AAV have demonstrated remarkable success when targeting immunoprivileged 

sites such as retinal tissue24, but transduction of liver resulted in an adaptive immune 

response against vector capsid25. Studies in non-human primates have shown that the 

elicitation of capsid-specific cytotoxic T-lymphocytes is limited to AAV capsids that exhibit 

heparin-binding activity26. Interestingly, serotypes lacking heparin-binding activity, 

including AAV8, did not induce CTL responses, suggesting that AAV8-based vectors, like 

the one we have used, may circumvent previously observed immunological barriers to long-

term transduction. Additionally, in contrast to liver transduction, administration of AAV via 

intramuscular injection has been shown to result in very long-lived, albeit low-level, Factor 

IX expression27, suggesting that the route of administration can significantly impact the 

duration of expression. While the expression level attainable in humans remains to be 

determined, it is worth noting that the significantly longer serum half-life of a human 

antibody in humans28, as opposed to mice29, may result in higher steady-state levels than 

those observed in the present study. Regardless of this, our results suggest that even if VIP 

administration in humans results in serum antibody concentrations 100-fold lower than those 

observed in mice, it may still confer protection against HIV infection.

Given the urgency that exists in combating the ongoing global HIV pandemic and the 

incremental progress towards a vaccine, novel paradigms of prophylaxis must be explored 

towards solving this global health crisis. Our work demonstrates the feasibility of directly 

translating the existing repertoire of broadly neutralizing antibodies into functional 

immunoprophylaxis with robust protective abilities in vivo. As more potent broadly 

neutralizing HIV antibodies are isolated30, VIP can deliver these in concert with existing 
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antibodies to provide increased potency, broader coverage, and greater resistance to escape 

mutations. This approach may find broad utility in the rapid development of effective 

prophylaxis against any existing or future infectious disease for which broadly neutralizing 

antibodies can be isolated. Beyond infectious diseases, VIP can be applied to therapeutic 

regimens in which continuous production of monoclonal antibodies in vivo is desirable. 

Given the level of protection that VIP has demonstrated in vivo, we believe that highly 

effective prophylaxis through expression of existing monoclonal antibodies against HIV in 

humans is achievable.

Methods Summary

AAV2/8 was produced by transient transfection and purification from culture supernatant by 

PEG precipitation and cesium chloride ultracentrifugation. Virus was quantified by qPCR 

against CMV sequences and functionally validated in vitro to confirm gene expression prior 

to use in vivo. Mice were given single injections with purified vector in the gastrocnemius 

muscle. Antibody concentration in the serum was determined using an ELISA specific for 

either total human IgG or human IgG against HIV-gp120. Humanized mice expressing 

antibodies were produced by adoptive transfer of expanded huPBMCs into mice previously 

transduced with AAV vectors. HIV challenge was carried out via IP or IV injection and 

blood was sampled weekly to determine the ratio of CD4 to CD8 cells by flow cytometry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. VIP protects against HIV-mediated CD4 cell depletion in humanized mice
a, Xenogen imaging of a representative Rag2−/−γc−/− mouse 15 weeks after intramuscular 

injection of 1×1010 genome copies (GC) of AAV2/8 expressing luciferase. b, Quantitation 

of human IgG by ELISA following intramuscular injection of 1×1011 GC of the optimized 

expression vector producing b12-IgG in either immunodeficient NOD/SCID/γc−/−(NSG) 

and Rag2−/−γc−/− (Rag2) or immunocompetent c57BL/6 (B6) and Balb/C mice (plot shows 

mean and standard error, n=4). c, Concentration of human IgG in circulation as measured by 

total human IgG ELISA on serum samples taken 6 weeks after intramuscular injection of 

vector expressing either luciferase or b12-IgG (N.D. = not detected). d, Depletion of CD4 T-

cells in humanized mice following intraperitoneal (IP) challenge with 10ng p24 NL4-3 into 

animals that received AAV2/8 vectors expressing luciferase (left) or b12-IgG1 (right) 6 

weeks earlier (n=6).
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Figure 2. Comparison of protection mediated by various broadly neutralizing HIV antibodies
a, Concentration of antibody in circulation as measured by total human IgG ELISA on 

serum samples taken after intramuscular injection of vectors expressing four broadly 

neutralizing HIV antibodies (n=8). b, Comparison of the relative effectiveness of four 

broadly neutralizing HIV antibodies in protecting HuPBMC-NSG humanized mice against 

CD4 cell depletion following intravenous HIV challenge with 5ng p24 NL4-3 (n=8). c, HIV 

p24 detection by immunohistochemical (IHC) staining of sections taken from spleens 8 

weeks post-challenge. Arrows indicate cells scored as positive for p24 expression. Scale bar 

represents 40 micrometers. d, Quantitation of IHC staining of spleen denoting the relative 

frequency of p24 expressing cells in spleens of infected animals. Asterisks indicate 

outcomes significantly different than luciferase control mice versus mice expressing 

antibodies by two-tailed t test (n=4–6, N.D.= Not Detected) **P<0.01, ***P<0.0001. Plots a 
and b show mean and standard error, Plot d shows mean and s.d.
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Figure 3. Robustness of CD4 cell protection mediated by b12 antibody
CD4 cell depletion in HuPBMC-NSG humanized mice as a result of intravenous challenge 

with the dose of NL4-3 indicated on the far right. Mice expressing luciferase (left plots) 

were susceptible to CD4 cell loss whereas those expressing b12 (right plots) demonstrated 

protection from HIV at all doses (n=8).
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Figure 4. Determination of the minimum protective dose of VRC01 in vivo
(left) VRC01 expression over time as a function of dose as determined by total human IgG 

ELISA on serum samples taken following AAV administration (n=8). Mice receiving 

luciferase-expressing vector exhibited no detectable human antibodies (n=12). (middle) 

Concentration of VRC01 in serum one day prior to challenge, 3 weeks after adoptive 

transfer of human PBMCs and 15 weeks after intramuscular administration of the indicated 

dose of AAV as determined by a gp120-specific ELISA to measure the fraction of 

antibodies capable of binding HIV (n=8–12). (right) CD4 cell depletion in HuPBMC-NSG 

humanized mice as a result of intravenous challenge with 10ng of NL4-3 into animals 

expressing a range of VRC01, demonstrating the minimum dose of antibody necessary to 

protect against infection. Left and right plot show mean and standard error, middle plot 

shows individual animals and mean (n=8–12).
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