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Abstract

Brain edema, the first stage of intracranial hypertension, has been associated with poor prognosis 

and increased mortality after acute brain injury, such as ischemic stroke, intracranial hemorrhage 

(ICH), and traumatic brain injury (TBI). The acute brain injury often initiates release of many 

molecules, including glutamate, adenosine, thrombin, oxyhemoglobin, cytokines, reactive oxygen 

species (ROS), damage associated molecular pattern molecules (DAMPs), and others. Most of 

those molecules activate Src family kinases (SFKs), a family of proto-oncogenic non-receptor 

tyrosine kinases, resulting in blood-brain barrier (BBB) disruption and brain edema at the acute 

stage after brain injury. However, SFKs also contributes to BBB self-repair and brain edema 

resolution in the chronic stage that follows brain injury. In this review we summarize possible 

pathways through which SFKs are implicated in both brain edema formation and its eventual 

resolution.

Introduction

Brain edema occurs when a cerebral blood vessel is blocked or ruptured following ischemic 

stroke, intracerebral hemorrhage (ICH), traumatic brain injury (TBI) and other neurological 

diseases [1–3]. There are two main categories of brain edema, namely cytotoxic (cellular) 

edema and vasogenic (extracellular) edema [4]. In cytotoxic edema, the blood-brain barrier 

(BBB) remains intact, but there is essentially a compartment shift of water from the 

extracellular to the intracellular compartment, with no increase of brain water content or rise 

in ICP. Though it does not require BBB disruption, cytotoxic brain edema changes cellular 

metabolism and eventually damages BBB after brain injury. By contrast, vasogenic edema 

requires BBB disruption, allowing fluid (i.e., circulating blood) to accumulate in the 

extracellular space in brain parenchyma and will increase ICP [4]. It is generally thought 

that cytotoxic edema is dominant immediately following ischemic stroke [5], while 

vasogenic edema is dominant at the acute stage after TBI [4]. However, cytotoxic and 

vasogenic edema usually combine when brain injury progresses into the chronic phase in 

which a characteristic breakdown of BBB occurs no matter what type of edema was first in 
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the acute stage post brain injury [6]. Therefore, maintenance of BBB integrity has become a 

focus of recent research to prevent brain edema and improve outcomes of acute brain injury.

Brain edema has been associated with high mortality, mostly because it can induce rapid 

increase in intracranial pressure (ICP), which leads to compression of blood vessels, reduced 

tissue blood flow, reduced oxygenation and shifts tissue down pressure gradients 

(herniations) that may crush vital brain centers and eventually cause respiratory or heart 

failure [4]. An aggressive treatment for raised ICP can reduce mortality and improve 

outcome [7, 8], though ICP control alone (i.e. osmotherapy) may be insufficient to benefit 

long-term recovery after brain injury [9]. This is probably because osmotherapy is unable to 

block the release of many toxic molecules that follow acute brain injury, such as glutamate, 

adenosine, oxyhemoglobin, thrombin, cytokines, reactive oxygen species (ROS), damage 

associated molecular pattern molecules (DAMPs) and others [10–40]. These molecules 

mediate BBB disruption and brain edema through multiple ligand-receptor pathways. Since 

brain edema might occur via many parallel pathways, blocking just one or two of these 

pathways may not be clinically effective in treating human brain injury [16].

Src family kinases (SFKs), a family of proto-oncogenic, non-receptor tyrosine kinases, 

include nine family members: c-Src, Fyn, Yes, Yrk, Lyn, Fgr, Hck, Blk and Lck [41–43]. 

They can be activated by many trans-membrane receptors, such as adhesion receptors, 

tyrosine kinase receptors, G protein-coupled receptors, cytokine receptors, and others [44]. 

This makes SFKs a point of convergence for many molecules, and targeting SFKs has 

potential to prevent disruption of BBB components (i.e., endothelial cells, astrocytes, 

pericytes, neurons, tight junctions, and others) and block brain edema via modulating their 

multiple downstream targets, such as NMDA receptors [45–50], mitogen-activated protein 

kinases (MAPKs) [51–57], and cyclin-dependent kinases (Cdks) [58–62]. Many studies have 

demonstrated that acute administration of SFK inhibitors (e.g., PP1, PP2) attenuates BBB 

breakdown and prevents brain edema after acute brain injury [18–20, 63–66]. However, 

delayed and chronic administration of PP2 prevents the BBB self-repair and lengthens the 

period to resolve the edema in the recovery stage after brain injury [20]. These suggest SFKs 

may play dual roles in both brain edema formation and resolution during the different stages 

following acute brain injury (Figure 1).

Tissue specificity, structure, activity and functions of SFKs

Several SFK family members (c-Src, Fyn, Yes, Yrk) are ubiquitously expressed, whereas 

others (Lyn, Fgr, Hck, Blk, Lck) are generally found in brain and hematopoietic cells [47, 

67–72]. In adult mice, Fyn and c-Src mRNA expression is highest in hippocampal neurons 

[73, 74]. Importantly, one tissue can express multiple SFK members, for example, Src, Fyn, 

Yes, and Lck have been examined in brain [47, 67–72], and the different SFK family 

members are often found to compensate for one another [75].

Structurally, SFK family members share a conserved domain structure consisting of 

consecutive SH3 (polyproline type II helix for protein-protein interaction), SH2 

(phosphotyrosine recognition), and SH1 (tyrosine kinase catalytic activity) [43]. They also 

contain a membrane-targeting region at their N-terminus that is followed by a unique 
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domain of 50–70 residues, which is divergent among family members [43]. Although it still 

incompletely clear, Src activity is regulated by tyrosine phosphorylation at two sites (one is 

at Tyr416 in the SH1 domain, the other at Tyr527 in the short C-terminal tail), but with 

opposing effects. While phosphorylation at Tyr416 activates Src, phosphorylation at Tyr527 

results in inactivation [72, 76].

Under normal physiological conditions, SFKs are implicated in the regulation of embryonic 

development, cell growth, cellular differentiation and inflammatory responses [74, 77–79]. 

SFKs can initiate negative feedback to prevent their sustained activation via recruitment of 

inhibitory factor C-terminal Src (Csk) [80]. The feedback loop consists of SFK activation 

leading to phosphorylation of Csk binding protein (Cbp), and the phosphorylated Cbp 

targets Csk to SFKs and promotes inhibitory Csk phosphorylation of SFKs [81].

Due to mutations in SFKs or Csk, aberrant activation of SFKs can occur in cancers, and the 

abnormal SFK signaling contributes to many aspects of tumor development, including 

proliferation, survival, adhesion, migration, invasion, as well as metastasis [82–84]. Thus, it 

is likely that targeting SFKs may be a promising therapeutic approach for cancer, as SFK 

antagonists have been tested and well tolerated in cancer clinical trials [85–88].

Recently, we and others have demonstrated a new function of SFKs in acute brain injury, 

that is, transient activation of SFKs associated with BBB disruption, brain edema and spatial 

memory deficits following experimental ICH (intracerebroventricular fresh blood or 

thrombin model), TBI (lateral fluid percussion (LFP) model), and stroke (middle cerebral 

artery occlusion (MCAO) model) [18, 19, 63–66].

SFK activation, excitotoxicity, BBB disruption and brain edema

Following acute brain injury (i.e., ICH, TBI, ischemic stroke), there occurs a transient 

increase of glucose utilization and local cerebral blood flow [53, 89, 90], presumably 

because of the actions of glutamate in blood at the time of brain injury. This was supported 

by findings that glucose hypermetabolism could be blocked by antagonists of NMDA and 

AMPA receptors [53, 90]. However, glutamate alone could not explain the hypermetabolism 

since glutamate injected directly into brain does not produce hypermetabolism [53]. This 

suggests that acute brain injury affects NMDA receptors in some way to make them more 

sensitive to glutamate in order to mediate brain injury and/or hypermetabolism.

A large number of studies have revealed that the molecules released following acute brain 

injury (e.g. adenosine, thrombin, cytokines) can activate SFKs [10–32], and SFKs directly 

bind NMDA receptors and modulate their activity [45–50]. Our data show that either an 

NMDA receptor inhibitor (MK801) or an SFK inhibitor (PP2) is able to prevent brain edema 

and improve behavioral outcomes after intracerebroventricular injection of thrombin in rats 

[19]. Therefore, it is plausible that SFKs and NMDA receptors are coupling to mediate 

calcium overload, glucose hypermetabolism and brain edema after acute brain injury.
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SFK activation, mitogenic signaling, brain edema formation and resolution

SFKs can be activated by many trans-membrane receptors, such as adhesion receptors, 

tyrosine kinase receptors, G protein-coupled receptors, cytokine receptors, and others [44]. 

This unique feature of SFKs makes them a point of convergence for many toxic molecules 

that are released after brain injury [10–40]. Most of those molecules are abruptly released 

and reach peak concentrations within a couple of hours to a day after brain injury. In the 

acute stage over-activated SFK mitogenic signaling causes neurons to enter the cell cycle 

and die, and damages astroctyes and endothelial cells via MAPKs or CdKs [14, 19, 20, 51–

62]. The disruption of BBB components increase BBB permeability, resulting in brain 

edema after acute brain injury.

Within about a day after acute brain injury, the molecules resolve gradually, and the disease 

progresses to a recovery stage of brain injury. The restored moderate SFK/mitogenic 

signaling leads to birth of new endothelial cells, astrocytes and other cells that mediate BBB 

self-repair and brain edema resolution. Recent studies suggest that a number of stem cells 

exist throughout the mammalian brain, and some of these are associated with vascular niches 

[91]. Such stem cells could serve as a source of newborn endothelial cells, astrocytes and 

other cells of the neurovascular unit that would play a major role in re-establishing the BBB 

after brain injury [92].

Though SFK inhibitors prevent toxicity signaling at the acute phase after ICH, they also 

block cellular proliferation of stem cells to delay and prolong BBB self-repair [55, 56, 93, 

94]. This may provide at least a partial explanation for the findings that: (1) acute single 

administration of SFK inhibitors (PP2, 1mg/kg, i.p. immediately after ICH) can attenuate the 

intracerebroventricular injection (i.c.v.) of thrombin-induced BBB disruption and brain 

edema [20, 52]; (2) and that delayed and chronic administration of SFK inhibitor (PP2, 1 

mg/kg, i.p. daily, day 2 through 6) prevents thrombin-induced BBB repair and brain edema 

resolution in rats [20, 52].

Additionally, SFKs also activate hypoxia-inducible factors (HIFs) that can increase BBB 

permeability for brain edema formation or promote angiogenesis for brain edema resolution 

after brain injury through expression of aquaporins (AQPs), matrix metalloproteinases 

(MMPs), vascular endothelial growth factor (VEGF), BBB proteins (i.e., occluding), and 

others [95–97]. Interactions and cross-talk with these and other molecules and pathways add 

complexity to timing and development of appropriate treatment strategies involving the 

SFKs.

Future directions

Future studies need to address exactly which specific SFK members found in brain (e.g., 

Src, Fyn, Lck and Yrk) mediate edema following acute brain injury. In view that SFKs also 

play critical roles in brain edema resolution, the therapeutic time window of SFK inhibition 

should be studied for treating edema following acute brain injury and avoid the potential 

side effects caused by chronic inhibition of SFKs. A nanoparticle-based siRNA transfection 

system can be used for knockdown of individual SFK genes, as it allows transient 
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knockdown of target genes, high efficiency of in vivo siRNA delivery, high specificity for 

gene targets, low cytotoxicity [98, 99], and is approved by the FDA for human use [100–

103].
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Figure 1. 
Activation of SFKs results in BBB disruption and brain edema formation in the acute stage, 

but leads to BBB self-repair and brain edema resolution in the recovery stage after acute 

brain injury, such as ICH, TBI and ischemic stroke.
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