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DISSOCIATION OF MOLECULAR IONS BY ELECTRIC FIELDS 

John R. Hiskes 

Lawrence Radiation Laboratory, University of California 

Berkeley, California 

~y 4, 196o 

ABSTRACT 

A general discussion of the dissociation of diatomic molecules 

and molecular ions by electric fields is presented. These calculations 

pertain primarily to the ground electronic states of the molecular 

systems. + The H
2 

ion is treated in considerable detail; the required 

fields for the dissociation range from 105 v/cm for the uppermost vi

brational state to 2 x 108 v/cm for the ground state. The many-electron 

homonuclear ions are treated in successive charge states. + + The HD , HT , 

HD, LiH+, and LiH++ heteronuclear ions are considered. The dissoci-

ation of homonuclear ions and heteronuclear ions exhibit distinctly 

different features. The HD+ and HT+ ions are more susceptible to 

dissociation than is H
2
+. The extent to which the dissociation by an 

~ ~ 

electrostatic field and by the Lorentz force, ev x B, are equivalent 

is considered. The rates of induced dipole transitions to lower vi-

brational states can be made negligibly small compared with the dissoci-

ation rates. The application of this work to particle accelerators and 

to the injection problem for fusion devices is discussed. 
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DISSOCIATION OF MOLECULAR IONS BY ELECTRIC .FIELDS 

John R. Hiskes 

Lawrence Radiation Laboratory, .University of California 

Berkeley, California 

May 4, 1960 

INr:rRODUCTION 

If an atomic or molecular system is placed in a steady electric 

field, the Coulomb binding forces are supplemented by an additional 

force which tends to separate the charges. One would expect that a 

sufficiently intense external electric field would lead to a dissoci-

ation of the system. Oppenheimer calculated this effect for a hydrogen 

atom in its ground state and found that the instability of the atom was 

inappreciable for field intensities much less than 108 volts per centi-

1 meter (v/cm). These calculations have been extended to various excited 

states of the hydrogen atom by Lanczos. 2 

The nature of the process is such that the presence of the external 

field brings about a change in the potential experienced by the atomic 

electron in such a way that the bound ~lectron sees a barrier of finite 

width through which it can tunnel its way to freedom. A general property 

of such tunneling processes is that the transition rate depends expo-

nentially on the height of the barrier. In the atomic problem, this 

barrier height is at least approximately defined by the energy required 

to excite an electron into the continuum. 

Consequently one would expect that the field magnitudes calcu-
• ..!._·,· 

lated by Oppelll1e;i.mer_to b~ necessary for an observable dissociation 
. . . ' .. ,,;,_ ...... ;, . ; . 
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rate might be markedly reduced in a·i~system ~whos.e pertinent binding 

energy is appreciably less .than that of the hydrogen atom. 

In this paper we consider the elect-ric dissociation of the general 

diatomic molecule or molecular ion in its ground electronic state. The 

dissociation of a molecular system exhibits distinctive features compared 

with the atomic case. The nature of this difference for the two cases 

is a consequence of the fact that the only mode of dissociation avail-

able to the atom leads to a transition of the electron into a free state. 

For tne molecule, however, there are an infinite number of possible 

final states leading to dissociation, corresponding to the successive 

bonding and antibonding electronic states of the system. 

One might expect then that an ion for which the uppermost vibration-

al states of a particular electronic state are occupied would provide 

an example of a system that would dissociate at a reasonable rate in 

the presence of an appreciably smaller field than is required for atomic 

dissociation. This mode of dissociation, in which the molecular system 

divides into two atomic systems -- a form of predissociation -- appears 

to be the principal mode of dissociation for most molecular ions. 

Apart from its general physical interest, this mechanism has appli-

cation to particle accelerators and to the injection problem for 

controlled-fusion devices. The inspiration for this work originated 

with some remarks by members of the Princeton accelerator group who, 

in considering the possibility of accelerat2ng H ions ~n an accelerator 

and then trapping these ions iri'a: storaig-'ririg by changing their charge 

state to H+, recognized that the H 'ioh. i's ci~ite susceptible to dissoci-
... . 

ation into an H atom and a· free· ·electron through the 'action of the 

~ ....... 3 4 . ' . 
Lorentz force, ev x B. ' This "LOrentz dissociation" of H- may have 
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oeen observed by lofgren in the 184-in. cyclotron.5J 6 

It was recognized that such a mechanism for changing the charge 

state of an atomic system might find application as an injection 

mechanism for fusion devices employing large magnetic fields. Such 

change-of-charge-state mechanisms employing atomic and molecular systems 

as a means for trapping energetic particles inside a magnetic field 

region had previously been proposed utilizing conventional ionization 

processes.7J 8 

The basic requirement of such injection methods is simply that the 

absolute value of the ratio of charge to mass of the atomic system must 

increase during the respective ionization process. The stripping of 

electrons from negative ions by the lorentz force is therefore not of 

interest. The stripping of electrons from the ground state of neutral 

atoms is limited by the requirement of intense fields; the Li atom with 

a binding energy of 5.36 electron volts (ev) would appear to require 

electric fields in excess of 107 v/cm to achieve a useful dissociation 

rate. (In later sections it will be shown that the neutral molecule is 

appreciably more susceptible to dissociation than the corresponding atom.) 

These considerations have prompted a study of the dissociation of 

the simplest molecular structure) the hydrogen molecular ion. In a first 

approximation to the dissociation by a magnetic field) the problem was 

replaced by the simpler one of the dissociation by a purely electrostatic 

field in the belie.f that the solution of this latter problem would ex

hibit the basic features of the dissociation by the Lorentz force. 9 

The extent to which these two problems are equivalent is discussed in 

Appendix D; in this appendix it is shown that provided one ignores the 

Zeeman termsJ which are negligi"bly small compared to the separations of 
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the vibrational levels, the ·dissociation by a magnetic field r:educes 

to the problem of' the dissociation by an; electric f'ield. 

report of' this work on H2+ has already been given. 10 

A preliminary 

It is conventional in many cyclotron establishments to accelerate 

H2+ as a source of' protons. As cyclotron energies are increased it is 

of' interest to inquire into the stability of' successive vibrational 

states. The curves included in this work should be usef'ul in providing 

a basis f'or estimating these successive stabilities. It is interesting 

to note that on the basis of' an instantaneous Lorentz transformation 
...:. ~ -..:.. 

into a system moving with the ion, which yield /! = -yv X B, one concludes 

that an ion in its ground vibrational state is stable f'or acceleration 

up to some 6o Bev in a 20 kilogauss f'ield. 

At an early point it was recognized that an accurate treatment of' 

the dissociation would require a knowledge of' the vibrational eigen-

functions and eigenvalues belonging to the ground electronic state of' 

+ H2 . These calculations have been carried out in collaboration with 

Dr. Stanley Cohen and Dr. Robert J. Riddell, Jr., utilizing potential 

ll functions calculated in connection with the mesonic-moleucle work. 

12 These calculations are reported elsewhere. 

Following the publication of the preliminary report mentioned above, 

an additional bound vibrational state lying between what had been thought 

to be the uppermost state and the dissociation limit was discovered. 

The original paper together with the later work on H
2

+ is included in 

this paper; a report on th:i:s,, :later work has already been given. 13 

The extension of'.· this· problem· to the many-electron system and to 

heteronuclear molecules:has been facilitated by the recent work of 

Dalgarno and McCarroll., 14 and that·io::f~Cphen, Judd, and Ridde11. 15 

v 

.... 
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In Section II the equations for a gener~l many-electron diatomic 

molecule moving in the presence of electrostatic field are developed . 

Included in Section II is a discussion of the electromagnetic transitions 

between the vibrational states of the general diatomic molecule. 

In Section III the general equations of the previous section are 

applied to several particular molecular ions. The H2+ system is treated 

in considerable detail, followed by a general discussion of the many-

electron homonuclear system in successive charge states. The treatment 

on heteronuclear molecules is applied to the HD+, HD, LiH+, and LiH++ 

systems. Finally, an elementary classical analogy to molecular pre-

dissociation is derived for comparison with the quantum-mechanical results. 

II. THE GENERAL EQUATIONS 

A. Separation of the Motions 

In this section we shall discuss the Hamiltonian for a general 
. . 

many-electron diatomic molecule moving in an electrostatic field. The 

development given here will follow closely that of Dalgarno and McCarroll, 

and of Cohen, Judd, and Riddell. Insofar as is convenient, we shall 

adopt the notation of the latter. 

Consider an n-electron diatomic molecule with nuclei of masses Ma 

and ~ and charges ea and eb in the presence of an electrostatic field • 

....:>. ....:>. ~ 

Let r , rb' and r . represent the coordinates of the two nuclei and the a eJ. 

ith electron, respectively, all measured with respect to the laboratory 

system. Take the direction of the z axis along the electric field. The 



- 7 -

Schroedinger equation for this system is written 

where 

.and 

~2 
-2 { 

2 2 ___E._ 2} 1 \7 1 \7 1 2_ \7 . . ,,, -v +- v +- · v Iii 
M M b m . 

a a -o i~l e~ 
(II.la) 

n n 
2 

~I I
1
r .-er .

1 . 1 ·~· e~ eJ 
~~ ~rJ 

(II.lb) 

(II.lc) 

The center-of-mass motion can be separated from the equation for 

the internal motions by introducing n+2 new variables -- a center-of-

mass coordinate, r ' a relative nuclear coordinate, r ' and n additional c n . 

coordinates, r., measuring the distance of the ith electron from the 
~ 

center of mass of the two nuclei. The 

-" -" ....>. 

r c = Pa r a + ~ r b 

_,. -"' ..0. 

r = r - rb n a 

....:... 
r. = r - f r -
~ · ei a a 

where: 
M 

a 
Pa = 

M +1\ + nm a 

1\ 
pt= M + I\ + nm 

a 

m 
p_= M + I\ + nm 

a 
M 

f a 
~ 

a M + I\ a 

fb 
1\ 

~ 

M +I\ a 

transformation 

+ p,f -r. 
i=l e~ 

. ~ 

fb rb 

is written: 

(II.2) 

;J 
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When this transformation is introduced into Eq. (II.l), the 

Schroedinger equation in these new coo'rdinates becomes 

\1·\j 
J.. J 

· n 2} 
~~· w 

(II.3a) 

+ {vl + v2} 'ljJ' = E'ljr , 

with 
2 2 

be2 
n 

ab e 
n 

~I vl L ae 
= = 

I ri - f2T"n I 
+ 

IIi+ flrnl 
+ 

lrnl i::::l i::::l 

In Appendix A it is shown that 

V2 ~ -eE la + b n] "c -e£ t ~ .~ ~ MaJ "n 

+ et [1 + (a + b -n)m] ~ z. . 
M+M+nm .

1
1. a -o 1.= 

(II.3c) 

The center-of-mass motion can now be separated from the equation 

for the internal motion by writing 

and 

E == E + W • c 

The equation for the center-of-mass motion becomes 

n = E n 
c 
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The equation for the internal motions is written 

M = n 

'1/f = W'l/l-, 

(II.4) 

In the interest of separating the relative nuclear motion from the 

electronic motions, we proceed by assuming a solution of the form 

*K Cr ' r. ) x._(~ ) • K n 1. -K n 

. * Inserting this expansion into Eq. (II .4), multiplying by '1/f·A , and inte-

grating over all electronic coordinates, we have 

1 f n 2 
- ~ e + ~ = 2 . 1 ·t jrj - ril 1.= J J. 

+ e[~ + 
(a + b - n)~ t z. - E (rn)} l/rK d3r l" •• d3rn (II.5) 
M + ~+nm J. A a i=l 
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1 
+ M M a+ -o 

The electronic functions, WK' are defined by setting the bracketed 

quantity in the integrand of Eq. (II.5) to zer9. The remaining terms 

serve to define the nuclear motion. In a first approximation to the 

nuclear motion it is customary to set the ~ series to zero. The 

various vibrational states belonging to a particular electronic state, 

EA, are then determined by the equation 

lJ.2 2 [abe2 (~ +- ~bMa) J - -2M-\/· Xx. + -r- - et ~M-'----...;;.;. Zn + EA (rn) - W ~ = 0. (II.6) . 
n n n . a 

For homonuclear molecules, the ~ series is a simple correction to the 

nuclear potential, the leading term in this series contributing a quantity 

of order m/M •15 For the heteronuclear one-electron problem in. lowest 
n 

order, there is a degeneracy at large rn for the two distinguishable 

cases in which the electron is associated with either mass a or mass b. 

It has been shown that in this latter case, in addition to providing a 

correction to the potential, the leading terms in ~ also provide a 

means for removing.the degeneracy that exists at large r . The motion . n 

is now determined by a set of coupled equations, and the notion of a 

15 potential is no longer appropriate. In this discussion we shall usually 

neglect the effects of these higher-order corrections, since the primary 

effect of the electric field is already pronounced in lowest order; the 

use of a potential in describing the effects of the electric field for 

both the homonuclear and heteronuclear cases is then valid. 
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B. Vibrational Transitions 

(l) Spontaneous Emission 

Here we are concerned with vibrational transitions between the 

various vibrational states belonging to the ground electronic state of 

the molecule. The lifetimes of these states can play an essential part 

in the interpretation of various experiments involving molecular processes. 

There have been conflicting statements in the.literature regarding the 

nature of these vibrational transitions, particularly with respect to 

quadrupole transitions in homonuclear molecules. 

In.Appendix B, the spontaneous-transition rate for dipole tran-

sitions 
2 

In the case of homonuclear molecules, the dipole transition rate is 

identically zero. As an example of these transition rates for hetero

nuclear molecules, consider the HD+ ion for which we havekv10~0.22 ev 

and r ~2a • The lifetime of this first excited state is approximately n o 

200 microseconds ·(j.lsec). For the uppermost states, the lifetimes will 

be about two orders of magnitude longer than for this lowest transition. 

Since the time of flight of an ion in an electrostatic accelerator is 

some tens of microseconds, we conclude that for the purposes of many 

experiments these states are sufficiently long-lived to he considered 

stable. 

For homonuclear molecules, the quadrupole transition rate is given 

by 
2 

' 
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·(2 "A )
2 

These quadrupole lifetimes are approximately a factor of - ~ 
a r 

longer than are the dipole lifetimes. 

(2) Induced Transitions 

. n 

Switching on the electric field has the effect of inducing vi-

brational transitions. One is generally concerned with the rate of 

these induced transitions compared with the dissociation rate. In 

Appendix B, it is shown that the induced transition rate is given 

approximately by 

16 
These transitions have been discussed previously by Condon. 

This transition rate exhibits a simple power dependence on the 

electric-field value. The dissociation rate on the other hand is 

exponentially dependent on the field value. For any particular level, 

therefore, it is possible to choose a field value for which the over-all 

transition rate will exceed·the dissociation rate, and vice versa. 

III • APPLICATIONS 

A. Homonuclear Molecules 

Having derived the general equations in the previous section, we 

shall now apply these results to several particular molecular ions. In 

any discussion of the theory of diatomic molecules, the symmetry features 

of homonuclear molecules lead to a clear distinction between the proper-

ties of homonuclear and heteronuclear molecules. This distinction be-

comes even more evident in a treatment of the dissociation by electric 

fields. Accordingly, we shall divide the problem at this point and 

consider first the dissociation of homonuclear molecules. 
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For homonuclear molecules we have a. = b. and -M ·a ~j the coefficient 

of z in Eq. (II.5) vanishes and there is .n() e?Cplicit 9-ependence on £:, 
n 

appearing in the equation for the nuclear- motion. . We shall see, however, 

that an implicit dependence on t is contained in the electronic eigen-

(l) + Dissociation of H
2 

The simplest molecule and the one for vrhich an exact treatment of 

dissociation can be given is the hydrogen molecular ion. We begin the 

discussion by considering the electronic equation for this one-electron 

system: 

{ ~: \(- [-lrl~:
2

~-tn1+ I~ 
where [ =[ l + (m/2M + m~ e • 

2 
e 

l-->.1 +-r 
2 n 

(III.l) 

The potential function seen by the electron is illustrated in Fig. l 

for the case in which the two nuclei are oriented along the field di-

rection and for some particular internuclear separation. It is clear 

from the figure that the electron may leak out toward the left, avmy 

from the region of the two protons. This would correspond to a complete 

dissociation of the system, i.e., dissociation into a free electron and 

two free protons. Although this represents a possible mode of dissoci-

ation, it is not the primary mode. Rather, the primary effect of the 

term t.-t z
1 

is to perturb the electronic eigenvalues. This perturbation 
J'; I, 

in turn leads to a disruption of the nuclear motion. Before considering 

this effect, we digress to consider some properties of the unperturbed 

ion. 

The unperturbed hydrogen molecular ion has been discussed fairly 

extensively in the literature, and we have available several choices 
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for the electronic functions, 'ljJK. The simplest function is the linear 

combination of atomic orbitals (L.C.A.O.) approximation in which the 

electronic state is taken as a linear combination of hydrogenic wave 

functions centered about the two protons. For the ground state and 

first excited state these are explicitly written: 

q~·· = @(1 + T]-1
/
2 

{pa(1s) • pb(1s)} 1 

TTI -1
/

2 
{cpa (ls) - Pj, (1s)} 

(III.2a) 

'lji :::; ~(1 -2 

where 

and 

T =J<p~. <pb d3rl • 
2 .f. 2 + 

The molecular designation for these two states are ~g and ~ , 

respectively. Although these functions provide a good approximatio~ 

for large internuclear separation, they are known to be poor in the 

limit of small separation. However, in a discussion of dissociation 

we are interested primarily in effects at large internuclear separation, 

and these functions are useful. 

The Eq. (III.l) for e_ = 0 is separable in confocal elliptic co-

ordinates ~' T)1 cp. These coordinates are defined by 

~ ~ - r 1 + Jr a .. el 

I~ -~1 
~ _21· -'"rn / /rl + - !':= 

and 

' 
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where ra and rb measure the distances ofthe·electron·from proton a and 

proton b, respectively. These scalar functions are.not to be confused 

with the vector functions defined previously in connection with Eq. ( II.l) . 

If x", y11, and z'/ are the coordinates oriented· with respect to the 

internuclear axis and with origin at the midpoint of a and b, these co-

ordinates are related to the £, ~' ~ coordinates by 

X II = 

y'' = 

and 

z'' = 

r 
n 

2 

r n . 
2 E~'• 

cos 

The volume element is 
r 3 

d-r = + (s
2 

- TJ
2

) ds dTJ dcp, 

~ ' 

(III.3) 

and the range of the variables is given by 1 < £ < oo , -1 < ~ ~ 1, and 

Introducing these coordinates into Eq. (III.l), there result three 

separated equations -- one trivial, the other two requiring numerical 

integration for their general solution.l7,lB,l9 These integrations 

have also been carried out by Bates, Ledsham, and Stewart for several 

electronic states; the results are tabulated over a range 0 < r /a < 10.
20 

- n o 

A third set of functions have been given by Cohen, Judd, and 

Ridde1115 using a variational calculation in confocal elliptic co-

ordinates. Their variational functions are of the form 

q
1

(r )T]1r 
,,,. A h n n 
~1 = 1 cos 2 e 

and 

r . 
n 

(III.2b) 

·.:..:· 

\1 .. 
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Here the variational parameters p(r ) and q(r ), are tabulated for the 
n n r 

n interval 0 :S: a< 20. The coefficients A
1 

and A2 are determined by the 
0 

normalization conditions 

and 

The quantities E, B, and C are defined and evaluated in Appendix C. In 

the limit of large internuclear separation, we have p = q = 1, and 

A =A = (2/n)1/ 2• l 2 

Consider now the effect of the term C..tz
1 

on the unperturbed 

electronic states. For large internuclear separations, the bonding and 

antibonding states t
1 

and ~2 are degenerate; a perturbation treatment 

of the term ££ z
1

, though adequate for small internuclear separations, 

loses its validity for large internuclear separations. This degeneracy 

of wl and '2 for large internuclear separation suggests that in a first 

approximation we consider diagonalizing the Hamiltonian (III.l) but re-

taining only the submatrix formed from these two electronic states. The 

matrix to be diagonalized is then 

(rrr.4) 

For the evaluation of H
12 

we must first transform the term t Cz
1 

into the x '', y ", and z ''system oriented with respect to the internuclear 

axis. .Introducing Eulerian angles A.and ~,we 

< t' z1 = ~ t [ x_i sin A,+ YJ. sin ~ cos A + 

have 

z'' cos 
·1 ~ cos A J . 
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The functions (III.2) are independent of. cp, and upon examining the trans-

formation (III.3) we see that the terms in x'1 and. y'' vanish under the cp 

integration. Noting that cos ~ cos A = cos ·6 J. where e is the angle n n 

between the internuclear axis and the electric-field direction} the 

relevant perturbation is then 

The matrix elements are evaluated by using the functions given in 

Eqs. (III.2a) and (III.2b). In the former case we have 

Hll "i ~1 * [Ho + E[ zr] jll d3i'l " El (rn) 

and 

~2 "j~E2* [BQ + d zr] 112 a3fl " E2(rn) , 

Since the term in zl in the integrands is an odd function} the diagonal 

terms are unperturbed. For the off-diagonal term 

H21 = Hl2 "J~E2* [Ho + c{z"] ·~ a3r• 1 1 1 

e.e: 2 2 ~ 
(III. 5a) = + 

2(1 - T
2

) 
(cpa - ~· ) z'' d-'r" 

1 1 

c.~ = + r cos e 
2(1 - T2) n n 

,.,here e is the angle between the electric-field direction (z axis) and 
n 

the line joining the two nuclei. 

In the evaluation of H12 using the functions given in Eq. (III2.b)J 

the relevant perturbation expressed in confocal elliptic coordinates is 

written 
r 

c.Ezl ~ E.t., 2 n ·cos Gn ,1 sl 

.. 



i 
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The matrix elements are given by 

Hll El (III. 5b) 

H22 = E2 ' (III. 5c) 

and 

The additional terms that appear in the Hll and H
22 

matrix elements, 

g ct cos e A 2 4 [E31 cl Ell c3] r ... 
n l n 

and 

gcf cos Gn A2 2 rn 4 [E32 ~1 -E12 F3] ' 
respectively, are each identically zero, in agreement with the result 

using the 'I.CAO functions. In the limit as r n ~ ro , we have 

H12 ~-~ t.l. r n cos en . 

An integral similar to that occuring in the H12 term occurs in the 

theory of photodissociation. This integral has been evaluated numerically 

by Bates21 using the exact numerical wave fUnctions and a comparison of 

this result with the value given by the.LCAO approximation. The agree-

ment in excellent for large internuclear separations, significant devi
r 

ations exist only for ~ < 2. 
a 

0 

With these matrix elements, diagonalization of Eq. (III.4) yields 

two new electronic states, W and W , whose eigenvalues are, respective-
g f.L 

ly, l 

El + E2 l [1 
€21':2 r 2 cos2 6 J 2 

E (E2 - El) 
n n 

= + 
(l - T2)(E2 El)2 

g 2 2 

and l 

El + E2 [1 + 

E. 2 e_2 r 2 

2r l n cos en 
(III.6a) E = + 2 .~E2. - El) E )2 

. 
u 2 ' 2 

(1 - T ) (E2 - l 
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For small values of r these reduce to ' . , 
n 

and 

E g = E -1 

2 - 2 2 
f.. (.. r 1 - , · n 

4 
(1 - T

2
) (E 

2 

2 cos e 
n 

- E ) 
1 

2 e2 2 2 
1 

E. ~ r cos e n n 
4 (1 - T2)(E - E ) 

- ' 2 1 

and for large values of r , to 
n 

and 

c. c rn Ieos en r 
E = E -g 1 2 

t.crnlcos e~l 
2 

J (III.6b) 

(rrr.6c) 

Equations (III.6) indicate that the electronic eigenvalue, which in the 

unperturbed case was independent of the orientation of the internuclear 

axis, now has a value that is dependent on the nuclear orientation and 

in addition is a function of the electric-field value. We have seen in 

Eq. (II.5) how the electronic eigenvalue appears as part of the potential 

function for the nuclear motion. The nuclear potential which '-ras spheri-

cally symmetric in the unperturbed case becomes axially symmetric in the 

perturbed case, with the axis of symmetry oriented along the field di-

rection. The nuclear potential for the lowest electronic state now 

acquires a double-ended spout, the two spouts oriented along the field 

direction. The effect of the perturbation goes to zero in a direction 

at right angles to the nuclear axis in this approximation. The po-

tential function for the upper electronic state ,also acquires a double- -~ 

ended spout, but for this state the two spouts are oriented at right 

angles to the electric-fie];d direction. 

In Fig. 2 is shown the Unperturbed nuclear potential for the two 

lowest electronic states. Conventionally these potentials are drawn 
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in a spherical-coordinate system, but for the purposes of this discussion 

a cylindrical-coordinate system is more appropriate. The vibrational 

states are indicated schematically by the light horizontal lines; for 

the H
2
+ ion there are actually 19 bound vibrational states. 

Figure 3 indicates the distortion of the nuclear potentials in the 

presence of the electric field; the potentials are drawn along the 

electric-field direction. The symmetry of the potential about the 

origin follows as a necessary consequence of the invariance of the 

Hamiltonian (II.4) for a homonuclear molecule under inversion of the 

nuclear. coordinates. From this figure it is clear that as the electric 

field increases, the nuclear potential deforms until the uppermost vi-

brational state becomes unstable. The ion will then dissociate into a 

free proton and a hydrogen atom according to H2 + ~ H + p. This mode of 

dissociation is a special form of predissociation. 

At first glance the symmetric potential of Fig. 3 might conflict 

with one's intuitive feeling that the potential of either electronic 

state should fall off approximately monotonically from left to right. 

This point can be clarified by examining the new electronic wave 

functions appropriate to the diagonalized Hamiltonian. For the per-

turbed electronic states, on finds 

and 

(Eg- E2) 1/r2} • 

(III. 7a) 

Consider first the limit as r becomes large and the.nuclear axis 
.n 

is aligned along the electric field, corresponding to proton a lying 
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in the direction of the electric field with.:}espect, to proton b. 

(since rn cos en= zn = za- zb). In this limit . .:we:have Eg- E2 = -[H12 j, 
and H12/jH12 j = + 1. Using Eq. (III.2a), we have 

'1/fg ~ Clb 

and 

1j;·· ~ cp • 
u a (III. Tb) 

Statement (III.6b) is to be interpreted as meaning that in this 

limit of large internuclear separation the ground electronic state is 

one in which the electron is associated with proton b and proton a is 

free, and the excited electronic state is one in which the electron is 

associated with proton a and proton b is free. For the lower electronic 

state this corresponds to moving the positively charged proton a in the 

positive field direction, hence lowering the potential. For the excited 

electronic state, the positively charged proton b is moved against the 

field direction, thus raising the potential. The dependence of the 
.. 
potential on the right-hand side of Fig. 3 is then understood• 

If the internuclear axis is rotated 90 degrees to the field di-

rection, the effect of the perturbation goes to zero. In this case we 

·have 

7)i ~·~· 
g 1 

(III. 7c) 
w ~ 7Jr 
u 2 ' 

and the electron has equal probability of being associated with either 

proton. Continue the rotation until the internuclear axis is oriented 

at 18o degrees with respect to its original direction; proton b now lies 

in the direction of the field with respect to proton a. For this case 

we have H12/jH12 1 =- 1, and the electronic states become 

'1/f ~ Cj) 
g a (III. 7d) and 

.. 
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For the ground state, the electron is associated with proton a and 

proton b is free. Separating the nuclei corresponds to moving the 

charged proton b in the positive-electric-field direction, which lowers 

the potential.· For the upper state, proton a is moved against the field 

and the potential is raised. This interpretation is consistent with the 

variation of the potential on the left-hand side of Fig. 3· 

The higher-order effects which were neglected in diagonalizing the 

submatrix (III.3) can be estimated by using perturbation theory and 

taking.as the basis functions the two solutions of Eq. (III.6a) together 

with all the unperturbed higher-state functions. In the limit as r 
n 

goes to zero, the molecular ion degenerates into a He+ ion in its lS 

state. The Stark shift for this state is 

A E = - 9 3.:.""2 
u b4 a

0 
c . 

In the limit of large internuclear separation, the electronic state is 

that of a hydrogen atom in a lS state. The Stark shift for this state 

is 

9 3 p 2 
b. E = - 4 ao c.. • (III.6d) 

For the range of electric-field values of interest for dissociating the 

upper vibrational states, these higher-order corrections are negligible. 

For dissociating the lowest vibrational states these corrections, though 

not negligible, are not too significant. Their effect on the transition 

rate is comparable to ignoring them completely and increasing the elec-

tric field value some 5 to 10%· 

The potential function for the nuclear motions has been determined, 

and we can now consider in detail the nuclear dissociation. The equation 

for the nuclear motion is given by 

f 
i62 2 

-2M\/ 
n n 

0 . (III. 7a) 
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The subscript vis introducedto dis.tingu~sh the various vibrational 

states belonging to the lowest electronic state .. In the limit of large 

internuclear separation, the asymptotic form of this equation is 

{ 

;n2 2 
-2M \j + 

n n 
E1 (r ) - !. C.t r Ieos n 2 · n (III.7b) 

In the asymptotic region, the E
1

(rn) is constant and can be absorbed in 

the wlv' 

It is clear from Fig. 3 that if the maxima of the potential lie 

above an eigenvalue the proton may leak away from the region of the 

· hydrogen atom. This effect of barrier penetration is not negligible. 

To treat the nuclear dissociation taking into account these effects of 

barrier penetration, we use Oppenheimer's formula for the transition 

1 rate. The method consists of solving for the motion of the ion in the 

asymptotic region given by Eq. (III.7b) and neglecting the binding 

effects of the molecular forces at small internuclear separation. The 

transition is then imagined to proceed from the bound discrete vibration-

al state of the ion to the unbound free-state solution, the perturbation 

inducing the transition being a function of G . Specifically, the matrix 

element for the transition is written 

where 

1 
2 

2 
- E ) + 1 

~ is bound vibrational state, and XA is a solution of Eq. (III.7b). 
·lv .t1. 

For these calculations, it was found that.the primary contributions to 

the matrix element come in the range where 

~ v ~ - !. EC z . 
2 n 
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The solutions of Eq. (III.7b) in cylindrical coordinates ptl' Zn' 

~n for the classical and nonclassical regions and normalized to a 

continuous spectra are, respectively, 

and 

X ·22/3 Mn .r:- (.
3

rv) -1/6 . 2/3 1/3 H (2) 1 _. ) 

ANC = - 11 ~1t "" 1 1 l/3 ' 17 

x J ~ (II; Pn) ei 0; qln 

Here we have 

and 

22 
The Bessel functions are as defined by Jahn~e and Erode. Note that the 

normalization factor differs from that of reference 1 by a factor 2
1

/
6. 

For well-behaved solutions, we must have ~ ~ 0, therefore we have 

\ < }... 

Using these wave functions and the exact bound-state wave function, 12 

the electric fields necessary for dissociating the ion in 1 sec and in 

-8 
10 sec have been calculated for the nonrotating molecule, that is 

J = r-; = o. The transition rate is given by 

21/3 E- 2 C. 2 M a 3 
N(T) n o 

= 161t113 (3cx) 173 J..Lo ' 
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and 

Here we have 
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[

oo "><v ( r') . 
x d p( p' J o ( ~ /\2 P') r' • 

0 

z'= 

,2 
r 

p/= 

z 
n 

a 
0 

p; 
n 

a ' 0 

X (r 1)/r1 is the radial function of the initial vibrational state. 
v 

The functions Xv (r') exist only in numerical form and ~l and ~~,-~must 

be integrated numerically. The results of these calculations are 

expressed in Rydberg units, of the bound vibrational states against the 

electric field value. The intersection of the horizontal lines with 

-8 the sloping lines marked 1 sec and 10 sec determines the electric-

field values necessary to dissociate the ion in these times. Included 

on these graphs is a curve marked "classi~al", which would give the 

field necessary for dissociation in the absence of barrier penetration, 

For this case, the ion would disso~iate in a time comparable to its 

. -14 classical vibration period, ~.e. 10 sec. 

t 

.. 
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The additional term appearing in Eq. (III.7b) for the perturbed 

E 
g - E 

1 = E2 ~ E1 - ~ ~E2 - E1 )2 + 4lS} J ~ ' 
gives rise to a first-order perturbation that has the effect of lowering 

the unperturbed vibrational states. If we use the curve labeled 

"classical" to determine the electric-field value, the first-order 

perturbation of the various vibrational states has been calculated and 

plotted in Fig. 5· These perturbed eigenvalues have been used in the 

calculations summarized in Fig. 4. 

The calculations of the vibrational eigenvalues of the unperturbed 

molecular ion are uncertain by perhaps as much as 5 mv. The range of 

this uncertainty for the two upper states is indicated in Fig. 4 by 

plotting two horizontal lines for each of these upper states. 

The transition rate given above is based on the final-state eigen-

functions, which ignore the bonding molecular potential. This rate is 

such as to lead to an overestimate of the field required to dissociate 

the ion in a particular time. An underestimate of the required field 

can be made by assuming the perturbed potential is spherically symmetric 

and using the one-dimensional WKB barrier-penetration formula, 
1 

N(T) = 1014 ; ,E:lr2 {2 Mn [w1v - V(rn ~} 2 drn' 

rl 

where 
2 

V(r ) = ~ + E (r , t_) . 
n r g n 

n 

-8 The calculations for dissociation in 10 sec using this formula 

are indicated in Fig. 4 by the dashed curve. The discrepancy between 

these two calculations together with the uncertainty in the unperturbed 



- 27 -

eignvalues provides a basis for estimating the over-all errors in these 

calculations. 

The calculations summarized in Fig. 4'refer to the transition rates 

of non-rotating (J = 0) molecular ions. In the more general case the 

effects of rotation must be considered. The rotational state of the 

ion will depend primarly on the particular mechanism which led to the 

formation of the ion. Under typical laboratory conditions the ioni-

zation process is induced by a 15-100 e.v. electron impinging on an 

H2 molecule which is normally at room temperature. The most probable 

2 2 1.. 
rotational state of the ion is given by J = (M r kT/2~ ) 2 - ~· For 

n 

8 0 0 
H2, rn~o. 5 A, and at T = 300 C, we have JZ'l. The orbital angular 

momentum of the impinging electron is approximately one to five units 

of 11; we can suspect then that the molecular ions will also have a 

distribution of J values in this range. The correct distribution of 

these rotational states must come from a detailed study of the ioni-

zation process. 

If the molecule is rotating the potential function deforms in 

such a way as to reduce the binding energy of any particular vibration-

al level. This effect is clearly in the direction of reducing the re-

quired field for dissociation. On the other hand, the potential 

function for dissociation is. now deformed in such a way that depending 

on component of angular momentum along the Z-axis, the dissociation 

can be inhibited. If m is the component of orbital angular momentum 

along the Z-axis, we have, upon examining the asymptotic solution, 

~C' the selection rule, m = ~A 3 . Examining the matrix element for 

the transition we see that the primary effect toward reducing the tran

sition rate is contained in the Jm ( ~A2Pzi) factor in ~c· The minimum 
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of the saddle for the non-rotating molecule ·will occur at · p = 0. For 
n 

m = 0 we have 

for m > 0, we have 

J m 
p -+0 
n 

Hence for large m the wave function is suppressed in the region of 

the potential where the saddle exists form= Oj it is clear that the 

transition rate is reduced as m increases. For m = O,there exists only 

one saddle at either end of the bound region of the nuclear potential, 

and located on the Z-axisj for -m>O these point saddles become ring shaped 

and located symmetrically about the Z-axis, the distance from the Z-axis 

and the height of the saddles increasing as J increases. 

As an illustration of the significance of these rotational effects 

let us compare the fields req,uired for dissociation in 10-
8 sees •. for 

an ion in the v = 15 vibrational state and for the rotational states 

J = 4, m = 0, 4, with the fields req,uired for dissociating an ion in 

the same vibra·l;ional state but in a J = 0 rotational state. For m = 0 

·>.1e electric field necessary for dissociation is approximately thirty 

percent less for J = 4 than for J = 0. The effect of the rotation in 

raising the vibrational eigenvalue is the dominating factor here. For 

J = 4, m = 4, the req,uired for dissociation field is approximately forty 

percent larger than for J = 0. We conclude that the presence of rotation 

has the effect of lowering the threshold fields necessary for dissociat-

ing a particular vibrational level. 
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(2) Dissociation of Many Electron Systems 

Turning our attention to the many electron problem, we find rela-

tively little ~~titative information in the literature on potential 

functions for many-electron molecular ions. Only for the He
2
+ ion and 

the Li2+ ion has t~ere been any attempt to calculate the ground-state

potential functions, and here the emphasis has been primarily on deter

mining equilibrium internuclear separations and potential minima. 23, 24 

Accordingly, our treatment of these many-electron ions cannot be as 

precise as for the one-electron systems, and quantitative estimates of 

the fields necessary for di~sociation will have to be made largely on 

the basis of extrapolating the properties of the corresponding neutral 

molecules. 

The many-electron problem is treated by using the molecular-orbital 

approximation. In this approximation the many-electron molecular system 

is constructed by filling the successive two-centered,orbitals of the 

hydrogen molecular ion. In its most primitive form, the interaction 

between the electrons is ignored, and the molecule is constructed by 

using the unperturbed ground-state and excited-state orbitals. For this 

work we shall re~uire only that the orbitals possess the proper symmetry 

features and have the correct asymptotic form. The wave function for 

the entire system is to be expressed in determinantal form. 

For the evaluation of the matrix elements, we have recourse to 

standard theorems on matrix elements between determinantal wave functions. 25 

The general form of the perturbation with which we shall be concerned 

occurs in the electronic Eq. (II. 5) and has the form 

n n 

R = e£. ~ + (a + b - n)~ I 
r 

I =Et n e .. s. (III.8a) z. 
2 

cos TJ. . 
Ma + 1\ + nm ~ n ~ ~ 

i i=l 
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Let w. represent a determinantal function describing the ith elec-
1 . 

tronic state and aka particular spin orbital in \IIi. We have then 

if "'j and '$; differ by more than one set of quantum numbers, and 
1 . 

(lJJRJ *i) = ~ ~ak*(l) R (l)aR(l) d3 r1, 

where the values of ~ and a£ differ by no more than their spin 

(III. 9a) 

functions or their orbital quantum numbers. For diagonal elements we 

have 

(III.9b) 

We shall also use the first of Hund's rules to determine the lowest 

state of several pos~ible spin states. According to this rule, we 

choose the maximum value of spin consistent with the Pauli principle. 

These theorems and rules are adequate for a general discussion of the 

many-electron problem. 

(a) The H
2 

molecule. For the ground state the lowest orbital is 

occupied by two electrons with spins opposed to give a l.r state. 
g 

The wave function for this ground state is given by 

'111.1 (1) a (1) w
1 

(2) a (2) 

"'1 (2) ~ (2) 

The a's and ~·s are the conventional spin functions, and the w 
1 

function is of the form given in Eq. (III 2,b). Asymptotically this 

electronic state goes into H2 -t H + H. 

For the fir:;;t excited state, which asymptotically is degenerate 

with the ground state, the ground-state orbital ..V and the first excited 
1 
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orbital 1f.2 are each occupled. , .Iltmd' I? ;::uJ.,e calls for a spin-one state. 
3 ... + 

The wave ftmction for this . L . ant~:t.,~n_£l~ng ,state is given by 
i-L 

'ir (1) a (1) 
1 

'lr2 (1) ex (1) 

'lr1 (2) ex (2) 

'lr2 (2) a (2) 

+ Following the procedure for H
2 

, we again diagonalize the appropriate 

2 by 2 submatrix. The matrix elements are now 

r 

Hll :::: ( 'lr1 leC: ~ cos e. (~ ~1 + ~· s2) I "'1) + El = 0 + El :::: El, n 

r 

rz s2) t *2) H22 :::: ('1r2 leE. ~cos e,_ ( TJi sl + + E2 :::: 0 + E2 
:::: E2' n 

and 

Hl2 ~ H2l ~ ( v2leCr~ cos en [~l .l + ~ ·2] I "l) ~ 0 . 

For homonuclear molecules the diagonal terms will always be tm-

perturbed, since the perturbation is an odd function. The H12 term 

vanishes both because of the orthogonality of the spin functions and 

the cancellation of the orbital integrals. This result could have 

been obtained immediately by noting that 'lr2 and '± differ by tvro sets 

of quantum numbers and invoking the first of Eq. (III.9a). The ground 

state and first excited state of H
2 

are therefore unperturbed in this 

approximation. The asymptotic potential in the presence of the field 

is illustrated in Fig. 2; predissociation of the H
2 

molecule will 

therefore not occur. 

For the H
2 

molecUle,_ the mode of dissociation is one in which an 

electron is stripped off, as is suggested in Fig. 1. If we use 

Oppenheimer's result that ho appreciable dissociation of the H atom 
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8 occurs w1less the field value is of order 10 v /em together vri th the 

general observation that the necessary field for dissociation is roughly 

proportional to the electronic eigenvalue, we can estimate the field 

required to dissociate the molecule in terms of the value required to 

dissociate the atom. In the atomic case, the appropriate origin of the 

electronic potential function is the nucleus, whereas for the homo-

nuclear molecule, the appropriate origin is at the center of the two 

nuclei. The effect of the electric field in inducing electron stripping 

is therefore magnified for the molecular case over the atomic case. If 

r is Che outer c:i.assical turning point of a particular molecula;:nc 

vibrational state of the molecule in question, ',:,he electric field required 

to strip an electron :from the molecule compared with the atom is reduced 

by the factor ~c E1 (oo)] /~ a0 E1 (rnc~ · 

Note that an uppermost vibrational .level of sufficiently small 

binding energy may become unstable prior to electron stripping because 

of the higher-order effects ~q. (III.6d)]. 

The above argument for H
2 

is readily generalized to any neutral 
1 + 

homonuclear molecule that has a L grotL.."ld state, corresponding to a 
g 

molecule with closed shell orbitals. The first excited state will be 

occupied by one electron, which according to Hund' s rule vrill couple its 

spin with the last electron in the unfilled orbital to give a spin-one 

state. Using the first part of Eq. (III.9a) we have our result, For 
1 + 

those molecules that do not have a ~ ground state, similar arguments 
g 

together with successive Hund's rules lead to the same conclusion. 

(b) Dissociation of singly ionized molecules. In the limit of large 

internuclear separation, the grow1d electronic state of a general singly 

ionized molecule A + goes over into a state consisting of a neutral atom 
2 
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and a singly ionized atom, according to_ A2+~A +A+. The molecular ion 

will have an odd number of electrons, vTi th the last electron unpaired 

in its respective orbital. The first excited state will consist of a 

state in which the unpaired electron occupies the next higher orbital. 

However, since it remains unpaired, Hund's rule is inapplicable, and 

our result is given by the second part of Eq. (III.9a). This matrix 

element is always nonzero since ak(l) and a~ (l) will have different 

spatial symmetries. The result is analogous to the H
2
+ case illustrated 

in Fig. 3, with the asymptotic potential varying as 

-
2
!.. ( t r I cos e I . 

n n 

It is interesting to apply these conclusions to the Li2+ ion. Here 

the equilibrium internuclear separation is three times as large as for 

H2+ (i.e., 3 angstroms) and the potential depth is one-half that of H
2
+. 

For the ground vibrational state, the necessary field for dissociation 

is therefore approximately one-sixth that required for dissociating the 

+ ground state of H
2 

. From Fig. 4 we see that the required field for 

dissociating an H
2
+ ion in its ground vibrational state is approximately 

2 x 10
8 

v/cm; therefore we estimate the required field for dissociating 

the ground state of Li
2
+ to be approximately 3 x 107 v/cm. The potential 

function for large internuclear separations is not known, but for a 

vibrational state near the top of the potential well a field of one-third 

to one-fourth that required to dissociate a corresponding upper level in 

H2+ is estimated. The alkali-ions -- Li
2
+, Na

2
+, K

2
+, etc. --are all 

apparently relatively susceptible to dissociation, since their respective 

neutral molecules are characterized by large equilibrium configurations 

and shallow potential minima. 26 
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(c) Dissociation of doubly ionized molecules. The ground electronic 

d b . A ++ A+ A+ • state of the ou ly ionized molecule dissociates according to 2 ~ + 

For these molecular ions the argument is similar to thai for the neutral 

molecules. The first excited state contains an electron in the next 

higher orbital which couples its spin with the remaining unpaired electron 

such that the first theorem of Eq. (III.9a) applies. The asymptotic 

potential is unperturbed as in Fig. 2. 

We conclude this section with the general obserVation that, for a 

homonuclear molecule with an even charge state, predissociation will not 

occur, and the ground electronic state is as illustrated in Fig. 2. In 

the case of an odd charge state, predissociation will occur, and the 

electronic states are as illustrated in Fig. 3, with the potential fall

ing off asymptotically as - ~C. G rn l cos en I . 
B. Heteronuclear Molecules 

For heteronuclear molecular ions the invariance of the Hamiltonian 

(II.4) under inversion of the nuclear coordinates is no longer a restraint 

on the problem. As a consequence the dissociation of heteronuclear 

molecules exhibits essentially distinct features compared with the homo-

nuclear case. The nuclear potential is now affected both by the implicit 

dependence ant contained in the electronic eigenvalue and the explicit 

term - e C~f\ - bMa)/(Ma + f\U zn contained in the nuclear Eq. (II.5). 

(1) Dissociation of HD+ 

We begin the discussion by considering the one-electron HD+ system. 

In the general discussion of the heteronuclear problem, we shall take 

Ma to be the mass of the lighter nucleus and ~ to be the mass of the 

heavier nucleus. Before considering the analytic form of the electronic 

wave functions, we note that the origin of the electronic coordinate 
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system has been taken at the center of mass of the two nuclei, whereas 

the origin of the confocal elliptic coordinate system is taken at the 

center of the two nuclei. For the heteronuclear case, the Eulerian 

transformation A, 1-l must be followed by a translation along the 

internuclear axis. 

The Eulerian transformation A-, 1-l of the perturbation e£z
1 

into the 

x', y', z 1 system oriented along the internuclear axis is given by 

If z0 is the position of the center of mass with respect to th; origin 

of the x'~ y", z''system, we have z0 = (rn/2) ITMa- 1\)/(Ma+ 1\D. The 

perturbation in the x '~ y'', z" frame is then 

The terms in x'/ and y" will vanish under the cp integration as before. 

Our relevant perturbation term expressed in the T}; s, cp coordinates is 

now written as 

o[z1 " ~ E[rn cos en [~ f 1 - (::: ~)] • 

In the limit of large internuclear separation, the ground electronic 

state of the unperturbed HD+ ion goes over into a state in which the 

electron is associated with the deuteron, and the first excited state 

goes over into a state in which the electron is associated with the 

proton. The appropriate wave functions are given, respectively, byl5 

*o=~ Gos Ql T} -P1s/2 
- sin 

Q2 T} e -P2S/~ h- e h- ' 2 2 

~OS h 

(III. lOa) 

1jl:, A 
Ql T} -P1 s/2 

+ sin 
~ ~ -P2 ~/2] = e h 2 e . a a 2 



In the limit as r goes 
n 

and 
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1 
to co , we have ~ = Aa = .J1f , and 

1 -rb 
\jrb ~· fiT e ' 

-r 
a (III .lOb) 

Although these two states are not degenerate, in the limit of large 

internuclear separation, these eigenvalues E
1 

and E
2 

are sufficiently 

close to suggest that in a first approximation we proceed as with H
2

+ 

and diagonalize the submatrix analogous to matrix (III.4). The matrix 

elements are now: 

+ E32 Fl 

e {~ 2 rn 

4 

n a 2 

H12 = H21 = ( jra c.f_ r~ cos en [~1 51 -

4 

en Ga ~ + ~31 c1 - Ell c3 + E32 B1 

r 
= EC ~ cos - D3 Ell~ 

(:: ~ ~)] 
r 

c.[ 
2
n cos 
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In the limit of large rn' H
11 

and H
22 

reduce to 

l rn 
H

11 
--? - 3 f.t 2 cos Gn + E

1 
, 

and 

(III.llb) 

If we combine E~. (III.llb) with the term - ~a~ - bMa)/(Ma + Mb]1 zn 

which occurs explicitly in the nuclear E~. (II.5), the asymptotic po-

tentials for the nuclear motion are given by 

~ = - ~ e.Grn cos en+ El, 

and 

E = + !
3 

E. t r cos e. + E
2 

• 
a n n 

These potentials are illustrated in Fig. 6. It is clear that, in the 

"classical" limit, the HD+ ion is more susceptible to dissociation than 

. H + 
l.S 2 • One can readily show that, for the HT+ ion,. the coefficients in 

the asymptotic nuclear potential are - 3/4 and + 1/4, respectively. 

(2) Dissociation of HD 

The electronic wave function for the ground state of this two-

electron system is taken to be 

1 
'li:' =-
G f2 \jla (l) a (1) 

\ (l) a (l) 

The pertinent matrix element is written 

\jr (2) f3 (2) 
a 

"b (2) f3 (2) 

H11 ~ ( vglec:r; cos e,\1 <l ~l + <2 '2- 2 (:: ~ ~) vg) + El · 

According .to E~. (III.9b), this reduces to 

H11 ~ hlc£:n cos en <l '1]_1 va) + ( *t,Jct:r; cos en ~1 <ll *t,) 
+ ~ C: C rn cos en + E1 • 
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If we use the results obtained for HD+, .the first two. terms cancel. 

Combining H11 with the explicit term - ~ e~Zn appearing in the nuclear 

equation we have 

Hll = El • 

The nuclear potential is as illustrated in Fig. 2. 

One can readily show that had we chosen for our ground-state wave 

function a Heitler-London function, 

"'g = ~ [!a (1) \ (2) + *a (2) \ (lu ~(1) ~(1) _ a(2) ~ (2TI , 

an identical result would have been obtained~ 

(3) Dissociation of LiH+ 

The ground state of the .LiH molecule has alarge equilibrium sepa-

ration and a relatively shallow potential minimum. ·.No data exist on the 

properties of LiH+ ions, but we can suspect that these ions also will 

be loosely round structures and hence relatively susceptible"to dissoci-

ation. 

The correlation diagram given by HeFzberg indicates that the ground 

state of Li H+ consists of two occupied 1jrb orbitals and one 1jra orbital. 27 

I th 1 . . t f 1 Li H+ ~ Li+ + H. n e 1m1 o arge r , ~ Our ground-state wave function 

is 

1 

G 

n 

"'b (1) a (1) 

'1\, (1) ~ (1) 

1jra (1) a (1) 

1jrb (2) a (2) 

\ (2) ~ (2) 

1jra (2) a (2) 

1jrb (3) a (3) 

\ (3) ~ (3) 

1jra (3) a (3) 
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The matrix element becomes 

g3 Tl3 -

~) J I *2 + El 

= E(;_ cos an {2 ( '11, I <1 '1:!_ I *t,l + ( ·~! <1 ~i! w._l + ~} + E1 ; 

H11 ~ ~c.crn cos en. + E1 • 

Combined with the term-~ eezn in the nuclear equation, the asymptotic 

nuclear potential becomes 

Eg = ~ e C.rn cos en + E1 

(4) Dissociation of LiH++ 

It is not known whether this ion possesses a stable ground state; 

however a comparison of the asmptotic potential of this case with that 
''-'· ·, 

of LiH+ illustrates the sensitive dependence of the problem on the charge 

states of the ion and its dissociation products. The LiH++ 

according to LiH++ ~Li+ . + 
The wave function is + H • now 

ljr, 1 
*e (1) a (1) 'lj.rb (2) (2) = '[2 

a g 

*11 (1) t3 (1) 'lj.rb (2) t3 (2) ' 
and the matrix element is 

H11 =t.Cr~ cos en {2 ('11,1<1 ~1 1*t,l + ~}+ E1 · 

In the limit of large r , we have 
n 

·'' 

dissociates 

I ~ .-: 

Combining H11 with - 1/2 e c Zn term in the nuclear equation, we have for 

the asymptotic potential 

Eg = - ~ e Crn cos 8ri + E1 • 
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The Li H++ ion is appreciably more susceptible to dissociation than is 

Li H+. A comparison of the potentials for these two cases is indicated 

schematically in Fig. 7 in which the asymptotic potentials are drawn for 

the same electric field value. 

C. Classical Treatment of Dissociation 

We conclude Section III with an elementary discussion of the 

classical dissociation of two charged bodies. Let eA and eB be the 

charges of two dissociation fragments of masses MA and ~' respectively. 

Let f(rA - rB) be a function describing the equivalent of the molecular 

binding forces and van der Waals forces. In the limit of large rA - rB' 

choose f to be zero. The forces on the bodies A and B are 

and 

Multiplying the first equation by ~ and the second by MA and subtract

ing the second from the first we obtain the equation for the relative 

motion: 

r == f( r ) + e [ [ ~ - BMAJ 
n n MA + ~ 

In the limit of large r , the relative potential is given by 

n V ( r n) = - e e [ ~ ~ ~A] r n 

This relative potential is in agreement with the asymptotic po-

tentials found in the previous sections. It is quite interesting that 

the correct classical asymptotic potential is obtained in the quantum-

mechanical problem through contributions from both the electronic equa-

tion and the nuclear equation. The parameter (~ - BMA)/(MA + M_s) 
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provides a useful criterion for estimating the stability of various ions. 

IV. CONCLUSIONS 

The primary mode of electric dissociation of molecular ions is 

predissociation. Neutral molecules and homonuclear molecular ions with 

an even charge state dissociate via electron stripping. The asymptotic 

nuclear potential for homonuclear ions with an odd charge state varies 

as - l/2 e C I z I . For heteronuclear molecular ions the asymptotic de
n 

pendence of the nuclear potential and hence the susceptibility to elec-

tric dissociation is a function of the masses and charge states of the 

dissociation products. 

The transition rate for dissociation is a sensitive function of 

the initial vibrational state of the ion. The necessary fields for 

dissociating the H
2
+ ion range from 105 v/cm for the uppermost.vi

brational state to 2 x 108 v/cm for the ground state. The HD+ and HT+ 

ions are more susceptible to dissociation than is H
2
+. 

. + 
The acceleration of H

2 
ions in cyclotrons and other circular 

accelerators can be extended into the Bev range. Since the lower vi

brational states of the H
2
+ ion are generally more densely populated 

than the upper states, no significant beam losses from predissociation 

will occur in conventional circular accelerators at energies below one 

Bev. 

In the application of this work to the injection problem for 

controlled-fusion experiments, effective electric fields of the order 

of 106 v/cm can be considered. For those molecular ions in which pre-

dissociation is the primary dissociation mode, several of the uppermost 

vibrational states are susceptible to dissociation for fields within 

this range. 6 For an electric field of 10 v/cm the required time for 
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inducing transitions between the upper vibra,ional states is of order 

10-3 sec; these induced ~.cansi tions will not j_nterfere with ·~ne more 

rapid predissocia.tion. The recent experiment of An:::.erson et al. has 

shown that most of the vibrational states of the H
2
+ ion remain populated 

when such ions are accelerated in Van DeGraaf£ machines. 28 
'l1he practical 

utilization of the injection method considered here will require further 

demonstration that the uppermost vibrational states can be populated. 
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APPENDICES 

Appendix A 

Here we consider the transformation of the term v
2 

in E~. (II.l) 

into a function of the n + 2 new coordinates which are defined in Eq. 

(II.2). We have: 
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n 

-L 
i=l 

l 
z.=----

el. Ma+ ~+ nm 

- (M + M + nm) t z J a -o . 
1 

e1. 
l.= 

= :-:---::-
1
-:---- {aM z + bM zb+ bM z + 

Ma+ ~ + nm a a -o a a 

n n 
+ (b - n) (M z + m' z . ) + (a - n) (M zb+ m ~. z . ) a a ~ e1. -o e1. 

n 
+ nmL 

i=l 
z . 

el. 

l. l. 

- (M + M + nm) t z . } a -o . 
1 

e1. 
l.= 

1 { n 
= M ~ (a + b - n) (M z + M zb+ m L zel.· ) + + nm a a -o . 

1 a l.= 

+ bMa~+ ~Za+ nm (aza+ bzb) 

- ~b - n)(Maza + m ~l zei) + (a - n) (1\,zb + m ~ zei~ 

- (M + ~ + 2 nm) t z . } 
a i=l el. 

aza+ b"b- il zei " (a+ b - n) z0 + Ma+ ~+ run fMa"b+ a.M,za+ nm(aza+ b"J,) 

~-n)(Mz+mf_z.) L a a i=l el. 

- (M + M + 2 nm) f._ z . } • a -o . 
1 

el. 
l.= 

Note that 
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and 

Inserting these expressions in the above and expanding some terms, we 

obtain 

V
1 = (a + b - n) z + l rbMazb + a~za + 
2 c Ma + ~ + nm l' 

+ Ma :U ~ (aMaza + b~zb + a~za + bMazb) 

+ (a~ - bMa)(l + Ma :U I\) (za - ~) 

- (a~za - bMaza - al\zb + bMazb) (1 + Ma :U 1\ ) 

- ~M z - nM z + (b - n) m t z ~ 
~ a a a a i=l e~ 

- ~~zb - ~zb + (a - n) m I ze] 

- (Ma + 1\ + 2 mn) t zei} • 

If we collect terms, this reduces to 

1 [ nm 
V~ = (a + b - n) zc + Ma + I\ + nm l (~ - bMa) (1 + Ma +I\ ) zn + 

= (a + b - n) 

+ n (1 + ~: : ~m-) (M z + ~zb) ,;,: (a + b)m f zei 
a a i=l 

n 
+2nmLz. 

. 1 e~ 
~= 

1 z + 
c Ma + I\+ nm 

- (M + M + 2nm) t z . } a -o . 
1 

e~ 
~= 

{(aM, -bMa)(l + Ma ':'" 1\) zn 
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a~ - bM 
= (a + b - n) z + ( M a) z c + ~ n 

a 

Ma + ~ + (a+ b)m 

~ 
(M z + a a · ~~) 

+ 

Finally, we have 
n 

Ma + ~ + 

aza + bzb- L zei = 
i=l 

nm M +~ a 

Appendix B 

-i zel 
i=l 

In this appendix we consider the electromagnetic transitions of 

the general diatomic molecule. We shall be concerned both with span-

taneous electromagnetic transitions and transitions induced by switch-

ing on the electrostatic field. 

A. Spontaneous Transitions 

The Hamiltonian for the general diatomic molecule in the presence 
~ 

of an electromagnetic field described by the potential A is given by 

I 1 .... ea ~ 2 1 _, eb ~ 2 1 ~ .... e ~ 2 ] . .fl· o 
E:Ma (P a.- c Aa) + 2~ (pb- c ~) + 2m ~ (pei + c Aei) + ~ l = - i at ~r ' 

where 

~ ~ ~ ~ ~ ~ 

If we expand the brackets, use A • p - p • A = - 11/i \jt• A, set \j · A 0, 

~2 
and neglect terms of order A , this reduces to 

~~~(~a ~2 + ~ ~2 + ~ b~:) + vl 

1 In...::.. 
- A m ei 

i=l 

11 d 
- -;- ""'t lj! 

~ 0 



.. 
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Introducing the transformation given in Eq. (II.2) and writing H
0 

for 
....::. 

the Hamiltonian when A = o, we have 

--"> .;, 

=~v -v-
c n 

and 

' 

which gives 

~ eit (apa _,. b~ _, 

A . ) 
..... 

A + -- ~ 
np 

\jc ic M a 1\ m e~ 
a 

eil (~ _,. b ~) 
--l. 

A ·v. ic M a lV'b a n 

eil. t (~fa _,. 
bfb ~ 1 ~ ) . \?J ~ " ~ 0 

+ -.- A + 1\ ~ - m Aei - rat 'li' ~c a 
i=l a 

We ar,e concerned with transitions between the various vibrational 

states belonging to the same electronic state and, in particular, with 

those of the lowest electronic state. The initial state is given by 

'lr = 1t(r" , E ) w
1 
ct , c c · n 

~ 

r.' 
~ 

E
1

) x_ .(r", w.), 
·lJ n J 

and the final state by 

'lr·= 1t(rc, Ec) ~ri(-;n' r"i, El) ">S_k(~, wk) • 
........ 

In d . 1 . t. t ik . r 1 a ~po e approx~ma ~on we se e = • The contributions 
..... 

from\j 
c 

(12) and 

and~ vanish. Upon examining Heitler's29 formulae (2) and 
~ . 

d:i.viding for:mul~ (12) by.fl.Vkj'we have for the transition 

T = ~ e2 VkJ .. 3 (a~ - bMa)2 (i ~~ lx.·) 12 
d } c3 -fi :. \ Ma + ·~ .. k n J 
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For homonuclear molecules this transition rate is zero and we 

require the quadrupole terms. For homonuclear molecules we haveJ from 

transformation (II.2)J 

~ 

r 
a = (2 + ~r~l 

rb " ( 2 + ~ r tr 1 

nm) ~ . ( nm)...:.. +-r + 2+-r-2M n M c ~~1} 
(2 + ~) rc - ~ t 1} 

~e = (l + :rl ~i + ~J · 
Neglecting terms of order nm/M compared with unity) these reduce to 

and 
__,. ...:.. ....>. 

r = r. + r ei ~ c 

We hav,e then 

__,. 
~ 

~ ...:. 
ik • r a _, 

A = Ao e = Ao e 
a 

...... ~ 

i k . 
rb -->. _,.. _,. 

~ = Ao e = Ao 

and 

n 
~L 2M . 

~ 

n 

L 
i 

i (k. _,_ 
r c 

i (k. __.. 
r c 

e 

~ 

r. J 
~ 

__,. 
r. J 
~ 

n 
!!!. L k· 
n i=l 

n 
m ~---- k• 

2M i=l 

_,_ _,_ 

·' ~ ':· ,;: 

--"') r 1-" ~ 

i i --; k .• T· 2' . ' n e 

~i) 1 ...... ~ - i -k r 2 n e ) 

The contributions from the terms in \j and '\J. in the matrix element 
c ~ 

will again vanish. Writing 

e 

l _. _. 
i-k·r 

2 n i 
= 1 + 2. k • r n 

.. 



.. 

...:>. 

we have for the term in '\j 
n 
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. r 
c 

m~-"" 
2MLk 

i=l 
. -;,) 

l. ..\, 

·\) 
n 

The factor ei( )cancels with its complex conjugate in the evalu-

ation of the matrix element, and using Heitler's formula (22), we have 

for ·the transition rate for quadrupole transitions 

2 

(x(~(k· r)l X.) 
k n n J 

B. Induced Transitions 

In the presence of the electrostatic field, the electron cloud 

is polarized. This polarization is a function of the internuclear 

separation. As the molecule vibrates this variable polarization can 

induce a transition between the vibrational states. 

For values of the internuclear separation close to the equilibrium 

separation, the electronic eigenvalue is given approximately by 
2 

Hl2 
E 

g = E - =--...;.;;_-=-1 E2 - E1 

The electronic wave function corresponding to this state is .then 

1Jr· .. = 1jr1 -g 

The initial state of our molecular 

'<!':,=. :n:(-1 ' E ) .., , ("F ' c c "g n 

and the final state by 

1Jr,= :n:(r , E ) 1Jr Cr, c c g n 

Hl2 

E2 - E 

system 

__,. 
r.' l. 

1 
'lji2 

is now given by 

Using these wave functions, we proceed as in the previous section; 
....:0. 

the transition of interest is given by the electronic terms in 'J. 
l. 
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in dipole approximation. Neglecting terms of order m/M compared with 

unity, we write the interaction term 

H = -int 
e11 In .....:. 
-.- A. 1mc e1 

i=l 

Using previous theorems on determinantal wave functions and taking w1 

and w
2 

as the first and second electronic orbitals, respectively, the 

pertinent matrix element is written 

The first and fourth terms vanish in the electronic integration; 

the second and third terms are equal. For the evaluation of the 

The transition rate becomes 

Tl = ~ :; v!J ITE
2 

2 E
1

) (E2 ~ E1)J (v2lk h H12f vl xj) 
2 

For homonuclear molecules in the upper vibrational states, we have, 

approximately, H12 = l/2 e L rn cos en; the transition rate then re

duces to 
4 

T = 4 e 
1 3 c3 

2 

( w2 ~ 1 r 1 r n cos en I Wi xj) I . 
The transition rate given in reference 10 is in error. The selection 

rules for these transitions have been discussed previously by Condon. 16 

.. 
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Appendix C 

In this appendix various integrals encountered in Section III are 

defined and evaluated as follows.: 

l
eo -P ·s -P 

EOn = l e n dO = p~ e n 

f
c:o -P s -Pn 

Eln = s e n d~ = : 2 (Pn + l) 

l n 

+l 

B1 =1 TJ':sinh ~ cosh~ ~ dTJ = ~ (cosh Q - ~sinh Q) 
-1 

+l 

B3 =1 3 
.nh. ~ h ~ d TJ s~ 

2 
cos . . 2 TJ 

-1 

16 (Q3 
= -;;: lb cosh 

+1 

c1 = I 
J_l 

Q - ~ Q
2 

sinh . Q + ~ Q cosh •. Q - ~ sinh Q) 
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+1 

C 2 = L cosh
2

. 'jf ~2 d ~ = ~ ( 2 sinh ~ cosh ~ + Q ) 

+1 

2 2 
- -- -cosh 

3 Q2 

c3 =l TJ
3 

cosh ~ drr= o 
-1 

+1 

D1 =1 TJ sinh 
-1 

Q + 
23' sinh Q 

Q 

Q2 Ql 8 
- 4 Q2 cosh 2 cosh . 2 + -(Q~2~_-Q~2~)-(Q---::2:-_-Q---::2:--) 

2 1 1 2 

x ~Q12 + ~ 2 ) sinh { cosh "; - 2 Q1 ~ cosh ~2 sinh ~lj 
1 

J 
3 . Q2 Tj Ql Tj 

n
3 

= TJ· s1.nh 2 cosh 2 dTJ 

-1 

4 [~Ql - ~2 Ql; 24 ~j 
::: 

Q 2_ Q 2 (Ql - Q2) 1 2 

sinh 
Q2 

sinh 
Ql 

2 2 

4 [Q2 (Ql - ~)2 ; 24 Q2J 

Q 2 - Q 2 (Ql - Q2) 1 2 

cosh 
Q2 Ql 

2 cosh 
2 

sinh 
Q2 Ql 

2 cosh 
2 

cosh 
Q2 

sinh 
Ql 

2 2 

"nh2 · Qn d 0 TJ,Sl. ~ TJ = 

~· 



- 52 -

Appendix D 

In this appendix we consider the equations of motion of an H
2
+ 

ion moving in a uniform magnetic field. Our purpose is to inquire to 

what extent the dissociation of the ion by the Lorentz force is equi-

valent to dissociation by an electrostatic field. 

Let H be the intensity of the magnetic field which is taken in 
~ 1\ /\ 

the z direction. The vector potential for this field is A = Acp~ = (H/2) pep, 

2 2 .l 
where P·= (x + y ) 2 • The form of the Hamiltonian for this system is 

given in part A of Appendix B. Expanding the terms as before, we have 

ro- en r ~ ~ ~ ) e~ -" 
...... 

iMc A a • \/a + ~ • \Jb + imc A ·\j e e 

2 2 
~ 2) 

2 Ae2] . .fl. () 
+~(A + 

e 
'\jlc,= t .. + -- - ~ 2Mc a 2 i 2mc 

..... 
The x and y components of A are given by 

A A 
. H 

X = - cp SJ.n cp = - 2 y 

and 

H A = A cos cp = X • 
y cp 2 

....... ~ ~ 

Using the expressions for ra' rb, and re given in Appendix B, we 

can write the various terms: 

(XC 
d 

Yc ~)+ (yn + 
dyl-

m 
(yl 

d ~)] + 2M dx
1 

- X l 

d 
dx- X n n 

~ox c 

a ) m ( a a ) crY + 2M xl dY - Y l d'X Yn ·. yc c 
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en _,. _,. eH1i ~Mh d d ) (xc 
.... 

0 ) 0 II = A • p 
2imc -,- - y -- + (}y. - yc O:l)_ imc e e oY l {j XC c l 

+ ( xl 
' .... ) ;M (xc 

d 
-y ,<> l 0 

yl 0 + -.... -- d x1 
"dy dYl - C 0 X 

I c c 

Combining these expressions and neglecting terms of order m/M compared 

with unity, we have 

I + II 

+ -- + eH.fi ~ d 
2mic dq:>

1 

2 
Considering the A terms, -vre note that we have r n << r c and r 1 << r c. 

If we write p, = p , o.·-== fP , and p = p,, the A2 terms reduce to a c ·o c e c 

e A + 2 ( 2 

2Mc2 a 

The second term in I + II is the Zeeman term in the nuclear 
1 

coordinates and is e~ual to eH n (J(J+l))2, where J is the rotational 2Mc 

~uantum number. The fourth term is the Zeeman term in the electronic 

coordinates. These Zeeman terms are usually small compared with the 

separation of the vibrational levels, and for the purposes of this 

problem can be neglected. For the fifth term, we use ~/im( \j
1

) .= v1 , 

where v
1 

is the expectation value of the internal electron velocity. 

This term can be combined with the first term and is negligibly small 

when the center-of-mass vleocity is large compared with v1 • 

The third term is the term of interest. If we write-fi/2iM(\J,) = (vc)' 
c 

and take the center-of-mass motion to be a classical circular trajectory, 

this term becomes 

eHv 

2c c (x1 sin wt - y1 cos wt) , 

... 
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where w = eH/2Mc. 

Consider next a transformation into a rotating coordinate system: 

x' = xl cos wt + yl sin wt 1 

y' = yl cos wt - X sin wt 1 1 

z' = zl 1 

and 

x' = X cos wt + y sin wt n n n 

y' = Yn cos wt - y sin wt n n 

z' = z n n 

The third term becomes - eH/2c vc Y{· The electronic and nuclear 

eH +-2c 1jn = 0 
K 

If we set ~= Hv /c, these equations have the same form as those cone 

sidered in part 1 of Section III. 
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Electronic potential 

V(z) 

b a 

MU-20332 

Fig. 1. The electronic potential for a diatomic molecule 
in the ·presence of an electric field and for some 
particular internuclear separation. This potential is 
exact for a one-electron system and is schematically 
correct for the many-electron case. 
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Nuclear potential 
V(z) 

e=o; all molecules 

.!' ++ 
~ ~ 0; A2 , AB, A2 , etc. 

MU-20333 

Fig. 2. The nuclear potential for a diatomic molecular 
system in the absence of an electric field. Usually 
this potential is drawn in a spherical-coordinate system, 
but for the purposes of this paper a cylindrical
coordinate system is more appropriate. The 
vibrational states are indicated schematically by the· 
light horizontal lines; for the Hz+ ion there are 
actually 19 bound vibrational states. In the presence 
of an electric field this potential remains uperturbed 
in lowest order for heteronuclear molecules and 
homonuclear systems in even charge states. 
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Nuclear potential 

V(z) + +++ A2 , A2 , etc. 

zn~ 

MU-20334 

Fig. 3. The nuclear potential for a homonuclear ion in an 
odd charge state in the presence of an electric 
field. The vibrational states are indicated schematically 
by the light horizontal lines. The asymptotic potential 
for the lower electronic state falls off as 

1 . -z E f:j zn I· 
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Fig. 4. Binding energy measured from the unperturbed 
dissociation limit versus electric field for the 
various vibrational states of the Hz+ ion and 
for J=O. The intersection of the horizontal lines 
with the curve marked "classical" determines the 
electric field necessary to dissociate th~ ion in 
10-14 sec. The diagonal lines marked 10-8 sec. 
and 1 sec. determine the fields necessary for 
dissociation in these times, respectively. The 
two horizontal lines for v = 18 and v = 17 indicate 
the range of uncertainty in these calculations. The 
results of the WKB calculations are also indicated. 
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Fig. 5. First-order perturbation versus electric field 
for the various vibrational states of the H 2 + ion. 
The perturbation for each vibrational level has been 
calculated using for the electric field the value 
given bv the curve labeled 11classical" in Fig. 4. 
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Fig. 6. The nuclear potential for HD+ in the presence 
of an electric field. The asymptotic potential fo1 
the lower electronic state varies as 
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Figo 7 o A comparison of the asymptotic nuclear potentials 
for the LiH+ and LiH++ ions. The asymptotic 
potential for the singly ionized ion varies as, 

1 
+-

8 

3 

4 

E C' z , and for the doubly ionized ion as 
·~ n 

...... 
E ·- Z o 

'···' n 
This diagram is meant to be indicative 

only, it is not known whether the doubly ionized ion 
has a stable ground stateo 
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This report was prepared as an account of Government 
sponsored work" Neither the United States, nor the Com
mission, nor any person acting on behalf of the Commission: 

Ao Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 

or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

8" Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 

this reporto 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor" 




