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ABSTRACT 24 

We present deep-learning-based surrogate models for CCUS developed with four different 25 

algorithms and a physics-framed two-phase flow problem involving displacement of water by CO2. 26 

The deep-learning models were trained using 3D data sets describing the pressure plume, CO2 27 

saturation plume, and water extraction rate generated by numerical simulation. The 28 

hyperparameters defining the architecture of the neural networks were optimized to determine the 29 

slimmest network size and training parameters that give the most efficient performance at the 30 

least training cost. To develop a robust model that closely mimics the governing physical laws, 31 

the discretized form of the two-phase fluid transport equation was used to formulate the 32 

supervised deep-learning task.  33 

The algorithms investigated in this study predicted the data to above 95% accuracy, with 34 

the multi-layer perceptron model demonstrating the best performance by balancing training 35 

speed, prediction time, and prediction accuracy with lean network capacity. Furthermore, the 36 

surrogate models simultaneously predict reservoir pressure and CO2 saturation in every grid 37 

block, including the surface well extraction rate and bottomhole pressure, at all simulation times 38 

for a given static model realization in just a few seconds on a standard desktop computer. A key 39 

outcome of this study is that limits can be placed on network design parameters to avoid over 40 
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designing neural networks, with associated efficiencies in training and prediction times. This is 41 

very useful because large volumes of data may be generated in CCUS projects and over-design 42 

of neural network architectures imposes penalties that are antithetical to the goal of near-real time 43 

forecasting. 44 

 45 

Keywords: Fast Proxy Model, Deep-Learning, Machine-Learning, Physics-guided, Carbon 46 

storage, Carbon sequestration 47 
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1. INTRODUCTION 48 

Carbon capture, utilization, and storage (CCUS) is the direct injection of anthropogenic carbon 49 

dioxide (CO2) primarily into oil reservoirs for enhanced oil recovery or into deep saline aquifers 50 

for permanent storage away from the atmosphere1, 2. A number of CCUS projects are active with 51 

millions of tons of CO2 already injected3.  Despite some success in bringing CCUS projects online, 52 

there are many uncertainties and barriers to widespread industrial-scale implementation of CCUS 53 

around the world including economic, regulatory, legal, political, and environmental issues. To 54 

improve regulatory and social acceptance of CCUS, along with reducing uncertainties that affect 55 

the costs of implementing CCUS as a viable technology for mitigating climate change, it is useful 56 

to explore ways to simulate subsurface processes and better communicate technical information 57 

to quickly resolve stakeholder concerns about a range of issues. These issues include induced 58 

seismicity and potential for felt earthquakes, the fate of CO2 in the subsurface, the quantity of CO2 59 

that can be practically sequestered, the number of wells needed for large-scale injection, the 60 

potential for vertical fluid migration and the risk of CO2 leakage into freshwater aquifers, and the 61 

return on investment for operators. A holistic approach to address these concerns requires 62 

exploring new reservoir modeling and simulation techniques that offer much more rapid, near 63 

real-time insights into critical subsurface processes that traditionally have required long run times 64 

even using the best available computational resources.  65 

Detailed understanding of the expected reservoir pore pressure, the extent of the CO2 66 

saturation plume, and the changes in geomechanical stress arising from perturbations of the 67 

equilibrium state of the reservoir during CO2 injection are essential for project permitting prior to 68 

injection. Following the startup of injection, the same information is critical for operators, 69 

regulators, and the public to understand the benefits, risks, and effectiveness of operations 70 

throughout the CCUS project life cycle4, 5. The state of the reservoir is traditionally modeled 71 

through physics-based numerical simulation in which mathematical models describing coupled 72 

subsurface processes are solved for reservoir pressure, CO2 saturation, etc. in both space and 73 
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time. The mathematical models typically comprise partial differential equations, along with 74 

appropriate boundary and initial conditions, describing conservation of mass and momentum of 75 

all phases and their components in the porous or fractured media6. These models have been 76 

implemented in a number of numerical simulators, e.g., the TOUGH family of codes, CMG-GEM, 77 

Eclipse, and others that have proven very effective at high-fidelity reservoir simulation7, 8. During 78 

the simulation process, the overall objective is to capture the spatio-temporal evolution of 79 

pressure and saturation across the entire simulation domain over which a mesh of grid blocks is 80 

constructed. (Note that the term “grid block” arises primarily in integral finite difference- and finite 81 

volume-based numerical methods whereas other numerical methods may solve for primary 82 

variables at grid points rather than within a “grid block”. Nevertheless, for simplicity in this paper 83 

and without loss of generality, we will refer in this paper to the points of the numerical mesh at 84 

which the primary variables are calculated as being grid blocks.) Depending on the scale of the 85 

problem, the numerical solution of the pressure and CO2 saturation needs to be computed over 86 

thousands to millions of grid blocks in space, resulting in computationally expensive simulation of 87 

fluid displacement in the reservoir at different snapshots in time. This computational burden is 88 

exacerbated by the fact that simulation runs are typically performed on a single geological 89 

realization of porosity and permeability fields, the so-called static model. To incorporate inherent 90 

uncertainties in the static (hydrostratigraphic) models, multiple models must be generated (e.g., 91 

P10, P25, P50, etc.) and multiple simulations must be performed. This standard workflow 92 

involving simulating reservoir evolution with the conventional reservoir modeling approaches 93 

inhibits fast turnaround of results and does not allow near-real time forecasting. 94 

Proxy models, approximations of computationally expensive full-physics numerical 95 

models, are one approach to overcoming the slow execution times of large physics-based models 96 

9-13. These models typically involve fewer computations, which dramatically reduces 97 

computational time during forward modeling. Unlike full-physics models, they are well-suited for 98 

rapid sensitivity analysis and optimization during inverse modeling. Deep-learning (DL)-based 99 
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proxy modeling is a very attractive option capable of accelerating real-time decisions in 100 

subsurface storage of anthropogenic CO2 by leveraging algorithms that have been developed for 101 

machine learning (ML) to learn dynamic patterns in a given subsurface system. For CCUS 102 

applications, the objective in surrogate modeling is to reconstruct the physics-based spatio-103 

temporal surfaces of pressure and saturation using neural networks as functional approximations. 104 

Using this approach, it is possible to develop a single proxy model capable of simulating multiple 105 

representations of the reservoir concurrently at all simulation times. Specifically, reservoir state 106 

variables and well injectivity could be rapidly predicted in a single computational step with multiple 107 

realizations of porosity and permeability as inputs. This modeling approach uses significantly less 108 

time and computational power than running full-physics reservoir simulations, and thus is well-109 

suited for CCUS field development where multiple realizations of the reservoir must be generated 110 

to capture geological uncertainties. By taking advantage of the strength of standard deep-learning 111 

algorithms, dynamic patterns in the subsurface data could be learned, thereby capturing reservoir 112 

processes over time. The learned field patterns are parameterized in weights and biases of neural 113 

networks to be used for fast forward modeling.  114 

In this paper, we present deep-learning-based proxy models trained with the multi-layer 115 

perceptron, convolutional neural network, long short-term memory, and gated recurrent unit 116 

machine-learning algorithms. The purpose of this study is to demonstrate the ability of a physics-117 

framed deep-learning-based approach to generate predictions of two-phase immiscible flow 118 

associated with CCUS at a tiny fraction of the time required by state-of-the-art numerical reservoir 119 

simulation tools. To accomplish this, we used the two-phase flow equation for immiscible 120 

displacement of water by CO2 to frame our supervised deep-learning problem. This problem 121 

formulation technique is an alternative to the method presented by Raissi et al.14, 15 for 122 

incorporating physics into neural network training. The neural network architecture for each 123 

algorithm was optimized through hyperparameter tuning and multiple methods were used to 124 
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thoroughly evaluate the performance of the models. Although the context for our demonstration 125 

is CCUS, the methods are broadly applicable to reservoir simulation in general.  126 

2. METHODOLOGY 127 

2.1 Background on Supervised Machine-Learning Methods 128 

Multi-layer perceptron (MLP), convolutional neural network (CNN), long short-term memory 129 

(LSTM) cell, and gated recurrent unit (GRU) cell are among the commonly used deep-learning 130 

algorithms16. MLP is a class of feedforward neural networks with network architecture defined by 131 

its width (i.e., number of neurons or nodes per hidden layer) and depth (i.e., number of hidden 132 

layers). CNN performs a series of convolutional operations on the input data, each acting on a 133 

different slice of the input array, otherwise called the convolutional filter. LSTM and GRU, each 134 

comprising four and three built-in layers respectively, are special sub-classes of Recurrent Neural 135 

Network (RNN), capable of learning long-term dependencies in time-series data. LSTM and GRU 136 

feed time-series data through their respective sub-layers that interact in a specific way and are 137 

therefore able to learn temporal evolution of reservoir pressure, CO2 saturation, well extraction 138 

rate, and bottomhole pressure. Other commonly used deep-learning frameworks are 139 

Autoencoders (AEs) and Generative Adversarial Networks (GANs). AEs are data compression 140 

and reconstruction techniques that are often built upon MLP, CNN, LSTM, and GRU algorithms 141 

with an architecture that primarily comprise an encoder and a decoder. GAN is a class of deep 142 

generative models that mainly consists of a generator and a discriminator with both adversarial 143 

networks closely connected to each other. Applied to subsurface flow problems, some of these 144 

algorithms have demonstrated remarkable capabilities to capture complex flow patterns among 145 

reservoir state variables9, 11, 17-25.   146 

Because neural network capacity is determined by network width and depth, deep neural 147 

networks are often needed to learn complex patterns in the data. However, the deeper or wider 148 

the network, the larger are its capacity and number of variables that must be learned during 149 
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network training. Depending on the size of the data, large capacity neural nets can take a very 150 

long time to train and may require supercomputing resources. Typical large-scale CCUS reservoir 151 

models have on the order of hundreds of thousands to millions of grid blocks, thus arbitrary 152 

selection of network parameters could easily result in extremely large networks that will be very 153 

difficult to train on standard desktop computers. Besides, the intended purpose for increasing 154 

network size may not be realized; that is, a large capacity neural network may not necessarily 155 

improve the performance of the proxy model over a simple network. Even when performance is 156 

improved, there could be other approaches that avoid additional computational penalties that 157 

arise from complex neural network architectures. These constraints necessitate the need to 158 

optimize the size of neural networks. Furthermore, the physical laws governing two-phase flow in 159 

porous media are not naturally honored by off-the-shelf deep-learning algorithms such as MLP, 160 

CNN, LSTM, and GRU. To address the need to accurately model flow and transport in the 161 

reservoir, we have included the underlying physics of flow in our formulation of the deep-learning 162 

problem. Recent studies on other fluid-flow problems have focused on improving predictions 163 

made with these algorithms by including an additional term in the total loss function from the 164 

governing partial differential equation along with the neural network loss function14, 15. Using the 165 

MLP, CNN, LSTM, and GRU algorithms, our goal is to develop lean, efficient, and fast DL-based 166 

proxy models that reasonably represent the equivalent full-physics model for CO2 displacement 167 

of water in a porous media. The studies referenced above typically use only the coordinate 168 

information of grid blocks along with time (i.e., x, y, z, and t) as inputs for the physics-informed 169 

neural network. Other studies on data-driven surrogate modeling use just the well injection rate, 170 

permeability and/or porosity fields, and time as inputs without considering the underlying physics 171 

of flow through porous media in the framing of their machine-learning problem26, 27. For subsurface 172 

fluid flow problems, however, rock properties, well constraints, and history of the state of the 173 

reservoir are critical for accurate forward modeling of the reservoir state variables. Therefore, the 174 

proxy models developed in this study use an exhaustive list of features such as heterogeneous 175 
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matrix porosity, heterogeneous diagonal permeability tensor, structured or unstructured mesh, 176 

constant well rates and bottomhole pressure, time-step size, and historical pressure and 177 

saturation data containing initial and boundary conditions. These features are then used in the 178 

proxy models to predict the temporal evolution of well flow rates and bottomhole pressure at both 179 

the injector and producer, and the spatio-temporal evolution of reservoir pressure and CO2 180 

saturation at all of the grid blocks in the domain. 181 

2.2 Data Generation using Full-Physics Numerical Simulations 182 

The first step in data-driven deep-learning-based surrogate modeling is data generation. The data 183 

used in this study were generated via numerical simulation of a CO2-water system under 184 

isothermal conditions using CMG-GEM, a fully compositional, general-purpose reservoir 185 

simulator28. The 3D geological model comprises twenty-seven realizations of matrix porosity and 186 

directional permeabilities (kx, ky, kz) in 25 x 25 x 3 Cartesian grid blocks, with each grid block 187 

measuring 300 ft by 300 ft by 11.1 ft in x, y, and z directions respectively. The diagonal 188 

permeability tensor at each grid block is such that kx = ky and kz = 0.1 * kx, and like porosity, varies 189 

among grid blocks in the x, y, and z directions. The 27 realizations of static models contain three 190 

groups of porosity and permeability fields (Fig. 1a). Histograms of the porosity and permeability 191 

distributions are shown in Fig. 1b. Porosity is generally multimodal while permeabilities are 192 

positive-skewed lognormal unimodal distributions. Two wells penetrate the three reservoir layers; 193 

one well is used to inject CO2 and the second is used to extract water and is intended as a relief 194 

well for excessive pressure buildup in the reservoir. CO2 is injected into the first well at 13 different 195 

constant rates that are spread over the three groups of porosity and permeability fields (Fig. 1c). 196 

These groupings, in addition to the grid-block-to-grid-block variations in porosity and permeability 197 

tensor, introduce spatial and temporal heterogeneities into the data, which are critical for 198 

developing a robust surrogate model. Water is extracted from the second well at constant 199 

bottomhole pressure (BHP) of 3525 psi. Full reservoir simulation was performed for 72 months 200 



10 
 

(2161 days in total) for each of the 27 porosity and permeability realizations. The reservoir 201 

pressure and CO2 saturation within every grid block, well extraction rate at the producer 202 

(volumetric rate at the surface), and bottomhole pressure at the injector were then extracted to be 203 

used to evaluate the different machine-learning algorithms. 204 

 

(a) 
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(b) 

 

(c) 

Fig. 1: Static models and bottomhole injection rates used to simulate CO2 injection into water-saturated 

reservoir: (a) 3D contours showing three groups of porosity and permeability fields used to generate 27 

realizations of static models; (b) histograms of the porosity and permeability fields; (c) rate-static model 

matrix showing bottomhole CO2 injection rate schedule spread over the three groups of static models 
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described in (a). The color-coded circles show how the rate-static model matrix is used to distribute data 

into training, validation, and testing data sets for deep-learning-based surrogate modeling. 

2.3 Development of Deep-learning-Based Proxy Models  205 

Numerical solutions of a given problem are by design unique irrespective of the numerical 206 

schemes used to discretize the PDE. The main difference is where the system variables are 207 

computed – at corner points, grid centers, or irregularly-distributed points. The key reason why 208 

ML-based (i.e., data-driven) surrogate models are proposed for forward modeling is not to replace 209 

conventional numerical simulation, but rather to complement it by addressing the problem of using 210 

numerical codes during history matching. It is a well-known fact that forward modeling through 211 

numerical simulation is computationally expensive, especially when dealing with field-scale 212 

reservoir management (in some cases taking several days or weeks to complete one simulation 213 

run). This computational burden is exacerbated when numerical simulators have to be used 214 

repeatedly during inverse modeling. This is where “data-driven” models excel; they can be 215 

executed rapidly during history matching with excellent agreement with the numerically simulated 216 

data and are thus computationally efficient proxies for the numerical model. Unlike traditional full-217 

physics models, supervised machine-learning algorithms can be used to develop surrogate 218 

models for predicting subsurface variables at near-real time, thus are well-suited for developing 219 

virtual learning environments for subsurface flow processes. At the heart of supervised learning 220 

with these algorithms is the estimation of the function that maps a given set of subsurface data 221 

(e.g., formation and fluid properties) to the reservoir state variables (e.g., pore pressure, CO2 222 

saturation, etc.). This mapping is described by Equation 1: 223 

( )Y f X=  …………………………………………………………………………………………………………………………..... (1), 224 

where Y represents the target variables (e.g., reservoir pore pressure, CO2 saturation, etc.), X 225 

represents the features or inputs (e.g., porosity, permeability, etc.), and f represents the function 226 

that maps X to Y, which is learned during training. 227 
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2.3.1 Physics-Guided Formulation of Supervised Deep-learning 228 

To formulate the deep-learning problem statement in this study, we begin by examining the partial 229 

differential equation governing fluid flow through porous media. Under zero capillary pressure, 230 

negligible gravity effect, and isothermal conditions, the transport equation for each phase in a 231 

CO2-water system is given by:  232 

( ) 2;   CO ,  waterrk
S p q

t

 
   




  



 
 + −  = =
 
 

K
 …………………………...………..………..….. (2), 233 

where, 234 

 

matrix porosity;  fluid phase density; fluid phase saturation; time;

permeability tensor;  relative permeability; fluid phase viscosity; 

volumetric fluid phase injection or extracti
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q
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= = =

=

K

on rate per unit volume 

  235 

When expressed explicitly for each phase, Equation 2 is nonlinear because CO2 density 236 

depends on the pore pressure, and relative permeability depends on saturation. Given the initial 237 

and boundary conditions, the pressure and saturation solutions of Equation 2 vary in space and 238 

time, i.e. P, Sα = f(x, y, z, t). A very common strategy is to set P and Sα as targets for neural 239 

networks and x, y, z, and t as inputs for the networks. Although this may be sufficient for machine-240 

learning algorithms to determine the mapping function f, training the neural network in this manner 241 

would amount to a mere statistical exercise without regard to the unique correlations between 242 

flow properties and the underlying physics that govern subsurface fluid transport. Besides, the 243 

mapping function f, during testing, may not generalize very well to never-before-seen subsurface 244 

data containing a different set of porosity and permeability fields. Another approach that was 245 

developed recently is to embed Equation 2 as an additional term in the loss function of the neural 246 

network, to be minimized during training14, 15. We propose an approach that uses the discretized 247 

form of Equation 2 as a basis to frame a physics-guided machine-learning problem. By following 248 
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the explicit and implicit formulations of the single- and two-phase forms of Equation 2, it is shown 249 

in the appendix that the time evolution of the state variables of interest can be simplified as:  250 

( )1

, , , , , ,,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  n n n

i j k i j k i j k x y z rp f p S x y z t q k k k c + =      ……………………………...………….. (3a)  251 

( )1 1

, , , , , ,,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  n n n

i j k i j k i j k x y z rS f S p x y z t q k k k c + +=      ……………………………....………….. (3b) 252 

Equation 3a means that the pore pressure (
1

, ,

n

i j kp +
) inside every grid block at the new time 253 

step depends on the grid block pressure ( , ,

n

i j kp ) and saturation ( , ,

n

i j kS ) at the old time step, grid-254 

block size or grid information (∆𝑥, ∆𝑦, ∆𝑧), time-step size (∆𝑡), well constraints or inner boundary 255 

conditions ( ( )well rate, well BHPq f= ), and rock and fluid properties ( ,  ,  ,  ,  ,  x y z rk k k c  ). 256 

Similarly, Equation 3b indicates that fluid saturation (
1

, ,

n

i j kS +
) inside every grid block at the new time 257 

steps depends on the grid-block pressure (
1

, ,

n

i j kp +
) at those time steps, grid-block pressure ( , ,

n

i j kp258 

) and fluid saturation ( , ,

n

i j kS ) at the old time steps, grid information, time-step size, well constraints 259 

or inner boundary conditions , and rock and fluid properties. Consequently, we could formulate 260 

our deep-learning problem statement as follows: given the dynamic variables (i.e., grid-block 261 

pressure, saturation, and surface extraction rate) at the old time steps, and the static variables 262 

(i.e., grid information, time-step size, well constraints or inner boundary conditions, and rock and 263 

fluid properties), we want to compute the grid-block pressure, saturation, and surface extraction 264 

rate at the new time steps. This formulation does not only allow the neural network to determine 265 

the mapping function f between the static variables and the dynamic state variables, it also 266 

ensures that the network learns the strong coupling between the state variables themselves (i.e., 267 

the dependence of pore pressure on saturation and vice versa), which is obvious from the 268 

nonlinearity of the governing fluid transport equation. 269 
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2.3.2 Data Preprocessing Prior to Network Training 270 

Although we used a single time-step (Δt) approach in this study, our approach is neither restricted 271 

to single time steps nor is it limited to one-month time steps but can in fact accommodate any 272 

specified time-step size. There are multiple ways to formulate our time-series problem which 273 

includes: (i) given the available data at a single previous time 
nt , predict results for future time 274 

1nt +
, where 

1n nt t t+ = + . (ii) given the available data at a single previous time 
nt , predict results 275 

for multiple future times 
1 2 3, , , etc.n n nt t t+ + +

 simultaneously; (iii) given the available data at multiple 276 

previous times 
1 2 3, , , , etc.n n n nt t t t− − −

, predict results for a single future time 
1nt +
; (iv) given the 277 

available data at multiple previous times 
1 2 3, , , , etc.n n n nt t t t− − −

, predict results for multiple future 278 

times 
1 2 3, , , etc.n n nt t t+ + +

 Exploring the performance of these different strategies is a topic for 279 

ongoing research. 280 

For a ML-based surrogate model that is to be developed with pre-simulated data, all the 281 

above problem formulation strategies are theoretically possible. However, practical 282 

considerations in subsurface applications during early stages of field development narrow down 283 

the options to just strategies (i) and (ii). Strategies (iii) and (iv) are more appropriate during mid- 284 

to late stages in the life of a reservoir when significant well data are available. Strategy (i) is 285 

essentially the workflow in conventional reservoir simulation where pressure, saturation, rates, 286 

and bottomhole pressures are simulated beginning from the initial conditions (t0) and matching 287 

forward in time steps (Δt) until the final simulation time is reached. Strategy (ii) does not match 288 

forward in time steps, but rather maps all future-times predictions to a single initial condition. While 289 

this may be convenient for fast forward modeling, it has two significant limitations. First the 290 

mapping of future-time predictions to a single initial condition disregards the intertwined mapping 291 

between the future-times predictions themselves which is clearly evident in Equations 3a and 3b; 292 

thus, this approach is more statistically driven than physics compliant. In contrast, strategy (i) 293 
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honors the interdependence of all future and previous time-step predictions as is always the case 294 

when simulations are matched going forward in time in conventional reservoir simulation. The 295 

second limitation is that strategy (ii) will increase the dimensionality of the machine learning 296 

problem, thus requiring needless large-capacity neural networks. For large reservoir models, this 297 

approach would require significant high-performance computing resources and very long training 298 

times. Therefore, our choice of strategy (i) is motivated by the desire to formulate a ML problem 299 

that does not just statistically fit the model features to the targets but does so in a manner that is 300 

scalable and consistent with standard practices in numerical reservoir simulation. Following 301 

Equations 3a and 3b, the static model and numerically simulated data from section 2.1 were split 302 

into static and dynamic data as illustrated in Fig. 2a. The dynamic data were split further into 303 

historical (i.e., old or previous time steps) and future-state (i.e., new or future time steps) data. 304 

The historical data were then combined with the static data and used as the features (i.e., input) 305 

while the future-state data were used as the target during network training. Specifically, 306 

1 1 1,  ,  and n n np S q+ + +
 were generated by splitting the numerically simulated data into previous time-307 

step data (i.e., ,  ,  and n n np S q ) and future time-step data (i.e., 
1 1 1,  ,  and n n np S q+ + +

). After 308 

completing this preprocessing step, both sets of data were used to train the machine-learning 309 

models by using future time-step data as targets and previous time-step data combined with static 310 

data as inputs during model training. We also trained a separate auxiliary machine-learning model 311 

that predicts previous time-step data using only static variables and a series of previous time 312 

steps as input. A total of thirteen features and three targets is used for network training. Rock 313 

properties (i.e., matrix porosity and permeability), and by extension grid-block pressure and 314 

saturation, depend on grid-block volume; so rather than using ( ,  ,  x y z ) nodal coordinates as part 315 

of the input, we used ( ,  ,  x y z   ) to form a Cartesian grid of the reservoir. For training, 316 

validation, and testing purposes, we further distributed the features and targets of all 27 static 317 

model realizations into fractions comprising 67%, 11%, and 22% of the total, respectively. Thus, 318 
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the features and targets from 18 different realizations were used for training, three realizations for 319 

validation, and six realizations for testing. As noted previously, 13 different constant bottomhole 320 

CO2 injection rates were simulated across the three groups of porosity and permeability fields. As 321 

color-coded in Fig. 1c, data splitting for network training was carefully done by ensuring that the 322 

different groups of permeability fields and bottomhole injection rate are well-distributed within 323 

training, validation, and testing data sets. This is necessary because both permeability and 324 

bottomhole injection rate impact fluid flow and machine-learning algorithms tend to perform well 325 

when features are well-distributed in the data used to train the neural network, thereby ensuring 326 

broad sampling of the features space. Following standard practice, the validation data are used 327 

to optimize training of the neural network, while testing data are not used for training but are 328 

reserved to evaluate how the proxy models generalize to never-before-seen data. 329 

2.3.3 Neural Network Algorithms, Architectures, and Training 330 

Four supervised neural network algorithms were evaluated in this study. They include the MLP, 331 

the CNN, the LSTM, and the GRU. Fig. 2b illustrates the network architecture, including the input 332 

and output parameters, of the multivariate input, and multivariate output surrogate models 333 

developed in this study. All network features and targets were normalized prior to training to speed 334 

up the learning process (faster convergence). Network hyperparameters of each algorithm were 335 

first optimized to determine the basic and leanest architecture with the most efficient performance. 336 

The neural net was implemented with the Tensorflow 2.1.0 library29 and Python packages on an 337 

Intel® Core™ CPU @ 3.70GHz, 32.0 GB RAM. Optimization of the network loss function 338 

(Equation 4) is performed using the Adam optimization technique. 339 

( )
2 , ,

2
neural net simulation 1 1 1

, ,

1

1
Mean Squared Error (MSE) loss ;  where ,  ,  

welli j k

N
n n n

i i i j k CO water

i

Y Y Y p S q
N

+ + +

=

= − =   340 

…………………………………………………………………………………………………………………………………………...….. (4) 341 
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We have intentionally avoided creating separate proxy models for the reservoir state 342 

variables considered in this study. Rather, we developed a single proxy model for each of the 343 

supervised deep-learning algorithms we examined, which can forecast all the state variables at 344 

once. One reason for adopting this approach is because multiphase flow problems are highly 345 

coupled. Although separate surrogate models are simpler to implement, doing so amounts to 346 

decoupling the critically important relationships among the state variables (as discussed in 347 

Section 2.2.1). For example, we know from multiphase flow that pore pressure and CO2 saturation 348 

are strongly coupled through Equation 2. So, if we were to attempt to obtain the closed-form 349 

analytical solutions for the two-phase governing equations given a set of initial and boundary 350 

conditions, which would be an exercise in futility due to the strong nonlinearity of the partial 351 

differential equation, the pore pressure solution would depend on CO2 saturation and vice versa. 352 

Besides, developing a separate proxy model for every state variable is an unwarranted duplication 353 

of efforts during training of the individual models and could impose additional penalties in training 354 

time, especially for large-scale subsurface reservoir models. 355 
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Fig. 2: Multivariate input, multivariate output deep-learning-based proxy modeling framework for 

subsurface carbon storage: (a) data preprocessing for network training and validation with snapshots of 

features and targets illustrating how static and dynamic subsurface data are used to train the neural 

networks; (b) network inputs, algorithms of interest, outputs, and label data used to minimize network 

loss (mean squared error or MSE) during model training.  

3. RESULTS AND DISCUSSION 356 

The models presented in this study have been tested with both 2D and 3D problems but for the 357 

sake of brevity and compactness, only results from the more general 3D data sets are discussed, 358 

because they demonstrate applicability of the proxy models to practical problems. First, we 359 

present results of hyperparameter tuning to determine the leanest network architectures that 360 

demonstrate acceptable performance. Then the performance of the surrogate models, including 361 

their compliance with the governing physical laws, is discussed using bivariate analysis (with 362 

concordance plots) and univariate analysis (with histograms of error distribution and assessment 363 

of 2D contours of reservoir pressure and CO2 saturation in the vertical direction). 364 

3.1 Hyperparameter Optimization 365 

The size of a neural network, which is otherwise called network capacity, influences the 366 

performance of surrogate models, both in terms of training and validation as well as how the 367 

model generalizes to new data. Generally, neural network capacity is determined by the width 368 

(number of nodes, filters) and depths (number of hidden layers) of the network. The higher the 369 

width and/or depth, the higher the capacity of the network. A large-capacity network requires 370 

significantly large number of network parameters (i.e., weights and biases) to be optimized during 371 

training, which may lead to overfitting and may significantly increase training time, especially for 372 

large-scale problems such as those related to CCUS. Besides, the number of weights and biases 373 

will influence the storage requirement of the model after training30. For these reasons, it is 374 

inefficient to indiscriminately select network parameters for a given problem without first 375 

determining the smallest size of the network that would give approximately the same, if not better, 376 
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performance than large-capacity network architectures. Rather than arbitrarily selecting the 377 

number of hidden layers, number of nodes per layer, number of filters, and the learning rate (a 378 

hyperparameter that controls how much to change the model in response to the estimated error 379 

each time the model weights are updated), we first conducted training experiments with these 380 

hyperparameters to determine the minimum requirement for optimum model performance. Table 381 

1 shows the effect of MLP, CNN, LSTM, and GRU hyperparameters on network loss after 100 382 

epochs. 383 

As the learning rate varied, network loss for each of the four algorithms decreased initially 384 

followed by an increase. In all cases, the least network loss occurs at a learning rate of 10-2. 385 

Therefore, a learning rate of 10-2 is selected as the optimum value and is used for all subsequent 386 

training. The least network loss for MLP and CNN was found to occur at 100 nodes after 387 

experimenting with three different numbers of nodes per hidden layer. For the CNN, this value 388 

represents the optimum number of nodes for the dense layer that succeeds the convolutional 389 

layer just prior to the output layer of the network. For the LSTM and GRU, 50 nodes in the hidden 390 

layer give the least network loss. Convolutional filters in a CNN layer are used to extract features 391 

from the input data. Higher number of filters may be needed for complicated problems, but an 392 

excessive number of filters increases network capacity, which in turn increases training time. In 393 

our case, 64 convolutional filters appear to give the least network loss. However, the network loss 394 

with 32 convolutional filters is practically the same, so we will use this smaller number in our 395 

subsequent analysis to keep training time per epoch to the barest minimum. Finally, four hidden 396 

layers give the least network loss for the MLP and CNN algorithms. We stopped short of 397 

conducting the same analysis for LSTM and GRU because these algorithms are inherently 398 

designed with four and three sublayers respectively, thus the number of training parameters for a 399 

single layer of these time-series algorithms is equivalent to those of a four-layer MLP and CNN. 400 

Furthermore, increasing the number of hidden layers would result in network capacity that would 401 

be difficult to tune on a desktop computer.  402 
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Table 1: Network loss after 100 epochs of hyperparameter optimization 403 

Hyperparameter space 
Deep-learning algorithm 

MLP CNN LSTM GRU 

Learning  

rate* 

1.00x10-1 1.56x10-2 9.61x10-3 1.59x10-4 4.25x10-4 

1.00x10-2 1.28x10-4 1.10x10-4 1.13x10-4 1.00x10-4 

1.00x10-3 3.77x10-4 1.89x10-4 3.62x10-3 1.81x10-3 

Number of 

nodes per 

hidden layer** 

20 1.47x10-3 1.75x10-4 2.60x10-4 1.11x10-4 

50 3.70x10-4 1.13x10-4 1.07x10-4 1.01x10-4 

100 1.79x10-4 8.18x10-5 1.52x10-4 1.01x10-4 

Number of  

filters⸸ 

16 N/A 1.14x10-4 N/A N/A 

32 N/A 6.77x10-5 N/A N/A 

64 N/A 3.86x10-5 N/A N/A 

Number of  

hidden 

layers⸸⸸ 

1 1.37x10-4 1.16x10-4 √ √ 

2 1.15x10-4 9.62x10-5 x x 

4 9.58x10-5 9.47x10-5 x x 

*     number of nodes per hidden layer, number of filters (CNN only), and number of hidden layers were fixed at 100, 404 

32, and 1 respectively 405 

**    learning rate, number of filters (CNN only), and number of hidden layers were fixed at 1.00x10-2, 32, and 1 406 

respectively 407 

⸸ learning rate, number of nodes per hidden layer, and number of hidden layers were fixed at 1.00x10-2, 100, and 408 

1 respectively 409 

⸸⸸ learning rate, number of nodes per hidden layer, and number of filters (CNN only) were fixed at 1.00x10-2, 100, 410 

and 32 respectively 411 

N/A not applicable 412 

√ hyperparameter space was sampled 413 

x hyperparameter space was not sampled 414 

Fig. 3a shows the effect of increasing network layers on the training time for all four 415 

algorithms. The number of trainable parameters, which is an indication of the network size, is 416 

displayed on the plot along with the corresponding network loss from Table 1. This shows that 417 

the training time increases with the network capacity. For example, the training time for the MLP 418 
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algorithm increases by nearly three times after the network hidden layer is quadrupled, without 419 

any significant improvement in network loss. This indicates that a single layer MLP will perform 420 

equally well as a four-layer MLP, without imposing unwarranted training cost. A similar result was 421 

obtained for the CNN where training time increased by four-fold after increasing the number of 422 

hidden layers from one to four. As noted previously, results for one layer of LSTM and GRU are 423 

equivalent in this case to those of the four-layer CNN. Fig. 3b shows water extraction rate (volume 424 

corresponding to surface conditions) from one realization of the training and testing data sets after 425 

prediction with one- and four-layer MLP and CNN proxy models. For the training data, one-layer 426 

MLP and CNN matched the data but the four-layer models, especially CNN, did not capture the 427 

late-time trend. Similar behavior can be seen in the testing data. Therefore, adding hidden layers 428 

without justification may not necessarily improve model performance. Instead the model may 429 

become overfitted and will learn trends that do not generalize to the entire data sets. A simple 430 

single-layer network architecture, developed for a carefully framed machine-learning problem, is 431 

sufficient in our case and is used going forward in the sections that follow. This underscores the 432 

necessity for hyperparameter optimization to reduce training time and avoid incurring additional 433 

computational penalties. 434 
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(a) 

 

(b) 

Fig. 3. Impact of neural network layers on: (a) training time; (b) model prediction of water extraction rate 

(surface conditions) at the producer. HL represents a hidden layer. 

3.2 Model Training and Performance Metrics 435 

Fig. 4 shows the status and performance of the network as training progresses. First, we present 436 

the error distribution for each of the target variables as predicted by the MLP algorithm after just 437 

10 epochs (Fig. 4a). These distributions are Gaussian with initially high standard deviation (σ) 438 
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and mean (μ). Later, we will present the error state after the training is completed. Evolution of 439 

the combined estimate of the network mean squared error (MSE) for all three target variables as 440 

the training progresses (Fig. 4b) shows that the MSE for the MLP model is significantly minimized 441 

reaching approximate final values of 8.56x10-6 and 9.45x10-6 for the training and validation sets 442 

respectively. We observe the closeness between the MSEs of both data sets at every epoch, an 443 

indication that the network is well-trained to generalize to not just the training data, but also to 444 

new sets of data. This indicates that the proxy model has not been influenced by overfitting. 445 

 Because the network MSE only monitors the error between predicted variables and their 446 

true values, we also computed MSE on the finite-difference discretized global residual function of 447 

the two-phase flow partial differential equation defined by Equation 5 to determine whether the 448 

ML model-predicted variables honor the underlying physical laws governing two-phase flow. 449 

These results are presented in the left-hand-side graph of Fig. 4c. The final MSEs are 1.59x10-11 450 

and 1.956x10-11 for the training and validation sets, respectively.  451 
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 Recognizing on one hand that the input and target variables of the neural network were 455 

normalized prior to network training, this being a necessary preprocessing step for features and 456 

targets, and on the other hand that Equation 5 expresses dimensional variables, it is important to 457 

verify that these MSEs truly reflect model performance. To address this, we reverted all ML-458 
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predicted normalized variables to their dimensional states and then used these values to compute 459 

the L2-norm of the global residual function defined by Equation 5. The right-hand-side graph in 460 

Fig. 4c shows the outcome for one of the static model realizations at one time step. The final 461 

values of the L2-norm are 1.28x10-3 and 2.02x10-3 for the training and validation sets respectively. 462 

In Figs. 4(d) through 4(e), we present contour plots to show how the final L2-norms computed with 463 

ML-predicted pressure, CO2 saturation, and water extraction rate (surface conditions) for all static 464 

models at all simulation times compare with the L2-norms computed with the corresponding 465 

numerically simulated variables. As expected from a converged numerical solution, these values 466 

are approximately zero and compare reasonably well. This demonstrates that the surrogate model 467 

has learned the important physics-constrained fluid flow dynamics and is a critical verification for 468 

our methodology and results. 469 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Fig. 4 Network status and performance during training: (a) grid-block-by-grid-block error distribution after 

10 epochs of training with MLP algorithm (2.40x106, 3.99x105, and 7.99x105 data points are displayed 

for training, validation, and testing, respectively; standard deviation (σ) and mean error (μ) are reported 

in the same units as the x-axes); (b) cartesian (left-hand side) and log-scale (right-hand side) plots of the 

evolution of network loss (mean squared error or MSE) during network training; (c) MSE of the two-phase 

flow PDE global residual function (left-hand side) and L2-norm (right-hand side) after Equation 5 is 

computed with surrogate model predictions using the final time-step data of one randomly selected static 

model; (d) contours of the L2-norm computed with the original numerically simulated variables; (e) 

contours of the final L2-norm computed with ML-predicted target variables. (d) and (e) were generated 
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with data sets from all simulation times in the 27 static model realizations. The MLP surrogate model was 

used to generate (e). 

 Table 2 summarizes the key network performance indicators, including the global MSE 470 

losses of the neural network, estimated model accuracy, training time per epoch, and prediction 471 

time for one static model realization comprising all features and target variables at all simulation 472 

times. Training losses of the four algorithms compare favorably with validation and testing losses. 473 

Estimated model accuracies are also equivalent and above 95%. The fact that the surrogate 474 

models perform equally well on the training, validation, and testing data sets indicates that 475 

overfitting is minimized. Typically, the difference between training and testing accuracies 476 

represents overfitting. It usually occurs when the performance of deep-learning proxy models on 477 

new, previously unseen data is significantly inferior to the performance on the training data. An 478 

overfitted proxy model learns the details in the training data to such an extent that it adversely 479 

impacts its performance on new data. As shown in Table 2, the surrogate models generally predict 480 

field pressure and CO2 saturation plumes, in addition to the surface extraction rate of water, at all 481 

the simulation times for a given static model in less than seven seconds, with the MLP surrogate 482 

model demonstrating the best performance by balancing training speed, prediction time, and 483 

prediction accuracy with lean network capacity.   484 

 Table 3 shows how the prediction times in Table 2 for each surrogate model compares 485 

with CMG simulation run time. Predictions with the MLP, CNN, LSTM, and GRU models are about 486 

16, 13, 11, and 11 times faster than the average CMG computational time for one blank test 487 

realization comprising 72 monthly time steps (i.e., 6 years) of data, respectively. It is worth noting 488 

that the total cost of developing an ML model comprises the data acquisition cost, data processing 489 

cost, programming cost, training cost, and computational (i.e., prediction/forecast) cost. For 490 

numerical simulation, the corresponding total cost includes the data acquisition cost (e.g., from 491 

seismic, drilling and coring, completions, laboratory PVT analysis, etc.), data processing cost, 492 

numerical simulator programming and debugging cost, numerical simulator installation/setup, 493 
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calibration, and support cost, and computational (i.e., simulation) cost. Because it is not a 494 

standard practice when estimating the computational cost for numerical simulation to include all 495 

the time it took to acquire and preprocess the relevant data needed as inputs to run reservoir 496 

simulators on a computer and the time taken for numerical code development and testing, the 497 

appropriate apple-to-apple comparison is to report the time it takes by the computer to execute 498 

an already-developed numerical code (in the case of numerical simulators) and a pretrained ML 499 

model to produce practically comparable values for the variables of interest throughout the entire 500 

spatio-temporal domain; thus, only the ML model prediction times were used to estimate the ML 501 

model speedups that are presented in Table 3. Even the ML model coding and training time is 502 

unwarranted, although we provided this information in Table 2, else one would have to add the 503 

cost of programming, debugging, installing, and supporting numerical simulators to the computer 504 

run time when estimating the cost of numerical simulation. Obviously, this is not the case because 505 

only the cost of executing numerical codes that are already developed and tested (e.g., CMG, 506 

Eclipse, TOUGH, etc.) on a computer is usually reported. 507 

Table 2: Performance metrics after network training 508 

Data sets Metrics MLP CNN LSTM GRU 

Model Training 

Training 

(18 realizations) 

Data points 2,396,250 2,396,250 2,396,250 2,396,250 

Learned 

Parameters 
1,703 4,051 12,953 9,903 

Epochs 20,000 20,000 20,000 20,000 

MSE 8.77x10-6 7.89x10-6 9.46x10-5 9.65x10-5 

Accuracy (%) 97.27 96.78 97.75 97.26 

Time to train one 

epoch (secs.) 
0.9 2.68 4.33 4.10 

Model Predictions 

Validation Data points 399,375 399,375 399,375 399,375 
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(3 realizations) MSE 9.26x10-6 1.00x10-5 9.65x10-5 9.85x10-5 

Accuracy (%) 97.27 96.82 97.76 97.26 

Time for combined 

prediction of all 

variables at all 

simulation times in 

one realization 

(secs.) * 

4.41 5.58 6.26 6.17 

Testing 

(6 realizations) 

Data points 798,750 798,750 798,750 798,750 

MSE 1.00x10-5 8.92x10-6 9.70x10-5 9.91x10-5 

Accuracy (%) 97.27 96.77 97.75 97.25 

Time for combined 

prediction of all 

variables at all 

simulation times in 

one realization 

(secs.) * 

4.37 5.61 6.49 6.65 

*   These times represent the average length of time taken for combined prediction of reservoir pressure, CO2 

saturation, and water extraction rate at all simulation times in a given static model realization (computer 

configuration: Intel® Core™ CPU @ 3.70GHz, 32.0 GB RAM). 

Table 3. Computational speedup of ML-based surrogated models over CMG simulation. 509 

CMG numerical simulation 

Total elapsed 
time⸸ (secs.) 

Minimum elapsed  
time (secs.) 

Maximum elapsed 
time (secs.) 

Mean elapsed 
time (secs.) 

1932.47 14.84 169.70 71.57* 

ML model approximate speedup* 

MLP CNN LSTM GRU 

16x 13x 11x 11x 

* 1 blank test realization comprising 72 monthly time steps (6 years) of data. 
⸸ 27 realizations comprising 72 monthly time steps of data per realization. 
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3.3 Model Prediction and Forecast 510 

Machine learning workflow generally comprises of training and testing of models. Framing of the 511 

machine learning problem using the proposed methodology is required only during model training. 512 

For model testing (i.e., prediction and forecast), we avoided the need for simulation results at the 513 

previous time step by developing a separate auxiliary surrogate model to be used for predicting 514 

a series of previous time-step values using only static formation properties, constant flow rate, 515 

and a series of previous time steps as inputs. These were then used, in combination with the 516 

formation and fluid properties and a series of future time steps, to make future predictions and 517 

forecasts. To be specific, ,  ,  and n n np S q  were first predicted using static variables and a series 518 

of previous simulation times nt  as inputs in the auxiliary model. The values of 
1 1 1,  ,  and n n np S q+ + +

 519 

were then predicted by using ,  ,  and n n np S q  combined with the static variables and a series of 520 

future simulation times 1nt + , where 
1n nt t t+ = + , as inputs in the main model.  521 

Thus, model predictions were performed in a single prediction step (i.e., all at once, not 522 

sequentially) given a set of input variables that includes a series of desired output times (t1, t2, 523 

t3,…, tn) that were separated by time step Δt: that is, t1, t1 + Δt, t1 + 2*Δt,…, tn, where Δt = 1 524 

month for the datasets used in this study. It should be noted that Δt is not limited to one month 525 

but can in fact accommodate any specified time-step size and can vary from one simulation time 526 

to the next. Thus, in one prediction step, the ML models output 3D reservoir pressure, 3D CO2 527 

saturation, well extraction rate, and well injection BHP for all the 72 months in one-month intervals 528 

(i.e., one-month time steps).  529 

The results of models trained with the complete 72 months of training data (please refer 530 

to Fig. 1c for data splitting) are discussed in sections 3.3.1 through 3.3.3. To demonstrate the 531 

proposed methodology in terms of accurate forecasting, we retrained the MLP model with only 532 

the first 36 months of training data (along with the first 45 months of validation data) and predict 533 
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using 72 months of blind test data comprising both the first and last 36 months of the blind test 534 

data (please refer to Fig. 1c for data splitting). The results are discussed in section 3.3.4. 535 

3.3.1 CO2 Bottomhole Pressure at the Injector 536 

Because the scenario used in this study involves a constant-rate CO2 injector along with a 537 

constant-BHP water producer, the BHP at the CO2 injection well and surface water extraction rate 538 

at the producer must be estimated. Consequently, we included the water extraction rate 539 

(volumetric, at surface conditions) at the producer in our list of target variables for the neural 540 

network as noted previously. Rather than add BHP at the CO2 injection well to this list for the 541 

neural network to learn, instead we retrieve the learned grid-block pressures of the grid blocks 542 

that host the CO2 injection well and then we apply the standard Peaceman-type well model, 543 

Equation 5, to estimate BHP at the CO2 injection well. The result of this calculation is compared 544 

to the actual numerically simulated BHP at the injector and is intended as a verification step for 545 

the proxy models. A well-matched BHP would mean that the coupling between wellbore 546 

hydraulics, otherwise called the inflow-performance relationship, and reservoir flow has been 547 

learned properly, because the well grid-block pressure is predicted using the surrogate model. 548 

The Peacemen model equations estimate bottomhole pressure as follows: 549 

well
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Recognizing that the Peaceman well model is strictly defined for two-point flux 554 

approximation schemes such as commonly used in standard finite difference methods, and that 555 

the numerical schemes implemented in commercial codes such as CMG-GEM may differ from 556 

these simple schemes, thus potentially leading to variation in the actual well
2

Peaceman

CO
J  at different time 557 

steps, we first computed the CO2 well injectivity index using the above expression and then 558 

attempted verification with equivalent estimates from the actual CMG-GEM data using Equation 559 

6.  560 

well
2

well
2

well well
2 2

inj

COCMG

1, simulated 1, simulatedCO

,CO , , ,CO

n n

bhp i j k

q
J

p p+ +
=

−
……………………………………….…………………………………...……........... (7) 561 

While well
2

Peaceman

CO
J  is not expected to vary with time following the above expressions, well

2

CMG

CO
J  562 

actually varies with time. Thus, we used well
2

CMG

CO
J  (instead of well

2

Peaceman

CO
J ) in Equation 5 to compute the 563 

bottomhole pressure. Fig. 5 shows how predictions by the surrogate models compare to the 564 

original data. Concordance plots for ML-predicted BHP and CMG-GEM output show excellent 565 

agreement at all simulation times (Fig. 5a). This is supported by the R2 coefficient. Error 566 

distribution for the BHP also shows that predictions by the surrogate models are near-perfect (Fig. 567 

5b). Standard deviations (σ) and mean errors (μ) of the different data sets are very low, thus 568 

indicating that the surrogate models generalize to the entire data sets. Test cases of BHP vs. 569 

time, one each for training, validation, and testing, show how well the predictions match the 570 

original data (Fig. 5c). These plots confirm the results in the concordance plots and the error 571 

distribution.  572 
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(a) 

 

(b) 
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(c) 

Fig. 5. Comparisons between the original data and predictions of injection well BHP by the four surrogate 

models: (a) grid-block-by-grid-block concordance plots at all simulation times and at injection well 

locations showing R2 coefficients; (b) grid-block-by-grid-block error distribution showing the standard 

deviations (σ) and mean errors (μ); (c) sample BHP vs. time plots for each data set. The total number of 

data points shown in (a) and (b) comprises 2.40x106, 3.99x105, and 7.99x105 for training, validation, and 

testing, respectively. 

3.3.2 Water Extraction Rate at the Producer 573 

Fig. 6 shows comparison between the predicted water extraction rate (volumetric, at surface 574 

conditions) and the original CMG-GEM results. As shown in the concordance plot, the vast 575 

majority of the data points lie along the unit-slope line and the R2 values indicate that water 576 

extraction rates predicted by the surrogate models reasonably match the labeled data at all 577 

simulation times. In addition, the error distributions approach zero for all four algorithms. This is 578 

supported by the standard deviations and mean errors which are very close to zero, thus 579 

indicating that the actual errors are near the mean error estimates. Compared to the error 580 

distribution of the water extraction rate after 10 epochs where the standard deviation and mean 581 

error are significantly larger (Fig. 4a), these results represent significant improvement and are 582 

consistent with previous studies9. Furthermore, water extraction rate vs. time plots predicted by 583 

the surrogate models agree with the CMG-GEM simulations (Fig. 6c). 584 
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(c) 

Fig. 6. Comparisons between the original data and predictions of water extraction rate at the producer 

by the four surrogate models: (a) grid-block-by-grid-block concordance plots at all simulation times and 

at production well locations showing R2 coefficients; (b) grid-block-by-grid-block error distribution 

showing the standard deviations (σ) and mean errors (μ); (c) sample water extraction rate vs. time plots 

for each data set. The total number of data points shown in (a) and (b) comprises 2.40x106, 3.99x105, 

and 7.99x105 for training, validation, and testing, respectively. 

3.3.3 Spatio-Temporal Evolution of Field Pressure and Saturation Plumes 585 

Finally, we investigate the accuracy of predictions of the reservoir state variables (pressure and 586 

saturation) by the proxy models both in space and time. Fig. 7 shows comparison of proxy model 587 

predictions with traditional full-physics numerical simulation for reservoir pressure at all simulation 588 

times on a grid-block-by-grid-block basis. For proper perspective, this corresponds to 589 

approximately 2.40x106, 3.99x105, and 7.99x105 data points for training, validation, and testing 590 

respectively. The concordance plot for each of the algorithms shows good agreement between 591 

the predicted and actual reservoir pressure at various locations and times with near-perfect R2 592 

coefficients. The corresponding error distributions show additional evidence of outstanding model 593 

performance with the standard deviations and mean errors for the four proxy models ranging 594 

between 4.64 – 10.70 psi and -1.10 – -1.20 psi, respectively, where average pressure is 595 

approximately 4200 psi. Overall, the errors are very small which is very impressive considering 596 

the number of data points presented in these plots. Relative to the prediction error state after 10 597 

epochs (Fig. 4a), these final near-zero error distributions demonstrate convergence of the deep-598 

learning solutions. 599 
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Recent advances in assessment of image quality have shown that structural similarity 600 

index (SSIM) is a more accurate measure of perceived similarity between two images than 601 

commonly used MSE because SSIM determines whether or not two images are the same based 602 

on their texture31, 32. SSIM value of 1 means that the images are very similar but a value of 0 603 

means that they are not. As an illustration, we first computed MSE and SSIM on three pairs of 604 

pressure contours that are chosen in the following ways: (i) a pair of images comprising two 605 

randomly selected normalized CMG-GEM-simulated pressure contours that are copies of each 606 

other, (ii) a pair of images similar to (i) but with the second image containing some noise, and (iii) 607 

a pair of images similar to (ii) but with a constant added to the second image instead of noise. 608 

Cases (ii) and (iii) are essentially two modifications to the baseline pressure contour in (i). As 609 

shown in Fig. 7c, MSE = 0.00 and SSIM = 1.00 for Case (i) because a pair of duplicated images 610 

was used and thus the images are 100% similar based on the SSIM value. For Case (ii), MSE = 611 

0.06 and SSIM = 0.23 due to the noise added to the second image. Finally, MSE = 0.06 and SSIM 612 

= 0.87 for Case (iii). Comparison between Cases (ii) and (iii) shows that modifications of the 613 

original pressure contour result in two contours that have the same MSE but different SSIMs. 614 

Based on MSE values alone, Cases (ii) and (iii) would have been erroneously interpreted as 615 

demonstrating the same accuracies relative to the original image in Case (i). The SSIMs for these 616 

cases are however lower than SSIM of the perfectly similar contours in Case (i) due to the 617 

imposed alterations. Obviously, the SSIM value for Case (iii) agrees with visual inspection which 618 

shows that this image is more similar to the baseline image in Case (i) than the image in Case 619 

(ii).  620 

Following the above observation, we used SSIM to determine whether the predicted 25 x 621 

25 2D images of the reservoir pressure at each of the three horizontal layers in our grid-based 622 

stencil are analogous to the CMG-GEM full-physics pressure contours. To do this, we estimated 623 

SSIM between corresponding inverted image pairs predicted from each of the four proxy models 624 

and the original CMG-GEM pressure contours and then generated a cloud plot, which we refer to 625 
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here as the “icicle” plot (Fig. 7d). For proper perspective, each icicle plot shows the SSIM value 626 

for a pair of 3834, 639, and 1278 25 x 25 2D images from training, validation, and testing sets, 627 

respectively. The number of images in each data set is obtained by multiplying the number of 628 

static models in the set with the number of time steps and the number of horizontal layers in our 629 

Cartesian grid. To interpret these plots, we set a threshold SSIM value of 0.95 and determine how 630 

many SSIM values are equal to or greater than this threshold. We then express this as a 631 

percentage of the total count and refer to this as the SSIM image-based accuracy of our proxy 632 

models. These accuracies are presented in the plot along with the mean SSIMs. Estimated image-633 

based model accuracies for MLP and CNN proxy models are very close to those presented in 634 

Table 2 with the least accurate still above 97%. The corresponding least accurate estimates for 635 

the LSTM and GRU proxy models is above 90%. Results from these 2D spatio-temporal analyses 636 

support the 1D spatio-temporal outcomes from the concordance plots and error distributions. 3D 637 

contours of the reservoir pressure at the final time step for four (out of the six) testing data sets 638 

are presented in Fig. 7e along with the prediction error. It is worth noting that these data sets were 639 

never-before-seen by the proxy models during the course of training. The range of prediction 640 

errors displayed in the color bars further confirms good agreement between the proxy models and 641 

full-physics numerical simulations. 642 
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(a) 
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(e) 

Fig. 7. Comparisons between the original data and predictions of reservoir pressure plume by the four 

surrogate models: (a) grid-block-by-grid-block concordance plots at all simulation times and locations 

showing R2 coefficients; (b) grid-block-by-grid-block error distribution showing the standard deviations 

(σ) and mean errors (μ); (c) randomly-selected pressure contour showing comparison between MSE and 

SSIM; (d) “icicle” plots showing SSIM computed from the predicted and the original 2D images of 

pressure contours; (e) contours of reservoir pressure at the final time step for four static model 
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realizations from the testing data sets showing (from left to right) full-physics simulations, neural network 

predictions, and the prediction errors. The total number of data points shown in (a) and (b) comprises 

2.40x106, 3.99x105, and 7.99x105 for training, validation, and testing, respectively. 

Similar results were obtained for CO2 saturation as shown in Fig. 8. Specifically, predicted 643 

CO2 saturations are in good agreement with CMG-GEM simulations on a grid-block-by-grid-block 644 

basis as supported by the R2 values. The range of σ and μ values in the error distribution provides 645 

additional evidence for the satisfactory performance of the models. SSIM imaged-based model 646 

accuracies that were estimated with 2D images of CO2 saturation are also reasonable. Finally, 647 

3D contours of CO2 saturation plume using never-before-seen data sets show practically 648 

negligible prediction errors between the proxy models and the CMG-GEM simulations, with the 649 

highest errors occurring at the CO2-water interface. Generally, the surrogate models satisfactorily 650 

predict spatio-temporal evolution of reservoir pressure and CO2 saturation surfaces across the 651 

entire simulation domain. 652 

 

(a) 
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(b) 

 

(c) 



45 
 

 

(d) 

Fig. 8. Comparisons between the original data and predictions of CO2 saturation plume by the four 

surrogate models: (a) grid-block-by-grid-block concordance plots at all simulation times and locations 

showing R2 coefficients; (b) grid-block-by-grid-block error distribution showing the standard deviations 

(σ) and mean errors (μ); (c) “icicle” plots showing SSIM computed from the predicted and the original 2D 

images of CO2 saturation contours; (d) contours of CO2 saturation at the final time step for four static 

model realizations from the testing data sets showing (from left to right) full-physics simulations, neural 
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network predictions, and the prediction errors. The total number of data points shown in (a) and (b) 

comprises 2.40x106, 3.99x105, and 7.99x105 for training, validation, and testing, respectively. 

3.3.4 Forecasting reservoir pressure, CO2 saturation, water extraction rate, and BHP at 653 

the CO2 well 654 

Technically, model prediction is analogous to model forecasting. Forecasting in our context 655 

implies the prediction of pressure, CO2 saturation, water extraction rate, and bottomhole pressure 656 

at the CO2 injection well for simulation times beyond the time limit of the sets of data used for 657 

model training. So, we evaluated model forecasting using the MLP model that was trained with 658 

only the first 36 months of training data, followed by prediction of 72 months of data that comprises 659 

both the first and last 36 months of the blind test datasets. 660 

Comparison of the MLP model predictions with CMG simulations (actual) is presented in 661 

Fig. 9. Concordance plots of predicted vs. actual reservoir pressure, CO2 saturation, and water 662 

extraction rate show good match with very high R2 scores. Standard deviations and mean errors 663 

of the error distributions for the blind test cases of each predicted variable are 6.54 psi, 4.66x10-664 

3, and 0.273 STB/day and 3.04 psi, 8.50x10-4, and -6.49x10-4 STB/day, respectively. These 665 

values, especially for those of reservoir pressure and CO2 saturation, are slightly higher than the 666 

corresponding standard deviations of predictions made with the MLP model that was trained with 667 

the complete 72 months of training data (please refer to Figs. 6b, 7b, and 8b). However, these 668 

errors are negligible considering the number of data points presented and the range of each data. 669 

Plots of water extraction rate at the producer and bottomhole pressure at the injector vs. time 670 

show excellent agreement between the MLP model forecasts and the CMG simulations (Fig. 9c). 671 

Therefore, the proposed methodology is very efficient for forecasting the future state of the 672 

reservoir and well rates and bottomhole pressure. 673 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 9. MLP model predictions of reservoir pressure, CO2 saturation, and water extraction rate using sub-

sampled simulation times for model training and validation (36, 45, and 72 months of data were used for 

training, validation, and blind testing respectively): (a) grid-block-by-grid-block concordance plots at all 

simulation times and at production well locations showing R2 coefficients for reservoir pressure, CO2 

saturation, and water extraction rate; (b) grid-block-by-grid-block error distribution showing the standard 

deviations (σ) and mean errors (μ) for reservoir pressure, CO2 saturation, and water extraction rate; (c) 

sample water extraction rate at the producer vs. time plots for each data subset showing forecasting of 

rate (using the blind test data) beyond the 36 months of training data; (d) sample bottomhole pressure 

at the CO2 injection well vs. time plots for each data subset showing forecasting of bottomhole pressure 

(using the blind test data) beyond the 36 months of training data. The total number of data points shown 
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in (a) and (b) comprises 1.22x106, 2.53x105, and 7.99x105 for training, validation, and testing, 

respectively. 

3.4 Performance Comparison between Physics-Framed and Traditional Deep-Learning 674 

Approaches 675 

The traditional deep-learning approach is not constrained or guided by physical laws during model 676 

development. To evaluate the performance of the proposed methodology compared to a 677 

traditional deep-learning approach, a five-layer MLP model was trained without the use of 678 

historical data as inputs. The only input to the model is the static data that comprises the rock 679 

properties (i.e., porosity and directional permeabilities), grid-block sizes, well constraints (i.e., 680 

constant injection rate and BHP), and simulation times. The model outputs are reservoir pressure, 681 

CO2 saturation, and water extraction rate. 682 

Fig. 10 shows the performance of the five-layer MLP model. While the model seems to 683 

reasonably predict water extraction rate with the training and blank test datasets (please refer to 684 

the third plot in Fig. 10a), albeit to a lesser degree with the validation dataset, it falls short in 685 

properly matching the spatio-temporal evolution of reservoir pressure and CO2 saturation as a 686 

significant number of the data points evidently do not correctly align with the dashed 1:1 (i.e., 45°) 687 

line and the R2 scores are slightly lower when compared to Figs. 6a, 7a, and 8a. In addition, note 688 

that the training data (i.e., the red data points in the plots) line up better with the 1:1 line than the 689 

validation and blank test data both of which were not used by the MLP algorithm during forward 690 

and backward propagation but often are the litmus test for how well the model generalizes to all 691 

the three sets of data. This is a clear evidence that the model was overfitted, a situation that 692 

occurs when an ML model captures patterns in the training data that do not generalize to the 693 

complete datasets, thereby performing less well with the blank test data than with the training 694 

data. Furthermore, statistics of the error distributions (Fig. 10b), especially the standard deviation, 695 

indicate that the data are very dispersed relative to the mean. 696 
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Due to the unique nature of subsurface flow data where a structure exists, as dictated by 697 

the governing physical law(s), that correlates the discrete variables in both space and time, it is 698 

obvious that formulating subsurface flow deep-learning problems using the governing physical 699 

law(s) helps to guide model training and development towards a more accurate ML-based 700 

surrogate model. Results from the methodology proposed in this study (sections 3.1 through 3.3) 701 

honor these requirements, thereby avoiding the limitations with traditional deep-learning 702 

approaches. 703 

 

(a) 

 

(b) 

Fig. 10. Predictions of reservoir pressure, CO2 saturation, and water extraction rate using a five-layer 

MLP model trained with traditional deep-learning approach: (a) grid-block-by-grid-block concordance 

plots at all simulation times and at production well locations showing R2 coefficients for reservoir 

pressure, CO2 saturation, and water extraction rate; (b) grid-block-by-grid-block error distribution 

showing the standard deviations (σ) and mean errors (μ) for reservoir pressure, CO2 saturation, and 

water extraction rate. The total number of data points shown in (a) and (b) comprises 2.43x106, 4.05x105, 

and 8.10x105 for training, validation, and testing, respectively. 
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4. MODEL EXTENSION 704 

Numerical models are often modified through mesh refinement around wellbores or alteration to 705 

the initial and/or boundary conditions; thus, model transferability could become an issue. In the 706 

case that meshes are refined, changes in discretization should alter the number or pattern of grid 707 

points and also alter the local reservoir state with respect to pore pressure and saturation, 708 

whereas production/injection rates will not change significantly. In situations where new grid 709 

points are added through mesh refinement, the fact that we carefully sampled our features space, 710 

specifically permeability and porosity, and that these formation properties are heterogeneously 711 

distributed in space, gives credence to the likelihood that the models will perform satisfactorily at 712 

inter-block locations in the original reservoir geometry where new grid points may be added after 713 

mesh refinement. This is so because predictions at such location is an interpolation, and not an 714 

extrapolation problem for the models. Thus, we expect that our approach will work irrespective of 715 

refined meshes near the wells because the dependence of the ML targets for our models (i.e., 716 

pore pressure, CO2 saturation, etc.) on the ML features used in this study is a theoretically valid 717 

proposition. In the event that the initial and/or boundary conditions are modified, which would 718 

likely alter the pore pressure field, CO2 saturation plume, and well flow rates, it is not necessary 719 

to retrain the entire model from scratch. Rather, transfer learning can easily be used to update 720 

the weights and biases of features that were already learned by our pre-trained models without 721 

significant loss of generalization. Finally, it is worth noting that our methodology is not 722 

incompatible with 3D image-based datasets. Imaged-based training is only a matter of data 723 

formatting and has no implications on the importance of applying physical laws to carefully 724 

formulate ML-based subsurface flow problems. Because of the modest size of the reservoir 725 

geometry used to demonstrate our approach, we directly trained the model at the grid blocks 726 

without first extracting key features which is typically the case with datasets that are prepared in 727 

3D image formats. This has the added advantage of minimizing the network capacity and thus, 728 

the training time. Unlike other approaches where a PDE loss is added to the neural network 729 
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objective function and less than 2% of the reservoir grid blocks are randomly sampled and used 730 

for model training due to the high computational burden of computing the PDE loss on the full 731 

reservoir geometry (e.g., Raissi et al.14, 15), our approach uses all the grid blocks in order to 732 

properly capture the spatial heterogeneity in the data; thus, can readily be scaled to large-scale 733 

reservoir geometries. 734 

5. CONCLUSIONS 735 

Deep-learning-based proxy models have been developed for CCUS using off-the-shelf 736 

supervised machine-learning algorithms applied to a physics-guided subsurface two-phase flow 737 

problem involving immiscible displacement of water by CO2. The models reasonably satisfy the 738 

underlying physical laws governing the transport of the wetting and nonwetting fluids and are 739 

therefore excellent approximations of the full-physics analogue. In addition, these surrogate 740 

models are lean and very robust, simultaneously predicting reservoir pressure and CO2 741 

saturation, including the surface well flow rate and bottomhole pressure, at all simulation times in 742 

just a few seconds on a standard desktop computer. Model testing with never-before-seen data 743 

shows satisfactory performance, with the MLP model outperforming the other models in training 744 

speed and prediction time. A key outcome of this study is that limits can be placed on network 745 

design parameters to avoid over designing neural networks, with associated efficiencies in 746 

training and prediction times. 747 

The models developed in this study can be used as fast forward models during history-748 

matching, replacing computationally expensive full-physics models and thereby allowing near 749 

real-time forecasts of subsurface processes that are critical for supporting rapid decision making 750 

throughout the life cycle of CCUS operations. Furthermore, large-scale deployment of CCUS 751 

technology often requires calibration of numerical models with field data to build a representative 752 

reservoir/hydrogeologic model of the subsurface, which is critical for project management and 753 

interpretation of long-term monitoring data, during the post-injection period. Recognizing that DL-754 
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based proxy models trained with pure simulation data may not necessarily capture the response 755 

from real reservoirs, which is also a potential pitfall of full-physics numerical models, these proxy 756 

models are retrainable and can be updated using ongoing field observations through transfer 757 

learning. The retrained models then become surrogates for actual reservoirs that could be used 758 

to rapidly query the critical flow dynamics needed to quickly address stakeholders’ concerns on 759 

issues such as the potential for induced seismicity, vertical fluid migration through caprocks, CO2 760 

leakage into freshwater aquifers from compromised wells, etc. In addition, these surrogate models 761 

can be incorporated in a virtual learning environment to be used by operators for optimizing 762 

reservoir development prior to field activities, by regulators during processing of permits, and by 763 

the public to gain intuitive understanding and rapid insight into subsurface carbon storage. The 764 

improved ability to predict and understand subsurface CCUS processes and impacts in general 765 

provides the foundation for overall better decision-making including faster permitting that will help 766 

lower current barriers to commercial-scale deployment of CCUS technology and ultimately bolster 767 

public confidence in CCUS projects. 768 

Acknowledgements 769 

This work was completed as part of the Science-informed Machine learning to Accelerate Real 770 

Time decision making for Carbon Storage (SMART-CS) Initiative (edx.netl.doe.gov/SMART). 771 

Support for this initiative was provided by the U.S. Department of Energy’s (DOE) Office of Fossil 772 

Energy’s Carbon Storage Research program through the National Energy Technology Laboratory 773 

(NETL). The authors wish to acknowledge Mark McKoy (NETL, Carbon Storage Technology 774 

Manager), Darin Damiani (DOE Office of Fossil Energy, Carbon Storage Program Manager), and 775 

Mark Ackiewicz (DOE Office of Fossil Energy, Director, Division of Carbon Capture and Storage 776 

Research and Development), for programmatic guidance, direction and support. The authors also 777 

wish to acknowledge the SMART-CS advisory board for their support and contributions, Seyyed 778 

Hosseini of the Bureau of Economic Geology, Jackson School of Geosciences, University of 779 



53 
 

Texas at Austin, for providing the data used in this study, and Diana Bacon of the Pacific 780 

Northwest National Laboratory for providing python scripts used to process CMG-GEM output 781 

files into numpy arrays. 782 

Appendix: Guiding the formulation of subsurface deep-learning problems with fluid 783 

transport equations 784 

To formulate a problem statement for the machine-learning algorithms used in this study, we 785 

begin by examining a simple case of the partial differential equations governing fluid flow through 786 

porous media. 787 

Appendix A: Single-phase fluid flow 788 

Flow of single-phase fluids (e.g., water) through porous media is governed by the diffusivity 789 

equation below:  790 
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Equation A1 assumes constant fluid densities and viscosities, zero capillary pressure, no gravity 794 

effect, isothermal conditions, and uniform grids. Using two-point flux approximation discretization 795 

scheme, the implicit finite-difference formulation for Equation A1 is: 796 
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When assembled into a linear system of equations, the algebraic equation in A3 results into: 802 

    1n n

I Ip p+ =A  ……………………………...………………………………………………....….. (A4) 803 

Future time-step pressure solutions in every grid block is obtained from prior time steps as 804 

follows: 805 

     
11n n

I Ip p
−+ = A  …………………………….....………………………………………...…....….. (A5) 806 

 A  is a sparse matrix whose sparsity pattern depends on the dimension of the problem (i.e., 1D, 807 

2D, or 3D), grid type, boundary conditions (inner and outer), etc. Evidently from Equation A3, 808 

values of matrix elements in  A  depend on time-step size ( t ), grid-block size ( ,  ,  x y z   ), 809 

rock properties (rock compressibility, rc ; porosity,  ; directional permeabilities, ,  ,  x y zk k k ), and 810 

fluid viscosity,  . Therefore, Equation A5 shows that future time-step pressure solutions depend 811 

on pressure solutions at the prior time steps, time-step size, grid-block size, well and outer 812 

boundary constraints, and rock and fluid properties. With  1n

Ip +  designated as output and  n

Ip , 813 

as well as the variables needed to assemble the sparse matrix  A  (i.e., 814 

,  ,  ,  ,  ,  ,  ,  ,  ,  and x y z rx y z t k k k c     ), designated as inputs, we can demarcate features and 815 

targets for artificial neural network algorithms. The algorithms are essentially tasked to learn the 816 
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best representation of sparse matrix [A] that honors Equation A3 at all the time steps in the data 817 

sets. 818 

Appendix B: Two-phase fluid flow 819 

The continuity equation for multiphase flow of fluids (e.g., CO2 and water) through porous media 820 

is described as:  821 
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In this study, constant fluid densities and viscosities, zero capillary pressure, no gravity effect, 823 

isothermal conditions, and uniform grids in the x- and y-directions are assumed. Adding the 824 

wetting and non-wetting phase continuity equations results in the following pressure and transport 825 

equations.  826 
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IMPES (Implicit pressure explicit saturation) discrete formulation for the pressure equation is: 834 
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 838 

Equation B5 can be assembled into the same form of the linear system of equations in Equation 839 

A4, where  A  is a sparse matrix with entries that depend on the wetting fluid saturation inside 840 

the grid blocks at the prior time step, time-step size, grid-block size, and rock and fluid properties. 841 

Grid-block pressure solutions at the next time step can be obtained using Equation A5. Thus, in 842 

addition to grid-block pressure solutions at the prior time steps, time-step size, grid-block size, 843 

wellbore and outer boundary constraints, and rock and fluid properties, future time-step pressure 844 

solutions in the grid blocks depend also on the grid-block saturation of the wetting fluid at the prior 845 

time steps. 846 

IMPES formulation for the transport (saturation) equation is: 847 
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where, consistent with the two-point flux approximation scheme, the fractional flow (
wf ) and 850 

Darcy flux ( v ) are evaluated at the grid-block boundaries. Consequently, future time step wetting-851 

fluid saturations for every grid block depend on the grid-block fluid saturations at the prior time 852 

step, grid-block pressures at the prior and next time steps, time-step size, grid-block size, well 853 

and outer boundary constraints, and rock and fluid properties. As noted in Appendix A above, 854 

these dependencies are used to define features and targets for artificial neural network 855 

algorithms, which serves as the basis for our problem formulation. 856 
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16. Géron, A. l., Hands-on machine learning with Scikit-Learn and TensorFlow : concepts, tools, and 897 
techniques to build intelligent systems. O'Reilly Media: Sebastopol, CA, 2017. 898 
17. Alakeely, A.; Horne, R. N., Simulating the Behavior of Reservoirs with Convolutional and 899 
Recurrent Neural Networks. SPE Reservoir Evaluation & Engineering 2020, 23 (03), 0992-1005. 900 
18. Ghassemzadeh, S.;  Gonzalez Perdomo, M.;  Haghighi, M.; Abbasnejad, E., A data-driven 901 
reservoir simulation for natural gas reservoirs. Neural Computing and Applications 2021. 902 
19. Golzari, A.;  Haghighat Sefat, M.; Jamshidi, S., Development of an adaptive surrogate model for 903 
production optimization. Journal of Petroleum Science and Engineering 2015, 133, 677-688. 904 
20. Tang, M.;  Liu, Y.; Durlofsky, L. J., A deep-learning-based surrogate model for data assimilation in 905 
dynamic subsurface flow problems. J. Comput. Phys. 2020, 413, 109456. 906 
21. Jin, Z. L.;  Liu, Y.; Durlofsky, L. J., Deep-learning-based surrogate model for reservoir simulation 907 
with time-varying well controls. Journal of Petroleum Science and Engineering 2020, 192, 107273. 908 
22. Zhong, Z.;  Sun, A. Y.;  Yang, Q.; Ouyang, Q., A deep learning approach to anomaly detection in 909 
geological carbon sequestration sites using pressure measurements. Journal of Hydrology 2019, 573, 910 
885-894. 911 
23. Mo, S.;  Zhu, Y.;  Zabaras, N.;  Shi, X.; Wu, J., Deep Convolutional Encoder-Decoder Networks for 912 
Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media. Water Resour. Res. 913 
2019, 55 (1), 703-728. 914 
24. Zhou, Z.;  Lin, Y.;  Zhang, Z.;  Wu, Y.;  Wang, Z.;  Dilmore, R.; Guthrie, G., A data-driven CO2 915 
leakage detection using seismic data and spatial–temporal densely connected convolutional neural 916 
networks. International Journal of Greenhouse Gas Control 2019, 90, 102790. 917 
25. Zhong, Z.;  Sun, A. Y.; Jeong, H., Predicting CO2 Plume Migration in Heterogeneous Formations 918 
Using Conditional Deep Convolutional Generative Adversarial Network. Water Resour. Res. 2019, 55 (7), 919 
5830-5851. 920 
26. Wen, G.;  Tang, M.; Benson, S. M., Towards a predictor for CO2 plume migration using deep 921 
neural networks. International Journal of Greenhouse Gas Control 2021, 105, 103223. 922 
27. Song, Y.;  Sung, W.;  Jang, Y.; Jung, W., Application of an artificial neural network in predicting 923 
the effectiveness of trapping mechanisms on CO2 sequestration in saline aquifers. International Journal 924 
of Greenhouse Gas Control 2020, 98, 103042. 925 
28. CMG-GEM, GEM Technical Manual: General Adaptive Implicit Equation of State Compositional 926 
Model. Computer Modelling Group: 1993. 927 



59 
 

29. Abadi, M.;  Agarwal, A.;  Barham, P.;  Brevdo, E.;  Chen, Z.;  Citro, C.;  Corrado, G. S.;  Davis, A.;  928 
Dean, J.;  Devin, M.;  Ghemawat, S.;  Goodfellow, I.;  Harp, A.;  Irving, G.;  Isard, M.;  Jia, Y.;  Jozefowicz, 929 
R.;  Kaiser, L.;  Kudlur, M.;  Levenberg, J.;  Mane, D.;  Monga, R.;  Moore, S.;  Murray, D.;  Olah, C.;  930 
Schuster, M.;  Shlens, J.;  Steiner, B.;  Sutskever, I.;  Talwar, K.;  Tucker, P.;  Vanhoucke, V.;  Vasudevan, 931 
V.;  Viegas, F.;  Vinyals, O.;  Warden, P.;  Wattenberg, M.;  Wicke, M.;  Yu, Y.; Zheng, X., TensorFlow: 932 
Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv e-prints 2016, 933 
arXiv:1603.04467. 934 
30. Sze, V.;  Chen, Y.;  Yang, T.; Emer, J. S., Efficient Processing of Deep Neural Networks: A Tutorial 935 
and Survey. Proceedings of the IEEE 2017, 105 (12), 2295-2329. 936 
31. Wang, Z.; Bovik, A. C., Mean squared error: Love it or leave it? A new look at Signal Fidelity 937 
Measures. IEEE Signal Processing Magazine 2009, 26 (1), 98-117. 938 
32. Zhou, W.;  Bovik, A. C.;  Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error 939 
visibility to structural similarity. IEEE Transactions on Image Processing 2004, 13 (4), 600-612. 940 

1. Metz, B.;  Davidson, O.;  Coninck, H. d.;  Loos, M.; Meyer, L., IPCC special report on carbon dioxide 941 

capture and storage. Cambridge University Press, New York, NY (United States); 942 

Intergovernmental Panel on Climate Change, Geneva (Switzerland). Working Group III: 2005; p 943 

Medium: X; Size: 440; 23.3 MB pages. 944 

2. Orr, F. M., Jr., Carbon Capture, Utilization, and Storage: An Update. SPE Journal 2018, 23 (06), 2444-945 

2455. 946 

3. Page, B.;  Turan, G.;  Alex, Z.;  Burrows, J.;  Consoli, C.;  Erikson, J.;  Havercroft, I.;  Kearns, D.;  Liu, H.;  947 

Rassool, D.;  Tamme, E.;  Temple-Smith, L.;  Townsend, A.; Zhang, T. Global Status of CCS Report 948 

2020; 2020. 949 

4. Greenberg, S.;  Gauvreau, L.;  Hnottavange-Telleen, K.;  Finley, R.; Marsteller, S., Meeting CCS 950 

communication challenges head-on: Integrating communications, planning, risk assessment, and 951 

project management. Energy Procedia 2011, 4, 6188-6193. 952 

5. Leetaru, K. H.; Leetaru, H. E., A Global Big Data Assessment of Public Attitudes Towards CCS Through 953 

the Media. Energy Procedia 2014, 63, 7011-7018. 954 

6. Nordbotten, J.; Celia, M., Geological Storage of CO: Modeling Approaches for Large-Scale Simulation. 955 

Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation 2011, i-ix. 956 



60 
 

7. Pruess, K.;  García, J.;  Kovscek, T.;  Oldenburg, C.;  Rutqvist, J.;  Steefel, C.; Xu, T., Code 957 

intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. 958 

Energy 2004, 29 (9), 1431-1444. 959 

8. Class, H.;  Ebigbo, A.;  Helmig, R.;  Dahle, H. K.;  Nordbotten, J. M.;  Celia, M. A.;  Audigane, P.;  Darcis, 960 

M.;  Ennis-King, J.;  Fan, Y.;  Flemisch, B.;  Gasda, S. E.;  Jin, M.;  Krug, S.;  Labregere, D.;  Naderi 961 

Beni, A.;  Pawar, R. J.;  Sbai, A.;  Thomas, S. G.;  Trenty, L.; Wei, L., A benchmark study on 962 

problems related to CO2 storage in geologic formations. Computational Geosciences 2009, 13 963 

(4), 409. 964 

9. Sefat, M. H.;  Salahshoor, K.;  Jamialahmadi, M.; Moradi, B., A New Approach for the Development of 965 

Fast-analysis Proxies for Petroleum Reservoir Simulation. Pet. Sci. Technol. 2012, 30 (18), 1920-966 

1930. 967 

10. Schuetter, J.;  Mishra, k. S.;  Ganesh, P. R.; Mooney, D., Building Statistical Proxy Models for CO2 968 

Geologic Sequestration. Energy Procedia 2014, 63, 3702-3714. 969 

11. Kalantari-Dahaghi, A.;  Mohaghegh, S.; Esmaili, S., Data-driven proxy at hydraulic fracture cluster 970 

level: A technique for efficient CO2- enhanced gas recovery and storage assessment in shale 971 

reservoir. Journal of Natural Gas Science and Engineering 2015, 27, 515-530. 972 

12. Singh, H., Machine learning for surveillance of fluid leakage from reservoir using only injection rates 973 

and bottomhole pressures. Journal of Natural Gas Science and Engineering 2019, 69, 102933. 974 

13. Zhu, Y.; Zabaras, N., Bayesian deep convolutional encoder–decoder networks for surrogate modeling 975 

and uncertainty quantification. Journal of Computational Physics 2018, 366, 415-447. 976 

14. Raissi, M.;  Perdikaris, P.; Karniadakis, G. E., Physics Informed Deep Learning (Part I): Data-driven 977 

Solutions of Nonlinear Partial Differential Equations. arXiv e-prints 2017, arXiv:1711.10561. 978 

15. Raissi, M.;  Perdikaris, P.; Karniadakis, G. E., Physics Informed Deep Learning (Part II): Data-driven 979 

Discovery of Nonlinear Partial Differential Equations. arXiv e-prints 2017, arXiv:1711.10566. 980 



61 
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