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INTRODUCTION 
 

Adverse Childhood Experiences (ACEs) refer to 

negative psychosocial experiences that individuals 

experience during the first 18 years of life. ACEs are 

typically enumerated using a 10-domain framework that 

includes abuse (emotional, physical, sexual), neglect 

(emotional, physical), and household dysfunction 

(domestic violence, divorce, incarcerated relative, 

mental illness, substance abuse) [1]. In addition to the 

immediate harmful effects on children’s health, there is 

growing evidence that ACEs also have important health 
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ABSTRACT 
 

Emerging research suggests associations of physical and psychosocial stressors with epigenetic aging. 
Although this work has included early-life exposures, data on maternal exposures and epigenetic aging of 
their children remain sparse. Using longitudinally collected data from the California, Salinas Valley 
CHAMACOS study, we examined relationships between maternal Adverse Childhood Experiences (ACEs) 
reported up to 18 years of life, prior to pregnancy, with eight measures (Horvath, Hannum, SkinBloodClock, 
Intrinsic, Extrinsic, PhenoAge, GrimAge, and DNAm telomere length) of blood leukocyte epigenetic age 
acceleration (EAA) in their children at ages 7, 9, and 14 years (N = 238 participants with 483 observations). 
After adjusting for maternal chronological age at delivery, pregnancy smoking/alcohol use, parity, child 
gestational age, and estimated leukocyte proportions, higher maternal ACEs were significantly associated 
with at least a 0.76-year increase in child Horvath and Intrinsic EAA. Higher maternal ACEs were also 
associated with a 0.04 kb greater DNAm estimate of telomere length of children. Overall, our data suggests 
that maternal preconception ACEs are associated with biological aging in their offspring in childhood and 
that preconception ACEs have differential relationships with EAA measures, suggesting different physiologic 
utilities of EEA measures. Studies are necessary to confirm these findings and to elucidate potential 
pathways to explain these relationships, which may include intergenerational epigenetic inheritance and 
persistent physical and social exposomes. 
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consequences later in life – well into adulthood [2]. 

Studies have identified ACEs to be a strong risk  

factor for cancer, cardiovascular, metabolic, and 

neurodegenerative disease [1, 3], with studies conducted 

in the United States demonstrating that four or more 

ACEs are associated with a 1.4 to 37.5 greater odds of 

some of the leading causes of death [4]. Additionally, 

literature has demonstrated the potential for ACEs to 

also impact the health of an exposed person’s offspring. 

For instance, studies of women exposed to ACEs 

describe an increased risk of preterm birth, which in 

turn can increase health risks for their offspring later in 

life [5]. Still, the mechanism by which ACEs can result 

in intergenerational effects remains unclear. 

 

Toxic stress responses including activation of the 

hypothalamic pituitary adrenal axis and inflammation 

are the main mechanisms hypothesized to explain how 

ACEs may cause biological changes that impact health 

outcomes [6]. Among these various biological changes 

are epigenetic alterations and telomere shortening, both 

of which are changes also involved in human aging  

[7, 8]. Studies have reported associations of exposure to 

ACEs with telomere length, primarily shortening [9]. 

The few studies focusing on the relationships of ACEs 

with DNA methylation have shown that the 

differentially methylated regions associated with ACEs 

have strong relationships with DNA repair processes 

and parental health and that these alterations persist into 

mid-life [10, 11], but as yet no studies have examined 

the intergenerational relationships.  

 

DNA methylation-based biomarkers of biological aging 

– also known as epigenetic aging markers – have been 

found to outperform single methylation loci and directly 

measured telomeres in predicting healthspan and 

lifespan [12–14]. Hence, epigenetic aging may be a 

useful and robust tool for improving our understanding 

of the intergenerational negative effects of ACEs [15]. 

Specifically, studying the relationships between ACEs 

and epigenetic aging may provide useful insights for 

better understanding ACE pathophysiology and could 

aid in the targeting and monitoring of interventions for 

offspring of exposed persons and other individuals most 

at risk.  

 

With the advancement of high throughput epigenomic 

assays, specifically to measure DNA methylation, 

several highly accurate epigenetic clocks have been 

recently developed to study biological aging [16]. 

Namely, the Hannum [17], Horvath [12], and the 

SkinBloodClock [18] epigenetic biomarkers are 

predominantly DNA methylation-based predictors of 

chronological age but also serve as biomarkers of health 

status. The PhenoAge clock [13] is primarily considered 

a biomarker of health status, while the GrimAge clock 

[14] is an epigenetic biomarker of mortality risk. 

Intrinsic (IEAA) and extrinsic (EEAA) epigenetic age 

are derived from the Horvath and Hannum measures 

[19]. The IEAA measure reflects age acceleration 

independent of leukocyte proportions, which are known 

to change with chronological age. Hence, IEAA can be 

viewed as a metric of the intrinsic aging of cells. 

Conversely, EEAA incorporates intrinsic measures as 

well as age-dependent changes in leukocytes by 

upweighting the contributions of cells known to change 

with age (naïve cytotoxic T cells, exhausted cytotoxic T 

cells, and plasmablasts). Therefore, EEAA can be 

viewed as a measure of immune system aging. The 

DNAm telomere length (DNAm TL) biomarker is 

correlated with directly measured leukocyte TL in part 

reflecting cell replication rather than TL itself [20] 

while the epigenetic time to cancer 1/2 (EpiTOC/ 

EpiTOC2) [21, 22] and mitotic age (MiAge) [23] are 

DNA methylation-based estimators of mitotic cell 

divisions. As suggested throughout the literature, each 

biomarker provides different information on DNA 

methylation-based biological aging.  

 

In the present study, we examine the potential 

intergenerational impact of maternal ACEs in children 

from the Center for the Health Assessment of Mothers 

and Children of Salinas (CHAMACOS) cohort. We 

determine the relationships between ACEs experienced 

by mothers during their childhoods, prior to pregnancy, 

and epigenetic aging of their children at chronological 

ages 7, 9, and 14 years, using eight epigenetic  

aging biomarkers. By testing multiple biomarkers in 

concert, we can best characterize their relationships 

with maternal ACEs while also building a better 

understanding of which biomarkers perform best in 

pediatric populations. We hypothesized that ACEs 

experienced by mothers during their own childhood 

would accelerate epigenetic aging in their offspring, 

thus reflecting increased ACE-associated disease risk. 

 

RESULTS 
 

Cohort characteristics 

 

The child and maternal study population characteristics 

are presented in Table 1. The study sample is Mexican-

American and was composed of data from 238 

individual children who provided 483 total observations 

across three age timepoints. Age 7, 9, and 14 years  

of age timepoints represented 33% (n = 157), 42%  

(n = 203), and 25% (n = 123) of the total observations, 

respectively. Across all study timepoints, 54% - 59% of 

the observations were from females. On average, 

mothers were approximately 26 years of age at delivery 

of their children. Mothers had a median (range) parity 

of 1 (0-5). Across the age timepoints, 51% - 54% of 
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Table 1. Maternal enrollment and child characteristics for participants across the three study timepoints 
(Obs=483).  

Demographic variables 
Age 7 timepoint (N=157) 

[33% total observations] 

Age 9 timepoint (N=203) 

[42% total observations] 

Age 14 timepoint (N=123) 

[25% total observations] 

Child characteristics 

Child Age (years), mean (SD) 

[range] 
7.10 (0.25) [6.05-8.21] 9.11 (0.18) [9.00-10.08] 14.10 (0.16) [14.00-15.05] 

Gestational Age (weeks), mean (SD) 

[range] 
38.94 (1.46) [34-41] 39.02 (1.44) [33-42] 39.13 (1.40) [36-42] 

Sex, N(%) 

Female 84 (54) 110 (54) 72 (59) 

Male 73 (46) 93 (46) 51 (41) 

Methylation Array/Platform, N(%) 

450K 0 (0) 203 (100) 64 (52) 

EPIC 157 (100) 0 (0) 59 (48) 

Maternal characteristics 

Maternal Age at Child Delivery 

(years), mean (SD) [range] 
26.25 (4.74) [18-41] 26.73 (5.14) [18-43] 26.54 (4.52) [18-41] 

Maternal Parity, median [range] 1 [0-5] 1 [0-5] 1 [ 0-5] 

Maternal ACE Category, N(%) 

0 85 (54) 103 (51) 63 (51) 

1-2 32 (20) 47 (23) 32 (26) 

3+ 40 (26) 53 (26) 28 (23) 

Maternal Alcohol, N(%) 

Yes 41 (26) 50 (25) 35 (28) 

No 116 (74) 153 (75) 88 (72) 

Maternal Smoking, N(%) 

Yes 7 (4) 7 (3) 6 (5) 

No 150 (96) 196 (97) 117 (95) 

Data from 238 individual children. 81 children had DNA methylation data at all three timepoints. 

 

mothers reported no ACEs, 20% - 26 % reported 1-2 

ACEs, and 23% - 26% reported 3+ ACEs. Most 

mothers reported abstaining from drinking (> 72%) and 

smoking (> 95%) during their pregnancies.  

 

Epigenetic age performance 

 

All epigenetic clocks and the DNAmTL biomarker were 

significantly correlated with chronological age (Figure 1). 

Of the epigenetic clocks that were positively correlated 

with chronological age, DNAmAge Horvath (r = 0.83,  

P < 0.0001; MAE = 1.4 years) and the SkinBloodClock 

performed the best (r = 0.77, P < 0.0001; MAE=2.2 

years). In the main analysis, PhenoAge performed the 

worst in terms of correlation and accuracy (r = 0.09,  

P = 0.04; MAE = 18.9 years) with very large deviations 

between ages. As expected, DNAm TL was the only 

metric negatively correlated with chronological age  

(r = -0.53, P < 0.0001). Compared to other epigenetic 

clocks, the mitotic clocks demonstrated weaker 

correlations (r < 0.3) and much greater variability relative 

to chronological age (Supplementary Figure 1). 

Supplementary Figure 2 presents the Pearson correlations 

coefficients between all epigenetic aging measures across 

all observations. The strongest positive correlation was 

between EAA Hannum and EEAA (r = 0.96, P < 0.0001). 

The strongest negative correlation was between DNAm 

TL and EEAA (r = -0.74, P < 0.0001). 

 

Associations of pre-conception maternal ACEs with 

child epigenetic age acceleration 
 

Table 2 presents the associations of aggregated 

maternal ACEs with child EAA from fully adjusted 

linear mixed effects models. In these longitudinal 

models, with mothers reporting no ACEs as  

the reference, we observed significant positive 

associations of ACEs with EAA Horvath, IEAA, and 

DNAm TL. For Horvath’s EAA, mothers reporting 1-

2 ACEs had on average children with 0.76-year 

greater EAA (95%CI: 0.24, 1.27, P = 0.004) when 

compared to children of mothers reporting no ACEs. 

However, children of mothers reporting 3+ ACEs did 

not significantly differ in Horvath’s EAA (β = 0.16, 

95%CI: -0.37, 0.67, P = 0.56) from mother reporting 

no ACEs. Similarly, mothers reporting 1-2 ACEs  
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(β = 0.80, 95%CI: 0.30, 1.30, P = 0.002), but not 3+ 

ACEs (β = 0.14, 95%CI: -0.37, 0.65, P = 0.59) had 

children with significantly greater IEAA relative to 

children of mothers reporting no ACEs. In contrast, 

children of mothers reporting 3+ ACEs had 

significantly longer telomere length estimates (DNAm 

TL) (β = 0.04, 95%CI: 0.01, 0.08, P = 0.009), but not 

children of mothers with 1-2 ACEs (β = 0.01, 95%CI: 

-0.02, 0.04, P = 0.54) when compared to children of 

mothers reporting no ACEs. In stratified analyses, 

these trends were seen in both sexes. We observed no 

consistent, significant associations of ACEs with EAA 

Hannum, SkinBloodClock, PhenoAge, GrimAge, and 

EEAA. Similar trends and magnitudes of associations 

were observed when analyses were restricted to each 

respective age timepoint (Supplementary Table 1). 

Furthermore, associations of maternal ACEs with 

child EAA Horvath, IEAA, and DNAm TL remained 

significant in main analysis models additionally 

adjusted for total adversity experienced by the 

children (Supplementary Table 2). 

Associations of individual maternal ACE domains 

with child epigenetic age acceleration 
 

Figure 2 and Supplementary Table 3 present the 

adjusted relationships of individual ACE questions/ 

domains with EAA biomarkers previously associated 

with cumulative ACEs in the present study. Of the 10 

domains, having experienced a divorce or separation of 

parents was the only domain associated with a 0.58-year 

greater Horvath’s EAA (95%CI: 0.06, 1.10, P = 0.03). 

Parents’ divorce or separation was also the only domain 

that was individually associated with greater IEAA (β = 

0.56, 95%CI: 0.06, 1.06, P = 0.03). Of the 10 maternal 

ACES domains, parents’ divorce, emotional abuse, 

and having a household member go to prison were 

the only ones that were not significantly associated with 

a greater DNAm TL although all estimates were 

positive. Effect estimates for individual domains 

significantly associated with DNAm TL were 

comparable ranging between 0.03 or 0.04 kb greater 

DNAm TL. 

 

 
 

Figure 1. Epigenetic age correlations with chronological age. Figure 1 presents the child chronological age and epigenetic age 
correlation coefficients across all three CHAMACOS participant age timepoints (Obs = 483) for DNAmAge Hannum (A), DNAmAge Horvath (B), 
DNAmAge SkinBloodClock (C), DNAm PhenoAge (D), DNAm GrimAge (E), and DNAm TL (F). MAE = median absolute error. 
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Table 2. Relationships of maternal adverse childhood experiences (ACEs) with epigenetic age acceleration 
(EAA) across three timepoints.  

Aging biomarker 

models 

All (Obs = 483) 

P 

Females (Obs = 266) 

P 

Males (Obs = 217) 

P 
Difference in DNA 

methylation 

biomarker (95% CI) 

Difference in DNA 

methylation biomarker 

(95% CI)* 

Difference in DNA 

methylation biomarker 

(95% CI)* 

EAA Hannum 

units: years 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.61 (-0.24, 1.47) 0.16 -0.13 (-1.22, 0.96) 0.82 0.88 (-0.46, 2.22) 0.20 

   ACEs 3+ -0.43 (-1.31, 0.45) 0.34 -1.33 (-2.41, -0.24) 0.02 0.46 (-0.95, 1.88) 0.52 

EAA Horvath 

units: years 
 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.76 (0.24, 1.27) 0.004 0.65 (-0.08, 1.38) 0.08 0.93 (0.19, 1.67) 0.01 

   ACEs 3+ 0.16 (-0.37, 0.67) 0.56 0.13 (-0.60, 0.85) 0.73 0.38 (-0.40, 1.15) 0.34 

EAA SkinBloodClock 

units: years 
 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.24 (-0.10, 0.57) 0.16 -0.03 (-0.53, 0.47) 0.90 0.42 (-0.04, 0.89) 0.08 

   ACEs 3+ 0.09 (-0.25, 0.44) 0.59 -0.17 (-0.67, 0.33) 0.50 0.30 (-0.20, 0.79) 0.24 

Intrinsic EAA (IEAA) 

units: years 
 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.80 (0.30, 1.30) 0.002 0.78 (0.09, 1.48) 0.03 0.86 (0.14, 1.58) 0.02 

   ACEs 3+ 0.14 (-0.37, 0.65) 0.59 0.19 (-0.50, 0.89) 0.58 0.24 (-0.51, 1.00) 0.53 

Extrinsic EAA (EEAA) 

units: years 
 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.49 (-0.51, 1.49) 0.33 -0.48 (-1.79, 0.82) 0.47 0.83 (-0.69, 2.35) 0.28 

   ACEs 3+ -0.45 (-1.47, 0.57) 0.38 -1.25 (-2.55, 0.05) 0.06 0.31 (-1.29, 1.91) 0.70 

EAA PhenoAge 

units: years 
 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.42 (-0.88, 1.72) 0.52 0.72 (-1.05, 2.49) 0.42 -0.14 (-2.20, 1.91) 0.89 

   ACEs 3+ -0.53 (-1.86, 0.79) 0.43 -0.56 (-2.32, 1.20) 0.53 -0.58 (-2.75, 1.59) 0.60 

EAA GrimAge 

units: years 
 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 -0.37 (-0.96, 0.23) 0.23 -0.27 (-1.14, 0.61) 0.55 -0.61 (-1.47, 0.25) 0.16 

   ACEs 3+ -0.55 (-1.16, 0.05) 0.07 -0.79 (-1.66, 0.07) 0.07 -0.37 (-1.27, 0.52) 0.41 

DNAm TL Age Adjusted 

units: kb 
 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.01 (-0.02, 0.04) 0.54 -0.02 (-0.06, 0.03) 0.53 0.03 (-0.01, 0.07) 0.16 

   ACEs 3+ 0.04 (0.01, 0.08) 0.009 0.04 (-0.01, 0.09) 0.08 0.04 (-0.002, 0.09) 0.06 

Models adjusted for maternal chronological age at delivery, pregnancy alcohol consumption, pregnancy smoking, 
maternal parity, child sex, child gestational age, leukocyte abundance/proportions, and methylation platform. 
*Models not adjusted for child sex. 

 

Epigenetic mitotic clock relationship secondary 

analyses 

 

The EpiTOC biomarker was not significantly correlated 

with chronological age (r = 0.05, P = 0.30) while weak 

to moderate associations were observed for the 

EpiTOC2 (r = 0.19, P < 0.001) and MiAge (r = 0.28,  

P < 0.001) biomarkers. The mitotic clocks were strongly 

correlated with each other (r > 0.65), but were weakly 

correlated with the other epigenetic age measures 
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including DNAm TL (range: r = -0.09 to r = 0.16) 

(Supplementary Figure 1). Furthermore, there were no 

significant associations between ACEs and the mitotic 

clocks (Supplementary Table 4). 

 

DISCUSSION 
 

There is growing evidence and acceptance of the 

premise that aging begins in youth – if not earlier [24]. 

Our results provide additional evidence that suggests 

that aging can be influenced by factors that exist before 

an individual’s own existence, including maternal 

stressors before conception. More specifically, our 

results show acceleration of epigenetic aging of 9 

months or greater in Horvath’s clock and the IEAA 

biomarker in children with mothers with 1-2 ACEs but 

not in children with mothers with 3+ ACEs compared to 

those with no ACEs. However, contrary to our 

hypothesis of ACEs being associated with increased 

aging, individuals whose mothers had 3+ ACEs had 

significantly longer DNAm telomere estimates than 

those whose mothers reported no ACEs. Importantly, 

the individual maternal ACE domains of domestic 

violence, mental health, neglect, physical abuse, sexual 

abuse, and substance use were associated with children 

having a longer DNAm telomere estimate. Meanwhile, 

parental divorce experienced by mothers before 18 

years of age appeared to be the primary driver of greater 

Horvath’s EAA and IEAA relationships among their 

children. We observed no consistent, significant 

associations of ACEs with other epigenetic clocks, 

providing evidence that different markers may be 

sensitive to different stressors. Although not always 

statistically significant (likely due to smaller sample 

sizes of the restricted age timepoint analyses), similar 

trends were observed in models of age 7, 9, and 14 

years respectively. 

 

There are a few studies examining relationships of 

individual stressors related to the ACEs scale with 

epigenetic aging, but these studies examine 

relationships of stressors experienced by children and 

epigenetic aging in children [25–27]. For instance, one 

study of African American youth living in Georgia, 

reported an association of racial discrimination 

experienced between ages 16 and 18 with Hannum 

epigenetic age acceleration at age 20. The study further 

demonstrated that the association between dis-

crimination and age acceleration was ameliorated in 

youth with supportive family environments [25]. Work 

from the Avon Longitudinal Study of Parents and 

Children (ALSPAC) prospectively collected data on 

individual ACEs experienced from ages 0 to 14 years 

from 974 UK children in relationships to Horvath’s 

EAA when the children were 17 years old [28]. The 

authors observed that females reporting 4 or more ACEs 

had a 1.65-year greater Horvath’s EAA compared  

to girls with no ACEs. Although not statistically 

significant, similar trends of age acceleration were 

observed in females with 1-3 ACEs compared to 

females reporting no ACEs. No statistically significant 

differences were observed in males.  

 

 
 

Figure 2. Forest plots of model coefficients and 95% CI for methylation-based aging biomarkers by ACE domains. Figure 2 

presents forest plots of model coefficients and 95% CIs for child methylation-based age biomarkers (EAA Horvath (A), IEAA (B), and DNAmTL 
Age Adjusted (C)) across all three CHAMACOS participant age timepoints for individual ACE domains (Obs = 483). Methylation-based age 
biomarkers are those with statistically significant associations with cumulative ACE scores. 
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Our results expand on these findings by evaluating 

intergenerational ACE relationships of Hannum and 

Horvath’s EAA as well as other epigenetic aging 

measures including DNA methylation telomere 

estimates and mitotic clocks in children. Like studies of 

ACEs experienced directly by children, we observe 

epigenetic age acceleration with maternal ACE 

exposure. Specifically, we observed a 0.76-year to 0.80-

year greater Horvath’s EAA and IEAA in children of 

mothers reporting 1-2 ACEs compared to those with no 

ACEs. Moreover, these associations were consistent and 

of comparable magnitude among males and females. It 

is notable that we observed statistically significant 

differences in Horvath’s EAA and IEAA among 

children of mothers reporting 1-2 ACEs but not in 

children of mothers reporting with 3+ ACEs. The 

number of observations with 1-2 ACEs vs 3+ ACEs 

were comparable, so it is unlikely that these differences 

are due to sample size. It is also interesting that we 

observed similar relationships in both male and female 

children. One potential explanation for the sex and 1-2 

ACEs vs 3+ ACEs differences between our findings and 

the existing literature, is that the mechanisms that 

underly intergenerational ACE effects (ACEs 

experienced by mothers affecting children) may differ 

from the mechanisms that underly the adverse effects of 

ACEs experienced by children directly. Our main non-

mutually exclusive hypotheses for how preconception 

maternal ACEs can impact children are two-fold. First, 

there may simply be intergenerational epigenetic 

inheritance pathways whereby stressors are encoded 

into the epigenome and impact the subsequent 

development of the fetus and child. These might involve 

DNA methylation mechanisms but also higher order 

chromatic structure. Secondly, mothers remain and rear 

children in the same social environments (community, 

home, family, and other dynamics) where they 

experienced ACEs earlier in their own lives. Thus, 

children growing up in that same environment 

experience the same ACEs directly. Observing 

statistically significant findings even when adjusting for 

measures of adversity in the children provides more 

support for the former intergenerational hypothesis. It is 

unclear why we observe epigenetic age relationships for 

1-2 but not 3+ ACEs for Horvath’s EAA and IEAA. 

Potentially, there are varying thresholds for ACE 

relationships depending on the specific epigenetic age 

biomarker. It is possible that after a certain level of 

stress, physiological adaptation [29] reflected by 

markers like Horvath EAA and IEAA may occur. 

Nevertheless, studies to test this hypothesis and 

characterize such a process, if it exists, remain 

necessary.  

 

It is important to highlight the association of ACEs with 

IEAA because this is a measure of biological aging that 

is informative about intrinsic cellular physiology. 

Unlike other epigenetic aging measures, research has 

demonstrated that IEAA is less sensitive to lifestyle and 

environmental factors and more likely to be determined 

by developmental processes under genetic control or 

metabolism that could be programmed at birth [30, 31]. 

This is of public health concern because it suggests that 

if someone is predisposed to age acceleration via IEAA, 

there might be little that they can do to alter this 

trajectory. Thus, the association of child IEAA with 

preconception maternal ACEs provides additional 

support to the hypothesis that preconception maternal 

ACEs may lead to intergenerational effects in part by 

epigenetic inheritance potentially through stress-related 

physiologic programming that may result in profound 

impacts on child health [32]. These findings can provide 

a molecular basis for the perpetuation of health 

disparities over time in marginalized populations.  

 

Of the three epigenetic aging markers that demonstrated 

robust significant relationships with ACEs, we only 

observed a “dose-dependent” response with DNAm TL. 

Compared to children of mothers reporting no ACEs, 

those with 1-2 ACEs had 0.01 kb non-significantly 

longer and those with 3+ ACEs had 0.04 kb 

significantly longer DNAm telomere estimates. The 

directions of these relationships are opposite of most of 

the existing literature where experiencing more ACEs is 

associated with shorter telomeres directly measured by 

qPCR – canonically characterized as accelerated 

biological aging [9]. Although the DNAm TL 

biomarker is correlated with measured telomere in 

leukocytes (r = 0.41 to 0.50), and even more strongly 

correlated with chronological age than directly 

measured TL, this only indicates covariation and it is 

unclear if the biomarker truly reflects telomere length 

itself [33].  

 

We previously reported that DNAm TL estimates do not 

directly mirror measured telomere length of cells [34]. 

There is evidence that DNAm TL better captures 

relationships of processes that increase cell turnover and 

thus may be a readout of cell proliferation as 

demonstrated in the initial report of this biomarker [20]. 

Under this hypothesis, longer DNAm TL, which is often 

associated with better health, may also reflect decreased 

cell turnover and cell cycle arrest – a well-studied active 

response to stressors [35, 36]. To further test this 

hypothesis, we conducted secondary analyses with 

epigenetic mitotic clocks that may also speak to cell 

turnover/division relationships. However, the mitotic 

clocks were not correlated with DNAm TL and they 

demonstrated no relationships with ACEs. It is 

important to highlight that the mitotic clocks were 

poorly correlated with chronological age, having large 

variation within this narrow age range in children (7-14 
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years old). Conversely, even within the small age range 

(<10 years) across all 3 visits, DNA methylation clocks 

performed extremely well. Interestingly, Horvath’s 

clock was the biomarker with the greatest accuracy 

demonstrating remarkable precision (median error of 

1.4 years), which in turn was accelerated by maternal 

ACEs along with its derivate of intrinsic cell aging 

(IEAA) shown to be unaffected by environmental and 

lifestyle factors. Again, our results pose the possibility 

that preconception ACEs might program intrinsic 

properties of aging like metabolism.  

 

Strengths of the present study include its prospective 

longitudinal design, standardized ACE characterization, 

and comprehensive inclusion of novel and com-

plementary epigenetic age measures that were 

repeatedly collected. There are also some important 

limitations. First, of all epigenetic aging markers 

analyzed, Horvath’s measure is known to be the most 

accurate in children and also generalizable across most 

human tissues or cells [37]. This was also the case in 

our study and may be one reason why our results with 

other epigenetic aging measures are null due to lower 

precision and greater variability. Secondly, our primary 

analysis involved testing relationships with 8 epigenetic 

aging biomarkers and our secondary analysis evaluated 

relationships with 3 additional mitotic clocks. There 

may be some concern regarding multiple hypothesis 

testing, but the P-values for two out of three of our 

significant results are below the threshold (P < 0.005) 

that would be used for a strict Bonferroni correction. 

Third, our results are based on a well-characterized 

Mexican-American birth cohort with a high level of 

chronic adversity and may not be generalizable to all 

populations. Nonetheless, most existing studies of 

epigenetic aging have been conducted in European 

populations. Thus, examining these associations in other 

minority groups with high adversity can help build a 

more inclusive understanding of these relationships. 

 

In conclusion, findings from our comprehensive 

analysis of ACEs and epigenetic aging in a Mexican-

American cohort support the premise that maternal 

stressors experienced many years before conception can 

impact biological aging of children into adolescence, 

especially for epigenetic biomarkers reflective of 

intrinsic cell properties like metabolism and replication. 

Our two non-mutually exclusive hypotheses to explain 

our findings are: (A) that intergenerational epigenetic 

programming events after maternal ACE exposures and 

(B) that similar external environmental and social 

stressors have persisted throughout the mother’s and 

child’s life. In either instance, our findings reemphasize 

the importance of early life exposures on child health 

and the ongoing need for targeted public health 

interventions to address them. Additional studies will be 

important to further explore and define intergenerational 

ACE and epigenetic aging relationships. 

 

MATERIALS AND METHODS 
 

Study population 

 

Between October 1999 and October 2000, the Center 

for the Health Assessment of Mothers and Children of 

Salinas (CHAMACOS) study recruited 601 pregnant 

women in the agricultural Salinas Valley of California 

[38]. At enrollment, women were ≤20 weeks gestation, 

English- or Spanish-speaking, Medicare eligible, 

planning to deliver at the county hospital, and attending 

prenatal care visits at one of six local community or 

hospital clinics serving this primarily Latino 

farmworker population. Of 601 initial enrollees of the 

cohort, 526 were followed to delivery of live, singleton 

newborns in 2000-2001. For this study we included 238 

mother-child pairs with available DNA methylation data 

who provided samples and consent for genomic 

analysis. Mothers were interviewed in the 1st and 2nd 

trimesters of pregnancy and shortly after delivery and 

provided biological and environmental samples at these 

time points. Mothers and children were assessed at 

subsequent follow-up visits every year or two. At each 

visit, we have collected detailed information about their 

chemical, nutritional, physical, and social environments. 

Study activities have been conducted by well-trained, 

bilingual, bicultural study staff. Children from the 

CHAMACOS birth cohort have been shown to be 

particularly vulnerable to both economic and social 

hardships. The University of California, Berkeley 

Committee for the Protection of Human Subjects 

approved all study activities. Written, informed consent 

was obtained for all participating women, child verbal 

assent was obtained starting at age 7 years, child written 

assent was obtained starting at age 12 years, and child 

written consent was obtained at age 18 years. 
 

Adverse childhood experience (ACE) measurements 
 

Mothers completed the Adverse Childhood Experiences 

(ACEs) survey at the study visit when their child was 18 

years old. We used a slight adaptation of the ACE 

questionnaire first described by Felitti et al. [1],  

which included 10 Questions, one each on emotional 

abuse, physical abuse, sexual abuse, parental divorce/ 

separation, household substance abuse, household 

mental health issues, household domestic violence, 

parental incarceration, emotional neglect, and physical 

neglect, yielding a total score which could range from 0 

(indicating no ACEs) to 10 (indicating all ACEs). 
Questionnaires were translated to Spanish. Participants 

completed the ACEs questionnaire as part of a one-on-

one interview conducted in a private room. Although 
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all participants were encouraged to read and answer 

these sensitive items independently on an iPad, only 

50% of women chose to do so; the remaining 50% 

completed answered the ACEs items aloud with an 

interviewer. For analyses, we categorized participants 

as reporting no ACEs (0), 1 to 2 ACES (1-2), and three 

of more individual ACEs (3+). Although many studies 

use 4 or more as the cutoff of high ACE exposure, a 

cut-off of three or more ACEs has been used in a 

number of previous studies to provide adequate 

numbers in the highest ACEs group [39–41].  

 

DNA methylation data processing 

 

At child ages 7, 9, and 14 years, a phlebotomist 

collected child blood samples via venipuncture. Blood 

samples were refrigerated and transported to the 

University of California, Berkeley biorepository where 

samples without anticoagulant were separated into 

serum and clot and stored at -80° C until analysis. 

Trained study staff isolated DNA from the banked 

blood clot samples using QIAamp DNA Blood Maxi 

Kits (Qiagen, Valencia, CA) according to the 

manufacturer’s protocol with minor modifications, as 

previously described [42]. 

 

DNA aliquots of 1 µg were bisulfite converted using 

Zymo Bisulfite Conversion Kits (Zymo Research, 

Orange, CA). DNA was amplified, enzymatically 

fragmented, purified, and applied to the Illumina 

Infinium HumanMethylation450 and EPIC BeadChips 

(Illumina, San Diego, CA) according to the Illumina 

methylation protocol to measure DNA methylation. 

Both EPIC and 450K chips were analyzed using the 

Illumina Hi-Scan system. DNA methylation was 

measured at 485,512 CpG sites on the 450K BeadChip 

and 866,836 CpG sites on the EPIC BeadChip at a 

single nucleotide resolution for each sample. Samples 

were analyzed with the HumanMethylation450 array for 

all the samples (n=203) at age 9 and among 64 samples 

(52%) at age 14 years. All samples (n=157) collected at 

age 7 and 59 samples (48%) collected at age 14 were 

analyzed with the EPIC array. 

 

Data were imported into R statistical software for 

preprocessing using minfi [43]. We first performed 

quality control at the sample level, excluding samples 

with overall low intensities (< 10.5) and technical 

duplicates. We computed detection P values relative 

to control probes and excluded probes with non-

significant detection (P > 0.01) for 5% or more of the 

samples. We preprocessed our data using functional 

normalization [44]. We adjusted for probe-type bias 

using the regression on correlated probes method [45]. 

Finally we used ComBat from the sva [46] package to 

adjust for sample plate as a technical batch. We 

visualized the data using density distributions at all 

processing steps and performed PC analyses to 

examine the associations of methylation differences 

with technical, biological, and measured traits with 

global DNAm variation using PCA plots. 

 

Epigenetic age biomarkers 

 

Epigenetic age measures were calculated from processed 

DNA methylation beta values after quality control. All 

primary analyses of epigenetic age measures were 

calculated using a publicly available online calculator 

(http://dnamage.genetics.ucla.edu). The epigenetic 

mitotic clocks evaluated in the secondary analysis 

(EpiTOC/EpiTOC2 and MiAge) were calculated using  

R code from https://doi.org/10.5281/zenodo.2632938  

and http://www.columbia.edu/~sw2206/softwares.htm 

respectively. Measures of Epigenetic Age Acceleration 

(EAA) are defined as the residuals of regressing 

epigenetic age for each clock on chronological age.  

The EAA for each epigenetic clock then becomes 

independent of chronological age and positive or 

negative values indicate that an individual might be 

biologically older or younger, respectively. Intrinsic 

rates of mitotic cell divisions are calculated by 

dividing mitotic clock measurements by chronological 

age. 

 

Statistical analysis 

 

We described mother-child pairs across the three 

timepoints using means, standard deviations (SDs) 

and ranges for continuous variables or frequencies and 

percentages for categorical variables. We used 

Pearson’s correlation to test the performance between 

chronological age and epigenetic aging biomarkers. 

For DNA methylation clocks, we computed the 

Median Absolute Error (MAE) in years (defined as 

the median absolute deviation between each 

epigenetic clock and chronological age) to evaluate 

accuracy. To test ACE associations with EAA, we 

analyzed EAA for each clock longitudinally using 

observations from all three age timepoints in 

childhood. We used linear mixed effects models with 

a random intercept for participants to account for 

repeated measures. Models examined associations of 

reported maternal ACEs (categorized as none, 1-2, or 

3+) with child epigenetic age acceleration (EAA) or 

intrinsic rate (IR) measures of each of the eight 

epigenetic age biomarkers. We utilized models that 

included the following covariates chosen a priori 

based on existing child ACEs literature [26, 47]: 

maternal chronological age at delivery, pregnancy 

alcohol consumption, pregnancy smoking, maternal 

parity, child sex, child gestational age, leukocyte 

abundance/proportions, and methylation platform. 

http://dnamage.genetics.ucla.edu/
https://doi.org/10.5281/zenodo.2632938
http://www.columbia.edu/~sw2206/softwares.htm
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These fully-adjusted models were repeated after 

stratifying our study sample by child sex.  

 

Total adversity experienced by the children, measured 

as previously described [48], was available in a subset 

of participants and was added to models of maternal 

ACEs significantly associated with child epigenetic age 

as a sensitivity analysis. To better understand the factors 

driving the associations between total maternal ACEs 

and epigenetic aging, we built models testing 

associations of having each of the 10 individual ACE 

questions/domains (yes/no) with EAA measures 

significantly associated with aggregated maternal 

ACEs. Finally, given results of the primary analysis that 

suggested cell turnover (i.e. associations with the 

DNAm TL biomarker) may be responsible for some of 

the observed associations, we performed a secondary 

analysis of ACE relationships with epigenetic mitotic 

clocks (EpiTOC/EpiTOC2 and MiAge). All statistical 

analyses were performed using R Version 3.6.3 (R Core 

Team, Vienna, Austria) and an unadjusted P value < 

0.05 was used as the threshold for statistical 

significance. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Epigenetic mitotic clock correlations with chronological age. Supplementary Figure 2 presents the child 
chronological age and epigenetic mitotic clock correlation coefficients across all three CHAMACOS participant age timepoints (Obs = 483) for 
EpiTOC (A), EpiTOC2 (B), and MiAge (C). 
 

 
 

Supplementary Figure 2. Heatmap of Pearson correlation coefficients for methylation-based aging biomarkers. Supplementary 
Figure 2 presents Pearson correlation coefficients for child methylation-based age biomarkers across all three CHAMACOS participant age 
timepoints (Obs = 483). 
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Supplementary Tables 
 

Supplementary Table 1. Relationships of maternal adverse childhood experiences (ACEs) with epigenetic age 
acceleration (EAA) at each age timepoint.  

Aging biomarker 

models 

Age 7 timepoint (N=157) 

[33% total observations] 

P 

Age 9 timepoint (N=203) 

[42% total observations] 

P 

Age 14 timepoint (N=123) 

[25% total observations] 

P Difference in DNA 

methylation biomarker 

(95% CI) 

Difference in DNA 

methylation biomarker 

(95% CI) 

Difference in DNA 

methylation biomarker 

(95% CI)* 

EAA Horvath 

units: years 
 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.39 (-0.29, 1.06) 0.25 0.80 (0.28, 1.31) 0.003 0.98 (-0.19, 2.15) 0.10 

   ACEs 3+ 0.30 (-0.34, 0.93) 0.36 -0.03 (-0.56, 0.51) 0.92 -0.32 (-1.60, 0.96) 0.62 

Intrinsic EAA (IEAA) 

units: years 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.39 (-0.28, 1.06) 0.25 0.80 (0.29, 1.31) 0.003 0.92 (-0.23, 2.07) 0.11 

   ACEs 3+ 0.31 (-0.32, 0.95) 0.33 -0.02 (-0.55, 0.51) 0.94 -0.37 (-1.63, 0.88) 0.56 

DNAm TL Age Adjusted 

units: kb 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.02 (-0.03, 0.06) 0.51 0.005 (-0.03, 0.04) 0.80 -0.01 (-0.06, 0.04) 0.69 

   ACEs 3+ 0.05 (-0.0004, 0.09) 0.05 0.05 (0.01, 0.09) 0.01 0.02 (-0.03, 0.08) 0.41 

Models adjusted for maternal chronological age at delivery, pregnancy alcohol consumption, pregnancy smoking, maternal 
parity, child sex, child gestational age, and leukocyte abundance/proportions. 
*Model additionally adjusted for methylation platform. 

 

Supplementary Table 2. Relationships of maternal adverse childhood 
experiences (ACEs) with epigenetic age acceleration (EAA) across three 
timepoints adjusted by total child adversity (Obs = 344).  

Aging biomarker models 
Difference in DNA methylation biomarker  

(95% CI) 
P 

EAA Horvath 

units: years 

   ACEs 0 reference - 

   ACEs 1-2 0.86 (0.29, 1.43) 0.003 

   ACEs 3+ 0.34 (-0.30, 0.98) 0.29 

Intrinsic EAA (IEAA) 

units: years 

   ACEs 0 reference - 

   ACEs 1-2 0.93 (0.36, 1.49) 0.001 

   ACEs 3+ 0.32 (-0.31, 0.95) 0.31 

DNAm TL Age Adjusted 

units: kb 
 

   ACEs 0 reference - 

   ACEs 1-2 0.01 (-0.02, 0.05) 0.46 

   ACEs 3+ 0.07 (0.03, 0.12) 0.001 

Models adjusted for maternal chronological age at delivery, pregnancy alcohol 
consumption, pregnancy smoking, maternal parity, child sex, child gestational age, 
leukocyte abundance/proportions, and methylation platform. 
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Supplementary Table 3. Relationships of individual maternal adverse 
childhood experience (ACE) domains with epigenetic age acceleration (EAA) 
across three timepoints (Obs = 483).  

Aging biomarker models 
Difference in DNA methylation biomarker  

(95% CI) 
P 

EAA Horvath 

units: years 

   Divorce 0.58 (0.06, 1.10) 0.03 

   Domestic Violence -0.04 (-0.62, 0.53) 0.89 

   Emotional Abuse -0.24 (-0.78, 0.30) 0.37 

   Mental Health -0.44 (-1.21, 0.32) 0.26 

   Neglect -0.22 (-0.79, 0.35) 0.44 

   Physical Abuse -0.04 (-0.56, 0.47) 0.86 

   Prison 0.14 (-0.62, 0.90) 0.71 

   Sexual Abuse -0.11 (-0.75, 0.53) 0.73 

   Substance -0.09 (-0.64, 0.45) 0.74 

   Undervalued -0.24 (-0.77, 0.30) 0.38 

Intrinsic EAA (IEAA) 

units: years 

   Divorce 0.56 (0.06, 1.06) 0.03 

   Domestic Violence -0.04 (-0.59, 0.52) 0.89 

   Emotional Abuse -0.23 (-0.75, 0.29) 0.39 

   Mental Health -0.49 (-1.23, 0.25) 0.19 

   Neglect -0.23 (-0.79, 0.32) 0.41 

   Physical Abuse -0.03 (-0.53, 0.47) 0.90 

   Prison 0.31 (-0.43, 1.05) 0.41 

   Sexual Abuse -0.20 (-0.82, 0.42) 0.52 

   Substance -0.04 (-0.57, 0.49) 0.87 

   Undervalued -0.25 (-0.77, 0.26) 0.33 

DNAm TL Age Adjusted 

units: kb 

   Divorce 0.01 (-0.02, 0.05) 0.43 

   Domestic Violence 0.04 (0.01, 0.08) 0.02 

   Emotional Abuse 0.03 (-0.01, 0.06) 0.12 

   Mental Health 0.07 (0.02, 0.12) 0.003 

   Neglect 0.04 (0.01, 0.08) 0.02 

   Physical Abuse 0.04 (0.01, 0.07) 0.01 

   Prison 0.04 (-0.01, 0.08) 0.13 

   Sexual Abuse 0.04 (0.003, 0.08) 0.04 

   Substance 0.03 (0.001, 0.07) 0.04 

   Undervalued 0.03 (-3e-5, 0.07) 0.05 

Models adjusted for maternal chronological age at delivery, pregnancy alcohol 
consumption, pregnancy smoking, maternal parity, child sex, child gestational age, 
leukocyte abundance/proportions, and methylation platform. 
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Supplementary Table 4. Relationships of maternal adverse childhood experiences (ACEs) with epigenetic 
mitotic clocks across three timepoints.  

Aging biomarker 

models 

All (Obs = 483) 

P 

Females (Obs = 266) 

P 

Males (Obs = 217) 

P 
Difference in DNA 

methylation mitotic clock 

 (95% CI) 

Difference in DNA 

methylation mitotic clock 

(95% CI)* 

Difference in DNA 

methylation mitotic clock 

(95% CI)* 

EpiTOC IR 

units: DNAm 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 -5.0e-5 (-5.2e-4, 4.22e-4) 0.83 -1.4e-4 (8.2e-4, 5.4e-4) 0.69 1.4e-4 (-5.4e-4, 8.2e-4) 0.69 

   ACEs 3+ -2.0e-4 (-6.8e-4, 2.8e-4) 0.42 8.5e-5 (-5.9e-4, 7.6e-4) 0.81 -6.1e-4 (-1.3e-3, 1.1e-4) 0.10 

EpiTOC2 IR 

units: cell divisions 
units: years  units: years    

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 -0.15 (-20.44, 20.15) 0.99 -3.09 (-32.28, 26.11) 0.84 7.45 (-21.62, 36.51) 0.62 

   ACEs 3+ -9.19 (-29.95, 11.56) 0.38 3.09 (-25.92, 32.10) 0.83 -25.81 (-56.79, 5.16) 0.11 

MiAge IR 

units: cell divisions 

   ACEs 0 reference - reference - reference - 

   ACEs 1-2 0.58 (-2.34, 3.51) 0.69 -0.47 (-4.85, 3.90) 0.83 2.06 (-2.21, 6.34) 0.34 

   ACEs 3+ -1.31 (-4.30, 1.68) 0.39 -0.59 (-4.95, 3.77) 0.79 -2.74 (-7.30, 1.81) 0.24 

Models adjusted for maternal chronological age at delivery, pregnancy alcohol consumption, pregnancy smoking, 
maternal parity, child sex, child gestational age, leukocyte abundance/proportions, and methylation platform. 
*Models not adjusted for child sex. 




