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ABSTRACT OF THE DISSERTATION

The Role of Natural Variability vs Anthropogenic Forcing in Recent Climate Variations

by

Xueying Zhao

Doctor of Philosophy, Graduate Program in Earth and Planetary Sciences
University of California, Riverside, March 2023

Dr. Robert J. Allen, Chairperson

Many of the observed changes are unprecedented, particularly since 1950s. Changes

in the large-scale atmospheric circulations, e.g., Walker Circulation (WC) and tropical belt

width, can be attributed to natural variability and anthropogenic forcing. This raises the

question about the contribution of natural variability and anthropogenic forcing to observed

changes. I used climate modelings to investigate the dominant driver of recent observed

changes, focusing on the WC and tropical belt expansion.

The tropical belt has observed to widen over the past few decades. Natural vari-

ability, greenhouse gas, aerosol and stratospheric ozone depletion have been suggested to

be important contributor to the tropical expansion. The net influence of natural variability

and anthropogenic forcers on tropical belt width variations are complicated and contains

large uncertainty, closely associated with aerosols. I used idealized PDRMIP simulations to

investigate the response of tropical belt width to different forcers. Results show that absorb-

ing black carbon (BC) aerosol drives tropical expansion and scattering sulfate aerosol drives

contraction. Tropical belt expansion (contraction) is associated with an increase (decrease)
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in extratropical static stability induced by absorbing (scattering) aerosol. Via linear attri-

bution, result shows that BC might the largest driver of historical Northern Hemisphere

tropical belt widening.

Climate models simulate a weakening of WC under the warming, however, I found

WC intensified based on observations and multiple reanalyses since 1979. Atmosphere-

only simulations driven by the real-world evolution of sea surface temperatures (SSTs)

simulate the observed intensification of WC, whereas coupled ocean atmosphere simulations

do not. Idealized simulations driven by the unforced component of SSTs yield significant

WC strengthening, whereas negligible WC changes are simulated driven by the forced SST

component. These findings suggest that the recent strengthening of the WC since 1979

is attributed to natural SST variability, particularly associated with a La Niña-like SST

pattern.

Anthropogenic forcers−aerosols, are also generally considered to be the major

cause of air pollution. Current air quality guidelines target man-made air pollutants, while

the contributions of natural aerosols are of less importance. However, natural aerosols have

strong geographic gradients and this suggests that spatially invariant air quality guidelines

may handicap regions close to natural sources. Climate models are used to to construct a

view of pre-industrial “pristine” air quality. Compared to the World Health Organization’s

globally uniform air quality thresholds, pristine sources of aerosols lead to poor air quality

induced by natural (i.e., pristine) pollution alone, particularly near dusty regions, estimated

nearly 1 billion people impacted. World Health Organization lowers fine particular annual

mean threshold tin 2021. Based on the latest air quality guideline, estimated impacted
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population rises to ∼3.6 billion. These findings imply that air quality guidelines established

based on anthropogenic metrics unfairly bias countries close to natural sources.
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Chapter 1

Introduction

Natural variations and anthropogenic forcers impact climate by altering the en-

ergy budget on Earth. These drivers perturb the energy system by influencing incoming

radiative forcing. Positive radiative forcing leads to a warming and negative radiative forc-

ing leads to a cooling. The observed average global surface temperature over 1880 to 2012

shows a positive trend (Stocker, 2014). This is associated with positive net anthropogenic

radiative forcing. The total anthropogenic forcing 1750-2011 is estimated as is estimated as

2.3 (1.1−3.3) W/m2 and it has increased more rapidly since 1970 than the previous decades,

which related to greenhouse gas emissions (Stocker, 2014). Aerosol is another main contrib-

utor to the anthropogenic forcing. The radiative forcing from aerosols is estimated as -0.9

(-1.9−-0.1) W/m2 over 1750-2011 (Stocker, 2014). Changes in large-scale climate variables

(e.g., global mean temperature, the Walker Circulation, tropical belt displacement) have

been reliably attributed to anthropogenic and natural forcings (Vecchi et al., 2006; Tao, Hu,

& Liu, 2016; Grise, Davis, Staten, & Adam, 2018). Variations of large-scale circulations
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have large impact on hydrological pattern over adjacent regions. It is important to better

understand the contribution of natural variability and anthropogenic forcers to the climate

systems.

The width of the tropical belt is linked to the Hadley cell circulation, with strong

moist air ascent in tropical deep convection zones and dry air descent in the subtropics.

Tropical belt expansion over the past few decades has been observed in multiple datasets (Hu

& Fu, 2007; Lu, Vecchi, & Reichler, 2007; Seidel, Fu, Randel, & Reichler, 2008; S. M. Davis

& Rosenlof, 2012; Birner, Davis, & Seidel, 2014; Lucas, Timbal, & Nguyen, 2014). This

expansion is indicated by several metrics, including widening of the Hadley cell (Hu & Fu,

2007; Lu et al., 2007; Nguyen, Evans, Lucas, Smith, & Timbal, 2013) and poleward shifts in

hydrological patterns and subtropical dry zones (Sousa et al., 2011; Scheff & Frierson, 2012;

Cai, Cowan, & Thatcher, 2012; Staten, Lu, Grise, Davis, & Birner, 2018; Horinouchi, Mat-

sumura, Ose, & Takayabu, 2019). Tropical expansions can be driven by internal (Garfinkel,

Waugh, & Polvani, 2015; Grise et al., 2018) and natural (Lu, Chen, & Frierson, 2008;

Grassi, Redaelli, Canziani, & Visconti, 2012; Nguyen et al., 2013; Tandon, Gerber, Sobel,

& Polvani, 2013; Allen, Norris, & Kovilakam, 2014; Allen & Kovilakam, 2017a; Mantsis,

Sherwood, Allen, & Shi, 2017; Amaya, Siler, Xie, & Miller, 2018a) variability, as well as

anthropogenic drivers− greenhouse gases (Hu, Tao, & Liu, 2013; Tao et al., 2016; Grise &

Polvani, 2016), stratospheric ozone depletion in the Southern Hamisphere, and absorbing

aerosols in the Northern Hemisphere. The overall impact of anthropogenic drivers on tropi-

cal belt width variations are complex and have large uncertainties. This is particularly true

for aerosols, where the 90% confidence range of aerosol effective radiative forcing (ERF)
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is −0.4 to −2.0 W m−2 (Bellouin et al., 2019). Similarly, BC forcing from anthropogenic

fossil and biofuel emissions possesses a relatively large uncertainty range of 0.05 to 0.80

W m−2 (Ramanathan & Carmichael, 2008; Koch et al., 2009; Bond, Doherty, Hahey, &

et al., 2013; Myhre et al., 2013). The imprint of anthropogenic drivers on recent tropical

expansion may even be indiscernible from natural drivers (Grise et al., 2019). The total

influence of natural variability and anthropogenic forcers on tropical belt width variations

are complicated and aerosol forcing introduce large uncertainties.Chapter 2 shows the work

to better understand the effect of anthropogenic drivers on tropical belt width variations,

with a focus on the role of aerosol.

The Walker Circulation (WC)−a large-scale zonal-vertical atmospheric circulation

in the equatorial Pacific, has been suggested to weaken in the twentieth century due to

anthropogenic forcing by climate models (Vecchi et al., 2006). However, a strengthening of

the Walker Circulation is simulated by atmosphere-only climate models (AMIP) driven by

observed SSTs over the late second half of the 20th century (S. Ma & Zhou, 2016; Sohn,

Yeh, Schmetz, & Song, 2013). In more recent decades, a stronger WC is also supported by

cooling of the central and eastern tropical Pacific SSTs (a La Niña-like pattern) (Kosaka &

Xie, 2013). This is likely related to that the observed radiative forcing has been increasing

at a lower rate over the period from 1998 to 2011, compared to 1951 to 2011 (Stocker,

2014). Climate models simulate a surface warming trend larger than the observations

over 1998 to 2011 (Stocker, 2014). The difference is likely due to natural internal climate

variability, which diminishes the relevance of short trends for long-term climate change.

It may also related to the forcing used by the models−an overestimate of the response to
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increasing greenhouse gas and anthropogenic aerosol forcing. This discrepancy, in turn,

leave the projected WC weakening in response to anthropogenic warming questionable and

the dominant driver of the Walker Circulation is unclear. Chapter 3 discuss the work to

investigate the contribution of multi-decadal SST variations on recent changes in the Walker

Circulation.

The anthropogenic forcer−aerosols, can also originate from natural sources. Aerosols

in the troposphere can either from anthropogenic or natural origins; stratospheric aerosols

mostly from volcanic eruptions. Natural aerosol, like dust, is the most dominant aerosol

species in the atmosphere, constituting 70% of the global aerosol mass burden and 25% of

the aerosol optical depth (aerosol optical depth; Kinne et al., 2006). Atmospheric aerosol

also contributes to air pollution, which have negative effects on human health. Air quality

guideline is based on the measurements of ground-level concentrations of various air pollu-

tants, including particulate matter (PM), ozone, nitrogen oxides and sulfur dioxide, such as

the guideline from World Health Organization (WHO) (World Health Organization, 2006).

Such air quality guideline, mainly target anthropogenic emissions, is used by many countries

as reference to establish their own national standards and goals for air quality. However, the

contribution of natural emitted pollutants are discounted and this bring bias, particularly

over economically developing regions where natural aerosol levels can be high (e.g., Africa;

Petkova, Jack, Volavka-Close, & Kinney, 2013). Contribution of natural (pristine) aerosols

on present-day air quality has not been assessed. Chapter 5 discuss the work to quantify

the impact of pristine aerosol background on current air quality metrics.
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Chapter 2

Tropical Belt Width

Proportionately More Sensitive to

Aerosols Than Greenhouse Gases

2.1 Introduction

The width of the tropical belt is linked to the Hadley cell circulation, with strong

moist air ascent in tropical deep convection zones and dry air descent in the subtropics.

Tropical belt expansion over the past few decades has been observed in multiple datasets

(Hu & Fu, 2007; Lu et al., 2007; Seidel et al., 2008; S. M. Davis & Rosenlof, 2012; Lucas et

al., 2014). This expansion is indicated by several metrics, including widening of the Hadley

cell (Hu & Fu, 2007; Nguyen et al., 2013) and poleward shifts in hydrological patterns and

subtropical dry zones (Cai et al., 2012; Staten et al., 2018; Horinouchi et al., 2019).
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In addition to internal (Garfinkel et al., 2015; Grise et al., 2018) and natural (Lu

et al., 2008; Grassi et al., 2012; Nguyen et al., 2013; Tandon et al., 2013; Allen et al.,

2014; Allen & Kovilakam, 2017a; Mantsis et al., 2017; Amaya et al., 2018a) variability, an-

thropogenic drivers are another important contributor. Tropical widening occurs in model

simulations driven by GHGs (Hu et al., 2013; Tao et al., 2016; Grise & Polvani, 2016),

which is associated with a poleward shift in the subtropical baroclinic instability zone (Lu

et al., 2007). Stratospheric ozone depletion is important in the Southern Hemisphere (SH),

particularly during austral summer (Polvani, Waugh, Correa, & Son, 2011; Min & Son,

2013; Waugh, Garfinkel, & Polvani, 2015). Absorbing aerosols, such as black carbon (BC),

have been suggested as a cause of Northern Hemisphere (NH) tropical expansion (Allen,

Sherwood, Norris, & Zender, 2012b; Allen et al., 2014; Kovilakam & Mahajan, 2015; Shen

& Ming, 2018; Johnson, Haywood, & Hawcroft, 2019). BC warms the troposphere, particu-

larly in the NH mid-latitudes where most emissions occur, which stabilizes the atmospheric

column and results in a poleward shift of tropospheric jet streams (Allen, Sherwood, Norris,

& Zender, 2012a; Allen et al., 2012b; Shen & Ming, 2018). Future decreases in scattering

aerosol also induces mid-latitude tropospheric warming (primarily via aerosol-cloud interac-

tions), leading to NH tropical widening through the 21st century (Allen & Sherwood, 2011;

Allen & Ajoku, 2016).

The overall impact of anthropogenic drivers on tropical belt width variations are

complex and have large uncertainties. This is particularly true for aerosols, where the 90%

confidence range of aerosol effective radiative forcing (ERF) is−0.4 to−2.0 Wm−2 (Bellouin

et al., 2019). Similarly, BC forcing from anthropogenic fossil and biofuel emissions possesses
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a relatively large uncertainty range of 0.05 to 0.80 Wm−2 (Ramanathan & Carmichael, 2008;

Koch et al., 2009; Bond et al., 2013; Myhre et al., 2013). The imprint of anthropogenic

drivers on recent tropical expansion may even be indiscernible from natural drivers (Grise

et al., 2019).

The goal of this work is to better understand the effect of anthropogenic drivers on

tropical belt width variations, focused on the role of aerosols. To isolate the role of individ-

ual drivers, we utilize idealized simulations with very large single forcing perturbations in

comprehensive coupled ocean-atmosphere models from Precipitation Driver and Response

Model Intercomparison Project (PDRMIP). Although the forcings are idealized and their

magnitude is not realistic, they allow a direct assessment of how individual drivers impact

tropical belt width (e.g., N. A. Davis, Seidel, Birner, Davis, & Tilmes, 2016a). This is the

first study that rigorously quantifies the aerosol impact−including individual aerosol species

like BC and sulfate−on tropical belt width using multiple models. Moreover, this is the

first study that quantifies the impact of regional (e.g., Europe, Asia) aerosol emissions on

tropical belt width. This chapter is organized as follows: Methods and data are described

in Section 2.2; Section 2.3 discusses the results and Section 2.4 summarizes the conclusions.

2.2 Method & Data

2.2.1 Model Simulations

Under the framework of PDRMIP (Myhre et al., 2017), we use the coupled global

model simulations including the baseline simulation and a set of perturbation experiments.

The baseline simulation is forced with all anthropogenic and natural climate forcing agents
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at present-day (year 2000) levels (Samset et al., 2016). Global perturbation experiments

(relative to present-day)−which represent very large perturbations, particularly for the

aerosols−include a doubling of carbon dioxide (co2×2), 10 times black carbon concentration

or emissions (bc×10), and 5 times sulfate concentrations or emissions (sul×5). Regional

aerosol perturbation experiments include 10 times Asian black carbon concentration or

emissions (bc×10 Asia), and 10 times sulfate concentrations or emissions in Europe (sul×

10 EU) and Asia (sul× 10 Asia) (L. Liu et al., 2018). The European (Asian) region is defined

from 35◦N − 70◦N and 10◦W − 40◦E (10◦N − 50◦N and 60◦E − 140◦E). An exception is

HadGEM2-ES, which uses emissions from the year 1860 for its base run, and perturbation

simulations are relative to the year 2000 (Stjern et al., 2017). HadGEM2-ES simulations

will therefore feature larger increases in aerosols.

Nine models are used for the global perturbation experiments including CanESM2,

HadGEM2-ES, HadGEM3, GISS-E2-R, MIROC-SPRINTARS, NCAR CESM1-CAM4, NCAR

CESM1-CAM5, IPSL-CM5A and NorESM1 (Samset et al., 2016; Myhre et al., 2017). All

models use a fully dynamical ocean model, except NCAR CESM1-CAM4 which uses a

slab ocean model. Most models also performed regional perturbation experiments, ex-

cept CanESM2 and HadGEM2. Although some models are concentration driven and

some are emission driven, we don’t find clear response differences between emission- and

concentration-driven models. All simulations are interpolated to a 2.5◦ by 2.5◦ grid reso-

lution using bilinear interpolation. We analyze the last 50-years of each simulation, when

near-equilibrium is reached. For most experiments, models do not show significant trends

in net top-of-atmosphere (TOA) radiative fluxes over the last 50 years. However, in the
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case of co2×2, models will likely not have reached their equilibrium warming within the 100

years simulated here (Caldeira & Myhrvold, 2013; Samset et al., 2016).

We also use the corresponding PDRMIP fixed sea surface temperature (fSST)

experiments to estimate the ERF, as well as the fast response (no surface temperature

feedbacks) of the tropical belt width. ERF is estimated from the net TOA radiative fluxes

(the sum of net longwave and shortwave fluxes) from the fSST simulations (perturbation

minus baseline). This ERF definition is similar to (Forster et al., 2016), except SSTs here

are based on the baseline climatology as opposed to the preindustrial. All fSST simulations

were performed for at least fifteen years, so we analyze the last fifteen years of data for

these calculations. The 90% confidence interval for a 15 year aerosol ERF is ∼ 0.15 W m−2

(Forster et al., 2016). Annual global and hemispheric mean ERFs for individual models

and experiments is included in Tables 2.1 and 2.2, and spatial ERF maps are including

in Figure 2.1. As the coupled simulations yield the total climate response (slow surface

temperature feedbacks and fast rapid adjustments), the fSST simulations yield the fast

response (e.g., atmospheric heating).

Table 2.1: Annual mean effective radiative forcing (ERF) in the regional perturbation
experiments for each individual model and the ensemble mean. Unit is W m−2. n/a
represents not available.

Model
bc×10 Asia sul×10 Asia sul×10 EU

Global NH SH Global NH SH Global NH SH

GISS-E2-R 0.18 0.49 -0.12 -0.74 -1.34 -0.14 -0.28 -0.53 -0.03
HadGEM3 0.19 0.45 -0.07 -0.69 -1.43 0.04 -0.25 -0.49 -0.004
IPSL-CM5A 0.004 0.13 -0.13 -0.57 -1.28 0.13 -0.31 -0.58 -0.05

MIROC-SPRINTARS 0.07 0.23 -0.09 -1.15 -2.08 -0.22 -0.41 -0.86 0.05
NCAR-CAM4 0.20 0.48 -0.08 -0.45 -1.13 0.22 n/a n/a n/a
NCAR-CAM5 0.40 0.72 0.09 -0.80 -1.50 -0.10 -0.47 -0.97 0.02
NorESM1 0.03 0.31 -0.25 -0.75 -1.39 -0.11 -0.40 -0.63 -0.16

Ensemble mean 0.15 0.40 -0.09 -0.74 -1.45 -0.02 -0.30 -0.68 -0.03
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Table 2.2: Annual mean effective radiative forcing (ERF) in the global perturbation exper-
iments for each individual model and the ensemble mean. Unit is W m−2.

Model
bc×10 sul×5 co2×2

Global NH SH Global NH SH Global NH SH

CanESM2 1.54 2.30 0.79 -3.23 -4.66 -1.80 3.54 3.44 3.63
GISS-E2-R 1.24 1.89 0.60 -2.82 -3.63 -2.01 4.05 4.12 3.98
HadGEM2 1.43 2.20 0.66 -3.92 -6.29 -1.54 3.56 3.56 3.55
HadGEM3 0.68 1.18 0.19 -8.27 -8.19 -8.36 3.64 3.75 3.53
IPSL-CM5A 0.76 1.18 0.35 -2.75 -3.40 -2.10 3.32 3.33 3.31

MIROC-SPRINTARS 0.67 0.92 0.41 -2.73 -4.21 -1.25 3.69 3.63 3.75
NCAR-CAM4 0.76 1.33 0.19 -2.04 -2.86 -1.21 3.57 3.41 3.74
NCAR-CAM5 0.39 0.99 -0.20 -2.12 -3.11 -1.13 4.04 4.39 3.70
NorESM1 1.39 2.33 0.46 -3.70 -4.27 -3.14 3.50 3.38 3.63

Ensemble mean 0.98 1.59 0.38 -3.51 -4.51 -2.50 3.66 3.67 3.65

W m-2

sulx10 Asia                       sulx10 Europe                         bcx10 Asia

CO2x2                                  sulx5                                     bcx10

a cb

d e f

Figure 2.1: Annual mean ensemble mean ERF. (a) co2×2; (b) sul×5; (c) bc×10;
(d) sul×10 Asia; (e) sul×10 Europe; and (f) bc×10 Asia. Changes significant at the 90%
confidence level are denoted by black dots based on a t-test for the difference of means using
the pooled variance. Units are W m−2.
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2.2.2 Tropical Edge Definition

The Tropical-width Diagnostics (TropD) package (Adam et al., 2018) is used to

calculate the location of the tropical belt edge. The TropD package includes common

tropical width metrics and standardizes the methodologies to diagnose the tropical belt

edge by implementing simple mathematical methods. As recommended by N. Davis and

Birner (2017) and Waugh et al. (2018), we focus on three metrics of tropical width: 1)

the latitude where the zonal-mean meridional circulation (MMC) at 500 hPa becomes zero

on the poleward side of the subtropical maxima, 2) the zero-crossing latitude where the

zonal-mean near-surface easterly becomes mid-latitude westerly at the poleward side of the

subtropical minimum in each hemisphere and equatorward of 60◦ latitude (UAS) and 3)

the latitude where the zonal-mean precipitation minus evaporation becomes zero on the

poleward side of the subtropical minimum (P−E). Changes in the latitude of the tropical

belt edge are calculated as the difference between the perturbation simulation and the

corresponding baseline simulation. Positive (negative) anomalies indicate tropical expansion

(contraction). Note that GISS-E2-R didn’t archive output to calculate the MMC metric.

We have verified that similar results are obtained in the other two metrics when GISS-E2-R

is removed from the the multi-model mean (not shown). We also note that recent analyses

have generalized the MMC to the regional level by using the horizontally divergent wind

(Schwendike et al., 2014; Staten, Grise, Davis, Karnauskas, & Davis, 2019). For conciseness,

the quoted rates of expansion in the text are based on the average across the three metrics.

In general, we get very similar results for all three metrics, but where exceptions exist they

are noted. The figures show all metrics separately.

11



Statistical significance of tropical belt changes is examined by a standard two-

tail t-test, accounting for the influence of serial correlation by using the effective sample

size, nyears(1− r1)(1 + r1)
−1, where nyears is the number of years and r1 is the lag-1

auto-correlation coefficient. The 90% confidence interval of ensemble mean response is

also quantified as twice the standard error, 2× σ/
√
n, where σ is the intermodel standard

deviation of the tropical width changes, and n is the number of models. We also quantify

tropical width variations due to internal climate variability as the 90% confidence interval

of tropical edge locations from the baseline simulation for each model. This is calculated by

quantifying the boundary of the tropical edge in each hemisphere for each season and the

annual mean for all years (nyears). The 90% confidence interval is based on a t-test, and

estimated according to: Φ ± 1.68 × σ′

√
nyears

, where σ′ is the standard deviation of tropical

edge locations, nyears is the number of tropical edge locations (i.e., number of years), Φ

is the mean tropical belt edge location, and 1.68 is the t-value with nyears-1 (49 for the

coupled runs) degrees of freedom and a 0.05 probability.

Figure 2.2 shows individual model confidence intervals; the multi-model mean

confidence interval ranges from 0.18◦ for MMC to 0.22◦ for P−E in the NH and from 0.08◦

for MMC to 0.11◦ for UAS in the SH. The smaller values in the SH may be due to the more

zonally symmetric circulation and lack of land-sea contrasts. It may also be an artifact of

finding the edge of the tropical belt, which is less well defined in the NH (Adam et al.,

2018)−especially for JJA−which would also lead to enhanced variability in the NH.
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Figure 2.2: Tropical belt edge location in the base experiment. (A) Northern (◦N)
and (B) Southern (◦S) Hemisphere annual and seasonal tropical belt edge locations in the
base experiment for each individual model and ensemble mean based on the MMC, P−E
and UAS metric. Errors bars show the 90% confidence interval of tropical belt edge location
due to internal climate variability.
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2.3 Results

The annual mean tropical belt edge response to anthropogenic drivers in the global

perturbation experiments is shown in Figure 2.3. Consistent with prior studies (Tao et

al., 2016; Grise & Polvani, 2016), co2×2 leads to tropical expansion. However, we find

relatively weak tropical expansion in the NH, and much stronger and significant expansion

in the SH. The annual mean ensemble mean poleward displacement of the SH tropical

edge (∼1◦ ± 0.19◦) is about 5 times that of NH (∼0.2◦ ± 0.15◦). (Watt-Meyer, Frierson,

& Fu, 2019) found twice as much GHG-induced tropical expansion in the SH, relative to

the NH. GHG-forced tropical expansion is significant relative to internal climate variability

in the SH, but not in the NH (gray shading in Fig. 1). The weaker rate of annual mean

widening in the NH is partly due to tropical contraction during June-July-August (JJA)

in all metrics (Figures 2.4-2.6). This result is consistent with prior analyses, where CMIP5

historical GHG and co2×4 simulations also yield NH tropical contraction during JJA (Tao

et al., 2016; Grise & Polvani, 2016; Watt-Meyer et al., 2019). Further analysis is warranted,

but this may be related to the JJA stationary wave response to CO2 (Shaw, 2014; Shaw &

Voigt, 2015). The largest NH widening trend due to co2×2 occurs in SON (N. A. Davis et

al., 2016a; Grise & Polvani, 2016).

Similar to the single-model result from (Kovilakam & Mahajan, 2015), the bc×10

simulation yields significant tropical expansion in both hemispheres across all three metrics.

The magnitude of annual mean ensemble mean NH tropical expansion (∼0.96◦ ± 0.12◦) is

2.3 times larger than in the SH (∼0.41◦ ± 0.12◦). This NH amplification is in contrast

14



A

B

Figure 2.3: Annual mean tropical belt edge response in global perturbation exper-
iments. (A) Northern and (B) Southern Hemisphere tropical belt edge change (◦ latitude)
in response to bc×10, sul×5 and co2×2 based on the MMC, P-E and UAS metric for each
individual model. Positive (negative) anomalies indicate tropical expansion (contraction).
Unfilled model symbols indicate a response statistically significant at the 90% confidence
level. The corresponding ensemble mean response is denoted by a dark green star and the
error bar shows the approximate 90% confidence interval, estimated by 2× σ/

√
n, where σ

is the intermodel standard deviation of the tropical width changes, and n is the number of
models. Gray shading shows the 90% confidence interval of tropical belt edge displacements
due to internal climate variability based on MMC metric (the 90% confidence intervals from
the other two metrics are similar).
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Figure 2.4: Seasonal mean tropical belt edge response in global perturbation ex-
periments based on UAS metric. (A) Northern and (B) Southern Hemisphere tropical
belt edge change (◦ latitude) in response to bc×10, sul×5 and co2×2 for each individual
model. Positive (negative) anomalies indicate tropical expansion (contraction). Unfilled
model symbols indicate a response statistically significant at the 90% confidence level. The
corresponding ensemble mean response is denoted by a dark green star and the error bar
shows the approximate 90% confidence interval, estimated by 2× σ/

√
n, where σ is the in-

termodel standard deviation of the tropical width changes, and n is the number of models.
Grey shading shows the 90% confidence interval of tropical belt edge displacements due to
internal climate variability based on UAS metric. Note the different y-axis between the two
panels.
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Figure 2.5: As in Figure 2.4 but based on MMC metric.
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to co2×2 (where NH expansion is 20% as large as that in the SH), which is likely related

to more BC burden in the NH, and consequently a larger hemispheric asymmetry in BC

forcing (Table 2.1 and Figure 2.1). HadGEM2-ES generally yields the largest tropical

expansion, especially in the NH, which is consistent with its large change in burden (Stjern

et al., 2017) and relatively large BC ERF (Table 2.1). All seasons also show robust tropical

expansion in response to bc×10 in both hemispheres (Figures 2.4-2.6), with maximum

tropical widening occurring in the NH during JJA and September-October-November (SON)

and in the SH during December-January-February (DJF) and SON. The large JJA BC

response is interesting in light of the minimal JJA co2×2 expansion, which mainly results

from the NH contraction in that season.

In contrast to BC, sul×5 drives significant annual mean tropical contraction in both

hemispheres, at ∼0.69◦±0.24◦ for the NH and ∼0.66◦±0.33◦ for the SH. HadGEM3 yields

the strongest tropical contraction, especially in the SH, consistent with its large sul×5 ERF

(Table 2.1). Significant contraction also occurs in all seasons in both hemispheres except

for JJA in the NH. Similar seasonal rates of contraction exist in the SH, while relatively

larger seasonal variations exist in the NH, with maximum contraction in SON. The absence

of NH contraction in JJA and the strongest contraction occurring in SON is analogous but

opposite to the response to co2×2.

In terms of the regional perturbation simulations, bc×10 Asia yields significant

tropical expansion (Figure 2.7). In the NH, the annual mean ensemble mean NH tropical
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Figure 2.6: As in Figure 2.4 but based on P-E metric.
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Figure 2.7: As in Figure 2.3 except for regional aerosol simulations including bc×10 Asia,
sul×10 Asia and sul×10 EU. Note the different y-axis between the two panels.
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Figure 2.8: As in Figure 2.4 but for regional aerosol simulations including bc×10 Asia,
sul×10 Asia and sul×10 EU. Note the different y-axis between the two panels.
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Figure 2.9: As in Figure 2.8 but based on MMC metric.
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Figure 2.10: As in Figure 2.8 but based on P-E metric.
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expansion is ∼0.36◦ ± 0.12◦. We note that the P−E metric yields about half of the NH

expansion (0.20◦) as the other two metrics (0.45-0.48◦). Despite bc×10 Asia’s global (NH)

ERF being only 15% (25%) of the corresponding ERF in bc×10, bc×10 Asia’s NH tropical

expansion is about 40% of the corresponding expansion in bc×10. This results suggests

the importance of the forcing location, with Asian BC particularly efficient at widening the

tropical belt. Maximum NH tropical expansion occurs in JJA (Figures 2.8-2.10). Significant

tropical expansion also occurs in the SH, but it is much weaker at ∼0.05◦±0.04◦ (and within

the 90% confidence interval due to internal climate variability).

The sul×10 Asia simulations yield significant NH contraction at ∼0.41◦ ± 0.18◦,

with maximum NH contraction in SON. Despite sul×10 Asia’s global (NH) ERF being

only 21% (32%) of the corresponding ERF in sul×5, sulx10 Asia’s NH annual tropical

contraction is 60% of the corresponding contraction in sulx5. This result again supports

the importance of the location of the forcing to tropical width perturbations. The SH

tropical belt edge response to Asian sulfate is not robust, and is inconsistent across metrics

and seasons. The effect of European sulfate on tropical belt variations is also negligible, and

not significantly different from internal climate variability. sul×10 Europe accounts for 9%

(15%) of the sul×5 global (NH) ERF, and 10% of the NH tropical contraction. So unlike the

Asian region, the tropical belt is not particularly sensitive to European sulfate emissions.

As minimal NH contraction occurs under European sulfate, this implies the importance

of sulfate from other regions (e.g., Asia and perhaps the U.S.). For SH contraction, the

importance of sulfate from regions other than Europe and Asia is also implied from the

large sul×5 SH contraction, but minimal contraction under sul×10 Asia and sul×10 EU.
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All global (and regional) aerosol experiments show larger annual mean ensemble

mean tropical edge displacements in the NH, as compared to the SH (particularly bc×10).

This is related to the spatial heterogeneity of aerosols, with maximum loading and more

importantly, ERF in the NH. For example, the annual mean ensemble mean bc×10 ERF

is 1.59 W m−2 in the NH, compared to 0.38 W m−2 in the SH. By design, the regional

aerosol experiments also have a much larger NH ERF, relative to the SH. However, for CO2

forcing−which is uniform between hemispheres−much smaller tropical widening occurs in

the NH. Watt-Meyer et al. (2019) ascribe this hemispheric asymmetry in CO2 tropical

expansion to a smaller sensitivity of the NH tropical edge to static stability changes. Of

lesser importance is the pattern of the SST response and the CO2 direct radiative effect.

The seasonal cycle of the NH and SH tropical edge response does not appear to

be related to the seasonal cycle of global or hemispheric ERF. For example, bc×10 NH

ERF is weakest in SON at 1.04 W m−2 when NH tropical expansion is relatively large

(Figure 2.4-2.6). Similarly, bc×10 NH ERF is largest in MAM at 2.38 W m−2 when NH

tropical expansion is relatively weak. We also note that latitudinal variations in the seasonal

ERF are relatively small, and likely not an important contributor to the seasonal cycle of

tropical edge displacements (not shown). These results reinforces the notion that there are

certain seasons in which the tropical edge is more susceptible to latitudinal displacements

(Watt-Meyer et al., 2019; Grise et al., 2018).

Figure 2.11 shows the ensemble mean annual mean ERF normalized tropical belt

response to anthropogenic drivers. Aerosols generally drive larger NH tropical belt responses

per ERF relative to GHGs. The NH tropical belt is most sensitive to BC (0.96◦ per W
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m−2), and in particular Asian BC (2.32◦ per W m−2). Again, the quoted rates of tropical

expansion represent the average over the three metrics. We note the P−E metric for bc×10

Asia yields a relatively smaller rate of expansion at 1.06◦ per W m−2, versus ∼ 3◦ per W

m−2 for the other two metrics. Compared to BC, the sensitivity of the NH tropical edge to

sulfate is weaker. However, Asian emissions again yield the largest response (−0.55◦ per W

m−2) among the sulfate experiments. GHGs yield a much smaller normalized rate of NH

tropical expansion at ∼0.06◦ per W m−2.

In the SH, anthropogenic aerosols generally show smaller efficacy in driving tropical

edge perturbations as compared to the NH. Global BC yields the largest SH efficacy at

∼ 0.41◦ per W m−2, followed by Asian BC. Global sulfate yields a SH efficacy of −0.19◦ per

W m−2. In contrast to the aerosols, GHGs are more effective in perturbing the SH tropical

edge (0.27◦ per W m−2), as compared to the NH. Although not statistically significant,

global BC and to some extent Asian BC still yield larger SH efficacies than co2×2. This

suggests tropical width perturbations may be more responsive to the direct atmospheric

heating by BC, as opposed to surface temperature driven feedbacks by CO2 and SO4. For

both hemispheres, similar conclusions exist when we normalize by the change in global mean

surface temperature, as opposed to ERF (Figure 2.12).

The larger displacement of the tropical belt edge in response to global aerosols,

particularly BC, relative to GHGs suggests the potential importance of aerosols in perturb-

ing the tropical belt, especially in the NH. Compared to global BC and sulfate forcing,

the relatively larger NH response to the corresponding Asian aerosol indicates the location

of the aerosol forcing is important. This is also supported by the larger NH tropical belt
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Figure 2.11: Efficacy of anthropogenic drivers in perturbing the tropical belt
edge. (A) Northern and (B) Southern Hemisphere annual mean ensemble mean normal-
ized tropical belt edge response to co2×2, bc×10, bc×10 Asia, sul×5, sul×10 Asia and
sul×10 EU based on the MMC, P-E and UAS metric. The tropical belt edge response
is normalized by the absolute value of the corresponding effective radiative forcing (ERF).
Units are ◦ latitude per W m−2. A positive (negative) response indicates tropical expansion
(contraction). Note the different y-axis between the two panels. The 90% confidence inter-
val is also included, estimated as 2× σ/

√
n, where σ is the intermodel standard deviation

of the normalized tropical width changes, and n is the number of models.
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Figure 2.12: Efficacy of anthropogenic drivers in perturbing the tropical belt
edge. (A) Northern and (B) Southern Hemisphere annual mean ensemble mean normalized
tropical belt edge response to co2×2, bc×10, bc×10 Asia, sul×5, sul×10 Asia and sul×10
EU based on the MMC, P-E and UAS metric. The tropical belt edge response is normalized
by the absolute value of the global mean surface temperature change. Units are ◦ latitude
per K. A positive (negative) response indicates tropical expansion (contraction). The 90%
confidence interval is also included, estimated as 2× σ/

√
n, where σ is the intermodel

standard deviation of the normalized tropical width changes, and n is the number of models.
Note the different y-axis between the two panels.
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contraction in response to Asian sulfate, relative to European sulfate. These results imply

that a forcing closer to the tropical belt edge is likely more effective in driving changes to

tropical belt width, which is generally consistent with previous idealized simulations (Allen

et al., 2012a).

Under one view, the width of the Hadley cell is determined by the poleward extent

to which the angular momentum conservation continues until the resulting vertical shear

becomes baroclinically unstable (Lu et al., 2007). Under such a scaling, the edge of the

Hadley cell is sensitive to the gross static stability and the tropopause height near the

poleward boundary of the circulation. Although this scaling is instructive, in reality the

flow does not always conserve angular momentum (Schneider, 2006). We calculate the

annual mean mid-latitude static stability, S as the potential temperature difference between

the tropopause and surface (θTP − θSFC), averaged over 30-60◦ latitude, and the response

(perturbation minus baseline) is normalized by the corresponding global ERF (absolute

value in the case of sulfate). We estimate S from zonal mean temperature, as opposed to

grid box by grid box values. Similar results are obtained when S is calculated over 30-60◦,

as well as from 20-40◦ and 30-40◦.

The ensemble mean global ERF normalized tropical belt response is well correlated

with the corresponding normalized mid-latitude ∆S (Figure 2.13 ). In the NH, correlations

range from 0.97 to 0.98, depending on the metric. In the SH, the corresponding correlations

range from 0.94 to 0.98. Similar, but somewhat weaker correlations are obtained without

normalizing. Normalizing by the change in global mean surface temperature (as opposed to

ERF) yields analogous conclusions (Figure 2.13). Comparing ∆Φ versus ∆TAS (as opposed
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to ∆S) yields similar correlations in the SH, but somewhat weaker correlations in the NH

(Figure 2.14). Figure 2.13 shows that GHGs and absorbing aerosols drive an increase in

the mid-latitude static stability, whereas scattering aerosols yield a decrease. The larger

aerosol induced tropical belt response in the NH, relative to the SH, are consistent with

larger perturbations to the NH extratropical static stability. Asian aerosols also lead to

larger increases in the NH mid-latitude static stability, relative to the corresponding global

forcing and GHGs. This supports our previous assertion that the location of the aerosol

forcing is an important factor in the tropical belt width response.

The correlations between normalized (by global ERF) tropical belt response and

static stability changes are mostly all positive and significant across experiments for in-

dividual models and metrics for the annual mean (Table 2.3). For example, 100% of the

models yield a correlation of at least 0.8 (which is significant at the 90% confidence level)

between the change in the MMC metric and static stability normalized by global ERF

across experiments in the NH and SH. However, some models yield a negative correlation

in the SH (e.g.,MIROC-SPRINTARS for UAS/P−E metrics). This is likely related to the

tropical belt response in the regional forcing experiments, which is either weak or opposite

of the other models (e.g., tropical contraction is simulated in the bc×10 Asia experiment in

MIROC-SPRINTARS). Similar results are generally obtained for the other two metrics, as

well as when we normalize by the change in global mean surface temperature (as opposed

to ERF). Weaker correlations occur based on non-normalized values (not shown).

Corresponding correlations for individual seasons are generally weaker, but more

than 50% of the models yield a significant positive correlation (r > 0.8) for all seasons
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(Table 2.4). JJA, and also to some extent SON, generally feature the largest percentage of

models with significant correlations. For example, 63%/88% (75%/88%) of the models yield

a JJA (SON) correlation of at least 0.8 based on the MMC metric for both the NH/SH.

The smallest percentage of models with correlations larger than 0.8 occurs in MAM and

DJF, particularly in the SH. Based on the MMC metric, 63% (75%) of the models yield

a significant positive correlation in DJF (MAM) in the NH. The corresponding percentage

of models in the SH is only 38% for DJF and 25% for MAM. Similar results are generally

obtained with other metrics, as well as when we normalize by the change in global mean

surface temperature (as opposed to ERF). Somewhat weaker results are obtained based on

non-normalized values (not shown).

Table 2.5 shows the annual mean global ERF normalized correlations between ∆Φ

and ∆TAS. Correlations are also generally significant, but weaker than the corresponding

correlations between ∆Φ and ∆S (Supplementary Table 4). For example, based on the

MMC metric, 75% (63%) of the model ∆Φ and ∆TAS correlations are larger than 0.8 (90%

significant) in the NH (SH). Based on ∆Φ and ∆S, 100% of the correlations are larger than

0.8 in both hemispheres (Table 2.3).

Watt-Meyer et al. (2019) argue the hemispheric contrast in GHG-induced trop-

ical expansion is related to weaker sensitivity to static stability changes in the NH. For

non-normalized annual mean tropical edge displacements and ∆S across experiments, the

ensemble-mean MMC-based tropical width sensitivity to ∆S is 0.19◦ with a model range

of 0.07-0.29◦ K−1 in the NH. For P−E (UAS), the ensemble mean sensitivity is 0.14 with

a range of 0.07-0.27◦ K−1 (0.20 with a range of 0.12-0.26◦ K−1). In the SH, tropical width
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sensitivity [◦ K−1] to ∆S is 0.19 (0.07-0.24) for MMC, 0.20 (0.12-0.24) for P−E and 0.18

(0.11-0.23) for UAS. Thus, we obtain a similar tropical width sensitivity to ∆S in both

hemispheres. Normalizing both quantities by the global mean ERF results in larger NH

sensitivity (i.e., slope in Fig. 4), at 0.44 (0.2-0.8)◦ K−1 for the MMC metric; 0.21 (0.09-

0.45)◦ K−1 for the P−E metric; and 0.48 (0.18-0.84)◦ K−1 for the UAS metric. In the SH,

the corresponding sensitivities are 0.19 (0.08-0.26)◦ K−1 for MMC; 0.19 (0.12-1.61)◦ K−1

for P-E; and 0.17 (0.11-0.34)◦ K−1 for UAS.

The non-normalized ensemble mean tropical width sensitivity to ∆S varies across

season. We find a stronger NH MMC-based tropical belt sensitivity to ∆S in JJA and

relatively weaker sensitivities in the other seasons. For example, the sensitivity is 0.16◦

K−1 in JJA, and between −0.03 to 0.05◦ K−1 in the other three seasons. In the SH, the

largest sensitivities occur in MAM, DJF and SON at 0.10, 0.08 and 0.07◦ K−1, respectively.

Weaker sensitivity occurs in JJA at 0.01◦ K−1. Similar conclusions generally exist for the

other two metrics, particularly the large NH sensitivity during JJA. Thus, across PDRMIP

experiments, we do not find a weaker NH tropical belt sensitivity to static stability changes,

as under CO2 forcing alone (Watt-Meyer et al., 2019).

The correlations across models for given experiments are quite weak (Table 2.5)

and generally not significant (so the sensitivities are also not significant). With 7-9 models

(depending on the experiment), a correlation of at least 0.67 is required for significance at

the 90% confidence level. For co2×2, we find a NH non-normalized sensitivity based on

the MMC metric of 0.06◦ K−1 and a SH sensitivity of 0.22◦ K−1 (Supplementary Table

8). Thus, there is a weaker tropical belt widening versus static stability sensitivity to CO2
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Table 2.3: Correlations between the annual mean change in tropical belt width (∆Φ) and
subtropical (30-60°) static stability (∆S) across experiments for individual models and
metrics. Both ∆Φ and ∆S are normalized by the absolute value of the global mean ERF.
Correlations significant at the 90% confidence level are denoted with bold font.

Model
MMC UAS P−E

NH SH NH SH NH SH

CanESM2 0.93 0.93 0.84 0.90 0.86 0.96
GISS-E2-R n/a n/a 0.98 0.80 0.82 0.50
HadGEM2 0.99 0.99 0.99 0.99 0.99 0.95
HadGEM3 0.92 0.85 0.94 0.90 0.90 0.84
IPSL-CM5A 0.99 0.99 0.99 0.99 0.99 0.99

MIROC-SPRINTARS 0.99 0.99 0.88 −0.73 0.96 −0.21
NCAR-CAM4 0.95 0.95 0.98 0.74 0.61 0.93
NCAR-CAM5 0.96 0.96 0.96 0.96 0.85 0.84
NorESM1 0.99 0.95 0.99 −0.39 0.99 −0.50

forcing in the NH, as compared to the SH. Similar results are obtained with the UAS metric

(but not P−E). A similar result (larger SH sensitivity) generally exist for sul×5. Depending

on the expansion metric, however, bc×10 tends to yield larger a NH sensitivity as compared

to that in the SH. These results are generally applicable to normalized (by global ERF)

sensitivities (Supplementary Table 9), which perhaps better shows CO2 yields a weaker NH

sensitivity relative to the SH, whereas the other experiments tend to yield the opposite (but

again, this does depend on the metric in some cases). Thus, the ∆Φ versus ∆S global ERF

normalized correlations across model experiments−particularly for the annual mean−are

also quite significant, and also generally larger than global ERF normalized ∆Φ versus

∆TAS.
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Figure 2.13: Efficacy of tropical width perturbations versus normalized extrat-
ropical static stability. Scatterplot of the annual mean ensemble mean (A) Northern and
(B) Southern Hemisphere tropical belt edge response versus the corresponding subtropical
static stability response. Both are normalized by the absolute value of the global mean
surface temperature change. The tropical belt edge response is based on the MMC, P-E
and UAS metric, as represented by the different symbols. A positive (negative) tropical belt
edge response indicates tropical expansion (contraction). Also included are the correlations
of normalized (rNor) and unnormalized (rNoNor) tropical belt edge and extratropical static
stability. Note the different axes between the two panels.
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Figure 2.14: Efficacy of tropical width perturbations versus normalized hemi-
spheric surface temperature. Scatterplot of the annual mean ensemble mean (A)
Northern and (B) Southern Hemisphere tropical belt edge response versus the correspond-
ing hemispheric surface temperature response. Both are normalized by the absolute value
of the global mean ERF. The tropical belt edge response is based on the MMC, P-E and
UAS metric, as represented by the different symbols. A positive (negative) tropical belt
edge response indicates tropical expansion (contraction). Also included are the correlations
of normalized (rNor) and unnormalized (rNoNor) tropical belt edge and hemispheric surface
temperature. Note the different axes between the two panels.
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Figure 2.15: Efficacy of tropical width perturbations versus normalized extrat-
ropical static stability. Scatterplot of the annual mean ensemble mean (A) Northern and
(B) Southern Hemisphere tropical belt edge response versus the corresponding subtropical
static stability response. Both are normalized by the absolute value of the corresponding
effective radiative forcing (ERF). The tropical belt edge response is based on the MMC, P-E
and UAS metric, as represented by the different symbols. A positive (negative) tropical belt
edge response indicates tropical expansion (contraction). Also included are the correlations
of normalized (rNor) and unnormalized (rNoNor) tropical belt edge and extratropical static
stability. Note the different x-axis and y-axis between the two panels.
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Table 2.4: Seasonal correlations between the change in the MMC-based tropical belt width
(∆Φ) and subtropical (30-60°) static stability (∆S) across experiments for individual mod-
els. Both ∆Φ and ∆S are normalized by the absolute value of the global mean ERF.
Correlations significant at the 90% confidence level are denoted with bold font.

Model
NH MMC SH MMC

MAM JJA SON DJF MAM JJA SON DJF

CanESM2 0.47 0.95 0.70 0.90 0.95 0.85 0.97 0.95
GISS-E2-R n/a n/a n/a n/a n/a n/a n/a n/a
HadGEM2 0.99 0.76 0.99 0.99 0.24 0.99 0.99 0.99
HadGEM3 0.01 0.73 0.99 0.98 0.92 0.90 0.96 −0.58
IPSL-CM5A 0.90 0.98 0.77 0.40 0.75 0.94 0.69 0.18

MIROC-SPRINTARS 0.80 0.98 0.94 −0.84 0.63 0.98 0.99 −0.82
NCAR-CAM4 0.98 0.97 0.91 0.91 0.21 0.99 0.97 0.75
NCAR-CAM5 0.92 0.98 0.96 0.80 0.59 0.89 0.96 0.21
NorESM1 0.92 0.26 0.99 0.98 0.63 −0.27 0.81 0.85

Table 2.5: Correlations between the annual mean change in tropical belt width (∆Φ) and
hemispheric surface temperature (∆TAS) across experiments for individual models and
metrics. Both ∆Φ and ∆TAS are normalized by the absolute value of the global mean
ERF. Correlations significant at the 90% confidence level are denoted with bold font.

Model
MMC UAS P−E

NH SH NH SH NH SH

CanESM2 0.92 0.98 0.85 0.99 0.82 0.96
GISS-E2-R n/a n/a 0.17 0.78 0.27 0.61
HadGEM2 0.86 0.97 0.86 0.99 0.79 0.96
HadGEM3 0.69 0.77 0.75 0.82 0.77 0.84
IPSL-CM5A 0.99 0.99 0.99 0.97 0.99 0.98

MIROC-SPRINTARS 0.98 −0.27 0.97 −0.36 0.87 −0.81
NCAR-CAM4 0.85 0.60 0.70 0.56 0.84 0.29
NCAR-CAM5 0.73 0.83 0.65 0.88 0.73 0.82
NorESM1 0.99 0.92 0.98 −0.55 0.99 −0.47
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Across drivers, ∆S come from different mechanisms. For CO2 and sulfate, surface

driven feedbacks are most important, whereas for BC atmospheric absorption is also im-

portant. This is supported by Figure 2.16 and Table 2.6, which shows the ensemble mean

zonal mean annual ∆S for both the coupled and fixed SST (fSST) simulations for each of

the six experiments. Also included is the corresponding ∆TAS from both coupled and fSST

experiments, and the ERF. The coupled response yields the total climate response; the fSST

response yields the fast response (e.g., atmospheric heating); and the difference yields the

slow response (surface temperature feedbacks). For the global forcing experiments, the fast

∆S (from the fSST experiments) is a larger proportion of the total ∆S (from the coupled

experiments) in bc×10, as compared to sul×5 and co2×2 (Figure 2.1 and 2.2; Table 2.6).

Based on 30-60◦N (global), the fast ∆S in bc×10 is 30% (15%) of the total ∆S; in co2×2,

the fast ∆S is 9% (7%) of the total ∆S; and in sul×5 the fast ∆S is 14% (6%) of the

total ∆S. Thus, the fast response (i.e., direct atmospheric heating) is about 2-3 times more

important in the global BC simulation, relative to the global CO2 and SO4 simulations.

Similar results also exist for the regional forcing experiments. Based on 30-60◦N

(global), the fast ∆S in bc×10 Asia is 81% (69%) of the total ∆S; in sul×10 Asia, the fast

∆S is 33% (19%) of the total ∆S; and in sul×10 Europe, the fast ∆S is −14% (−14%)

of the total ∆S. Reasons for the opposite signed ∆S in fSST and coupled sul×10 Europe

simulations are unclear. Nonetheless, this result also shows that the fast response is 2-3

times important in bc×10 Asia relative to sul×10 Asia.

We note that similar, but somewhat weaker results exist for ∆TAS. Although fSST

experiments do not allow the SSTs to respond to the forcing, land surfaces can. So fSST
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Figure 2.16: Ensemble mean zonal mean annual responses. Static stability (S; red)
response for both the coupled (solid) and fixed SST (fSST; dashed) simulations for each of
the six experiments, as well as the corresponding surface temperature (TAS; green) response,
and the effective radiative forcing (ERF; blue). The coupled response yields the total climate
response; the fSST response yields the fast response (e.g., atmospheric heating); and the
difference yields the slow response (i.e., surface temperature feedbacks). S and TAS units
are K; ERF units are W m−2. Thin vertical cross hatching indicates the standard error of
the response, estimated as σ√

n
, where σ is the intermodel standard deviation and n is the

number of models. Note that panels have a different scaling of the y-axis.

Table 2.6: Ensemble mean annual mean percentage of the total response (coupled sim-
ulations) due to the fast (fSST simulations) response for static stability (∆S), surface
temperature (∆TAS) and tropical edge displacements (∆Φ). ∆S and ∆TAS are shown for
30-60N, 30-60S and for the global mean; ∆Φ is shown for the NH and SH. The very large
SH ∆Φ percentages for some experiments (e.g., sul×10 Europe) is due to a small (and not
significant) ∆Φ in the coupled run. Units are %.

Experiment
∆S ∆TAS ∆Φ

30-60N 30-60S Global 30-60N 30-60S Global NH SH

Global Simulations
co2×2 9 17 7 17 4 10 5 22
bc×10 30 15 15 25 3 12 52 54
sul×5 14 11 6 10 1 4 15 21

Regional Simulations
bc×10 Asia 81 59 69 33 <1 23 69 −20
sul×10 Asia 33 29 19 17 <1 9 32 1000

sul×10 Europe −14 -5 −14 21 <1 9 −86 1100
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runs do not eliminate all of the surface temperature driven feedbacks. Thus, we are unable

to completely separate the role of ∆TAS from ∆S. For the global forcing experiments,

the fast ∆TAS is a larger proportion of the total ∆TAS in bc×10, as compared to sul×5

and co2×2. Based on 30-60◦N (global), the fast ∆TAS in bc×10 is 25% (12%) of the total

∆TAS (Table 2.6); in co2×2, the fast ∆TAS is 17% (11%) of the total ∆TAS; and in 5×sul

the fast ∆TAS is 10% (4%) of the total ∆TAS. Thus, the fast ∆TAS response is about

2-3 times more important in the global BC simulation, relative to the global CO2 and SO4

simulations.

Similar results also exist for the regional forcing experiments. Based on 30-60◦N

(global), the fast ∆TAS in bc×10 Asia is 33% (23%) of the total ∆TAS (Table 2.6); in

sul×10 Asia, the fast ∆TAS is 17% (9%) of the total ∆TAS; and in sul×10 Europe, the

fast ∆TAS is 21% (9%) of the total ∆TAS. The fast response is again 2-3 times important

in bc×10 Asia relative to sul×10 Asia. Although it is difficult to separate ∆S from ∆TAS,

these results suggest direct atmospheric heating by BC drives a large fraction of the ∆S.

We also calculate changes in tropical belt width from the fSST experiments. Al-

though fewer significant responses occur, conclusions similar to those from the coupled

simulations generally exist, including tropical expansion (contraction) under BC (SO4)−

particularly with Asian emissions−and weak NH tropical expansion under CO2 (Figures

2.17 and 2.18). For the global simulations, we find that bc×10 fSST widening is a larger

proportion of the total widening as compared to co2×2 and sul×5, especially in the NH

(Table 2.6). bc×10 fSST widening is 52% and 54% of the total widening in the NH and

SH, respectively. For co2×2 (sul×5) the corresponding percentages are 5% and 22% (15%
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Table 2.7: Non-normalized correlations between the annual mean change in tropical belt
width (∆Φ) and subtropical (30-60◦) static stability (∆S) across models for individual
experiments and metrics. Correlations larger than 0.67 are significant at the 90% confidence
level (bold).

Experiment
MMC UAS P−E

NH SH NH SH NH SH

co2×2 0.43 0.96 0.70 0.90 0.36 0.76
bc×10 0.57 0.74 0.83 0.49 0.87 0.63
sul×5 0.34 0.98 0.86 0.97 0.56 0.98

bc×10 Asia 0.28 0.79 0.43 0.46 −0.33 0.06
sul×10 Asia 0.82 0.88 0.87 0.71 0.43 0.62

sul×10 Europe 0.39 −0.01 0.43 0.26 0.30 0.27

and 21%). Similar results also exist for the regional experiments, particularly in the NH

(where the signal is significant) for bc×10 Asia versus sul×10 Asia. The larger proportion

of tropical widening in the fSST runs is consistent with the larger proportion of ∆S in the

fSST runs for BC. This, in turn, supports the role of ∆S in BC induced tropical widening,

and the role of direct atmospheric heating.

As previously mentioned, Watt-Meyer et al. (2019) argue the hemispheric contrast

in GHG-induced tropical expansion is related to weaker sensitivity to static stability changes

in the NH. For non-normalized annual mean tropical edge displacements and ∆S across

experiments, the ensemble-mean MMC-based tropical width sensitivity to ∆S is 0.19◦ K−1

with a model range of 0.07-0.29◦ K−1 in the NH. In the SH, the MMC-based tropical

width sensitivity to ∆S is 0.19 (0.07-0.24)◦ K−1. Thus, we obtain a similar tropical width

sensitivity to ∆S in both hemispheres. Similar conclusions generally exist with other metrics

and seasons. However, across models, CO2 does yield weaker NH sensitivity (Tables 2.7-2.9).
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A

B

Figure 2.17: Annual mean tropical belt edge response in global fSST perturba-
tion experiments. (A) Northern and (B) Southern Hemisphere tropical belt edge change
(◦ latitude) in response to bc×10, sul×5 and co2×2 based on the MMC, P-E and UAS
metric for each individual model. Positive (negative) anomalies indicate tropical expansion
(contraction). Unfilled model symbols indicate a response statistically significant at the
90% confidence level. The corresponding ensemble mean response is denoted by a dark
green star and the error bar shows the approximate 90% confidence interval, estimated by
2× σ/

√
n, where σ is the intermodel standard deviation of the tropical width changes, and

n is the number of models. Gray shading shows the 90% confidence interval of tropical
belt edge displacements due to internal climate variability based on MMC metric (the 90%
confidence intervals from the other two metrics are similar).
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B

Figure 2.18: Annual mean tropical belt edge response in regional fSST perturba-
tion experiments. As in Fig. 2.17 except for regional aerosol simulations including bc×10
Asia, sul×10 Asia and sul×10 EU. Note the different y-axis between the two panels.
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Table 2.8: Non-normalized sensitivities between the annual mean change in tropical belt
width (∆Φ) and subtropical (30-60◦) static stability (∆S) across models for individual
experiments and metrics. Units are ◦ latitude K−1. Sensitivities significant at the 90%
confidence level are denoted by bold font.

Experiment
MMC UAS P−E

NH SH NH SH NH SH

co2×2 0.06 0.22 0.15 0.23 0.11 0.10
bc×10 0.09 0.11 0.17 0.07 0.19 0.08
sul×5 0.07 0.20 0.14 0.17 0.13 0.23

bc×10 Asia 0.17 0.41 0.27 0.28 −0.09 0.03
sul×10 Asia 0.36 0.32 0.40 0.20 0.22 0.20

sul×10 Europe 0.39 0.00 0.42 0.07 0.50 0.11

Table 2.9: ERF normalized sensitivities between the annual mean change in tropical belt
width (∆Φ) and subtropical (30-60◦) static stability (∆S) across models for individual
experiments and metrics. Units are ◦ latitude K−1. Sensitivities significant at the 90%
confidence level are denoted by bold font.

Experiment
MMC UAS P−E

NH SH NH SH NH SH

co2×2 0.05 0.22 0.13 0.24 0.10 0.12
bc×10 0.09 0.08 0.17 0.05 0.22 0.06
sul×5 0.36 0.22 0.22 0.20 0.27 0.21

bc×10 Asia 0.90 0.19 1.49 0.45 0.63 0.92
sul×10 Asia 0.27 0.32 0.40 0.12 0.26 0.17

sul×10 Europe 0.14 −0.04 0.30 0.02 0.14 0.02
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2.4 Summary

With the usage of simulations from PDRMIP, the response of the tropical belt

width to various anthropogenic drivers is quantified. Consistent with prior studies, re-

sults show that GHGs lead to tropical expansion, although relatively weak annual mean

expansion in the NH due to tropical contraction during JJA are found. Absorbing aerosols

lead to significant tropical expansion, whereas scattering aerosols lead to significant tropical

contraction. Similar responses are generally found for the regional aerosol simulations, in-

cluding tropical expansion (contraction)−particularly in the NH−in response to Asian BC

(sulfate). Tropical belt width responses to European sulfate are relatively small and lack

consistency across metrics. To account for the differing forcing magnitudes across PDRMIP

experiments, tropical belt responses are normalized by the corresponding ERF. BC, espe-

cially Asian BC, is the most efficient driver of tropical widening, particularly in the NH.

Furthermore, tropical belt width responses are highly correlated with changes in the mid-

latitude static stability, with absorbing (reflecting) aerosols driving increased (decreased)

static stability and tropical expansion (contraction). The seasonal analysis suggests BC

leads to maximum tropical widening in both hemispheres during summer and SON, which

also corresponds to the observed maximum rates of tropical expansion (Hu & Fu, 2007;

Allen & Kovilakam, 2017a; Grise et al., 2018). Although this seasonal correspondence

further implies the importance of BC to observed tropical expansion, the NH tropical ex-

pansion in SON has been partially attributed to natural variability, particularly the PDO

(Grise et al., 2018).
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Chapter 3

Strengthening of the Walker

Circulation in Recent Decades and

the Role of Natural Sea Surface

Temperature Variability

3.1 Introduction

TheWalker Circulation (WC) is a large-scale zonal-vertical atmospheric circulation

in the equatorial Pacific. Its variations are tied to the sea surface temperature (SST)

gradient across the tropical Pacific. For example, during El Niño, the tropical Pacific SST

gradient is weakened, as is the strength of the WC. In contrast, the tropical Pacific SST

gradient and the WC are strengthened during La Niña. Similarly, changes in the sea level
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pressure (SLP) gradient across tropical Pacific is an indicator of changes in the vertical

motion of the WC, including the descending branch over cooler eastern Pacific and the

ascending branch over the warm western Pacific. Variations in the strength and structure

of the WC are closely tied to the southeast Asian monsoon (Wang, Liu, Kim, Webster,

& Yim, 2012), precipitation in adjunct regions (Kosaka & Xie, 2013; J. Liu, Wang, Cane,

Yim, & Lee, 2013), drying of eastern Africa (A. P. Williams & Funk, 2011) and fishery

stocks related to nutrient supply brought by up-welling of cold water. Thus, understanding

long-term changes in the WC are important for water resource management, ecosystems

and agriculture.

The long-term temporal trend in WC strength is a popular and highly-debated

subject. A weakened Walker Circulation in the twentieth century as response to greenhouse

gas warming has been suggested by climate models (Held & Soden, 2006; Vecchi et al., 2006;

Power & Smith, 2007; M. Collins et al., 2010; Power & Kociuba, 2011b, 2011a; Tokinaga,

Xie, Deser, Kosaka, & Okumura, 2012), and it is supported by long-term sea-level pressure

observations. This Walker Circulation weakening in the coupled climate models is due to

anthropogenic forcing (Vecchi et al., 2006). Global temperature increases due to greenhouse

gas emissions is expected to cause∼ 7% ◦C−1 increase in water vapor, based on the Clausius-

Clapeyron relationship. However, increases in tropical precipitation occur at a slower rate

(∼ 3%K−1; Held & Soden, 2006). This implies the tropical overturning circulation, which

includes the WC and the easterly trade winds, slows down (Soden, Jackson, Ramaswamy,

Schwarzkopf, & Huang, 2005). Furthermore, the Bjerknes feedback, a positive feedback

between trade wind intensity and the zonal SST gradient, implies that the above changes will
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lead to a reduced zonal SST gradient over the tropical Pacific and an El Niño-like response

to warming. Such an SST pattern may lead to atmospheric dynamical changes, including

enhanced divergence in the central and eastern tropical Pacific, a southeastward shift of

North Pacific jet stream, and an increase in wintertime precipitation for California (Allen

& Luptowitz, 2017).

In contrast to the above studies, strengthening of the Walker Circulation is sim-

ulated by atmosphere-only climate models (AMIP) driven by observed SSTs over the 20th

century (Meng et al., 2012; Sandeep, Stordal, Sardeshmukh, & Compo, 2014), particularly

since the late second half (S. Ma & Zhou, 2016; Sohn et al., 2013). This strengthening

is further supported by various observational data sets (Sohn et al., 2013; Karnauskas,

Seager, Kaplan, Kushnir, & Cane, 2009; A. Solomon & Newman, 2012; L’Heureux, Lee, &

Lyon, 2013). In more recent decades, a stronger WC is also supported by cooling of the

central and eastern tropical Pacific SSTs (a La Niña-like pattern) (Kosaka & Xie, 2013).

Observed and unprecedentedly strengthening of the easterly trade winds (England et al.,

2014; M. Watanabe et al., 2014) and cooling in the eastern equatorial Pacific (Kosaka &

Xie, 2013) contribute to an acceleration of tropical atmospheric overturning−opposite what

coupled climate models suggest. The abnormally strong wind stress is found to be regulated

by internal climate variability in the 2000s, and the east Pacific cooling is dominated by

decadal variability, suppressing the effect of anthropogenic forcing (M. Watanabe et al.,

2014).

Projected WC weakening in response to anthropogenic warming is found to be

doubtful due to lack of consistent weakening in coupled climate models (Plesca, Grützun, &
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Buehler, 2018). No conclusive projection for El Niño and the Southern Oscillation (ENSO)

exists in global climate models (M. Collins et al., 2010; Cane, 2005; DiNezio, Clement, &

Vecchi, 2010). Thus, whether a La Niña-like (related to WC strengthening) or a El Niño-like

(related to WC weakening) tropical Pacific SST pattern will dominate this century is unde-

termined. In turn, the dominant driver of the Walker Circulation, whether anthropogenic

emissions or natural variability, is not well constrained.

The aim of this study is to quantify the contribution of multi-decadal SST vari-

ations on recent changes in the Walker Circulation. We investigate the imprints of both

anthropogenic warming and decadal internal climate variability on real world SSTs directly,

instead of changes in surface air temperature forced by wind stress (M. Watanabe et al.,

2014). Idealized climate model experiments are conducted with the Community Atmo-

sphere Model version 5 (CAM5) (Neale et al., 2010) to quantify the effects of forced versus

unforced SST evolution. The response to the forced signal is estimated based on coupled

climate model simulations. This chapter is organized as follows: Data and Methods are

described in Section 3.2; Section 3.3 discusses the results and Section 3.4 summarizes the

conclusions.

3.2 Data & Methods

3.2.1 Trend

The strength of the Walker Circulation is estimated by trends of the east minus

west SLP anomaly differences across the tropical Pacific, which is associated with vertical

motions of the WC. The described region over the tropical Pacific is 4.74◦S−4.74◦N in
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latitude, and 128.39◦E− 151.05◦E and 211.47◦E−231.61◦E in longitude for the western and

eastern tropical Pacific edge, respectively. We also examined additional regions, which yield

similar results (Table 3.1). Anomalies are calculated by removing the long term monthly

mean at each grid point. Trend significance for the time series and spatial plots is examined

by a standard two-tail student t-test, accounting for the influence of serial correlation by

using the effective sample size, n(1− r1)(1 + r1)
−1, where n is the number of years and r1

is the lag-1 auto-correlation coefficient. Trend uncertainty will be estimated as twice the

standard error, 2× σ/
√
n, where σ is the standard deviation of the trends, and n is the

number of model realizations.

3.2.2 Observation and Reanalysis Data

Observation-based WC trends are estimated from the Met Office Hadley Centre’s

Sea Level Pressure version 2 (HadSLP2; Allan & Ansell, 2006), NCEP/National Center

for Atmospheric Research Reanalysis (R1; Kalnay et al., 1996), ERA-Interim (Dee et al.,

2011), MERRA2 (Gelaro, McCarty, Suárez, et al., 2017), CFSR (Saha et al., 2010) and

Japan Reanalysis (JRA-55; Kobayashi et al., 2015). WC trends are estimated from 1979

to 2014, except JRA-55 which ends in 2013, and MERRA2 which starts in 1980. Since the

spatial resolution varies among our data sets, we unify all to a 1.9◦ × 2.5◦ resolution−same

as the Community Atmosphere Model version 5 (CAM5) model−before commencement of

the analysis. Observed SST trends are estimated from Hadley Centre SST data set version

3 (HadSST3; Kennedy, Rayner, Smith, Parker, & Saunby, 2011a, 2011b).

Monthly mean data from the Coupled Model Intercomparison Projection version

5 (CMIP5; Taylor, Stouffer, & Meehl, 2012a) archive is utilized, including 22 atmosphere-
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Table 3.1: 1979-2014 Walker Circulation trends based on alternative western and
eastern tropical Pacific regions. All regions indicate an intensification of the Walker
Circulation. Bold coordinates indicates the region emphasized in this study. All trends
are significant at 99% confidence level, based on a standard t−test. Trend units are hPa
century−1.

Latitude Western Tropical Pacific Eastern Tropical Pacific Trend

4.74◦S-4.74◦N

128.39◦E-151.05◦E 211.47◦E-231.61◦E 6.08
123.36◦E-156.08◦E 206.43◦E-236.64◦E 6.02
118.32◦E-161.12◦E 201.40◦E-241.68◦E 5.93
113.29◦E-151.05◦E 211.47◦E-246.71◦E 5.80
108.25◦E-151.05◦E 211.47◦E-251.75◦E 5.51

10.42◦S-10.42◦N

128.39◦E-151.05◦E 211.47◦E-231.61◦E 5.59
123.36◦E-156.08◦E 206.43◦E-236.64◦E 5.48
118.32◦E-161.12◦E 201.40◦E-241.68◦E 5.33
113.29◦E-151.05◦E 211.47◦E-246.71◦E 5.32
108.25◦E-151.05◦E 211.47◦E-251.75◦E 5.13

only (AMIP) models and coupled ocean atmosphere (CMIP) models. Table 3.2 lists the 22

models used in this study. Both CMIP and AMIP simulations use identical external forcings,

including temporal evolution of greenhouse gases, anthropogenic aerosols, solar insolation

and volcanic aerosols. AMIP simulations are driven by the observed evolution of SSTs and

sea ice. CMIP5 simulations nominally end in 2005. Representative Concentration Pathway

4.5 (RCP4.5) is used to extend the CMIP5 simulations through 2008. Only models from the

CMIP5 archive that contain both AMIP and CMIP simulations are utilized. Furthermore,

the same number of realizations for each AMIP and CMIP experiment is used. Since

most AMIP simulations end in 2008, our analysis of CMIP5 simulations is focused on the

1979-2008 time period. Other analyses, however, are based on a longer time period, from

1979-2014.

Analogous sets of AMIP-type simulations are conducted with CAM5. CAM5

AMIP simulations are based on 10 ensemble members with varying initial conditions, by
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Table 3.2: Coupled Model Intercomparison Project version 5 models (CMIP5)
and number of simulations used for each experiment. Experiments include coupled
atmosphere simulations (CMIP) and atmosphere-only (AMIP) simulations. Both are driven
by identical forcing, including greenhouse gases, aerosols, ozone solar variability and volcanic
eruptions. AMIP simulations are also driven by the real world evolution of sea surface
temperatures and sea ice. All simulations span 1979-2008.

Institution Model CMIP AMIP

CSIRO and Bureau of Meterology
ACCESS1.0 1 1
ACCESS1.3 1 1

Beijing Climate Center
BCC-CSM1.1 3 3
BCC-CSM1.1(m) 3 3

GCESS, Beijing Normal University BNU-ESM 1 1

National Center for Atmospheric
Research

CCSM4 5 5

CNRM/CERFACS CNRM-CM5 1 1

CSIRO, Industrial Research Organi-
zation and QCCCE

CSIRO-Mk3.6.0 10 10

EC-EARTH consortium EC-EARTH 1 1

LASG, IAP, Chinese Academy of
Sciences and CESS

FGPALS-g2 1 1

NASA Goddard Institute for Space
Studies

GISS-E2-R 6 6

Institute for Numerical Mathemat-
ics

INM-CM4.0 1 1

Institut Pierre-Simon Laplace
IPSL-CM5A-LR 4 4
IPSL-CM5A-MR 1 1
IPSL-CM5B-LR 1 1

JAMEST, AORI, and NIES
MIROC-ESM 1 1
MIROC5 2 2

Max Planck Institute for
Meteorology

MP1-ESM-LR 3 3
MP1-ESM-ME 3 3

Meteorological Research Institute MRI-CGCM3 2 2

Norwegian Climate Center NorESM1-M 3 3
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applying a random surface temperature perturbation. Simulations are initiating from 1970

to allow initial state of the atmosphere to diverge as a result of internal atmospheric variabil-

ity. Ensemble members are extended to 2014 using RCP 4.5 time varying forcing, including

solar radiation, estimated concentrations of greenhouse gases, volcanic aerosols, ozone and

primary emissions of sulfur dioxide and black and organic carbon.

We also analyze 40 CMIP simulations from Community Earth System Model Large

Ensemble Project (CESM LENS) models (Kay et al., 2015). CESM LENS simulations,

referred as CAM5 CMIP in this manuscript, were downloaded from the Earth System

Grid at the National Center fro Atmospheric Research (NCAR). Theses simulations were

extended from 2005 to 2014 using RCP 8.5−the only available future pathway. CAM5

CMIP simulations feature identical forcing, but different initial conditions. Both CAM5

AMIP and CMIP simulations allow assessment of natural climate variability. Note that

ensemble mean averages out the internal variability and hence represents the forced signal.

3.2.3 Idealized CAM5 Experiment

It is assumed that the observed SST evolution is composed of two components,

including an unforced (UFSST) and forced (FSST) component. The unforced component is

due to the natural variability of SSTs (e.g., El Niño and La Niña), and the forced component

is due to external forcing (i.e., anthropogenic emissions). The forced component is obtained

from the ensemble mean SSTs from the CMIP5 coupled ocean atmosphere models. Solar

radiation and volcanic aerosols are considered as external factors. The unforced component

is obtained by removing the forced SST trend from the observed SST at each grid point

using linear regression. To do so, the trend of monthly FSST is estimated by taking a least
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squares trend at each grid point, multiplying this slope by the corresponding year, and then

subtracting this SST estimate from the observed SST. We perform CAM5 experiments using

forced (CAM5 FSST) and unforced (CAM5 UFSST) SST fields. CAM5 FSST and CAM5

UFSST show the role of SST evolution on variability of the Walker Circulation, including

the relative roles of externally forced and unforced SST evolution.

The occurrence of a more El Niño-like mean state of the tropical Pacific is a likely

response to anthropogenic warming (Cai et al., 2015). However, coupled climate mod-

els may be deficient in their tropical response to warming (Karnauskas et al., 2009; Fyfe,

Gillett, & Zwiers, 2013). Uncertainty lies in whether the tropical response will resemble

a more La Niña-like SST pattern (as has occurred since ∼1979), or a more El Niño-like

pattern. Changes in the tropical Pacific mean state depend on the relative strength of am-

plifying effects associated with ocean energy balance (including an increase in SST gradient

and stronger ENSO events), and damping effects associated with atmospheric dynamics

(including weakening zonal winds, upwelling and weaker ENSO events; M. Collins et al.,

2010).

3.3 Results

Based on HadSLP2 observations, the WC strengthens from 1979-2014, which is

statistically significant at the 99% confidence level based on a standard t-test (Figure 3.1A).

Observed eastern tropical Pacific SLP yields positive trends, while negative trends prevail

over the western tropical Pacific (Figure 3.1B). Over the same time period, a La Niña-like

SST trend pattern exists (Figure 3.1C). This result is robust to the eastern and western
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tropical Pacific box definitions (Table 3.1). Observations over a shorter period, 1979-2008,

also depicts WC strengthening, but not as strong as that over longer period (4.65 versus 6.08

hPa century−1; Table 3.3 & Figure 3.2). These observational results are further supported

by reanalyses data, which also show intensification of the WC (Figure 3.1), though with

magnitude differences. Furthermore, only trends based on R1 and JRA55 are significant.

The spatial pattern of observed SLP trends is also captured by reanalyses (not shown).

A shorter time period (1979-2008) also yields positive trends of the SLP gradient, with

only HadSLP2 yielding a significant WC intensification (Table 3.3). 1979-2008 trends of

the SLP gradient are generally weaker than those over the longer, 1979-2014 time period

(except MERRA2). This is likely related to a strong La Niña event during late 2007 to

early 2008, leading to a larger SLP gradient over the tropical Pacific.

Figure 3.3 shows the 1979-2014 ensemble mean simulated change in the strength of

the WC in CAM5 AMIP and CESM LENS (referred as CAM5 CMIP) simulations. CAM5

AMIP yields a positive trend but weaker than that from observation, with ensemble mean

of 2.3 hPa century−1 significant at the 90% confidence level (Table 3.3 & Figure 3.3A).

Trends of SLP gradient estimated from CAM5 AMIP realizations ranges from 2.15 to 2.59

hPa century−1 (Figure 3.4A). The corresponding SLP trend pattern is also consistent with

that from observation and reanalyses (Figure 3.3C). In contrast, CAM5 CMIP simulations

yield a general increase in SLP over most of the tropical Pacific (Figure 3.3D), and a weakly

negative ensemble mean WC trend (Figure 3.3B). CAM5 CMIP also yields a larger range

of trends (−3 to 1 hPa century−1) than CAM5 AMIP, and there is no consensus on the
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Figure 3.1: 1979-2014 trends of tropical Pacific SLP gradient, SST and SLP
pattern from observation and reanalyses. (A) Time series of east (4.74◦S−4.74◦N,
211.47◦E−231.61◦E) minus west (4.74◦S−4.74◦N, 128.39◦E− 151.05◦E) tropical Pacific
SLP. Black lines represent HadSLP2; red lines represent NCEP/NCAR (R1) reanalysis;
green lines represent CFSR reanalysis; purple lines represent ERA-Interim reanalysis; blue
lines represent JRA55 (which ends in 2013) and orange lines represent MERRA2 reanalysis
(which starts in 1980). Also included is the least squares linear trend corresponding to each
data set. (B) Observed SLP trend (hPa century−1) pattern. Thin black lines represent
climatological SLP (hPa). Purple boxes denote the western and eastern tropical Pacific
regions used in (A). (C) Observed SST trend (◦C century−1) pattern based on HadSST3.
Symbols in (B, C) represent trend significance at the 90 % (diamond), 95% (X) or 99%
(+) confidence level, accounting for autocorrelation. Warm (cold) colors represent positive
(negative) trends.
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Table 3.3: Walker Circulation trends based on multiple data sets and model
simulations. Trends in 1979-2014 and 1979-2008 are based on observations (HadSLP2),
reanalyses including R1(NCAR/NCEP), JRA55, CFSR, ERA-Interim and MERRA2, and
atmosphere-only (AMIP) and coupled ocean atmosphere (CMIP) simulations from CAM5
and CMIP5 (only available in 1979-2008). Idealized CAM5 unforced (UFFST) and forced
(FSST) trends are also included in both periods. Symbols represent trend significance at
the 90 % (+), 95% (diamond) or 99% (star) confidence level, based on a standard t-test.
Trend units are hPa century−1. Fields with ”-” represents unavailable because not all
CMIP/AMIP simulations from CMIP5 archive extend through 2014.

Data 1979-2014 1979-2008

HadSLP2 6.08⋆ 4.65⋆

R1 4.89⋆ 3.8
JRA55 3.51⋆ 3.35
CFSR 0.50 0.38

ERA-Interim 3.21 3.00
MERRA2 3.20 4.87

CMIP5 AMIP - 3.1
CMIP5 CMIP - -0.15
CAM5 AMIP 2.3+ 2.32

CAM5 CMIP (CESM LENS) -0.32 -0.16
CAM5 UFSST 2.59⋄ 2.54
CAM5 FSST -0.21 -0.09
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Figure 3.2: 1979-2008 trends of tropical Pacific SLP gradient, SST and SLP
pattern from observation and reanalyses. (A) Time series of east (4.74◦S−4.74◦N,
211.47◦E−231.61◦E) minus west (4.74◦S−4.74◦N, 128.39◦E− 151.05◦E) tropical Pacific
SLP. Black lines represent HadSLP2; red lines represent NCEP/NCAR (R1) reanalysis;
green lines represent CFSR reanalysis; purple lines represent ERA-Interim reanalysis; blue
lines represent JRA55 (which ends in 2013) and orange lines represent MERRA2 reanalysis
(which starts in 1980). Also included is the least squares linear trend corresponding to each
data set. (B) Observed SLP trend (hPa century−1) pattern. Thin black lines represent
climatological SLP (hPa). Purple boxes denote the western and eastern tropical Pacific
regions used in (A). (C) Observed SST trend (◦C century−1) pattern based on HadSST3.
Symbols in (B, C) represent trend significance at the 90 % (diamond), 95% (X) or 99%
(+) confidence level, accounting for autocorrelation. Warm (cold) colors represent positive
(negative) trends.
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sign of the SLP gradient trend derived from CAM5 CMIP simulations (Figure 3.4A). About

two thirds of the CAM5 CMIP simulations yield WC weakening, and one third yield WC

strengthening. Individual trends from CAM5 CMIP realizations largely underestimate those

from observation and reanalyses, except CFSR. Thus, we find robust results across CAM5

AMIP simulations that are consistent with observations. This implies the real-world evolu-

tion of SSTs is important to the observed strengthening of the WC. HadSLP2 observation

shows that WC weakening dominants the bulk of the 20th century (1920-2000; Figure 3.5).

This weakening is captured by the CAM5 CMIP (CESM LENS) simulations, with a robust

ensemble mean trend at -0.25 hPa century−1. This is in an agreement with previous work

arguing the long-term WC weakening is a greenhouse gas (GHG) forced response (Vecchi

et al., 2006; Power & Kociuba, 2011b). This also implies that the effect of GHG warming is

not the major cause of recent WC strengthening, which may be counteracted by the natural

variability.

We also conducted the same analysis with CAM5 simulations over the shorter

period−1979 to 2008, and similar results are obtained (Figure 3.6). WC strengthening is

simulated from CAM5 AMIP, with an ensemble mean trend of 2.32 hPa century−1, nearly

the same as that over the longer period (Table 3.3 & Figure 3.6A). The SLP trend patterns in

CAM5 AMIP also resembles a La Niña-like pattern, consistent with that from observations

(Figure 3.6C). CAM5 CMIP, however, yields a much smaller and negative ensemble mean

trend at −0.16 hPa century−1(Table 3.3, Figure 3.6B & D). A wider distribution of CAM5

CMIP5 trends also exists, ranging from −2.75 to 2.5 hPa century−1. 45% of CAM5 CMIP
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Figure 3.3: 1979-2014 CAM5 AMIP and CAM5 CMIP (CESM LENS) ensemble
mean SLP trends. Left panel (A, C) CAM5 AMIP and right panel (B, D) CAM5 CMIP.
(A, B) time series of east minus west tropical Pacific SLP gradient. Gray shading represents
uncertainty across realizations, estimated as twice the standard error. Also included is the
least squares linear trend corresponding to each data set. (C, D) SLP trend (hPa century−1)
pattern. Purple boxes denote the western and eastern tropical Pacific regions used in (A,
B). Symbols in (C, D) represent trend significance at the 90 % (diamond), 95% (X) or
99% (+) confidence level, accounting for autocorrelation, and thin black lines represent
climatological SLP (hPa). Warm (cold) colors represent positive (negative) SLP trends.
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Figure 3.4: Histogram of tropical Pacific SLP gradient trends. Trends based on (A)
1979-2014 CAM5 simulations, (B) 1979-2008 CMIP5 simulations and (C) 1979-2014 CAM5
UFSST and FFST simulations. Blue bars represent trends from CMIP simulations in (A,
B) and unforced SST component (UFFST) in (C). Red bars represent trends from AMIP
simulations in (A, B) and forced SST component (FSST) in (C). Dash lines represent trends
from ensemble mean of AMIP/UFSST (blue) and CMIP/FSST (red) simulations. In (A),
stars represent trends from observation (black), NCEP/NCAR (R1) (red), JRA55 (orange),
MERRA2 (gold), CFSR (olivegreen) and ERA-Interim (light green) reanalysis. Unis is hPa
century−1.
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Figure 3.5: 1920-2000 trends of tropical Pacific SLP gradient from observation
and CAM5 CMIP (CESM LENS) ensemble mean. Time series of east minus west
tropical Pacific SLP. Black lines represent HadSLP2; red lines represent CAM5 CMIP
(CESM LENS) ensemble mean. Gray shading represents uncertainty across realizations,
estimated as twice the standard error. Also included is the least squares linear trend corre-
sponding to each data set.
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realizations yield positive trends and 55% yield negative trends (Figure 3.7A). Thus, similar

to observations, CAM5 simulations yield similar results over both time periods, although

WC strengthening is less statistically significant over the 1979-2008 time period.

Results based on 1979-2008 CAM5 simulations are further supported by those

from CMIP5 (Figure 3.8). CMIP5 AMIP yields a positive ensemble mean trend nearly

as large as that from observations, at 3.1 hPa century−1, although it is not significant at

the 90% confidence level (Table 3.3 , Figure 3.8A & C). All CMIP5 AMIP simulations

yield WC strengthening, ranging from 1.75 to 4.25 hPa century−1, which agrees well with

the observed trends (Figure 3.8B). In contrast, a small negative CMIP5 CMIP ensemble

mean trend is obtained at −0.15 hPa century−1 (Table 3.3 , Figure 3.8B & D) and 73% of

these realizations depict WC weakening (Figure 3.8B). Therefore, similar to CAM5 AMIP,

CMIP5 AMIP simulates WC strengthening that agrees with observations, while CAM5

CMIP and CMIP5 CMIP do not. Robust results from both CAM5 and CMIP5 simulations

over the shorter time period provide additional evidence that WC intensification is related

to real-world SST variations, rather than anthropogenic emissions.
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Figure 3.6: 1979-2008 CAM5 AMIP and CAM5 CMIP (CESM LENS) ensemble
mean SLP trends. Left panel (A, C) CAM5 AMIP and right panel (B, D) CAM5 CMIP.
(A, B) time series of east minus west tropical Pacific SLP gradient. Gray shading represents
uncertainty across realizations, estimated as twice the standard error. Also included is the
least squares linear trend corresponding to each data set. (C, D) SLP trend (hPa century−1)
pattern. Purple boxes denote the western and eastern tropical Pacific regions used in (A,
B). Symbols in (C, D) represent trend significance at the 90 % (diamond), 95% (X) or
99% (+) confidence level, accounting for autocorrelation, and thin black lines represent
climatological SLP (hPa). Warm (cold) colors represent positive (negative) SLP trends.
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Figure 3.7: 1979-2008 Histogram of tropical Pacific SLP gradient trends. 1979-
2008 trends from (A) CAM5 simulations and (B) CAM5 UFSST and FFST simulations.
Blue bars represent trends from CMIP simulations in (A) and CAM5 simulations driven
by the unforced SST component (UFFST) in (B). Red bars represent trends from AMIP
simulations in (A) and CAM5 driven by the forced SST component (FSST) in (B). Dashed
lines represents the corresponding ensemble mean trend. Unit is hPa century−1.
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Figure 3.8: 1979-2008 CMIP5 AMIP and CMIP ensemble mean SLP trends.
Left panel (A, C) CMIP5 AMIP and right panel (B, D) CMIP5 CMIP. (A, B) time series
of east minus west tropical Pacific SLP for. Gray shading represents uncertainty across
realizations, estimated as twice the standard error. Also included is the least squares linear
trend corresponding to each data set. (C, D) SLP trend (hPa century−1) pattern. Purple
boxes denote the western and eastern tropical Pacific regions used in (A, B). Symbols in (C,
D) represent trend significance at the 90 % (diamond), 95% (X) or 99% (+) confidence level,
accounting for autocorrelation, and thin black lines represent climatological SLP (hPa).
Warm (cold) colors represent positive (negative) SLP trends.
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The real-world evolution of SSTs is composed of an unforced and a forced com-

ponent. The unforced SSTs are controlled by internal variability of SSTs, such as El Niño

Southern Oscillation (ENSO). The forced SSTs are driven by external forcing due to an-

thropogenic emissions, volcanic eruptions and solar radiation variations. We assume that

the observed SSTs can be decomposed into a forced (FSST) and unforced (UFSST) com-

ponent. 1979-2014 SLP changes based on CAM5 using the unforced and forced SSTs and

are shown in Figure 3.9 (Figure 3.10 shows 1979-2008). The CAM5 UFSST ensemble mean

yields a positive SLP gradient trend of ∼2.5 hPa century−1 over both time periods (Table

3.3). From 1979-2014, this trend is significant at the 95% significance level (Table 3.3).

Trends simulated from CAM5 UFSST fall in a narrow range of 2.34 to 2.7 hPa century−1

for both periods (Figure 3.4C & Figure 3.7B). The CAM5 UFSST ensemble mean trend

pattern resembles the observations over the tropical Pacific, with positive trends dominating

in the eastern tropical Pacific and negative trends prevailing in the western tropical Pacific

(Figure 3.10C & Figure 3.10C). In contrast, the CAM5 FSST ensemble mean yields weakly

negative and insignificant SLP gradient trends of −0.21 hPa century−1 for 1979-2014 and

−0.09 hPa century−1 for 1979-2008 (Table 3.3 , Figure 3.10C & Figure 3.10C). All CAM5

FSST SLP gradient trends yield WC strengthening and exhibit a relatively wider distribu-

tion than those based on CAM5 UFSST, with a range of −0.3 to −0.09 hPa century−1 for

both periods (Figure 3.4C & Figure 3.7B). The corresponding 1979-2014 SST trend pattern

from these simulations were examined by (Figure 3.11; Allen & Kovilakam, 2017b). A cold

ENSO-like SST trend pattern is associated with UFSST (Figure 3.11B), consistent with the

observed SST trend pattern (Figure 2.1C & Figure 3.11A). However, a spatially uniform
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warming pattern is produced by FSST (Figure 3.11C). Thus, CAM5 UFSST captures the

observed WC intensification. It suggests the recent intensification of the Walker Circulation

is largely due to natural SST variations, primarily due to a La Niña-like SST pattern.

3.4 Summary

Through observations, multiple reanalyses and climate model simulations, we have

showed the importance of real-world SST evolution to recent intensification of the Walker

Circulation. Since 1979, observations and reanalyses yield positive SLP gradient trends over

the equatorial Pacific, suggesting an intensified Walker Circulation. CAM5 atmosphere-only

(AMIP) simulations also simulate significant strengthening of the SLP gradient over trop-

ical Pacific, while CAM5 coupled atmosphere-ocean (CMIP) models yield relatively small,

negative ensemble mean trends. A large range of of trends−including both positive and

negative−is also found with CAM5 CMIP simulations. CMP5 AMIP and CMIP5 CMIP

simulations yield similar results over a shorter time period (1979-2008), with CMIP5 AMIP

simulations capturing the observed strengthening of the Walker Circulation, though not

statistically significant. These results imply that the real-world evolution of SSTs is impor-

tant for the observed intensification of the Walker Circulation. Note that the observed WC

trend is not captured by either AMIP or CMIP simulations. Furthermore, the range of WC

trends from AMIP simulations does not overlap that from CMIP. This suggests that models,

particularly the coupled ocean atmosphere models, tend to underestimate the strength of

tropical interdecadal SST variability. Given a sufficiently large ensemble of CMIP simula-

tions, the observed value should at least be within the tail of the simulated distribution,
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but this is not the case. Therefore, CMIP may be able to accurately simulate the long-

term mean response to anthropogenic perturbations, but may not be able to simulate the

strength of the interdecadal variability in tropical SST and WC intensity. Underestimating

decadal variability may produce a response with a narrow spread around the mean value

and a potential underestimation of extremes at the regional scale.

Idealized experiments were conducted with CAM5, to isolate the forced and un-

forced component of real-world SST revolution. Robust results are obtained from simula-

tions driven by the unforced SSTs, where a significant strengthening of the Walker Circula-

tion is obtained. UFSST resembles the observed SSTs, and in particular, the La Niña-like

SST pattern over the same time period (Allen & Kovilakam, 2017b). This further implies

the unforced component of real-world SST evolution is the dominant driver of the recent

intensification of the Walker Circulation. Since 1979, natural SST variability has played

a larger role in long-term evolution of the WC than anthropogenic emissions, contrary to

that over the entire 20th century.
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Figure 3.9: 1979-2014 ensemble mean SLP trends from idealized AMIP-type
experiment with CAM5 models. Left panel (A, C) CAM5 UFSST and right panel (B
,D) CAM5 FSST. (A, B) time series of east minus west tropical Pacific SLP, including the
linear trend. Gray shading represents uncertainty across realizations, estimated as twice the
standard error. Also included is the least squares linear trend corresponding to each data set.
(C, D) SLP trend (hPa century−1) pattern. Purple boxes denote the western and eastern
tropical Pacific regions used in (A, B). Symbols in (C, D) represent trend significance at the
90 % (diamond), 95% (X) or 99% (+) confidence level, accounting for autocorrelation, and
thin black lines represent climatological SLP (hPa). Warm (cold) colors represent positive
(negative) SLP trends.
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Figure 3.10: 1979-2008 ensemble mean SLP trends from idealized AMIP-type
experiment with CAM5. Left panel (A, C) CAM5 UFSST and right panel (B, D) CAM5
FSST. (A, B) time series of east minus west tropical Pacific SLP, including the linear trend.
Gray shading represents uncertainty across realizations, estimated as twice the standard
error. Also included is the least squares linear trend corresponding to each data set. (C, D)
SLP trend (hPa century−1) pattern. Purple boxes denote the western and eastern tropical
Pacific regions used in (A, B). Symbols in (C, D) represent trend significance at the 90
% (diamond), 95% (X) or 99% (+) confidence level, accounting for autocorrelation, and
thin black lines represent climatological SLP (hPa). Warm (cold) colors represent positive
(negative) SLP trends.
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Figure 3.11: 1979-2014 obseved SST trends. (A) Hadley Centre observed SST trends;
(B) the forced component, estimated from the ensemble mean of the CMIP5 20th century
all forcing experiments, combined with RCP4.5; (C) the unforced component, which is
estimated by removing the forced SST trend from the observed SST at each grid point.
Trend symbols represent significance at the 90 % (diamond), 95% (X) or 99% (+) confidence
level, accounting for autocorrelation. Units are K decade−1.
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Chapter 4

An Implicit Air Quality Bias due

to the State of Pristine Aerosol

4.1 Introduction

Clean air is a key trans-boundary resource needed to sustain ecosystems and human

societies, yet air pollution remains a common threat to human health (Shaddick, Thomas,

Mudu, Ruggeri, & Gumy, 2020). Epidemiological studies have demonstrated that exposure

to air pollutants over both short and long time scales is associated with disease, including

cardiovascular disease and lung cancer (Brunekreef & Holgate, 2002; Pope III & Dockery,

2006; Apte, Marshall, Cohen, & Brauer, 2015; World Health Organization, 2016; Burnett

et al., 2018; Landrigan et al., 2018). Generally, air quality is quantified by measurements

and monitoring of the surface concentrations of various air pollutants, including particulate

matter (PM), ozone, nitrogen oxides and sulfur dioxide. The World Health Organization
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(WHO) has established air quality guidelines based on such ground-level air pollutant mon-

itoring coupled with epidemiological studies (World Health Organization, 2006). The end

results are spatially uniform thresholds recommended for specific air pollutants, like PM2.5-

fine particulate matter with diameter less than 2.5 µm, for which the WHO recommends

an annual mean PM2.5 ≤ 10 µg m−3 (World Health Organization, 2006). Moreover, many

countries look to the WHO recommendations in order to establish their own national stan-

dards and goals for air quality. For example, the European Environment Agency (EEA)

recommends an annual mean PM2.5 threshold of 25 µg m−3 (European Council Directive,

2008), the US Environmental Protection Agency (EPA) uses a threshold of 12 µg m−3 (US

EPA, 2016), and China uses a threshold of 35 µg m−3 everywhere except locations that

qualify for special protections, such as national parks (Ambient Air Quality Standards, GB

3095-2012, 2012). Thus, the more stringent WHO recommendations serve as a benchmark

for improving air quality via anthropogenic emission reductions, regulations, and abatement

measures. However, none of these air quality metrics directly accounts for the background

of naturally occurring pollutants.

Much of the science (i.e., ground monitoring and epidemiological studies) behind

establishing air quality metrics (i.e., WHO air quality guidelines) are or were exclusively

conducted in economically developed regions where natural aerosol levels are generally

low. Since industrialization the composition of atmospheric aerosols and their sources have

changed significantly, particularly over economically developed regions, from the dominance

of natural (pristine) aerosols during the pre-industrial era (with minimal contribution from

early human activities) to a larger contribution from anthropogenic aerosols during the in-
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dustrial era (Hoesly et al., 2018). Now, over economically developed regions, PM2.5 and

other pollutants largely originate from combustion sources, including from the transporta-

tion (e.g., ships, trucks, cars) and energy sectors (e.g., coal and wood burning; World Health

Organization, 2006). While this implicitly suggests that human health risks from polluted

air are primarily associated with anthropogenic aerosols, air quality guidelines generally

discount any contributions from natural aerosols, including dust and sea salt. However,

air pollution can be or is worse over economically developing regions where natural aerosol

levels can be high (e.g., Africa; Petkova et al., 2013), and anthropogenic pollution may con-

volve to disguise the contribution of pristine aerosol to air quality. In fact, natural aerosol,

like dust, is the most dominant aerosol species in the atmosphere, constituting 70% of the

global aerosol mass burden and 25% of the aerosol optical depth (AOD; Kinne et al., 2006).

Given that current air quality guidelines mainly target anthropogenic emissions, natural

contributions to air pollution may remain overlooked.

The impacts of human emissions since industrialization on the Earth system have

been well recognized in climate research. Most prior work has focused on assessing changes

in anthropogenic aerosol radiative forcing over the industrial era by quantifying pre-industrial

aerosol radiative properties (Carslaw et al., 2013; Hamilton et al., 2014; Carslaw et al., 2017;

S. Solomon et al., 2007; Stocker, 2014; Watson-Parris et al., 2020). No effort has attempted

to assess the impact of pristine aerosols on present-day air quality. Large community-wide

modeling initiatives like the Coupled Model Intercomparison Project (CMIP) run standard

pre-industrial control (PIC) simulations to model pre-industrial atmospheric conditions.

Here we use model output from CMIP6 (Eyring et al., 2016) and CMIP5 (Taylor, Stouffer,
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& Meehl, 2012b) to construct a view of pristine air quality, specifically PM2.5, and assess its

contribution to present-day air quality. Direct PM2.5 observations during the pre-industrial

period are unavailable. Thus, in order to assess the quality of PIC simulations, models’

representations of present-day (1980-2014) PM2.5 are examined relative to a suite of obser-

vational data sets and reanalyses. The findings offer insight into how the pristine aerosol

background might inform current air quality metrics. This chapter is organized as follows:

Data and Methods are described in Section 4.2; Section 4.3 discusses the results and Section

4.4 summarizes the conclusions.

4.2 Data

Constructing an understanding of pre-industrial air quality utilizing the tools of

CMIP is a complex exercise that must be constrained by assessments of the models’ efficacy

over time periods during which observational data exists. Assessing the impact on popu-

lations involves another layer of geographically tagged data. Thus, in advance of detailing

the air quality aspects, short descriptions of the data sources and utilization methods are

given with significant details added to the Supplementary Materials for interested readers.

4.2.1 Model Data

Monthly data from the PIC simulations generated by 12 coupled ocean-atmosphere

CMIP6 models are used Table 4.2 (Eyring et al., 2016). Most models include interactive

tropospheric chemistry and aerosol schemes. Data at the lowest model level is extracted

to represent surface conditions. The first 50 years of the PIC simulations (which is enough
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to account for decadal variability) are used to generate global maps of pristine aerosol.

Forcing levels of anthropogenic aerosol, greenhouse gases and solar radiation are fixed to

1850 levels. Historical (HIS) simulations from the same CMIP6 models are used to examine

their ability to simulate present-day (1980-2014) PM2.5. Anthropogenic (greenhouse gas

and anthropogenic aerosol) and natural (solar irradiance and volcano activities) forcings

over the historical periods are used.

Of the 12 CMIP6 models, five individually−GFDL-ESM4, MIROC-ES2L, NorESM2-

LM, GISS-E2-1-G and MRI-ESM2-0, directly archive output PM2.5 using their own model-

specific methodology. They all contain black carbon (BC), sulfate (SO4), organic matter

(OM), dust (DU) and sea salt (SS). Archived PM2.5 from GFDL-ESM4 and GISS-E2-1-G

also include nitrate and ammonium.

In GFDL-ESM4 (Krasting et al., 2018; Zhao et al., 2018a, 2018b; Held et al., 2019),

all aerosols are lognormally distributed, except dust and SS, which include five size bins

from 0.1 to 20 µm in diameter. Emitted dust is discretized based on the size of tracers with

a constant proportion in each bin (in diameter, 0.1-2 µm, 5%; 2-4 µm,15%; 4-6 µm, 30%;

6-12 µm, 27%; and 12-20 µm, 23%)(Zhao et al., 2018b). PM2.5 is estimated as: 0.96×SOA

+ DU1 + 0.25×DU2 + 0.97×SO4 + SS1 + SS2 + 0.167×SS3 + 0.995×( BCPHOB +

BCPHIL ) + 0.96×( OMPHOB + OMPHIL) + 0.954×NO3 + 0.973×NH4, where SOA

is secondary organic aerosol; PHOB refers to hydrophobic and PHIL refers to hydrophilic.

Numbers after aerosol species refer to the size bin (e.g., DU1 refers to the smallest dust size

bin).
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Table 4.1: CMIP6 models.
Model Resolution Aerosol scheme Chemistry scheme References
BCC-
ESM1
(ESM)

2.813◦ ×
2.813◦

Mass-based aerosol
scheme. Prescribed
stratospheric aerosols.

CAM-Chem (based on
MOZART). Tropospheric
chemistry only. Prescribed
DMS emissions.

(Wu et al.,
2019, 2020)

CESM2-
WACCM
(ESM)

0.9◦ × 1.25 ◦ Four-mode version of the
Modal Aerosol Module
(MAM4) with a more com-
prehensive SOA approach
using the Volatility Basis
Set scheme (SOA-VBS)

MOZART-based TSMLT1,
covering troposphere,
stratosphere, mesosphere
and lower thermosphere

(Tilmes et al.,
2019; Danaba-
soglu et al.,
2020; Emmons
et al., 2020)

CNRM-
ESM2-1
(ESM)

1.4◦ × 1.4 ◦ Mass-based
TACTIC v2scheme for
tropospheric aerosols.

No representation of lower
tropospheric (below 560
hPa) chemistry.

(Séférian et al.,
2019; Michou
et al., 2020)

GFDL-
CM4
(ESM)

1.0◦ × 1.25 ◦ Bulk mass-based scheme Interactive troposphere-
stratosphere with simpli-
fied chemical production
of sulfate

(Held et al.,
2019), (Zhao
et al., 2018a,
2018b)

GFDL-
ESM4
(ESM)

1.0◦ × 1.25 ◦ Bulk mass-based scheme Interactive troposphere-
stratosphere

(Krasting et
al., 2018; Held
et al., 2019;
Zhao et al.,
2018a, 2018b)

GISS-E2-1-
G⋆(GCM)

2.0◦ × 2.5 ◦ Mass based One-Moment
Aerosol (OMA) scheme

Coupled stratosphere-
troposphere and Carbon
Bond Mechanism 4 (CBM-
4) chemical mechanism

(Rind et al.,
2020; Kelley et
al., 2020)

HadGEM3-
GC31-LL
(ESM)

1.25◦ × 1.875 ◦ GLOMAP-Mode micro-
physical aerosol scheme
with 2-moment, 5-mode
simulating both mass
and number. Mass-based
CLASSIC bin scheme for
dust.

UKCA simplified
stratosphere-troposphere
chemistry scheme with
prescribed monthly-mean
climatologies of oxidants.

(K. D.Williams
et al., 2018;
Mulcahy et al.,
2020)

MRI-
ESM2-0
(ESM)

1.86◦ × 1.875 ◦ MASINGAR mk-2r4c MRI Chemistry Climate
Model version 2.1 (MRI-
CCM2.1) covering tropo-
sphere and middle atmo-
sphere.

(Yukimoto et
al., 2019)

MIROC-
ES2L
(ESM)

2.813◦ ×
2.813◦

SPRINTAS simulating
tropospheric aerosol mass
mixing ratios and optical
properties.

No atmospheric chemistry
scheme, only sulfur chem-
istry in aerosol scheme.

(Hajima et al.,
2020)

UKESM1-
0-LL
(ESM)

1.25◦ × 1.875 ◦ GLOMAP-Mode micro-
physical aerosol scheme
with 2-moment, 5-mode
simulating both mass
and number. Mass-based
CLASSIC bin scheme for
dust.

UKCA full stratosphere-
troposphere chemistry
scheme. Interactive pho-
tolysis

(Sellar et al.,
2019; Mulcahy
et al., 2020;
Archibald et
al., 2020)
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Table 4.1: CMIP6 models (cont.)
Model Resolution Aerosol scheme Chemistry scheme References
NorESM2-
MM (ESM)

0.9◦ × 1.25 ◦ CAM5-Oslo with 4 modes
based on MAM in CAM5

Simplified chemistry for
use in aerosol scheme.
Other fields prescribed.

(Seland et al.,
2020)

NorESM2-
LM (ESM)

1.9◦ × 2.5 ◦ CAM5-Oslo with 4 modes
based on MAM in CAM5

Simplified chemistry for
use in aerosol scheme.
Other fields prescribed.

(Seland et al.,
2020)

⋆: We used physics version 3 simulations.

For GISS-E2-1-G, the physics version 3 model includes an interactive mass-based

One-Moment Aerosol (OMA)-version module (Rind et al., 2020; Kelley et al., 2020). In the

OMA module, SS has two distinct size classes-fine mode with dry radius from 0.1 to 1µm

with dry effective radius of 0.44 µm, and coarse mode with dry radius from 1 to 4 µm with

dry effective radius of 1.7 µm (Tsigaridis, Koch, & Menon, 2013). For dust, a dust module

with 5 classes is used, including a clay and 4 silt classes, with diameters ranging from 0.1

to 32 µm (clay: 0.1-2 µm where clay dust mass makes up 8% of all dust mass; silt class 1:

2-4 µm). PM2.5 is estimated as: 0.96×SOA + DU1 + 0.25×DU2 + 0.97×SO4 + SS1 +

0.25×SS2 + 0.995×( BCPHOB + BCPHIL ) + 0.96×OM + 0.954×NO3 + 0.973×NH4.

For MRI-ESM2-0 (Yukimoto et al., 2019), SS and dust are discretized into 10

bins ranging from 0.1 to 20 µm in diameter and the first 6 bins (from 0.1 to 2.16 µm

in diameter) mostly cover PM2.5. Size distributionS of other aerosols are assumed to be

lognormal. Sulfate is assumed to be sulfate nitrate (NH4)2SO4 and the mass is scaled based

on molecular weight. PM2.5 is estimated as: (132.1369/96.06)×SO4 + BC + OA + SS1 +

SS2 + SS3 + 0.988×SS4 + 0.901×SS5 + 0.387×SS6 + DU1 + DU2 + DU3 + 0.988×DU4

+ 0.901×DU5 + 0.387×DU6.

79



For MIROC-ES2L (Hajima et al., 2020), emitted dust is discretized into 10 bins

from 0.1 to 10 µm in radius and the first 6 bins (from 0.1 to 3.16µm in radius) include

PM2.5 (Takemura et al., 2000). Sea salt is partitioned into 10 effective radii from 0.05 to

10 µm and lognormally distributed with a standard deviation of 2.0. BC is hydrophobic

and sulfate is hydrophilic. PM2.5 is estimated as: 0.97×SO4 + BC + OA + SS1 + SS2

+ SS3 + 0.988×SS4 + 0.901×SS5 + 0.387×SS6 + DU1 + DU2 + DU3 + 0.988×DU4 +

0.901×DU5 + 0.387×DU6.

For NorESM2-LM (Seland et al., 2020), PM2.5 is calculated online during the

simulation. The initial size distributions of all aerosols are lognormal. The mixture process

e.g., condensation and coagulation leads to changes in compositions and shapes of the

background modes, leading to the size distributions that are no longer lognormal(Kirkev̊ag

et al., 2018). The fraction of each mode to PM2.5 is not determinable.

Monthly surface concentrations from PIC and HIS simulations from 10 coupled

ocean-atmosphere CMIP5 models (Taylor et al., 2012b) are also analyzed (Table 4.2).

CMIP5 historical simulations are extended to 2014 following the Representative Carbon

Pathway (RCP) 8.5. CMIP5 CSIRO-Mk3.6 doesn’t archive sea salt. CMIP5 pre-industrial

control simulations use aerosol emissions fixed at 1850-year forcing levels. Most models also

use 1850-year forcing levels of anthropogenic aerosol, greenhouse gas and solar radiation.

Only GFDL-CM3 and GFDL-ESM2M use 1860-year forcing levels. Climate conditions and

aerosol emissions are similar between 1850 and 1860 (Lamarque et al., 2010).

The surface mass concentration ([sconc]) of PM2.5 and other aerosol species in all

CMIP6 models is derived from the corresponding archived mass mixing ratios (mmr), using
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the equation [sconc] = MairP
RT

×mmr, where Mair is the average molar mass of air defined

as 28.96 g mol−1 for dry air, R is the gas constant 8.314m3Pa K−1 mol−1, P is surface

pressure and T is surface temperature.

All model analyses are based on multi-model mean (MMM) annual means. To

weigh each model equally in the MMM, model means are calculated by averaging over

all realizations for a given model. The number of realizations for each model varies and

are described in Table 4.2 for CMIP6 and Table 4.2 for CMIP5. All data are spatially

interpolated to 1◦ × 1◦ resolution using bilinear interpolation. The climatological difference

in the MMM PM2.5 relative to observations and reanalyses is computed, as is the 90%

confidence interval of the difference, which is estimated by t×SD√
n−1

where SD is the standard

deviation of the differences across models, n is number of models and t is the corresponding

t-value at a 90% significance level with (n − 1) degrees of freedom. We also estimate the

model agreement on the sign of the climatological difference of MMM PM2.5 relative to

observations and reanalyses. The model agreement on the sign of the difference at each

grid box is estimated by the percentage of the number of models that yield a positive

(model overestimate) or negative (model underestimate) difference. For instance, a 70%

model agreement on model overestimation of annual mean PM2.5 relative to MERRA−2

means that 70% of the individual CMIP6 models overestimate annual mean PM2.5 relative

to MERRA−2. A percentage larger than 66% (≥ 8 models in CMIP6 and ≥ 7 models in

CMIP5) represents strong model agreement.
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Table 4.2: CMIP5 models.
Model Resolution Aerosol scheme Chemistry scheme References
CanESM2
(ESM)

2.8◦× 2.8◦ Interactive Interactive aerosol chem-
istry (gas-phase and
aqueous-phase chemistry)

(Arora et al.,
2011)

CSIRO-
Mk3.6
(GCM )

1.875◦× 1.875◦ Mass-based interactive
aerosol scheme

Not implemented (Rotstayn et
al., 2012)

GFDL-
CM3
(ESM)

2.0◦× 2.5◦ Bulk mass-based scheme A fully coupled
stratosphere-troposphere
chemistry scheme

(Donner et al.,
2011)

GFDL-
ESM2M
(ESM)

2.813◦× 2.813◦ Semi-interactive mass-
based scheme

Not implemented (Dunne et al.,
2012)

GISS-E2-
H⋆ (GCM)

2.0◦× 2.5◦ Interactive stratosphere-
troposphere

G-PUCCINI, fully interac-
tive for p3

(Schmidt et al.,
2006)

IPSL-
CM5A-LR
(ESM)

1.9◦× 3.75◦ Semi-interactive tropo-
sphere

Not implemented (Dufresne et
al., 2013)

IPSL-
CM5A-MR
(ESM)

1.25◦× 2.5◦ Semi-interactive tropo-
sphere

Not implemented (Dufresne et
al., 2013)

IPSL-
CM5B-LR
(ESM)

1.9◦× 3.75◦ Semi-interactive tropo-
sphere

Not implemented (Dufresne et
al., 2013)

MIROC-
ESM
(ESM)

1.4◦× 1.8134◦ SPRINTARS Not implemented (S. Watanabe
et al., 2011)

MIROC-
ESM-
CHEM
(ESM)

2.8◦× 2.8 ◦ SPRINTARS CHASER (S. Watanabe
et al., 2011)

⋆: We used physics version 3 simulations.

4.2.2 Reanalyses and Observational Data Sets

To evaluate the CMIP model skill in simulating present-day PM2.5, several reanal-

yses and observational data sets at the surface level are used. Reanalyses include 1980-

2014 monthly MERRA−2 products (Gelaro, McCarty, Suárez, et al., 2017) and 2003-2014

monthly PM2.5 from the Copernicus Atmosphere Monitoring Service (CAMS; Inness et al.,
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2019; Akritidis et al., 2020). Observational data sets include 2000-2009 ground-based PM2.5

measurements from the Global Aerosol Synthesis and Science Project (GASSP; Reddington

et al., 2017) and 1998-2014 satellite based PM2.5 estimates (van Donkelaar, Martin, Brauer,

& Boys, 2015; Van Donkelaar et al., 2016). CAMS reanalysis and both observational data

sets archive PM2.5 directly. A summary of reanalyses and observational data sets is given

in Table 4.3.

PM2.5 from both observational data sets includes black carbon, organic aerosol,

sulfate, sea salt, mineral dust, ammonium and nitrate. In contrast, archived PM2.5 from

CAMS and PM2.5 extracted from MERRA−2 (which doesn’t archive PM2.5 and is estimated

following the reference method discussed in Section “Approximation method of PM2.5”) lack

ammonium and nitrate. For satellite based PM2.5 estimates, two types of PM2.5 estimates

are available: one that includes all aerosol species−anthropogenic and natural (sea salt

and dust), and one that includes only anthropogenic species. We estimate the fine dust

by subtracting PM2.5 estimates without natural aerosols from the PM2.5 estimates with

all aerosol species. This may lead to overestimation of continental fine dust, particularly

over coastal regions. Our implicit assumption is that fine dust is the dominant natural

aerosol species over land. The satellite based estimates contain further caveats which involve

underestimation of surface PM2.5, for example over bright continental surfaces, as a result

of errors and limitations in satellite retrieved AOD products (van Donkelaar et al., 2015).

For all model-data comparisons, we use the time period of the data (either reanal-

yses or observational data). PM2.5 from the two reanalyses and the satellite based estimates

are regridded using bilinear interpolation to 1◦ × 1◦ (as with CMIP5/6). For GASSP, the
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Table 4.3: Reanalyses and Observations. Global fine dust factor is estimated as the
spatial and temporal average of the archived fine dust in MERRA−2 and CAMS divided
by the corresponding archived total dust. Global land fine dust factor is given in the
parenthesis.“n/a” denotes unavailable.
Data Temporal

Coverage
Aerosol mechanism Aerosol module Archived

Species
Fine
dust
fraction

MERRA−2 1980-2014 Integrated multiple
satellite AOD measure-
ments (AVHRR, MODIS,
MISR) and ground-based
AERONET measure-
ments, assimilated by the
GEOS-5 model

GOCART aerosol module.
DU is partitioned into five
size bins from 0.1 to 10
µm in particle radius. SS
is simulated in five size
bins from 0.03 to 10 µm
in radius. Organic matter
(OM) and BC are included
as both hydrophobic and
hydrophilic components.

BC, SO4, OM,
SS, fine SS,
DU, fine DU

0.32
(0.3)

CAMS 2003-2014 Assimilated by IFS(CB05)
model, integrated multi-
ple satellite AOD measure-
ments (MODIS, Envisat,
Aura, Metop-A/B, NOAA-
14/16/17/18/19).

Hybrid bulk-bin aerosol
scheme. DU is partitioned
into three radius ranges,
including 0.03-0.55µm
(DU1), 0.55-0.9µm (DU2)
and 0.9-20µm (DU3).
Archived fine dust is es-
timated as (DU1+ DU2).
SS is partitioned into
three size ranges, including
0.03-0.5µm (SS1), 0.5-5µm
and 5-20µm (SS2) in
particle radius. Archived
fine SS is estimated as
(SS1+0.5×SS2)/4.3 (di-
viding a factor of 4.3 is
to convert to dry mass).
OM and BC are included
as two types-hydrophobic
and hydrophilic.

BC, SO4, OM,
SS1, SS2, DU1,
DU2, DU2 and
PM2.5

0.8
(0.72)

Satellite
based
surface
PM2.5

esti-
mates

1980-2014 Integrated from MODIS
satellite AOD products,
assimilated by GEOS-
CHEM, constrained by
observations (CALIPSO,
AERONET and ground
measurement from GDB)

n/a PM2.5 with
aerosol species
from an-
thropogenic
(ammonium
sulfate, ammo-
nium nitrate,
primary and
secondary
OA and BC)
and natu-
ral (SS and
DU) sources
and PM2.5

with aerosol
species from
anthropogenic
sources

n/a
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Table 4.3: Reanalyses and Observations (cont.)
Data Temporal

Coverage
Aerosol mechanism Aerosol module Archived

Species
Fine
dust
fraction

Ground-
based
measure-
ments
(GASSP)

2000-2009 Ground-station measure-
ments collected from the
Interagency Monitoring
of Protected Visual En-
vironments (IMPROVE)
network, National Air
Pollution Surveillance
Program (NAPS) in North
America, the European
Monitoring and Evalu-
ation Program (EMEP)
and Asia-Pacific Aerosol
Database (A-PAD)

n/a PM2.5 n/a

sites aren’t distributed evenly in space and are clustered over some areas, and thus model

data is interpolated onto the locations of sites.

4.2.3 Population Data

The human population impacted by pristine aerosol pollution is estimated using

the Gridded Population of the World Version (GPWv4) with raster cell (Center for Interna-

tional Earth Science Information Network-CIESIN-Columbia University, 2018). It provides

estimates of the population on fine grid resolutions of 1◦ × 1◦ with fixed latitudinal and

longitudinal distance at ≈110 km. This data is re-gridded to match our spatial coordinates.

At the time it was accessed (January 2020), the most up-to-date world population data

available was from 2015. The total world population estimated by GPWv4 in 2015 was

about 7.32 billion.
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4.3 Approximation Method of PM2.5

Unfortunately utilizing CMIP model output to map air quality parameters is com-

plicated because most models do not directly archive all of the fields of interest and those

that do use varying methodologies, as well as different aerosol species. For this study PM2.5

across all models is calculated using an approximation formula adapted from Fiore et al.

(2012) and Silva et al. (2013),

PM2.5 = BC + SO4 +OA+ 0.25 × SS + 0.1×DU (4.1)

that we refer to as the reference method. In the reference method, BC is black carbon;

SO4 is sulphate; OA is organic aerosol (including primary organic aerosol and secondary

organic aerosol if available); SS is sea salt; DU is dust. BC, SO4 and OA are assumed

to be ≤ 2.5 µm in diameter. We exclude nitrate and ammonium since most models do

not archive these two aerosol species. The reference method assumes that 1/10 (1/4) of

the total dust (sea salt) is within the 2.5 µm size range, which is referred to as fine dust

(fine sea salt), although this fraction is likely dependent on the aerosol schemes and size

distributions of each model. For the CMIP6 CNRM-ESM2-1, we obtain abnormally large

fine sea salt concentrations following the reference method. To account for the large sea

salt size range of up to 20 µm, a much smaller factor of ≈ 0.01 is used for this model (cf.,

Allen et al., 2020).

For these five models that directly archive PM2.5 as mentioned before, the refer-

ence method underestimates present-day archived PM2.5 over land (Figure 4.1). The global

land area-weighted average underestimation is −6.65 µg m−3, with a 90% uncertainty in-
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terval of ±4.16 µg m−3. Over dusty regions−which include Africa, the Middle East, eastern

and central Asia, northwest China (Taklamakan desert), southern Mongolia (Gobi desert),

and northwestern India (red-boxed areas in Figure 4.2a, which occupy 13.83% of global

land)−the underestimation is larger at -16.27±10.32 µg m−3. The underestimation bias

likely emerges for several reasons, including the aforementioned aerosol species variabil-

ity (e.g., some models include nitrate and ammonium aerosol, but this is not included in

the reference method) and different contributions from fine aerosols within the PM2.5 size

range−most notably dust.

Given that dust is the major component of PM2.5 over land, we further investigate

the credibility of the assumed dust contribution in the reference method. We compute a

temporally and spatially invariant fine dust factor as a time averaged, area-weighted mean

of the archived fine dust (that is dust aerosol within the PM2.5 size range) divided by the

archived total dust in two reanalyses (Table 4.3). The resulting fine dust factor is 0.32 over

the globe and 0.30 over global land in MERRA−2 (Figure 4.3; Table 4.3). For CAMS, the

corresponding fine dust factor is 0.80 over the globe and 0.72 over global land (Table 4.3).

Thus, the fine dust factor extracted from both reanalyses is significantly larger than the 0.1

assumed in the reference method.

According to the IPCC fourth Assessment (AR4), clay-sized dust (with diameter

less than 2µm) emissions (350 Tg yr−1) account for ≈20% of total dust emission (1800 Tg

yr−1; S. Solomon et al., 2007). Likewise, observed fine dust AOD, which describes the con-

tribution to scattering and absorption of radiation by fine dust, is fractionally ≈0.2 relative
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Figure 4.1: Evaluation of PM2.5 approximation method using CMIP6 models.
1980-2014 climatological PM2.5 difference (the estimated PM2.5 following the reference
method minus the archived PM2.5) in (a) GFDL-ESM4, (b) MIROC-ES2L, (c) NorESM2-
LM, (d) GISS-E2-1-G, (e) MRI-ESM2-0 and (f) multi-model mean (MMM). Non-stippled
differences in (a, b, c, d, e, f) are significant at the 90% confidence level, based on a stan-
dard t-test. Units in (a, b, c, d, e, f) are µg m−3. (g) shows model agreement (units of
percentage) on the sign of differences in (f). Red shading represents model overestimation
of PM2.5 or fine dust relative to that archived, and blue shading represents underestimation.
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Figure 4.2: Present-day evaluation of CMIP6 PM2.5 and fine dust relative to
MERRA−2. 1980-2014 climatological mean difference (CMIP6 MMM − MERRA−2) for
(a) PM2.5 and (c) fine dust. Both quantities are estimated using the reference method.
(b, d) shows CMIP6 model agreement (units of percentage) on the sign of differences in
(a, c), respectively. Red shading represents model overestimation of PM2.5 or fine dust
relative to MERRA−2, and blue shading represents underestimation. Non-stippled in (a,
c) are significant at the 90% confidence level based on a standard t-test. Units in (a, c)
are µg m−3. Red-boxed land areas in (a) indicate dusty regions, which include 13.83% of
global land area.
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Figure 4.3: Present-day MERRA−2 fine dust fraction. 1980-2014 climatological fine
dust fraction estimated using archived fine dust divided by total dust in MERRA−2.
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to total dust over dust source regions (Chung et al., 2016). Observationally constrained dust

size distributions and theoretical analyses assert that the clay-sized dust fraction is 0.043

(with a 95% confidence interval from 0.035 to 0.057; Kok, 2011; Kok et al., 2017). This

evidence implicitly suggests that the reference method’s fine dust factor of 0.1 falls within

a reasonable range. Given that models tend to overestimate fine dust (Kok, 2011; Kok

et al., 2017; Adebiyi & Kok, 2020) and that both reanalyses are model-based, it is likely

that MERRA−2 and CAMS have too large fine dust factors. Furthermore, if CMIP5/6

models underestimate total dust (and this also applies to the surface level; Adebiyi & Kok,

2020), and a fine dust factor of 0.1 is a reasonable approximation as previously argued, this

suggests fine dust computed with the reference method likely represents an underestima-

tion. Overall, we conclude that the reference method with a fine dust factor of 0.1 yields a

suitable and conservative representation of climatological PM2.5.

4.4 Results

4.4.1 Analysis of Present-day PM2.5

First we evaluate models’ credibility in simulating present-day PM2.5 relative to

multiple data sets. Analysis of model results compared to two reanalyses (MERRA−2 and

CAMS ) is discussed in Model versus Reanalyses Section, and the comparison with the

two observational data sets (satellite based estimates round-based measurements GASSP)

is described in Model versus Observational Data Sets Section.
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Model Versus Reanalyses Relative to MERRA−2, over most continents the CMIP6

MMM underestimates PM2.5 (Figure 4.2a). PM2.5, as well as fine dust, from models and

MERRA−2 reanalysis are estimated here using the reference method. CMIP6 underesti-

mation of PM2.5 also exhibits a high degree of model agreement (Figure 4.2b). We notice

that there are some limited regions where the CMIP6 MMM overestimates PM2.5 relative to

MERRA−2 but with low model agreement. Table 4.4 shows that global land area-weighted

average underestimation is -2.89±0.15 µg m−3. This underestimation bias is even larger

over dusty regions (red-boxed areas in Figure 4.2a), with a regional land area-weighted av-

erage difference of -3.39±2.55 µg m−3 (Table 4.4). This implies the importance of fine dust

to the PM2.5 bias. Consistently, the CMIP6 MMM underestimates fine dust relative to

MERRA−2, with global land and dusty region area-weighted biases of -0.87±0.85 µg m−3

and -2.41±2.28 µg m−3, respectively (Figure 4.2c & Table 4.4). Underestimation of fine dust

is also a robust result, with over 90% model agreement in most locations (Figure 4.2d).

We further evaluate CMIP6 fine dust from the reference method relative to the

archived MERRA−2 fine dust. We obtain a larger CMIP6 MMM fine dust underestimation

over almost all land with a global land area-weighted average difference of -7.21±0.85 µg m−3

(Table 4.4 & Figure 4a), with a high degree of model agreement (Figure 4b). As expected,

a larger bias exists over dusty regions, where the regional land area-weighted average differ-

ence is -18.78±2.28 µg m−3 (Table 4.4). As previously discussed (Section “Approximation

method of PM2.5” ), the fine dust factor extracted from MERRA−2 is ≈ 3 times as large

as the reference method’s 0.1 fine dust factor. This helps explain the larger fine dust un-

derestimation bias when archived MERRA−2 fine dust is used, as opposed to that based
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on the reference method.

Compared to CAMS, the CMIP6 MMM underestimates PM2.5 and fine dust, with

global land area-weighted average differences of -15.60±1.18 µg m−3 and -8.20±0.84 µg m−3,

respectively (Table 4.4 & Figure 4.5). We also find larger underestimation of PM2.5 and

fine dust over dusty regions, with corresponding regional land area-weighted average biases

of -27.63±2.56 µg m−3 and -20.57±2.25 µg m−3, respectively. The CMIP6 MMM underes-

timation of PM2.5 and fine dust over global land and dusty regions relative to CAMS is

larger than that relative to MERRA−2. As discussed in Section “Approximation method

of PM2.5”, this is supported by the much larger fine dust factor (0.72 over global land) in

CAMS relative to MERRA−2 (0.30 over global land).

Additionally, CMIP6 archived PM2.5 is compared to that in CAMS, as well as

MERRA−2 PM2.5 based on the reference method (Table 4.4), and we also find that models

underestimate present-day PM2.5. This further supports the assertion that models tend to

underestimate PM2.5.

Similar results are obtained from an identical analysis using 10 CMIP5 models

(Table 4.4 & Figure 4.6). Moreover, relative to the CMIP6 MMM underestimation, the

CMIP5 MMM generally yields larger underestimations of present-day PM2.5 and fine dust

when compared to all data sets (Table 4.4). A prior study has shown that CMIP5 models

underestimate dust emissions and transport processes (Evan, Flamant, Fiedler, & Doherty,

2014), consistent with our results. Furthermore, CMIP5 models include less developed

aerosol representations than CMIP6 models (Tables 4.2 & 4.2).
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Figure 4.4: Present-day evaluation of fine dust estimated from CMIP6 relative
to archived fine dust in MERRA−2. (a) 1980-2014 climatological mean difference
(CMIP6 MMM − MERRA−2) for fine dust. Fine dust in CMIP6 models is estimated us-
ing the reference method. From MERRA−2 archived fine dust is used. (b) Shows CMIP6
model agreement (units: percentage) on the sign of differences in (a). Red shading repre-
sents model overestimation of fine dust relative to MERRA−2, and blue shading represents
underestimation. Non-stippled in (a, c) are significant at the 90% confidence level based on
a standard t-test. Units in (a) are µg m−3.
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Figure 4.5: Evaluation of present-day CMIP6 PM2.5 relative to CAMS reanalysis.
2003-2014 climatological mean difference (CMIP6 MMM-CAMS) for (a) PM2.5 and (c) fine
dust. Both quantities in models are estimated using the reference method. (b, d) shows
CMIP6 model agreement (units of percentage) on the sign of the differences in (a, c),
respectively. Red shading represents model overestimation of PM2.5 or fine dust relative
to CAMS, and blue shading represents underestimation. Non-stippled differences in (a, c)
are significant at the 90% confidence level based on a standard t-test. Units in (a, c) are
µg m−3.
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Figure 4.6: Present-day evaluation of CMIP5 PM2.5 and fine dust relative to
MERRA−2. 1980-2014 climatological mean difference (CMIP5 MMM − MERRA−2) for
(a) PM2.5 and (c) fine dust. Both quantities are estimated using the reference method.
(e) is analogous to (c), but MERRA−2 is based on archived (actual) fine dust. (b, d, f)
shows CMIP6 model agreement (units of percentage) on the sign of differences in (a, c, e),
respectively. Red shading represents model overestimation of PM2.5 or fine dust relative to
MERRA−2, and blue shading represents underestimation. Non-stippled differences in (a,
c, e) are significant at the 90% confidence level based on a standard t-test. Units in (a, c,
e) are µg m−3.
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Model Versus Observational Data Sets When compared with the two observational

data sets, including 1998-2014 satellite based PM2.5 estimates (Figure 4.7) and 2000-2009

GASSP ground-based measurements (Figure 4.8), the models also generally underestimate

present-day PM2.5 and fine dust and the underestimation is generally larger over dusty

regions, supporting the results from MERRA−2 and CAMS (Table 4.4). However, there

are other uncertainties that may also contribute to model-measurement differences. For

example, PM2.5 from the two observational data sets include nitrate and ammonium aerosols

while models’ PM2.5 from the reference method do not.

When comparing archived PM2.5 from CMIP6 with two observational data sets

(Table 4.4), we find that models underestimate present-day PM2.5 relative to GASSP but

overestimate PM2.5 relative to satellite based estimates. This is likely due to systematic

errors and limitations in satellite retrieved AOD products that tend to underestimate surface

PM2.5 over bright continental surfaces (van Donkelaar et al., 2015). The analogous CMIP5

analysis also shows that models underestimate PM2.5 (Table 4.4).

A better assessment of the uncertainties associated with the reference method will

likely require measurements from more monitoring networks with a wider temporal and

spatial coverage, especially over poorly monitored dusty regions. Other factors may also

contribute to disparities between model and reanalyses/observational data sets. Models

have deficiencies in their representations of aerosols and aerosol related processes (Ciarelli

et al., 2016; Kok, 2011; Solazzo et al., 2017; Kok et al., 2017; Glotfelty, He, & Zhang,
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Figure 4.7: Evaluation of present-day CMIP6 MMM PM2.5 relative to satellite
based (SAT) estimates. 1980-2014 climatological mean difference (CMIP6 MMM-SAT)
for (a) PM2.5 and (c) fine dust. Both quantities in models are estimated using the refer-
ence method. (b, d) shows CMIP6 model agreement (units of percentage) on the sign of
the differences in (a, c, e), respectively. Red shading represents model overestimation of
PM2.5 or fine dust relative to SAT estimates, and blue shading represents underestimation.
Differences in (a, c) are significant at the 90% confidence level based on a standard t-test.
Units in (a, c) are µg m−3.

2017), as well as with their simulated meteorological fields (McNider & Pour-Biazar, 2020).

Model underestimation of PM2.5 may also result from their inability to capture complex

local emission sources due to coarse resolution (Glotfelty et al., 2017).

4.4.2 Estimation of Pristine PM2.5

The evaluation of the CMIP results in the present-day yields confidence that they

are representative of conservative estimates for PM2.5 (based on the reference method

and models’ underestimation of present-day PM2.5), and thus the PIC simulations can

be used to generate a baseline understanding of pristine conditions. The CMIP6 PIC

MMM shows that pristine aerosol levels greater than 10 µg m−3, the WHO recommended

annual mean PM2.5 threshold, are present over large areas, particularly in dusty regions
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Figure 4.8: Evaluation of present-day CMIP6 MMM PM2.5 relative to GASSP
ground-based measurements. 2000-2009 climatological mean difference (CMIP6 MMM
- GASSP) for PM2.5. CMIP6 MMM PM2.5 is estimated using the reference method. Units
are µg m−3.
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Table 4.5: Pristine PM2.5 based on CMIP5/6. Pre-industrial climatological area-
weighted PM2.5 based on the CMIP5/6 MMM. Pristine PM2.5 from CMIP5/6 is estimated
using the reference method. Pristine PM2.5 from the five CMIP6 models that explicitly
archive PM2.5 is denoted as “CMIP6 archived”. The corresponding 90% uncertainty interval
of the pristine PM2.5 is also included. Dusty regions are the red-boxed regions in Figure
4.2a. Stippled dusty regions are where the MMM pristine PM2.5 exceeds the WHO threshold
(10 µg m−3) and at least 2/3 of the models agree ( Figure 4.10b). Population within stippled
dusty regions, as well as in regions where only the MMM pristine PM2.5 exceeds 10 µg m−3

is also included. The corresponding percentage of the total world population over those
regions is given in parentheses. Units of pristine PM2.5 are µg m−3. Units of population
are billions of people.

CMIP6 CMIP6 archived CMIP5

PM2.5

Global land 7.06±0.97 12.78±5.28 5.81±1.25
Dusty regions 14.08±2.30 28.72±12.71 11.06±2.45
Stippled dusty regions 24.41±2.49 44.03±3.73 23.36±2.65

Population
MMM > 10 µg m−3 1.72(23.49%) 3.49(47.72%) 0.71(9.70%)
Stippled dusty regions 0.97 (13.28%) 2.12 (28.95%) 0.16 (2.23%)

(Figure 4.9a). Over these dusty areas, the global land area-weighted average annual mean

PM2.5 is 14.08±2.30 µg m−3 (Table 4.5). We note that there is also a relatively large cor-

responding inter-model variance over these dusty regions−highlighting model structural

uncertainty−ranging from 8.44 to 24.25 µg m−3(Figure 4.9b).

In Figure 4.10a the percentage of models that simulate pristine PM2.5 greater

than 10 µg m−3 is mapped. More than two thirds of CMIP6 models characterize the annual

mean of pristine aerosol levels as greater than 10 µg m−3 over most dusty regions−which

we refer to as “stippled dusty regions”−including northern and central Africa, parts of the

Middle East, central Asia, and the Indo-Gangetic plain, and through northwest China (the

Taklamakan desert; Figure 4.10b). The land area-weighted average annual mean PM2.5

over the stippled dusty regions is 24.41±2.49 µg m−3 (Table 4.5), which is more than two

times the WHO threshold. Therefore, relative to the WHO air quality guidelines, these
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Figure 4.9: Global map of pristine PM2.5 based on CMIP6 models. (a) Pre-
industrial climatological PM2.5 based on the CMIP6 MMM; (b) standard deviation of PI
PM2.5 across models. Units in (a, b) are µg m−3.
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regions already possess poor air quality without contributions from anthropogenic emissions.

Collectively these regions represent a human population of roughly 0.97 billion, or about

13.28% of the world’s population (Figure 4.10b & Table 4.5). This impacted population

increases to ≈1.72 billion (23.49% of global population) when we only consider where the

MMM pristine PM2.5 exceeds the WHO threshold (i.e., without the 2/3 model agreement

criterion; Table 4.5).

Similar results are obtained using the archived pristine PM2.5 produced by the five

CMIP6 models that have explicit PM2.5 products (Figure 4.11). Moreover, consistent with

the view that our methodology (i.e., the reference method) produces conservative estimates,

the archived pristine PM2.5 in fact yields broader stippled dusty regions where the MMM

PM2.5 exceeds the WHO threshold with at least 2/3 model agreement. The corresponding

stippled dusty region’s average annual mean PM2.5 is 44.03±3.73 µg m−3−which is more

than four times the WHO threshold−and it suggests ≈ 2.12 billion people (28.95% of the

world’s population) are impacted (Table 4.5). If we only require the MMM pristine PM2.5

to exceed the WHO threshold, this impacted population increases to ≈3.49 billion (47.72%

of global population). Results from CMIP5 yield similar conclusions, but with less overall

stippled dusty regions. Here, the area-weighted average annual mean PM2.5 over stippled

dusty regions is 23.36±2.65 µg m−3, affecting about 0.16 billion people (2.23% of the global

population; Table 4.5 & Figure 4.12). Similarly, this impacted population increases to

≈0.71 billion (9.70% of global population) when we only require the MMM pristine PM2.5

to exceed the WHO threshold.
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Figure 4.10: Model agreement on simulating pristine aerosol pollution and world
gridded population. (a) Percentage of models that simulate a pristine PM2.5 level that
exceeds the WHO annual mean threshold for poor air quality (10 µg m−3). (b) World
gridded population. Unit in (b) is person per 12 100 km2. Stippling in (b) represents where
the CMIP6 MMM PM2.5 exceeds the WHO threshold (i.e., Figure 4.9a) and at least two
thirds (≥ 66%) of the models agree.
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Figure 4.11: Global map of pristine PM2.5 based on CMIP6 archived PM2.5. (a)
Pre-industrial (PIC) climatological PM2.5 based on MMM archived PM2.5 in five CMIP6
models, including GFDL-ESM4, MIROC-ES2L, NorESM2-LM, GISS-E2-1-G and MRI-
ESM2-0; (b) standard deviation of PIC PM2.5 across models; (c) the percentage of models
that simulate a pristine PM2.5 level that exceeds the WHO threshold for poor air quality
(10 µg m−3); and (d) world gridded population. Stippling in (d) represents MMM PM2.5 in
(a) exceeds the WHO threshold and at least two thirds (≥ 66%) model agreement in (c).
Units in (a, b) are µg m−3 and units in (d) are person per 12 100 km2.
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Figure 4.12: Global map of pristine PM2.5 based on CMIP5 models. (a) Pre-
industrial (PIC) climatological PM2.5 based on the CMIP5 MMM using the reference
method; (b) corresponding standard deviation across models of PIC PM2.5 across mod-
els; and (c) the percentage of models that simulate a pristine PM2.5 level that exceeds the
WHO threshold for poor air quality (10 µg m−3); and (d) world gridded population. Stip-
pling in (d) represents MMM PM2.5 in (a) exceeds the WHO threshold and at least two
thirds (≥ 66%) model agreement in (c). Units in (a, b) are µg m−3 and in (d) is person per
12100 km2.
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4.5 Summary

Result show that parts of Africa and Asia would have poor air quality with min-

imal human contributions is complicated by the fact that climate change has likely led

to increasing emissions and concentrations of natural aerosol components, including dust

(N. Zeng, 2003; Romm, 2011; Dai, 2011; Allen, Landuyt, & Rumbold, 2016; Allen, Has-

san, Randles, & Su, 2019). Furthermore, anthropogenic land use change has also increased

dust emissions (Ginoux, Prospero, Gill, Hsu, & Zhao, 2012). To estimate how natural

emissions have changed from the pre-industrial to the present day, we compare pristine

conditions with the present-day (1980-2014). In CMIP6 we observe that most land includ-

ing Africa experiences a small increase in annual mean fine dust levels with a high degree

of model agreement. However, some regions, including dusty Asian regions, experience a

small decrease (Figure 4.13). Global land area-weighted average annual mean fine dust

increases about 0.08±0.08 µg m−3, and fine dust over dusty regions shows a larger increase

at 0.26±0.25 µg m−3. Similar results are obtained from CMIP5, wherein global land area-

weighted average annual mean fine dust increases 0.005±0.007 µg m−3 (0.004±0.003 µg m−3

over dusty regions). Similar analyses with fine sea salt, BVOC and DMS emissions show

small changes since the pre-industrial (e.g., global land area-weighted average annual mean

fine sea salt increases by 0.04±0.05 µg m−3 and increases by 0.03±0.04 µg m−3 over dusty

regions in CMIP6). Overall, this evidence suggests that natural emission changes, particu-

larly over dusty regions, are negligible from the pre-industrial to the early 21st century. This

means that natural emissions of aerosol species in our pristine PM2.5 baseline remain nearly

stationary over dusty regions from the pre-industrial to present day. Changes in emissions
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of precursor gases (e.g., BVOC and SOA from forests) and other natural aerosol species

currently are not quantified within CMIP5/6 models. Also, it is possible that continued

climate change (i.e., more global warming) will exacerbate poor regional air quality due to

increases in natural aerosols.
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Figure 4.13: Difference in fine dust between present-day and pristine conditions
in CMIP6 models. (a) Climatological CMIP6 MMM fine dust difference (present-day
minus pristine conditions). Fine dust is estimated using the reference method. (b) Standard
deviation of fine dust difference across CMIP6 models; and (c) CMIP6 model agreement
(units of percentage) on the sign of differences in (a). Red shading represents increase in
annual mean fine dust over historical period, and blue shading represents decrease. Units
in (a, b) are µg m−3.
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Chapter 5

Conclusions & Discussions

5.1 Tropical Belt Width Proportionately More Sensitive to

Aerosols Than Greenhouse Gases

In the chapter 2, I discussed the work to investigate the anthropogenic forcings

role of the observed tropical belt expansion using idealized PDRMIP simulations. Results

show that absorbing black carbon aerosol drives tropical expansion and scattering sulfate

aerosol drives contraction. Black carbon, especially from Asia, is more efficient per unit

radiative forcing than GHGs in driving tropical expansion, particularly in the Northern

Hemisphere. Tropical belt expansion (contraction) is associated with an increase (decrease)

in extratropical static stability induced by absorbing (scattering) aerosol.

It is difficult to use the PDRMIP idealized simulations to attribute the observed

tropical belt expansion to anthropogenic forcings, particularly in the case of aerosols, which

have changed spatially and temporally over recent decades (Hoesly et al., 2018). Owing
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to the step change perturbations, PDRMIP integrations may be expected to yield a larger

response relative (per unit forcing) to the real-word situation, since the system has had

more time to equilibrate. Natural variability must also be considered, as it likely has

played a crucial role in recent tropical expansion, while also disguising the fingerprint of

anthropogenic forcing (Staten et al., 2018). Nonetheless, to illustrate the impact of these

drivers on tropical widening in response to real-world changes in emissions, we follow (Tang

et al., 2018) and approximate the impact of GHGs, BC and sulfate on tropical belt width by

scaling the tropical belt response for each individual forcing and hemisphere according to:

∆Φscaled = ∆Φ× (ERF1750−2011/ERFPDRMIP ). We use a 1750-2011 GHG forcing of 2.83

W m−2 (90% confidence range of 2.54−3.12 W m−2); a BC forcing of 0.40 W m−2 (0.05 to

0.80 W m−2); and a sulfate forcing of −0.40 W m−2 (−0.60 to −0.20 W m−2) (Myhre et al.,

2013). Including aerosol-cloud interactions likely doubles the sulfate forcing (multi-model

mean total sulfate forcing of −0.89 W m−2 with a range from −0.34 to −1.62 W m−2)

(Boucher et al., 2013). Furthermore, BC thermodynamic effects on clouds is not accounted

for here (e.g., Allen, Amiri-Farahani, et al., 2019). Using these forcings and the ERF

normalized tropical edge response for each driver and hemisphere (and assuming linearity

to ERF), we estimate 1750-2011 NH tropical widening of 0.17◦ (0.15 to 0.19◦) for GHGs;

0.38◦ (0.05 to 0.77◦) for BC; and −0.1◦ (−0.15 to −0.05◦) for sulfate. In the SH, we estimate

0.76◦ (0.69 to 0.84◦) for GHGs; 0.16◦ (0.02 to 0.33◦) for BC; and −0.08◦ (−0.11 to −0.04◦)

for sulfate. Cross-checking the GHG results with CMIP5 GHG-only tropical widening trends

over a similar (but somewhat different) time period of 1850-2005 yields tropical widening

of 0.23◦ in the NH and 0.70◦ in the SH (Allen & Ajoku, 2016). These values compare well
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to the above GHG inferred estimates. Although this approach represents an approximation

and possesses several caveats, it suggests that among the drivers, BC has likely caused a

substantial portion NH tropical widening over the historical time period, though there is

large uncertainty associated with BC forcing, with a 90% confidence range of 0.05 to 0.80

W m−2 (Ramanathan & Carmichael, 2008; Koch et al., 2009; Bond et al., 2013; Myhre et

al., 2013). To the extent that BC and sulfate (or other reflecting aerosols) are co-emitted,

however, this will partially offset the BC effect, especially when aerosol-cloud radiative

effects are accounted for. Even so, the net effect of BC and sulfate on the NH tropical edge

is similar to GHGs at 0.18◦ and 0.17◦, respectively.

Considering the global plan for sustainable development goal proposed by United

Nation, emission reductions in greenhouse gases, aerosols and their precursors are antic-

ipated over the next few decades. Anthropogenic emissions would reduce gradually over

time. The proportions of greenhouse gases and aerosols would fluctuate correspondingly.

Future studies can focus on tropical belt width response to projected emission reductions.

The project is focused on investigate the possible role of individual forcer in perturbing

tropical belt width. Contribution of realistic single forcing, as well as regional emissions,

on historic tropical belt width variations would be another interesting topic to study.
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5.2 Strengthening of theWalker Circulation in Recent Decades

and the Role of Natural Sea Surface Temperature Vari-

ability

In response to global warming, climate model simulations suggest a weakening of

the Walker Circulation (WC), which is supported by long-term sea level pressure observa-

tions over the 20th century. As shown in the chapter 3, the observations and multiple reanal-

yses yield the opposite trend from 1979 to present−a WC intensification. Atmosphere-only

simulations driven by the real-world evolution of sea surface temperatures (SSTs) simu-

late this observed intensification, whereas coupled ocean atmosphere simulations do not.

Thus, the recent WC intensification is related to real-world SST evolution. Assuming the

multi-model mean SSTs from 20th century coupled climate model simulations accurately

represent the externally forced response, the observed SSTs can be decomposed into a forced

and an unforced component. Idealized Community Atmosphere Model version 5 (CAM5)

simulations driven by the unforced component of SSTs yield significant WC strengthening,

whereas negligible WC changes occur when driven by the forced component of SSTs. Al-

though coupled climate models may be deficient in their tropical response to anthropogenic

warming, our results suggest natural SST variability, and in particular a La Niña-like SST

pattern, is primarily responsible for the strengthening of the WC since 1979.

These results are consistent with previous studies, accompanied by a ”faux pause”

in global mean surface temperature increase (Kosaka & Xie, 2013). A negative phase of

Pacific Decadal Oscillation (PDO) and more La Niña events is suggested to be an important
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cause of the recent warming hiatus (Trenberth & Fasullo, 2013). Radiative effects from

GHGs are superimposed with natural variability over this period. In recent decades, natural

variability related to the observed La Niña-like SST pattern is found to be exceptionally

strong, as compared to CMIP5 control runs (Amaya, Siler, Xie, & Miller, 2018b). We also

note that as the PDO transitions to the opposite phase, it is likely that the strengthening

of the Walker Circulation will weaken in the next decade. Furthermore, as GHGs continue

to accumulate in the atmosphere, the forced signal will become more important through

this century, implying weakening of the Walker Circulation. Regardless, future changes in

the strength of the Walker Circulation will be heavily modulated by natural SST variability

related to ENSO/PDO cycles.

However, studies have suggested that models may not accurately simulate the

tropical response to warming (Stocker, 2014)−in some models, models simulate an overes-

timation response to greenhouse gases and/or other anthropogenic forcing. The observed

cooling in the central and eastern tropical Pacific in recent decades cannot be well cap-

tured by coupled models (Kociuba & Power, 2015). If the true forced SST signal is more

La Niña-like, a more positive SLP gradient trend would be estimated from CAM5 FSST.

Therefore, a smaller positive trend of SLP gradient over equatorial Pacific would be simu-

lated by CAM5 UFSST, and the intensification of the Walker Circulation by natural SST

variations would be smaller. Study nudged observed central to eastern tropical Pacific sea

surface temperature in climate model is able to reproduce the observed La Niña-like pat-

tern, including the intensified Walker Circulation, highlighting the importance of decadal

natural variability, associated a La Niña-like cooling (Kosaka & Xie, 2013). It seems to
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suggest western tropical Pacific warms more than the east. It would be interesting to study

the sensitivity of eastern vs western tropical pacific to different warming pattern.

5.3 An Implicit Air Quality Bias due to the State of Pristine

Aerosol

In the chapter 4, climate models are used to construct a view of pre-industrial

“pristine” air quality, including fine particulate matter with diameters less than 2.5 µm

(PM2.5). Under pristine conditions, PM2.5 levels over regions in geographic proximity to

dust sources, including parts of Africa and Asia, exceed World Health Organization air

quality guidelines. We estimate that this pristine air pollution, which is unassociated with

human activities, impacts up to about one billion people globally. The results show that

natural aerosols, with strong geographic gradients, can lead to poor air quality over regions

close to sources, and that in many areas no amount of anthropogenic emission reductions

will result in clean air.

It is clear that our state-of-the-art climate models are tools that can also be used

to provide us with a conservative picture of pre-industrial air quality, and that it is highly

likely that in many parts of the world that “pristine” air would already be naturally polluted

according to current standards. Given that today more than a billion people live in these

areas, this presents a fairness and regulatory dilemma, and leads to many further questions.

The results shed light on the shortcomings of establishing metrics that do not account for

natural geospatial diversity, and also point to the potential importance of understanding and

differentiating between natural and anthropogenic sources of air pollution. How toxic aerosol

115



species are to human health is related to exposure concentrations and duration (Brook et al.,

2010). Although many toxic pollutants come from human emissions, studies suggest that

long-term exposure to desert dust can also have adverse health effects (Giannadaki, Pozzer,

& Lelieveld, 2014; De Longueville, Hountondji, Henry, & Ozer, 2010; Goudie, 2014). That

said, in dusty regions there may in fact be harmful pollutants that warrant public awareness

and/or regulation and do originate from human activities. In these cases, if natural levels of

PM2.5 exceed the best-practices standards, how should affected countries evaluate and/or

strive to improve their air quality? This rhetorical question is particularly prescient for

those countries that would like to achieve the Sustainable Development Goals (SDGs) as

enumerated in the 2030 Agenda for Sustainable Development adopted by the United Nations

in 2015. For example, 101 out of 247 SDGs indicators are environment related (Y. Zeng et

al., 2020); household and ambient air pollution induced mortality rate is the measurement

metric included in SDG Goal 3 (United Nations, 2015). In 2016, 50-89% of the total

air-pollution related deaths over dusty Asian and African regions were due to ambient

air pollution (United Nations, 2020). Our results suggest this is largely due to pristine

aerosol. PM air pollution including PM2.5 is a major contributor to African premature

death, and deaths induced by natural aerosol (i.e., desert dust) dominate, surpassing deaths

related to anthropogenic emissions (Bauer, Im, Mezuman, & Gao, 2019). Furthermore,

small changes in dust concentration can have large changes in health outcomes. Over sub-

Saharan Africa, every 10 µg m−3 increase in PM2.5 induced by imported Saharan dust can

lead to a 24% (95% confidence range 10% to 35%) increase in infant mortality (Heft-Neal,

Burney, Bendavid, Voss, & Burke, 2020). This means that pristine air pollution may be a
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crucial concern for local communities with respect to health over these regions. Previous

study points out the concentration and exposure duration to particular matters seem to be

two important factors in causing an effect on human health. WHO air quality guideline

mainly targets anthropogenic sourced particular matter. Whether one particular matter

from anthropogenic source is more toxic than it from a natural source remains uncertain.

It would be an interesting topic for future medical study.

Also, our findings support the need for increased access to measurements and

monitoring within these regions (as would contribute to SDG 17 “Partnership for the Goals”

and many targets therein), such that improved metrics, that perhaps identify particular

anthropogenic tracers, can be implemented into both air quality monitoring and targeting.

It must be noted that less economically developed countries tend to be clustered at the dusty

latitudes highlighted in this study. It is likely that given a lack of equal voice and scientific

resources, air quality guidelines targeting anthropogenic emissions represent a legacy of

latitudinal bias that will continue to burden naturally dusty regions until more detailed

understanding can level the playing field.
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Kirkev̊ag, A., Grini, A., Olivié, D., Seland, Ø., Alterskjær, K., Hummel, M., . . . Iversen,
T. (2018). A production-tagged aerosol module for Earth system models, OsloAero5.
3-extensions and updates for CAM5. 3-Oslo. Geoscientific Model Development , 11 (10),
3945–3982.

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., . . . others (2015).
The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the
Meteorological Society of Japan. Ser. II , 93 (1), 5–48.

125



Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y., . . .
Zhao, Y. (2009). Evaluation of black carbon estimations in global aerosol models. Atmos.
Chem. Phys., 9 (22), 9001–9026.

Kociuba, G., & Power, S. B. (2015). Inability of CMIP5 models to simulate recent
strengthening of the Walker circulation: Implications for projections. Journal of Climate,
28 (1), 20–35.

Kok, J. F. (2011). A scaling theory for the size distribution of emitted dust aerosols
suggests climate models underestimate the size of the global dust cycle. Proceedings of the
National Academy of Sciences, 108 (3), 1016–1021.

Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., . . . Haustein,
K. (2017). Smaller desert dust cooling effect estimated from analysis of dust size and
abundance. Nature Geoscience, 10 (4), 274.

Kok, J. F., Ward, D. S., Mahowald, N. M., & Evan, A. T. (2018). Global and regional
importance of the direct dust-climate feedback. Nature communications, 9 (1), 241.

Kosaka, Y., & Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific
surface cooling. Nature, 501 (7467), 403.

Kovilakam, M., & Mahajan, S. (2015). Black carbon aerosol-induced northern hemisphere
tropical expansion. Geophysical Research Letters, 42 (12), 4964–4972.

Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., . . .
Zhao, M. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP
historical. Earth System Grid Federation. Retrieved from https://doi.org/10.22033/

ESGF/CMIP6.8597

Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., . . . van
Vuuren, D. P. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning
emissions of reactive gases and aerosols: methodology and application. Atmospheric Chem-
istry and Physics, 10 (15), 7017-7039. (hal-00458149f) doi: ff10.5194/acp-10-7017-2010

Landrigan, P. J., Fuller, R., Acosta, N. J., Adeyi, O., Arnold, R., Baldé, A. B., . . . others
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