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ABSTRACT OF THE THESIS

Forecasting the Time Series of Apple Inc.’s Stock Price

by

Jordan Berninger

Master of Applied Statistics

University of California, Los Angeles, 2018

Professor Juana Sanchez, Co-Chair

Professor Qing Zhou, Co-Chair

The 21st Century has been defined by the exponential growth of the infor-

mation technology (IT) industry, the smart phone and the personal computer.

Apple Inc. has played a major role in that growth, with Apple products widely

considered emblematic of the IT revolution. The health of Apple Inc. is a pre-

dictor of the health of the industry and industries that depend on it. Apple’s

stock price is an indicator of Apple’s health. Therefore, it is of particular

interest to have good models to predict the stock price of such a hallmark

company of this IT revolution. Statistical time series analysis is of paramount

importance to do that. This thesis compares the forecasting performance of
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univariate and multivariate time series models of Apple stock’s opening price

for the first day of each month. Among well-known univariate models, we con-

sider Autoregressive Integrated Moving Average (ARIMA) models, ARIMA

with Generalized Autoregressive Conditional Heteroscedascity (GARCH) and

Exponential Smoothing, all models where the predicted opening price depends

on past values of itself and nothing else. Among multivariate methods known

in time series analysis, we consider Vector Autoregression (VAR), which endog-

enizes all the variables considered, and classical linear regression with ARIMA

residuals. We fit these models to an “in-sample“ (training set) of historical

opening price from January 1990 to September 2016, and use them to forecast

12 months “out of sample“ (test set) October 2016 to September 2017. In

the multivariate models, the predictors of Apple’s opening price are: the stock

price of the S&P500, Microsoft and Texas Instruments. We hypothesize a

positive correlation of Apple’s stock with the S&P500 stock, a negative cor-

relation with its competitor Microsoft and a positive correlation with Apple’s

supplier, Texas Instruments. We compare the forecasts from each model with

the actual values of the “out of sample“ time series (the test set) to assess

forecasting performance according to the Root Mean Square Error (RMSE).

We find that an average forecast consisting of the average of all those models’

forecasts, what is known in the forecasting industry as ”the consensus fore-

cast,” has the lowest RMSE for the 12-month test set. This is an important

result, not only because it explains the decades’ old practice of considering

averages of forecasts from many models as “ the forecast“ of any relevant

economic variable, but also because it highlights the benefits of integrating
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multiple classical models to obtain a good predictive performance.
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1 Introduction

Time series analysis differs significantly from classical statistics analysis. Time

series models take into consideration that chronologically ordered observations

of a random variable are correlated. This consideration is important because

Donald Cochrane and Guy Orcutt showed in 1949 that if residuals of an esti-

mated regression equation are autocorrelated, the regression parameters’ vari-

ances are underestimated, which leads to an overestimation of the F and t

statistics1. James Durbin and Geoffrey Watson created a methodology in

1950 to detect first order auto-correlation2. Time series analysis models the

autocorrelation in the data and, therefore, is a more comprehensive way of

accounting for the autocorrelation, if it is an intrinsic feature of the data3.

Early time series analyses decomposed observed data into a small number

of underlying, independent components. This old approach is very helpful in

getting a good initial impression of what the signal is and what the noise is

in the data. In 1919, Warren Persons formalized four distinct components

- first, the trend (long term deterministic tendency), second, a cyclical de-

terministic component with period greater than one year, third, the seasonal

deterministic component (cycle with period of one year), and fourth, a random

residual component that catches all the fluctuations not explained by the first

1Kirchgassner, 1.

2Kirchgassner, 1.

3Chan, 2.
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three systematic components4. The fourth residual component is the random

signal to model. This classical concept of time series assumes that the first

three systematic components are deterministic, and only the fourth, random

component is subject to stochastic influence5. This classical approach adopts

a descriptive approach to time series analysis; in Section 3, we take such an

approach since it is helpful to determine the components of Apple stock at a

descriptive level. In the last 50 years, a modern approach has developed which

assumes all components of a time series could be stochastic6.

In 1970, Box and Jenkins introduced the Autoregressive Integrated Mov-

ing Average (ARIMA) methodology, which became one of the most popular

methods for forecasting a time series7. Univariate ARIMA models are consid-

ered in Section 4 of this thesis. Univariate models predict future values using

a linear combination of past values of itself and past errors. ARIMA models

are very effective, but they are unable to model non-constant variance with

respect to time, or volatility. A common remedy is to fit an autoregressive

moving average (ARMA) model on the variance process; we call these models

Autoregressive Conditional Heteroscedastic (ARCH) models8. In 1986, Tim

Bollerslev and Stephen Taylor independently developed methods to generalize

the ARCH model, which has been called the Generalized Autoregressive Con-

4Kirchgassner, 3.

5Kirchgassner, 3.

6Kirchgassner, 4.

7Box and Jenkins.

8Kirchgassner, 285-286.
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ditional Heteroscedasticity (GARCH) model 9. We refine our ARIMA model

with the GARCH approach in the second half of Section 4.

In Section 5, we fit another univariate model, the Holt-Winters model,

also known as an Exponential Smoothing model. The Holt-Winters model

is similar to a moving average model, the difference being that exponentially

decreasing weights are assigned to the values observed further in the past10.

We want to investigate whether using covariates results in a better fore-

cast than models without covariates. For this reason, in Section 6, we imple-

ment a Vector Autoregressive Systems (VAR) model, which was developed by

Christopher Sims in 1980, and for which he earned the 2011 Nobel Prize in

Economics Sciences11. The VAR model is a multivariate model, which means

it uses contemporaneous time series. VAR models make the assumption that

all the time series are endogenous, that is, all past values of themselves and

the other variables affects the time series in the system. Our VAR model will

use the S&P500 market index and the stock prices of Microsoft, a competitor

of Apple, and Texas Instruments, a supplier of parts for Apple. One major

advantage of the V AR() model in the R12 package vars is that it allows us to

easily plot impulse response functions, through which we can evaluate how a

shock to one time series affects the others in the system across time and how

long it takes the variables to return to equilibrium.

9Kirchgassner, 292.

10Cowpertwait and Metcalfe, 55.

11Kirchgassner, 128, 151.

12R: A language and environment for statistical computing.
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In Section 7, we implement a multiple Linear Regression model, with cor-

rections for autocorrelated errors. In classic regression, using ordinary least

squares, the assumption is that the error terms are uncorrelated. In time series

regression, this is often not the case, accordingly, we fit a stationary covariance

structure for the residual series13. In Section 7, we adopt this approach and fit

an ARMA structure to the residuals from a linear regression model. Again, we

use the time series of the S&P500, Microsoft and Texas Instruments for this

model, but, in this model, they are assumed to be independent variables, with

Apple’s stock price being the only dependent variable. Personal choice played

a major factor in this choice of three covariates. We expand on the reasons for

choosing them, and the hypotheses about their relationships in Section 1.2.

Stock market data is significantly different from other economic time series.

This introduction proceeds with an overview of recent research into time series

forecasting of stock market data, and our hypotheses about the covariates.

Then, we systematically identify, introduce, fit, diagnose, forecast and visualize

the aforementioned models in the sections mentioned above.

Throughout this thesis, an overarching concept for model evaluation is the

parsimony principle. This means, for each type of model, we choose the sim-

plest model, with the fewest parameters, that adequately fits the time series,

and produces a residual error series with no significant autocorrelations. This

concept is similar to Occam’s razor, improves interpretability and prevents

over-fitting. The Conclusions Section will state the best model for the short-

13Shumway and Stoffer, 145.
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term (4 month) forecasting, long-term forecasting (12 month) and lists possible

avenues for further research.

1.1 Recent Research

In the last several decades, Neural Networks and Deep Learning models have

been extensively applied to forecasting stock prices. Kamijo and Tanigawa

developed a method using pattern recognition to predict the stock prices of

Japanese companies14. Yoon and Swalves developed a methodology using a

neural-network with four layers to predict stock prices of American compa-

nies15. Baba and Kozaki also developed a neural network methodology, using

back propagation and random optimization to predict Japanese stock prices16.

Saad, Prokhorov, and Wunsch investigated time-delay, probabilistic, and re-

current neural networks to predict stock prices17. Hadavandi, Shavandi, and

Ghanbari developed an approach that integrated genetic fuzzy systems and

artificial neural networks to forecast stock prices and concluded that their

method produced good forecasts18.

Many have also researched hybrid approaches that integrate ARIMA or

ARMA models with machine learning algorithms to forecast stock prices.

Pai and Lin developed a method to integrate support vector machines with

14Kamijo and Tanigawa.

15Yoon and Swalves.

16Baba and Kozaki.

17Saad, Prokhorov and Wunsch.

18Hadavandi, Esmaeil, et al.
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ARIMA models to overcome the shortcomings in non-linear applications19.

Wu and Harris adapted a fuzzy neural network to identify an operating point

dependent ARMA model20.

As we see above, there has been extensive research into machine learn-

ing algorithms to predict stock prices, but there has been comparatively less

research in averaging classical models to predict stock prices. Blue Chip Eco-

nomic Indicators is one publication that is dedicated to averaging forecasts21.

The main motivation for this average is that a model that overestimates a fore-

cast can be averaged with a model that underestimates a forecast, resulting in

a more accurate prediction22. Additionally, each contributing model provides

a layer of interpretability. Machine learning models are accurate, but are no-

toriously un-interpretable. Furthermore, the average forecast approach in this

paper is easily implemented in R, while it can be very difficult to implement

machine-learning models and tune their parameters.

In this paper, we investigate whether the use of covariates improves a model

performance, which is a fundamental question. Averaging the predicted values

from a number of models has been called an average, committee or consensus

forecast in the statistical forecasting literature23. We also compute the average

forecast because this gives us some insight on the nature of average forecast, a

19Pai, Ping-Feng, and Chih-Sheng Lin.

20Wu and Harris.

21Gaynor, 578.

22Gaynor, 578.

23Gaynor, 578.
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powerful method still today. In fact, model averaging, albeit at a higher level

of sophistication than that performed in this thesis is a very important area

of statistics.

1.2 Hypotheses

In selecting time series to incorporate into our multivariate models, we chose

stock prices from companies that are indicators of the global economic activity

affecting Apple, Inc.. We hypothesize that Apple’s stock price will have a

positive relationship with the S&P500 market index. The S&P500 is a leading

market indicator, and a composite index of 500 of the largest companies from a

diverse set of industries. Apple, Inc. is a significant factor of the S&P500. We

believe that the S&P500 effectively models how the stock market in general

is doing, so it is a good proxy for the value of money in the stock market and

is likely more robust than the US dollar, or any other currency.

We hypothesize that Apple’s stock price will have a negative relation-

ship with the stock price of Microsoft, one of its main competitors. Apple

and Microsoft both produce desktop computers, laptops, phones, tablets, and

watches. Microsoft hardware generally runs Microsoft operating systems, so

Apple and Microsoft are competing in software as well as hardware. Every

time that Microsoft launches an unpopular product, we believe that its stock

will depreciate and Apple’s will increase (and vice versa). Accordingly, we

believe their stock prices will have a negative relationship.

We hypothesize that Apple’s stock price will have a positive relationship

with the stock price of Texas Instruments, one of its principal suppliers of
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hardware components. Texas Instruments claims to have invented the silicon

transistor in 1954 and was first traded on the New York Stock Exchange in

1953. Since it is connected to Apple’s supply line, we hypothesize it will have

a positive relationship with the stock price of Apple.

2 The Data

To model Apple’s stock price, we collect data from Yahoo! Finance24. The

raw data on Apple stock price can easily be found by searching for Apple

on Yahoo! Finance25, one just has to set the appropriate time period, and

frequency. Furthermore, by setting the ”Show” variable to ”Historical Prices”,

we ensure that the data is not historically adjusted. We pulled the price

data on S&P50026, Microsoft27, and Texas Instruments28, through the same

method. For all the stock indices, we set the Time Period to Jan 01, 1990 to

Oct 01, 2017, Show to Historical Prices and Frequency to Monthly.

The variable AAPL is the opening stock price for the first of the month

for Apple Inc.’s stock on the New York Stock Exchange. We use the name

AAPL, because that is the ticker symbol of Apple Inc. We also refer to AAPL

as Yt since it is our response variable. The data29 was exported into a csv,

24https://finance.yahoo.com/

25https://finance.yahoo.com/quote/AAPL/history

26https://finance.yahoo.com/quote/GSPC/history

27https://finance.yahoo.com/quote/MSFT/history

28https://finance.yahoo.com/quote/TXN/history

29https://finance.yahoo.com/quote/AAPL/history?period1=631180800&period2=
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imported into R30 and then converted into a ts (time series) object. We get a

first glimpse of the time series plot of AAPL in Figure 1

As stated earlier, Vector Autoregression and Linear Regression with correc-

tion for autocorrelated errors models, use independent variables to help model

our dependent variable (Apple’s price); for these models, we use the S&P500

Market index, Microsoft’s stock price and Texas Instrument’s stock price.

The variable GSPC is the opening stock price for the first of the month

for the S&P500 market index on the New York Stock Exchange. We use the

name GSPC, because that is the ticker symbol for the S&P500. The data31

was exported into a csv, imported into R and then converted into a ts object.

The variable MSFT is the opening stock price for the first of the month

for the Microsoft Corporation on the New York Stock Exchange. We use the

name MSFT, because that is the ticker symbol for Microsoft. The data32was

exported into a csv, imported into R and then converted into a ts object.

The variable TXN is the opening stock price for the first of the month for

Texas Instruments Incorporated on the New York Stock Exchange. Again, we

use the name TXN, because that is the ticker symbol for Texas Instruments.

The data33 was exported into a csv, imported into R and then converted into

1506841200&interval=1mo&filter=history&frequency=1mo

30R: A language and environment for statistical computing.

31https://finance.yahoo.com/quote/GSPC/history?period1=631180800&period2=

1506841200&interval=1mo&filter=history&frequency=1mo

32https://finance.yahoo.com/quote/MSFT/history?period1=631180800&period2=

1506841200&interval=1mo&filter=history&frequency=1mo

33https://finance.yahoo.com/quote/TXN/history?period1=631180800&period2=

1506841200&interval=1mo&filter=history&frequency=1mo

9



Period Start End Length

Training January 1990 September 2016 321
Test October 2016 September2017 12

Table 1: Training and Test Periods.

a ts object.

The data from Yahoo! Finance includes the opening, high, low and closing

price for each date. For each variable, we investigate only the opening price for

simplicity and consistency, although the same models and results should hold

if we chose closing price. The lengths of the time series AAPL, GSPC, MSFT

and TXN are all 333; this is one data point from the first of every month

from January 1, 1990 to September 1, 2017. We do not aggregate the data

to get monthly readings, because it came directly in the desired frequency.

To fit our models, we do so with a training set of the first 321 observations

(January 1990 - September 2016); which leaves a with a 12 month (October

2016 - September 2017) test set. When we forecast our models, we do so for

October 2016 - September 2017 and compare these predicted values to our test

set. Table 1 shows the start and end dates for the training and test data.

3 Descriptive Time Series Analysis of the Data

Consider the time series plot of the Apple stock price in Figure 1. We see that

starting in 2005, the stock price rises with a roughly exponential trend. There

are some noticeable fluctuations in Figure 1, but these do not appear to be

seasonal trends, as the period is too wide.

10



Figure 1: AAPL Opening Price

Due to the large range of data in this plot, it appears as if the stock price

of Apple is roughly constant from 1990 - 2004. In Figure 2, we focus in on this

time period, and see that there are major fluctuations.

11



Figure 2: AAPL Montly Opening Price 1990 - 2004

Consider the time series plots of our covariates. In Figure 2(a), the time

series of GSPC has, overall, trended positively from 1990 to 2017. The stock

price has a lot of stochastic trends. There are 2 distinct valleys in Figure

2(a), the first around 2000-2002 and the second around 2008. These periods of

negative trend coincide with the US economy’s overall behavior, which makes

sense, considering the S&P500 is a market index comprised of 500 companies

influential in the stock market.

Figure 2(b) shows the time series of MSFT, and is characterized by 2

periods of exponential growth, 1995-2000 and 2010-2016. In between these

prosperous periods, there is a stretch where the MSFT price oscillates around

a constant price, with nearly constant variability.

Figure 2(c), the time series of TXN follows a similar pattern to Figure 2(b),

MSFT. There is exponential growth from 1995-2000 and 2010-2016. Figure

12



2(c) has a sharper correction from 2000-2001 than 2(b) and the interstitial

period between the price increases has a little more variability than the same

period in 2(b).

(a) GSPC (b) MSFT (c) TXN

Figure 3: Opening Prices of the Covariates

Immediately apparent in Figures 1 and 3 is the irregularity in each of the

time series. This is all very interesting, and there are lots of patterns here

that merit further investigation. The next step is to decompose and analyze

the time series of AAPL.

3.1 Time Series Decomposition of AAPL

Before we explore the time series of AAPL in depth, we need to define several

terms that are central to time series analysis. First and foremost, a time series

is generally regarded as one realization of an underlying stochastic process34.

A stochastic, or random, process is a collection of indexed random variables.

For time series, we do not distinguish between the stochastic process and its

observed realization, for ease of notation. There is a key assumption of ergod-

icity embedded in this understanding of a stochastic process. Ergodicity has

34Kirchgassner, 12.
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several conditions; first, we assume that the mean and variance of a realization

of a stochastic process and the underlying process itself converge as time be-

comes large. Additionally, for a series to be ergodic, the stochastic process has

to be stationary, or in statistical equilibrium35. A time series process at time

t, Yt is considered weakly, or second-order, stationary if it meets the following

conditions:

(a) E(Yt) the expected value is constant across time, and

(b)Cov(yt, yt+k) depends only on k and not on t36, where t is time.

A process is considered to be strictly stationary if the distribution of the time

series is constant for all time periods; strict stationarity is difficult to verify, so

we tend to look for weak stationarity37. A model is second-order stationary if

it has stationary mean, stationary variance, and the correlation between vari-

ables is dependent on only the lag, or number of readings, between them 38.

If a time series is second-order stationary, we can define the auto-covariance

function (acvf) as a function of the lag, k, where

acvfk = γk = E[(xt − µ)(xt+k − µ)] 39,

where µ is the mean of the series.

Now, we decompose the Apple stock, using multiplicative decomposition,

35Kirchgassner, 13.

36Chan, 17.

37Chan, 16-17.

38Cowpertwait and Metcalfe, 33.

39Cowpertwait and Metcalfe, 33.
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and inspect the different elements. Multiple decomposition of a time series, xt

means we use the model

xt = mt ∗ st ∗ zt

where mt is the trend of the data, st is the seasonal effect and zt is an error

term that is usually serially correlated, and it is the term that we model40.

Additive decomposition, which uses the model:

xt = mt + st + zt

was also considered, but rejected since it did not fit the data as well. Note

that the following plots are on the raw values of AAPL time series, not the

logged values. First, we look at the trend extracted from the multiplicative

decomposition of AAPL using the decompose() function in R in Figure 4.

40Cowpertwait and Metcalfe, 13-14.
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Figure 4: AAPL Multiplicative Decomposition Components

In Figure 4, we see that the trend is not linear, but appears to reflect

exponential growth with 3 noticeable corrections in 2008, 2012, 2015. Apple’s

tumultuous history and near-failure has been well documented, so we are not

surprised to see these significant corrections.

Now, consider the seasonal part of the multiplicative decomposition of

AAPL in Figure 4. In this plot, the seasonal effect has the exponential trend

removed. We see the seasonal variation is very small; it does not provide

strong evidence for a significant seasonal effect. In Figure 5, we see a boxplot

of price for each month, which confirms the lack of seasonal effect.
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Figure 5: AAPL Seasonal Boxplot

Figure 5 shows insignificant seasonality, as each month has approximately

the same median and variation. Figure 4 and 5 indicate that AAPL does not

vary much by month, which is not surprising, seeing as it is a large company’s

stock price, and that their product launches do not follow the annual calen-

dar with regular periods. We look at the random component obtained from

multiplicative decomposition of AAPL in Figure 4. In this plot, the random

component has the exponential trend and the seasonal effect removed. The

random component in Figure 4 appears to have a constant mean of 1. For

a random component to be second-order stationary, it has constant variance

across different ’time windows’. In Figure 4, the mean is mostly constant,

around 1. The random component in Figure 4 shows no clear departures from

second-order stationary. Many transformations to AAPL were considered, in-
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cluding the logarithm and square root, but these transformations made the

data less stationary according to the diagnostics we used above.

3.2 The Sample Autocorrelation Function

Autocorrelation, or serial correlation, is the correlation of a variable with itself

at different times and the sample autocorrelation is defined as

ρ(k) = Cov(xt,xt+k)

σ̂2
= γk

σ2 ,
41

where Cov(xt, xt+k) is the covariance at lag k and σ̂2 is the estimated variance

of the time series. We estimate ρ(k) with the sample autocorrelation function,

and the estimate of σ2 from the data. Autocorrelation is frequently visualized

with a sample correlogram (or ACF), which plots the sample autocorrelation,

rk, which is unit-less, on the y-axis against discrete lags, k, on the x-axis42.

The formula for the autocorrelogram is

rk = γk
σ̂2

43.

Statistical significance of the sample autocorrelation is determined at the

threshold of

− 1
n
± 2√

n
. 44

41Chan, 17.

42Cowpertwait and Metcalfe, 36.

43Cowpertwait and Metcalfe, 36.

44Cowpertwait and Metcalfe, 36.
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If rk is above or below the dotted lines at these values, then we say that

the sample autocorrelation is statistically significant at the respective lags.

This indicates that there is some pattern or relationship between the random

components. We look at the sample ACF of the random component of AAPL

in Figure 6:

Figure 6: ACF of Random component of AAPL
obtained by multiplicative decomposition

For stationary process, we expect the ACF to taper off very quickly to

values below statistical significance45. Figure 6 has statistically significant

autocorrelations for lags k = 1, 2, 3, 4, 5, 6, 7, but the autocorrelations follow

a dampened sinusoidal pattern and die down very quickly. Figure 6 is the

ACF of a stationary series. We want to develop a model for this relationship

45Chan, 17.
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between random effects. We exclude the similar decompositions of the time

series of GSPC, MSFT or TXN. We simply note that the same overarching

patterns were observed - upward trend, insignificant seasonality, and a damp-

ening sinusoidal random component’s ACF. So we conclude that the random

component of the multiplicative decomposition of the time series of AAPL is

stationary, therefore pursuing modeling of this time series is justified.

4 ARIMA Model

ARIMA(p, d, q) models are univariate models fit to stationary time series.

ARIMA(p, d, q) models combine Autoregressive (AR(p)), Integrated (I(d)),

and Moving Average (MA(q)) models, and the parameters, p, d, q represent the

order of the AR, I, and MA models, respectively. The integrated component, d

stands for the order of differencing needed to make the time series stationary.

This means, for example,

(1−B)dxt = st,

where st is stationary and B is the backshift operator, which means

Bxt = xt−1.

. A stationary time series, xt follows an ARMA(p, q) process when it can be

described as

xt = α1xt−1 + α2xt−2 + ..+ αpxt−p + β1wt−1 + β2wt−2 + ...+ βqwt−q,
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where wt is a white noise process 46. For example, for an ARMA(1, 1) model,

we have

xt = α1xt−1 + wt + β1wt−1 = wt + (α1 + β1)
∑∞
i=1 α

iwt−i.

From here, we can see that E[xt] = 0, since E[wt] = 0. Furthermore, it follows

that

V ar(xt) = V ar[wt + (α1 + β1)
∑∞
i=1 α

iwt−i] = σ2
w + σ2

w(α1 + β1)
2(1− α2)−1,

And

Cov(xt, xt+k) = (α1 + β1)α
k−1
1 σ2

w + (α1 + β1)
2σ2

wα
k(1− α2

1)
−147.

And the autocorrelation is given by,

ρk =
αk−1
1 (α1+β1)(1+α1β1)

1+α1β1+β2
48.

The derivations for higher order ARMA(p, q) models are more difficult to

derive, but they are not required for this paper’s application.

An ARIMA model strategy consists of

1. making the variance stationary,

2. identify the orders d, p, q of the model, in that order,

3. fitting the model,

46Cowpertwait and Metcalfe, 127.

47Cowpertwait, 128.

48Cowpertwait and Metcalfe, 129.
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4. diagnostics - determining whether the residuals series has significant au-

tocorrelations

5. start over if the diagnostic is not positive.

4.1 Identification of ARIMA(p, d, q)

We used first order differencing to make our time series AAPL stationary. We

also considered log transformation to the time series, but log-transformation

made the variance of the random component from multiplicative decomposi-

tion more erratic. Therefore we fit the ARIMA model on the un-transformed

data.

To identify the model, we first determined the order of differencing, d,

that makes that time series stationary. We determined that d = 1 makes

the resultant time series stationary. Differencing is done before fitting an

Autoregressive Moving Average (ARMA) model. We determine the order, p,

of an AR(p) model by looking or characteristic behavior in the ACF and the

PACF. Specifically, the ACF does not break off, while the PACF breaks off at

lag p 49. The order, q, of MA(q) models can be determined similarly; here,

the ACF breaks off at q, while the PACF does not break off 50

In Section III, we conclude that our times series, Yt has a strong upward

trend and a weak seasonal component. Also, in Section III, we conclude it is

most appropriate to develop a model on the untransformed time series, Yt. In

49Kirchgassner, 67.

50Kirchgassner, 67.
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this section, we develop an appropriate ARIMA model for Yt. Remember that

we hold out the last 12 observations in the time series as a test set, and unless

otherwise noted, the following plots and data will be based on the January

1990 - September 2016 training set. The ACF of the differenced time series

(d = 1) is in Figure 7:

Figure 7: ACF (1−B)Yt

In Figure 7, there are slightly statistically significant autocorrelations at

lag values k = 4, 10, 25, but this does not motivate higher-order differencing,

since this ACF does not have strongly significant autocorrelations. In most

autocorrelation functions of sample data, as in any summary statistics, where

significance is determined at α = 5%, we should expect about 5% of the spikes

will be borderline significant, at random lags, even if there is no signal in the

data.
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We are satisfied with a model when its residual error series has no strongly

significant autocorrelations, as this indicates that the model accounts for all

autocorrelations in the time series. Since the ACF in Figure 7 does not begin

with a string of statistically significant autocorrelations, there is no need to

difference the time series by more than 1. We conclude that Figure 7 does not

have any statistically significant autocorrelations.

A stochastic process, wt is considered to be white noise, or purely random,

if it has the following properties:

E[wt] = 0,

V ar[wt] = σ2

and

Cov[wi, wj] = 0 when i 6= j 51.

Connected to white noise is the important concept of a random walk, which

is frequently encountered in financial data. A random walk (without drift), xt,

is defined as the summation of white noise. In other words, if we have a time

series Yt such that yt − yt−1 is white noise, it follows that Yt follows a random

walk. A random walk is often used to assess the efficacy of more complicated

models 52. It is also useful to consider a random walk with drift process, which

is modeled by the following

yt = yt−1 + δ + wt.

51Kirchgassner, 14.

52Cowpertwait and Metcalfe, 67.
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We consider higher-order and seasonal differencing, but these strategies

produced ACF’s with statistically significant auto-correlations, and thus im-

posed patterns on the data. Accordingly, we conclude that first-order differ-

encing was the most appropriate. Accordingly, our chosen model for this time

series is a random walk53. We have a satisfactory method for making the data

stationary - the regular differenced time series. This meets all our require-

ments and since we do not see significant seasonal effect in exploratory data

analysis we should not expect seasonal differencing to be beneficial.

4.2 Fitting our ARIMA Model

Now, since the ACF of the regularly differencing Yt time series does not have

statistically significant autocorrelations, we conclude that this new time series

is stationary. Recall that our entire model fitting is done on the training set of

321 observations from January 1990 - September 2016. This stationary time

series that we will work with moving forward is denoted

(1−B)Yt = wt.

Now, we fit our model using the arima() function in R. There are no param-

eters for us to estimate the significance of in this model, which is typical of

financial data. The forecasting or estimation model is a random walk, denoted

by

ŷt = yt−1.

53Cowpertwait, 71.
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Therefore, the only parameter we fit is the variance.

Since the ACF in Figure 7 does not begin with statistically significant

values, this indicates the model does not have an autoregressive component.

Furthermore, since the ACF in Figure 8 does not have statistically significant

autocorrelations, we conclude that the model does not have a Moving Average

(MA) component. Accordingly, the most appropriate ARIMA model for the

logged time series is ARIMA(0, 1, 0).

4.3 ARIMA Model Diagnostics

To perform model diagnostics on our ARIMA(0, 1, 0) model, we look at the

ACF of the model’s residuals in Figure 8.

Figure 8: ACF of Residuals of ARIMA (0,1,0) on Yt

The ACF in Figure 8 does not have statistically significant autocorrelations,
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which dissuades us from further complicating the ARIMA model. Since these

residuals do not exhibit significant autocorrelation, we are satisfied with our

ARIMA(0, 1, 0) model. As a further model diagnostic, we run the Ljung-Box

test on the model’s residuals.

Ho : ρ1 = ρ2 = . . . ρk = 0

Ha :not all ρi = 0

The Ljung-Box Test evaluates the null hypothesis that the autocorrelations

are jointly zero, and the alternative hypothesis, that the autocorrelations

are not jointly zero. We run the Ljung-Box test on the residuals from our

ARIMA(0, 1, 0) model which returns a p − value = 0.135. Accordingly, we

do not have evidence to reject the null hypothesis, and we conclude that the

autocorrelations of the ARIMA(0, 1, 0)’s models’ residuals are jointly zero. If

the residual error series does not have statistically significant autocorrelations,

then we cannot reject the null hypothesis.

4.4 Forecasting with ARIMA Model

Now that we determined that the ARIMA(0,1,0) model is appropriate, we

forecast the model 12 months ahead and compare these predicted values to

the observed values we removed from the training set. Recall that our held-

out test set is the 12 observations from October 2016 - September 2017. We

forecast with the model and provide the predicted values and compute the

root mean square error in Table 3 which is shown in the Conclusions Section.

We see that the forecasted value in Figure 9 simply the previous value, which
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is what we expected from an ARIMA(0,1,0). In Figure 9, the observed time

series is in black and the forecast is in red.

Figure 9: ARIMA Forecast

As we see in the forecast in Figure 9, this model does not attempt to model

the fluctuations in the time series, it just predicts a flat value, with a standard

error that increases slightly with time. We refine this model by using the

GARCH methodology.

4.5 ARIMA + GARCH Model

Stock market data is known for its volatility, so we have good reasons to believe

that AAPL has volatility. A time series is volatile if the ACF its residual errors

series does not have statistically significant autocorrelations and the ACF of
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its squared values has significant autocorrelations. An important first step is

to check the residuals of our ARIMA model for volatility. We inspect two

ACFs. First, we recall that the ACF of the ARIMA model’s residuals do not

have statistically significant autocorrelations; we see this with Figure 7. The

second ACF we inspect is that of the ARIMA model’s squared residuals - we

see this in Figure 10.

Figure 10: ACF of Squared Residuals ARIMA(0, 1, 0)

Figure 10 has statistically significant autocorrelations, which indicates volatil-

ity, or conditional heteroscedasticity, in our ARIMA model’s residuals. This

means that the observed variance follows a stochastic trend and merits fur-

ther modeling, which we do with a GARCH (Generalized Conditionally Het-

eroscedastic) model. The GARCH(p, q) model is denoted

h2t = α0 + α1ε
2
t−1 + . . .+ αqε

2
t−q + β1h

2
t−1 + . . .+ βph

2
t−p,
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where

ht = E[ε2t |yt−1, yt−2, . . . , y1] 54.

In the above notation, εt is our residual term, ht is our estimate of the squared

residual term, and yt is our observed time series, all at time t. GARCH(p, q)

model allow us to parsimoniously parameterize conditional variances, and, for

financial data, a GARCH(1, 1) is often sufficient, as it is in this case 55. After

we determine the orders p, q of our GARCH model, we use R to estimate our

parameters α, β.

To fit theGARCH(p, q) model, we use the garch() function in the library(tseries).

We try several different GARCH(p, q) values and use AIC as a validation met-

ric to determine the optimal values of p and q that work best on these residuals.

We try many different GARCH models and the two models GARCH(1, 0)

and GARCH(0, 2) perform significant better than the others in terms of

AIC (recall that the lower the AIC, the better performing the model). Here

GARCH(1, 1) is the best performing model with AIC = 794.9447. For the

sake of model parsimony, we do not fit GARCH models with parameter values

greater than 3. Our best model ARIMA(0, 1, 0) + GARCH(1, 1) is denoted

by:

Yt = Yt−1 + wt
√

0.00325 + 0.7244ε2t−1 + 0.5444ht−1.

An important model diagnostic is checking the ACF of our GARCH(1, 1)

model’s residuals and squared residuals. We look at these in Figure 11

54Kirchgassner, 292.

55Kirchgassner, 293-294.
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(a) ACF of Residuals (b) ACF of Residuals2

Figure 11: ARIMA(0,1,0) GARCH(1,1)

Neither ACFs in Figure 11 have statistically significant autocorrelations at

non-zero lags. Therefore, our GARCH(1, 1) model fits our ARIMA(0, 1, 0)

model’s residual satisfactorily.

4.6 Forecasting AAPL with ARIMA + GARCH Model

Now that we determined that we cannot and should not develop a more compli-

cated model for the residuals, we forecast our ARIMA(0, 1, 0)+GARCH(1, 1)

model. Again, refer to Table 3 in the Conclusions Section to see the forecasted

values and the computed RMSE. Figure 12 visualizes the forecasted values in

red and the AAPL time series is in black.

We see from Table 3 that the adding the GARCH model to our ARIMA

model dramatically reduces the model’s forecasting performance on the test
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Figure 12: ARIMA(0,1,0) GARCH(1,1) Forecast

set. The GARCH model tries to model the volatility and as the time gets

further away from our training set, the predicted values skyrocket away from

the observed values.

5 Exponential Smoothing

Exponential smoothing is a concept related to moving average, where earlier

observations are given exponentially diminishing weights. For data with a

strong trend and changing mean like AAPL, the Holt-Winters model that is the

most appropriate is the Holt-Winters trend corrected exponential smoother; in

this model, we essentially fit a series of lines, with changing slope and intercept

32



over time, denoted

Ŷt = at + btt+ εt, where

at+1 = at + α(yt − at) + bt

bt+1 = β(at+1 − at) + (1− β)bt.

It is easy to think of at as the estimated intercept, and bt the estimated slope,

of the fitted model at time t. In the late 1950’s Holt and Winters generalized

this model to update the estimates of the non-stationary mean (also called

level), slope (or trend) and seasonals56. Our data does not display significant

seasonality, so we do not pursue that here. The parameters, α, β are easily

estimated in R with the HoltWinters() function. The forecasting equation

for some future value of yt is given by adding the trend component, bt and the

level component, at.

We saw already that our data has a strong trend. Additionally, we have

already shown that our target variable does not exhibit significant seasonality;

this was explicitly seen in Figure 6. Since we do not have seasonality in

this time series, there is no justification to perform Holt-Winters seasonal

exponential smoothing. Accordingly, we use Holt-Winter’s trend corrected

non-seasonal exponential smoothing model to this time series, meaning we

estimate two parameters, α and β. We fit this model to our training set using

the HoltWinters() function in R. This returns α = 1 and β = 0.01017029.

When we condense our notation, our forecasting equation is

Yt = 112.7099 + 0.6296 ∗ t+ et.

56Cowpertwait and Metcalfe, 59.

33



5.1 Forecasting our Holt-Winters Model

We use this model to forecast 12 months ahead for the test period October

2016 - September 2017 and compare the values predicted by Holt-Winters to

our test data. We record the predicted values and test RMSE in Table3 and

visualize the same in Figure 13 (again, forecasted in red, observed in black).

Figure 13: Holt-Winters Forecast

Figure 13 shows this model performs fairly well in the short-term, but is

significantly less accurate in long-term forecasts. The exponential smoothing

model captures some of the trend, which makes sense, because we tell the

HoltWinters() function to compute a parameter for the trend. This model

performs very well in comparison to the other models as seen in by its fore-

casting performance listed in Table 3 in the Conclusions Section. Comparing
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Figure 13 to Figure 21 shows that the Exponential Smoothing model is slightly

more conservative in modeling the trend than other models, which accounts

for sub-optimal test set RMSE performance.

6 Vector Autoregression

In this section, we fit a Vector Autoregression (VAR) model for the AAPL

time series. Vector Autogregression is a method that assumes that all variables

are jointly endogenous, which means everything depends on everything57. A

V AR(p) model has order, p, where each variable is modeled linearly on all

variables in to the system, including itself, up to lag p58. In this thesis the

V ARmodel we assume gives us a system of four simultaneous equations models

of AAPL, and the 3 covariates. These systems of simultaneous equations allow

us to evaluate the dynamics of shocks to the system composed of these 4 time

series. The VAR model starts with the k-dimensional stochastic process X,

and the V AR(p) process is conceptualized as

Xt = δ + A1Xt−1 + A2Xt−2 + . . .+ ApXt−p + Ut,

where Ai are k-dimensional matrices and U is a residual vector59.

This notation is conensed to

A(L)Xt = δ + Ut,

57Kirchgassner, 127.

58Kirchgassner, 128.

59Kirchgassner, 129.
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where,

A(L) = Ik − AiL− A2L
2 − . . .− ApLp,

E[Ut] = 0,

E[UtU
′
t ] =

∑
ûû, and

E[UtU
′
s] = 0 for t 6= s60.

We fit the VAR model in Section 6.1 - 6.6, we inspect the system’s Impulse

Response Functions in Section 5.7, and we forecast AAPL with this VAR

model in Section 6.8.

6.1 Unit roots and co-integration tests

We begin by testing our dependent and independent variables for unit root

using the augmented Dickey-Fuller test. For the Augmented Dickey-Fuller

test, the null hypothesis states that a unit root is present in the time series.

We run the test in R using tseries :: adf.test(). The smallest p-value returned

by the test was 0.386 for TXN, the other 3 time series had p-values greater

than 0.80. The Augmented Dickey-Fuller test fails to reject the null hypothesis

for each of these time series and concludes that all 4 of our time series are non-

stationary. This means the ADF test concludes that all of these series follow

a random walk, which is typical for stock market data and confirms what we

learned earlier.

To avoid against spurious relationships between variables in a dynamic

60Kirchgassner, 129
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system, such as the VAR system, we test for co-integration61. Co-integrated

time series have a common long-run trend62. Co-integration has be researched

heavily, and there are many different methods for evaluating it, but we use the

ADF test with some modifications in R to test for co-integration in each pair of

our un-differenced time series. For these tests, the null hypothesis is that the

time series are co-integrated, and the alternative hypothesis is that the time

series are not co-integrated. The test concludes that AAPL is co-integrated

with all 3 of the covariates, with the lowest p-value = 0.587, from the test with

the S&P500.

6.2 Differencing Covariates

It is a good strategy to model a Vector Autoregression model using stationary

covariates63. We explored how differencing can be used to make a time series

stationary with AAPL. It suffices to say that the same strategy worked for

our 3 covariates - that single order differencing is the most effective strategy.

This was expected because all of the time series are of financial data which is

know to exhibit behavior indicative of a random-walk. In summation, all of

the time series needed to be differenced once to become stationary. We will

refer to the first order differenced time series as follows:

AAPL∗t = (1−B)AAPLt

61Kirchgassner, 207.

62Kirchgassner, 209.

63Kirchgassner, 207.
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MSFT∗t = (1−B)MSFTt

GSPC∗t = (1−B)GSPCt

TXN∗t = (1−B)TXNt.

6.3 Cross-correlations

First, we inspect the decompositions of each time series vs. the decompositions

of each time series log-transformed. We conclude that, like the AAPL time

series, none of the time series benefit from the log-transformation. In each case,

the original data’s decomposed random component has greater first and second

order stationarity than the logged counterpart, so we keep the unlogged data.

Now that we isolated stationary time series, we inspect the cross-correlations

between the series. Figure 14 has the cross-correlation of AAPL and each of

our three independent, stationary time series.

Across Figures 14, we do not see a single statistically significant cross-

correlation. This tells us that AAPL is not influenced by any of the other

series, at any lag values; furthermore, AAPL does not influence any of these

series at any lags. This indicates that when we fit a VAR model it will not

likely be of high-order.

6.4 Fitting the VAR model

We use Akaike Information Criterion (AIC) as a metric to compare the effica-

cies of the different order VAR(p) models we evaluate, with

AIC(p) = log|∑ûû(p)|+ (k + pk2) 2
T

,
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(a) CCF of
AAPL∗,MSFT∗

(b) CCF of
AAPL∗, GSPC∗

(c) CCF of
AAPL∗, TXN∗

Figure 14: Cross-correlograms

where |∑ûû(p)| is the determinant of the variance-covariance matrix of the

estimated residuals, k is the number of variables, with T observations, and p

is the order of the lag64.

Now, we use the ar() function in library(vars) to fit the appropriate

V AR(p) model to this data with AIC as a comparison metric. We run the code

which tells us that the most appropriate model is V AR(1); this agrees with

the cross correlation plots seen above, which so not indicate any statistically

significant cross correlations.

Now, we use the V AR() function in R to fit the V AR(1) model on the

64Kirchgassner, 135.
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data. This gives us the estimates of the coefficients and their standard errors.

We do not print out the output, but we generate the ACFs of the VAR(1)

model’s residuals in Figure 15.

(a) AAPL* residu-
als

(b) MSFT* resid-
uals

(c) GSPC* residu-
als

(d) TXN* residu-
als

Figure 15: ACF of Residuals

In these ACFs in Figure 15, we see a few statistically significant auto-

correlations, but we expect roughly 5% of autocorrelations to be randomly

significant in a white noise model. The ACF in Figure 15 does not have sta-

tistically significant autocorrelations and we are satisfied with the model. If

we saw strongly statistically significant autocorrelations with the independent

variables and model residuals at the immediate lags i.e. (k = 1, 2) then that

would indicate that we might do better by fitting a VAR(p) model with a
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larger value for p. We look at the CCFs of the model’s residuals and each of

the time series in Figure 16.

(a) CCF residuals
AAPL∗,MSFT∗

(b) CCF residuals
AAPL∗, GSPC∗

(c) CCF residuals
AAPL∗, TXN∗

Figure 16: Cross-correlogram Residuals

In Figure 16, we do not see any statistically significant cross-correlations,

which makes us confident in the model. We conclude there is no need to refine

the model further. Since we are happy with the model, we will state it in the

appropriate form below:

ˆAAPLt = 0.00252 ∗ ∗+ 0.12053 ∗ yt−1 − 0.03532MSFTt−1 −

0.00733GSPCt−1 + 0.02798TXNt−1

ˆMSFTt = 0.00104 + 0.02937yt−1 − 0.27146 ∗ ∗MSFTt−1 +

0.00246GSPCt−1 + 0.04490TXNt−1
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ˆGSPCt = 0.02769 ∗+1.20513yt−1 − 2.08957MSFTt−1 − 0.01275GSPCt−1 +

2.22779 ∗ ∗TXNt−1

ˆTXNt = 0.00153 + 0.01959yt−1 − 0.19735 ∗ ∗MSFTt−1 − 0.00144GSPCt−1 +

−0.02499TXNt−1

Here, a double asterisk represents statistical significance at the α < 0.001

threshold, and a single asterisk represents statistical significance at the α <

0.05 level. The VAR model also gives us the following equations for our other

variables: The relatively low number of statistically significant coefficients in

the system of four equations above confirms with our earlier findings - that

these time series do not profoundly impact the others.

6.5 Impulse Response Functions

From a VAR model, we can plot the Impulse Response Functions (IRF) which

show the dynamics of a system when we simulate a shock to one variable, in

this case increasing its value by one standard deviation. The plot shows the

dynamic effect this has on itself and the other variables; the line shows the

value and when it returns to 0 this means the time series has returned to equi-

librium. First, we look at the IRF from shocking Yt, the time series we want to

forecast. We inspect the shock for 1 year ahead in Figure 17. Note that for the

impulse response function labels, we are inspecting the differenced series, and

use the notation a.d1 = AAPL differenced once, g.d1 = GSPC differenced

once, m.d1 = MSFT differenced once, and t.d1 = TXN differenced once.

We see in Figure 17 that all of time series return to equilibrium within

2 months of the shock. This is not surprising because the above analysis
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Figure 17: IRF - Shock to AAPL

indicated that the variables are not highly cross-correlation. Now, we consider

the impact of a shock to MSFT on the other time series in Figure 18

Figure 18 shows us that shocking MSFT does not have profound impact on

AAPL, MSFT, or TXN. GSPC, on the other hand, experiences an immediate

increase, but then returns to equilibrium by month 3. Figure 19 shows the

impact of a shock to GSPC.

Figure 19 shows that shocking GSPC has negligible impact on AAPL,

MSFT, and TXN. Shocking GSPC does increase GSPC itself, but this bump

quickly returns to equilibrium. The impacts of shocking TXN are seen in

Figure 20.

Figure 20 shows that shocking TXN has negligible impact on AAPL and
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Figure 18: IRF - Shock to MSFT

MSFT. GSPC starts at its same level, but increases in the first month post-

shock, and then decreases to equilibrium in the second month post-shock. TXN

itself sees a slight bump in the month of the shock, and returns to equilibrium

in the first month post-shock.

All of these impulse response functions show all the time series returning

to equilibrium within 3 months. We see a few cases where a series oscillates

above and below its equilibrium value, but none of the deviations are very

dramatic. It is noteworthy that when we shock the 3 independent time series,

Yt barely changes at all. It would be interesting to see if this characteristic

of these impulse response functions is unique to different frequencies of data -

it is possible there is more intricate response behavior experience in daily, or
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Figure 19: IRF - Shock to GSPC

hourly data, but that will be the focus of future research.

6.6 Forecasting with our VAR model

Now, we forecast our fitted VAR(1) model 12 months ahead and undo the

differencing transformation. We record the predicted values in the original

units, compute the RMSE for this 12 month forecast and record the data in

Table 3. We visualize the forecast (red) in context of the original time series

(black) in Figure 32.

We see from the RMSE in Table 3 at the end of the paper that our VAR

model out performs our earlier ARIMA model. We see in Figure 21 that

the VAR model captures some of the trend in the test set, and that is what
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Figure 20: IRF - Shock to TXN

improves the overall performance. Additionally, the VAR model performs

fairly well in the short term, but we see that the predicted values get less

accurate past 6 months.

7 Time Series Regression

We fit a linear regression model with to time series, Yt as the dependent variable

and the other three time series as the independent variables. We fit this model

using generalized least squares fitting the correlation in the residuals with an

autoregressive moving average model, a well-documented approach for time

series regression.
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Figure 21: VAR(1) Forecast

Consider the regression model,

yt =
r∑
j=1

βjztj + et,

where et is a time series with a covariance function γe(s, t). Ordinary least

squares is predicated on et being a realization of a Gaussian white noise process,

but that is often not the case in time series regression 65. We use weighted

least squares, which is most easily understood in vector notation; let

~y = ~Z~β + ~e,

where ~y and ~e are nx1 vectors, ~β is a rx1 vector and ~Z is a nxr matrix of input

65Shumway and Stoffer, 145.
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vectors, in this case our contemporaneous time series 66. Now, we let Γ be our

autocovariance matrix of the residuals between two time series, such that,

Γ = γe(s, t)

and it follows that

Γ−1/2~y = Γ−1/2 ~Z~β + Γ−1/2~e;

it also follows that Γ−1/2~e is the a set of uncorrelated random terms67. If we

define

~Z∗ = Γ−1/2 ~Z,

then we can conceptualize weighted estimate of ~β as

~̂
βw = ( ~Z∗′ ~Z∗)−1 ~Z∗′ ~y∗ = ( ~Z ′~Γ~Z)−1 ~Z ′~Γ~y 68.

This is essentially a method for refining a least squares regression estimate by

accounting for autocorrelated residual series.

Now that we have established the basics of weighted least squares regres-

sion, we state the process for fitting a Linear Regression with correction for

correlated error series model in practice. There are four main steps in this

process, first, we run a standard regression on yt using our predictor variables

and keep the error series, êt. Second, we use the ACF and the PACF of the

residuals to identify an ARMA model to this error series. Third, we use the R

66Shumway and Stoffer, 145.

67Shumway and Stoffer, 145

68Shumway and Stoffer, 145.
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function gls() with the assumption that ARMA residuals fit in the regression

model. Fourth, and finally, we inspect the residuals of this new model - if the

ACF of the residual errr series does not have statistically significant autocor-

relations, we are satisfied with the resultant model, if not, we model further 69.

We use the gls() and corARMA() functions in R to implement this method-

ology, which correspond to generalized least squares, and correlated errors

ARMA().

7.1 Linear Regression Model - GLS and CORARMA

Recall that we had to difference Yt to make it stationary, but we did not

have to pre-transform Yt to make its variance stationary. It is also worth

explicitly stating that none of the series involved in the regression fitting have

been differenced. We fit a linear regression model on AAPL using our four

independent time series (and nothing else) as the independent variables. We

let R fit the model and we inspect the ACF of the residuals in Figure 22.

In Figure 22, the string of strongly statistically significant autocorrelations

past lag 25 indicates a strong trend in the residuals.

7.2 Linear Regression Model on the Differenced Series

All of the regression models we fit above exhibit the same shortcomings -

the residuals are highly trended and resistant to reduction with a corARMA

model. When we try to alleviate the residuals trend by adding high order

69Shumway and Stoffer, 146.
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Figure 22: ACF of Linear Regression Model Residuals

dummy variables for time, we see that this was unsuccessful at de-trending

the residuals. Another tactic is to de-trend the data before fitting a model,

to see if that produces a model with stationary residuals. To do this, we fit a

linear regression model on the regularly differenced time series of AAPL, using

our other regularly-differenced time series as the independent variables. The

independent variables will be our 3 regularly differenced time series. We look

at the ACF of the residuals from our fitted regression model in Figure 23.
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Figure 23: Residuals ACF - Regression on Differenced Series

The residuals ACF in Figure 23 has significant autocorrelations at lags 4

and 10, but these autocorrelations are small and negligible. Accordingly, this

is the best regression model and we forecast it. The model that we fit is:

Ŷt = Yt−1 + 0.18905 + 0.02315(GSPCt −GSPCt−1) + 0.06954(MSFTt −

MSFTt−1) + 0.07219(TXNt − TXNt−1)

7.3 Linear Regression Model - Forecasting with the Best

Regression Model

To forecast AAPL with the regularly differenced regression model, we con-

struct a data frame of test set of the differenced independent time series, then

we plug these into our model, and then un-difference the output. The results
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are listed in Table 3 in the Conclusions Section and a plot is in Figure 24

(forecasts in red, original time series in black)

Figure 24: Linear Regression Forecast

Refer to Table 3, use RMSE as a comparison metric, and note that this

regression model on the regularly differenced series slightly outperforms our

ARIMA model and greatly underperforms our VAR model. We see in Figure

24 that this is because the linear regression model fails to identify the continued

upward trend in the test set. We also see in Figure 24 that the linear regression

model models some of the fluctuations in the time series, rather than predicting

a constant value.
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8 Conclusions

In Section 1, we stated our objectives for this thesis and our hypotheses on

the relationships between the time series we analyze. In Section 2, we formally

introduced the data and how to access it. In Section 3, we used multiplicative

decomposition on the time series of Apple’s stock price to inspect its trend,

seasonal and random components on a descriptive level.

After introducing and getting familiar with the data, we moved on to uni-

variate modeling. We also introduced the sample autocorrelaction function

in Section 3 - an important visualization and diagnostic throughout this the-

sis. In Section 4, we fit an ARIMA model on AAPL and forecasted AAPL

with the resultant ARIMA(0,1,0) model. We also fit, and forecasted with an

ARIMA+GARCH model in Section 4. In Section 5, we introduced, fit, and

forecasted with a Holt-Winters exponential smoothing model.

After univariate models, we moved on to fitting and forecasting with mul-

tivariate models, using the contemporaneous time series of Microsoft’s stock

price, Texas Instruments stock price, and the value of the S&P500 market in-

dex. In Section 6, we fit and forecasted with a VAR model. We also inspected

the dynamics of this 4 variable system with impulse response functions and

plots in Section 6. In Section 7, we performed linear regression with correction

for autocorrelated errors. We also compute an average forecast from an un-

weighted average of all the aforementioned model’s forecasts. We visualize the

Averages Model Forecast in Figure 25 in red provide its forecasts and RMSE

in Table 3.

We see in Figure 3 that the ARIMA model forecasts the last observed data
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Period Month Observed ARIMA GARCH Exp. Smooth VAR Regression Average

M1 Oct 2016 112.71 112.71 120.74 113.34 114.39 112.79 114.79
M2 Nov 2016 113.46 112.71 129.56 113.97 115.27 112.44 116.79
M3 Dec 2016 110.37 112.71 139.24 114.60 116.11 114.57 119.45
M4 Jan 2017 115.80 112.71 149.86 115.23 116.69 114.47 121.85

MSE - - 1.3 193.1 1.57 3.37 1.7 11.21
RMSE - - 1.14 13.89 1.25 1.83 1.3 3.35

Table 2: Short Term (4 month) Forecast

point, the ARIMA+GARCH model dramatically over estimates its forecasts,

the VAR, Time Series Regression, and Exponential Smoothing models capture

some of the upward trend in the data, but still underestimate the test data.

The average of all the forecasts is the best forecaster over the 12-month test

period October 2016 - September 2017.

8.1 Best Short-Term Forecast

We are interested in the model that performs best for a short-term forecast.

We determine that a 4-month period is appropriate for a short-term forecast,

because this is financial data. Table 2 has the short-term forecasts and RMSE

for our models.

We see in Table 2 that the model with the lowest RMSE is our ARIMA

model. This is interesting because the ARIMA model’s predictions are the last

observed value. This means that when forecasting AAPL, even for the next 4

months, the last observed value is a safe and accurate forecast.
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Period Month Observed ARIMA GARCH Exp. Smooth VAR Regression Average

M1 Oct 2016 112.71 112.71 120.74 113.34 114.39 112.79 114.79
M2 Nov 2016 113.46 112.71 129.56 113.97 115.27 112.44 116.79
M3 Dec 2016 110.37 112.71 139.24 114.60 116.11 114.57 119.45
M4 Jan 2017 115.80 112.71 149.86 115.23 116.69 114.47 121.85
M5 Feb 2017 127.03 112.71 161.53 115.86 117.81 113.91 124.37
M6 Mar 2017 137.89 112.71 174.35 116.49 118.67 115.06 127.45
M7 Apr 2017 143.71 112.71 188.42 117.12 119.53 112.73 130.10
M8 May 2017 145.10 112.71 203.87 117.75 120.39 113.91 133.73
M9 Jun 2017 153.17 112.71 220.83 118.38 121.25 113.75 137.38
M10 July 2017 144.88 112.71 239.46 119.01 122.12 113.13 141.29
M11 Aug 2017 149.1 112.71 259.92 119.64 122.99 114.49 145.95
M12 Sep 2017 164.80 112.71 282.37 120.26 123.86 113.07 150.45
MSE - - 797.86 4159.86 565.74 465.46 756.91 86.92

RMSE - - 28.35 64.50 23.79 21.57 27.51 11.96

Table 3: Long Term (12 month) Forecast

8.2 Best Long-Term Forecast

Table 3 provides the test set and the 12-month forecast for each of our models.

We see in Table 3 that the Average Forecast has the best performance on

the entire 12-month test set, using RMSE as a model comparison metric.

The ranked order of model performance is Averages, Vector Autoregression,

Exponential Smoothing, Linear Regression, ARIMA, and ARIMA+GARCH.

It is noteworthy that ARIMA+GARCH dramatically underperformed all

other models, but helps influence the Average forecast’s top performance. We

see that The ARIMA+GARCH model vastly over estimates its forecast on

the test set, but the other models we fit underestimate the test set data.

Accordingly, the Averages Model finds a solid middle ground estimate and

happens to accurately model the trend in the data.

The forecasts of all of our models, including the averages model, are plot-

ted on the same graph in Appendix 1 Figures 27, 28, and 29(each plot has a
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different time window). We show the last 50 observations and all the mod-

els’ forecasts in Figure 26. Note that in Figure 26 ARIMA is red, ARIMA

+ GARCH is pink, VAR is orange, Linear Regression is blue, Exponential

Smoothing is yellow, the Averages Model is green, and the observed values are

in black.

Figure 25: Model’s Average Forecast

Figure 26 shows that the vast overestimations of the ARIMA+GARCH

pull up the Averages Model and the other models are fairly conservative. If

we did not have this over-estimating model, then the Averages model would

not model the trend in the data as well and would underperform our second

best long-term model, the V AR(1) model.
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Figure 26: All Models Forecast (Last 50 Observations)
ARIMA = red, ARIMA + GARCH = pink, VAR = orange, Linear Regression
= blue, Exponential Smoothing = yellow, Averages = green

8.3 Final Conclusions

The first and second best models for a short term forecast were the ARIMA

and Exponential Smoothing Models. Both these models only use past values of

Apple stock to predict the future, this indicates that for a short term forecast,

including covariates or other time series reduces performance.

One shortcoming of the ARIMA and Exponential smoothing models is

that they fail to accurately forecast the trend in the data, which reduces long

term forecast performance. The ARIMA+GARCH model on the other hand,

mistakes volatility for trend and dramatically overestimates the trend in the

data, making it a poor predictor in both the short and long term.
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This thesis indicates that univariate models are better for short-term fore-

casting, but multivariate models are better for long-term forecasting. For short

term forecasting, our best and worst models were both univariate, ARIMA and

ARIMA+GARCH, respectively. Furthermore, for long-term forecasting, the

multivariate models outperform all univariate models, except for the average

forecast.

These results indicate that averaging conservative and aggressive estimates

is a good strategy for 12-month forecasts. This indicates that for long-term

forecasts, incorporating more data can also improve performance. It is note-

worthy that while the Averages model was the best in the long-term, it is

not as good as the more parsimonious models in the short term, because it is

heavily influenced by the GARCH model’s overestimation of volatility.

8.4 Further Research

One avenue for further research is to perform the same analysis with stock

data of a different frequency, such as daily or hourly data. It would also be

interesting to integrate a larger set of contemporaneous time series into our

multivariate models - the VAR and Time Series Regression models, and see

how this impacts performance.

Recalling Figure 1, we can see that our training period spanned two dis-

tinguishable periods - a fairly constant stock price from 1990 - 2005, and a

period of exponential growth from 2005 - 2016. It would be interesting to see

how model performance changes if the training period had been reduced to

the period of growth.
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Additionally, it would be beneficial to include a modern machine learning

model into this analysis and compare the difference in performance. We saw

in the Recent Research Section 1.1 that there is a plethora of neural network

models that we could have been implemented.

One final avenue for further research is to dive deeper into ways of averaging

the models we fit. We computed an un-weighted average of the models, but

there are many ways we could have generated weighted average forecasts70.

70Gaynor, 578.
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Appendix A Appendix I: Figures and Tables

Table 4: Correlation Matrix of our 4 Time Series

Figure 27: All Models Forecast
ARIMA = red, ARIMA + GARCH = pink, VAR = orange, Linear Regression
= blue, Exponential Smoothing = yellow, Averages = green
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Figure 28: All Models Forecast (Last 100 Observations)
ARIMA = red, ARIMA + GARCH = pink, VAR = orange, Linear Regression
= blue, Exponential Smoothing = yellow, Averages = green

Figure 29: All Models Forecast (Last 50 Observations)
ARIMA = red, ARIMA + GARCH = pink, VAR = orange, Linear Regression
= blue, Exponential Smoothing = yellow, Averages = green
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Appendix B Appendix II: R Code

l ibrary (DT)

l ibrary ( readr )

l ibrary ( reshape2 )

l ibrary ( Hmisc )

l ibrary ( k n i t r )

l ibrary ( car )

l ibrary ( ggp lot2 )

l ibrary ( f o r e c a s t )

l ibrary ( dplyr )

l ibrary ( t s e r i e s )

l ibrary ( xts )

setwd ( ”/Users/Jordan/Desktop/UCLA/MAS/ t h e s i s /” )

data <− read csv ( ” s t a t s 4 1 5 p r o j e c t . csv ” )

aapl2 . ts <− ts (data [ , 2 ] , frequency = 12 , start = c (1990 ,1 ) )

gspc2 . ts <− ts (data [ , 3 ] , frequency = 12 , start = c (1990 ,1 ) )

msft2 . ts <− ts (data [ , 4 ] , frequency = 12 , start = c (1990 ,1 ) )

txn2 . ts <− ts (data [ , 5 ] , frequency = 12 , start = c (1990 ,1 ) )

aapl . t r a i n <− aapl2 . ts [ 1 : 3 2 2 ] %>%

ts ( frequency = 12 , start = c (1990 ,1 ) )

msft . t r a i n <− msft2 . ts [ 1 : 3 2 2 ] %>%
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ts ( frequency = 12 , start = c (1990 ,1 ) )

gspc . t r a i n <− gspc2 . ts [ 1 : 3 2 2 ] %>%

ts ( frequency = 12 , start = c (1990 ,1 ) )

txn . t r a i n <− txn2 . ts [ 1 : 3 2 2 ] %>%

ts ( frequency = 12 , start = c (1990 ,1 ) )

# Descr i b ing the Data

plot . ts ( aapl . t ra in , type = ” l ” ,

main = ” Figure 1 : AAPL opening p r i c e ” )

aapl .150 <− aapl2 . ts [ 1 : 1 5 0 ] %>% ts ( )

plot . ts ( aapl . 150 , type = ” l ” ,

main = ”AAPL F i r s t 150 Obs” )

plot . ts ( gspc2 . ts , type = ” l ” ,

main = ” Figure 2a : GSPC opening value ” )

plot . ts ( msft2 . ts , type = ” l ” ,

main = ” Figure 2b : MSFT opening p r i c e ” )

plot . ts ( txn2 . ts , type = ” l ” ,

main = ” Figure 2c : TXN opening p r i c e ” )

plot ( decompose ( aapl . t ra in , type = ” mult i ” ) )

boxplot ( aapl . t r a i n ˜cycle ( aapl . t r a i n ) , x lab = ”Month” ,

main = ”AAPL Seasona l Boxplot ” )
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aapl . random <− decompose ( aapl . t ra in ,

type = ” mult i ” )$random

ac f ( aapl . random , na . action = na . omit ,

main = ”ACF random component” )

# ARIMA Sect ion

d1 <− d i f f ( aapl . t ra in , d i f f e r e n c e s = 1)

ac f ( d1 , na . action = na . exclude ,

main = ”ACF of (1−B)Y t ” )

model2 <− arima ( aapl . t ra in , order = c ( 0 , 1 , 0 ) )

a c f ( model2$residuals [−1] , main =

”ACF of the Res idua l s o f ARIMA(0 , 1 , 0 ) on Y t ” )

pred <− predict ( model2 , n . ahead=12)

model2 p r ed i c t ed <− pred$pred

model2 pred se <− pred$se

aapl . t e s t . real <− aapl2 . ts [ 3 2 2 : 3 3 3 , 1 ]

ggp lo t (data , aes ( x =1:333)) +

geom l i n e ( aes ( y=AAPL) ) +

geom l i n e (data=data . frame ( model2 p r ed i c t ed ) ,
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aes ( x=c ( 322 : 333 ) , y=model2 pred ic ted ,

c o l o r = ” red ” ) ) +

xlab ( ”Time” ) + g g t i t l e ( ”ARIMA Forecast ” ) +

theme ( legend . p o s i t i o n=”none” )

Box . t e s t ( model2$residuals ,

type = ”Ljung−Box” )

# ARIMA + GARCH Sect ion

ac f ( ( model2$residuals [−1])ˆ2 ,

main = ”ARIMA(0 , 1 , 0 ) Res idua l s ˆ2” )

l ibrary ( fGarch )

garch . 3 <− garch ( model2$residuals , order = c ( 1 , 1 ) ,

trace = F)

AIC( garch . 3 )

garch . 4 <− garch ( model2$residuals , order = c ( 0 , 2 ) ,

trace = F)

AIC( garch . 4 )

d1 <− d i f f ( aapl . t ra in , d i f f e r e n c e s = 1)

garch . f i t <− garchFit ( formula=˜arma(0 ,0)+ garch ( 1 , 1 ) ,
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data = d1 , trace = F)

garch . pred <− predict ( garch . f i t , n . ahead = 12 ,

trace = FALSE, mse = c ( ”cond” ) )

garch . f o r e c a s t <− ts ( garch . pred [ , 1 ]+ garch . pred [ , 2 ] )

a c f ( garch . f i t @ r e s i d u a l s , main = ”ACF of Res idua l s ” )

a c f ( garch . f i t @ r e s i d u a l s ˆ2 , main = ”ACF of Res idua l s ˆ2” )

garch . f c . og <− c ( )

for ( i in 1 : 12 ){

garch . f c . og [ i ] <− aapl . t r a i n [ 3 2 2 ] +

sum( garch . f o r e c a s t [ 1 : i ] )

}

ggp lot (data , aes ( x =1:333)) + geom l i n e ( aes ( y=AAPL) ) +

geom l i n e (data=data . frame ( garch . f c . og ) ,

aes ( x=c ( 322 : 333 ) ,

y=garch . f c . og , c o l o r = ” red ” ) ) +

xlab ( ”Time” ) + g g t i t l e ( ”ARIMA+GARCH Forecast ” ) +

theme ( legend . p o s i t i o n=”none” )

# VAR Sec t ion

l ibrary ( t s e r i e s )

adf . t e s t ( aapl . t r a i n )
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adf . t e s t ( gspc . t r a i n )

adf . t e s t ( msft . t r a i n )

adf . t e s t ( txn . t r a i n )

a . d1 <− d i f f ( aapl . t ra in , d i f f e r e n c e s = 1)

m. d1 <− d i f f ( msft . t ra in , d i f f e r e n c e s = 1)

g . d1 <− d i f f ( gspc . t ra in , d i f f e r e n c e s = 1)

t . d1 <− d i f f ( txn . t ra in , d i f f e r e n c e s = 1)

adf . t e s t (m. d1 )

adf . t e s t ( a . d1 )

adf . t e s t ( g . d1 )

adf . t e s t ( t . d1 )

l ibrary ( vars )

var1 <− VAR(cbind ( a . d1 , m. d1 , g . d1 , t . d1 ) , p = 1 ,

type = ” trend ” )

c c f ( a . d1 , m. d1 , main = ”AAPL∗−MSFT∗” )

c c f ( a . d1 , g . d1 , main = ”AAPL∗−GSPC∗” )

c c f ( a . d1 , t . d1 , main = ”AAPL∗−TXN∗” )

j 1 <− ar ( ts . union ( a . d1 , m. d1 , g . d1 , t . d1 ) ,
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a i c= TRUE)

a i c p vector <− j 1$ a i c

a c f ( resid ( var1 ) [ , 1 ] , main = ”ACF r e s AAPL” )

ac f ( resid ( var1 ) [ , 2 ] , main = ”ACF r e s MSFT” )

ac f ( resid ( var1 ) [ , 3 ] , main = ”ACF r e s GSPC” )

ac f ( resid ( var1 ) [ , 4 ] , main = ”ACF r e s TXN” )

c c f ( resid ( var1 ) [ , 1 ] , resid ( var1 ) [ , 2 ] ,

main = ”CCF r e s AAPL−MSFT” )

c c f ( resid ( var1 ) [ , 1 ] , resid ( var1 ) [ , 3 ] ,

main = ”CCF r e s AAPL−GSPC” )

c c f ( resid ( var1 ) [ , 1 ] , resid ( var1 ) [ , 4 ] ,

main = ”CCF r e s AAPL−TXN” )

i r f 1 <− i r f ( var1 , impulse = ”a . d1” , response =

c ( ”a . d1” , ”m. d1” , ”g . d1” , ” t . d1” ) ,

boot = FALSE, n . ahead = 12)

plot ( i r f 1 , main = ”IRF shock to AAPL” )

i r f 2 <− i r f ( var1 , impulse = ”m. d1” , response =

c ( ”a . d1” , ”m. d1” , ”g . d1” , ” t . d1” ) ,

boot = FALSE, n . ahead = 12)
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plot ( i r f 2 , main = ”IRF shock to MSFT” )

i r f 3 <− i r f ( var1 , impulse = ”g . d1” , response =

c ( ”a . d1” , ”m. d1” , ”g . d1” , ” t . d1” ) ,

boot = FALSE, n . ahead = 12)

plot ( i r f 3 , main = ”IRF shock to GSPC” )

i r f 4 <− i r f ( var1 , impulse = ” t . d1” , response =

c ( ”a . d1” , ”m. d1” , ”g . d1” , ” t . d1” ) ,

boot = FALSE, n . ahead = 12)

plot ( i r f 4 , main = ”IRF shock to TXN” )

l ibrary ( t s e r i e s )

c o i n t e g r a t i o n<−function (x , y )

{

v a l s<−data . frame (x , y )

beta<−coef (lm( v a l s [ , 2 ] ˜ v a l s [ , 1 ]+0 ,

data=v a l s ) ) [ 1 ]

( adf . t e s t ( v a l s [ ,2 ]−beta∗v a l s [ , 1 ] ,

a l t e r n a t i v e=” s t a t i o n a r y ” ,

k=0))$p . va lue

}

c o i n t e g r a t i o n ( a . d1 , m. d1 )
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c o i n t e g r a t i o n ( a . d1 , g . d1 )

c o i n t e g r a t i o n ( a . d1 , t . d1 )

c o i n t e g r a t i o n ( g . d1 , m. d1 )

c o i n t e g r a t i o n ( t . d1 , m. d1 )

c o i n t e g r a t i o n ( g . d1 , g . d1 )

c o i n t e g r a t i o n ( aapl . t ra in , msft . t r a i n )

c o i n t e g r a t i o n ( aapl . t ra in , gspc . t r a i n )

c o i n t e g r a t i o n ( aapl . t ra in , txn . t r a i n )

c o i n t e g r a t i o n ( gspc . t ra in , msft . t r a i n )

c o i n t e g r a t i o n ( txn . t ra in , msft . t r a i n )

c o i n t e g r a t i o n ( txn . t ra in , gspc . t r a i n )

p1 <− predict ( var1 , n . ahead = 12)

var1 . f c <− p1$ f c s t $a . d1 [ , 1 ]

var1 . f c . og <− c ( )

for ( i in 1 : 12 ){

var1 . f c . og [ i ] <− aapl . t r a i n [ 3 2 2 ] + sum( var1 . f c [ 1 : i ] )

}

ggp lot (data , aes ( x =1:333)) +

geom l i n e ( aes ( y=AAPL) ) +

geom l i n e (data=data . frame ( var1 . f c . og ) ,

aes ( x=c ( 322 : 333 ) ,
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y=var1 . f c . og , c o l o r = ” red ” ) ) +

xlab ( ”Time” ) + g g t i t l e ( ”VAR(1) Forecast ” ) +

theme ( legend . p o s i t i o n=”none” )

# Regress ion Sec t ion

mod . reg1 <− lm( aapl . t r a i n ˜ gspc . t r a i n +

msft . t r a i n + txn . t r a i n )

a c f ( resid (mod . reg1 ) ,

main = ”ACF of Linear Regres s ion

Model Res idua l s ” )

pac f (mod . reg1$residuals ,

main = ”PACF of Linear Regres s ion

Model Res idua l s ” )

l ibrary ( nlme )

mod . reg1 . arma <− arma ( resid (mod . reg1 ) ,

order = c ( 1 , 0 ) , i n c lude . i n t e r c e p t = FALSE)

j1 <− g l s ( aapl . t r a i n ˜ gspc . t r a i n + msft . t r a i n +

txn . t ra in , c o r r e l a t i o n =

corARMA( c ( coef (mod . reg1 . arma ) ) ,

p=1))
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ac f ( resid ( j1 , type = ” normal ized ” ) ,

main = ”ACF of Res idua l s o f GLS

( Al l Vars , corARMA( 1 , 0 ) ) ” )

mod . reg . g <− lm( aapl . t r a i n ˜ gspc . t r a i n )

mod . reg .m <− lm( aapl . t r a i n ˜ msft . t r a i n )

mod . reg . t <− lm( aapl . t r a i n ˜ txn . t r a i n )

mod . reg .m. arma <− arma ( resid (mod . reg .m) ,

order = c ( 1 , 0 ) ,

i n c lude . i n t e r c e p t = FALSE)

g l s .m <− g l s ( aapl . t r a i n ˜ msft . t ra in ,

c o r r e l a t i o n = corARMA( c ( coef

(mod . reg .m. arma ) ) , p=1))

mod . reg . g . arma <− arma ( resid (mod . reg . g ) ,

order = c ( 1 , 0 ) , i n c lude . i n t e r c e p t = FALSE)

g l s . g <− g l s ( aapl . t r a i n ˜ gspc . t ra in ,

c o r r e l a t i o n = corARMA( c ( coef

(mod . reg . g . arma ) ) , p=1))

mod . reg . t . arma <− arma ( resid (mod . reg . t ) ,

order = c ( 1 , 0 ) , i n c lude . i n t e r c e p t = FALSE)
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g l s . t <− g l s ( aapl . t r a i n ˜ txn . t ra in ,

c o r r e l a t i o n = corARMA( c ( coef

(mod . reg . t . arma ) ) , p=1))

par ( mfrow = c ( 1 , 3 ) )

a c f ( resid ( g l s .m, type = ” normal ized ” ) ,

main = ”ACF of Res idua l s o f GLS

(˜MSFT, corARMA( 1 , 0 ) ) ” )

a c f ( resid ( g l s . g , type = ” normal ized ” ) ,

main = ”ACF of Res idua l s o f GLS

(˜GSPC, corARMA( 1 , 0 ) ) ” )

a c f ( resid ( g l s . t , type = ” normal ized ” ) ,

main = ”ACF of Res idua l s o f GLS

(˜TXN, corARMA( 1 , 0 ) ) ” )

a . t r a i n . d1 <− d i f f ( aapl . t ra in , d i f f e r e n c e s = 1)

g . t r a i n . d1 <− d i f f ( gspc . t ra in , d i f f e r e n c e s = 1)

m. t r a i n . d1 <− d i f f ( msft . t ra in , d i f f e r e n c e s = 1)

t . t r a i n . d1 <− d i f f ( txn . t ra in , d i f f e r e n c e s = 1)

reg . d i f f <− lm( a . t r a i n . d1 ˜ g . t r a i n . d1 +

m. t r a i n . d1 + t . t r a i n . d1 )

a c f ( resid ( reg . d i f f ) ,

main = ” Res idua l s ACF − Regres s ion
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on D i f f e r e nc ed S e r i e s ” )

aapl . t e s t . real <− aapl2 . ts [ 3 2 2 : 3 3 3 , 1 ]

gspc . t e s t . real <− gspc2 . ts [ 3 2 2 : 3 3 3 , 1 ]

msft . t e s t . real <− msft2 . ts [ 3 2 2 : 3 3 3 , 1 ]

txn . t e s t . real <− txn2 . ts [ 3 2 2 : 3 3 3 , 1 ]

gspc . t e s t . d i f f <− d i f f ( gspc2 . ts ,

d i f f e r e n c e s = 1 ) [ 3 2 1 : 3 3 2 , 1 ]

msft . t e s t . d i f f <− d i f f ( msft2 . ts ,

d i f f e r e n c e s = 1 ) [ 3 2 1 : 3 3 2 , 1 ]

txn . t e s t . d i f f <− d i f f ( txn2 . ts ,

d i f f e r e n c e s = 1 ) [ 3 2 1 : 3 3 2 , 1 ]

reg . d i f f . pred . frame <− data . frame ( gspc . t e s t . dif f ,

msft . t e s t . dif f , txn . t e s t . d i f f )

reg . d i f f . pred . aapl <− c ( )

reg . d i f f . pred . aapl . og <− c ( )

for ( i in 1 :nrow( reg . d i f f . pred . frame ) ){

reg . d i f f . pred . aapl [ i ] = 0.18905 +

0.02315∗ reg . d i f f . pred . frame [ i , 1 ] +

0.06954∗ reg . d i f f . pred . frame [ i , 2 ] +

0.07219∗ reg . d i f f . pred . frame [ i , 2 ]
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reg . d i f f . pred . aapl . og [ i ] = 112.709999 +

reg . d i f f . pred . aapl [ i ]

}

ggp lot (data , aes ( x =1:333)) +

geom l i n e ( aes ( y=AAPL) ) +

geom l i n e (data=data . frame ( reg . d i f f . pred . aapl . og ) ,

aes ( x=c ( 322 : 333 ) , y=reg . d i f f . pred . aapl . og ,

c o l o r = ” red ” ) ) +

xlab ( ”Time” ) +

g g t i t l e ( ” Linear Regres s ion Forecast ” ) +

theme ( legend . p o s i t i o n=”none” )

#Exponent ia l Smoothing Sec t ion

hw1 <− HoltWinters ( aapl . t ra in , gamma = FALSE)

hw1$alpha

hw1$beta

hw1 . pred <− predict (hw1 , n . ahead = 12)

hw . tab l e1 <− cbind ( as . data . frame ( aapl . t e s t . real ) ,

as . data . frame (hw1 . pred ) ) %>%
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as . data . frame ( ) %>%

dplyr : : s e l e c t ( ” observed ” = 1 ,

” pr ed i c t ed ” = 2)

ggp lot (data , aes ( x =1:333)) + geom l i n e ( aes ( y=AAPL) ) +

geom l i n e (data=data . frame (hw1 . pred ) ,

+ aes ( x=c ( 322 : 333 ) , y=hw1 . pred ,

c o l o r = ” red ” ) ) +

xlab ( ”Time” ) + g g t i t l e ( ”Holt−Winters Forecast ” ) +

+theme ( legend . p o s i t i o n=”none” )

# Conclus ions Sec t ion and Appendix I

arima . pred <− c ( rep (112 . 709 , 12) )

preds <− data . frame ( arima . pred , garch . f c . og ,

var1 . f c . og , reg . d i f f . pred . aapl . og , hw1 . pred ) %>%

mutate ( averages = rowMeans ( . ) ) %>%

mutate i f ( i s . numeric , funs (round ( . , 2 ) ) )

conc . tab <− data . frame (round( aapl . t e s t . real , 2 ) ,

preds )

s t <− data . frame ( conc . tab [ 1 : 4 , ] )

s t . arima . mse <− sum( ( s t $arima . pred −

+st $round . aapl . t e s t . real . . 2 . ) ˆ 2 ) /12
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s t . garch . mse <− sum( ( s t $garch . f c . og −

+st $round . aapl . t e s t . real . . 2 . ) ˆ 2 ) /12

s t . var . mse <− sum( ( s t $var1 . f c . og −

+st $round . aapl . t e s t . real . . 2 . ) ˆ 2 ) /12

s t . reg . d i f f . mse <− sum( ( s t $ reg . d i f f . pred . aapl . og −

+st $round . aapl . t e s t . real . . 2 . ) ˆ 2 ) /12

s t . f i t . mse <− sum( ( s t $ f i t −

s t $round . aapl . t e s t . real . . 2 . ) ˆ 2 ) /12

s t . averages . mse <− sum( ( s t $averages −

+st $round . aapl . t e s t . real . . 2 . ) ˆ 2 ) /12

s t . mse <− c ( ”−” , round( s t . arima . mse , 2 ) ,

round( s t . garch . mse , 2 ) ,

round( s t . var . mse , 2 ) , round( s t . reg . d i f f . mse , 2 ) ,

round( s t . f i t . mse , 2 ) ,

round( s t . averages . mse , 2 ) )

s t . tab1 <− rbind ( st , s t . mse )

per iod . s t <− c ( ”M1” , ”M2” , ”M3” , ”M4” , ”MSE” )

s t . tab2 <− data . frame ( per iod . st , s t . tab1 ) %>%

dplyr : : s e l e c t ( ” per iod ” = 1 ,

”Observed” = 2 , ”ARIMA Pred icted ” = 3 ,

”ARIMA GARCH Pred icted ” = 4 ,

”VAR(1) Pred ic ted ” = 5 , ” Regres s ion Pred ic ted ” = 6 ,

” Exponent ia l Smoothing Pred ic ted ” = 7 ,

” Averages ” = 8)
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arima . pred <− c ( rep (112 . 709 , 12) )

preds <− data . frame ( arima . pred , garch . f c . og ,

var1 . f c . og , reg . d i f f . pred . aapl . og , hw1 . pred ) %>%

mutate ( averages = rowMeans ( . ) ) %>%

mutate i f ( i s . numeric , funs (round ( . , 2 ) ) )

conc . tab <− data . frame (round( aapl . t e s t . real , 2 ) , preds )

averages . mse <− sum( ( ( conc . tab$averages −

conc . tab$round . aapl . t e s t . real . . 2 ) ˆ 2 ) /12)

conc . mse . vec <− c ( ”−” , 797 .86 , 4159 .86 ,

465 .46 , 756 .91 , 565 .74 , round( averages . mse , 2 ) )

conc . rmse . vec <− c ( ”−” , round ( 7 9 7 . 8 6 ˆ . 5 , 2 ) ,

round ( 4 1 5 9 . 8 6 ˆ . 5 , 2 ) , round ( 4 6 5 . 4 6 ˆ . 5 , 2 ) ,

round ( 7 5 6 . 9 1 ˆ . 5 , 2 ) ,

round ( 5 6 5 . 7 4 ˆ . 5 , 2 ) , round ( 1 4 3 . 0 7 ˆ . 5 , 2 ) )

conc . tab1 <− rbind ( conc . tab , conc . mse . vec ,

conc . rmse . vec )

per iod <− c ( ”M1” , ”M2” , ”M3” , ”M4” , ”M5” ,

”M6” , ”M7” , ”M8” , ”M9” , ”M10” , ”M11” , ”M12” ,

”MSE” , ”RMSE” )

conc . tab2 <− data . frame ( per iod , conc . tab1 ) %>%

dplyr : : s e l e c t ( ” per iod ” = 1 , ”Observed” = 2 ,

”ARIMA Pred icted ” = 3 ,

”ARIMA GARCH Pred icted ” = 4 , ”VAR(1) Pred ic ted ” = 5 ,
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” Regres s ion Pred ic ted ” = 6 ,

” Exponent ia l Smoothing Pred ic ted ” = 7 , ” Averages ” = 8)

ggp lot (data [ 2 8 3 : 3 3 3 , ] , aes ( x =283:333)) +

+geom l i n e ( aes ( y=AAPL) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=arima . pred , c o l o r = ” red ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=garch . f c . og , c o l o r = ” pink ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=var1 . f c . og , c o l o r = ” orange ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=reg . d i f f . pred . aapl . og , c o l o r = ” blue ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=f i t , c o l o r = ” ye l low ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=averages , c o l o r = ” green ” ) ) +

xlab ( ”Time” ) + g g t i t l e ( ” Al l Models Forecast

( Last 50 Observat ions ) ” ) +

+theme ( legend . p o s i t i o n=”none” )

cor (cbind ( aapl . t ra in , gspc . t ra in , msft . t ra in , txn . t r a i n ) )

79



ggp lot (data , aes ( x =1:333)) + geom l i n e ( aes ( y=AAPL) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=arima . pred , c o l o r = ” red ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=garch . f c . og , c o l o r = ” pink ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=var1 . f c . og , c o l o r = ” orange ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=reg . d i f f . pred . aapl . og , c o l o r = ” blue ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=f i t , c o l o r = ” ye l low ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=averages , c o l o r = ” green ” ) ) +

xlab ( ”Time” ) + g g t i t l e ( ” Al l Models Forecast ” ) +

+theme ( legend . p o s i t i o n=”none” )

ggp lot (data [ 2 3 3 : 3 3 3 , ] , aes ( x =233:333)) +

geom l i n e ( aes ( y=AAPL) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=arima . pred , c o l o r = ” red ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=garch . f c . og , c o l o r = ” pink ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=var1 . f c . og , c o l o r = ” orange ” ) ) +
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geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=reg . d i f f . pred . aapl . og , c o l o r = ” blue ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=f i t , c o l o r = ” ye l low ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=averages , c o l o r = ” green ” ) ) +

xlab ( ”Time” ) + g g t i t l e ( ” Al l Models Forecast

( Last 100 Observat ions ) ” ) +

+theme ( legend . p o s i t i o n=”none” )

ggp lot (data [ 2 8 3 : 3 3 3 , ] , aes ( x =283:333)) +

geom l i n e ( aes ( y=AAPL) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=arima . pred , c o l o r = ” red ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=garch . f c . og , c o l o r = ” pink ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=var1 . f c . og , c o l o r = ” orange ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=reg . d i f f . pred . aapl . og , c o l o r = ” blue ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=f i t , c o l o r = ” ye l low ” ) ) +

geom l i n e (data=conc . tab , aes ( x=c ( 322 : 333 ) ,

y=averages , c o l o r = ” green ” ) ) +
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xlab ( ”Time” ) + g g t i t l e ( ” Al l Models Forecast

( Last 50 Observat ions ) ” ) +

+theme ( legend . p o s i t i o n=”none” )
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[8] Kirchgaässner, Gebhard, Jürgen Wolters, and Uwe Hassler. Introduction to

Modern Time Series Analysis. Berlin: Springer, 2013. Internet resource.

83



[9] Pai, Ping-Feng, and Chih-Sheng Lin. “A Hybrid ARIMA and Support

Vector Machines Model in Stock Price Forecasting.” Omega vol. 33. No. 6

(2005): pp. 497–505.

[10] R Core Team (2017). R: A language and environment for statistical com-

puting. R Foundation for Statistical Computing, Vienna, Austria. URL

https://www.R-project.org/.

[11] E.W. Saad, D.V. Prokhorov, D.C. Wunsch. ”Comparative study of stock

trend prediction using time delay, recurrent and probabilistic neural net-

works”. IEEE Transactions on Neural Networks 9 (1998): pp. 1456-1470.

[12] Shumway, Robert H, and David S. Stoffer. Time Series Analysis and

Its Applications: With R Examples. Cham: Switzerland, 2017. Internet

resource.

[13] Wu, Z.Q. and Harris, C.J. ”Indirect Adaptive Neurofuzzy Estimation of

Nonlinear Time Series” Neural Network World vol. 6. No 3 (1996): pp.

407-416.

[14] Y. Yoon, G. Swalves. ”Predicting stock price performance: a neural net-

work approach”. Proceedings of the twenty-fourth annual Hawaii interna-

tional conference on system sciences (1991): pp. 156-162. Print.

84




