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ARTICLE

Rare variant associations with waist-to-hip ratio in
European-American and African-American women from
the NHLBI-Exome Sequencing Project

Mengyuan Kan1,2,23, Paul L Auer3,23,24, Gao T Wang1,23, Kristine L Bucasas1, Stanley Hooker1,
Alejandra Rodriguez1,25, Biao Li1, Jaclyn Ellis4, L Adrienne Cupples5,6, Yii-Der Ida Chen7,8,9, Josée Dupuis5,6,
Caroline S Fox6, Myron D Gross10, Joshua D Smith11, Nancy Heard-Costa6,12, James B Meigs13,
James S Pankow10, Jerome I Rotter7,8, David Siscovick14,15, James G Wilson16, Jay Shendure11,
Rebecca Jackson17, Ulrike Peters3, Hua Zhong18, Danyu Lin19, Li Hsu3, Nora Franceschini20, Chris Carlson3,
Goncalo Abecasis21, Stacey Gabriel22, Michael J Bamshad11, David Altshuler22, Deborah A Nickerson10,
Kari E North20, Leslie A Lange4, Alexander P Reiner3,15, NHLBI-Exome Sequencing Project and
Suzanne M Leal*,1

Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat

distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established

risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous

common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated

rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart,

Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare

variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 ×10−8) in European-

Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in

inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile,

aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin,

were nominally associated (P=2.23×10−4) with higher WHR in European-Americans. However, these significant results are not

shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two

populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-

individual variation in fat distribution through the regulation of insulin response.

European Journal of Human Genetics (2016) 24, 1181–1187; doi:10.1038/ejhg.2015.272; published online 13 January 2016

INTRODUCTION

Waist-to-hip ratio (WHR) is a common anthropometric measure-
ment of body fat distribution, in particular central abdominal fat.
A larger WHR indicates more intra-abdominal fat deposition and
is an established risk factor for type 2 diabetes1,2 and cardiovascular

disease.3,4 Moreover, it has been demonstrated that body shape, rather
than weight, is a better predictor of cardiovascular risk.5,6 WHR is a
heritable trait,7 and many studies have investigated the genetic
influence on body fat distribution.8,9 Recent genome-wide association
studies (GWAS) of common variants conducted in different ethnic
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populations have reported several genetic loci associated with
WHR.10–14 However, these findings explain only a modest percentage
of the genetic variance of WHR. The involvement of rare (minor allele
frequency (MAF) ≤ 0.01) variants has not previously been well studied
owing to their poor representation on commercial genotyping arrays.
Our study aims to detect the association between rare variants and

WHR to better understand the genetic etiology underlying central
adiposity. Although rare variants potentially have larger effect sizes
than common variants, there is little statistical power to detect
association signals when analyzing individual variants.15 However,
taking into account the cumulative effects of multiple rare variants in
specific genes or genetic regions can strengthen association signals,
thereby increasing the power to detect rare variant associations. We
analyzed exome sequence data using several rare variant association
methods: Combined Multivariate Collapsing (CMC),16 Burden of
Rare Variants (BRV) method16–18 Weighted Sum Statistic (WSS),19,20

Variable Threshold (VT)21 and Sequence Kernel Association Test
(SKAT).22

Exome sequencing targets the protein-coding variants in the human
genome. It is a proven approach to detect causal variants for
Mendelian disorders.23 There is also great interest in using exome
sequencing to elucidate the involvement of rare variants in the genetic
etiology of complex traits. With that goal in mind, the National Heart,
Lung, and Blood (NHLBI)-Exome Sequencing Project (ESP) was
realized. This project sequenced samples from ~7000 individuals who
were selected for 12 primary traits and also had data on 59 secondary
phenotypes.24–26 One of the secondary phenotypes, WHR, was
available on 1534 European-American (EA) and 1216 African-
American (AA) women and 784 EA and 296 AA men. For this study,
we limited our analysis to women, as it has previously been
demonstrated that there are significant differences in the distribution
of WHR measurements and in the underlying genetic etiology of
WHR between men and women.10,13 However, owing to the small
sample size for men, they were not analyzed.

SUBJECTS AND METHODS

Study sample ESP and quality control
A total of 6823 participants in NHLBI-ESP underwent exome sequencing in
approximately equal numbers at either the Broad Institute of MIT/Harvard or
the University of Washington. In brief, paired-end sequencing (2× 76 bp) was
performed on either the Illumina Genome Analyzer II or HiSeq2000 sequencers
(Illumina, San Diego, CA, USA) to an average depth of ~ 90× . The Broad
Institute used Agilent SureSelect Human All Exon 50 Mb capture target
(Agilent, Santa Clara, CA, USA) while the University of Washington used
Roche NimbleGen SeqCap EZ (Roche, Basel, Switzerland). Single-nucleotide
variants (SNVs) were called using glfMultiples of the UMAKE pipeline at the
University of Michigan that implements a maximum likelihood method to
perform multi-variant calling. Reads were mapped to human reference (hg19)
with Burrows-Wheeler Aligner (BWA)27 and summarized in Binary Align/Map
(BAM) files as joint calling input and further refined by duplicate removal,
recalibration and indel re-alignment using the Genome Analysis ToolKit
(GATK).28 Low-quality reads with phred-scaled mapping quality o20 were
excluded. A support vector machine (SVM) classifier, which is also part of the
UMAKE pipeline, was used to separate likely true-positive and false-positive
variant sites, and those variant sites that were likely to be false positives were
excluded. A total of 1 908 614 SNVs passed the SVM filter. Subsequent data
quality control was performed using Variant Association Tools (VAT),29 unless
otherwise denoted. We then removed variant calls with a read depth ≤ 10× ,
284 variant sites with an average read depth across all samples 4500× as these
regions are likely to contain copy number variants that can induce incorrect
variant calls and variant sites that deviated from Hardy–Weinberg equilibrium
in either EA (N= 2592) or AA (N= 2779) with P-valueso5× 10− 8 based on an
exact test.30 To alleviate bias from different capture targets, we removed variant

sites missing 410% of their genotypes and samples with a genotype missing
rate 410% per gene in association analysis step. Only those genes with ≥ 3
variant sites were analyzed.
Although self-reported ethnicity was available, we designated EA and AA

using Multidimensional Scaling (MDS)31 and removed 30 samples owing to
indeterminate race and 27 samples where there was a discrepancy between self-
reported and MDS ethnicity. ESP sequenced a number of duplicate samples for
quality control. Additionally, several related individuals were included in the
study. In order to detect cryptic duplicate and related samples, kinship analysis
was performed.29,31 For duplicate sample pairs, the one with the best sequence
quality was retained in the analysis. For related individuals, only one individual
per related group was analyzed; selection was based upon availability of
phenotype data as well as quality of sequence data. To avoid type I error owing
to inclusion of related individuals, only one individual from each family was
retained in the analysis. A total of 13 EA samples and 25 AA samples were
removed owing to relatedness. It was also evaluated if reported sex differed
from chromosomal sex.29 Fifteen individuals for whom reported sex differed
from chromosomal sex or who had Turner or Klinefelter syndrome were
removed from the analysis.
Phenotype quality control was performed using PhenoMan.32 We excluded

females who were aged either o18 or 490 years, had a height o140 cm, a
body mass index (BMI) o15 kg/m2 or had unrealistic WHR values, pre-
sumably owing to data entry errors. In total 24 EA and 30 AA females with
WHR phenotype data were excluded from the analysis, and 1510 EA and 1186
AA were available for analysis.

Association analyses
Association analysis was performed in EA and AA separately using linear
regression models, which included a number of covariates that could be
confounders: age, age squared, BMI, and current smoking status. Covariate
selection was performed using PhenoMan under backward selection. In order
to control for population stratification and substructure, we estimated MDS
components separately for EAs and AAs and included the first two components
in the regression model. Additionally, a dummy variable was included in the
regression model to control for sampling procedure, cohort membership and
capture target.
All the association tests were performed using the VAT software.29 Before

initiation of association testing, all the variants were first annotated using the
SeattleSeq Variation Annotation 134 and gene regions were defined by the
Reference Sequence (RefSeq) database. We applied five rare variant association
tests using a linear regression framework analyzing EAs and AAs separately.
Only potentially protein function-altering variant sites, that is, missense,
nonsense and splice sites were analyzed. Four fixed-effect methods, CMC,
BRV, WSS and VT, were used in the analysis, which involve different allele
coding, weighting and maximization procedures. The CMC uses an indicator
variable to code whether a rare variant is present or absent within a gene region
while the BRV regresses the number of rare variants within a gene region for
each individual. The WSS implements BRV coding but weights each variant by
its overall sample MAF, thereby up-weighting rare variants. The VT also
employs BRV coding but maximizes the test over allele frequencies, adjusting
for multiple testing. The random effects test SKAT, which implements a
variance component score statistics, was also used to analyze the data. For
SKAT, we used Quantile–Quantile (QQ) normalized WHRs, as it was
computationally infeasible to obtain permutation-based empirical P-values
while for the fixed-effect tests unadjusted phenotype values were used. For all
tests with the exception of VT, we analyzed rare variants with MAF≤ 0.01
based on the population-specific MAF for EAs and AAs estimated from the
entire ESP sample. A total of 15 405 genes with 200 526 SNVs and 15 599 genes
with 215 400 SNVs were analyzed for EAs and AAs, respectively. For the VT
method, low-frequency variants were also analyzed using MAF≤ 0.05; a total of
15 602 genes with 210 718 SNVs and 15 904 genes with 238 574 SNVs were
analyzed for EAs and AAs, respectively.
Although in the data quality-control steps variant sites missing 410% of

variant calls were removed, even lower levels of missing data can still increase
type I error. We therefore replaced missing genotypes with an imputed
genotype based on the population-specific ESP allele frequencies.17 For all rare
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variant association methods, P-values were obtained empirically using adaptive
permutation with the exception of SKAT for which analytical P-values were
acquired owing to the computational intensity of this method. Finally, meta-
analysis was used to combine test results from EA and AA, using a sample-size
based method33 for the CMC, BRV, WSS and VT methods and the MetaSKAT
package22 for SKAT.

Functional evaluation of variant sites
To estimate the evolutionary conservation of the nucleotide and the amino-acid
residue changes, PhyloP and GERP scores were used. PhyloP indicates
nucleotide conservation based on multiple alignments of 100 vertebrate species
under a null hypothesis of neutral evolution. GERP provides position-specific
estimates of evolutionary constraint using maximum likelihood evolutionary
rate estimation. To assess potential functional consequences, PolyPhen2,
PROVEAN, SIFT, CADD, MutationTaster and LRT were included.
PolyPhen-2 implements a naive Bayes classifier to predict possible impact of
an amino-acid substitution from sequence alignments and protein structural
properties. SIFT and PROVEAN compute a combined score based on the
degree of conservation of amino-acid residues in the sequence alignments; and
PROVEAN can also measure the potential impact of indels. CADD objectively
integrates multiple annotations into one measure (C score) for each variant.
MutationTaster employs a Bayes classifier to calculate probabilities for whether
the alteration to be harmful or not. The LRT method utilizes the log likelihood
ratio of the conserved relative to neutral model to measure the deleteriousness
of a mutation. Using these bioinformatics tools listed above, we annotated rare
variants analyzed in selected genes.

RESULTS

We performed whole-exome sequencing data analysis on 1510 EA and
1186 AA women to study the association between the quantitative trait
WHR and rare variants. These analyzed samples were ascertained from
six population-based cohorts and classified into different phenotypic
cohorts according to their associated primary phenotypes and
were sequenced using one of four in-solution capture targets
(Supplementary Table S1). EA women had a mean WHR of
0.84± 0.087 (refers to mean± SD hereafter) and AA women had a
mean WHR of 0.85± 0.092. Additional phenotypic information on
the study participants can be found in Table 1. The P-values for
covariates that were included in the regression analysis are listed in
Supplementary Tables S2 and S3. The distributions of variants
categorized by type, for example, missense, and frequency, that is,
≤ 0.01 and 40.01 for each population are shown in Supplementary
Table S4. More rare variant sites are observed in AAs compared
with EAs (ie, Po2.2 × 10− 16 for both missense and synonymous
variants, proportion test), while EAs have more rare nonsense and
splice sites than AAs (Po2.2 × 10− 16 and P= 6.63× 10− 13, respec-
tively). For all types of coding variants with a MAF41%, more sites
are observed in AAs compared with EAs, but only missense and
synonymous variant sites showed a statistical difference (P= 7.95×10− 4

and P= 7.29× 10− 4, respectively). Although rare coding variants are
predominant within the sample, only a small proportion of rare

coding variants are shared in EA and AA (8.7, 9.6, 6.4 and 5.9% for
missense, synonymous, nonsense and splice sites, respectively).
Although variant sites with a MAF40.01 occur less frequently than
rare variants, a larger proportion are shared in both populations (35.9,
40.1, 32.0 and 27.6% for missense, synonymous, nonsense and splice
sites, respectively). Notably, synonymous variants have the largest
proportion of variants shared between populations regardless of MAF.
Population specific QQ plots and Manhattan plots for each gene-

based test are shown in Supplementary Figures S1–S5. The QQ plots
demonstrate that for each rare variant association test type I error is
well controlled. The most significant genes associated with WHR
(Po0.0005 in any of the five gene-based tests) in EA, AA or meta-
analysis are listed in Supplementary Tables S5–S7. Most of the genes
with suggestive association with WHR have consistent results for
fixed-effect rare variant association methods (CMC, BRV, WSS and
VT) while other genes show suggestive associations for the random-
effects test SKAT.
An exception was for IKBKB (inhibitor of kappa light polypeptide

gene enhancer in B-cells, kinase beta; MIM 603258), which yielded P-
values less than exome-wide significance (P= 2.5 × 10− 6 Bonferroni
corrected P-value for testing 20 000 genes) and was detected to be
significantly associated with WHR (eg, CMC results β=− 0.131;
P= 4.00× 10− 8, Table 2) in EA females for all the fixed-effect rare
variant association methods, while the P-value of 4.03× 10− 6 for
SKAT was slightly greater than exome-wide significance (Table 2).
Among the EA women in our data set, eight rare IKBKB missense

variants were analyzed (Figure 1a,Supplementary Table S8). Three
variant sites are novel to ESP. Each of the eight IKBKB missense
variants was observed in only a single heterozygous EA carrier in our
data set. Based on consensus prediction across multiple annotation
methods, four variant sites likely have functional consequences, while
for two others it is unclear whether they have an impact on protein
function and two variant sites are most likely benign. The aggregated
effect of IKBKB rare variants decreases WHRs in EA (β=− 0.131); and
each of the eight EA rare variant carriers have WHRs lower than the
mean (0.84), with the exception of one individual who is the carrier of
the rare variant at rs150441824 (WHR= 0.88), which is predicted to
be benign. The carrier of the rare variant at rs202226005, which is also
predicted to be benign, has a WHR of 0.78. Although her WHR is
lower than the mean, it is still greater than other females carrying
IKBKB variants, which are most likely to be functional. IKBKB does
not show an association with WHR in AA (CMC result β=− 0.00042;
P= 0.99; meta-analysis with EA: P= 3.86× 10− 5, Table 2). For AA, 11
rare missense variants within IKBKB were discovered by exome
sequencing and none overlap with those observed in EA (Figure 1a,
Supplementary Table S8). Additionally, AA rare variant carriers have
mean WHR (0.85± 0.084) and six AA rare variant carriers have WHR
that are greater than the mean WHR (0.85± 0.092) for AA women

Table 1 Phenotypic information for women analyzed for waist-to-hip ratios

Phenotype EA AA

Number of study participants 1510 1186

Age (years)a 59±12 (19–84) 59±10 (18–88)

BMI (kg/m2)a 27.69±5.80 (15.71–49.89) 34.02±9.94 (17.16–59.90)

WHRa 0.84±0.087 (0.63–1.20) 0.85±0.092 (0.59–1.15)

Number of nonsmokers/smokers 1216/294 988/198

aData shown are the mean±SD and range (minimum to maximum value).
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(Figure 1a). Thus the allelic architecture of central adiposity may differ
for women of African versus European ancestry.
Several additional genes were nominally associated with WHR

(Po5× 10− 4, Supplementary Tables S5–S7). Most of them are novel
and not within regions previously identified to be associated in GWAS
of common variants, with the exception of one gene, COBLL1 (COBL-
like protein 1; MIM 610318; CMC result β= 0.04; P= 2.33× 10− 4,
Supplementary Table S5). A few studies10,12–14 reported 3′ UTR
and intergenic COBLL1 variants to be significantly associated
(Po5× 10− 8) with increased WHR; however, these SNPs were not
analyzed because they were not exonic and hence were not included in
the capture array. To test whether common variant associations have
potential effect on rare variant association signal, we obtained
genotype data from HapMap3 within a 642-kb region surrounding
COBLL1 (Supplementary Figure S6). A common intronic variant
rs6712203 in WHR data set were found in a linkage disequilibrium
(LD) block with the GWAS index SNPs (r2= 0.79 for rs10195252 and
r2= 0.85 for rs6717858, Supplementary Figure S6). Conditional
regression was performed adjusting for rs6712203 to eliminate
potential effects of those index SNPs (Supplementary Table S10).
The COBLL1 rare variant association signal still remained nominally
significant after adjustment (CMC result P=3.57×10− 4, Supplementary
Table S10), indicating that the association signal from rare variants is
likely to be independent of common variant associations. Additionally,
some of the nominally associated genes that were not previously
shown to be associated with WHR have data from functional studies
that suggest their involvement in adipocyte metabolism or insulin
signaling, which includes CTSB (MIM 116810) (adipocyte meta-
bolism), FOXO1 (MIM 136533) (adipocyte metabolism), ITIH5
(MIM 609783) (adipocyte metabolism) and PAQR3 (MIM 614577)
(insulin signaling) (see Supplementary Tables S5–S7 for additional
information on β and P-values for these genes).
Additionally, we performed rare variant association analyses for two

significantly associated genes (IKBKB and COBLL1) for the traits waist
circumference and hip circumference, respectively (Supplementary
Table S11). Interestingly, rare variants in IKBKB were nominally
associated with waist circumference (P= 9.21× 10− 6), and in COBLL1
were weakly associated (P= 0.0080). Neither of the genes were
associated with hip circumstance (P40.1).
To control for multiple testing due to performing association

analysis using five gene-based methods, we used Bonferroni correc-
tion. After adjusting for the five methods (CMC, BRV, WSS, VT and
SKAT), rare variants in IKBKB still showed a significant association
with WHR (CMC result P= 2.00× 10− 7) and COBLL1 showed
a suggestive association (CMC result P= 0.0012, Supplementary
Table S12), indicating that multiple testing did not substantially
deflate P-values.
We approximated the strength of genetic contributions to WHR by

comparing effect size between WHR loci from GWAS10,13,14 and rare
variants in our study. Rare variants in IKBKB have an aggregated effect
size of 0.13 of decreased WHR, which is much greater than the largest
effect size from GWAS, 0.06 of the LYPLAL1 locus associated with
WHR in women.10,13,14 For the COBLL1 locus, carriers with the T
allele of common variant rs10195252 have an increased WHR of
0.053, and the increase is consistent among different GWAS.10,13,14

However, rare variants in COBLL1 have an aggregated effect size of
0.04 to increased WHR, which is about the same scale as the effect size
of the common variant. Therefore, there is no clear evidence from this
study that rare variants have larger effects than common variants for
the WHR phenotype.T
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DISCUSSION

We analyzed exome sequence data from 1510 EA and 1186 AA
females and using different methods to detect rare variant associations
with the quantitative trait WHR. Rare variants in IKBKB are strongly
associated with WHR in female EA. In addition, we found nominally
significant association in COBLL1, a gene that was previously shown to
be associated with WHR in GWAS of common variants. Several other
nominal rare variant associations with WHR are with genes previously
shown to have a role in adipocyte and insulin metabolisms.
IKBKB encodes the protein IKKβ, which phosphorylates inhibitor

of NF-κB (IκB) to disassociate the inhibitor/NF-κB complex and
activate NF-κB in inflammation. IKKβ is a key mediator in inflamma-
tion pathways by several mechanisms.34 Obesity- or nutritional
overload-induced IKKβ/NF-κB activation initiates the inflammatory
process and ultimately results in insulin resistance in hepatocytes and
adipocytes.35,36 In addition to impairment of peripheral insulin
sensitivity, the IKKβ/NF-κB pathway affects glucose metabolism in
pancreatic islets by activation of inflammation, causing islet β-cell
failure in type 2 diabetes.37 Furthermore, overnutrition evokes
activation of the IKKβ/NF-κB pathway in the hypothalamus leading
to inflammation and the disruption of central insulin and leptin
signaling, thus resulting in impaired central nervous system's control
of food intake and promoting body weight gain.38,39 Consequently,
inhibition of IKKβ activation was also identified as a potential
therapeutic target to reverse inflammation in obesity-associated
type 2 diabetes.40 Meanwhile, some rare homozygous null mutations
in IKBKB have been reported in patients with severe combined
immunodeficiency, which result in IKKβ loss of expression and
therefore impairment of immune activation.41 Additionally, a reported
GWAS signal near IKBKB downstream for the phenotype tissue
plasminogen level is in partial LD with a coding variant in the tissue
plasminogen activator (PLAT) gene (MIM, 173370) nearby,42 which
suggests that central adiposity with insulin resistance may be correlated
with plasminogen activator through IKBKB. Interestingly, our results
showed IKBKB rare variants were associated with reduced WHRs
which suggested that they are protective against abdominal obesity
(Figure 1a). IKBKB amino-acid alterations could lead to IKKβ protein
substructure change, and further cause IKKβ function inactive in
inflammation pathways. The malfunction of IKKβ protein may reverse
the insulin resistance and promote normal regulation of food intake
and metabolic homeostasis (Figure 1b).

Rare variants within COBLL1 displayed a nominal association with
increased WHR. Previously, GWAS also reported an association
between common variants in COBLL1 (rs10195252 and rs6717858)
and increased WHR.10,12–14 Conditional analysis adjusting for ESP
common SNP suggested that the COBLL1 rare variant association
signal is unlikely influenced by associated GWAS common SNPs.
Moreover, other common variants in this locus were also found to be
associated with elevated fasting insulin,43 increased high-density
lipoprotein cholesterol44 and risk of developing type 2 diabetes.45

These prior association findings provide evidence that genetic varia-
tions in this region may contribute to multiple biological traits, which
could potentially influence WHR.
Among novel genes nominally associated with WHR, some have

been found to have functional impact on adipocyte and insulin
metabolism. Cathepsin B, encoded by the CTSB gene, contributes to
adipocyte cell death and macrophage infiltration into adipose tissue
associated with adipocyte hypertrophy.46 FOXO1 (Forkhead box
protein O1), encoded by FOXO1 gene, is a transcription factor that
is essential to the decision for a preadipocyte to commit to
adipogenesis.47 ITIH5 (inter-alpha-trypsin inhibitor heavy chain
family, member 5), encoded by ITIH5, is highly expressed in adipose
tissue and is increased in obesity while being reduced after diet-
induced weight loss.48 PAQR3 (progestin and adipoQ receptor family
member III), encoded by PAQR3, was found to modulate insulin
signaling by phosphoinositide 3-kinase pathway.49 Although these
genes did not reach exome-wide significance, these related studies
provide additional evidence that rare variants in these genes may have
a role in WHR.
In addition to the association with WHR, we identified that rare

variants in IKBKB showed evidence of association with waist
circumference but showed no association with hip circumference.
Therefore, rare variants in these WHR-associated genes might exert
their impacts primarily though waist circumference instead of hip
circumference, indicating that waist circumference might be a
potential driver behind WHR rare variant association.
Interestingly, most of our significant findings are confined to either

EAs or AAs, with the majority of associations being found for EAs.
This can be due to differences in allelic architecture between
populations and the effect sizes of causal variants. Most variant sites
are EA or AA specific or are private variants, for example, IKBKB.
Additionally, only a small proportion, 8.7%, of the analyzed rare

Figure 1 IKBKB rare variants associated with decreased WHR in EA. (a) WHR distributions in 1510 EA (blue) and 1186 AA (red) are shown in the upper
panel. WHR distributions in IKBKB rare missense variant carriers in EA (blue solid triangle) and AA (red solid dot) are shown in the bottom panel. y Axis
represents each IKBKB rare variant analyzed in gene-based test ordered by increasing WHRs. (b) Potential functional consequences for IKBKB rare variants
in insulin mechanism. A full color version of this figure is available at the European Journal of Human Genetics journal online.
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variants was shared by EAs and AAs. AAs have a greater number of
rare variants compared with EAs, which should increase the power to
detect WHR associations unless a greater proportion of AA-specific
variants are non-causal. Additionally, the sample size for AAs is
approximately three-fourths the size for EAs, reducing the power to
detect associations in AAs. The failure to replicate associations between
EAs and AAs may indicate that some of these findings are false
positives. Our rare variant association study with current sample size
(N= 1510 for EAs and N= 1186 for AAs) is underpowered, which can
increase false-positive findings. Simulation has been used to evaluate
the necessary sample sizes for rare variant association studies. These
simulation studies suggest that for the most part large sample sizes, for
example, 50 000 individuals, are necessary for a sufficient power.50

Replication of our findings using the currently available
HumanOmni5Exome BeadChip is not possible, owing to the large
number variants that are absent from the exome chip (Supplementary
Tables S6–S7). For example, of the 8 variants observed in EA for the
IKBKB gene only 2 are found on the exome chip, while for COBLL1,
of the 26 variants observed for EA only 7 are present on the exome
chip. Therefore, deep targeted sequencing or whole exome or genome
data sets with information on WHR are necessary to replicate our
findings.
When association results for the gene-based tests were compared, it

was observed that the results for most genes are correlated, for
example, genes with suggestive significant results shared similar results
for each burden tests, despite that some genes had a result that was
unique to one method (Supplementary Tables S5–S7). Moreover,
although performing a variety of gene-based tests come at a cost of
multiple testing that can reduce power, there is no single uniquely
most powerful test and performance of tests varies depending on the
underlying genetic model, which is unknown.51 For example, fixed-
effect test BRV is powerful when the majority of variants have an effect
that is unidirectional while the variance component test SKAT is
powerful when either a small proportion of variants are causal or the
causal variants have bidirectional effects. Even after performing a
Bonferroni correction for five gene-based methods, the association
between rare variants in IKBKB and WHR remained exome-wide
significant (Supplementary Table S12).
In summary, we performed the first study to detect the association

between rare variants and complex trait WHR using a variety of rare
variant association methods using exome sequence data. Our study
provides a preliminary understanding of the role of rare variants in
WHR and potentially insulin response pathways, which may also
contribute to obesity and type 2 diabetes. Although many of our
findings are intriguing and limitations are lack of replication and small
sample size, replication and functional studies are needed to confirm
the results and evaluate whether these same genes also have a role in
obesity and type 2 diabetes.
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