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Abstract

Short-acting β2-adrenergic receptor agonists (SABAs) are the most commonly prescribed asthma 

medications worldwide. Response to SABAs is measured as bronchodilator drug response (BDR), 

which varies among racial/ethnic groups in the U.S1, 2. However, the genetic variation that 

contributes to BDR is largely undefined in African Americans with asthma3. To identify genetic 
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variants that may contribute to differences in BDR in African Americans with asthma, we 

performed a genome-wide association study (GWAS) of BDR in 949 African American children 

with asthma, genotyped with the Axiom World Array 4 (Affymetrix, Santa Clara, CA) followed by 

imputation using 1000 Genomes phase III genotypes. We used linear regression models adjusting 

for age, sex, body mass index (BMI) and genetic ancestry to test for an association between BDR 

and genotype at single nucleotide polymorphisms (SNPs). To increase power and distinguish 

between shared vs. population-specific associations with BDR in children with asthma, we 

performed a meta-analysis across 949 African Americans and 1,830 Latinos (Total=2,779). Lastly, 

we performed genome-wide admixture mapping to identify regions whereby local African or 

European ancestry is associated with BDR in African Americans. We identified a population-

specific association with an intergenic SNP on chromosome 9q21 that was significantly associated 

with BDR (rs73650726, p=7.69×10−9). A trans-ethnic meta-analysis across African Americans 

and Latinos identified three additional SNPs within the intron of PRKG1 that were significantly 

associated with BDR (rs7903366, rs7070958, and rs7081864, p≤5×10−8). Our results failed to 

replicate in three additional populations of 416 Latinos and 1,615 African Americans. Our 

findings indicate that both population specific and shared genetic variation contributes to 

differences in BDR in minority children with asthma, and that the genetic underpinnings of BDR 

may differ between racial/ethnic groups.

INTRODUCTION

Albuterol, a short-acting β2-adrenergic receptor agonist (SABA), is the most commonly 

prescribed asthma medication worldwide4, 5. SABAs cause rapid smooth muscle relaxation 

of the airways. Bronchodilator drug response (BDR) is a measure of a patient’s clinical 

response to SABA treatment and is quantitatively assessed as a change in forced expiratory 

volume in one second (FEV1) after administration of a SABA. BDR is a complex trait 

involving interactions among inflammatory cells6, airway epithelium7, smooth muscle 

cells8, and the autonomic nervous system9. Variation in BDR is likely influenced by both 

population-specific and shared environmental and genetic factors10–12. In the United States 

(U.S.), BDR in children with asthma differs significantly between racial/ethnic groups2, 10. 

Specifically, African Americans have lower BDR compared to European populations even 

after controlling for asthma severity13. Compared to European Americans, African 

Americans suffer increased asthma morbidity and mortality2, 11, 14 and decreased BDR 

likely contributes to these disparities in disease progression and outcomes. The extensive use 

of albuterol as a first-line therapy for asthma, coupled with the decreased drug response 

(BDR) and increased disease burden in African Americans underscores the importance of 

identifying genetic factors that influence BDR in African American children with asthma. 

Once identified, these factors may lead to the generation of novel therapies and targeted 

interventions that will serve to improve patient care and asthma outcomes in an over-

burdened and under-studied population.

To date, knowledge of genetic variation that contributes to BDR in African Americans is 

limited to a single genome-wide association study (GWAS) in 328 individuals3. Previous 

GWAS and candidate gene studies performed in populations of predominantly European 

ancestry with asthma have identified several BDR candidate genes12, 15–24. A recent study in 
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Latinos with asthma replicated a number of these findings, and also identified novel 

population-specific associations with BDR10. Genetic effects identified in one population 

are not always generalizable across populations and several population-specific asthma-risk 

variants have been discovered in African-descent populations (e.g., African Americans and 

Latinos)25–27. Additionally, previous studies have shown that the varying degrees of African 

and European ancestry present in the African American population can be leveraged, 

through a technique known as admixture mapping, to identify the missing heritability of 

complex traits28. Admixture mapping is a genome-wide approach that uses the variable 

allele frequencies of multiple SNPs between different ancestral populations to test for an 

association between local ancestry and phenotype28. The likelihood of population-specific 

effects, the limited number and scale of prior studies of BDR performed in African 

Americans, and ability to perform admixture mapping analysis highlights the possibility of 

gaining novel information through evaluating the impact of common genetic factors on BDR 

in African American children with asthma.

In this study, we performed a GWAS and admixture mapping study of bronchodilator drug 

response in 949 African American children with asthma from the Study of African 

Americans, Asthma, Genes & Environments (SAGE I and II)29. To increase power and 

distinguish between population-specific vs. shared associations, we also performed a trans-

ethnic meta-analysis across our SAGE I and SAGE II participants and 1,830 Latinos from 

GALA II (Genes-environments and Admixture in Latino Americans) studies26, respectively 

(total N=2,779). We further attempted replication of our population-specific and trans-ethnic 

meta-analysis results in 416 Latinos from the Genetics of Asthma in Latino Americans study 

(GALA I)11, 30, 1,325 African Americans from the Study of Asthma Phenotypes and 

Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE)30, 31 and 290 African 

Americans from the Severe Asthma Research Program (SARP)32, 33.

METHODS

Study subjects from the Study of African Americans, Asthma, Genes & Environments

The Study of African Americans, Asthma, Genes & Environments (SAGE) is an ongoing 

case-control study of asthma in children and adolescents recruited from the San Francisco 

Bay Area in California29. Subjects were eligible if they were 8–21 years of age and self-

identified all four grandparents as African American. Exclusion criteria included: (1) 10 or 

more pack-years of smoking; (2) any smoking within 1 year of recruitment date; (3) 

pregnancy in the third trimester; or (4) history of one of the following conditions: sickle cell 

disease, cystic fibrosis, sarcoidosis, cerebral palsy, or history of heart or chest surgery. 

Asthma was defined by physician diagnosis, asthma medication use and reported symptoms 

of coughing, wheezing, or shortness of breath in the 2 years preceding enrollment. Detailed 

clinical measurements were recorded for each individual whom DNA was collected from. In 

addition, trained interviewers administered questionnaires to obtain baseline demographic 

data, as well as information on general health, asthma status, social, and environmental 

exposures. Pulmonary function testing was conducted with a KoKo® PFT Spirometer 

(nSpire Health Inc., Louisville, CO) according to American Thoracic Society 

recommendations34, to obtain forced expiratory volume in one second (FEV1) in addition to 
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other standard measurements of airway obstruction. Subjects with asthma were instructed to 

withhold their bronchodilator medications for at least 8 hours before testing. After 

completing baseline spirometry, subjects were given albuterol administered through a 

metered-dose inhaler (90 mcg/puff) with a spacer, and spirometry was repeated after 15 

minutes to obtain post-bronchodilator measurements. The dose of albuterol was different in 

early stages of SAGE recruitment (2001–2005: SAGE I) than in more recent participants 

(2006-present: SAGE II). In SAGE I, post-bronchodilator FEV1 values were measured after 

providing the participants 2 puffs of albuterol (180 μg) if they were younger than 16 years of 

age and 4 puffs of albuterol (360 μg) if they were 16 years of age or older. In SAGE II, two 

doses of albuterol were delivered. For the first dose, 4 puffs of albuterol (360 μg) were 

provided independently of the age of the participant. For the second dose, two puffs (180ug) 

for children < 16 years old were administered and 4 puffs for subjects older ≥ 16 years.

Body mass index (BMI) was calculated for each participant using weight and height 

measures and converted to a categorical scale of underweight, normal, overweight, and 

obese according to the Centers for Disease Control and Prevention. For participants under 20 

years old, standardized sex- and age-specific growth charts were used to calculate BMI 

percentiles (http://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm) and 

categorize their BMI as: underweight (BMI percentile<5th), normal (5th≤BMI<85th), 

overweight (85th≤BMI<95th), and obese (BMI≥95th). For participants 20 years and older, 

BMI categories (http://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html - 

interpretedAdults) were defined as: underweight (BMI<18.5), normal (18.5≤BMI<25), 

overweight (25≤BMI<30) and obese (BMI≥30). Further information about SAGE can be 

found in the Supplementary Text Supplementary Table 1.

Institutional review boards approved the study and all subjects/parents provided written 

assent/consent, respectively.

Genotyping and quality control (SAGE)

A total of 1,821 samples (1,011 asthma cases and 810 controls) were genotyped with the 

Axiom® World Array 4 (Affymetrix, Santa Clara, CA) at ~800,000 SNPs. Quality control 

was performed by removing SNPs that failed manufacturer’s quality control, had genotyping 

call rates below 95%, and/or had a deviation from Hardy-Weinberg equilibrium (p<10−6) 

within controls. 772,135 genotyped SNPs passed quality control. Samples were filtered 

based on discrepancy between genetic sex and reported gender and cryptic relatedness 

(PI_HAT>0.3). We excluded 3 subjects who were outliers for BDR (BDR of >60, or <−10). 

After sample quality control we included 759 SAGE II and 190 SAGE I asthma cases, for a 

total of 949 individuals with both genome-wide SNP data and measurements of 

bronchodilator drug response in the current study (Table 1). Phasing of genotyped SNPs was 

performed using SHAPE-IT35, and genotype imputation was performed using 

IMPUTE236, 37 using all populations from 1000 Genomes Project Phase III38 as a reference. 

Following imputation, a total of 9,573,507 genotyped and imputed (info score >0.3) SNPs 

with a MAF>0.05 were analyzed for SAGE II and 9,605,653 were analyzed for SAGE I.
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Study subjects from the Genes-environments & Admixture in Latino Americans study 
(GALA II)

A total of 1,830 Latino children with asthma genotyped with the Axiom LAT1 array (World 

Array 4, Affymetrix) were included in our analysis (Table 1). Asthma cases were defined in 

a similar manner as SAGE with detailed clinical measurements recorded for each individual 

whom DNA was collected from. Additionally, each individual underwent spirometry with 

BDR calculated as the percentage change in FEV1 after 2 doses of albuterol (post-FEV1) 

compared with baseline values before administration of albuterol (pre-FEV1). Post-

bronchodilator FEV1 values were measured after providing the participants 2 doses of 

albuterol, with a 15-minute waiting period after each dose. A total of 6 (if <16 years of age) 

to 8 (if ≥16 years of age) puffs of albuterol were administered. A total of 408 patients from 

the Centro de Neumologia Pediatrica in Puerto Rico were recruited based on having a BDR 

of at least 8%; of these, 121 patients were recruited based on having a BDR of at least 12%. 

Further details about GALA II are described in the Supplementary Text, Supplementary 

Table 1 and in depth elsewhere10. Imputation procedures identical to those described above 

for SAGE I and SAGE II were implemented, resulting in a total of 7,498,942 genotyped and 

imputed (info score >0.3) SNPs with a MAF>0.05.

Study subjects from the Genetics of Asthma in Latino Americans study (GALA I)

Our replication phase included 247 Mexican and 169 Puerto Rican asthma cases genotyped 

with the Genome-Wide Human SNP Array 6.0 (Affymetrix). Subjects were included in the 

study if they were between the ages of 8–40 with physician diagnosed mild to moderate-

severe asthma and had experienced two or more symptoms during the two years preceding 

time of recruitment (including wheezing, coughing and/or shortness of breath.)). BDR was 

measured in a similar way to GALA II, but with a lower dosage of albuterol. Specifically, 

post-FEV1 values were measured after only a single dose of albuterol (compared with 2 

doses in GALA II). Two (if <16 years of age) to 4 (if ≥16 years of age) total puffs of 

albuterol were administered (compared with 4 [if <16 years of age] and 6 [if ≥16 years of 

age] in GALA II). Further details of the study are described in the Supplementary Text, 

Supplementary Table 1 and elsewhere11, 30.

Study subjects from the Study of Asthma Phenotypes and Pharmacogenomic Interactions 
by Race-Ethnicity (SAPPHIRE)

For additional replication, we included 1,325 Africans Americans with asthma from 

SAPPHIRE3 genotyped with the Genome-Wide Human SNP Array 6.0 (Affymetrix). 

Subjects met the following criteria: age 12–56 years, had a diagnosis of asthma (based on 

both patient report and documentation in the medical record), did not have a prior diagnosis 

of chronic obstructive pulmonary disease or congestive heart failure (CHF), a baseline FEV1 

between 40–90% predicted, >12% baseline bronchodilator reversibility, no smoking in the 

preceding year or <10 pack-year smoking history total, no oral or inhaled corticosteroid use 

in the 4 weeks preceding screening, and not pregnant at the time of enrollment and not 

intending to get pregnant during the study period. Spirometry testing was performed using a 

KoKo® PFT Spirometer, (nSpire Health Inc., Louisville, CO) following 2005 ATS/ERS 

spirometry recommendations34. Patients with asthma who were using inhaled 
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bronchodilators were asked to withhold these medications for the 12 hours prior to 

spirometry tests. To assess BDR a 360 μg dose (i.e., 4 puffs) of inhaled albuterol sulfate 

hydrofluoroalkane (HFA) (GlaxoSmithKline, Research Triangle Park, NC) from a standard 

metered dose inhaler (MDI) using an AeroChamber Plus Flow-Vu® spacer (Monahan 

Medical Corp., Plattsburgh, NY) was administered to patients. Pulmonary function was 

reassessed 15 minutes after administering albuterol. BDR was measured as the change in 

forced expiratory volume at one second (FEV1) between the baseline (pre-bronchodilator) 

measure and post-bronchodilator FEV1. Estimates of local ancestry were obtained using 

RFMix39.

Study subjects from the Severe Asthma Research Program (SARP)

We included 290 African Americans with mild to severe asthma from SARP genotyped with 

the Illumina 1Mv1 platform25. SARP is a comprehensively characterized cohort with a 

range of asthma severities from mild to severe, but was enriched for severe disease defined 

by the American Thoracic Society (ATS) criteria for refractory asthma. Subjects met the 

definition of severe persistent asthma32, 33, 40. A physician’s diagnosis of asthma was 

confirmed by evidence of methacholine bronchial hyperresponsiveness or bronchodilator 

reversibility and documented asthma symptoms. Baseline pre-bronchodilator spirometry was 

performed after withholding long and short-acting bronchodilators. Post-bronchodilator 

FEV1 measurements were performed by increasing doses of albuterol of 200μg (two 

inhalations) up to a maximum dose of 800μg (eight inhalations).

Assessment of genetic ancestry

Genotypes from two populations were used to represent the ancestral haplotypes of African 

Americans for estimating local ancestry: HapMap European (CEU) and HapMap Africans 

(YRI). For Latinos, genotypes from 71 Native Americans were used as an additional 

ancestral population41. These 71 individuals included: 14 Zapotec, 2 Mixe, and 11 Mixtec 

from the southern State of Oaxaca42 and 44 Nahua individuals from Central Mexico43. 

Global ancestry was estimated using ADMIXTURE44 in a supervised analysis assuming two 

ancestral populations for African Americans and three ancestral populations for Latinos. 

Local ancestry was estimated using the program LAMP-LD42 in the GALA and SAGE 

studies and with RFMix in SAPPHIRE39.

Genotype association testing

All statistical analyses were conducted using R (version 2.15.3). For SAGE individuals, we 

used standard linear regression to test for an association between BDR and allele dosage at 

each individual SNP, adjusting for age, sex, BMI category, and both global and local African 

ancestry. A GWAS of BDR in GALA II has been previously published10. However, since 

this previous work did not include adjustment for BMI, we re-ran the GWAS using a new 

reference imputation panel and further adjusted by BMI in the present study45. For GALA II 

individuals, we adjusted for age, sex, BMI category, ethnicity, global Native American and 

African ancestry, and local ancestry. All analyses were performed using imputed genotypes 

from 1000 Genomes phase III. Using the fixed-effects model implemented in METAL46, we 

performed a meta-analysis of common variants (MAF ≥ 5%) across African Americans 

(SAGE I and SAGE II) and Latinos (GALA II). We selected variants that were common 
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(MAF ≥ 5%) within each individual study and then took the intersection of SNPs for the 

meta-analysis.

Admixture mapping

We used local ancestry estimates generated across the genome to perform admixture 

mapping in African Americans. Linear regression models adjusted for age, sex, BMI 

category, and global African ancestry were used to identify significant associations between 

local ancestry estimates and BDR. The threshold for genome-wide significance was 

calculated using the empirical autoregression framework with the package coda in R to 

estimate the total number of ancestral blocks47, 48. The Bonferroni threshold was calculated 

as α=2.4×10−4 based on 245 ancestral blocks. For African Americans, admixture mapping 

was performed separately in SAGE I and SAGE II and combined in a meta-analysis using 

METAL46. An admixture mapping study of BDR in GALA II has been previously 

published10, but did not include adjustment for BMI. In the current study, we re-ran the 

admixture mapping study further adjusting by BMI45 to be consistent with the SAGE I and 

SAGE II analyses. For GALA II Latinos, linear regression models adjusted for age, sex, 

ethnicity, BMI category, global Native American and African ancestry were used to identify 

significant associations between local ancestry estimates and BDR. We further combined the 

African ancestry results of SAGEI, SAGE II and GALA II in a meta-analysis using 

METAL46.

Replication in GALA I, SAPPHIRE, and SARP

We attempted replication of significant population-specific (SAGE I and SAGE II) and 

cosmopolitan (SAGE I, SAGE II, GALA II) associations with BDR in the GALA I, 

SAPPHIRE, and SARP studies. Replication in GALA I was performed using genotype 

imputation (i.e., in silico replication), followed by an examination at a locus-wide level for 

SNPs within +/− 50 kb. We imputed 100 kb regions around each SNP using the program 

IMPUTE2 for Mexican and Puerto Rican participants run separately using 1000 Genomes 

phase III haplotypes as a reference. Linear regression was used to test for an association 

between allele dosage and BDR separately in Mexicans and Puerto Ricans, adjusting for 

age, sex, BMI category, global and local ancestry. Replication in SAPPHIRE was performed 

using linear regression to test for an association between allele dosage and BDR in African 

Americans while adjusting for age, sex, BMI category, and global and local African 

ancestry. Replication in SARP was performed using linear regression to test for an 

association between allele dosage and BDR in African Americans while adjusting for age, 

sex, BMI, and global African ancestry. For GALA I and SAPPHIRE replication, statistical 

significance at the SNP level was evaluated at p<0.05, and at the locus-wide level was 

established using a conservative Bonferroni correction adjusting by the number of SNPs 

within +/− 50 kb of the original candidate SNP. For SARP replication, statistical significance 

was evaluated at p<0.05 at the SNP level only.
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RESULTS

GWAS results

After filtering variants with a MAF ≥ 5% and with imputation quality score (info score) ≥ 

0.3, we tested for an association of BDR at a total of 9,190,349 SNPs in 949 African 

Americans with asthma (λ = 1.006). We identified a single genome-wide significantly 

associated SNP within an intergenic region on chromosome 9 (rs73650726, imputation 

quality score=0.86) (Figures 1, 2, Supplementary Figure 1A, Table 2). At this variant, 

additional copies of the A1 allele (A), was associated with decreased drug response (β=−3.8, 

p=7.69×10−9) (Table 2 & Supplementary Figure 2, Table 2). The SNP rs73650726 is 

common in African Americans but rare in Latinos, with a minor allele frequency of 8% in 

both SAGE studies, but at a frequency of 1% in GALA II. This is consistent with allele 

frequencies observed in the 1000 Genomes Project, where the variant is common in African 

populations (8%), rare in Latino populations (1–2%), and absent in European and Asian 

populations (Figure 3)49.

In order to increase power and identify associations shared between populations we 

performed a trans-ethnic meta-analysis across African American and Latino participants 

from SAGE I, SAGE II, and GALA II. Following quality control and filtering on variants 

common in each study (MAF ≥ 5%), we took the overlap between the three studies and 

performed a meta-analysis on 6,570,864 SNPs. We identified genome-wide significant 

associations at three SNPs located on chromosome 10 within the intron of PRKG1: 

rs7903366 (β=1.23, p=3.94×10−8), rs7070958 (β=−1.24, p=4.09×10−8), and rs7081864 

(β=1.23, p=4.94×10−8) (imputation quality scores > 0.98, Figures 4 & 5, Table 2, 

Supplementary Figures 1B & 2, Table 2). All three SNPs are in linkage disequilibrium and 

are eQTLs for PRKG1 in lung tissue from the Genotype-Tissue Expression (GTEx) database 

(Table 3)50, with the minor allele associated with decreased expression.

Replication of African American population-specific (rs73650726) and shared (rs7903366, 

rs7070958, rs7081864) variants was attempted in three independent Latino (GALA I) and 

African American (SAPPHIRE and SARP) studies. The African American population-

specific association between rs73650726 and BDR, identified in the SAGE studies, was in 

the same direction in GALA I Puerto Ricans (β = −6.22) and the SAPPHIRE cohort of 

African Americans (β = −0.65), but in the SARP African American cohort the association 

was in the opposite direction (β = 6.12, p=0.04) (Supplementary Table 3). In addition, none 

of the SNPs within 50 kb of the four original SNPs were significantly associated with BDR 

following Bonferroni correction (Supplementary Table 4). Lastly, we evaluated previously 

identified candidate SNPs from prior candidate gene and GWAS with BDR in patients with 

asthma. After accounting for fifteen comparisons, no SNPs met the statistical significance 

threshold (p<3.33×10−3) (Supplementary Table 5); only rs9551086 in SPATA13 had a p-

value below 0.05 (p=0.02).

Admixture mapping results

We tested for an association of BDR with local genetic ancestry inferred at 478,441 SNPs in 

949 African Americans with asthma (190 from SAGE I and 759 from SAGE II) 
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(Supplementary Figures 3 & 4). A meta-analysis across both studies yielded no significant 

associations with ancestry (p<2.4×10−4) (Supplementary Figure 5). The most significant 

peak was located on chromosome 8p11, where African ancestry was associated with higher 

BDR (β=1.49, p=6.34×10−4) (Supplementary Table 6). A meta-analysis across SAGE I, 

SAGE II and GALA II yielded results consistent with previous findings in the original 

admixture mapping study of GALA II (see 10) (Supplementary Figure 6).

DISCUSSION

We performed a genome-wide association study for bronchodilator drug response in African 

Americans and identified a population-specific association between BDR and rs73650726, 

located on chromosome 9. Specifically, we discovered that the G (A2) allele of rs73650726 

was associated with increased BDR and is more common in African Americans compared to 

European populations (Figure 3). The variant rs73650726, located on chromosome 9, does 

not map to any gene, but SNPs in high linkage disequilibrium (r2≥0.8) with this marker are 

located in enhancer histone marks in lung tissues [36].

Our results demonstrate that population-specific genetic variation contributes to variation in 

BDR in African American children with asthma. We further combined our results in a meta-

analysis for BDR in African Americans and Latinos and identified multiple intronic variants 

in PRKG1 that were associated with BDR in both populations. Overall, our results 

demonstrate that population-specific and shared genetic factors contribute to variation in 

BDR among African American children with asthma.

Three of our significantly associated variants fell within the intronic region of an annotated 

gene, Protein Kinase, CGMP-Dependent, Type I (PRKG1). PRKG1 encodes for a cyclic 

GMP-dependent protein kinase, which phosphorylates proteins involved in regulating 

platelet activation and adhesion51, gene expression52, 53, vascular smooth muscle cell 

contraction54, and feedback of the nitric-oxide (NO) signaling pathway55. Notably, the NO 

pathway is a key pathway in modulating vasodilation in response to beta-agonists such as 

albuterol via β2-adrenergic receptors 56, making PRKG1 a highly plausible BDR candidate 

gene. The three SNPs are in high linkage disequilibrium (r2≥0.8) with variants known to be 

functional57, and are all associated with the expression of PRKG1 in the lung – a tissue 

highly relevant to BDR. From the GTEx project database, the reference allele for all three 

SNPs was associated with decreased expression of the gene in lung tissue50. Thus, additional 

studies are required to identify the causal underlying variation at this locus, such as direct 

sequencing of this locus, and how the expression of PRKG1 may be related to differences in 

BDR.

We sought to replicate our study findings and candidate SNPs previously found to be 

associated with BDR. The African American population-specific SNP, rs73650726, 

replicated in the opposite direction in the SARP cohort which could be due to differences in 

study design (Supplementary Figure 7). In candidate gene studies of BDR, the gly16arg 

variant in the Beta-2 adrenergic receptor gene (ADRB2) has consistently replicated opposite 

effects on BDR depending on whether medication exposure was acute or chronic12, 58–60. 

The SARP and SAGE studies administered different albuterol doses, had differences in 

Spear et al. Page 10

Pharmacogenomics J. Author manuscript; available in PMC 2019 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



medication withholding periods, and SARP individuals were more likely to be treated with 

long-acting β2-adrenergic receptor agonists (LABAs) over extended periods for severe 

disease. Additional factors that may have impacted replication include the presence of 

population specific differences in genetic contributions to BDR, lack of power due to small 

populations sizes, and/or varying patterns of linkage disequilibrium between populations. 

Furthermore, we were limited in sample size in GALA I25 to evaluate associations at low 

frequency variants, and note that SAPPHIRE is comprised of mainly adults31 in comparison 

to SAGE and GALA II, which are comprised of mainly children.

In conclusion, we identified two novel loci with biological plausibility whereby genetic 

variation is associated with differential response to albuterol, the most commonly prescribed 

asthma medication. One of these loci contains variation associated with BDR that is 

common to African Americans, a population that has historically been understudied in 

genetic studies61–63. Further genetic studies in African Americans are essential for 

identifying a more comprehensive set of genetic variants that contribute to differences in 

BDR, which in turn will lead to a better understanding of the pharmacogenetic response to 

asthma therapies. This will provide the foundation for genetic risk profiling and precision 

medicine, identifying novel genes and pathways associated with BDR, and the development 

of novel asthma therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Meta-analysis of genome-wide association studies with BDR in African Americans.
Association testing for BDR was performed using linear regression including age, sex, BMI 

category, local and global ancestry as covariates separately in SAGE I and II and combined 

in a meta-analysis. Dotted line indicates the genome-wide significance threshold of 5 × 10-8.
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Figure 2: LocusZoom plot of chr9:84653000–85653000.
Region includes genotyped and imputed variants from 1000 Genomes phase 3. Blue = 

variants common in SAGE I and II. Dotted line indicates the genome-wide significance 

threshold of 5 × 10-8.
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Figure 3: Geographic distribution of allele frequencies of rs73650726.
Each pie chart refers to a population from the 1000 Genomes Project phase 3. Yellow= 

Major allele (A), blue = minor allele (G). rs73650726 is common only in populations with 

African ancestry.
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Figure 4: Meta-analysis of genome-wide association studies with BDR in African Americans and 
Latinos.
Association testing for BDR was performed using linear regression including age, sex, BMI 

category, local and global ancestry as covariates; including ethnicity for GALA II. Dotted 

line indicates the genome-wide significance threshold of 5 × 10-8.
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Figure 5: LocusZoom plot of chr10:53200000–54200000.
Region includes genotyped and imputed variants from 1000 Genomes phase 3. Green = 

variants common in SAGE I, SAGE II and GALA II. Dotted line indicates the genome-wide 

significance threshold of 5 × 10-8.
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Table 1:
Descriptive statistics of SAGE I, SAGE II, & GALA II asthma cases.

Values shown are the means, with the standard deviation in parentheses.

 SAGE I SAGE II GALA II 

Total (N) 190 759 1830

Age (year) 18 (9.3) 14 (3.6) 13 (3.2)

  <18 years (%) 64% 86% 93%

Sex (%Male) 41% 52% 55%

Race/Ethnicity African American African American Latino

Global African Ancestry 0.81 (0.13) 0.72 (0.12) 0.15 (0.13)

Global Native American Ancestry - - 0.30 (0.25)

BMI

  <20 years 25 (7.3) (N=132) 25 (7.2) (N=722) 23 (6.5) (N=1782)

  >20 years 31 (7.8) (N=58) 29 (7.0) (N=37) 30 (6.6) (N=48)

Pulmonary Function

  Pre-FEV1 % Predicted 92 (16) 99 (14) 91 (16)

  Pre-FVC % Predicted 100 (17) 104 (13) 95 (16)

BDR (%) 9 (9.1) 9.5 (6.9) 11 (8.2)
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Table 2:
Genome-wide significant associations identified through a meta-analysis within African 
Americans (SAGE I and II), and within African Americans and Latinos (SAGE I, SAGE 
II, and GALA II).

Under ‘Direction’ the first symbol refers to SAGE I, second to SAGE II, and third to GALA II. 0 = absent/rare 

in study

African Americans (SAGE I and II):

Chr SNP Position (hg19) A1 A2 Effect (A1) StdErr Pvalue Direction

9q21 rs73650726 85152666 A G -3.8 0.66 7.69×10−9 --0

African Americans + Latinos (SAGE I, SAGE II, GALA II):

Chr SNP Position (hg19) A1 A2 Effect (A1) StdErr Pvalue Direction

10q21 rs7903366 53689774 T C 1.23 0.22 3.94×10−8 +++

10q21 rs7070958 53691116 A G -1.24 0.23 4.09×10−8 ---

10q21 rs7081864 53690331 A G 1.23 0.22 4.94×10−8 +++
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Table 3:
Correlation between the expression of PRKG1 in the lung and minor alleles at three 
intronic SNPs associated with BDR (cis-eQTLs).

Data is from the GTEx database.

SNP Ref Allele Pvalue Effect (Ref Allele) T-Statistic StdErr Tissue Gene

rs7903366 C 0.00051 -0.12 -3.5 0.034 Lung PRKG1

rs7070958 A 0.00046 -0.12 -3.6 0.034 Lung PRKG1

rs7081864 G 0.00052 -0.12 -3.5 0.034 Lung PRKG1
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