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Abstract

A longstanding goal of biomedicine is to understand how alterations in molecular and cellular 

networks give rise to the spectrum of human diseases. For diseases with shared etiology, 

understanding the common causes allows for improved diagnosis of each disease, development of 

new therapies and more comprehensive identification of disease genes. Accordingly, this protocol 

describes how to evaluate the extent to which two diseases, each characterized by a set of mapped 

genes, are colocalized in a reference gene interaction network. This procedure uses network 

propagation to measure the network “distance” between gene sets. For colocalized diseases, the 

network can be further analyzed to extract common gene communities at progressive granularities. 

In particular, we show how to: (i) obtain input gene sets and a reference gene interaction network, 

(ii) identify common subnetworks of genes that encompass or are in close proximity to all gene 

sets, (iii) use multiscale community detection to identify systems and pathways represented by 

each common subnetwork to generate a network colocalized systems map, (iv) validate identified 

genes and systems using a mouse variant database, and (v) visualize and further investigate 
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select genes, interactions and systems for relevance to phenotype(s) of interest. We demonstrate 

the utility of this approach by identifying shared biological mechanisms underlying autism and 

congenital heart disease. However, this protocol is general and can be applied to any gene sets 

attributed to diseases or other phenotypes with suspected joint association. A typical NetColoc run 

takes less than an hour. Software and documentation are available at https://github.com/ucsd-ccbb/

NetColoc.

EDITORIAL SUMMARY

This protocol describes how to use NetColoc, a freely available tool to evaluate the extent to which 

two related diseases, each characterized by a set of mapped genes, are colocalized in a reference 

gene interaction network.

Introduction

Many biological studies result in groups of genes linked to phenotypes of interest. For 

example, genome wide association studies (GWAS) identify common variations in DNA, 

which may be mapped to relevant genes, that are associated with particular diseases or 

traits1. As whole-exome and whole-genome sequencing studies are increasingly performed, 

genes containing rare variants associated with disease have also been identified2. Similarly, 

studies of mRNA expression levels, first using microarrays and now using next-generation 

sequencing, often result in sets of genes whose expression levels are altered in a disease or in 

response to perturbations3.

Interpreting these gene sets can be a complicated and time consuming process, often 

involving extensive literature review to contextualize results with known biology. Functional 

enrichment analysis4, one method for interpretation, can provide insight into the biological 

pathways and processes underlying a phenotype by testing for known pathways that 

have more in common with the gene set of interest than would be expected by chance. 

Gene interaction networks add further context for interpreting gene sets, with tools such 

as network propagation enabling the identification of new disease genes and genetic 

modules5,6. Notably, networks can boost the signal of underpowered data, as marginally 

significant variants converge on localized regions of network space7,8.

To date, network analyses have focused on approaches for studying single gene sets. Here, 

we describe a protocol to study the extent to which two gene sets are related to each 

other, even if the gene sets themselves share few common genes. Previously, we have used 

this approach to identify a set of shared pathways underlying autism and congenital heart 

disease9, an analysis we illustrate and extend here. Additionally, this approach may be used 

in the future to connect genes and pathways in a cross-species GWAS. More broadly, such 

an analysis can help unravel the complex relationships between genotypes and phenotypes 

by pinpointing convergent pathways.

Applications of the method

This protocol is based on NetColoc9, a tool for evaluating the extent to which two gene sets 

are colocalized in a gene interaction network and for identifying the functions that underlie 
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this colocalization. NetColoc relies on a dual network propagation approach to identify the 

region of network space that is significantly near two distinct input gene sets. This tool 

can be used to study any pair of gene sets, such as rare and common variants within the 

same disease, genes associated with two comorbid diseases, genetically correlated GWAS 

phenotypes, GWAS across two different species, or gene expression changes after treatment 

with two different drugs.

Comparison with other methods

Direct comparisons of gene sets are often used to determine the similarity between 

phenotypes or conditions, usually with some statistical test to assign significance. This 

approach can be problematic when gene sets are small, as the power to detect a significant 

overlap is limited. In addition, variants in different genes within the same pathway may 

result in similar phenotypes, a finding that would not be recognized by direct comparison. 

A related approach might be to first perform functional enrichment analysis4,10 on the 

individual gene sets and then to assess the overlap between significantly enriched pathways. 

This approach takes advantage of prior biological knowledge in the form of manually 

curated gene pathways. Like direct comparisons though, this method is limited in the case of 

small gene sets with few significantly enriched pathways. In contrast, NetColoc works well 

with small-to-medium gene sets (i.e., between 5 and 500 genes) as it can readily identify the 

network space significantly proximal across sets.

Several previous methods have employed network information to interconnect sets of 

genes7,11–14. Many of these methods are designed to analyze single gene sets or specific 

biological contexts, such as patient stratification based on cancer mutations, or association of 

causal variants to changes in gene expression7,11. In contrast, NetColoc provides a general 

statistical framework for evaluating and interpreting the relationships in gene network space 

of any two gene sets. Furthermore, NetColoc implements a degree-corrected propagation 

algorithm, as diffusion or propagation methods may be susceptible to over-representation 

of hub genes15. It also includes a statistical metric to assess the significance of network 

colocalization and integrates with clustering tools, pathway analysis, and a mouse variant 

database. These features enable facile interpretation and validation of network colocalized 

genes.

Development of the protocol

The NetColoc methodology was originally implemented in a previous work9, where we 

analyzed the network overlap between two comorbid disorders: autism spectrum disorder 

(ASD) and congenital heart disease (CHD). We measured the extent to which high 

confidence variants from large-scale exome studies were colocalized in network space, 

identifying novel disease genes and the underlying biological systems. Here we describe 

and further develop the protocol underlying this approach, with significantly greater details 

and updated methods. Specifically, we use an improved community detection algorithm24 to 

identify the systems and pathways underlying the network colocalization. We also updated 

the ASD gene set to use the most recent list of high confidence ASD genes to date28 in our 

example. Because of these updates, the exact genes and pathways identified here are slightly 

different than previously reported9, although the major findings remain consistent. We have 
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also implemented a distinct validation step by integrating with a mouse variant database16 to 

enable broad use beyond ASD and CHD.

Overview of the protocol

This protocol consists of five major stages (Figure 1) and is accompanied by an open-source 

codebase and Jupyter notebook available at https://github.com/ucsd-ccbb/NetColoc detailing 

each step needed to reproduce the example below.

Obtain input gene sets and gene network (Step 1–3)—NetColoc uses two sets of 

genes associated with phenotypes of interest and a gene interaction network as inputs. It is 

most useful when analyzing gene sets obtained from systematic genome-wide experiments, 

such as those mapped from GWAS loci, damaging variants from exome sequencing studies, 

or genes differentially expressed between experimental conditions. These genome-wide 

results are in contrast to manually curated, low-throughput gene sets, which are subject 

to bias by focusing on well-known genes. By using unbiased gene lists as inputs, poorly 

studied but physiologically important disease genes can be revealed based on their proximity 

to well-known disease genes, thereby facilitating the discovery of novel disease-related 

pathways.

In practice, we find that small to medium gene sets (between 5 and 500 genes) work best 

as inputs to NetColoc. If the input gene sets are very small, they may not characterize the 

phenotypes generally enough to yield meaningful results, i.e. characterizing the network 

proximal region to a single gene does not necessarily provide insight to the underlying 

phenotype. Alternatively, very large input gene sets result in the majority of the network 

being identified after network propagation, resulting in a lack of specificity. The sampling 

underlying the statistical framework also becomes an issue, due to the finite network 

(Supplementary Methods, Supplementary Fig. 1).

There exist a large number of gene interaction networks, some of which integrate numerous 

data types and databases17–21. Recent work has demonstrated that larger, more inclusive 

networks outperform smaller networks in disease gene discovery22. As such we recommend 

using a large and inclusive network for NetColoc analysis such as STRING17 or PCNet22.

Identification of a subnetwork of colocalized genes (Step 4–8)—NetColoc 

creates a network of colocalized genes, which includes some genes from both input sets 

alongside other genes identified by dual network propagation. Input genes identified in the 

colocalization network are generally genes that have strong evidence for association to at 

least one phenotype of interest but may be novel to the other. Genes found in both input gene 

sets are very likely to be included in the colocalization network. Notably, the colocalization 

network also includes genes that are identified by joint network proximity to the input gene 

sets but which are not themselves input genes. These genes represent candidate risk genes 

novel to both phenotypes.

Compute network colocalized systems map (Step 9–14)—The colocalization 

network generated by the previous step may be large, in which case it may be useful 

to separate this network into distinct communities using multiscale community detection. 
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Multiscale community detection identifies highly interconnected (modular) systems of 

genes, which can represent distinct protein complexes or biological pathways23,24. 

Identification of communities at multiple scales yields a hierarchical structure of discrete 

systems, with smaller, more specific systems contained within larger, more general ones25. 

The resulting NetColoc systems map provides a high-level view of the shared biological 

processes between phenotypes. Here, each system is essentially a hypothesis that those 

genes and interactions within it describe a pathway, process or complex that underlies the 

shared biology of both phenotypes. Because the resulting systems derive from the structure 

of the interaction network, they may be novel and context specific as they do not rely on a 

manual classification process.

Validate identified genes and systems (Step 15–24)—While the NetColoc systems 

map may recapitulate known biology – systems with known associations to both phenotypes 

– it may also present novel systems and system-phenotype associations. To prioritize such 

hypotheses, a key step is to integrate the systems map with independent datasets. For studies 

in mammals, one powerful independent resource is the Mouse Genome Informatics (MGI) 

database16, a large catalog of genes that, when disrupted, cause specific phenotypes in 

mice. Such analysis serves to pinpoint conserved systems enriched for mouse phenotypes 

and to further nominate novel disease gene candidates within these systems for follow-up 

experiments. One limitation of such an approach is that not all systems are conserved across 

species. In such cases, a novel system would not be validated by integration with the MGI, 

and further investigation would be needed to verify the system was not a false positive.

Further exploration of select systems (Step 25–30)—Systems of interest and the 

genes and interactions contained therein can be further investigated by importing the 

NetColoc systems map into Cytoscape26. These investigations may proceed in a number 

of directions. For example, systems without annotations may represent novel pathways, 

processes or complexes. Genes within systems of interest that are also associated with 

a particular phenotype in mice may be good candidates for further studies. Further, the 

interactions between novel disease gene candidates and known disease genes may be 

examined for further insights into functions related to the disease.

Limitations:

Limitations of NetColoc include the requirement that the input gene sets be of moderate 

size (approximately 5–500 genes, see above). Additionally, it can be computationally 

challenging and even practically prohibitive to perform network propagation on very dense 

gene interaction networks (>3 million edges). Currently, NetColoc is designed to operate on 

a single pair of gene sets, representing a pair of phenotypes. In future work we may allow 

for three or more input gene sets.

Materials

Hardware

A computer or server with 32 GB RAM, running Python 3 (may run with less memory, 

depending on size of network). The workflow has been tested on MacOS 10.
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Software

• Python packages: click, matplotlib, ndex2, network, numpy, seaborn, tqdm, 

mygene, scipy, statsmodels, gprofiler-official, ipywidgets, ipycytoscape, ddot, 

cdapsutil.

• Cytoscape, version 3.9 or later (https://cytoscape.org/)

Example data:

• Text files containing input gene lists: CHD_HC.tsv, and Satterstrom--Top-102-

ASD-genes--May2019.csv. Included in the NetColoc GitHub repository

• Text file containing input gene list for scored gene list example: E-MTAB-6863-

query-results.tsv. Included in the NetColoc GitHub repository

CRITICAL Input data should be text files, with one column containing the names of the 

input genes (there may be other columns which are not used). Input gene lists should be 

between 5 and 500 genes. There may optionally be a column for a per-gene score (a p-value 

or log fold change, for example), used in some optional parts of the workflow.

Software setup

• Python 3 installation (https://www.python.org/)

• Jupyter notebook installation (https://jupyter.org/install)

• Cytoscape installation (https://cytoscape.org/)

• NetColoc installation and dependencies (click, matplotlib, ndex2, network, 

numpy, seaborn, tqdm, mygene, scipy, statsmodels, gprofiler-official, ipywidgets, 

ipycytoscape, DDOT, cdapsutil). NetColoc and all dependencies except DDOT 

and cdapsutil will be automatically installed with pip install netcoloc. 

Cdapsutil can be installed with pip install cdapsutil. DDOT can be 

installed by cloning the repository, using the following commands

            git clone --branch python3 https://github.com/idekerlab/ddot.git

            cd ddot

            python setup.py bdist_wheel

            pip install dist/ddot*py3*whl

Procedure

CRITICAL The python code required for Steps 1–24 is included in the supplementary 

procedure to improve readability. The remaining steps 25–30 should be carried 

out in NDEx and Cytoscape. Additionally, steps 1–24 are demonstrated in an 

example notebook: https://github.com/ucsd-ccbb/NetColoc/blob/main/example_notebooks/

ASD_CHD_NetColoc_analysis.ipynb.
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Obtain input gene sets and gene network (<5 minutes)

1. Load required packages into Python.

?Troubleshooting

2. Select two gene sets of interest. Load gene sets from text files into Python. These 

gene sets should contain between 5 and 500 genes and come from experimental 

data, rather than manual curation, to avoid bias.

In some use cases, the gene sets of interest may accompany a score 

(such as p-value, or log fold change, in an RNA-Seq differential expression 

experiment). For these use cases, we provide an optional step to aid the 

researcher in finding an optimal choice of threshold by sweeping over a range 

of filtering criteria to maximize the observed divided by expected network 

intersection size. The genes which meet these criteria should be retained 

for use in the following steps. This process is illustrated in an example 

notebook https://github.com/ucsd-ccbb/NetColoc/blob/main/example_notebooks/

Evalute_scored_input_gene_lists.ipynb.

3. Select a gene interaction network to use for the analysis. Identify the network 

UUID (Universally Unique IDentifier) on NDEx27 and use this to import to a 

Jupyter notebook. We recommend using PCNet22 as a starting point, but a user 

may want to switch to “STRING high confidence” if using a machine with low 

memory (< 8GB RAM). CRITICAL Verify that nomenclature for the input genes 

matches the nomenclature for the interaction network (e.g., both are from the 

same species, and both use Entrez ID or HGNC symbol)

?Troubleshooting

Identify subnetworks of colocalized genes (20 minutes)

4. Precalculate matrices needed for network propagation, using 

the functions netprop.get_normalized_adjacency_matrix and 

netprop.get_individual_heats_matrix, referred to as w’ and w” in the 

following. This step will take a few minutes (more for denser networks). A 

benchmarking analysis demonstrates that the runtime required scales with the 

number of edges (w’) and the number of nodes (w”) (Supplementary Fig. 2a,b). 

If the researcher plans on running multiple analyses they may find it useful to 

save these matrices as numpy binary files. We include instructions for saving 

and reloading. We caution that, because these matrices are not sparse, saving 

and reloading can take a few minutes, and the saved file can be a few GB, so 

for many networks it may be faster to recompute the matrices each time. The 

diffusion parameter, which controls the rate of propagation through the network, 

may be set in this step. In practice, we have found that results are not dependent 

on the choice of this parameter (Supplementary Fig. 3), and recommend using 

the default value of 0.5.

?Troubleshooting
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5. Subset input genes sets to genes found in the selected network. Only genes 

contained in the interaction network will be retained as “seed” genes for 

downstream analysis.

?Troubleshooting

6. Compute network proximity scores from both seed gene 

sets, z1 and z2, independently, using the function 

netprop_zscore.calculate_heat_zscores. The network proximity scores 

include a correction for the degree distribution of the input gene sets 

(Supplementary Fig. 4). The runtime required for computing the network 

proximity scores increases linearly with the number of nodes in the underlying 

interaction network and with the size of the input gene list (Supplementary Fig. 

2c).

7. Build the NetColoc subnetwork and evaluate it for significant network 

colocalization. To build the NetColoc subnetwork, we take the product of the 

two proximity vectors as follows:

zcoloc = z1 * z2

We then select genes with zcoloc greater than a threshold (zcoloc > 3 default, 

but can be set by the user), and network proximity scores individually larger 

than a nominal threshold (z1 > 1.5, and z2 > 1.5 default, but can be set 

by the user). The genes meeting these criteria and associated interactions 

make up the network colocalization subnetwork. We have found that the 

default threshold values work well in practice to find the set of genes that 

is proximal to both seed gene sets. Tuning the thresholds higher will lead to 

fewer false positives but more false negatives. Similarly, tuning them lower 

will lead to more false positives but fewer false negatives. Either may be 

warranted given the specifics of an experiment. The researcher may conduct 

a sensitivity analysis of these thresholds to find a balance between a higher 

NetColoc enrichment score, but smaller network, and a lower NetColoc 

enrichment score, but larger network (Supplementary Fig. 5). The function 

network_colocalization.calculate_network_enrichment is provided 

to enable such a sensitivity analysis. In this function, the network colocalization 

score is computed for the gene set pair, based on the observed network overlap 

and expected network overlap from a null distribution, over a range of z-score 

thresholds. We recommend using the default thresholds unless the use case 

calls for higher or lower stringency. Choosing the thresholds which optimize 

the network colocalization score risks leaving out important phenotype-related 

genes. If gene sets are significantly colocalized, proceed with the analysis. Gene 

sets that are not significantly colocalized in the network have no evidence for 

shared underlying pathways, and thus proceeding with an analysis of the network 

intersection in this case is not likely to return meaningful results.
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8. (OPTIONAL) Transform NetColoc subnetwork edges to cosine similarities 

with the function network_colocalization.transform_edges. The cosine 

similarity score between two genes represents the extent to which those genes 

have similar interactors. In practice, the cosine similarity transformed score helps 

to visually reveal the underlying clustering structure present in a network.

Compute network colocalized systems map (5 minutes)

9. Convert network colocalization subnetwork from network graph format to ndex 

graph format, for compatibility with community detection module.

10. Run community detection on the NetColoc subnetwork to identify highly 

interacting subsystems. We recommend using the HiDef clustering algorithm24 

which is included in the NetColoc dependency cdapsutil which performs 

community detection, along with other commonly used clustering algorithms.

11. Convert the NetColoc hierarchy to networkx format, and write out features of the 

hierarchy to a pandas dataframe, for easier manipulation in Python.

12. (OPTIONAL) Systems that do not contain any seed genes may be removed in 

order to focus on systems in which perturbations are known to have an effect.

?Troubleshooting

13. (OPTIONAL) Examine the structure of the NetColoc hierarchy with an 

interactive sneak peak within the Jupyter notebook. Full annotation and 

visualization are conducted later in the analysis pipeline, but the researcher may 

find it helpful to get a sense of the size and structure of the NetColoc hierarchy.

?Troubleshooting

14. Annotate systems with gprofiler10, a functional enrichment tool. Annotate 

moderately sized systems (between 50 to 1000 genes per system) if the systems 

are significantly enriched for a Gene Ontology (GO) biological process. To 

increase the stringency of the annotation, require that the GO term is enriched 

with p<1×10−5 and shares at least 3 genes with the system. Label the system 

using the GO term that meets these criteria and has the highest sum of precision 

and recall. Systems without a GO term meeting these criteria are labeled with 

their unique system ID.

Validate identified genes and systems (15 minutes)

15. Load and parse mouse variant database, using functionality in the validation 

module included with NetColoc.

16. Identify phenotype(s) of interest. We recommend including a negative control, a 

phenotype that is not expected to overlap with the two phenotypes of interest.

17. Compute the enrichment of selected phenotype(s) in the NetColoc subnetwork 

as a whole to identify the phenotypes with the strongest association with the 

full NetColoc subnetwork. By computing the enrichment in the entire NetColoc 

Rosenthal et al. Page 9

Nat Protoc. Author manuscript; available in PMC 2023 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subnetwork, we identify the phenotypes with the strongest association with the 

entire set of genes identified to be related to both input sets.

18. Compute the enrichment of phenotype(s) in NetColoc subsystems. Some 

phenotypes may have stronger associations with NetColoc subsystems than 

with the full subnetwork. In this step, we calculate the enrichment of selected 

phenotypes in each NetColoc subsystem.

19. Annotate the NetColoc systems map with mouse variant data, input genes and 

enriched GO terms.

20. Export the NetColoc systems map to NDEx with the default style. Default style 

maps the fraction of seed genes from input set 1 (red) and input set 2 (blue) to 

node pie charts in NDEx. The remaining white fraction indicates the fraction of 

genes in each system that are not in either input set but that are implicated by 

network propagation (Figure 2a,b).

21. Apply another template style to the NetColoc Systems Map for mouse variant 

view and export to NDEx. Select the property to be mapped to system node 

colors (should be one of the mouse variant phenotypes previously identified). In 

this style, the log odds ratio is mapped to the system node color. Systems that are 

not significantly enriched for the phenotype are white (p<0.05; Figure 2a,c).

?Troubleshooting

22. Add genes associated with mouse variant phenotypes to the NetColoc 

subnetwork and export to NDEx.

?Troubleshooting

23. Upload the cosine-similarity transformed NetColoc subnetwork to NDEx.

24. Add the four networks from above to a network set on NDEx, using 

‘add_networks_to_networkset’ function from the NetColoc dependency ndex2, 

with the UUIDs defined for each individual network

Further exploration of select systems (10 minutes for automated steps, but manual 
investigation piece is more time consuming- a researcher may spend days fine-tuning 
visualization and researching genes and systems in the networks)

25. Import the four networks from the network set on NDEx (step 24) to Cytoscape. 

Navigate to the network set on the NDEx account page (Figure 2a). Open each 

network in a new tab and click “open in Cytoscape” (Figure 2b,c,d).

26. Apply ‘yfiles organic’ layout to NetColoc subnetwork with network edges, and 

NetColoc subnetwork with cosine similarity edges.

?Troubleshooting

27. Apply ‘yfiles tree’ layout to the NetColoc systems map. Apply copycat layout 

to NetColoc systems with the mouse variant view from step 21, to ensure both 

systems maps have identical layouts.
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?Troubleshooting

28. (OPTIONAL) Fine-tune the layout and visualization. Some options include: a) 

manually adjusting positions of genes/systems so labels are legible, b) modifying 

color schemes, c) setting non-seed gene label transparency to 0 for large 

networks to improve legibility.

?Troubleshooting

29. If not installed already, install the ‘Community Detection’ app on the Cytoscape 

app store. Analyze systems of interest. Right click on a system of interest from 

the NetColoc systems map. Scroll to “Apps,” then “Community Detection,” 

then click “View interactions for selected node.” This will bring up a prompt 

to select a network for which to view the interactions between genes in the 

selected system. Select either the NetColoc subnetwork with network edges or 

the NetColoc subnetwork with cosine similarity edges. A new network will be 

created consisting of the genes and interactions in the selected system.

30. Further analyze a system of interest by selecting genes causing a phenotype of 

interest when knocked out in mice. These genes are available in the node table 

view.

Timing

A typical run through the NetColoc workflow (steps 1–25) takes 10–60 minutes, to run on 

a 32 GB-RAM machine with an i7 processor, depending on the number of nodes and edges 

of the selected network, and depending on size of input gene sets. The workflow has been 

tested on networks of up to ~40 million edges. Runtime for larger or denser networks may 

be prohibitive. Timing for exploration and interpretation of results (steps 26–31) depends on 

the researcher and the nature of the scientific questions.

Troubleshooting

Troubleshooting advice can be found in Table 1.

Anticipated Results

Use case: Network colocalization of two comorbid disorders.

An apt demonstration of the operation and utility of the NetColoc workflow is its recent use 

in a published analysis of gene sets associated with two comorbid diseases, ASD and CHD9. 

NetColoc shows that these two disorders have a significant shared component, defined as 

the size of the observed colocalization subnetwork divided by the expected size of such a 

subnetwork given randomly selected genes. Such a shared component demonstrates that the 

two diseases impact common pathways, despite having largely distinct gene sets.

Here we recapitulate and expand the main results from the published paper, using the most 

recent list of high confidence ASD genes28 and an updated workflow. In particular, we 

performed a revised NetColoc analysis using 102 genes associated with ASD variants28, 66 
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genes associated with CHD variants29, and the PCNet human gene interaction network22. 

We identified 773 genes in the common subnetwork, compared to 257 expected from the 

null model (p < 1×10−100 by permutation test; Figure 3a,b). A sensitivity analysis of a range 

of z-score thresholds revealed that more stringent z-score thresholds resulted in a higher 

NetColoc enrichment score, but a lower number of genes identified (Supplementary Fig. 5). 

Here we accepted a slightly lower NetColoc enrichment score in favor of a larger pool of 

possible new disease genes.

Application of the HiDef multiscale community detection algorithm23,24 revealed 81 highly 

interconnected gene systems, with 42 containing one or more seed genes associated with 

ASD or CHD (Figure 3c). These systems were then functionally annotated with known 

biological pathways and processes. Prominent annotations included pathways related to ion 

channels, chromatin modification, and histone modification. These pathways have known 

relevance to both ASD and CHD30–33.

In the above procedure, we have demonstrated how to investigate the genes and interactions 

in a subsystem of interest (steps 29 and 31, see Figure 4). The researcher can examine how 

the input genes are connected to other input genes and to other network-implicated genes in 

the subsystem. In the case of ASD and CHD, such network-implicated genes may represent 

new disease risk genes.

Gene systems validated in mouse variant models.

Mapping additional data onto the NetColoc systems map can provide useful evidence to 

support (or counter) hypotheses from particular gene systems. The premise of this analysis is 

that the genes in the same network neighborhood are more likely to have roles in the same 

phenotype of interest, and that other data types may provide complementary evidence for 

those roles.

Accordingly, we integrated the ASD-CHD NetColoc systems map with a database of mouse 

gene disruptions linked to resulting specific phenotypes16. This analysis indicated that the 

genes in the ASD-CHD NetColoc subnetwork were significantly enriched for genes that, 

when disrupted in mice, lead to both abnormal brain and heart phenotypes (Figure 4a). A 

negative control phenotype – abnormal innate immunity – was not similarly enriched. The 

enrichment was even more pronounced within individual gene systems, with some systems 

having 12-fold enrichment of abnormal neuron morphology genes (Figure 4b). Furthermore, 

many genes that were identified by network proximity (i.e., not in the input sets) were 

important for normal neuronal morphology in mice. For example, in a system annotated 

for L1CAM interactions, ankyrin and sodium channel genes ANK2, SCN1A and SCN2A 

were ASD seed genes, and ANK3 was a CHD seed gene. Of these, individual disruptions 

of ANK2, SCN1A, and ANK3 resulted in abnormal neuron morphology in mice. Notably, 

of the other network-implicated genes in this L1CAM interactions system, seven genes – 

SCN1B, SPTBN2, NFASC, SPTBN4, NRCAM, CLCN2 and CHRNB1 – also demonstrated 

abnormal neuronal morphology when disrupted in mice, suggesting that the pathway as a 

whole plays an important role in the nervous system (Figure 4c,d).
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Benchmarking on Gene Ontology (GO)

We benchmarked NetColoc on two branches of GO 34, to establish a baseline for network 

colocalization scores in a controlled setting. Here we expect gene set pairs to be closely 

related if they are nearby in the ontology and less related if they are distant in the ontology. 

Specifically, we examined the lipid metabolic process branch (GO:0006629), containing 

1,413 genes and 950 terms, and the cell development branch (GO:0048468), containing 

2,085 genes and 867 terms. We selected pairs of gene sets expected to be highly related but 

distinct (i.e., non-overlapping gene sets within the same term), pairs of gene sets expected to 

be somewhat related (i.e., genes selected from different terms in the same branch) and pairs 

of gene sets expected to be unrelated (i.e., genes selected from different terms from different 

branches). We subjected each of these gene set pairs to our network colocalization procedure 

using the PCNet network22 and measured the network colocalization scores (Figure 5a). As 

expected, the within-term gene sets had the highest network colocalization, and the between-

term gene sets from the same branch had intermediate network colocalization values. Gene 

sets chosen from different branches had network colocalization values indistinguishable 

from the baseline.

We also examined how the network colocalization degrades with increasingly noisy input 

data. We selected disjoint gene set pairs from within the same term and measured the 

network colocalization as a selected fraction of the genes in each set were replaced 

with randomly selected genes. As expected, the network colocalization decreased with 

increasing noise (Figure 5b), eventually reaching a baseline value when all genes from the 

input sets had been replaced with randomly selected genes. Notably, although the network 

colocalization decreased significantly, the procedure could still detect a significant network 

colocalization even with 80% random genes, illustrating the resilience of NetColoc to noisy 

input gene sets.

Conclusion

The network colocalization protocol presented here provides a quantifiable and reproducible 

workflow for probing the extent to which two gene sets impact similar biological processes 

and pathways. It presents a roadmap for prioritizing genes and pathways at the intersection 

of two diseases or phenotypes, and for the discovery of disease genes that may be missed by 

sequencing studies. As an example, consider GWAS, which detects common variants of low 

effect size, and exome sequencing studies, which detect rare variants with high effect sizes. 

Moderately rare variants with moderate effect sizes may then be missed by both of these 

efforts but could be identified by NetColoc. Furthermore, cohorts relying on the detection 

of de novo variants – variants present in a child but not in either parent – would miss 

alleles with recessive patterns of inheritance. These recessive variants may be identified with 

NetColoc, as the approach imposes no restrictions on variant type.

A natural extension will be to generalize the workflow to more than two input gene sets. 

For example, many neurological disorders have significant comorbidities, where a patient 

with one disorder is more likely to develop another35,36. By systematic application of a 

generalized network colocalization workflow, we may be able to stratify the features shared 

among many comorbid disorders, as well as those that are specific to one disorder. Such 
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a generalization could be used to disentangle the complex relationships between genotypes 

and phenotypes more broadly.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by the following grants from the National Institutes of Health: U24 CA184427 to 
D.P., R50 CA243885 to J.F.K. and U01 MH115747, R01 HG009979, P50 DA037844 and P41 GM103504 to 
T.I. This research was partially supported by the Altman Clinical & Translational Research Institute (ACTRI) at 
the University of California, San Diego. The ACTRI is funded from awards issued by the National Center for 
Advancing Translational Sciences, NIH UL1TR001442.

Data Availability

The input gene lists used for illustration of the protocol may be found in the supplementary 

materials of two papers. The ASD input gene lists were acquired from Satterstrom et al 

202028. The CHD input gene lists were acquired from Jin et al. 2017 29. The differential 

expression data used for illustration of the scored input gene list alternate step were 

acquired from the EBI expression atlas (https://www.ebi.ac.uk/gxa/home), from Ramnath 

et al. 2018 37. The molecular interaction networks used in this workflow were acquired 

from the network data exchange (ndexbio.org); PCNet22 UUID 4de852d9-9908-11e9-

bcaf-0ac135e8bacf, STRING17 UUID 275bd84e-3d18-11e8-a935-0ac135e8bacf.

References

1. Tam V et al. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 
467–484 (2019). [PubMed: 31068683] 

2. Cirulli ET & Goldstein DB Uncovering the roles of rare variants in common disease through 
whole-genome sequencing. Nat. Rev. Genet. 11, 415–425 (2010). [PubMed: 20479773] 

3. Stark R, Grzelak M & Hadfield J RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 
(2019). [PubMed: 31341269] 

4. Subramanian A et al. Gene set enrichment analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005). 
[PubMed: 16199517] 

5. Cowen L, Ideker T, Raphael BJ & Sharan R Network propagation: a universal amplifier of genetic 
associations. Nat. Rev. Genet. 18, 551–562 (2017). [PubMed: 28607512] 

6. Vanunu O, Magger O, Ruppin E, Shlomi T & Sharan R Associating genes and protein complexes 
with disease via network propagation. PLoS Comput. Biol. 6, e1000641 (2010). [PubMed: 
20090828] 

7. Hofree M, Shen JP, Carter H, Gross A & Ideker T Network-based stratification of tumor mutations. 
Nat. Methods 10, 1108–1115 (2013). [PubMed: 24037242] 

8. Leiserson MDM et al. Pan-cancer network analysis identifies combinations of rare somatic 
mutations across pathways and protein complexes. Nat. Genet. 47, 106–114 (2015). [PubMed: 
25501392] 

9. Rosenthal SB et al. A convergent molecular network underlying autism and congenital heart disease. 
Cell Systems (2021) doi:10.1016/j.cels.2021.07.009.

10. Raudvere U et al. g:Profiler: a web server for functional enrichment analysis and conversions of 
gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019). [PubMed: 31066453] 

Rosenthal et al. Page 14

Nat Protoc. Author manuscript; available in PMC 2023 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ebi.ac.uk/gxa/home
http://ndexbio.org


11. Paull EO et al. Discovering causal pathways linking genomic events to transcriptional states 
using Tied Diffusion Through Interacting Events (TieDIE). Bioinformatics 29, 2757–2764 (2013). 
[PubMed: 23986566] 

12. Jia P & Zhao Z VarWalker: personalized mutation network analysis of putative cancer genes from 
next-generation sequencing data. PLoS Comput. Biol. 10, e1003460 (2014). [PubMed: 24516372] 

13. Ruffalo M, Koyutürk M & Sharan R Network-Based Integration of Disparate Omic Data To 
Identify ‘Silent Players’ in Cancer. PLOS Computational Biology vol. 11 e1004595 (2015). 
[PubMed: 26683094] 

14. Tuncbag N et al. Network-Based Interpretation of Diverse High-Throughput Datasets through 
the Omics Integrator Software Package. PLOS Computational Biology vol. 12 e1004879 (2016). 
[PubMed: 27096930] 

15. Erten S, Bebek G, Ewing RM & Koyutürk M DADA: Degree-Aware Algorithms for Network-
Based Disease Gene Prioritization. BioData Min. 4, 19 (2011). [PubMed: 21699738] 

16. Eppig JT et al. Mouse Genome Informatics (MGI): Resources for Mining Mouse Genetic, 
Genomic, and Biological Data in Support of Primary and Translational Research. Methods Mol. 
Biol. 1488, 47–73 (2017). [PubMed: 27933520] 

17. Szklarczyk D et al. STRING v11: protein–protein association networks with increased coverage, 
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, 
D607–D613 (2018).

18. Breitkreutz B-J et al. The BioGRID Interaction Database: 2008 update. Nucleic Acids Res. 36, 
D637–40 (2008). [PubMed: 18000002] 

19. Blom UM, Wang PI, Shim JE & Marcotte EM Prioritizing candidate disease genes by network-
based boosting of genome-wide association data. Genome (2011).

20. Greene CS et al. Understanding multicellular function and disease with human tissue-specific 
networks. Nat. Genet. 47, 569–576 (2015). [PubMed: 25915600] 

21. Hermjakob H IntAct: an open source molecular interaction database. Nucleic Acids Research vol. 
32 452D–455 (2004).

22. Huang JK et al. Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. 
Cell Syst 6, 484–495.e5 (2018). [PubMed: 29605183] 

23. Singhal A et al. Multiscale community detection in Cytoscape. PLoS Comput. Biol. 16, e1008239 
(2020). [PubMed: 33095781] 

24. Zheng F et al. HiDeF: identifying persistent structures in multiscale ‘omics data. Genome Biology 
vol. 22 (2021).

25. Simon HA The Architecture of Complexity. Proc. Am. Philos. Soc. 106, 467–482 (1962).

26. Shannon P et al. Cytoscape: a software environment for integrated models of biomolecular 
interaction networks. Genome Res. 13, 2498–2504 (2003). [PubMed: 14597658] 

27. Pratt D et al. NDEx, the Network Data Exchange. Cell Syst 1, 302–305 (2015). [PubMed: 
26594663] 

28. Satterstrom FK et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and 
Functional Changes in the Neurobiology of Autism. Cell 180, 568–584.e23 (2020). [PubMed: 
31981491] 

29. Jin SC et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease 
probands. Nat. Genet. 49, 1593–1601 (2017). [PubMed: 28991257] 

30. Zaidi S & Brueckner M Genetics and Genomics of Congenital Heart Disease. Circ. Res. 120, 
923–940 (2017). [PubMed: 28302740] 

31. Lasalle JM Autism genes keep turning up chromatin. OA Autism 1, 14 (2013). [PubMed: 
24404383] 

32. Ackerman MJ The long QT syndrome: ion channel diseases of the heart. Mayo Clin. Proc. 73, 
250–269 (1998). [PubMed: 9511785] 

33. Colbert CM & Pan E Ion channel properties underlying axonal action potential initiation in 
pyramidal neurons. Nat. Neurosci. 5, 533–538 (2002). [PubMed: 11992119] 

34. Ashburner M et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 
(2000). [PubMed: 10802651] 

Rosenthal et al. Page 15

Nat Protoc. Author manuscript; available in PMC 2023 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Hesdorffer DC Comorbidity between neurological illness and psychiatric disorders. CNS Spectr. 
21, 230–238 (2016). [PubMed: 26898322] 

36. Willsey AJ et al. The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach 
to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell 174, 505–520 (2018). 
[PubMed: 30053424] 

37. Ramnath D et al. Hepatic expression profiling identifies steatosis-independent and steatosis-driven 
advanced fibrosis genes. JCI Insight vol. 3 (2018).

Rosenthal et al. Page 16

Nat Protoc. Author manuscript; available in PMC 2023 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Workflow of the protocol.
Two disease-associated gene sets (d1 and d2), along with a selected molecular interaction 

network, are the inputs to the workflow. Network propagation is conducted from each 

gene set individually on the selected interaction network. The resulting propagation scores 

are combined to create the d1-d2 colocalized gene network. Application of a hierarchical 

cluster algorithm results in the d1-d2 systems map. The genes and systems in the d1-d2 

systems map are then interrogated with the Mouse Genome Informatics ( MGI) database, for 

enrichment of relevant phenotypes.
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Figure 2: Exploration of NetColoc systems map.
a) Network set view of 4 output networks from steps 1–25. b) NDEx view of the NetColoc 

systems map with default view. Arrow indicates a button to open in Cytoscape. c) NDEx 

view of the NetColoc systems map with node colors and sizes mapped according to the 

mouse variant view, where natural log of the odds ratio is indicated by node fill color and 

systems not significantly enriched (p>0.05) are indicated with white nodes. Arrow indicates 

a button to open in Cytoscape. d) Cytoscape view of 4 output networks (left), and the 

NetColoc systems map, after applying the y-files tree layout algorithm.
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Figure 3: Network colocalization of ASD and CHD.
a) NetColoc enrichment measured between ASD and CHD. Black bar shows the number 

of genes observed in the NetColoc subnetwork. Gray bar shows the number of genes 

expected in the null model. Error bars show 95% confidence intervals. b) Visualization of 

ASD-CHD NetColoc subnetwork. ASD seed (input) genes indicated as blue nodes, and 

CHD seed (input) genes indicated as red nodes. Genes that are seeds for both ASD and 

CHD are indicated with half red and half blue nodes. Genes in the NetColoc subnetwork 

implicated by network proximity are indicated with smaller white nodes. Gene positions 
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are determined by a spring-embedded layout in Cytoscape. Edges shown here are cosine 

similarities. c) Hierarchical map of systems in the ASD-CHD NetColoc subnetwork. Child 

systems are contained within parent systems. Pie charts indicate the fraction of genes per 

system belonging to ASD seeds (blue), CHD seeds (red), or to both ASD and CHD seeds 

(purple), versus the remaining genes implicated by network proximity (white). Systems were 

labeled with significantly enriched biological pathways where possible.
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Figure 4: Validation of ASD-CHD systems map.
a) Scatterplot showing odds ratio (OR) of rnrichment of genes from the ASD-CHD 

NetColoc subnetwork that cause brain-related phenotypes (red), heart-related phenotypes 

(blue), or a negative control phenotype (gray) when mutated in mice. Error bars show a 95% 

confidence interval around the log odds ratio (OR). Circle size indicates the number of genes 

in the selected phenotype. b) Enrichment of genes causing abnormal neuron morphology 

in the ASD-CHD systems map, with natural log of the odds ratio indicated by node fill 

color. Systems not significantly enriched (p>0.05) are indicated with white nodes. c) Genes 
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and interactions contained within the L1CAM interactions system indicated in (a). d) Genes 

and interactions within the L1CAM interactions system which result in abnormal neuron 

morphology when knocked out in mice. Edge colors in c) and d) represent cosine similarity.
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Figure 5: Benchmarking on Gene Ontology (GO).
a) Boxplots showing network colocalization score, defined as the size of the observed 

network colocalization subnetwork, divided by the expected size given randomly selected 

genes, measured for gene set pairs selected from within the same GO terms (blue), and 

between different GO terms (orange). Within-term and between-term network colocalization 

is measured in the lipid metabolic process branch (GO:0006629, lipid), in the cell 

development branch (GO:0048468, dev), and between the lipid metabolic process branch 

and the cell development branch (lipid-dev). b) Network colocalization is measured for gene 

set pairs selected from within the same GO terms, and diluted by a specified fraction of 

randomly selected genes. Error bars show 95% confidence intervals.
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Table 1.

Troubleshooting table.

Step Problem Possible Reason Solution

1 ImportError ddot package DDOT not installed Install DDOT package. See https://github.com/ucsd-ccbb/
NetColoc#dependencies for instructions

3, 21,22 Operation hangs or there is 
an error

Slow or no internet connection, 
NDEx server down

Verify internet connection, retry, report issue with NDEx 
https://www.ndexbio.org

4 Memory error calculating 
w_double_prime

Hardware is underpowered Try loading a smaller network in step 3 (recommend 
STRING high confidence: UUID: 275bd84e-3d18-11e8-
a935-0ac135e8bacf)

5 No input genes overlap with 
network

Gene nomenclature may be 
incompatible

Verify that input genes and network nomenclature are the 
same (e.g., both are mouse or both are Entrez ID)

12 Operation hangs or there is 
an error

Slow or no internet, community 
detection service (CDAPS) down, 
such that Community Detection 
algorithm is unable to generate a 
result. CDAPS is accessed from 
NetColoc dependency cdapsutil.

Verify internet connection and retry. If still 
failing try running locally via Docker: https://
cdapsutil.readthedocs.io/en /latest/auicktutorial.html#step-2-
choose-where-to-run. If all else fails report issue at: https://
cdapsutil.readthedocs.io/en /latest/contributing.html#report-
bugs

13 Blank cell instead of network 
visualization

Running in Jupyter Labs instead 
of Jupyter Notebooks

Alternate installation instructions required for use of 
ipycytoscape in Jupyter Labs https://github.com/cytoscape/
ipycy toscape

26 Open in Cytoscape button 
grayed out

Cytoscape not open, or version 
out of date

Open Cytoscape, or update Cytoscape version

27, 28 yFiles layouts are not yFiles Layout Install yFiles Layout Algorithms

available Algorithms not installed in 
Cytoscape

through Cytoscape app manager
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