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Abstract

Previous studies indicate that the structure and function of medial prefrontal cortex (PFC) and 

lateral orbitofrontal cortex (OFC) are associated with heart rate variability (HRV). Typically, this 

association is assumed to reflect the PFC’s role in controlling HRV and emotion regulation, 

with better prefrontal structural integrity supporting greater HRV and better emotion regulation. 

However, as a control system, the PFC must monitor and respond to heart rate oscillatory activity. 

Thus, engaging in regulatory feedback during heart rate oscillatory activity may over time help 

shape PFC structure, as relevant circuits and connections are modified. In the current study with 

younger and older adults, we tested whether 5 weeks of daily sessions of biofeedback to increase 

heart rate oscillations (Osc+ condition) vs. to decrease heart rate oscillations (Osc− condition) 

affected cortical volume in left OFC and right OFC, two regions particularly associated with HRV 
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in prior studies. The left OFC showed significant differences in volume change across conditions, 

with Osc+ increasing volume relative to Osc−. The volume changes in left OFC were significantly 

correlated with changes in mood disturbance. In addition, resting low frequency HRV increased 

more in the Osc+ than in the Osc− condition. These findings indicate that daily biofeedback 

sessions regulating heart rate oscillatory activity can shape both resting HRV and the brain circuits 

that help control HRV and regulate emotion.
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1. Introduction

Higher heart rate variability (HRV) is associated with more positive emotion and better 

emotion regulation whereas lower HRV is associated with poorer physiological, emotional, 

cognitive, behavioral regulation and self-rated health (Alvares et al., 2013; Beauchaine and 

Thayer, 2015; Chalmers et al., 2014; Clamor et al., 2016; Jarczok et al., 2015; Kemp et 

al., 2010; Koenig et al., 2016a; Koenig et al., 2016b; Thayer et al., 2012; Thayer et al., 

2000; Thayer et al., 2009a; Thayer and Lane, 2000, 2009). Why is HRV so closely linked 

to emotion regulation? In the neurovisceral integration model, HRV reflects the activity of 

an integrative neural network regulating physiological, cognitive, and emotional responses 

(Thayer and Lane, 2000, 2009). Furthermore, according to this model the prefrontal cortex 

(PFC) exerts inhibitory control over subcortical regions and resting HRV reflects the PFC’s 

ability to inhibit subcortical circuits. Thus, because it reflects more effective PFC regulatory 

activity, higher resting HRV is associated with better emotion regulation (Williams et al., 

2015).

However, recent findings suggest that in addition to reflecting the function of brain regions 

involved in emotion regulation, HRV influences brain and emotional function (Mather and 

Thayer, 2018; Nashiro et al., 2022). One line of evidence suggesting the causal influence 

of HRV on the brain systems involved in emotion regulation comes from studies of HRV 

biofeedback. These studies examined the effects of paced breathing at a resonance frequency 

(around 0.1 Hz frequency) of the baroreflex system (Vaschillo et al., 2006), which induces 

high oscillations in heart rate (Lehrer et al., 2013). In these studies, participants practice 

HRV biofeedback for at least 20 min a day for several weeks. A meta-analysis of 24 studies 

showed that HRV biofeedback using paced breathing at resonance frequency reduced stress 

and anxiety with a large effect size (Goessl et al., 2017). Another meta-analysis of 58 studies 

showed HRV biofeedback using paced breathing at resonance frequency had positive effects 

on a variety of physical, behavioral, and cognitive conditions (Lehrer et al., 2020).

Neuroimaging research provides further evidence for the association between HRV and 

brain regions involved in emotion regulation (e.g., Matthews et al., 2004; for a review see 

Thayer et al., 2012). HRV shows associations with brain activity in PFC regions (Ahs et al., 

2009; Chang et al., 2013; Critchley et al., 2003; Lane et al., 2009; Smith et al., 2015). Also, 

individual differences in resting HRV are associated with individual differences in PFC brain 
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structure. Across two datasets from our lab, greater structural thickness in prefrontal regions 

was associated with greater HRV in younger and older adults (Yoo et al., 2018). A recent 

meta-analysis pooled data from 20 research groups (N = 1218, age range:12~87) to examine 

the relationships between cortical thickness in PFC regions and resting HRV (Koenig et al., 

2021). In the PFC, the most robust association was that people with greater left lateral OFC 

thickness tended to have higher HRV. Also, right lateral OFC and medial OFC showed an 

association between HRV and cortical thickness. These findings suggest the importance of 

OFC in regulating the autonomic nervous system (ANS) activity (see also Thayer et al., 

2009a; Thayer and Lane, 2000).

The most obvious interpretation of these correlational findings is that decreased structural 

thickness or volume in the OFC leads to decreases in HRV. In this causal model, 

changes in structural volume cause changes in HRV. However, HRV may also influence 

OFC structural volume. In a recent clinical trial, we found that 5 weeks of HRV 

biofeedback training increased left amygdala-medial PFC connectivity and generally 

increased functional connectivity within emotion-related resting-state networks in younger 

adults (ClinicalTrials.gov NCT03458910; Heart Rate Variability and Emotion Regulation or 

“HRV-ER”; Nashiro et al., 2022). We manipulated HRV using five weeks of daily HRV 

biofeedback training to increase heart rate oscillations (Osc+ condition) vs. to decrease heart 

rate oscillations (Osc− condition). Here we examined if this manipulation led to changes 

in the structural volume of the OFC regions where structural volume has previously been 

associated with HRV. As an HRV-biofeedback manipulation check, we compared how much 

heart rate oscillatory activity increased during daily HRV biofeedback training compared 

with during rest. We also examined if daily HRV biofeedback training affected resting HRV.

To test if daily HRV biofeedback training led to change in structural volume, we took a 

region-of-interest (ROI) approach targeting the OFC based on past findings reviewed above 

(Koenig et al., 2021; Kumral et al., 2019; Sakaki et al., 2016; Yoo et al., 2018). Two 

studies indicated OFC consistently showed a significant association with HRV even when 

controlling for age and gender variables (Koenig et al., 2021; Yoo et al., 2018). Thus, we 

selected the left and right OFC (encompassing both medial and lateral subregions) as two 

prefrontal ROIs associated with resting vagal HRV from previous findings.

Additionally, we examined the age differences in HRV training effects on structural volume 

in OFC. In a pharmacological blockade study, age-related differences in the cortical control 

of HRV have been reported (Thayer et al., 2009b). Older adults showed less inhibitory 

control of heart rate by the frontal cortex than did younger adults. However, the Thayer et 

al. study did not discriminate between prefrontal subregions. Interestingly, the more ventral 

regions of the brain seem to be relatively preserved with age whereas more dorsal, lateral, 

and superior regions show greater decline with age (Fjell and Walhovd, 2010; Mather, 

2016). Therefore, it might be possible that HRV biofeedback training has similar effects on 

structural volume in the OFC across younger and older adults.

Finally, we examined whether the effects of biofeedback condition on structural volume 

changes and resting HRV changes were mediated by daily high amplitude oscillations during 

practice. In addition, we were interested in how any changes in structural volume in these 
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regions might relate to emotional well-being and so tested whether resonance frequency 

power during practice and volume changes or resting HRV changes would sequentially 

mediate any associations between condition and mood disturbance change.

2. Methods

2.1. Participants

No prior research had examined how HRV biofeedback affected brain structure, so we did 

not have prior research to rely on to estimate effect sizes. Thus, we planned to recruit 

200 participants to generally have sufficient power to detect small-to-medium effect sizes. 

G*Power 3.1.9.4 software indicated that with α = 0.05; power = 0.8, and effect size f = 

0.2, the minimum N needed was 199. But the study was terminated due to the COVID-19 

pandemic and it ended with an N of 162 (see below), which provided 80% power at α = 

0.05 to detect effect sizes f = 0.22 (small-to-medium effects). We recruited 121 younger 

participants aged between 18 and 35 years and 72 older participants aged between 55 and 

80 years via the USC Healthy Minds community subject pool, a USC online bulletin board, 

Facebook and flyers between January 2018 and March 2020. Participants provided written 

informed consent approved by the University of Southern California (USC) Institutional 

Review Board. Participants were assigned to small groups of 3–6 people, with each group 

meeting at the same time and day each week. After recruitment and scheduling of each 

wave of groups, the groups were randomized to one of two conditions (see Supplementary 

Figure S1 for flow diagram): biofeedback training either to increase or decrease HRV. 

Upon completing the study, participants were paid for their participation and received bonus 

payments based on their individual and group performances (incentives for training were the 

same across conditions; see details below under “Rewards for Performance”). Prospective 

participants were screened and excluded for any medical, neurological, or psychiatric illness 

(but we included people who were taking antidepressant or anti-anxiety medication and/or 

attending psychotherapy only if the treatment had been ongoing and unchanged for at least 

three months and no changes were anticipated). We excluded people who had a disorder 

that would impede performing the HRV biofeedback procedures (e.g., coronary artery 

disease, angina, cardiac pacemaker), who were currently trained in relaxation, biofeedback 

or breathing techniques, or were on any psychoactive drugs other than antidepressants or 

anti-anxiety medications. For older adults, we also excluded people who scored lower than 

16 on the TELE (Gatz et al., 1995) for possible dementia._Gender, education, age, and race 

were similar in the two conditions.

Out of 193 participants, 25 people (15 younger adults and 10 older adults) dropped out of 

the study and six older adults did not complete the post-intervention cognitive and HRV 

assessments due to the COVID pandemic, leaving 162 participants (106 younger adults and 

56 older adults) who completed all 7 weeks of the study.

2.2. Procedure

2.2.1. Overview of 7-week Protocol Schedule—The study protocol involved seven 

weekly lab visits and five weeks of home biofeedback training. The first lab visit involved 

the non-MRI baseline measurements, including various questionnaires. The second lab visit 
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involved the baseline MRI session, followed by the first biofeedback calibration and training 

session. Each of the lab calibration sessions started with a 5-min baseline rest period 

followed by different strategies to find the best condition. After calibration sessions were 

completed, participants were notified which strategy was the best and requested to practice 

the best condition at home for 10 min twice a day for the 1st training week (between 

the 1st-week visit and the 2nd-week visit), 15 min twice a day for the 2nd training week 

(between the 2nd week visit and the 3rd week visit), and 20 min twice a day for the last 

weeks (between the 3rd week visit and the 7th week visit).

The weekly lab visits (except for weeks with MRI sessions) were run in small groups of 

participants from the same condition in which participants shared their experiences and 

tips about biofeedback training with other participants, while 1–2 researchers facilitated the 

discussion. Outside the lab, participants used a customized social app to communicate with 

other members of their group and researchers about their progress on daily biofeedback 

training. For instance, participants gave each other ‘thumbs-up’ or smiling face emojis when 

they completed training for the day, and researchers sent participants a friendly reminder to 

complete home training when they were falling behind. The week-6 lab visit repeated the 

assessments from the first lab visit. The final (7th) lab visit first repeated the baseline MRI 

session scans in the same order.

2.2.2. Biofeedback Training for the Osc+ condition—During all practice sessions, 

participants wore an ear sensor to measure their pulse. They viewed real-time heart rate 

biofeedback while breathing in through the nose and out through the mouth in synchrony 

with the emWave pacer. The emWave software (HeartMath®Institute, 2020) provided a 

summary ‘coherence’ score for participants that was calculated as peak power/(total power 

- peak power), with peak power determined by finding the highest peak within the range of 

.04 - .26 Hz and calculating the integral of the window .015 Hz above and below this highest 

peak, divided by total power computed for the .0033 - .4 Hz range.

During the second lab visit, we introduced participants to the device and identified the 

resonance frequency for each participant during five minutes of paced breathing at 6, 6.5, 

5.5, 5 and finally 4.5 breaths/min (Lehrer et al., 2013). After all 5-min breathing segments 

were complete, we computed various aspects of the oscillatory dynamics for each breathing 

pace using Kubios HRV Premium 3.1 software (Tarvainen et al., 2014) and estimated which 

breathing pace best approximated the resonance frequency by assessing which one had 

the most of the following characteristics: highest low frequency (LF) power, the highest 

maximum LF amplitude peak on the spectral graph, highest peak-to-trough amplitude, 

cleanest and highest-amplitude LF peak, highest coherence score and highest the root mean 

squared successive differences (RMSSD). Participants were then instructed to train at home 

with the pacer set to their identified resonance frequency and to try to maximize their 

coherence scores.

During the third visit, they were asked to complete three 5-min paced breathing segments: 

the best condition from the last week’s visit, half breath per minute faster and half breath 

slower than the best condition. They were then instructed to train the following week at 

the pace that best approximated the resonance frequency based on the characteristics listed 

Yoo et al. Page 5

Int J Psychophysiol. Author manuscript; available in PMC 2024 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



above. In subsequent weekly visits, during 5-min training segments, they were asked to try 

out abdominal breathing and inhaling through nose/exhaling through pursed lips as well as 

other strategies of their choice.

2.2.3. Biofeedback Training for the Osc− condition—The same biofeedback ear 

sensor was used in this condition. However, we created custom software to display a 

different set of feedback to the Osc− participants. During each Osc− training session, a 

‘calmness’ score was provided as feedback to the participants instead of the coherence 

score. The calmness score was calculated by multiplying the coherence score that would 

have been displayed in the Osc+ condition by −1 adding 10 (an ‘anti-coherence’ score). 

Thus, participants got more positive feedback (higher calmness scores) when their heart rate 

oscillatory activity in the 0.04 – 0.26 Hz range was low.

Participants also received a point adjustment that gave a penalty when heart rate was the 

lowest it had been in the past 15 s. Specifically, every 5 s, a local maximum IBI was set 

based on the maximum IBI from the last 15 s. If, at that point, the participant’s current 

IBI was longer than this local maximum, the calmness score displayed for the next 5 s was 

the anti-coherence score - 2. Naturally, most of the time, current IBI was lower than the 

local maximum, and in those cases, the calmness score was the anti-coherence score +1. 

Thus, there was a penalty in their calmness score for moments when their heart rate was 

slower than it had been in any of the past 15 s. However, the average heart rate during 

biofeedback sessions did not differ significantly across conditions. Thus, this additional 

feedback appeared to have had little impact on heart rate.

During the initial calibration session at the end of the second lab visit, each participant was 

introduced to the device and feedback and was asked to come up with five strategies to lower 

heart rate and heart rate oscillations. The participant was instructed to wear the ear sensor 

and view real-time heart rate biofeedback while they tried each strategy for five minutes. 

We analyzed the data in Kubios and identified the best strategy as the one that had the most 

of the following characteristics: lowest LF power, the minimum LF amplitude peak on the 

spectral graph, lowest peak-to-trough amplitude, multiple and lowest-amplitude LF peak, 

highest calmness score and lowest RMSSD. Participants were then instructed to use this 

strategy to try to maximize their calmness scores in their home training sessions.

On the third visit, they were asked to select three strategies and try each out in a 5-min 

session. The strategy identified as best (based on the same characteristics used in the initial 

calibration session) was selected as the one to focus on during home training. In subsequent 

weekly visits, during 5-min training segments, they were asked to try out strategies of their 

choice.

2.2.4. Weekly Emotion Questionnaire—During each lab visit, participants completed 

the profile of mood states (POMS; Grove and Prapavessis, 1992). We used the 40-item 

version of POMS. Participants reported how much each item reflected how they felt at the 

moment using a scale from 1 (not at all) to 5 (extremely). Total mood disturbance was 

calculated by subtracting positive-item totals from negative-item totals. A constant value 
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(i.e., 100) was added to the total mood disturbance to eliminate negative scores. Higher 

scores indicate greater negative affect.

2.2.5. Rewards for Performance—In addition to receiving compensation of $15 per 

hour for each lab visit, participants were eligible to receive rewards based on individual 

and group performance. For individual performance rewards, each week participants had 

the opportunity to earn $2 for each instance (up to a maximum of 10) they exceeded their 

assigned target score (target scores were assigned each week and were the average of the top 

10 scores earned from the previous week’s training sessions plus 0.3). Group performance 

rewards were earned when members of a participant’s group completed a minimum of 80% 

of their assigned biofeedback training minutes. For example, if a participant completed 

100% of their training, they received an additional $3 for each group member who also 

completed 100% of their training. If a participant completed 80% of their training, they 

received an additional $2 for each group member who also completed at least 80% of their 

training. Rewards were calculated weekly, and participants received weekly updates on their 

earnings at their lab visits.

2.3. MRI Scan Parameters

The scans were conducted with a 3T Siemens MAGNETOM Trio scanner with a 32-channel 

head array coil at the USC Dana and David Dornsife Neuroimaging Center. T1-weighted 3D 

structural MRI brain scans were acquired pre and post-intervention using a magnetization 

prepared rapid acquisition gradient echo (MPRAGE) sequence with the parameters of TR = 

2300 ms, TE = 2.26 ms, slice thickness = 1.0 mm, flip angle = 9°, field of view = 256 mm, 

and voxel size = 1.0 × 1.0 mm, with 175 volumes collected (4:44 min).

2.4. Data Processing and Analyses

2.4.1. Overview of the planned analyses—We analyzed three types of data; heart 

rate data during rest and during training, T1 weighted structural image data, and behavioral 

data to measure emotional disturbance via POMS questionnaire.

First, we computed the autoregressive spectral power for the pre-intervention rest and for 

each training session and compared the average spectral power from all training sessions 

with the pre-intervention spectral power. Also, we compared the main HRV indexes across 

pre and post-intervention rest to examine the HRV intervention effect on resting HRV. 

Secondly, we applied automatic segmentation on the T1 structural image and extracted 

the volume data from left and right OFC ROIs. To examine the intervention effect on 

structural volume of the left and right OFC ROIs, we ran mixed ANCOVAs (time-point × 

condition × age group) with total grey matter volume as a covariate. Lastly, we examined 

the relationship between resting HRV change, volume change, and changes in emotional 

disturbance using correlation analysis and mediation analysis.

2.4.2. Heart Rate Oscillations During Seated Rest—HRV was measured while 

participants sat in a chair with knees at a 90 degrees angle and both feet flat on the floor 

for 5 minutes at pre- and post-intervention lab visits (i.e., the second and 7th lab visits, 

respectively). Participants’ pulse was measured using HeartMath emWave pro software 
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with an infrared pulse plethysmograph (ppg) ear sensor. Pulse wave was recorded with 

a sampling rate of 370 Hz, and inter-beat interval data was extracted after eliminating 

ectopic beats or other sources of artifacts through a built-in process in emWave pro 

software. We used Kubios HRV Premium Version 3.1 (Tarvainen et al., 2014) to compute 

three standard heart rate variability metrics: RMSSD, a time domain analysis; and high 

frequency power (HF-power) and low frequency power (LF-power), which are frequency 

domain analyses. RMSSD is the primary resting HRV time domain metric (Laborde et al., 

2017; Shaffer and Ginsberg, 2017), as previous research identified it as an indicator of 

parasympathetic response (Kleiger et al., 2005; Thayer and Lane, 2000). RMSSD is also 

less affected by respiratory rate than HF HRV (Hill et al., 2009). In the frequency domain, 

the low-frequency (LF) band ranges between 0.04 and 0.15 Hz. The LF band reflects a mix 

between sympathetic and vagal influences that shows an influence of both sympathetic and 

parasympathetic branches (Berntson et al., 1997; Malik et al., 1996). The HF band ranges 

between between 0.15 and 0.40 Hz (Malik et al., 1996) and reflects vagal influences.

In the frequency domain analysis, an autoregressive model was applied to the inter-beat 

interval time series to derive spectral power in the HF range (0.15 to 0.40 Hz) and LF 

range (0.04–0.15 Hz). HF-power and LF-power were natural log-transformed to normalize 

the distribution (Ellis et al., 2008; Laborde et al., 2017). Heart rate data from ear sensors 

failed to save for the first four participants in the Osc− condition because of technical issues 

with the first version of the Osc− biofeedback software; therefore, we analyzed data from the 

remaining 102 younger adults and 56 older adults. In younger adults, we excluded outliers 

who on a box-and-whisker plot were above Q3 + 3 × the interquartile range on total power 

on pre-intervention rest (N = 3), post-intervention rest (N = 1), or average training (N = 1), 

leaving an N of 97 for younger adults (NOsc+ = 52; NOsc− = 45). In older adults, we excluded 

outliers who on a box-and-whisker plot were above Q3 + 3 × the interquartile range on total 

power on pre-intervention rest (N = 1), or post-intervention rest (N = 2), leaving an N of 53 

for older adults (NOsc+ = 25; NOsc− = 28).

HRV indexes were analyzed using mixed analysis of variance (ANOVA) with condition 

(Osc+ versus Osc−) and age group (older adults versus younger adults) as between-subject 

factors and time-point (pre vs post) as a within-subject factor. Cohen’s d effect size estimates 

were calculated. The statistical analyses were performed using the software SPSS version 

28.

2.4.3. Heart Rate Oscillations During Training—To assess the impact of Osc+ 

versus Osc− biofeedback during training sessions, we used Kubios HRV Premium 3.1 

(Tarvainen et al., 2014) to compute autoregressive spectral power for each training session. 

We analyzed the same data from the resting HRV, 97 younger adults (5437 sessions) and 53 

older adults (4137 sessions). We averaged the autoregressive total spectral power from all 

training sessions for each participant. In addition, we extracted the summed power within 

the .063~.125 Hz range for each participant (corresponding to periods of 8–16s, a range 

encompassing paces used by Osc+ participants for their breathing) to obtain a measure of 

resonance frequency oscillatory activity during biofeedback.
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2.4.4. T1-Weighted Neuroimaging Processing—Among the 106 younger adults and 

56 older adults who completed all 7 weeks of the study, 100 younger adults and 51 older 

adults finished pre-intervention and post-intervention MRI sessions.

Each participant’s T1 structural image was preprocessed using Freesurfer image analysis 

suite version 6.0 (http://surfer.nmr.mgh.harvard.edu/). Cortical reconstruction and volumetric 

segmentation were performed. This method uses both intensity and continuity information 

from the entire three-dimensional MR volume in segmentation and deformation procedures 

to produce representations of cortical thickness, calculated as the closest distance from the 

gray/white boundary to the gray/CSF boundary at each vertex on the tessellated surface 

(Fischl and Dale, 2000). The technical details of these procedures are described in prior 

publications (Dale et al., 1999; Dale and Sereno, 1993; Fischl et al., 2001; Fischl et al., 

2002; Fischl et al., 2004a; Fischl et al., 1999a; Fischl et al., 1999b; Fischl et al., 2004b; Han 

et al., 2006; Jovicich et al., 2006; Segonne et al., 2004).

Following initial preprocessing, we used the Freesurfer 6.0 image analysis suite longitudinal 

stream to automatically extract volume estimates (Reuter et al., 2012). This longitudinal 

stream within FreeSurfer creates an unbiased subject-specific template by co-registering 

scans from the pre- and post-intervention time-points using a robust and inverse consistent 

algorithm (Reuter et al., 2010; Reuter et al., 2012), and uses these subject-specific templates 

for pre-processing the individual scans (e.g., during skull stripping and atlas registration). 

This approach improves reliability and statistical power while avoiding processing bias 

favoring the baseline scans that may affect groups unequally (Reuter et al., 2012).

Finally, using a parcellation algorithm, the individual brains were mapped to the Desikan–

Killiany probabilistic cortical atlas based on anatomic landmarks and cortical geometry 

(Desikan et al., 2006). Individual participants’ cortical thickness, surface area and volume 

were then extracted directly from FreeSurfer. Cortical volumes for bilateral lateral and 

medial OFC were used in the final statistical analysis.

For quality control, we used automated measures computed by FreeSurfer of the contrast-to-

noise ratio (the difference in signal intensity between regions of different tissue types and 

noise signal) and the Euler number (a metric of cortical surface reconstruction) to identify 

poor quality structural scans (Chalavi et al., 2012; Rosen et al., 2018). For analyses of 

volumetric change, we excluded outliers (N = 4 for younger adults and N = 2 for older 

adults) who on a box-and-whisker plot were above Q3 + 3 × the interquartile range on either 

of these metrics on either pre or post scans, leaving an N of 96 for younger adults (NOsc+ = 

49; NOsc− = 47) and an N of 49 for older adults (NOsc+ = 24; NOsc− = 25).

The final common dataset from HRV and MRI data had an N of 88 for younger adults 

(NOsc+ = 45; NOsc− = 43) and an N of 46 for older adults (NOsc+ = 21; NOsc− = 25).

2.4.5. Regions of Interest and Neuroimaging Statistical Analyses—The grey 

matter cortical volume percent changes were analyzed using mixed analysis of covariance 

(ANCOVA) with condition (Osc+ versus Osc−) and age group (older adults versus younger 

adults) as between-subject factors and time-point (pre versus post) as a within-subject factor 
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and total grey matter volume as a covariate. Cohen’s d effect size estimates were calculated. 

Benjamini–Hochberg procedure was applied to control the false discovery rate for multiple 

comparisons (Hochberg and Benjamini, 1990).

2.4.6. Mediation Analysis—To examine whether the relationships between training 

condition and either the ROI volume changes or the resting HRV changes were mediated 

by the resonance frequency power within the .063~.125 Hz range during practice, we 

conducted a mediation analysis using the PROCESS macro (Hayes, 2017). In each model, 

the unstandardized regression coefficient (c) reflects the total effect. Coefficient c′ reflects 

the direct effect of the independent variable on the dependent variable absent the mediator. 

Coefficients a and b reflect the relationships between the mediator and the independent 

variable and the dependent variable, respectively. The product of coefficients (a × b) 

indicates how much the relationship between independent variable and dependent variable is 

mediated by the mediator (i.e., the indirect effect).

Bootstrapping was used for testing mediation hypotheses, using a resampling procedure 

of 10,000 bootstrap samples (Preacher and Hayes, 2008). Point estimates and confidence 

intervals (95%) were estimated for the indirect effect. The point estimate was considered 

significant when the confidence interval did not contain zero.

3. Results

3.1. Sample Characteristics

Details about the baseline characteristics of the participants can be found in Table 1. As 

RMSSD, HF-power, and LF-power were not normally distributed, they were transformed 

using the natural logarithm. HRV characteristics for subgroups based on daily medication 

reports are shown in Supplementary Table S1.

3.2. HRV Biofeedback Condition Differences in HRV during Training Sessions

To examine how participants in the Osc+ and Osc− conditions performed during HRV 

biofeedback training, we computed heart rate spectral frequency power during training using 

an autoregressive approach. As intended, those in the Osc+ condition increased their total 

spectral frequency power during training, whereas those in the Osc− condition did not 

significantly influence spectral frequency power compared to their own baseline rest, leading 

to a significant interaction of session type (baseline vs. training) and condition, F(1,146) = 

28.84, p < .001, effect size Cohen’s d = .889, 95% CI [0.545, 1.219]; Fig. 1. Both younger 

adults, F(1,95) = 37.54, p < .001, d = 1.257, 95% CI [0.806, 1.678], and older adults, 

F(1,51) = 5.38, p = .024, d = .648, 95% CI [0.028, 1.186], independently showed significant 

interactions. The three-way interaction of age group, condition, and session type was not 

significant, F(1,146) = .48, p = .491, d = .110, 95% CI [0, 0.372]. We also examined spectral 

frequency power in the resonance breathing frequency range (8–16s; 0.063 Hz~0.125 Hz). 

Those in the Osc+ condition increased spectral frequency power during practice sessions, 

whereas those in the Osc− condition did not significantly influence spectral frequency 

power in the resonance frequency range compared to their own baseline rest, leading to a 

significant interaction of session type (baseline vs. training) and condition, F(1,146) = 28.63, 

Yoo et al. Page 10

Int J Psychophysiol. Author manuscript; available in PMC 2024 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p < .001, d = .886, 95% CI [0.540, 1.216] ; Fig. 1. When separated by age group, younger 

adults showed a significant interaction, F(1,95) = 45.33, p < .001, d = 1.382, 95% CI [0.921 

1.807], and older adults showed a marginally significant interaction, F(1,51) = 3.85, p = 

.055, d = .549, 95% CI [0.013, 1.085]. The three-way interaction of age group, condition, 

and session type was not significant, F(1,146) = 2.18, p = .142, d = .247, 95% CI [−0, 

0.565].

3.3. HRV Biofeedback Condition Differences in Resting HRV Changes

Next, we examined the effect of HRV biofeedback training on resting HRV. Measures of 

resting HRV, log RMSSD, log HF power, and log LF power at rest in pre-intervention 

(week 2) and post-intervention (week 7) were examined. To test whether HRV changed 

from pre to post time-points, whether this depended on training conditions, and whether the 

age groups showed differences in the time-point x condition interaction, we performed a 

series of three-way mixed ANOVAs, one for each measure. In these ANOVAs, time-point 

was a within-subjects factor (2 levels: pre, post), condition was a between-subjects factor (2 

levels: Osc+, Osc−), and age group was another between-subjects factor (2 levels: younger 

adults, older adults). We found a significant 2-way interaction effect between time-point and 

condition on log LF power, F(1, 146) = 6.60, p = .014, d = .424, 95% CI [0.093, 0.748]. 

When separated by age group, younger adults showed a significant interaction, F(1,95) = 

10.30, p = .002, d = .659, 95% CI [0.242, 1.059], and older adults showed no significant 

interaction, F(1,51) = 0.70, p = .407, d = .238, 95% CI [−0.292, 0.768]. We did not find 

significant interaction effects of time-point and condition on log RMSSD and log HF power. 

Also, we did not observe significant three-way interaction effects of time-point, condition, 

and age group on log RMSSD, log HF power or log LF power. Planned comparisons of 

post-intervention compared to pre-intervention within each subgroup indicated that older 

adults in the Osc+ condition showed increases in log RMSSD in post-intervention compared 

to pre-intervention, t(24) = 2.19, p = .029, d = .351, 95% CI [0.003, 0.699], and in log 

LF power, t(24) = 2.02, p = .054, d = .326, 95% CI [−0.020, 0.673], and Osc+ younger 

adults showed a significant increase in log LF power in post-intervention compared to 

pre-intervention, t(51) = 2.93, p = .005, d = .437, 95% CI [0.125, 0.749]; Fig. 2 A, B, C. 

There were no significant pre-post differences in the Osc− condition.

3.4. ROI analysis: The Effects of HRV Biofeedback Training on Volume Change

To examine our main question of the effect of HRV biofeedback training on cortical volume 

in left and right OFC ROIs, we performed a three-way mixed ANCOVA (time-point × 

condition × age group) on the volume of each ROI including time-point (pre vs post) as 

a within-subject factor and condition (OSC+ vs. OSC−) and age group (younger vs. older) 

as between-subject factors. Total grey volume was included as a covariate to control for 

differences among age groups and individual differences. We found a significant time-point 

× condition interaction effect on left OFC volume, indicating that OSC+ participants showed 

increases in volume relative to OSC− participants, F(1,140) = 8.33, p =.005, d = .487, 

95% CI [0.149, 0.817]; Fig. 3. There was no significant two-way time-point × condition 

interaction on right OFC volume, F(1,140) = 1.36, p = .246, d = .201, 95% CI [0, 0.525]; 

Fig. 3.
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There was no significant three-way interaction of time-point, condition, and age group on 

left OFC volume, F(1,140) = 0.003, p =.958, d = 0, 95% CI [0, 0.001], nor on right OFC 

volume, F(1,140) = 0.02, p =.881, d = 0, 95% CI [0, 0.007]; Fig. 4, indicating that the 

left OFC interaction of time-point and condition did not differ significantly across age 

groups. Indeed, when separated by age group, there were significant time-point × condition 

interaction effects on left OFC volume in both age groups; F(1,93) = 5.42, p = .022, d = 

.483, 95% CI [0.045, 0.885] for younger adults and F(1,46) = 5.63, p = .022, d = .700, 

95% CI [0.063, 1.264] for older adults (Fig. 4). After applying the Benjamini–Hochberg 

procedure, interaction effects remained significant for both younger and older adults. There 

were no significant two-way interaction effects on right OFC volume in either age group 

(Fig. 4). As indicated in Table 1, the between-condition differences in baseline right or 

left OFC volume were not significant. We note that the size of detectable differences 

differs for between- vs. within-subjects effects due to differences in variance. In particular, 

within-subjects pre vs. post OFC volume estimates (r = .969, p < .001 for left and r = .964, p 
< .001 for right OFC) were highly reliable, contributing to our ability to detect within-person 

structural change in this study.

We also examined another kind of interval estimate for effect size, the null- counternull 

interval (Rosnow and Rosenthal, 2009). The counternull interval provides the largest nonnull 

magnitude of the effect size that is supported by the same amount of evidence as the null 

value of the effect size (in this case, 0). The counternull value for the d = 0.013 effect size 

for the interaction of time-point, condition and age group in the left OFC was d = .026. 

Similarly, the value of d = 0.016 for the interaction effect of condition and age group in 

right OFC yields a counternull value of d = .032 limits. According to Cohen’s conventions, 

a d of .20 is a small effect size. Thus, the counternull indicates that these interaction effects 

are equally likely to be null or to be small effects, such that there are unlikely to be large 

differences between age groups in terms of the effects of condition on left OFC and right 

OFC.

3.5. The Relationship between HRV Biofeedback Training and Volume Changes in ROIs

We examined the association between power within the resonance frequency band during 

training, resting HRV changes, and volume changes in two ROIs. Table 2 shows partial 

correlation coefficients between power within the resonance frequency band during training, 

resting HRV changes, and volume changes in three ROIs, controlling for resonance 

frequency power during pre-intervention rest.

To examine whether the resonance frequency power during practice mediated the 

relationship between training condition and structural volume changes or resting HRV 

changes, we conducted a mediation analysis using bootstrapping method Model 4 of the 

PROCESS macro with 10000 bootstrap samples. Mediation analysis diagrams are depicted 

in Fig. 5. The path estimates (direct, indirect, and total effects) of the proposed model along 

with 95% confidence intervals generated through the bootstrapping method were presented 

in Table 3.

First, we examined the mediation model on volume change in left OFC, controlling 

for resonance frequency power during pre-intervention rest. For this model with volume 
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change in left OFC as the dependent variable (Fig. 5A and Table 3A), the total effect was 

statistically significant, c = 1.628, p = .002, 95% CI [0.626, 2.630]. The direct effect was 

also significant, c′ = 1.849, p = .006, 95% CI [0.528, 3.170], but the indirect effect was not 

significant, ab = −0.221, 95% CI [−0.945, 0.565]. For the model with volume change in right 

OFC as the dependent variable, total, direct, and indirect effects were not significant.

Next, we used a mediation model to test whether resonance frequency power during practice 

sessions mediated resting HRV changes, controlling for resonance frequency power during 

pre-intervention rest. For log HF-power change as dependent variable in a model (Fig. 5B 

and Table 3B), the total effect was not significant, c = −0.139, p = .403, 95% CI [−0.467, 

0.189], but the direct effect was significant, c′ = −0.503, p = .020, 95% CI [−0.925, 

−0.081], and the indirect effect was significant, ab = 0.364, 95% CI [0.099, 0.634]. For 

log LF-power change as dependent variable in a model (Fig. 5C and Table 3C), the total 

effect was significant, c = 0.581, p = .003, 95% CI [0.206, 0.957], but the direct effect 

was not significant, c′ = −0.146, p = .528, 95% CI [−0.692, 0.310], and the indirect effect 

was significant, ab = 0.727, 95% CI [0.422, 1.069]. For RMSSD change as the dependent 

variable in a model, total, direct, and indirect effects were not significant.

The results of the mediation analyses suggest that the relationships between training 

condition and volume changes in left OFC are not mediated by resonance frequency power 

during practice because no indirect effects were significant. Thus, the condition effects 

on structural volume did not depend on the degree of intensity of the oscillations during 

practice. In contrast, the relationships between training condition and HRV changes (log 

HF-power and LF-power), were mediated by resonance frequency power during practice.

3.6. Sequential Mediating Effects on the Relationship between Condition and Mood 
Disturbance Change

As a subsequent analysis, we extended the simple mediation model to a sequential mediation 

model to examine mood disturbance change.

First, we examined the mediating effect of resonance frequency power during practice and 

volume changes in left OFC on the relationship between condition and mood disturbance 

change. For a model including volume change in left OFC as a second mediator, we 

found a significant indirect effect of condition on mood disturbance change through volume 

changes in left OFC, bf = −1.781, 95% CI [−4.602, −0.034]; Fig. 6 and Table 4. The 

negative relationship indicates that greater increases in left OFC volume led to greater 

decreases in negative mood. But the indirect effect of condition on mood disturbance change 

through resonance frequency power during practice was not significant, ae = 1.391, 95% CI 

[−1.595, 4.742], and the indirect effect of condition on mood disturbance change through 

both resonance frequency power during practice and volume change in left OFC was not 

significant, adf = 0.219, 95% CI [−0.549, 1.237].

Next, we examined the mediation effect of resonance frequency power during practice and 

resting HRV changes on the relationship between condition and mood disturbance change. 

In both models including log HF power or log LF power as a second mediator, no direct and 

indirect effects were significant.
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Thus, volume changes in left OFC mediated the relationship between condition and mood 

disturbance change.

4. Discussion

In conclusion, these findings indicate that daily practice of HRV biofeedback can affect 

the structural volume of prefrontal brain regions that have previously been associated with 

individual differences in HRV. Participants who showed greater increases in volume in 

left OFC across the intervention period also tended to show decreases in negative affect 

during that time, suggesting that these prefrontal structural changes may contribute to the 

positive emotional outcomes seen in HRV biofeedback intervention studies (Goessl et al., 

2017; Lehrer et al., 2020). Previous studies have shown that the structure and function 

of PFC is related to HRV (Ahs et al., 2009; Chang et al., 2013; Critchley et al., 2003; 

Koenig et al., 2021; Kumral et al., 2019; Lane et al., 2009; Sakaki et al., 2016; Smith 

et al., 2015; Yoo et al., 2018). Typically, it is assumed that PFC exerts inhibitory control 

over subcortical regions and HRV reflects the PFC’s ability to inhibit subcortical circuits. 

However, this relationship may also reflect influences from heart to brain, if HRV itself 

influences brain and emotional function (Mather and Thayer, 2018). Indeed, studies that 

manipulated HRV directly using HRV biofeedback have shown that changes in heart rate 

bring positive changes in physiological, behavioral, and brain level (Goessl et al., 2017; 

Lehrer et al., 2020; Lehrer et al., 2013; Nashiro et al., 2022).

In the current study, we examined whether HRV biofeedback training affects the structural 

volume of the OFC, a region of the brain where individual differences in structure have 

previously been associated with HRV. The Osc+ condition increased left OFC volume 

relative to the Osc− condition, whereas there were no significant effects of condition on right 

OFC volume.

Subsequent mediation analyses testing the potential mediating role of the amplitude of heart 

rate oscillations achieved during practice sessions revealed that training condition affected 

structural volume in left OFC directly. The performance level, or how high the heart rate 

oscillation was during training, did not mediate this relationship. This suggests that the 

critical factor affecting OFC structure was the attempt to regulate heart rate oscillations 

rather than the magnitude of the oscillatory dynamics that resulted from the regulation 

attempt. In contrast, mediation analyses on log HF and LF-power showed the relationships 

between training condition and log HF and LF-power were mediated by power during 

training within the resonance frequency band. Thus, the amplitude of heart rate oscillations 

achieved during training appears to play a key role in determining how much participants’ 

resting HRV was affected by the interventions. Further analysis with the sequential model 

showed volume change in left OFC mediated the relationship between condition and mood 

disturbance change, whereas the amplitude of oscillations during the practice did not 

significantly mediate this relationship. This suggests that the OFC regulatory dynamics that 

were affected by the interventions in turn affected mood. More generally, these findings 

suggest that the psychological goal of increasing or decreasing heart rate oscillations and the 

physiological oscillatory dynamics that result from these goals during the training sessions 

have some independent downstream effects.
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We also found while Osc+ younger adults showed a significant increase in LF power 

in post-intervention compared to pre-intervention, Osc+ older adults showed a significant 

increase in RMSSD in post-intervention compared to pre-intervention. One possibility is that 

older adults’ vagal HRV can benefit more from interventions due to declining resting vagal 

HRV (Koenig, 2020). Also, the possibility cannot be ruled out that older adults may have 

difficulty continuing training at their own resonance frequency resulting in affecting broader 

frequency range in resting HRV, while young adults can effectively follow training at their 

own resonance frequency resulting in affecting low frequency range in resting HRV.

In our study, we compared two conditions that had opposite biofeedback goals, with the 

Osc+ group trying to increase HRV during practice sessions, which they did successfully, 

while the Osc− group tried to decrease HRV, which they on average did not succeed 

in doing, compared with their own resting HRV. Our significant group-by-time-point 

interactions were associated with both increases in volume in the Osc+ group and decreases 

in volume in the Osc− condition. The Osc+ condition produced a 0.55% increase in left 

OFC volume. The Osc− condition produced a 0.96% decrease in left OFC volume. A review 

focusing on structural brain plasticity in adult learning (Lovden et al., 2013) reported that 

studies using various training protocols like exercise, motor, and cognitive training with 

acceptable quality had net effects of training on cortical volume that fell within 2 ~ 5% 

for 5 days to ~ 3-month training (Engvig et al., 2010; Martensson et al., 2012; Takeuchi 

et al., 2011). Increases in hippocampal volume are in the 2 ~ 4% range for 3 to 12-month 

training (Erickson et al., 2011; Lovden et al., 2012; Martensson et al., 2012). A video 

gaming training group that trained for 2 months for at least 30 min per day with a video 

game showed a significant 1~3% increase in gray matter volume compared to pretest in the 

right hippocampal formation, right dorsolateral prefrontal cortex, and bilateral cerebellum, 

whereas a control group did not (Kuhn et al., 2014). Likewise, individuals training fine 

motor skills of writing and tracing with their non-dominant left hand over a 7-week period 

displayed a significant (~2%) increase of gray matter volume of both left and right primary 

motor cortex relative to a control group after 4 weeks (Wenger et al., 2017). Our 5 weeks of 

HRV biofeedback intervention showed a similar range of effects as these other intervention 

studies in left OFC. Because we did not have a no-intervention comparison group, we cannot 

be sure how much of the Osc− declines in volume correspond with normal atrophy. Future 

studies are needed to investigate potential effects of this active control condition compared 

with a passive baseline.

Healthy aging is associated with significant changes in both the brain and the heart (Thayer 

et al., 2021). The decline of HRV from early adulthood to late adulthood is similar to 

changes in cortical changes in the brain (Koenig, 2020). The PFC is a critical region for 

emotion regulation and is one of the last regions to fully develop and one of the first 

to show age-related declines (Raz et al., 2005). It is important that this study revealed a 

relationship between HRV biofeedback and cortical volume in OFC not only in young adults 

but also in healthy older adults. This is of potential relevance for mild cognitive impairment 

(MCI) or neurodegenerative disorders like Alzheimer’s disease (AD) and frontotemporal 

dementia as frontal regions’ function in older adults with MCI or several types of dementia 

decreases. Lower HRV in dementia patients than in healthy individuals has been reported 

(Alvares et al., 2016; Jensen-Dahm et al., 2015; Kim et al., 2018). However, the results were 
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not always consistent. For example, a study addressed the relationships between HRV and 

cortical thickness in AD signature regions in healthy control and older adults with amnesic 

MCI (Lin et al., 2017). They found higher HF-HRV at rest was significantly related to 

both more severe AD-associated neurodegeneration and worse cognitive ability and also 

showed that high anterior cingulate cortex activity significantly mediated relationships 

between HF-HRV and cortical thickness, suggesting a compensatory process. This result 

indicates that individuals with amnesic MCI may still have the capacity to rely on frontal 

regions’ compensation, thus maintaining parasympathetic nervous system regardless of AD 

pathology (Lin et al., 2017). Therefore, future research will be necessary to see HRV 

biofeedback intervention effects on cortical volume or thickness with participants with MCI 

or AD.

To examine whether HRV biofeedback training affects brain structure, we used brain volume 

as our dependent variable. In previous longitudinal research, Freesurfer volume measures 

were generally more reliable than Freesurfer thickness measures (p ≤ 0.002; Schwarz et al., 

2016). The volume also shows more longitudinal change than cortical thickness or surface 

area (Storsve et al., 2014). Furthermore, a negative relationship between change in thickness 

and surface area was found across several regions, where more thinning was associated with 

less decrease in the area (Storsve et al., 2014). Thus, the volume seemed like the best overall 

measure of structure for our study that involved longitudinal change.

There are reported sex differences in HRV (Kuo et al., 1999; Thayer et al., 2021; Williams et 

al., 2019), but unfortunately the current sample was not powered to examine sex differences, 

especially among the older adults who had an unbalanced sex ratio with more females than 

males. Future studies are needed to more fully investigate potential sex differences and other 

individual difference relationships.
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Fig. 1. 
Heart rate power spectrum averaged across all practice sessions compared to pre-

intervention rest. YA=younger adults, OA=older adults.
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Fig. 2. 
Resting HRV changes across the two conditions in each age group. The error bars reflect the 

standard error. YA=younger adults, OA=older adults.
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Fig. 3. 
Distribution of OFC volume and results of mixed ANCOVAs for left OFC volume (A) and 

for right OFC volume (B) with total grey volume as a covariate. P values reflect interaction 

effects of time-point × condition on left OFC volume (in the bottom row in column A) and 

right OFC volume (in the bottom row in column B). The error bars reflect the standard error.
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Fig. 4. 
Results of mixed ANCOVAs for left OFC volume (A, C) and for right OFC volume (B, 

D) with total grey volume as a covariate. P values reflect two-way interaction effects of 

time-point × condition on left OFC volume and right OFC volume in younger adults (YA) 

(A, B panels) and older adults (OA) (C, D panels). The error bars reflect the standard error.
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Fig. 5. 
Resonance frequency power mediation models of the relationships between training 

condition and volume changes in left OFC (A), between training condition and HF-power 

changes during rest (B), and between training condition and LF-power changes during rest 

(C), controlling for resonance frequency power during pre-intervention rest. a, b, c and c’ are 

expressed as the unstandardized regression coefficient. *p < .05; **p < .01.
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Fig. 6. 
Sequential mediation models of resonance frequency power and volume changes in left OFC 

on the relationships between training condition and mood disturbance change, controlling 

for resonance frequency power during pre-intervention rest. a, b, c, c’, d, e, and f are 

expressed as the unstandardized regression coefficient. *p < .05; **p < .01.
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Table 1.

Baseline participant characteristics for each condition in each age group (from week 2, before intervention). 

Means and standard deviations (in parenthesis) are provided. Independent samples t-tests were used to detect 

condition difference and age group differences.

Young (18~35 years) Old (55~80 years) Age group 
difference (t)

Osc+ Osc− Condition 
difference 

(t)

Osc+ Osc− Condition 
difference 

(t)

Age (years) 22.73 (2.47) 22.69 (3.30) 0.71 64.80 (8.52) 64.93 (5.81) −0.07 −51.15***

All: 22.71 (2.87) All: 64.87 (7.14)

Sex 25 F/27 M 23 F/ 22 M 17 F / 8 M 20 F / 8 M

All: 48 F / 49 M All: 37 F / 16 M

Mean HR 
(beat/min)

72.73 (10.51) 72.73 (9.35) 0.004 68.94 (9.10) 72.38 (10.81) −1.25 1.15

All: 72.73 (9.94 All: 70.76 (10.10)

log RMSSD 4.00 (0.45) 3.99 (0.33) 0.09 3.44 (0.39) 3.42 (0.41) 0.17 8.26***

All: 4.00 (0.40) All: 3.43 (0.40)

log HF-power 6.78 (1.03) 6.81 (0.75) −0.17 5.56 (0.89) 5.14 (1.39) 0.56 8.27***

All: 6.80 (0.90) All: 5.47 (1.00)

Log LF-power 7.08 (0.89) 6.96 (0.90) 0.63 5.66 (1.19) 5.14 (1.39) 1.45 9.06***

All: 7.02 (0.89) All: 5.38 (1.31)

Left OFC 
volume (mm3)

13913.4 
(1420.6)

14117.1 
(1247.2)

−0.75 12320.2 
(1347.0)

12439.2 
(1377.3)

−0.31 6.94***

All: 14013.1 (1335.4) All: 12380.9 (1349.6)

Right OFC 
volume (mm3)

14147.2 
(1433.9)

14093.1 
(1273.1)

0.20 12204.3 
(1206.4)

12623.1 
(1267.2)

−1.18 7.37***

All: 14120.7 (1350.7) All: 12418.0 (1243.0)

Total gray 
matter volume 

(mm3)

700708.4 
(57000.6)

709893.9 
(49101.1)

−0.84 612543.1 
(69611.3)

617571.0 
(50089.6)

−0.29 9.24***

All: 705205.5 (53200.9) All: 615108.3 (59856.9)

*
p < 0.05

**
p < 0.01

***
p < 0.001, 2-tailed.
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Table 2.

Partial correlation coefficients (r) between resonance frequency power during practice, resting HRV changes, 

and volume changes in ROIs, controlling for resonance frequency power during pre-intervention rest

Condition Resonance 
frequency 

power

RMSSD 
change

Log HF-
power 
change

Log LF-
power 
change

Volume 
change in 
left OFC

Volume 
change in 
right OFC

Resonance frequency 
power

.649**† 1

RMSSD change −.070 .034 1

Log HF-power change −.073 .123 .833**† 1

Log LF-power change .258**† .456**† .360**† .433**† 1

Volume change in left 
OFC

.270**† .143 .069 .017 .167 1

Volume change in right 
OFC

.108 .040 .070 .097 .091 .626**† 1

Mood disturbance change .011 .055 −.186* −.136 −.063 −.188* −.134

*
p < .05

**
p < .01, 2-tailed

†
remained significant after multiple comparison correction using Benjamini–Hochberg procedure.
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Table 3.

Path coefficients for mediation model (N = 134, bootstrap = 10000).

A: Volume change in left OFC

Effect Paths B SE t p LLCI ULCI

Total effect (c) condition→volume change in left LOFC 1.628 0.507 3.214 0.002 0.626 2.630

Direct effect (c′) condition→volume change in left LOFC 1.849 0.668 2.770 0.006 0.528 3.170

Indirect effect (ab) condition→resonance frequency power during practice→volume 
change in left LOFC

−0.221 0.379 −0.945 0.565

B: Log HF-power changes

Effect Paths B SE t p LLCI ULCI

Total effect (c) condition→log HF-power change during rest −0.139 0.166 −0.838 −0.403 −0.467 0.189

Direct effect (c′) condition→log HF-power change during rest −0.503 0.213 −2.358 0.020 −0.925 −0.081

Indirect effect (ab) condition→resonance frequency power during practice→log 
HF-power change during rest

0.364 0.137 0.099 0.634

C: Log LF-power changes

Effect Paths B SE t p LLCI ULCI

Total effect (c) condition→log LF-power change during rest 0.581 0.190 3.060 0.003 0.206 0.957

Direct effect (c′) condition→log LF-power change during rest −0.146 0.231 −0.633 0.528 −0.602 0.310

Indirect effect (ab) condition→resonance frequency power during practice→log 
LF-power change during rest

0.727 .163 0.422 1.069

SE: standard error; LLCI: Lower Limit of the 95% Confidence Interval; ULCI: Upper Limit of the 95% Confidence Interval

Int J Psychophysiol. Author manuscript; available in PMC 2024 June 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yoo et al. Page 31

Table 4.

Path coefficients for sequential mediation model of resonance frequency power during practice and volume 

change in left OFC on the relationship between condition and mood disturbance change (N = 133, bootstrap = 

10000).

Effect Paths B SE t p LLCI ULCI

Total effect (c) condition→mood disturbance change 0.299 2.507 0.119 0.905 −4.661 5.259

Direct effect (c′) condition→mood disturbance change 0.470 3.371 0.140 0.889 −6.200 7.140

Indirect effects Total indirect effect −0.172 1.739 −3.565 3.253

(ae) condition→resonance frequency power during practice→mood 
disturbance change

1.391 1.611 −1.595 4.742

(bf) condition→volume change in left MOFC→mood disturbance 
change

−1.781 1.189 −4.602 −0.034

(adf) condition→resonance frequency power during practice→volume 
change in left MOFC→mood disturbance change

0.219 0.446 −0.549 1.137

SE: standard error; LLCI: Lower Limit of the 95% Confidence Interval; ULCI: Upper Limit of the 95% Confidence Interval
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