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Abstract

Purpose: To improve image quality and CT number accuracy of daily cone-beam computed 

tomography (CBCT) through a deep-learning methodology with Generative Adversarial Network.

Methods: 150 paired pelvic CT and CBCT scans were used for model training and validation. 

An unsupervised deep-learning method, 2.5D pixel-to-pixel generative adversarial network (GAN) 

model with feature mapping was proposed. A total of 12000 slice pairs of CT and CBCT were 

used for model training, while 10-cross validation was applied to verify model robustness. Paired 

CT-CBCT scans from an additional 15 pelvic patients and 10 head-and-neck (HN) patients with 

CBCT images collected at a different machine were used for independent testing purpose. Besides 

the proposed method above, other network architectures were also tested as: 2D vs. 2.5D; GAN 

model with vs. without feature mapping; GAN model with vs. without additional perceptual loss; 

and previously reported models as U-net and cycleGAN with or without identity loss. Image 

quality of deep-learning generated synthetic CT (sCT) images were quantitatively compared 

against the reference CT (rCT) image using mean absolute error (MAE) of Hounsfield units (HU) 

and peak signal-to-noise ratio (PSNR). The dosimetric calculation accuracy was further evaluated 

with both photon and proton beams.

Results: The deep-learning generated synthetic CTs (sCT) showed improved image quality with 

reduced artifact distortion and improved soft tissue contrast. The proposed algorithm of 2.5 

Pix2pix GAN with feature matching (FM) was shown to be the best model among all tested 
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methods producing the highest PSNR and the lowest MAE to reference CT (rCT). The dose 

distribution demonstrated a high accuracy in the scope of photon based planning, yet more work is 

needed for proton based treatment. Once the model was trained, it took 11–12 ms to process one 

slice, and could generate a 3D-volume of dCBCT (80 slices) in less than a second using a NVIDIA 

GeForce GTX Titan X GPU (12GB, Maxwell architecture).

Conclusion: The proposed deep-learning algorithm is promising to improve CBCT image 

quality in an efficient way, thus has a potential to support online CBCT-based adaptive 

radiotherapy.

1 Introduction

Cone-beam CT (CBCT) is widely used in radiotherapy clinics for patient setup and 

treatment monitoring, and is essential in the context of adaptive radiation therapy. Current 

work flow with adaptive planning on CBCT includes two major streams, one is to employ 

CBCT for direct dose calculation and the other is to perform dose evaluation on deformed 

planning CT with CBCT. Yang et al. is one of the first to evaluate the feasibility and 

accuracy of both ways1. They concluded it is more beneficial to improve CBCT image 

quality to CT level for adaptive radiotherapy due to the inherent reduced image quality and 

inaccurate Hounsfield units (HU) mapping2.

There have been numerous efforts in improving CBCT image quality using scatter 

correction: such as hardware improvement by adding anti-scatter grid3, x-ray beam blocker 

with a strip pattern2, or a lattice-shaped lead beam stopper4; or software improvement with 

iterative filtering5, raytracing6, model-based approach7, or Monte Carlo (MC) modeling 8,9. 

Especially, raytracing and MC methods have been shown to reproduce HUs to sufficient 

accuracy for both photon and proton dose calculation. They are, however limited by the time 

it takes to perform correction, about minutes or hours due to high computational complexity. 

Alternatively, conventional analytic reconstruction algorithms, such as filtered back 

projection, remain the mainstream due to fast computation.

Recently, machine-learning based algorithm has been applied to improve image quality and 

image reconstruction. It has been even shown that synthetic CT could be generated from 

MRI by using convolutional neural network (CNN) for radiotherapy planning without 

acquiring the actual CT 10,11. Similar strategy can also be applied to improve image quality 

of low-dose CT to match high-resolution CT 12. The purpose of this study is to develop 

unsupervised deep-learning model to improve CBCT image quality to CT level and to 

further validate the model on different anatomical sites.

2 Materials and Methods

2.1 Data Acquisition and Preprocessing

Data from 30 pelvic patients were included. Each patient had one planning CT and five 

CBCT scans, a total of 150 pairs of CT-CBCT were used for model training and validation 

purposes. The CBCTs were from the first week of treatment to ensure the closest anatomy to 

planning CT. Paired CT-CBCT from an additional 15 pelvic patients and 10 head-and-neck 
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(HN) patients were used for independent testing purpose. The CBCT scans of the validation 

set were collected at the first day of treatment on a different Varian TrueBeam.

All treatment planning CT images were collected with a GE LightSpeed16 CT scanner (GE 

Health Systems, Milwaukee, WI) and the CBCT images of the training set were acquired 

with an on-board-imager (OBI) equipped Varian TrueBeam STx linear accelerator (Varian 

Medical Systems, Palo Alto, CA). The original CTs had a resolution of 0.91 × 0.91 × 1.99 

mm3 and dimensions of 512 × 512 × 210. All CBCTs had a resolution of 1.27 × 1.27 × 1.25 

mm3 and dimensions of 512 × 512 × 80. For each patient, the CT images were mapped to 

each set of CBCT images using Velocity (Varian Medical Systems, Palo Alto, CA) with 

multi-pass B-spline based free form deformation to create a reference CT (rCT). All the 

deep-learning generated synthetic CTs (sCT) were compared to this reference.

2.2 Pix2pix GAN Architecture with Feature Matching

A 2.5 dimensional (2.5D) Pix2pix GAN-based deep-learning model with Feature Matching 

(FM) was proposed and the architecture is shown in Figure 113. The Generator was used to 

generate synthetic CT (sCT) from the original CBCT, and the Discriminator was used to 

distinguish the synthetic CT (sCT) from the reference CT (rCT). The Generators and 

Discriminators competed against each other until they reached an optimum.

The Generator was implemented using U-net architecture, in which each Conv-ReLU-BN 

block consists of either convolution or de-convolution layers with kernel size of 3×3, a batch 

normalization layer (BN) and a leaky rectified linear unit (ReLU). Concatenate connections 

were linked between the corresponding layers of the encoder and decoder. The activation 

function after the last convolutional layer was Elu. Then the synthesize CT (sCT) slices were 

used as the input of the Discriminator with the reference CT (rCT) slices as ground truth. 

The discriminator was a classifier that consisted of 8 stages of Conv-ReLU-BN block same 

as Generator.

The instability during the training of GAN is a critical issue which affects the output image 

quality from the generator. To address this issue, we implemented feature matching by 

changing the adversarial loss function14. This strategy forced the generator to generate 

images which could match the expected values of the features on the intermediate layers of 

the discriminator, besides the output of the discriminator. The loss function for the 

Discriminator was constructed as:

LossD, G = ∑
1

α1
1
nl ∑

nl
fl(D(sCT) − fl(D(rCT))| (l = 2, 4, 6, 7) (1)

where fl is the output feature map on layer l, and nl represents number of pixels. The sCT 

and rCT slices were used as input. The corresponding feature maps from the 2nd, 4th, 6th, 

and 7th layers were obtained with mean absolute error summed together as loss function. 

fl(D(rCT)) represents the output of the discriminator from the original CT slices. αl is the 

adaptive weights for the features extracted from each layer. To further preserve the HU 

values between rCT and sCT, the L1 norm distance was added to the loss function:
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L1Loss = 1
n ∑n sCT − rCT | (2)

where n is the number of pixels on the images, with the final adversarial loss function as:

Lossadersarial = LossD, G + αL1Loss (3)

where α is the weight between two different loss functions.

The 2.5 D architecture used a volume set with adjacent three slices as input of the network. 

This method stacked neighboring three slices together as different channels of the input to 

provide the network with 2.5D information, providing more morphology information to 

reconstruct the high-quality images.

2.3 Other network architectures

Besides feature mapping as mentioned in 2.2, another way to improve the synthesized image 

quality is to add perceptual loss 15. The architectures as pix2pix GAN model with vs. 

without additional perceptual loss were tested. VGG16 on ImageNet16 was used to extract 

the image features for two types of losses: content loss and style loss. The content loss was 

defined as the Euclidian distance between the feature maps from original and synthesized 

images of each layer:

Losscontent = ∑
j

1
ℎjwjcj

f j rCT − f j sCT 2
2

(4)

where fj(CT) and fj(sCT) stand for the feature maps from the jth layer in the network for the 

ground-truth image and the synthesized image, respectively, and hj, wj, and cj stands for the 

size.

The style loss was used to control the similarity of image styles and was defined as the 

Euclidian distance between the stylistic feature maps from original and synthesized images 

of each layer:

Lossstyle = ∑
j

Gramj rCT − Gramj sCT 2
2

(5)

where Gram matrix was defined as:

Gramj y m, n = 1
ℎjwjcj

∑
ℎ = 1

ℎj
∑

w = 1

wj
fj y ℎ, w, m * fj y ℎ, w, n (6)

where m and n represent different output channels from the same layer. So the loss function 

becomes

Losspercepertual = Lossadversarial + β1Losscontent + β2Lossstyle (7)

β1 and β2 are the weights.
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In addition, we also compared our methods with previously published models as U-net 17,18 

and cycleGAN 19. U-net is a popular algorithm in image processing field and some 

investigators have explored its use in this context 17,18,20. In brief, the basic structure 

consists of convolution and max-pooling layers at the descending part (the left component of 

U), and convolution and up-sampling layers at ascending part (the right component of U) 20. 

In the down-sampling stage, the input image size is divided by the size of the max-pooling 

kernel size at each max-pooling layer. In the up-sampling stage, the input image size is 

increased by the operations, which are performed and implemented by convolutions, where 

kernel weights are learned during training. The arrows between the two components of the U 

show the incorporation of the information available at the down-sampling stage into the up-

sampling stage, by copying the outputs of convolution layers from descending components 

to the corresponding ascending components. In this way, fine-detailed information captured 

in descending part of the network is used at the ascending part. The output images share the 

same size of the input images.

A few works have been done using CycleGAN to obtain synthetic CT from CBCT 19,21. In 

brief, it consisted of two generators as GA (mapping from CBCT to sCT) and GB (mapping 

from CT to sCT). It also had two discriminators as DA to distinguish rCT from fake CT, and 

DB to distinguish real CBCT from fake CBCT. With this bidirectional configurations, cycled 

CBCT images (cycleCBCT) from sCT and cycled CT images (cycleCT) from sCBCT could 

be obtained.

Besides adversarial loss from discriminators, cycle loss was added to the final function:

LosscycleGAN = Lossadversarial − CT + Lossadversarial − CBCT + γ
(Losscycle − CT + Losscycle − CBCT) (3)

where

Losscycle − CT = 1
n ∑

n
CT − cycleCT | (3)

Losscycle − CBCT = 1
n ∑

n
CBCT − cycleCBCT | (3)

and n is the number of pixels on the image and γ is the weight of the cycle loss.

2.4 Model Configuration and Statistical Analysis

Normalized images were used as input, with rescaling HU numbers to the mean values of 0 

and the standard deviation to 1. All models were trained with Adam optimization with a 

mini-batch size of 2 and epoch number of 100. All weights were initialized from He normal 

initializer. Batch normalization was used after each convolutional layer. The learning rate 

was set to 0.0001 with momentum term 0.5 to stabilize training. The generator was trained 

twice while the discriminator was trained once to keep the balance between the two 

components. To control the overfitting, three methods were utilized. First, before training, all 

images were augmented by horizontally flipping, a small angle rotation, as well as adding 
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some background noise. Then L2 regularization term was added to the final loss function. 

Lastly, during the training process, early stop was applied based on the lowest validation loss 

to obtain the optimized model.

10-fold cross validation was used to evaluate the performance of the model. Each slice was 

used as an independent case. The training and validation sets included 150 CBCT-CT pairs, 

and 90% of cases were used for training while remaining 10% were used for validation 

purpose. The results from the validation sets were calculated. A separate dataset with 

additional 15 pelvic patients and 10 head-and-neck patients with paired CT and first-day 

CBCT, with CBCTs collected at a different linac machine, was used as an independent 

testing set to evaluate the robustness of proposed algorithm.

Synthetic CT slices (sCT) were firstly generated using the proposed model then rendered 

into 3D volumes to compare to the reference CT (rCT) images. Two metrics as peak signal-

to-noise ratio (PSNR), and mean average error (MAE) were calculated by comparing 

synthetic CT and reference CT. PSNR measured the maximum possible power of a signal, 

with higher value indicating better image quality. MAE measured absolute HU differences 

of every single pixel between target and reconstructed image, with lower value indicating 

closer similarity to target. A total of 8 models were tested and compared: (1) 2.5D Pix2pix 

GAN with feature matching (FM) – as proposed in this study; (2) 2D Pix2pix GAN without 

feature matching, using single slice as network input; (3) 2D Pix2pix GAN with feature 

matching; (4) 2.5D Pix2pix GAN without feature matching; (5) 2.5D Pix2pix GAN with 

feature matching and perceptual loss; (6) U-net; and (7) cycleGAN and (8) cycleGAN with 

identity loss21,22. To further prove that the sCT can carry the dose calculation with 

comparable accuracy as CT, both photon and proton treatment plans were transferred to the 

corresponding sCT. The differences were also compared to that was directly generated from 

the rCT.

3 Results

Figure 2 shows the intermediate results of training and testing curves when using different 

network architectures. Due to the large number of training iteration, only the first 9000 

training iterations were recorded for assessment. Figure 2(a) compares the pix2pix GAN 

with or without feature matching (FM), and the one without FM showed obvious instability 

during the training process. The performance of adding FM to various or different layers was 

further evaluated. As shown in Figure 2(b), adding FM to all layers could lead to overfitting 

as the testing MAE increased when training iterations increased. While if adding FM to 

limited number of layers as layers of 6 and 7, the stability cannot be obtained as shown in 

Figure 2(c). Experiments have been conducted by applying FM to various combination of 

intermediated layers, the pix2pix GAN with feature matching added to layer 2,4,6,7 was 

determined as the final architecture to obtain a balance between instability and overfitting. 

For illustration purpose, Figure 2(d) shows the training and testing process comparing 

pix2pix GAN and cycleGAN. The stability was not well maintained in training dataset and 

the MAE increased with iterations for testing dataset indicating potential overfitting for 

cycleGAN compared to proposed method on our dataset.
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Figure 3 shows two case examples with reference CT (rCT) images, raw CBCT images and 

deep-learning generated synthetic CT (sCT). The intensity differences in Hounsfield Unit 

(HU) are also displayed. It can be clearly seen that the synthetic CT had much closer HU 

level to the reference CT compared to the raw CBCT.

The group result in the validation dataset is summarized in Table 1. All deep-learning 

generated synthetic CTs showed improved image quality with less discrepancies (smaller 

MAE) to reference CT. The proposed algorithm as 2.5 Pix2pix GAN with feature matching 

was shown to be the best model among all tested methods with the highest PSNR and the 

lowest MAE. The mean MAE improved from 26.1±9.9 HU (CBCT vs. rCT) to 8.0±1.3 HU 

(sCT vs. rCT). The PSNR also increased significantly from 16.7±10.2 (CBCT vs. rCT) to 

24.0±7.5 (sCT vs. rCT) in the validation set. The results showed that changing from 2D to 

2.5D input had slight improvement for the PSNR and MAE but not statistically significant, 

due to only 3 slices information added into the model.

U-net was under-performed than any of GAN networks. As shown in Figure 4, the U-net 

generated blurred images and lost detailed information especially at the tissue boundaries. 

Overall, the deep-learning based CBCT generated through the pix2pix GAN methods had 

greatly reduced artifacts compared to the corresponding raw CBCT.

The proposed algorithm was further applied to the independent testing dataset. Due to 

different linac machine setting, the image discrepancies from raw CBCT to CT was larger 

compared to the training/validation set. The average MAE was 43.8±6.9 HU for pelvic cases 

originally, but was improved to 23.6±4.5 with deep-learning. The pSNR was improved from 

14.53±6.7 to 20.09±3.4. When extended to head-and-neck regions, the model still produced 

less MAE discrepancies to 24.1±3.8 from original 32.3±5.7 HU. The pSNR was improved 

from 20.34±1.6 to 22.79±3.4. This indicated that the GAN model pre-trained with pelvic 

region might be able transferred to other region. The testing performance showed 

improvement, with yet less extent, also indicating task-specific performance may be needed 

for further improvement. An example of the head-and-neck cases is shown in Figure 5. It 

shows improved image quality with much closer HU to reference CT.

Figure 6 and 7 shows the dose difference map of a representative patient with both photon 

and proton dose calculation, respectively. Photon plan was delivered with VMAT using 6X 

beam, originally prescribed at 5760 cGy in 32 fractions. Proton plan was designed with 

double scattering technique using two lateral beams under the same prescription. The plan 

was designed on reference CT and recalculated on synthetic CT. For the VMAT plan, dose 

differences were confined close to the patient surface and minimal differences (< 1%) inside 

the patient, showing high accuracy for photon based dose calculation. Yet for proton plans, 

which the dose distribution is more sensitive HU differences and water equivalent depth 

(WED), an over/under-estimation of the proton range was observed. A median range 

difference of 2 mm was observed for the representative case, in line with a MAE of a 9.8 

HU.

The network code was written in Python 3.6 and TensorFlow 2.0 and experiments were 

performed on a GPU-optimized workstation with a single NVIDIA GeForce GTX Titan X 
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(12GB, Maxwell architecture). Once the model was trained, it took 11–12 ms to process one 

slice and generate a 3D volume of synthetic CT in less than a second.

4 Discussions and Conclusions

We have developed a deep-learning based model to generate synthetic CT from routine 

CBCT images based on pixel-to-pixel (Pix2pix) GAN. The model was built and validated on 

30 pelvic patients with 150 paired CT-CBCT images, and further tested with an independent 

cohort with 15 additional pelvic cases and 10 head-and-neck cases collected at another linac 

machine. The image quality of the deep-learning based synthetic CT had been overall 

improved with much less MAE discrepancies to reference CT in both validation and testing 

datasets. The dose distribution also demonstrated a high accuracy for photon based 

calculation. This proof-of-concept technique provides substantial improvement in terms of 

speed, which can be directly generated within a second and thus be implemented real time. 

More investigations are needed for direct clinical adaption as well as for proton related 

applications.

The online CBCT has been widely used for daily positioning and target alignment. It may 

also allow early assessment of treatment response and be a prognostic factor of treatment 

outcomes. However, its use in adaptive radiotherapy is limited due to large scattering and 

inaccurate mapping of HU. Numerous mathematical algorithms have been proposed for past 

decades to improve CBCT image quality, including model-based approach7, Monte Carlo 

(MC) modeling 8,9 and iterative reconstruction (IR) 5 and raytracing6 with literatures cited in 

Table 2. The high demand on computational complexity was the major concern. Jia et al. 
developed an advanced MC algorithm with ray-tracing 6. With GPU, the computational time 

was greatly reduced from hours to minutes. Xu et al. extended the work using planning CT 

as prior information and was able to further shorted the computational time in 30s9. Yet, 

most of the work was tested on phantom or limited number of patient data and has not 

commonly implemented for clinical use. Alternatively, conventional analytic reconstruction 

algorithms, such as filtered back projection, remain the mainstream due to its fast 

computation.

Recently, deep learning based approaches have emerged as a potential solution to overcome 

computational complexity of prior mathematical algorithms in improving CBCT image 

quality. Some efforts have been done at 2D projection level 26–28. Nomura et al. used U-net 

convolutional neural network (CNN) based algorithm to perform scatter correction with lung 

phantom27. Jiang et al. performed scatter correction of CBCT using a deep residual CNN 

and also claimed computational efficient 28. Another route is directly applying deep-learning 

technique on reconstructed 3D volume with recent publications summarized in Table 3. Kida 

et al. used a U-net CNN for the pelvic CBCT-to-sCT generation, and reported improvement 

of MAE from 92 to 31HU with 20 patient cases 29. Similarly, Li et al.30 used an improved 

U-net architecture with residual block and trained the architecture on 50 H&N patients. 

Improved MAE was also reported. Yuan et al. also applied similar technique for head-and-

neck patients, but with CBCT collected at fast-scan low-dose acquisition18. Recently, 

cycleGAN has been proposed to deal with the unpaired training data in multiple applications 

in medical imaging such as MRI-based sCT generation 10, organ segmentation 31, and 
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CBCT-based sCT generation 19,32,33. CycleGAN incorporates an inverse transformation to 

better constrain the training model toward one-to-one mapping. In the application of CBCT-

to-sCT generation, Liang et al. applied cycleGAN to train the CBCT-planning CT dataset 

without performing deformable registration 19. The cycleCBCT generated from CT was used 

to restrain the network. The algorithm was tested on 4 H&N patients and the MAE was 

improved from 70 to 30 HU. Kruz et al. used a similar algorithm to process the pelvic 

images34. The resulted MAE was improved to 87 HU, compared to the original 103 HU. 

Harms et al. published a CBCT-to-sCT generation method using cycleGAN with the 

incorporation of residual blocks and a novel compound loss in the cycle consistency loss 

function with improved results 33. The authors mentioned that although cycleGAN was 

initially designed for unpaired mapping, rigid registration should still be recommended to 

preserve the qualitative values. Liu et al. were the first to extend the deep-learning algorithm 

to abdomen regions with large motion artifacts32. Improved MAE was reported from 81HU 

to 57HU. We have compared our proposed deep-learning model with some previous 

reported methods. It was found the U-net CNN underperformed than any GAN based 

methods on our datasets. This might be due to the fact that the algorithm started with multi-

layer image smoothing which would in-turn resulted in large signal discrepancies at 

boundaries. Another tested algorithm as CycleGAN has been widely applied to match 

unpaired images. Yet, with the co-registration done in the preprocessing step, the input 

CBCT and the reference CT were matched with similar morphologies. Since the purpose of 

this study is to generate synthetic CT from CBCT and further to match with reference CT, 

with this to-match purpose, the cycle loss as used in CycleGAN was not deemed necessary. 

In addition, we tried to add perceptual loss into the model. The initial weights merely 

captured the features of natural images, and it actually disturbed the training process. By 

comparing all deep-learning algorithms, 2.5D pix2pix GAN with feature matching was 

identified as the best model. The model was built on a large pelvic datasets with 150 pairs of 

CBCT-CT. The pelvic dataset contained enough variation of the anatomy structures, which 

helped to improve the robustness of the GAN model. The co-registration results contributed 

to the good correspondence between CT slices and CBCT slices, thus the conversion 

difficulty was reduced. Notably, the current model not only showed improved results in the 

validation set, it was further extended to an independent image set with two disease sets 

collected on a different machine. The improvement was again confirmed by a significant 

reduction of MAE discrepancies. All these demonstrated its robustness in clinical image sets 

and potential clinical use.

Despite the promising results, we acknowledge several limitations. Due to technical 

limitation of the GPU capacity, only three adjacent slices as 2.5D information were used as 

input. The performance did not show significant improvement compared to 2D single-slice 

method. We also performed patch-based approach to incorporate more slices 32. 

Experiments were done with 1/4 sized patches cropped from original images with 16 slices 

(4×4), and 1/8 sized patches with 64 slices (8×8). However, the MAEs were not better than 

the presented method. The 3D patch-based method involves more parameters to fit the loss 

function33, which requires significant larger training samples to avoid overfitting before 

comparing with current model. The future direction is to include a true 3D information with 

larger dataset and computer power. The second limitation is that signals between tissue 

Zhang et al. Page 9

Med Phys. Author manuscript; available in PMC 2021 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



boundaries, as body-to-air or bone-to-soft tissue, were not preserved. This can be seen from 

photon based planning as dose differences retain at the body contour. These differences may 

not be clinically significant for photon based planning but can result range over/

underestimation for proton based planning. This may be due to the signal loss during pre-

processing as volumetric resizing and image interpolation. To overcome this issue, high-

resolution images with original details need to be retained during the pre-processing for 

which again high computational power is needed. In addition, proton beam is sensitivity to 

HU change, with a 5HU difference resulting ~1mm range shift. The adaption of current and 

similar techniques to proton based planning warrants more investigation. Thirdly, lack of the 

same day paired CT and CBCT at the same position prevented us to precisely evaluate the 

exact HU mapping. Identifying matched CT/CBCT pair taken at the same position is 

extremely challenging in a retrospective setting. None of previous published literatures 

except Yuan et al. used 10 paired same day CT/CBCT 18 and all in proof-of-concept stage. 

To truly adapt the technique in clinic, rigorous verification with precise ground truth is 

needed. The data collection of the same day paired CT/CBCTs and with various disease 

types are undergoing and will be included in our future study.

Overall, CBCT plays a very important role in image-guided radiation therapy (IGRT). 

Enhancement of its quality can contribute to daily patient setup and adaptive dose delivery, 

thus enabling higher confidence in patient treatment accuracy. The results of this study 

demonstrate that the artificial intelligence (AI) technique can improve CBCT image quality 

without hardware improvement. Once the model is trained, it takes less than a second to 

process a deep-learning based volumetric CBCT set. The results also show that the improved 

CBCT can achieve high image quality to be close to the level of conventional CT, thus have 

the potential to be used for adaptive planning. Overall, the method presented in this study 

may provide a time-efficient and economic-efficient solution for machines that are coupled 

with CBCT capability. The output may improve the soft-tissue definition that is necessary 

for accurate visualization, contouring, deformable image registration, and may enable new 

applications, such as CBCT-based online adaptive radiotherapy.
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Figure 1. 
U-Net architecture is used for Generators in GAN. The input data size is 512 × 512 × 3 and 

the output data size is 512 × 512 × 1; the first two numbers represent resolutions and the 

third number represents channels.
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Figure 2. 
The intermediate results of training and testing curves to compare (1) the pix2pix GAN with 

or without FM, (2) the pix2pix GAN with FM at all layers vs. at layers of 2,4,6,7; (3) the 

pix2pix GAN with FM at layers of 6,7 vs. at layers of 2,4,6,7; (4) the pix2pix GAN vs. 

cycleGAN. Due to the different training and testing datasets, training and testing MAEs 

were different.
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Figure 3. 
Two case examples: (1) CT image, (2) CBCT image, (3) deep-learning based CBCT 

(dCBCT) predicted using 2.5D GAN with feature matching, (4) line plot showing intensity 

profile of CT (blue), CBCT (green) and dCBCT (red) in range of [−500, 1500] HU, (5) HU 

differences between CBCT to CT in range of [−500, 500] HU, (6) HU differences between 

dCBCT to CT in range of [−500, 500] HU.
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Figure 4. 
Comparison among the presented algorithm and other algorithms as prediction results using: 

(1) U-net; (2) 2D GAN without feature matching (FM); (3) 2.5D GAN without FM; (4) 2D 

GAN with FM; (5) 2.5D GAN with feature matching; (6) CycleGAN; (7) 2.5D GAN with 

FM and perceptual loss; and (8) cycleGAN with identify loss.
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Figure 5. 
One head-and-neck case example from an independent testing dataset. The deep-learning 

based CBCT showed much closer HU to reference CT.
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Figure 6. 
VMAT based photon plans showing dose differences calculated on (a) synthetic CT (sCT) 

and (b) CBCT with relative to the reference CT (rCT), dose calculation accuracy can be 

obtained with generated sCT. The planning target is shown in red.
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Figure 7. 
Double scattering based proton plans showing dose differences calculated on (a) synthetic 

CT (sCT), (b) CBCT with relative to the reference CT (rCT), with two lateral beams; and (c) 

the field water equivalent depth (WED) of single beam was displayed for rCT, sCT and 

CBCT. The sCT showed less proton range differences. The planning target is shown in red.
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Table 1:

The Mean Average Error (MAE) and Peak Signal-to-Noise Ratio (PSNR) of the original CBCT and the 

synthetic CT generated by using 8 deep learning architectures compared to the referece CT: (1) 2.5D Pix2pix 

GAN with feature matching – as proposed in this study; (2) 2D Pix2pix GAN without feature matching, using 

single slice as network input; (3) 2D Pix2pix GAN with feature matching; (4) 2.5D Pix2pix GAN without 

feature matching; (5) 2.5D Pix2pix GAN with feature matching and perceptual loss; (6) U-net; and (7) 

cycleGAN and (8) cycleGAN with identity loss.

Network Mean Average Error (MAE) Peak Signal-to-Noise Ratio (PSNR)

0 Original CBCT 26.1±9.9* 16.7±10.2

1 2.5D GAN with FM 8.1±1.3 24±7.5

2 2D GAN without FM 9.4±1.2 22.4±3.8

3 2D GAN with FM 8.1±1.4 23.8±1.8

4 2.5D GAN without FM 9.3±2.1 22.7±2.9

5 2.5D GAN with FM and Perceptual Loss 9.2±1.5 23.2±7.8

6 U-net 19.2±6.4** 18.9±6.7

7 CycleGAN 9.2±1.5 23.2±7.8

8 CycleGAN with Identity Loss 8.9±3.1 22.1±5.5

*
MAE between the original CBCT and CT is significantly higher compared to other methods

**
MAE between the U-net generated synthetic CT and original CT is significantly higher compared to other methods
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Table 2.

Summary of previous publications on conventional algorithms in improving CBCT image quality.

Paper Method Time Dataset

Zbijewski et al. 20068 Monte Carlo ~ hours a digital rat abdomen phantom

Wang et al. 20095 Interative reconstruction ~5 hours a CT quality assurance phantom and an 
anthropomorphic head phantom

Sun et al. 20107 Scatter Kernel ~15 mins (8-core thread) Pelvis phantom

Tian et al. 201123 Iterative reconstruction 6s per slices (GPU) Thorax phantom, chest phantom and Catphan 
phantom

Jia et al. 2011 24 Iterative reconstruction 5 mins (GPU) thorax phantom and Catphan phantom

Jia et al. 20126 Ray-Tracing ~ mins (GPU) Catphan phantom and 1 H&N patient

Xu et al. 20159 Modified Monte Carlo with 
planning CT as prior information

30s (GPU) Full-fan headneck case and the half-fan prostate 
case

Park et al. 201525 Modified Monte Carlo with 
planning CT as prior information

6 mins(GPU) Anthropomorphic phantoms and a prostate patient
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Table 3.

Summary of recent publications on deep-learning based algorithms on reconstructed volume to further 

improve CBCT image quality.

Paper Algorithm Original-> Result mean MAE Dataset Slice matching

Kida et al. 201829 Unet 92*->16 Pelvis: 20 Yes

Li et al. 201930 Unet (60, 120)**-> (6,27) H&N: 50(training)+10(validation) 
+10(testing)

Yes

Harms et al. 201933 cycleGAN Brain:24->13
Pelvic:53->16

Brain:24
Pelvic:20

Yes

Liang et al. 201919 cycleGAN 72->28 H&N: 13(training)+4(testing) No

Chen et al. 202035 Unet 44->19 H&N: 37(training)+7(testing) Yes***

Kruz et al. 202034 cycleGAN 103->87 Pelvic: 25(training)+8(testing) No

Liu et al. 202032 Deep-Attention 
cycleGAN

81->57 Abdomen: 30 Yes

Yuan et al. 202018 Unet 172–49 H&N: 37(training)+15(testing) Yes***

*
the analysis is the was evaluated in ROIs on selected slices in terms of spatial nonuniformity

**
this paper only gave the range of MAE

***
CBCT and CT images were acquired on the same day.
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