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Abstract.
We present an auto-tuning approach to optimize application performance on emerging multicore architectures.

The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT
libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector
Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann
application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature,
including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM
(STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that
allows us to identify a highly optimized version for each platform, while amortizing the human programming effort.
Results show that our auto-tuned kernel applications often achieve a better than 4× improvement compared with
the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware
bottlenecks and software challenges for future multicore systems and applications.

1. Introduction
The computing revolution towards massive on-chip parallelism is moving forward with relatively little concrete
evidence on how to best to use these technologies for real applications [1]. For the foreseeable future, high-
performance computing (HPC) machines will almost certainly contain multicore chips, likely tied together into
(multi-socket) shared memory nodes as the machine building block. As a result, application scientists must
fully harness intra-node performance in order to effectively leverage the enormous computational potential of
emerging multicore-based supercomputers. Thus, understanding the most efficient design and utilization of
these systems, in the context of demanding numerical simulations, is of utmost priority to the HPC community.

In this paper, we present an application-centric approach for producing highly optimized multicore
implementations through a study of Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation
PDE on a regular grid (Stencil), and a Lattice Boltzmann application (LBMHD). Our work uses a novel
approach to implementing the computations across one of the broadest sets of multicore platforms in existing
HPC literature, including the conventional multicore designs of the dual-socket×quad-core Intel Xeon E5345
(Clovertown) and AMD Opteron 2356 (Barcelona), as well as the hardware multithreaded dual-socket×octal-
core Niagara2 — Sun T2+ T5140 (Victoria Falls). In addition, we include the heterogeneous local-store based
architecture of the dual-socket×eight-core Sony-Toshiba-IBM (STI) Cell QS20 Blade.

Our work explores a number of important optimization strategies, which we analyze to identify the
microarchitecture bottlenecks in each system; this leads to several insights into how to build effective multicore
applications, compilers, tools and hardware. In particular, we discover that, although the original code versions



run poorly on all of our superscalar platforms, memory bus bandwidth is often not the limiting factor on most
examined systems. Instead, performance is limited by lack of resources for mapping virtual memory pages
— limited translation lookaside (TLB) buffer capacity, limited cache capacity and associativity, high memory
latency, voluminous cache coherency traffic, and/or poor functional unit scheduling. Although of some these
bottlenecks can be ameliorated through code optimizations, the optimizations interact in subtle ways both with
each other and the underlying hardware. We therefore create an auto-tuning environment for these three codes
that searches through a parameter space for a set of optimizations to maximize performance. We believe
such application-specific auto-tuners are the most practical near-term approach for obtaining high performance
on multicore systems. Additionally, our experience offers concrete challenges to future multicore work on
compilers and performance tools.

Results show that our auto-tuned optimizations achieve impressive performance gains — up to 130×
speedup compared with the original version. Moreover, our fully optimized implementations sustain the highest
fraction of theoretical peak performance on any superscalar platform to date. We also demonstrate that, despite
the relatively slow double precision capabilities, the STI Cell provides considerable advantages in terms of
raw performance and power efficiency — at the cost of increased programming complexity. Additionally, we
present several key insights into the architectural tradeoffs of emerging multicore designs and their implications
on scientific algorithm design.

We facilitate the visualization of the limitations to performance through a roofline model. Attained
performance and requisite optimizations were well correlated to those suggested by the model. In fact, the
model is a much better indicator of performance than either raw peak flops or bandwidth.

2. Experimental Testbed
Our experimental testbed consists of a diverse selection of multicore system implementations. A summary of
key architectural features of our architectural testbed appears in Table 1 and is visualized in Figure 1. The
sustained system power data was obtained using an in-line digital power meter while the node was under a full
computational load. Node power under a computational load can vary dramatically from idle power and from
the manufacturer’s peak power specifications. Although the node architectures are diverse, they accurately
represent building-blocks of current and future ultra-scale supercomputing systems. We now present a brief
overview of the studied platforms.

2.1. Intel Clovertown
Clovertown is Intel’s first foray into the quad-core arena. Reminiscent of Intel’s original dual-core designs,
two dual-core Xeon chips are paired onto a multi-chip module (MCM). Each core is based on Intel’s Core2
microarchitecture, runs at 2.33 GHz, can fetch and decode four instructions per cycle, execute 6 micro-ops per
cycle, and can fully support 128b SSE, for peak double-precision performance of 10.66 GFlop/s per core.

Each Clovertown core includes a 32KB L1 cache, and each chip (two cores) has a shared 4MB L2 cache.
Each socket has access to a 333MHz quad-pumped front side bus (FSB), delivering a raw bandwidth of
10.66 GB/s. Our study evaluates the Dell PowerEdge 1950 dual-socket platform, which contains two MCMs
with dual independent busses. The chipset provides the interface to four fully buffered DDR2-667 DRAM
channels that can deliver an aggregate read memory bandwidth of 21.33 GB/s, with a DRAM capacity of
16GB. The full system has 16MB of L2 cache and an impressive 85.3 GFlop/s peak performance.

2.2. AMD Barcelona
The Opteron 2356 (Barcelona) is AMD’s newest quad-core processor offering. Each core operates at 2.3 GHz,
can fetch and decode four x86 instructions per cycle, execute 6 micro-ops per cycle and fully support 128b SSE
instructions, for peak double-precision performance of 9.2 GFlop/s per core or 36.8 GFlop/s per socket.

Each Opteron core contains a 64KB L1 cache, and a 512MB L2 victim cache. In addition, each chip
instantiates a 2MB L3 victim cache shared among all four cores. All core prefetched data is placed in the L1
cache of the requesting core, whereas all DRAM prefetched data is placed into the L3. Each socket includes



Core Intel AMD Sun STI
Architecture Core2 Barcelona Niagara2 PPE SPE

super scalar super scalar MT MT SIMDType
out of order out of order dual issue† dual issue dual issue

Clock (GHz) 2.33 2.30 1.16 3.20 3.20
DP GFlop/s 9.33 9.20 1.16 6.4 1.8
Local Store — — — — 256KB

per core L1 Data Cache 32KB 64KB 8KB 32KB —
per core L2 Cache — 512KB — 512KB —

L1 TLB entries 16 32 128 1024 256
Page Size 4KB 4KB 4MB 4KB 4KB

Xeon E5345 Opteron 2356 UltraSparc T5140 T2+ QS20System
(Clovertown) (Barcelona) (Victoria Falls) Cell Blade

# Sockets 2 2 2 2
Cores/Socket 4 4 8 1 8

shared L2/L3 Cache 4×4MB(shared by 2) 2×2MB(shared by 4) 2×4MB(shared by 8) — —
DP GFlop/s 74.66 73.6 18.7 12.8 29

DRAM 21.33(read) 42.66(read)
Bandwidth (GB/s) 10.66(write)

21.33
21.33(write)

51.2

DP Flop:Byte Ratio 2.33 3.45 0.29 0.25 0.57
System Power (Watts)§ 330 350 610 285‡

Threading Pthreads Pthreads Pthreads Pthreads libspe2.1
Compiler icc 10.0 gcc 4.1.2 gcc 4.0.4 xlc 8.2 xlc 8.2

Table 1. Architectural summary of evaluated platforms. Top: per core characteristics. Bottom: SMP
characteristics. †Each of the two thread groups may issue up to one instruction. §All system power is measured
with a digital power meter while under a full computational load. ‡Cell BladeCenter power running SGEMM
averaged per blade.

two DDR2-667 memory controllers and a single cache-coherent HyperTransport (HT) link to access the other
socket’s cache and memory; thus delivering 10.66 GB/s per socket, for an aggregate non-uniform memory
access (NUMA) memory bandwidth of 21.33 GB/s for the quad-core, dual-socket system examined in our
study. Non-uniformity arises from the fact that DRAM is directly attached to each processor. Thus, access to
DRAM attached to the other socket comes at the price of lower bandwidth and higher latency. The DRAM
capacity of the tested configuration is 16 GB.

2.3. Sun Victoria Falls
The Sun “UltraSparc T2 Plus” dual-socket 8-core processor, referred to as Victoria Falls, presents an interesting
departure from mainstream multicore chip design. Rather than depending on four-way superscalar execution,
each of the 16 strictly in-order cores supports two groups of four hardware thread contexts (referred to as Chip
MultiThreading or CMT) — providing a total of 64 simultaneous hardware threads per socket. Each core may
issue up to one instruction per thread group assuming there is no resource conflict. The CMT approach is
designed to tolerate instruction, cache, and DRAM latency through fine-grained multithreading.

Victoria Falls instantiates one floating-point unit (FPU) per core (shared among 8 threads). Our study
examines the Sun UltraSparc T5140 with two T2+ processors operating at 1.16 GHz, with a per-core and
per-socket peak performance of 1.16 GFlop/s and 9.33 GFlop/s, respectively — no fused-multiply add (FMA)
functionality. Each core has access to its own private 8KB write-through L1 cache, but is connected to a shared
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Figure 1. Architectural overview of (a) dual-socket×quad-core Intel Xeon E5345 (Clovertown), (b) dual-
socket×quad-core AMD Opteron 2356 (Barcelona), (c) dual-socket×eight-core Sun Niagara2 T2+ T5140
(Victoria Falls), (d) dual-socket×eight-core STI QS20 Cell Blade,

4MB L2 cache via a 149 GB/s(read) on-chip crossbar switch. Each of the two sockets is fed by two dual channel
667 MHz FBDIMM memory controllers that deliver an aggregate bandwidth of 32 GB/s (21.33 GB/s for reads,
and 10.66 GB/s for writes) to each L2, and a total DRAM capacity of 32 GB. Victoria Falls has no hardware
prefetching and software prefetching only places data in the L2. Although multithreading may hide instruction
and cache latency, it may not be able to fully hide DRAM latency.

2.4. STI Cell
The Sony Toshiba IBM (STI) Cell processor is the heart of the Sony PlayStation 3 (PS3) video game
console, whose aggressive design is intended to meet the demanding computational requirements of video
games. Cell adopts a heterogeneous approach to multicore, with one conventional processor core (Power
Processing Element / PPE) to handle OS and control functions, combined with up to eight simpler single
instruction multiple data (SIMD) cores (Synergistic Processing Elements / SPEs) for the computationally
intensive work [6].

At first glance, each PPE appears to be a conventional 64b dual-issue, cache-based PowerPC core. In
fact, each PPE is 2-way vertically-multithreaded. Thus similar to Victoria Falls, multiple thread contexts are
maintained in hardware on each core. On any given cycle the core may fetch and issue up to two instructions
from one thread or the other. There are no hardware prefetchers and the cores are in-order. Thus one expects
the PPEs to be low performing, especially on memory bound kernels. Thus one should consider their value to
be compatibility and productivity, not performance.



(a)
algebra conceptualization

(c)
CSR reference code

for (r=0; r<A.rows; r++) {
  double y0 = 0.0;
  for (i=A.rowStart[r]; i<A.rowStart[r+1]; i++){
    y0 += A.val[i] * x[A.col[i]];
  }
  y[r] = y0;
}

A x y

(b)
CSR data structure

A.val[ ]

A.rowStart[ ]

...

...

A.col[ ]
...

Figure 2. Sparse Matrix Vector Multiplication (SpMV). (a) visualization of the algebra: y ← Ax, where A is a
sparse matrix. (b) Standard compressed sparse row (CSR) representation of the matrix. This structure of arrays
implementation is favored on most architectures. (c) The standard implementation of SpMV for a matrix stored
in CSR. The outer loop is trivially parallelized without any data dependencies.

The SPEs differ considerably from conventional core architectures due to their use of a disjoint software
controlled local memory instead of the conventional hardware-managed cache hierarchy employed by the PPE.
Rather than using prefetch to hide latency, the SPEs have efficient software-controlled DMA engines which
asynchronously fetch data from DRAM into the 256KB local store. This approach allows more efficient use of
available memory bandwidth than is possible with standard prefetch schemes on conventional cache hierarchies,
but also makes the programming model more complex.

Each SPE is a dual issue SIMD architecture that includes a partially pipelined FPU. Although the SPEs can
execute two single precision fused-multiply adds (FMAs) per cycle, they can only execute one double-precision
FMA SIMD instruction every 7 cycles, for a peak of 1.8 GFlop/s per SPE. This study utilizes the QS20 Cell
blade comprised of two sockets with eight SPEs each (29.2 GFlop/s double-precision peak). Each socket has its
own dual channel XDR memory controller delivering 25.6 GB/s, with a DRAM capacity of 512 MB per socket
(1 GB total). The Cell blade connects the chips with a separate coherent interface delivering up to 20 GB/s,
resulting in NUMA characteristics (as with Barcelona and Victoria Falls).

3. Kernels and Applications
In this work, we examine the performance of three memory intensive kernels: SpMV, stencils, and LBMHD.
They are all O(1) arithmetic intensity, varying from as little as 0.16 to as high as 1.0 flops per byte. We detail
each of them in the following sections.

3.1. Sparse Matrix Vector Multiplication
Sparse Matrix Vector Multiplication (SpMV) dominates the performance of diverse applications in scientific
and engineering computing, economic modeling and information retrieval; yet, conventional implementations
have historically been relatively poor, running at 10% or less of machine peak on single-core cache-based
microprocessor systems [11]. Compared to dense linear algebra kernels, sparse kernels suffer from higher
instruction and storage overheads per flop, an inherent lack of instruction- and data-level parallelism in
the reference implementations, as well as indirect and irregular memory access patterns. Achieving higher
performance on these platforms requires choosing a compact data structure and code transformations that best
exploit properties of both the sparse matrix — which may be known only at run-time — and the underlying
machine architecture. This need for optimization and tuning at run-time is a major distinction from both the
dense case as well as many structured grid codes. We reuse the suite of 14 matrices used in our SC07 [15]
paper. These matrices run the gambit of structure, density, and apsect ratio. None should fit in cache.

We consider the SpMV operation y ← Ax, where A is a sparse matrix, and x, y are dense vectors. The
most common data structure used to store a sparse matrix for SpMV-heavy computations is compressed sparse
row (CSR) format, illustrated in Figure 2. SpMV has very low arithmetic intensity, performing only 2 flops for



(a)
PDE grid

+Y

+Z

+X

(b)
stencil for heat equation PDE

(c)
inner loop

Next[x,y,z] = 
    C0 * Current[x,y,z] +
    C1 *(
         Current[x+1,y,z] + 
         Current[x-1,y,z] +
         Current[x,y+1,z] + 
         Current[x,y-1,z] +
         Current[x,y,z+1] + 
         Current[x,y,z-1]
        );

y+1

y-1

x-1

z-1

z+1

x+1
x,y,z

Figure 3. Visualization of the data structures associated with the heat equation stencil. (a) the 3D temperature
grid. (b) the stencil operator performed at each point in the grid. (c) pseudocode for stencil operator.

every double and integer loaded from DRAM. We define the compulsory miss limited arithmetic intensity to
be the ratio of the total number of floating point operations to the compulsory cache misses. True arithmetic
intensity includes all cache misses, not just the compulsory ones. With a compulsory miss limited arithmetic
intensity of 0.166, one expects most architectures to be heavily memory bound.

For further details on the sparse matrix vector multiplication and our auto-tuning approach, we direct the
reader to our SC07 paper [15].

3.2. The Heat Equation Stencil
The second kernel examined in this work is the explicit heat equation PDE applied to a uniform 3D grid.
Partial differential equation solvers constitute a large fraction of scientific applications in such diverse areas as
heat diffusion, electromagnetics, and fluid dynamics. These applications are often implemented using iterative
finite-difference techniques that sweep over a spatial grid, performing nearest neighbor computations called
stencils. In a stencil operation, each point in a multidimensional grid is updated with weighted contributions
from a subset of its neighbors in both time and space — thereby representing the coefficients of the PDE for
that data element. In this work, we examine performance of the 3D heat equation, naı̈vely expressed as triply
nested loops over xyz and shown in Figure 3

This seven-point stencil performs a single Jacobi iteration, meaning that the calculation is out-of-place; thus
reads and writes occur in two distinct arrays. As a result the compulsory limited arithmetic intensity is 0.33 on
write allocate architectures. We use a 2563 problem when auto-tuning and benchmarking.

For further details on the heat equation and our auto-tuning approach, we direct the reader to our paper
submitted to SC08 [4].

3.3. Lattice Boltzmann Magnetohydrodynamics
The final application studied here is Lattice Boltzmann Magnetohydrodynamics (LBMHD) [8]. LBMHD was
developed to study homogeneous isotropic turbulence in dissipative magnetohydrodynamics (MHD). MHD
is the theory of the macroscopic interaction of electrically conducting fluids with a magnetic field. MHD
turbulence plays an important role in many branches of physics [3]: from astrophysical phenomena in stars,
accretion discs, interstellar and intergalactic media to plasma instabilities in magnetic fusion devices. In 3-
dimensional LBMHD, the 27 velocity momentum lattice is augmented by a 15 (cartesian vector) velocity
magnetic lattice — shown in Figure 4. This creates tremendous memory capacity requirements — over 1KB
per point in space. LBM methods iterate on two phases: a collision() operator, where the grid is evolved on
each timestep, and a stream() operator that exchanges data with neighboring processors. Typically, collision()
constitutes 90% or more of the total runtime. Thus, although we parallelize stream(), we concentrate on
auto-tuning collision(). On most architectures, we use a 1283 problem when auto-tuning and benchmarking.
However, this exceeds the Cell Blade’s 1GB memory capacity requirements. As such, we run only ran a 643

problem on Cell.
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(d)
data structure

struct{
  // macroscopic quantities
  double * Density;
  double * Momentum[3];
  double * Magnetic[3];
  // distributions
  double * MomentumDist[27];
  double * MagneticDist[3][27];
}

Figure 4. Visualization of the datastructures associated with LBMHD. (a) the 3D macroscopic grid. (b)
the D3Q27 momentum scalar velocities. (c) D3Q15 magnetic vector velocities. (d) C structure of arrays
datastructure. Note, each pointer refers t a N3 grid, and X is the unit stride dimension.

The code is far too complex to duplicate here, although a conceptualization of the lattice method and the
data structure itself is shown in Figure 4. Nevertheless, the collision() operator must read 73 doubles, write 79
doubles, and perform 1300 floating point operations per lattice update. This results in a compulsory limited
arithmetic intensity of about 0.7 on write allocate architectures.

For further details on LBMHD and our auto-tuning approach, we direct the reader to our IPDPS08
paper [14].

4. Roofline Performance Model
The roofline model, as detailed in [13, 16, 17] is premised on the belief that the three fundamental components
of performance on single program multiple data (SPMD) kernels are communication, computation, and locality
In general, communication can be from network, disk, DRAM or even cache. In this work, the communication
of interest is from DRAM and the computation is floating point operations. The rates associated with these two
quantities are peak bandwidth (GB/s) and peak performance (GFlop/s).

Every kernel has an associated arithmetic intensity (AI) — defined as the ratio of floating point operations
to bytes of communication, in this case DRAM bytes. This is essentially a locality metric as cache misses
may significantly increase the compulsory memory traffic. One may naı̈vely estimate performance as the
min(peakGFlop/s, AI × peakGB/s). If one were to plot attainable performance as a function of arithmetic
intensity, we would see a ramp up in performance followed by a plateau at peak flops much like the slopped
rooflines of many houses.

On modern architectures this naı̈ve Roofline performance model (guaranteed peak flops or peak bandwidth)
is wholly inadequate. Achieving peak in-core flops is premised on fully exploiting every architectural
innovation of the last 15 years. For example, to achieve peak flops on a AMD Opteron (Barcelona), one must
have a balance between the number of multiplies and adds, fully exploit SSE, unroll by enough to cover the
functional unit latency (4 cycles), and ensure that loops are sufficiently long that startup overhead is amortized
— see Figure 5(a). For instruction bandwidth bound architectures (e.g. Niagara), attainable performance is
dictated by the fraction of code that is floating-point. Extrapolating to memory bandwidth, for an Opteron to
achieve peak bandwidth, one must ensure that the memory accesses are long unit strides, memory allocation
must be NUMA-aware, and software prefetching may be needed — Figure 5(b). Failing to employ even one of
these will diminish the attainable performance and form ceilings below the roofline.

We may now construct a roofline model for each microarchitecture explored in this paper, as shown in
Figure 8 — note the log-log scale. The model is based on microbenchmarks for bandwidth and optimization
manuals for computation. The order of optimizations is based on the likelihood of compiler exploitation. For
example, fused multiply add (FMA) and multiply/add balance are inherent in linear algebra kernels, but nearly
impossible to fully exploit in structured grid codes. Thus, this optimization is the lowest of the computational
ceilings for SpMV (from sparse linear algebra), but is the roofline for Stencil and LBMHD. Furthermore,
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Figure 5. Construction of a DRAM based roofline model for a generic machine. Note the log-log scale
(a) Horizontal ceilings are added for 2-way SIMD and 2 cycle functional unit latency. (b) Diagonal ceilings
are added for NUMA bandwidth and the fact that software prefetching is required for peak bandwidth. (c)
Arithmetic intensity walls are added for the compulsory limit as well as the potential impact of capacity and
conflict misses.

compiler unrolling is more likely and easier than SIMDizing a kernel. Similarly, NUMA optimizations are an
easier optimization to employ than manually software prefetching.

As mentioned, each kernel has an associated flop:compulsory byte arithmetic intensity — vertical lines in
Figure 5(c) and Figure 8. This only counts memory traffic (bytes) from compulsory cache misses. Of course,
capacity and conflict misses will significantly reduce this arithmetic intensity — creating a true arithmetic
intensity to the left of the compulsory arithmetic intensity. For each kernel, we may scan upward along the
specified arithmetic intensity line to determine which optimizations are required to achieve better performance
— the ceilings that we must punch through.

5. Optimizations and Auto-tuning
Principally, there are three categories of optimizations that must be performed on these memory intensive
SPMD kernels: maximizing memory bandwidth, minimizing memory traffic, and ensuring that there is enough
instruction and data level parallelism to keep the machine memory bound.

5.1. Auto-tuning and Code Generation Background
Optimizing compilers are data and algorithm agnostic and rely on heuristics to optimize code. However, it
has been shown that not only do search based methods improve both dense linear algebra [2, 12] and spectral
methods [5,9], but data and algorithm foreknowledge allows for complex restructuring of both implementation
and data structure [11]. These automatically tuned libraries — auto-tuners — deliver significant performance
boosts on existing architectures. They also provide a productive solution to optimizing future architectures.

We know that we will have an extremely large code optimization parameter space to explore. As such,
it is imperative to create tools that generate the hundreds of different inner loop variants. We chose to write
a parameterized Perl script for each kernel (SpMV, Stencil, LBMHD) capable of producing all the desired
variants. The functions are then packed into a pointer to function table that may be indexed by the desired
optimizations.

We then create an auto-tuning benchmark for each kernel. It first creates n-1 additional threads that will call
a SPMD auto-tuning benchmark functions to create, initialize, and load the datasets. Then, the threads explore



the parameter space by applying optimizations in an order appropriate for the given platform. The optimal
configuration and performance of these runs is then reported.

The following sections group all the auto-tuned optimizations into the three basic categories and details each
of them.

5.2. Threading and Parallelization
We selected Pthreads as the threading library for all cache-based microarchitectures. The Cell SPEs use IBM’s
libspe threading library. On top of Pthreads we implement a shared memory SPMD-like model where all
threads execute the same function for all iterations of the kernel. We implemented a flat shared memory barrier
for each threading library.

For SpMV, we restricted ourselves to a deterministic 1D decomposition of the matrix (by rows). This ensures
that no inter-thread reductions are necessary. Generally this approach works well when the number of rows is
at least an order of magnitude larger than the number of threads.

For LBMHD, we primarily implement a deterministic 1D decomposition of the grid (into slabs or eventually
planes). This is acceptable until we have more threads than planes in Z — the least contiguous dimension. At
that point we transition, and begin to parallelize in the Y dimension.

The heat equation employs an even more complex parallelization scheme. Not only does it parallelize
in all three dimensions, but it auto-tunes to determine the optimal parallelization in each dimension. We
simultaneously search for the best cache blocking and thread parallelization.

5.3. Maximizing in-core performance
We must first attempt to ensure that the kernels expected to be memory-bound are, in fact, bound by memory.
Essentially, the optimizations detailed here boost in-core performance by ensuring the data and instruction level
parallelism inherent in a kernel is expressed in its implementation. The principal optimizations are unrolling,
reordering, and explicit SIMDization via intrinsics. This last optimization is a clear departure from portable
C code as it requires an optimized SSE implementation, an optimized SPE implementation, an optimized
double hummer implementation, etc... for each SIMD ISA. The out-of-the-box SpMV CSR implementation has
no instruction-level parallelism (ILP) or data-level parallelism (DLP). Thus these optimizations could not be
applied until register blocking (see below) was applied. Nevertheless, the heat equation and LBMHD (after loop
restructuring) have ample ILP and DLP. We auto-tune unrolling and reordering in powers of two to determine
how much ILP and DLP should be expressed in the implementation.

5.4. Maximizing Memory Bandwidth
As suggested in the roofline model, many optimizations are required to maximize memory bandwidth. These
include limiting the number of memory streams, exploiting the NUMA nature of these machines, and proper
use of software and hardware prefetching.

The most basic optimization is to properly collocate data with the threads tasked to process it. We rely on
an OS process affinity routine and a first touch policy. We then bind threads to cores and allow each thread,
rather than only the master, to initialize its own data. This ensures all memory controllers may be engaged, and
minimizes inter-socket communication.

Although SpMV and stencil only require two memory streams per thread, LBMHD generates over 150. In
this case, we restructured the loop to avoid TLB misses and also properly engaged the hardware prefetchers [14].
However, this resulted in an unknown quantity — vector length, for which we must auto-tune.

Finally, on some architectures, hardware prefetchers can be easily confused. On others, they don’t exist.
As a result, we instrumented our code generators to produce variants with software prefetches inserted into the
inner loops. Our auto-tuning framework then tunes for the appropriate prefetch distance.



5.5. Minimizing Memory Traffic
When we have optimized our code to the point where it is using nearly all of a machine’s sustainable memory
bandwidth, the only option for improving performance is to reduce total memory traffic. Basically, this boils
down to addressing the 3C’s [7] of caches. Essentially any cache miss can be categorized as a conflict, capacity,
or compulsory miss. Conflict misses arise due to limited associativity in set associative caches, and capacity
misses occur due to limited cache capacity — a bigger cache would eliminate them. However, compulsory
misses are ever present. Data starts in DRAM. To read it, a cache miss always must occur. In this category we
also include data that is hardware prefetched into the cache that would normally generate a compulsory miss if
the prefetcher wasn’t present.

For all three kernels, the data must start in DRAM, and the result must be returned to DRAM. As a result,
for each matrix multiplication or grid sweep we will generate a large number of compulsory misses. We
can calculate an upper limit to arithmetic intensity based on the total number of floating point operations and
compulsory cache misses. For SpMV, two floating point operations (flops) are performed for every nonzero (a
double and an integer) loaded from DRAM. The heat equation stencil must read every point in the grid (one
double each), perform the stencil for each (8 flops), and write the updated point back to DRAM (one double for
every point in the grid). LBMHD is similar, but the balance is 73 reads, 1300 flops, and 79 writes per point. On
write-allocate cache architectures, each write actually generates 16 bytes of memory traffic — 8 bytes of write-
miss fill, and 8 bytes of writeback. Thus we expect flop:compulsory byte ratios of 0.33 and 0.7 respectively for
the heat equation and LBMHD.

A flop:byte ratio of 0.166 is not the ultimate limit for SpMV. In fact we may exploit register blocking [11]
techniques to improve the flop:byte ratio to 0.25 by eliminating redundant column indices. For the structured
grid codes we may exploit an x86 instruction — movntpd — and force writes to bypass the cache. The result
is that the fill memory traffic may be eliminated. For architectures that allow this optimization, the highest
flop:byte ratios of 0.5 for stencil and 1.0 for LBMHD can be achieved.

Conflict misses arise due to the relatively limited associativity of the caches. Normally, these misses are
small, but when power of two problem sizes are coupled with power of two numbers of threads on shared
caches with low associativity, the number of conflict misses skyrockets. For SpMV, we address this by skewing
the first element of each thread’s piece of the matrix to uniformly spaced cache sets. The heat equation only
has two arrays total, shared by all threads. As a result, each 3D array is padded in the unit stride dimension
to ensure collectively, all the points of the thread’s stencils do not hit the same set. The stencil for LBMHD
touches one point in each of 150 separate 3D grids. As a result, we pad each grid to ensure no points within a
stencil hits the same set.

Capacity misses occur when the desired working set size exceeds the cache capacity per thread. Depending
on how much inherent reuse a kernel has, this will cut the arithmetic intensity in half or more. This can be
devastating on memory bound kernels. Each dataset for each kernel has a different capacity requirement, and
when coupled with the fact that each architecture has a different cache size, it becomes evident that we must
auto-tune each to eliminate as many cache misses as possible. For SpMV, capacity misses occur when the
working set of the source vector is too big. To rectify this, we cache block the matrix [15] into sub-matrices
known not to touch more data than the cache can hold. A similar technique is applied to the heat equation
stencil. Here, to generate solely compulsory misses, we must maintain a working set of 4 planes in the cache.
Thus, we auto-tune the loop structure to implicitly block the 3D grid into columns for which this is true. The
structure of arrays data structure used in LBMHD was explicitly chosen as it is expected to be free of capacity
misses.

5.6. Summary of Techniques
Figure 6 visualizes the three general optimizations — maximizing in-core performance, maximizing memory
bandwidth, and minimizing memory traffic — by overlaying them on the roofline model for a generic machine.
Improving in-core performance is valuable when performance is not bandwidth limited. Conversely, improving
bandwidth or increasing arithmetic intensity is valuable when not limited by in-core performance.
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Figure 6. The three general optimizations associated with the Roofline model. (a) Maximizing in-core
performance is appropriate when performance at a given arithmetic intensity is not bandwidth limited. (b)
Maximizing memory bandwidth is valued on this machine for arithmetic intensities less than 16. (c) Improving
arithmetic intensity by minimizing conflict and capacity misses can significantly improve performance when
bandwidth limited.

6. Performance Results and Analysis
Figure 7(a) shows SpMV(suite median), stencil, and LBMHD performance before and after auto-tuning.
We’ve also explicitly shown the benefits of exploiting architecture or instruction set architecture (ISA) specific
optimizations including SSE for x86 or heterogenity (SPEs) on the Cell blade. On Cell, only the orange,
architecture specific, bar represents code running on the SPEs. All other results were obtained on the
PPEs. Clearly all architectures benefit from auto-tuning on all kernels, however Barcelona gets much of its
performance on stencils and LBMHD from x86 optimized code — perhaps acceptable given the ubiquitous x86
ISA. However, Cell gets almost entirely all of its performance from SIMDized and local store implementations
running on the SPEs. Neither of these would be considered productive. In Figure 8, we overlay kernel
performance onto a roofline model constructed for each architecture. This allows us to visually interpret
the fundamental architectural limitations and their impact on kernel performance. For simplicity, we only
show SpMV for the dense matrix stored in sparse format. Red diamonds denote untuned performance, where
green dots denote auto-tuned performance. The purple regions highlight the expected range of compulsory
arithmetic intensities. Clearly, on most architectures, performance is limited by the sustainable memory
bandwidth (diagonal lines). We should reiterate that both stencils and LBMHD have disproportionally few
multiply instructions. As such, the inherent imbalance between multiplies and adds will limit performance to
50% of peak on all but the SPARC architecture.

A cursory examination of the green bars (out-of-the box pthreads) in Figure 7(a) shows that Clovertown,
Barcelona, and Victoria Falls all deliver comparable un-tuned performance for each kernel. The Cell PPE un-
tuned performance is so poor, we can barely see it at this scale. We also see that the benefits of auto-tuning
(yellow bars) can significantly improve all machines. When using explicitly SIMDized and auto-tuned code on
the cache-based machines, and fully exploiting the heterogeneity of the Cell blade (orange bars), we see that
for most kernels, the Cell SPEs deliver considerably better performance than even Barcelona. However, for
the most computationally intensive kernel, LBMHD, Cell’s weak double precision implementation is now the
bottleneck. Thus, Barcelona has nearly reached parity with Cell.

Simply put, the out-of-the box pthreads code (green bars) represent maximum productivity, while auto-
tuned pthreads (yellow bars) makes a one time sacrifice in productivity for performance portability across most
architectures. The orange bars represent an almost complete loss of productivity in favor of great ISA-specific
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Figure 7. Comparison of performance (left) and power efficiency (right) across architectures and kernels with
increasing optimization. Sustained power was measured under full load with a digital power meter.
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Figure 8. Roofline models for SpMV (top) as well as a combined model (bottom) for both the heat equation
(ArithmeticIntensity ≤ 0.5) and LBMHD (ArithmeticIntensity ≤ 1.0).

auto-tuned performance.
Figure 7(b) shows power efficiency after full optimization. We used a digital power meter to measure

sustained system power and quote it in Table 1. Clearly, Victoria Falls’ high sustained power — 610W
— significantly reduces its power efficiency, while Cell’s relatively low 285W improved its relative power
efficiency.

6.1. Clovertown
Although auto-tuning provided nearly a 3× increase in median performance for SpMV, we see only about a 50%
increase in performance for Stencil and LBMHD. Clovertown has no NUMA issues, has numerous hardware
prefetchers but relatively poor memory bandwidth, and has giant caches with ample associativity and capacity
per thread. As a result, Clovertown started out nearly memory bound, and suffered from few conflict or capacity
misses. Thus, auto-tuning provides relatively little benefit on this architecture for these kernels. When referring
to the roofline models for the Clovertown in Figure 8, we see that Stencil and LBMHD performance seemed to
be pegged to the lower bandwidth diagonal associated with large data sets, while the smaller SpMV problems
reach the higher optimized bandwidth diagonal. The relatively small snoop filter in the memory controller hub



can eliminate the front side bus (FSB) snoop traffic that saps useful bandwidth. Thus, smaller problems will
likely see better bandwidth. In either case, it is clear that Clovertown is heavily memory bandwidth starved. In
fact scalability studies have shown that quad-core is of little value on SpMV, and surprisingly, dual core is of
little value on Stencil and LBMHD. On both Stencil and LBMHD, Clovertown achieves relatively little speedup
from explicit SIMDization.

6.2. Barcelona
Although Barcelona has the same number of cores, sockets and DRAM frequency as Clovertown, we see
considerably better performance after auto-tuning. The Opteron is a dual socket NUMA machine. When
properly managed, this provides significantly more memory bandwidth per core than the FSB used on the
Clovertown. The caches are much smaller making cache blocking a necessity. We also observed that
software prefetching could significantly improve memory bandwidth. When bandwidth is maximized and traffic
minimized, we must also ensure that in-core performance is not the bottleneck. Explicit SIMDization via SSE
intrinsics nearly doubled both LBMHD and Stencil performance. Part of this speedup is from the use of an x86
only cache-bypass instruction, but the other part is from explicitly exploiting the 128b floating point units. As
noted, the order of optimizations in the roofline is based on which is easiest for a compiler to generate. After
explicitly SIMDizing the code, perhaps we should have redrawn the roofline explicitly interchanging SIMD and
ILP. One should be mindful of this optimization as it is difficult for most programmers to SIMDize even small
kernels. As the roofline figure suggests, after auto-tuning, Barcelona is totally memory bound. Auto-tuning
provided between a 2.6× and 5.4× speedup.

6.3. Victoria Falls
Victoria Falls is a heavily multithreaded architecture with relatively small shared caches, and even smaller
working sets per thread — 1KB L1 per thread, 64KB L2 per thread. The more challenging issue is the low
associativity of the caches — 16 way L2 for 64 threads. As a result most of the optimizations that showed
benefit were ones that addressed the 3C’s of caches. Nevertheless, the portable auto-tuned C code for all three
kernels runs better on Victoria Falls than any other architecture despite having the lowest peak floating point
capability. When examining the roofline model, we conclude that Victoria Falls is bandwidth bound for SpMV,
and possibly stencil, but has transitioned to being processor bound for LBMHD. Without accurate performance
counter data we cannot accurately determine the x-coordinates of the dots and diamonds in the roofline figure.
Thus, we cannot conclude with certainty when small changes in arithmetic intensity allow one conclusion or
the other. Auto-tuning provided between a 1.9× and 5.2× speedup.

6.4. Cell Blade (PPEs)
Out-of-the box Cell PPE performance is abysmal on all three kernels. Auto-tuning provided significant
speedups for Stencil and LBMHD — 3.3× and 10× respectively. Nevertheless, using both threads on both
cores delivers far less performance than any other machine. This has serious ramifications as a heterogeneity
version of Amdahl’s law suggests that the vast majority of the code must be amenable to running on the SPEs to
see significant performance speedups. When coupled when the immaturity of the Cell SDK, productivity will
suffer greatly.

6.5. Cell Blade (SPEs)
The 3C’s model is loosely applicable to local store architectures. First, compulsory misses are universal for all
architectures. Second, there are no conflict misses. However, some padding is still required for efficient direct
memory access (DMA) operation in much the same way padding is required for SIMDization. Finally, all
capacity misses must be handled in software. Programs whose working set size exceeds the local store capacity
must be blocked in software. Thus, the program, rather than the hardware, must find all spatial and temporal
locality either when the problem is specified or during execution. The advantage of this approach is that the
arithmetic intensity can be calculated easily and exactly. There is no need for performance counters to cope



with the uncertainty in the number of conflict or capacity misses. Furthermore, the decoupling of DMA from
execution in conjunction with double buffering is a perfect match for the overlapping of communication and
computation found in the Roofline model.

Despite the SPE’s weak double precision implementation, we see that their use of DMA ensures good
memory bandwidth performance coupled with a minimization of memory traffic. As a result, we see more
than a 10× improvement over auto-tuned C code on the PPE. When examining the roofline, we see that SpMV
is totally memory bandwidth bound, although the choice of a minimum register blocking of 2×1 means the
implementation compulsory misses are higher than the algorithmic compulsory misses. Stencil is likely barely
compute bound (remember FMA’s cannot be exploited), while LBMHD is strongly compute bound. Thus one
expects the forthcoming QS22 blades to significantly improve LBMHD performance, slightly improve Stencil
performance, but do nothing for SpMV.

7. Summary and Conclusions
The computing industry is moving rapidly away from exponential scaling of clock frequency toward chip
multiprocessors in order to better manage trade-offs among performance, energy efficiency, and reliability.
Understanding the most effective hardware design choices and code optimizations strategies to enable efficient
utilization of these systems is one of the key open questions facing the computational community today.

In this paper we discussed a set of multicore optimizations for Sparse Matrix Vector Multiplication (SpMV),
the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We
detailed and presented the results of an auto-tuning approach, which employs a code generator that produces
multiple versions of the computational kernels using a set of optimizations with varying parameter settings.
The optimizations include: TLB and cache blocking, loop unrolling, code reordering, software prefetching,
streaming stores, and use of SIMD instructions. The impact of each optimization varies significantly across
architecture and kernel, necessitating a machine-dependent approach to automatic tuning. In addition, our
detailed analysis reveals the performance bottlenecks for each computation on our evaluated system.

Results show that the Cell processor still offers the highest raw performance and power efficiency for these
computations, despite having peak double-precision performance and memory bandwidth that is lower than
many of the other platforms in our study. The key architectural feature of Cell is explicit software control of
data movement between the local store (cache) and main memory. However, this impressive computational
efficiency comes with a high price — a difficult programming environment that is a major departure from
conventional programming. However, much of this work must be duplicated on cache-based architectures to
achieve good performance. Nevertheless, these performance disparities point to the deficiencies of existing
automatically-managed cache hierarchies, even for architectures with sophisticated hardware and software
prefetch capabilities. Thus there is considerable room for improvements in the latency tolerance techniques
of microprocessor core designs.

Our study has demonstrated that — for the evaluated class of algorithms — auto-tuning is essential in
achieving good performance. Moreover, in the highly multithreaded/multicore world, DRAM bandwidth is
the preeminent factor in sustained performance. In this world, there is little need for processor designs that
emphasize high single thread throughput. Rather, high throughput via large numbers of simpler cores is likely
to deliver higher efficiency and vastly simpler implementation. While prior reseach has shown that these design
philosophies offer substantial benefits for peak computational rates [10], our work quantifies that this approach
can offer significant performance benefits on real scientific applications.

Overall the auto-tuned codes achieved sustained superscalar performance that is substantially higher than
any published results to date, with speedups often in excess of 5× relative to the original code. Auto-tuning
amortizes tuning effort across machines by building software to generate tuned code and using computer
time rather than human time to search over versions. It can alleviate some of compilation problems with
rapidly-changing microarchitectures, since the code generator can produce compiler-friendly versions and can
incorporate small amounts of compiler- or machine-specific code. We therefore believe that auto-tuning will be
an important tool in making use of multicore-based HPC systems of the future.



Finally, we analyzed the performance using the roofline model. The roofline makes it clear which
architectural paradigms must be exploited to improve performance. Fraction of peak raw bandwidth or flops
is an inappropriate metric of performance. The Roofline model presents realistic ceilings to performance.
After auto-tuning is applied to the kernels we see that performance is very near the roofline ceilings of each
architecture despite potentially low percent of peak raw flop or bandwidth numbers.

Future work will continue exploring auto-tuning optimization strategies for important numerical kernels on
the latest generation of multicore systems, while making these tuning packages publicly available. We hope the
roofline model will provide an architecture specific optimization search path that will significantly reduce the
time required for auto-tuning.
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