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DEEP LEARNING-BASED MODULATION CLASSIFICATION FOR OFDM SYSTEMS
WITHOUT SYMBOL-LEVEL SYNCHRONIZATION

Byungjun Kim∗, Venkatesh Sathyanarayanan∗, Christoph Mecklenbräuker=, Peter Gerstoft∗

*University of California, San Diego, La Jolla, CA, USA. =TU Wien, Vienna, Austria

ABSTRACT

Deep learning (DL)-based modulation classification of inco-
herently received orthogonal frequency division multiplexing
(OFDM) signals is studied. We propose a novel preprocess-
ing algorithm to build features characterizing the modulation
of OFDM signals, which are insensitive to synchronization
error. With obtained features, pilot subcarrier indices used for
CFO correction may also be estimated. The features obtained
with the proposed algorithm are classified with a convolu-
tional neural network (CNN)-based classifier. We have evalu-
ated classification performance with simulated and hardware-
generated data. Using these features, the modulation classi-
fier outperforms existing DL-based classifiers which assume
symbol-level synchronization with up to 25% classification
accuracy performance gain.

Index Terms— Modulation Classification, Deep Learn-
ing, OFDM

1. INTRODUCTION

Deep learning (DL) has drawn lots of interest in wireless
communications including spectrum sensing [1], channel
coding [2], and channel prediction [3]. Complex scenario-by-
scenario analysis in wireless communication studies become
unnecessary by deploying DL. Recognizing modulation is
crucial in spectrum sensing to perceive transmission types.
By recognizing modulation with DL, a spectrum sensing de-
tector can obtain essential transmission information without
complex signal processing [4].

Orthogonal frequency division multiplexing (OFDM) is
widely used in wireless communication protocols like Wi-Fi
and 5G. In OFDM signals, message bits are modulated to dig-
ital symbols with modulation such as QPSK and the symbols
are carried in data subcarriers. To recognize transmission type
precisely, the modulation of OFDM signals should be deter-
mined. However, the modulation classifier for single-carrier
signals [5, 6] cannot be directly applied to OFDM signals due
to the OFDM structure. Each transmitted OFDM time sample
contains partial information about multiple symbols stacked
in the frequency domain. Due to this property, received time-
domain IQ samples do not explicitly feature modulation of
OFDM signals. Therefore, additional processing is required
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Fig. 1: Generation of OFDM: (a) Conversion of frequency
domain symbols to signal samples in time domain and (b)
Insertion of CP and sampling sequences.

than taking raw time IQ samples as an input for proper mod-
ulation classification of OFDM signals.

Different from generic OFDM transmission, spectrum
sensing detectors should estimate modulation without de-
tecting preamble. In a Wi-Fi system, preamble makes a
receiver (Rx) synchronize with a transmitter (Tx) as well as
notifies modulation being used [7]. Thus, for spectrum sens-
ing, OFDM modulation classification needs to be addressed
without the assumption of symbol-level synchronization.

In this paper, we propose a novel preprocessing algorithm
to build a modulation feature robust to synchronization error,
which can be caused by the Rx not knowing exactly when an
OFDM symbol starts. Though there have been many efforts to
classify modulation of OFDM signals [8], this is the first work
to classify modulation of OFDM signals without symbol-level
synchronization using DL. We verify that a CNN-based clas-
sifier which takes the proposed feature as an input outper-
forms existing work assuming symbol-level synchronization
between a Tx and an Rx. The evaluation has been done with
two datasets including hardware-generated data.

The procedure by which OFDM signals are generated is
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illustrated in Fig. 1. The parameters in Fig. 1 are from non-
high throughput (non-HT) mode OFDM-based Wi-Fi. Fig. 1a
describes how time samples carry the information. IFFT is
taken over 64 symbols, which consist of 48 data symbols,
4 symbols on pilot subcarriers, and 12 inactive symbols on
null subcarriers. Pilot subcarriers are used to estimate resid-
ual CFO and sampling rate offset (SRO) [9]. Symbols in
OFDM are included in the frequency domain, therefore iden-
tifying modulation features from time samples is not straight-
forward. The CP is appended to the time sequence generated
with IFFT, see Fig. 1b. In OFDM systems, the last NCP time
samples are copied just before the IFFT sequence to prevent
Rx from inter-symbol interference.

CFO occurs when the local oscillator (LO) in the Rx does
not synchronize with the carrier in the received signal. This
phenomenon has two main causes: frequency mismatch be-
tween the Tx and the Rx oscillators and time-variance of the
communication channel, e.g. due to Doppler effects. In the
presence of CFO, the signal demodulated from the carrier fre-
quency, y[n] is related with x[n] as

y[n] =
(
x[n]ej2πfcnTs

)
e−j(2π(fc+∆fc)nTs) (1)

= x[n]e−j(2π∆fcnTs), (2)

where Ts, fc, and ∆fc denote sampling period, Tx carrier fre-
quency and deviation of Rx carrier frequency from fc. With
constant ∆fc, CFO causes a phase drift which varies linearly
over time. In protocol-compliant transmission, ∆fc is esti-
mated using preambles and pilot subcarriers.

2. PROPOSED ALGORITHM

Fig. 1b illustrates the scenario where we sample the se-
quences. Sequences of length N , the number of subcarriers,
are sampled, so they might be contained in a single OFDM
symbol (sampled sequence #1) or spans two OFDM symbols
(sampled sequence #2). The term OFDM symbol denotes
a sequence composed of an IFFT sequence and a CP, and a
symbol means a complex number used to carry bits.

The motivating observation for our proposed algorithm is
that if a sampled time-domain sequence is contained in a sin-
gle OFDM symbol, the FFT of that sequence gives the orig-
inal symbols with phase drift scaling linearly with subcarrier
index k

Y i
∆ts [k] ≜ F

(
yi[n−∆ts]

)
=

N−1∑
n=0

yi[n−∆ts]e
−j2πnk/N

= Y i[k]e−j2π∆tsk/N ,
(3)

where Y i[k] denotes the received symbol in subcarrier k of
the ith OFDM symbol, yi[n] the received time-domain IFFT
sequence of the ith OFDM symbol, and ∆ts the real-valued
time difference measured in time sample unit between an
IFFT sequence and a sampled sequence. Input of yi[n] ranges

over n ∈ [−NCP , N − 1] and yi[n] where n ∈ [−NCP ,−1]
corresponds to CP. Equation (3) shows that synchroniza-
tion error ∆ts causes phase drift proportional to ∆ts and k.
To deploy this property in building a feature characterizing
modulation, two objectives should be addressed: sampling a
sequence contained in a single OFDM symbol and removing
the phase drift caused by synchronization error.

2.1. Modulation feature extraction

Due to CP, the sequences are repeated at both ends of the
symbols in every OFDM symbol. Since both the length of
and the distance between repeated sequences are known1, the
position of CP can be found using the autocorrelation,

Ryy(n,N) = 1
NCP

∑NCP−1
i=0 y[n+ i]y∗[n+ i+N ], (4)

which has peaks when n is the first index of CP. To find a
peak, we find a sample whose amplitude is larger than both
adjacent samples and the minimum distance between two ad-
jacent peaks is set to 90% of OFDM symbol duration, 72-time
sample indices. In the sampled sequence, from the remainders
of acquired peak-indices divided by OFDM symbol duration,
80, we determine the mode among those remainders as the
first index of OFDM symbol, denoted as p.

Due to noise and varying amplitudes of time samples,
the estimated CP position might not be accurate. However,
our objective is not to find the exact first time sample of
the OFDM symbol, but the sequence contained in a sin-
gle OFDM symbol. Therefore, by sampling the sequence
{y[p+NCP /2], y[p+NCP /2 + 1], . . . , y[p+NCP /2 +N − 1]},
we can sample sequences contained in a single OFDM sym-
bol even though there is a minor error in finding first index of
an OFDM symbol.

We have shown that Y i
∆ts

[k] is Y i[k] with phase drift and
the amplitude of Y i

∆ts
[k] is the same with that of Y i[k]. To re-

move e−j2π∆tsk/N term in (3), phase differences between the
same subcarrier symbols in two consecutive symbol duration
are deployed as

∆∠Y i
∆ts

[k] ≜ ∠Y i+1
∆ts

[k]− ∠Y i
∆ts

[k]

= ∠
{
Y i+1[k]e−j2π∆tsk/N

}
− ∠

{
Y i[k]e−j2π∆tsk/N

}
= ∠Y i+1[k]− ∠Y i[k].

(5)

Equation (5) shows that the phase differences between the
same subcarrier symbols from sampled sequences are the
same as the differences from the received IFFT sequences.
Despite the unknown exact ∆ts value, sequences with the
same ∆ts can be sampled by setting an interval between
starting index of two sample sequences as one OFDM sym-
bol. |Y∆ts [k]|ej∆∠Y i

∆ts
[k] is used as a feature specifying

modulation type. In addition, the null subcarrier symbols are

1It is assumed that the OFDM parameters are known to the classifier. We
leave the estimation of those parameters for future work.



Table 1: DL parameters

Batch size 32 Loss Cross-entropy
Learning rate 5 · 10−5 Epochs 200

removed by detaching symbols with Nnull smallest ampli-
tudes. Both cases have been evaluated: with and without null
subcarrier symbols.

2.2. CFO correction

To estimate CFO without symbol-level synchronization, we
need to use pilot subcarriers as in residual CFO estimation [9]
because the preamble is not accessible. To estimate pilot sub-
carrier indices without a preamble, we use the property that
the identical symbols are repeatedly transmitted in pilot sub-
carriers. The CFO-induced phase difference of pilot subcar-
rier symbols for adjacent OFDM symbols, ∆∠Y i

∆ts
[k] is

Y i
∆ts

[k] =
∑N−1

n=0 yi[n]e−j2πk(n+∆ts)/N

=
∑N−1

n=0

(
xi[n]e−j(2π∆fc(n+(i−1)(N+NCP ))Ts)

)
e−j2πk(n+∆ts)/N

= Xi[k +∆fc(N +NCP )Ts]e
−j(2π(∆fc(i−1)(N+NCP )Ts+k∆ts/N)

≈ Xi[k]e−j2π(∆fc(i−1)(N+NCP )Ts+k∆ts/N)

⇒ ∆∠Y i
∆ts

[kp] = −2π∆fc(N +NCP )Ts ,
(6)

where kp denotes the subcarrier index of pilot subcarriers.
For a Wi-Fi link operating at fc = 5GHz and a frequency

tolerance of 1 ppm for commercial-off-the-shelf temperature-
compensated crystal oscillators (TXCO) [10] on both sides of
the link, the worst-case CFO is ∆fc = 2fc · 10−6 = 10 kHz.
The CFO-induced angular error on ∆∠Y i

∆ts
[kp] due to CFO

at ±10 kHz is upper bounded by 104 · 80/(20 · 106) · 360◦ ≈
14.4◦. Using those values, Xi[k + ∆fc(N + NCP )Ts] is
approximated to Xi[k] since the worst case ∆fc(N+NCP )Ts

is 0.04, which is much smaller than one, the minimum unit of
k. This only works for pilot subcarrier symbols since data
subcarrier symbols change randomly with the data bits.

Using the pilot subcarriers’ property, CFO is estimated
with pilot subcarriers:

∆∠Y i
∆ts

[k] = −2π∆fc(N +NCP )Ts

⇒ ∆fc = −∆∠Y i
∆ts

[k]/(2π(N +NCP )Ts)
(7)

We consider CFO as the average of ∆fc from (7) evalu-
ated at null subcarriers. To correct CFO effect, we multi-
ply time samples y[n] by the term, e2π∆fcnTs where n =
{0, 1, 2, · · · }, which is negative of the phase caused by CFO.

2.3. Convolutional neural network

Fig. 2 and Table 1 describe the overall structure of the DL
model for the classifier, which is based on CNN. We use four
convolutional layers followed by three fully-connected (FC)
layers with ReLU as an activation function. Kernel size and
stride of each max pooling layer are adaptively chosen by the
output shape of each layer. Input is normalized so that the
average amplitude of each input subcarrier sample is 1.

Table 2: Data generation parameters

Bandwidth 20 MHz
Carrier frequency 2.4 GHz
SNR [2, 20] dB in steps of 2 dB
{N,NCP } {64, 16}

Input shape
Proposed feature: 2 · (64/52) · 20
Time IQ: 2 · 1600
STFT feature: 2 · 5 · 512

3. EVALUATION

3.1. Evaluation Environments
Simulated and over-the-air (OTA) data are employed in our
evaluation with parameters in Table 2 corresponding to Non-
HT mode 20 MHz bandwidth Wi-Fi. OTA data are generated
with two N310 USRP in OTA transmission settings, see in
Fig. 3. The distance between Tx and Rx is 8.84 m. For simu-
lated data, AWGN is utilized as a channel.

One classifier input requires 1600+80+80 samples. The
first additional 80 samples are needed since the starting index
of an OFDM symbol is unknown. We sample 1680 samples
starting from index is ∈ [0, N − 1], deploying the procedure
in Sec. 2. One more OFDM symbol corresponding to the next
80 samples is needed since phase differences between OFDM
symbols are used as our features.

For comparison schemes, using raw time IQ samples and
complex STFT features as inputs are evaluated. For a fair
comparison, the same number of OFDM symbols is used for
both inputs. Time IQ samples use 1600 time samples so that
the input dimension is 2 · 1600 (a channel for both real and
imaginary). For STFT features, FFT size = 512 and frame
overlapping = 50% are deployed as FFT parameters.

3.2. Evaluation results

Fig. 4 shows the classification accuracy performance with
simulated data. In every SNR, the proposed feature outper-
forms the time IQ and STFT feature regardless of symbol-
level synchronization. Since the number of modulation
classes is four, 25% accuracy achieved with time IQ and
STFT without symbol-level synchronization corresponds to
that of the uninformed random classifier. Removing the null
subcarriers increases classification performance in every case.
At 20 dB SNR, it is increased from 89% to 99% by deleting
null subcarriers. Both accuracies are higher at 20 dB SNR
than the 87% and 79% achieved by [11, 12], both assume
symbol-level synchronization and test on simulated data.

Fig. 3b illustrates the accuracy of correctly choosing the
first index with the method in Sec. 2 with error, ϵ. The accu-
racy means that the estimated first sample is at most ϵ time
samples away from the ground-truth. In Fig. 3b, accuracy
to find the exact first time sample of an OFDM symbol is
below 60% at 20 dB SNR, but accuracy accepting at most
NCP /2 = 8 time samples error is 95% at 2 dB SNR. The
sampling method in Sec. 2 lets a sequence contained in a sin-
gle OFDM symbol reliably sampled even at low SNR.



Fig. 2: CNN-based modulation classifier structure.
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Fig. 3: (a) The evaluation environment map and (b) Accuracy
for choosing the first index of CP with acceptable error ϵ.
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Fig. 4: Test accuracy vs. test data SNR with simulated data.

The proposed algorithm outperforms the case where time
IQ samples or STFT features are used on OTA data as well
as removing the null subcarrier improves the performance. In
particular, at 2 dB SNR and 20 dB SNR, test accuracy is im-
proved from 53 to 59% and 85 to 99%, respectively. Compar-
ing Fig. 5a and Fig. 5c, removing null subcarrier makes the
features of 16QAM and 64QAM more distinct at high SNR.

4. RELATED WORK
Many have built DL-based modulation classifier for OFDM
signals [11–18] and all of [11–18] have achieved at least
75% classification accuracy at 20 dB SNR. However, none of
the studies [11–18] has done the evaluation with hardware-
generated data. The algorithm in [13] deploys correlation
both within a symbol and among different symbols, thus the
classifier knows the exact first indices of OFDM symbols;
i.e., symbol-level synchronization. Modulation classifiers
has been implemented based on CNN [11, 14, 15] or long
short term memory network (LSTM) [12] all with over 80%
classification accuracy at 20 dB SNR. Their input comprises
time samples for two OFDM symbols after removing CP,
which requires the classifier synchronized at the symbol-

(a) (b)

(c) (d)

Fig. 5: Confusion matrices for classification results with OTA
data: (a) 20 dB SNR with null subcarrier, (b) 2 dB SNR with
null subcarrier, (c) 20 dB SNR after removing null subcarrier,
and (d) 2 dB SNR after removing null subcarrier.

level. Modulation classifiers in [17, 18] take signals after
removing cyclic prefix (CP) and using FFT as an input.
Therefore, it is assumed that the classifier is synchronized at
the symbol-level. The work in [16] studies modulation clas-
sification under multipath channel, but only deals with the
single-carrier signals. The authors of [19] classify wireless
signals, but recognizes wireless protocols, not modulations.

There are papers on OFDM modulation classification
without symbol-level synchronization based on mathematical
modeling [20, 21] without using DL. However, their classifier
structure depends on the modulation set, so the structure must
be redesigned when classifying signals with a modulation not
in the set [20, 21]. Their algorithms [20, 21] can identify
OQPSK and MSK, but neither of their evaluations includes
high-order QAM like 64QAM, used in practical Wi-Fi.

5. CONCLUSION
OFDM modulation classification is addressed without symbol-
level synchronization. We propose a preprocessing for ex-
tracting features invariant to synchronization error. Fine-
grained preprocessing include the estimated CP position and
CFO correction. The proposed CNN-based classifier based
on those features classifies the modulation of OFDM in eval-
uations with simulated and hardware-generated data with
maximum 99% classification accuracy at 20 dB SNR. Best
test accuracy is achieved by the proposed CNN-based classi-
fier with null subcarrier removal.
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