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ABSTRACT OF THE THESIS 

 

Subcellular Resolution Imaging of Lipid and Protein Metabolism in Cancer Cells Regulated 
with Amino Acids 

 
by 

Pegah Bagheri 

Master of Science in Bioengineering 

University of California San Diego, 2022 

Professor Lingyan Shi, Chair 
 

 

Macromolecules, such as lipids and proteins, are key players in metabolic pathways 

related to cancer diseases. The synthesis of these macromolecules is related to the levels of 

amino acids in cells. Both essential and nonessential amino acids are considered to affect cancer 

cell survival and growth. Optical techniques that are both high resolution and non-destructive 

on the sample can aid in the understanding of metabolic changes in cancer cells. The objectives 

of this thesis are to provide insights into the effects of aromatic amino acids and nonessential 

amino acid (serine) on metabolic activities in cancer cells, by using  Raman scattering 

microscopy for in situ subcellular imaging. The first chapter of this thesis presents a study on 

the influence of aromatic amino acids on lipid and protein metabolism in cancer cells using 

deuterium-oxide probed stimulated Raman scattering (SRS) and two-photon fluorescence 
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microscopy. The second chapter presents work investigating the effects of the nonessential 

amino acid (serine) on lipid and protein metabolism in cancer cells using SRS imaging. The 

data and results presented in this thesis provide insights into the implications of essential and 

nonessential amino acids manipulations in cancer metabolism and application of Raman 

imaging techniques as a potential early diagnostic tool for cancers.  
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INTRODUCTION   

Understanding how cancer metabolism is affected has become a progressing topic that 

continues to influence the field of oncology. Typically, the focus of cancer metabolism lies in the 

central carbon metabolism such as the tricarboxylic acid cycle and glycolysis; however, new 

studies are emerging on the importance of amino acids impact on cancer metabolism (Lieu, 

Nguyen et al. 2020). Amino acids are organic compounds that are essential for homeostatic 

maintenance, redox balance, and energetic regulation (Takahara, Amemiya et al. 2020, Wei, Liu 

et al. 2020). They can either be synthesized in the body where these amino acids are considered to 

be nonessential, or obtained through the diet that are known as essential amino acids. Indeed, 

amino acids have shown to produce byproducts, such as lipids and proteins, and recent research 

has demonstrated the relevance of lipid and protein metabolism in cancer progression (Pavlova 

and Thompson 2016, Maddocks, Athineos et al. 2017, Mossmann, Park et al. 2018, Lieu, Nguyen 

et al. 2020, Takahara, Amemiya et al. 2020, Wei, Liu et al. 2020). It is important to analyze lipids 

in various scales in cancer cells and have the ability to image them in situ. Imaging is a fundamental 

tool in lipid studies that can provide essential information on cells without damaging or requiring 

too much sample preparation time. Being able to diagnose such metabolic changes in early cancer 

stages can allude to higher rate of cancer treatment and patient survival.  

Many imaging techniques have the capability to observe small molecules that are usually 

based on fluorescence microscopy with the use of exogenous chemical probes. Mass spectrometry 

(MS)-based methods, gas chromatography (GC), or matrix-assisted laser desorption/ionization 

(MALDI)-MS imaging are examples of common analytical and imaging approaches for lipidomic 

studies (Murphy, Hankin et al. 2009, Pirman, Efuet et al. 2013, Di Gialleonardo, Wilson et al. 

2016, Bowman, Bogie et al. 2020, Li, Cheng et al. 2021). However, these processes require either 
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long sample preparation time that can be destructive to cells, or fluorescent dyes that can disturb 

the molecular cell activities or have low spatial resolution. It is clear that there are many 

challenging aspects in these standard tools.  

High-resolution, non-invasive optical techniques such as Raman scattering microscopy has 

emerged in the past decade for subcellular imaging in cells, tissues, and animals in situ (Fung and 

Shi 2020). The specific type of molecular bonds has a frequency of vibration correlated where the 

vibration of intensity can be recorded in the spectrum, and molecular bonds can be identified (Min, 

Freudiger et al. 2011). The Raman shift, which is generated from the energy difference between 

the incident and scattered light, is reflected by the vibrations of the molecular bonds’ energy 

requirements (Min, Freudiger et al. 2011, Fung and Shi 2020). The high intensity shown in a 

spectrum at a particular frequency demonstrates a particular molecular bond.  

Raman spectroscopy and microscopy are originally label-free, without the need of dyes or 

toxic labels (Shi, Shen et al. 2018, Shi, Zheng et al. 2018, Li, Zhang et al. 2021, Li, Bagheri et al. 

2022). Studies have indicated metabolites related to lipid and protein metabolism in cancer are 

dependent on amino acids and have demonstrated connections between cancer progression and 

lipid and protein metabolism (Galbraith and Buse 1981, Pavlova and Thompson 2016, Gao, Lee 

et al. 2018). Raman spectroscopy and stimulated Raman scattering microscopy, coupled with 

heavy water (D2O) probing, can visualize metabolic dynamics of biomolecules such as lipids, 

proteins, and DNA in cells (Shi, Shen et al. 2018, Shi, Zheng et al. 2018, Li, Zhang et al. 2021, Li, 

Bagheri et al. 2022). This imaging method can essentially detect newly-synthesized 

macromolecules, such as lipids and proteins,  for understanding how changes in amino acids 

influence the turnover of these macromolecules in cancer cells. The objective of this thesis is to 

provide insights into the lipid and protein metabolism in cancer cells regulated with both essential 
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and nonessential amino acids using non-destructive imaging techniques: the spontaneous Raman 

spectroscopy, stimulated Raman scattering (SRS) microscopy, and two-photon excitation 

fluorescence (2PEF) microscopy.  

The first chapter examines the effects of aromatic amino acids on lipid metabolism in HeLa 

cells using SRS and 2PEF imaging methods. We evaluated the hypothesis that excess aromatic 

amino acids, specifically phenylalanine and tryptophan, will upregulate lipid synthesis and induce 

mitochondrial damage, ultimately resulting in the accumulation of reactive oxygen species (ROS). 

By adding 15x phenylalanine and tryptophan to cell culture media, we investigated the relationship 

between the need of essential amino acids and cancer cell growth and survival using deuterium-

oxide probed SRS (DO-SRS) imaging. The data presented in this chapter provide insight into how 

specific phenotypes and even minimal changes in cell metabolic activities can be used as potential 

indicators for early diagnostic methods for cancer and other closely related diseases. The study 

demonstrates the useful applications of DO-SRS and 2PEF microscopy to visualize in vitro 

changes with high resolution and without the need of labeling dyes, which can be translated to the 

optimization of current diagnostic tools used for diseases like cancer and neurodegeneration.  

The second chapter investigates the effects of the nonessential amino acid (serine) on 

cancer cell metabolism, particularly lipid and protein metabolism, using DO-SRS and label-free 

SRS techniques. The results from this study have clinical implications on the changes in de novo 

lipid and protein synthesis when minimal and excess exogenous serine is added to cell culture 

media. An upregulation of serine correlates with an increase in lipogenesis and protein synthesis, 

implicating cancer cell growth and survival. When serine was deprived from cells, the lipid and 

protein metabolism experienced opposite effects compared to a surplus of serine, indicating that 

lack of serine can lead to accumulation of ROS and even cell death. Previous evidence has 
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indicated that tumors cannot acquire a viable amount of serine from their environment, and our 

study proved that varying serine concentration can influence the cell metabolism greatly in a very 

short time period. Raman and DO-SRS imaging techniques demonstrated that biomolecules, such 

as lipids and proteins, can be critical indicators to measure disease progression. Moreover, these 

potential methods allow us to observe and understand how amino acids, both essential and 

nonessential, can directly change the cell’s metabolic activity, unraveling how lipids and proteins 

are influenced in a disease state.   
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CHAPTER 1. VISUALIZING CANCER CELL METABOLIC DYNAMICS REGULATED 

WITH AROMATIC AMINO ACIDS USING DO-SRS AND 2PEF MICROSCOPY 

 
Abstract: Oxidative imbalance plays an essential role in the progression of many diseases 

that include cancer and neurodegenerative diseases (Moneim 2015, Saha, Lee et al. 2017). 

Aromatic amino acids (AAA) such as phenylalanine and tryptophan have the capability of 

escalating oxidative stress because of their involvement in the production of Reactive Oxygen 

Species (ROS) (Kimura and Watanabe 2016). Here, we use D2O (heavy water) probed stimulated 

Raman scattering microscopy (DO-SRS) and two Photon Excitation Fluorescence (2PEF) 

microscopy as a multimodal imaging approach to visualize metabolic changes in HeLa cells under 

excess AAA such as phenylalanine or trytophan in culture media. The cellular spatial distribution 

of de novo lipogenesis, new protein synthesis, NADH, Flavin, unsaturated lipids, and saturated 

lipid were all imaged and quantified in this experiment. Our studies reveal ~10% increase in de 

novo lipogenesis and the ratio of NADH to flavin, and ~50% increase of the ratio of unsaturated 

lipids to saturated lipid in cells treated with excess phenylalanine or trytophan. In contrast, these 

cells exhibited a decrease in the protein synthesis rate by ~10% under these AAA treatments. The 

cellular metabolic activities of these biomolecules are indicators of elevated oxidative stress and 

mitochondrial dysfunction. Furthermore, 3D reconstruction images of lipid droplets were acquired 

and quantified to observe their spatial distribution around cells’ nuceli under different AAA culture 

media. We observed a higher proportion of lipid droplets in excess AAA conditions. Our study 

showcases that DO-SRS imaging can be used to quantitatively study how excess AAA regulates 

metabolic activities of cells with subcellular resolution in situ.  

1.1 Introduction 
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The aromatic amino acids (AAA), L-phenylalanine and L-tryptophan, are essential for 

protein synthesis (Parthasarathy, Cross et al. 2018), serve as functional components in the 

regulation of many metabolic pathways (Wu 2013) with implications in diseases such as cancer 

(Cheng, Zhuo et al. 2019, Ma, Chen et al. 2021). AAAs can be critical intermediates that connect 

nucleotide, glucose, and lipid metabolism (Wei, Liu et al. 2020), but may also serve as energy 

sources for proliferating cancer cells. Oxidative imbalance and stress also play essential roles in 

the progression of cancer (Moneim 2015, Saha, Lee et al. 2017). For instance, an increased 

oxidative stress is a characteristic in the aging process, and continued oxidative stress can induce 

chronic inflammation that leads to cancer (Reuter, Gupta et al. 2010). Therefore, the regulation of 

AAAs has the potential to amplify oxidative stress during the onset and progression of diseases. 

This is because excess AAA, such as phenylalanine and tryptophan, can induce the production of 

Reactive Oxygen Species (ROS) by activating the mammalian target of rapamycin (mTOR) and 

promoting oxygen consumption and mitochondrial metabolism (Saxton and Sabatini 2017, 

Mossmann, Park et al. 2018) (Wang, Ji et al. 2015). In addition, mechanistic target of rapamycin 

complex 1 (mTORC1) becomes specifically activated with excess AAA while the AMP-activated 

protein kinase (AMPK) is inhibited (Chiacchiera and Simone 2009, Thiem, Pierce et al. 2013, 

Vadlakonda, Dash et al. 2013, Zhao, Hu et al. 2017). Cell growth and metabolism rely on mTORC1 

as a critical regulator through the modulation of lipid and protein synthesis, autophagy, and 

biogenesis (Takahara, Amemiya et al. 2020). Dysregulation of mTORC1 and related enzymes such 

as AMPK is associated with diseases such as cancer and neurodegenerative disorders (Blommaart, 

Luiken et al. 1995, Sengupta, Peterson et al. 2010, Saxton and Sabatini 2017, Takahara, Amemiya 

et al. 2020). AMPK maintains the production and consumption of ATP in eukaryotic cells (Rossi, 

Redaelli et al. 2018) and is critical for the transcription factors TFEB and TFE3 activity (Hardie 
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2007). Its inhibition blocks the targeting gene associated with autophagy-lysosome and accounts 

for the accumulation of lipid species (Figure 1.1). With the failure of autophagy and lipophagy 

initiation, an accumulation of lipid droplets (LDs) and increase in ROS within cells can perhaps 

be observed and quantified. Ultimately, these altered metabolic activities can contribute to 

mitochondrial dysfunctions that lead to the production of malignant precursors from healthy cells 

(Porporato, Filigheddu et al. 2018). Furthermore, LDs are a distinctive feature of cellular stress 

and oxidative stress can lead to LD accumulation (Khatchadourian, Bourque et al. 2012, Younce 

and Kolattukudy 2012, Lee, Zhang et al. 2013). Dysfunctional mitochondria is characteristic of 

cancer progression (de la Cruz López, Toledo Guzmán et al. 2019), and the upregulation of 

mTORC1 is implicated in the lipid metabolism of mitochondria. Due to the lack of non-invasive, 

label-free imaging methods, the role of AAA, specfically phenylalanine and trytophan, in cellular 

metabolism such as lipid synthesis and protein synthesis is unclear. 
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Figure 1.1. Illustration of how excess amino acids upregulate the mTORC1 pathway in cells.  
mTOR is a key regulator of lipid metabolism. With higher available nutrients, such as Phe 
(Phenylalanine) and Tryp (Tryptophan), mTORC1 is active and AMPK becomes inactive. 
mTOR inhibits the transcription factors, that include TFEB and TFE3, to block the targeting of 
transcriptional genes associated with the autophagy-lysosome (Chiacchiera and Simone 2009, 
Thiem, Pierce et al. 2013, Vadlakonda, Dash et al. 2013, Zhao, Hu et al. 2017). This ultimately 
results in lack of autophagy and start of lipophagy leading to an increase in lipid droplet 
accumulation and ROS. The increase in oxidative stress results in the dysfunction of the 
mitochondria and ER stress (Zhang, Evans et al. 2018, Paquette, El-Houjeiri et al. 2021, Ralhan, 
Chang et al. 2021). Abbreviations: (AMPK), mechanistic target of Rapamycin complex 1 
(mTORC1), (TFEB), (TFE3) 
 

AAA studies usually rely on gas chromatography (GC) and/or mass spectroscopy (MS)-

based imaging techniques to study lipids (Li, Cheng et al. 2021). Electrospray ionization (ESI)-

MS has also been used to study how fatty acids quantitively change with AAA supplementation 

(Ma, Chen et al. 2021); however, these imaging technologies lack the ability to show the lipids’ 

spatial distribution in cells. Other methods, such fluorescence microscopy or magnetic resonance 

imaging (MRI), require fluorescent dyes or simply have limited spatial resolution. Moreover, the 
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required dyes for some of these techniques can potentially interfere with molecular activities 

happening within the cells (Di Gialleonardo, Wilson et al. 2016). On the other hand, matrix-

assisted laser desorption/ionization (MALDI) has been made used to study how biomarkers can 

regulate fatty acid metabolism in cancer cells without affecting native distributions (Pirman, Efuet 

et al. 2013), but suffers from relatively shallow imaging depths, and poorer spatial resolution 

despite the additional sample preparation (Murphy, Hankin et al. 2009, Bowman, Bogie et al. 

2020). Atomic force microscopy is another powerful technique that can be used to observe lipid 

formation; however, it is difficult to study the miscibility of multiple lipids (Wang, Shogomori et 

al. 2012).  

Raman spectroscopy and microscopy are relatively new optical techniques that are rapidly 

outpacing other molecule-specific imaging methods and excels in high resolution and chemical 

specificity outputs in biological samples (Ghita, Pascut et al. 2012, Daudon 2016, Ember, Hoeve 

et al. 2017). This study makes use of Deuteriun-Oxide Stimulated Raman Scattering (DO-SRS) 

for the subcellular analysis of the AAAs regulated metabolic dynamics for molecular signatures 

including newly synthesized proteins and lipids non-invasively with minimal sample preparations. 

Heavy water was added to the cell culture media because the deuterium could be enzymatically 

included into proteins and lipids through de novo biosynthesis. Therefore, metabolic activities can 

be closely observed using this technique coupled with DO-SRS microscopy (Figure 1.2A). Figure 

1.2B displays a typical Raman spectrum that can be obtained by our Raman spectroscopy using 

D2O media. Thousands of variables and their multiplexed patterns can be analyzed using a spectral 

resolution of 1.2 cm-1 and a range from 400 cm-1 to 3200 cm-1. The Raman peaks that display the 

strongest patterns, in terms of different intensities and positions, are then selected to be imaged 

with the DO-SRS microscopy to visualize the spatial distributions of these molecules within the 
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cell. The output of these techniques is a hyperspectral image (HSI), where an optical focus plane 

is captured at different Raman shifts. The slice for the HSI displays the areas in which the specific 

molecular bonds exist, and pixel intensities are directly proportional to these molecular bonds’ 

concentrations (Shi, Zheng et al. 2018). Furthermore, Two Photon Excited Fluorescence (2PEF) 

microscopy is coupled with DO-SRS to provide additional information of flavin and nicotinamide 

adenine dinucleotide (NADH) pools in the same region of interest. Flavin and NADH 

autofluorescence have been associated with redox homeostasis in cells and can imply lipid 

peroxidation status as well (Mayevsky and Barbiro-Michaely 2009, Surre, Saint-Ruf et al. 2018). 

Thus, using both DO-SRS and 2PEF methods will allow us to visualize the metabolic dynamics 

of cells when AAAs are being regulated. 

In this study, we utilized DO-SRS microscopy coupled with 2PEF microscopy to observe 

the metabolic activities of lipids and proteins in cancer cells and investigate the effects of AAA on 

LD metabolism in HeLa cells. Quantitative lipid turnover rates of different experimental 

conditions help illuminate how lipid metabolism can be affected with the regulation of 

phenylalanine and tryptophan. The outcomes support AAAs as targets for the accumulation of LDs 

and ROS.  

1.2 Materials and Methods 

1.2.1 Cell Culture 

HeLa cells were cultured in Dulbecco’s modified Eagles’ medium (DMEM), supplemented 

with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (Fisher Scientific, Waltham, 

MA), and incubated with 5% CO2 at 37°C. After passaging at 80% confluence, cells were seeded 

at a concentration of /mL onto a 24-well plate. DMEM with 0.5% FBS and 1% 2 × 105
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penicillin/streptomycin was used to synchronize the cells for 8 hours. The media was then changed 

to 50% (v/v) heavy water (D2O) and treatment media as described below.  

For the excess aromatic amino acids condition, phenylalanine and tryptophan were 

increased as two separate test conditions at a 15x concentration. L-phenylalanine powder 

(SLCF3873, Sigma Aldrich) and L-tryptophan powder (SLCF2559, Sigma Aldrich) were added 

to DMEM for the excess groups. Cells were then incubated for 36 hours and fixed on microscope 

slides afterwards. Next, the cells were gently rinsed with 1x PBS with Calcium and Magnesium 

ions at 37°C (Fisher Scientific, 14040216), and fixed in 4% methanol-free PFA solution (VWR, 

15713-S) for 15 minutes. The cover glass was finally mounted on the cleaned 1mm thick glass 

microscope slides with 120 µm spacers filled with 1x PBS for imaging and spectroscopy. These 

samples are stored at 4°C when not in use.  

1.2.2 Spontaneous Raman Spectroscopy  

A confocal Raman microscope (XploRA PLUS, Horiba) was used to obtain spontaneous 

Raman spectra. The microscope is equipped with a 532 nm diode laser source and 1800 lines/mm 

grating. The excitation power is approximately 40mW after passing through a 100x objective lens 

(MPLN100x, Olympus). The spectrometer collects the intensity values in each region for a range 

of excitation wavenumbers from 400 cm-1 to 3150 cm-1. The acquisition time used for these 

samples are 90 seconds with a binning of 4, and accumulation of 3 for minimal noise and greater 

accuracy for the resulting spectra (See Supplemental Figure 1.5A) Each spectrum is taken by 

targeting the desired subcellular region and an additional spectrum is taken of the background with 

PBS in the same focal plane. Immediately after, the background spectrum is then subtracted from 

each subcellular target spectrum.  

1.2.3 Stimulated Raman Scattering Microscopy  
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An upright laser-scanning microscope (DIY multiphoton, Olympus) with a 25x water 

object (XLPLN, WMP2, 1.05 NA, Olympus) was used for near-IR throughput. Stokes with a 

wavelength at 1031nm, 6ps pulse width, and 80MHz repetition rate and synchronized pulsed pump 

beam with a tunable 720-990 nm wavelength, 5-6ps pulse width, and 80 MHz repetition rate were 

supplied by the picoEmerald system (Applied Physics & Electronics) and coupled into the 

microscope. A high NA oil condenser (1.4 NA) was used for the collection of the Stokes and pump 

beams where the sample is mounted. For the water-immersion objective lens, a larger water droplet 

is placed on the glass cover slip of the sealed sample slide. The Stokes beam is blocked by a high 

O.D. shortpass filter (950nm, Thorlabs) and transmits the pump beam onto a Si photodiode to 

detect the stimulated Raman loss signal. A lock-in amplifier at 20MHz is utilized to terminate, 

filter, and demodulate the output current from the photodiode where the demodulated signal forms 

the image during the laser scanning as it is processed into the FV3000 software module FV-OSR 

(Olympus) as shown in Figure 1.2A. The images were collected at 512 x 512 pixels using a dwell 

time of 80 µs/pixel The images are saved as an OIR graphic file through the acquisition software 

by the Olympus microscope.  

The background image was taken at 1900 cm-1 and subtracted from all the SRS images 

using ImageJ software. For multichannel SRS imaging, the pump wavelength ( ) was tuned 

so that the energy difference between the pump and Stokes beams were matched with the 

vibrational frequency (Ralhan, Chang et al. 2021).   

1.2.4 Two Photon Excitation Microscopy 

Label-free autofluorescence of flavins was excited at 800 nm and autofluorescence of 

NADH was excited at 780nm using the same tunable picosecond laser described in Stimulated 

Raman Scattering microscopy. Optical-parametric oscillators and amplifiers (OPO and OPA) 

λpump
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sources provide tunable infra-red illumination. This takes place over a broad range of wavelength 

to allow for simultaneous multi-color imaging (Mahou, Zimmerley et al. 2012). Back scattered 

emission of flavin and NADH autofluorescence was collected using a 460 nm/515nm filter cube 

(OCT-ET460/50M32, Olympus). These images were also 512x512 pixels and were acquired with 

an 8 µs/pixel dwell time using a 150mW power at the laser shutter.  

1.2.5 Data Analysis  

1.2.5.1 Spectral Analysis  

The mathematical modeling operations were conducted using MATLAB. Scripts and 

functions used for processing the Raman spectra were self-written using built-in functions 

provided by MATLAB. Origin software was used to display original spectra as shown in 

Supplemental Figure 1.5A.  

The spectral pre-processing consists of several steps that include background removal, 

baseline correction, and vector normalization. MATLAB software was used to import the raw 

spectra data. Background was subtracted, and the files were converted into an array where the 

spectra has been interpolated at every cm-1. The raw data was then graphed for verification, and 

the baseline correction was performed. The resulting spectra were vector normalized and averaged 

for each group to reduce the amount of noise on the graph of the biomolecular signals. Each 

spectral peak is assigned to the vibrations of a particular chemical bond or function group.  

1.2.5.2 Image Analysis 

 Images were processed using MATLAB and ImageJ. To reduce horizontal noise artifacts 

caused by laser beam scanning, 3D image stacks of lipid droplets underwent bandpass filters and 

smoothing. Each lipid droplet received a spherical score by calculating the distance between its 

center of mass and surface. Subsequently, every spherical score of different lipid droplets were 
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compared with a spherical score of a perfect sphere on the same Euclidean plan. Those lipid 

droplets with low sphericity scores were discarded. Using ImageJ, ten cell units from three 

different regions of interest per condition were manually segmented and measured. These cell units 

were relative in sizes, shapes and randomly selected for analysis.  

1.2.5.3 Statistical Analysis 

Statistical significance was verified by analysis of variance, checking the mean of more 

than two groups that are significantly different from each other. The mean and standard deviations 

were calculated for all the investigated conditions. The data were analyzed using GraphPad Prism 

for Mac. Significant differences between the controls and treatment groups were compared using 

the two-way analysis of variance (ANOVA). The data that had p-values lower than 0.05 were 

identified as statistically significant. MATLAB software was used to process the data for 

multivariate analysis. Additional statistical analysis was performed on Orange3 Data Mining Tool 

for greater visualization of the high-dimensional data such as primary component analysis (PCA) 

for more accurate representation of how the spectrums are compared from the control group to the 

excess aromatic amino acid groups.  

1.3 Results 

1.3.1 Raman and DO-SRS Imaging to Identify Changes in Lipid and Protein Synthesis 

Metabolic precursors can be tagged with deuterium before getting integrated into newly 

synthesized lipids and proteins (Miyagi and Kasumov 2016), as shown in Figure 1.2C. DO-SRS 

enables one to visualize the  subcellular spatial distribution of newly synthesized macromolecules 

with C-D bonds which have a distinguishable Raman peak in the cell silent region at 2150cm-1 

(Yamakoshi, Dodo et al. 2011, Shi, Shen et al. 2018, Shi, Zheng et al. 2018, Zhang, Shi et al. 2019, 

Zhao, Chen et al. 2020). 50% D2O in cell culture media produced distinct C-D Raman bands (See 
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Supplemental Figure 1.5A). Adding excess essential amino acids to our cell culture media at a 15x 

concentration introduced differences in the C-D band (Figure 1.2D). Indeed, with LDs being 

specifically observed, we noticed that both 15x phenylalanine and 15x tryptophan show higher 

intensities of biomolecules compared to the control group at the 2143 cm-1 peak. The lipid turnover 

rate was visualized with DO-SRS imaging and confirmed with spontaneous Raman spectra by 

showing that both aromatic amino acids have significant differences between each other and 

between the control group (See Supplemental Figure 1.6B). Quantitative analysis can aid in 

understanding the subcellular resolution of LDs by calculating the ratios of the C-D lipid and 

protein peaks to their respective lipid (2850 cm-1) and protein (2930 cm-1) channels. Ten spectra 

were measured using Spontaneous Raman spectroscopy. The data was processed using MATLAB 

to subtract the background and conduct baseline correction. Resulting spectra were then vector 

normalized and averaged for each group. We observed a significant 7% and 15% increase in the 

lipid turnover rate between the control and 15x phenylalanine and 15x tryptophan case, 

respectively. This indicates that excess AAA has the potential to increase LD production. 

Interestingly, the protein in the C-D region, showed very minimal differences between the control 

and two experimental conditions (Figure 1.2D). The protein turnover rate, on the other hand, 

demonstrated an opposite trend to the lipid turnover rate. Specifically, there is a 1.38% decrease 

in the protein turnover rate between the control and 15x phenylalanine group, and a 6.6% decrease 

between the control and 15x tryptophan case (Figure 1.2E). However, the C-D protein (2185 cm-

1), the protein channel (2930 cm-1), the C-D lipid (2150 cm-1) and the lipid channel (2850 cm-1) 

are just parts of the Spontaneous Raman spectra. Principal component analysis (PCA) shows that 

19 principal components (PCs) account for 98% of the variance in the experimental groups of this 

study. A t-SNE diagram is used to visualize the top 15 principal components as shown in 
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Supplemental Figure 1.5B. At least one dimension that distinguishes the effects of AAA on Raman 

spectra of HeLa cells under different treatments can be observed. This can show that even at 15x 

increase in concentration, we can still observe some profound differences compared to the control 

group. Although this verifies that phenylalanine and tryptophan do have a notable effect on lipid 

metabolism in cancer cells, PCA and t-SNE plots have limited ability to isolate specific peaks that 

contribute to major variances on Raman spectra in this study.  

As various fluctuations of C-D protein and lipid signals were observed from Spontaneous 

Raman spectra of HeLa LDs, DO-SRS microscopy was used to visualize spatial distribution of C-

D signals to a greater depth. A workflow of DO-SRS is displayed in Figure 1.2A. DO-SRS affords 

the convenience of visualizing lipid and protein metabolism simultaneously (Shi, Zheng et al. 

2018). Both the C-D lipid and C-D protein channel were utilized, and the signals were clearly 

different between the control and the AAA conditions (Figure 1.2F). Image analysis highlights the 

spatial distribution of the lipids and proteins, and the de novo synthesis of these compounds 

emphasizes how much the LDs were affected by the excess phenylalanine and tryptophan.  
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Figure 1.2. DO-SRS microscopy and Spontaneous Raman spectra. 
A) Schematic diagram of the experimental setup SRS system workflow (Li, Jiang et al. 2017). 
Abbreviations: DM (dichroic mirror), EOM (electro-optical modulator), PBS (polarizing beam 
splitter), GM (galvometer mirror). B) Spontaneous Raman spectra without D2O incorporation 
(black) and 50% of D2O addition (red). C) Magnification of how HeLa cells were treated with 
D2O and excess aromatic amino acids, Phenylalanine (Phe) and Tryptophan (Tryp). Red asterisks 
represent the effect of D2O to the cells. D) Results from processed Spontaneous Raman spectrums 
for the control (Ctrl) group (blue), 15x Phenylalanine-treated (15x Phe) group (red), and 15x 
Tryptophan-treated (15x Tryp) group (magenta) from HeLa cells. Spectrums were taken with the 
laser focused on structures that resembled lipid droplet organelles under the brightfield imaging 
system. Each Raman spectrum had a background spectrum from the PBS removed before being 
normalized, averaged, and baseline corrected. Peaks labeled correspond to Deuterium-labelled 
lipid (CDL) and Deuterium-labelled protein (CDP) (Yamakoshi, Dodo et al. 2011, Shi, Shen et al. 
2018, Shi, Zheng et al. 2018, Zhang, Shi et al. 2019, Zhao, Chen et al. 2020), which were observed 
more specifically to understand how 50% D2O cell media with the excess aromatic amino acids 
affected the lipid metabolic activity. E) Quantification of the mean Raman results from CDL and 
CDP peaks for HeLa under control and experimental conditions. ****p<0.0001, ***p<0.001, 
**p<0.01 from 2-way ANOVA test. F) DO-SRS images of HeLa cells in C-D lipid (2145 cm-1) 
and C-D protein (2175 cm-1) on the top row. Bottom row shows SRS images of cells in the protein 
and lipid channels from 2940 cm-1 and 2845 cm-1.  



18 
 

1.3.2 The Effect of Excess AAA on Lipid Metabolic Pathways determined with DO-SRS 

techniques 

DO-SRS imaging of experimental and control groups show differences between LD 

signals. Using ImageJ, the same amount of cell units from three samples are manually segmented 

and measured, as indicated by dotted-white borders in Figure 1.3A. With only the control case, 

there is some signal in the C-D lipid and protein channel; however, the 15x phenylalanine (15x 

Phe) and 15x tryptophan (15x Tryp) display even stronger signals (Figure 1.3A). The 15x Tryp 

case shows a profound signal for lipid droplets in the C-D lipid channel but a weaker signal in the 

C-D protein channel. A similar trend occurs for the 15x Phe as compared to the control case for 

both lipid and protein channels. Quantitative analysis shows the accumulation of synthesized lipid 

and protein (Figure 1.3B). Although the statistical analysis did not show significance, the 

ratiometric results demonstrate that the AAA conditions have greater lipid synthesis by 10-17% 

but reduced protein synthesis by approximately 10%. Protein synthesis is critical in the study of 

metabolic dynamics, and although D-labeled amino acids can be used to tack protein synthesis (Li, 

Jiang et al. 2017), D2O has proven to be more efficient and consistent (Shi, Zheng et al. 2018).  

From our results, an increase in AAA can have the potential to increase lipid synthesis but decrease 

protein synthesis using 50% v/v D2O in the cell culture media. This evidence infers the possibility 

of a lack of autophagy taking place in the cells that causes an increase in LDs and promotes the 

generation of ROS as well as mitochondrial dysfunction (Chiacchiera and Simone 2009, Younce 

and Kolattukudy 2012, Nguyen, Louie et al. 2017, Zhang, Evans et al. 2018). DO-SRS has proven 

to be very effective and accurate to track the lipid and protein synthesis of HeLa cells and 

observing how AAA can show critical changes of the cells’ signal.  
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Figure 1.3 DO-SRS microscopy visualizes in vitro protein and lipid metabolism simultaneously 
in HeLa cells. 
A) DO-SRS microscopy visualizes Deuterium-labelled lipid (CDL; 2145 cm-1), lipid (CH2; 2845 
cm-1), Deuterium-labelled protein (CDP; 2175 cm-1) and protein (CH3; 2940 cm-1) channels in in 
HeLa cells for control (ctrl), 15x phenylalanine (15x phe), and 15x tryptophan (15x tryp). The  
2145cm-1/2845cm-1and 2175cm-1/2940cm-1 ratios are calculated to understand metabolic activities 
of HeLa cells between the ctrl, 15x phe and 15x tryptophan 15x tryp groups. Multiple cell units 
are selected for calculating absolute intensities of 2145cm-1/2845cm-1 and 2175cm-1/2940cm-1 
ratios between experimental groups. B-C) Ratiometric analysis of lipid and protein turnover rates 
to compare control group with experimental conditions with p-value of 0.1498 and 0.6816 
respectively from the 2-way ANOVA test.  

Using SRS and 2PEF microscopy, multimodality imaging of unsaturated lipid (~3011 cm-

1), saturated lipid (~2880 cm-1) and flavin, NADH signals were acquired (Figure 1.4A). Similarly, 
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the same amount of cell units from three samples are manually segmented and measured using 

ImageJ as indicated by the dotted-white borders in Figure 1.4A. Oxygen is a critical metabolite 

that accepts electrons from reduced NADH and flavin at the end of the electron transport chain 

(ETC) (van Manen, Lenferink et al. 2008). However, electrons can escape NADH and flavin before 

reaching the end of the ETC in mitochondria to produce ROS. In some cancer cells, the 

accumulation of ROS induces the oxidation of polyunsaturated fatty acids, promotion of saturated 

lipid production, and depletion of NADH levels (Watmough, Bindoff et al. 1990, Wang, Palmfeldt 

et al. 2019, Zhang and Boppart 2021) in response to the oxidative stress. However, HeLa cells 

have been shown to increase polyunsaturated lipid levels in response to elevated ROS [60]. Raman 

shifts have been used to describe the magnitude of unsaturated and saturated lipids at 3011 cm-1 

and 2880 cm-1 (Figure 1.4A), respectively (Da Silva, Bresson et al. 2009, Jamieson, Li et al. 2018).  

Ratiometric SRS images demonstrate that excess AAA-treated cells have an elevated ratio 

of unsaturated lipid/saturated lipid by 10% as compared to the control HeLa cells. However, 

neither the lipid saturation nor the optical redox ratio was significantly different between the two 

excess AAA-treated cells (Figure 1.4B). Quantitative analysis further showed statistical 

significance between the control group and the experimental groups for both the unsaturated lipid 

to saturated lipid and optical redox ratio, defined as Flavin/(Flavin + NADH) autofluorescence 

intensity. Moreover, the optical redox ratio demonstrated higher statistical importance between the 

two experimental groups with a 50% increase in the ratio (Figure 1.4D). The enrichment of NADH 

and flavin demonstrates an increase in the accumulation of LDs as ꞵ-oxidation is hampered 

(Watmough, Bindoff et al. 1990, Wang, Palmfeldt et al. 2019). Unsaturated lipid images were 

weaker than the saturated lipid channel which displayed a higher signal to noise ratio. With the 
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manipulation of AAAs and the consequential changes in lipid content, LD structure, number, and 

distribution may be affected as well. 

In addition to multimodal imaging, SRS has the capability to perform 3-D image 

reconstruction of LDs in control and AAA-treated HeLa samples. In short, the microscopy 

produces a set of cross-sectional images throughout the entire depth of a selected region of interest. 

In this study, we tune the stimulated Raman loss (SRL) to 2845 cm-1 and scan a region of interest 

from the top layer to the bottom layer with a step size of 1 micron (Figure 1.4B-C). Quantitative 

analyses of LD count and size were performed for each condition (Figure 1.4E). Both excess AAA-

treated cells exhibited greater counts of LD but reduced volumetric properties compared to the 

control cell (Figure 1.4C). Qualitatively, the presence of excess Phe causes clusters of LD on one 

side of the cell’s nucleus, whereas the presence of excess Tryp leads to a uniform distribution of 

LDs around the cell’s nucleus (Figure 1.4B). During the span of this study, we were only able to 

investigate LD volume and counts of three single cell units per condition. Therefore, the results 

were not statistically significant, and require further research. 

The abnormal accumulation or depletion of LDs are hallmarks and perhaps causes of 

various human pathologies (Thiam and Beller 2017). LD-coating proteins greatly influence LD's 

size and counts, ultimately affecting LD accumulation or depletion. For instance, Perilipins are a 

group of LD-coating with amphipathic helices (AHs) binding domains that target LD surfaces 

(Thiam and Dugail 2019). Depending on the Perilipin species and their phosphorylated states, 

the binding of the proteins onto LD surfaces can initiate lipolysis or lipogenesis (Sztalryd and 

Brasaemle 2017). Previous studies have shown that an increased number of bulky hydrophobic 

amino acid residues such as Tryp and Phe on the hydrophobic face of AH in these proteins can 

impair their binding affinity to LDs (Thiam and Dugail 2019). It has been reported that with the 
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failure of lipolysis from impaired Perilipins, there is an accumulation of numerous small LDs 

(Schott, Weller et al. 2019).  Our 3D volumetric analyses of LDs concur with these previous 

findings by demonstrating that LDs increase in counts but decrease in volume in the excess AAA 

groups compared to the control group. Therefore, the presence of excess AAA might impair 

perilipin function and inhibit lipolysis, which can be visualized in situ with high resolution SRS.    
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Figure 1.4 Images obtained using label-free SRS and analyzed from the unsaturated fatty acids, 
saturated fatty acids, NADH, and Flavin channel to observe the autofluorescence between each 
experimental condition. 
A) SRS microscope visualizes in vitro unsaturated fatty acid (3011 cm-1) and saturated fatty acid 
(2880 cm-1) channels, and 2PEF microscope visualizes in vitro Flavin and NADH channels in 
HeLa cells for control (ctrl), 15x phenylalanine (15x phe), and 15x tryptophan (15x tryp). Many 
cell units in the same regions of interest are used for calculating absolute intensities of  3011cm-

1/ 2880cm-1  and NADH/Flavin. B) Single cell maximum intensity projection using SRS image 
stacks. LDs are highlighted in blue color using a home-made MATLAB script. C) The volume 
and average number of LDs for control and experimental conditions. Excess AAA LDs have a 
reduced size compared to control group; however, they have a greater number of LDs. D-E) 
Quantifications of  3011cm-1/ 2880cm-1  and NADH/Flavin  concentration for HeLa cells under 
control and experimental conditions for given regions of interest. Excess amino acid treated 
groups shows large statistical significances compared to the control (ctrl) group. ****p<0.0001, 
*p<0.05 from 2-way ANOVA test. D) SRS microscope visualizes the 3D spatial distribution of 
lipid droplets on a single cell unit in the control (Ctrl), 15x Phenylalanine (15x Phe) and 15x 
Tryptophan (15x Tryp) groups. 
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1.4 Discussion  

In this study, we applied DO-SRS and 2PEF microscopies to investigate aromatic amino 

acids and their effects on redox homeostasis in HeLa cells. Lipid droplets were selected because 

they can provide critical metabolic insights for diseases such as cancer (Cruz, Barreto et al. 2020) 

and  heavy water was used to track newly synthesized lipid and protein. These carbon-deuterium 

bonds display distinct signals in the cell silent region on a Raman spectrum, allowing us to quantify 

and visualize these newly synthesized bonds in situ. In addition, 2PEF was used to provide spatial 

distribution of flavin and NADH at subcellular resolution. Therefore, by using DO-SRS and 2PEF 

in this study, we can understand metabolic changes of HeLa cells under different excess AAA 

treatments and advance current diagnostic methods for these diseases with our findings (Moneim 

2015, Parthasarathy, Cross et al. 2018). 

 Lipid, protein, flavin and other biomolecules have been proven to be indicators or metrics 

to measure progression of diseases (Heikal 2010). With DO-SRS, we were able to visualize and 

quantify newly synthesized lipids and proteins. We observed increased de novo lipogenesis and a 

slight decrease in de novo protein synthesis in excess AAA treated groups compared to the control 

group (Figure 1.3B-C). These changes were supported by our Raman spectra collected by 

Spontaneous Raman Spectroscopy (See Supplemental Figure 1.5A). Hyperspectral images of 

unsaturated and saturated lipids were visualized at their respective wavenumbers to understand the 

effects of oxidative imbalance caused by excess AAA in HeLa cells. The ratios of unsaturated 

lipid/saturated lipid were calculated and compared across three conditions. The excess AAA-

treated groups exhibited increased unsaturated lipid/saturated lipid compared to the control group. 

2PEF was used to excite NADH and flavin in HeLa cells. The redox ratios of 

Flavin/NADH+Flavin were calculated, compared, and related to the ratios of unsaturated 
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lipid/saturated lipid. Both excess AAA-treated groups exhibited increased redox ratios compared 

to the control group. Previous studies have showcased that lower optical redox ratios correlated 

with increased ROS during cancer progression (Alhallak, Rebello et al. 2016). In response to 

oxidative imbalance, HeLa cells display decreased levels of mono- and di-unsaturated, but 

increased levels of polyunsaturated lipids (Rysman, Brusselmans et al. 2010, Munir, Lisec et al. 

2019). However, this effect varies across different cancer types (Lisec, Jaeger et al. 2019). In our 

study, both AAA-treated groups had elevated ROS by displaying lower optical redox ratios 

compared to the control. Because of the elevated ROS, both AAA-treated cells in our study 

supported previous findings by showcasing increased levels of unsaturated lipids and decreased 

levels of saturated lipids, ultimately leading to higher unsaturated lipids to saturated lipids ratios 

in AAA-treated cells compared to the control group. 

In addition, 3D reconstruction images of LD were collected by our SRS system to study 

quantitative features such as counts and volume of LDs. Previous studies have demonstrated that 

LD-coating protein exhibit reduced binding affinity for LDs in the presence of excess AAA (Thiam 

and Dugail 2019). Consequently, the failure of LD-coating protein binding can interfere with 

lipolysis and result in an accumulation of numerous small LDs (Schott, Weller et al. 2019). Our 

results support these studies by highlighting that both excess AAA groups exhibited lower 

volumetric properties, but higher counts of LDs compared to the control group. This outcome may 

infer the failure of binding of LD-coating protein onto LD surfaces and higher ROS synthesis rate 

(Moneim 2015, Saha, Lee et al. 2017). However, further research to investigate is needed to 

confirm this finding using optical techniques.  

In our study, excess AAA decreased the volume of LDs but increased their counts. Perhaps, 

this was done by affecting the binding affinity of LD-coating proteins onto LD surfaces and 
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decreasing lipolysis. However, further investigation of lipid-protein interactions is needed to 

confirm DO-SRS data. Furthermore, lower optical redox ratios were observed in excess AAA-

treated cells, which corrolated to elevated ROS and increased unsaturated lipids to saturated lipids 

ratios. To guard against oxidative stress and apoptosis induced by ROS, HeLa cells produce more 

unsaturated lipids than saturated lipids during their progression (Rysman, Brusselmans et al. 2010, 

Munir, Lisec et al. 2019). Therefore, our study provides a better understanding of imbalanced 

oxidative stress effects onto HeLa cells under excess AAA treatments and showcases DO-SRS 

coupled with 2PEF as non-invasive, high-resolution imaging systems to study metabolic activities 

in situ.  

1.5 Conclusion 

In summary, this study showcases the effects of excess AAAs on cellular metabolic 

activities of cervical cancer cell lines and how lipid droplet phenotypes can be used as potential 

indicators in developments of future diagnostic methods for cancer and other closely related 

diseases. Without the need of labeling dyes that can interfere with normal physiological 

environments in a cellular sample, the state-of-the-art, non-invasive DO-SRS microscopy and 

2PEF microscopy can visualize and quantify metabolic changes of various biomolecules including 

protein, lipid, flavin, NADH. In addition, Deuterium Oxide (D2O) allows us to locate these 

molecules in situ using C-D signals in the cell silent region with DO-SRS. In addition to 

phenylalanine and tryptophan, a water-insoluble tyrosine aromatic amino acid is not included in 

this study (Bowden, Sanders et al. 2018). However, we intend to investigate the effects of tyrosine 

to obtain a holistic understanding of AAA on cellular metabolic activities in cancer and other 

closely related diseases. A non-linear optical second-harmonic generation (SHG) can also be 

applied to our SRS system to study collagen and their structure under the influence of AAA in 
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HeLa xenograft models. Overall, our study demonstrates the useful applications of optical 

techniques such as DO-SRS and 2PEF in visualizing metabolic changes in situ with high 

resolution. Eventually, these methods can be translated to clinical settings to improve current 

diagnostic tools for diseases such as cancer and neurodegeneration.  

1.6 Supplemental Figures 

 
Figure 1.4 Spectra obtained from Spontaneous Raman spectroscopy using 90 second acquisition 
time and accumulation of 3. Analysis of Spontaneous Raman spectroscopy results from HeLa 
cells. 
A) Results obtained from control and experimental conditions: 15x Phenylalanine and 15x 
Tryptophan. B) t-SNE distributions between control treated samples and excess AAA treated 
samples. 
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Figure 1.5 Multiplexed imaging of HeLa cells between control (ctrl), 15x Phenylalanine (15x 
Phe), and 15x Tryptophan (15x Tryp) using label-free SRS and DO-SRS imaging systems. 
A) Multiplexed images of ctrl, 15x Phe, and 15x Tryp of protein (CH3; 2940 cm-1), lipid (CH2; 
2845 cm-1), unsaturated lipid (3011 cm-1), saturated lipid (2880 cm-1) and 1740 cm-1 channels. 
Hematoxylin and Eosin staining images are produced by combining the protein and lipid 
channels using FIJI. B) DO-SRS images of Deuterium-labelled lipid (CDL; 2145 cm-1), lipid 
(CH2; 2845 cm-1), Deuterium-labelled protein (CDP; 2175 cm-1) and protein (CH3; 2940 cm-1) 
channels of HeLa cells in different groups. 

Chapter 1, in full, is a reprint of the material as it appears in Visualizing Cancer Cell 

Metabolic Dynamics Regulated with Aromatic Amino Acids Using DO-SRS and 2PEF 

Microscopy 2021. Bagheri, P., Hoang, K., Fung, A.A, Hussain, S., & Shi, L. Frontiers in 

Molecular Biosciences, 8, 779702.  https://doi.org/10.3389/fmolb.2021.779702. The thesis 

author was the primary investigator and author of this paper.  
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CHAPTER 2. SUBCELLULAR IMAGING CANCER METABOLIC ACTIVITIES UNDER 

SERINE REGULATION USING DO-SRS MICROSCOPY 

Abstract: Lipid and protein metabolism have been implied to be major metabolic 

pathways that take part in cancer diseases. The synthesis of proteins and lipids have become a 

necessity for cell survival, growth, and proliferation. Optical imaging techniques that are high 

resolution present a dynamic application to understand how lipids and proteins are affected in 

cancer metabolism. In this study, we utilized D2O (heavy water)-probed stimulated Raman 

scattering microscopy (DO-SRS) to directly visualize the metabolic dynamics of cancer cells under 

the regulation of the non-essential amino acid serine in culture media. The cellular spatial 

distribution of newly synthesized lipids and proteins were observed and quantified in this 

experiment. Raman spectra showed excess serine increases both lipid and protein synthesis in 

HeLa cells while lack of serine will inhibit cell growth. DO-SRS imaging verified that cells with 

10x and 20x added serine concentration will have a significant upregulation of de novo protein 

synthesis and lipogenesis whereas cells with only 0.25x serine have a notable decrease in both 

lipid and protein turnover rate. Furthermore, we found an accumulation of saturated and 

unsaturated lipids in excess serine cells, suggesting that these specific lipids play an imperative 

role in cell survival. We also detected rise in Cytochrome c with a surplus of serine but an opposite 

effect when depriving cells from serine, suggesting that this protein contributes to the promotion 

of cancer disease. Our study demonstrates how regulation of serine is impactful for cancer cell 

metabolism by using new imaging platforms such as DO-SRS.  

2.1 Introduction 

Metabolic pathways that are used to produce macromolecules for required cell survival and 

growth especially in cancer diseases have become common topics in research (Yang and Vousden 
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2016). Accumulating evidence has indicated that exogenous supply of amino acids is required for 

highly proliferative cancer cells (Phillips, Sheaff et al. 2013, Yang and Vousden 2016). This is 

simply because rapidly growing cells demand a high amount of each amino acid, and de novo 

synthesis pathways may not supply enough for each cell. In addition, with cancer diseases, there 

are changes and mutations in various enzymes needed to synthesize particular amino acids which 

can therefore hinder de novo synthesis (Hennequart, Labuschagne et al. 2021, Zhao, Fu et al. 

2021). Cancer cells become very dependent on specific amino acids one of which is the non-

essential amino acid serine. Previous studies have suggested that the lack of exogenous serine will 

inhibit the growth of cancer cells in vitro and in vivo; however, excess serine may drive 

tumorigenesis forward (Kalhan and Hanson 2012, Gao, Lee et al. 2018, Sullivan, Mattaini et al. 

2019, Muthusamy, Cordes et al. 2020, Hennequart, Labuschagne et al. 2021). As seen in Figure 

2.1, adding a surplus of serine to culture media can activate the mechanistic target of rapamycin 

complex (mTORC1) because heterodimers of the recombination-activating genes (Rag) small 

guanosine triphosphate (Rag A/B and Rag C/D) are initiated, inducing the ras homolog enriched 

in brain (RHEB) G-protein which plays an imperative role for starting mTORC1 (Sancak, Bar-

Peled et al. 2010, Saxton and Sabatini 2017, Yang, Jiang et al. 2017). Thus, AMP-activated protein 

kinase (AMPK) and 4E-binding protein 1 (4E-BP1) are inhibited while S6 kinase beta-1 (S6K1) 

is upregulated (Chiacchiera and Simone 2009, Vadlakonda, Dash et al. 2013, Ghosh and Kapur 

2017, Zhao, Hu et al. 2017, Woodcock, Eley et al. 2020). This leads to lack of autophagy and an 

increase in lipid and protein synthesis ultimately leading to cancer cell survival and growth 

(Takahara, Amemiya et al. 2020) (Figure 2.1). The changes in these metabolic activities can 

promote more oxidative stress and mitochondrial dysfunctions that produce infectious precursors 

from healthy cells (Saxton and Sabatini 2017, Takahara, Amemiya et al. 2020). Upregulation of 
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mTORC1 is involved in the lipid and protein metabolism of the mitochondria as this defective 

organelle contributes to cancer proliferation (Younce and Kolattukudy 2012, Lee, Zhang et al. 

2013, Porporato, Filigheddu et al. 2018, de la Cruz López, Toledo Guzmán et al. 2019). With the 

need of non-invasive and label-free imaging techniques, it remains unclear how serine affects the 

lipid and protein metabolism in cancer cells.  

 
Figure 2.1 Illustration of how excess serine upregulates the mTORC1 pathway in cancer cells. 
mTOR is a critical regulator for lipid metabolism (Caron, Richard et al. 2015, Bagheri, Hoang et 
al. 2021). With a surplus of nutrients, such as the amino acid serine, heterodimers of the Rag 
small GTPases (Rag A/B and Rag C/D) become activated, inducing the RHEB G-protein 
(Sancak, Bar-Peled et al. 2010, Saxton and Sabatini 2017, Yang, Jiang et al. 2017). RHEB plays 
a critical role in the activation of mTORC1. With the activation of mTORC1, 4EBP1 protein, 
which impedes protein synthesis, is inhibited and AMPK becomes inactive, and S6K1 protein is 
induced which regulates multiple cellular functions such as lipid and protein synthesis. 
(Chiacchiera and Simone 2009, Vadlakonda, Dash et al. 2013, Ghosh and Kapur 2017, Zhao, Hu 
et al. 2017, Woodcock, Eley et al. 2020). In addition, with the upregulation of S6K1, autophagy 
becomes inhibited (Takahara, Amemiya et al. 2020). The increase in lipid synthesis causes 
accumulation of lipid droplets, and rise in protein synthesis induces greater cell survival, growth, 
and proliferation. Therefore, tumors will develop and continue to spread. Abbreviations: 
mechanistic target of Rapamycin complex 1 (mTORC1), recombination-activating genes (Rag), 
guanosine triphosphate (GTP), ras homolog enriched in brain (RHEB), S6 kinase beta-1 (S6K1), 
4E-binding protein 1 (4E-BP1), AMP-activated protein kinase (AMPK). 
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Typical imaging and analytical methods are useful but still limited in many ways. For 

instance, mass spectrometry (MS)-based techniques or matrix-assisted laser desorption/ionization 

(MALDI) have low spatial resolution to show lipids in cells (Murphy, Hankin et al. 2009, Pirman, 

Efuet et al. 2013, Bowman, Bogie et al. 2020, Li, Cheng et al. 2021). Magnetic resonance imaging 

(MRI) or fluorescence microscopy usually need fluorescent dyes which can interfere with the 

molecular activities taking place in the cells, and they have limited spatial resolution as well (Di 

Gialleonardo, Wilson et al. 2016).  

More recently, Raman spectroscopy has been used as a nondestructive technique as it is 

based on the vibrating molecules that induce an inelastic scattering of light (Ghita, Pascut et al. 

2012, Ember, Hoeve et al. 2017). A Raman spectrum consists of various chemical bonds vibrating 

at distinct frequencies which produces different fingerprints from the molecules (Ghita, Pascut et 

al. 2012, Daudon 2016, Ember, Hoeve et al. 2017). The peaks of a Raman spectrum each corelate 

to a specific vibrational mode of a chemical bond. Quantitative imaging is created by the Raman 

scattering signal intensity as it corresponds to the molecular chemical bond concentration. 

However, spontaneous Raman spectroscopy restricts the imaging speed due to the delicate signal 

intensity making it difficult to observe the cell’s metabolic dynamics. Stimulated Raman scattering 

(SRS) and Deuterium-Oxide-probed SRS (DO-SRS) is a non-invasive approach that requires 

minimal sample preparations and can be applied for the subcellular analysis of molecular 

signatures such as newly synthesized lipids and proteins (Shi, Zheng et al. 2018, Bagheri, Hoang 

et al. 2021, Li, Zhang et al. 2021, Li, Bagheri et al. 2022). The imaging speed for this technique is 

notably faster by about 1000 times compared to spontaneous Raman. The high level of sensitivity 

is superior in its ability for high chemical specificity and subcellular resolution in addition to 

multiplex imaging. Heavy water (D2O) is applied as a Raman probe to track the incorporation of 
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D2O-derived deuterium labeled macromolecules, identifying the cell’s metabolic activities (Berry, 

Mader et al. 2015, Li, Bagheri et al. 2022). Moreover, D2O diffuses freely across the cells where 

deuterium will be integrated with carbon atoms to create C-D bonds in newly formed biomolecules 

which establishes a peak in the 1800-2800 cm-1 region of a Raman spectrum (Figure 2.2A) 

(Yamakoshi, Dodo et al. 2011, Shi, Shen et al. 2018, Shi, Zheng et al. 2018, Zhang, Shi et al. 2019, 

Zhao, Chen et al. 2020, Bagheri, Hoang et al. 2021, Li, Zhang et al. 2021, Li, Bagheri et al. 2022). 

Applying DO-SRS imaging, we can directly observe the cell’s metabolic dynamics of lipids and 

proteins.  

In this chapter, we incorporated D2O to observe the newly synthesized lipids and proteins 

in HeLa cells with added and deprived exogenous serine from the spontaneous Raman spectra and 

used DO-SRS microscopy to track the cells’ metabolic dynamics in situ. Furthermore, we 

compared lipid subtypes and specific proteins to reveal the metabolic changes in these cancer cells 

as serine was being regulated. Image analysis and quantifications demonstrated the lipid and 

protein spatial distributions and how these compounds were influenced by the manipulation of 

serine concentration.  

2.2 Materials and Methods 

2.2.1 Cell Culture 

HeLa cells were cultured in Dulbecco’s modified Eagles’ medium (DMEM), supplemented 

with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (Fisher Scientific, Waltham, 

MA), and incubated with 5% CO2 at 37°C. After passaging at 80% confluence, cells were seeded 

at a concentration of /mL onto a 24-well plate. DMEM with 0.5% FBS and 1% 

penicillin/streptomycin was used to synchronize the cells for 8 hours. The media was then changed 

to 50% (v/v) heavy water (D2O) and treatment media as described below.  

2 × 105
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For the increased amino acid condition, serine was increased at 10x and 20x concentration. 

L-serine powder (SLCJ6883, Sigma Aldrich) was added to DMEM for the excess groups 

supplemented with 5% FBS and 1% penicillin/streptomycin (Fisher Scientific, Waltham, MA). 

For the 0.25x serine case, cells were cultured in media reconstituted from glucose and amino acid 

free media (D9800-27, US Biological Life Sciences) supplemented with amino acids at appropriate 

concentrations from a 100x stock solution of amino acids with only 0.25x concentration of serine 

added.  Amino acids were supplemented from a 100x stock solution made separately according to 

the experiment and the media was supplemented with 50% heavy water, 5% FBS, and 1% 

penicillin/streptomycin (Fisher Scientific, Waltham, MA). Cells were then incubated for 36 hours 

and fixed on microscope slides afterwards. When fixing the cells on the microscope slide, the cells 

were first gently rinsed with 1x PBS with Calcium and Magnesium ions at 37°C (Fisher Scientific, 

14040216), and then fixed in 4% methanol-free PFA solution (VWR, 15713-S) for 15 minutes. 

The cover glass was finally mounted on the cleaned 1mm thick glass microscope slides with 120 

µm spacers filled with 1x PBS for imaging and spectroscopy. These samples are stored at 4°C 

when not in use.  

2.2.2 Spontaneous Raman Spectroscopy  

Spontaneous Raman spectra of cell samples were measured by a Raman spectrometer that 

was connected to a confocal Raman microscope (XploRA PLUS, Horiba). A 532 nm diode line 

focus laser and 1800 lines/mm grating are equipped to the microscope. The laser is focused on the 

cells using a 100x objective lens (MPLNx100, Olympus) with an excitation power of 

approximately 40mW. Spectra were collected at 90 second acquisition time with an accumulation 

of 3 for the greatest accuracy and least noise and measured at the intensity values in each region 

for a range of excitation wavenumbers from 400 cm-1 to 3150 cm-1. Each individual spectrum is 
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taken by targeting the desired subcellular region and an additional spectrum is taken of the 

background with PBS in the same focal plane. Peaks were normalized to 1900 cm-1 peak, and 

baseline correction was performed using Origin Lab software and MATLAB. The instrument is 

calibrated using a silicon line at 520 cm-1.  

2.2.3 Stimulated Raman Scattering Microscopy  

An upright laser-scanning microscope (DIY multiphoton, Olympus) with a 25x water 

object (XLPLN, WMP2, 1.05 NA, Olympus) was used for near-IR throughput. Stokes with a 

wavelength at 1031 nm, 6 ps pulse width, and 80 MHz repetition rate and synchronized pulsed 

pump beam with a tunable 720-990 nm wavelength, 5-6 ps pulse width, and 80 MHz repetition 

rate were supplied by the picoEmerald system (Applied Physics & Electronics) and coupled into 

the microscope. A high NA oil condenser (1.4 NA) was used for the collection of the Stokes and 

pump beams where the sample is mounted. For the water-immersion objective lens, a larger water 

droplet is placed on the glass cover slip of the sealed sample slide. The Stokes beam is blocked by 

a high O.D. shortpass filter (950 nm, Thorlabs) and transmits the pump beam onto a Si photodiode 

to detect the stimulated Raman loss signal. A lock-in amplifier at 20 MHz is utilized to terminate, 

filter, and demodulate the output current from the photodiode where the demodulated signal forms 

the image during the laser scanning as it is processed into the FV3000 software module FV-OSR 

(Olympus). The images were collected at 512 x 512 pixels using a dwell time of 80 µs/pixel. The 

images are saved as an OIR graphic file through the acquisition software by the Olympus 

microscope.  

The background image was taken at 1900 cm-1 and subtracted from all the SRS images 

using ImageJ software. For multichannel SRS imaging, the pump wavelength ( ) was tuned λpump
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so that the energy difference between the pump and Stokes beams were matched with the 

vibrational frequency (Ralhan, Chang et al. 2021) .   

2.2.4 Data Analysis  

The mathematical modeling operations were conducted using Origin, MATLAB, and 

ImageJ software. Scripts and functions used for processing the Raman spectra were self-written 

using built-in functions provided by MATLAB.  

The spectral pre-processing consists of several steps that include background removal, 

baseline correction, and vector normalization. Origin Lab and MATLAB software were utilized to 

import the raw spectra data. Background was subtracted, and the files were converted into an array 

where the spectra has been interpolated at every cm-1. The raw data was then graphed for 

verification, and the baseline correction was performed. The resulting spectra were vector 

normalized and averaged for each group to reduce the amount of noise on the graph of the 

biomolecular signals. Each spectral peak is assigned to the vibrations of a particular chemical bond 

or function group.  

Statistical significance was verified by analysis of variance, checking the mean of more 

than two groups that are significantly different from each other. The mean and standard deviations 

were calculated for all the investigated conditions. The data were analyzed using GraphPad Prism 

for Mac. Significant differences between the controls and treatment groups were compared using 

the two-way analysis of variance (ANOVA). The data that had p-values lower than 0.05 were 

identified as statistically significant. MATLAB software was used to process the data for 

multivariate analysis.  

2.3 Results 

2.3.1 DO-SRS Imaging of Newly Synthesized Lipids in Cancer Cells Regulated with Serine  
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To examine the effects of serine in cancer cells, we observed how lipid metabolism was 

influenced. Excess serine at 10x and 20x concentration was added to the growth media 

supplemented with 50% D2O. In addition, another cell group was deprived of serine by adding 

only 0.25x serine to serine-free growth media. Newly synthesized proteins and lipids can be tagged 

with metabolic precursors, which in this case we use deuterium as shown in Figure 2.2A. 50% 

D2O in cell culture media results in a distinct C-D Raman band in the “cell-silent” region from 

1800-2800 cm-1 (Figure 2.2B). With different serine concentrations in cell culture media, the C-D 

band showed differences between the control (1x serine) and each condition (Figure 2.2B). We 

obtained the spontaneous Raman spectra by focusing on lipid droplets specifically and observed 

that excess serine produced higher intensity signals at the C-D lipid and protein peaks at 2145 cm-

1 and 2175 cm-1, respectively. Moreover, excess serine conditions had greater amounts of total 

lipids within their cells based on the CH stretching region peak at 2850 cm-1 (See Supplemental 

Figure 2.5A), which is consistent with our previous experiment on the incorporation of excess 

aromatic amino acids (Bagheri, Hoang et al. 2021). For quantification, we used CD/CH as a 

ratiometric indicator to evaluate the amount of newly synthesized macromolecules that are 

normalized against any differences within the same cell sample (Figure 2.5B). There is a clear 

discrepancy in the CD lipid and protein turnover rates between the control and different serine 

concentrations for the spontaneous spectra. Depriving serine from cancer cells demonstrated 

reduced lipids and proteins compared to control by approximately 7% and 10%, respectively. Since 

these molecular bonds are present in our spectra, we used SRS imaging techniques to observe the 

cell morphology and changes for each condition to further understand the changes in lipid 

metabolism.  
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Figure 2.2 Heavy water labeling reveals newly synthesized lipids. 
A) Schematic diagram of deuterium oxide probing: Heavy water (D2O) is metabolically 
incorporated into cellular lipids and proteins when being added into cell culture media. 50% D2O 
is used for this experiment. B) Magnification of processed Spontaneous Raman spectra, 
specifically in the cell-silent region, when HeLa cells were treated with 50% D2O and regulated 
with serine at 0.25x, 10x, and 20x concentration. Spectrums were taken with the laser being 
focused on structures that correspond to lipid droplet organelles which were observed under a 
brightfield imaging system. Background spectrum from PBS was taken for each lipid droplet 
Raman spectrum which was subtracted before being normalized to 1900 cm-1, averaged, and 
baseline corrected. Deuterium-labelled lipid (CDL) and Deuterium-labelled protein (CDP) are the 
following peaks that are labelled, and these were observed more particularly to understand how 
changes in serine concentration and 50% D2O affect the lipid metabolism. C) Top row displays 
SRS images of HeLa cells taken at the total lipid channel: 2850 cm-1. The white arrows point 
towards the lipid droplet organelles. The middle row presents the DO-SRS images at the 2145 
cm-1 channel, representing newly synthesized (CD) lipids. The bottom row shows the ratiometric 
images of CDL/CHL which were generated to present the location of newly synthesized lipids. 
Cell units are selected, as outlined in white, to calculate the absolute intensity ratio between the 
control and experimental groups. D) Ratiometric analysis is performed to quantify the lipid 
turnover rate. 2-way ANOVA test is used to obtain p-values between each condition, 
****p<0.0001 and *p<0.05.  
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With the incorporation of D2O in culture media, DO-SRS was used to observe the newly 

synthesized lipids in HeLa cells (Figure 2.2C). Cells with 0.25x serine showed very little signal 

intensity and very dispersed lipid droplets compared to control and other experimental conditions. 

This could potentially be due to the inhibition of mTORC1 and activation of AMPK, so there is 

an increase in lipid oxidation thereby decreasing overall lipid content and promoting lipid droplet 

dispersion (Herms, Bosch et al. 2015, Tomar, Jana et al. 2019). Additionally, 0.25x serine caused 

cells to be relatively smaller in size and not as elongated as the control cells which can be due to 

the inhibition of cell growth and tumor survival (Polet, Corbet et al. 2016). Quantification 

confirmed that deprived serine cells have reduced newly synthesized lipids compare to the control 

by approximately 20% (Figure 2.2D). Previous studies have concluded that the trigger of AMPK 

can induce fatty acid oxidation and lipid droplet separation; however, we are able to confirm via 

DO-SRS that lipids are no longer being newly synthesized and cell growth is clearly being slowed 

down resulting in the impediment of cancer growth (Jones, Plas et al. 2005, Marcinkiewicz, 

Gauthier et al. 2006, Geeraert, Ratier et al. 2010, Herms, Bosch et al. 2015). Indeed, with AMPK 

being present, autophagy is also stimulated which can aid in the suppression of cancer-cell survival 

and induce cell death (Yun and Lee 2018).  

On the other hand, 10x and 20x serine concentrated cells showed extremely significant 

differences in newly synthesized lipids compared to the control cells (Figure 2.2C, D). Both 

experimental groups showed lipid droplets being clustered around the nucleus of the cell as pointed 

by the red arrows in Figure 2.2C. The C-D lipid channel also displayed a higher intensity in the 

10x and 20x serine cells, and the quantifications confirmed an approximate 60% increase in the 

excess serine conditions compared to the control (Figure 2.2D). Cells were generally more 

enlarged and near each other unlike the control and deprived serine groups. The increase in lipid 
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molecules and cell size can be inferred by the activation of mTORC1 as this trigger will cause 

lipid synthesis therefore leading to cancer cell growth survival and proliferation (Figure 2.1) 

(Fingar, Salama et al. 2002, Caron, Richard et al. 2015, Guridi, Kupr et al. 2016, Nguyen, Louie 

et al. 2017).  

2.3.2 Label-Free SRS Imaging of Lipid Subtype Distribution in vitro 

SRS microscopy has the ability for molecular specificity and subcellular resolution images; 

thus, we were able to distinguish between distinct spatial patterns of various lipid subtypes. It has 

been suggested that 2880 cm-1/2850 cm-1 ratio is a measurement for lipid lateral packing and 

conformational state (Choe, Lademann et al. 2016, Uematsu and Shimizu 2021, Li, Bagheri et al. 

2022). The close-packed arrangement of lipids is correlated with high values of this ratio which 

associates with high saturated lipid content (Matthews, Jirasek et al. 2010, Uematsu and Shimizu 

2021, Li, Bagheri et al. 2022). In contrast, the level of unsaturated lipid to total lipids in cells 

identifies with the ratio of 3010 cm-1/2850 cm-1 (Jamieson, Li et al. 2018, Bagheri, Hoang et al. 

2021). We utilized the label-free SRS imaging features at channels 2850 cm-1, 2880 cm-1, and 3010 

cm-1, allowing us to observe the differentiation in lipid subtypes with variations in serine 

concentrations. Ratiometric images were produced to understand how saturated and unsaturated 

lipids are distributed at 0.25x, 1x (control), 10x, and 20x serine in HeLa cells.  

The output displayed lipids being mainly confined with excess serine presented in cells 

(Figure 2.3A). SRS signal was very minimal in deprived serine cells, showing only the cell 

structure, proposing that macromolecular compositions are different for this cell condition 

compared to the control and excess serine groups. When a normal amount of serine is present as 

shown in the control case, their signal is higher, and lipids are present demonstrating that serine 

has a chemical and structural impact on HeLa cells. SRS ratiometric images demonstrated higher 
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saturated lipid content in 10x and 20x serine conditions unlike 0.25x serine cells which was largely 

reduced. Lipid droplets are clustered near the nucleus of the cells in excess serine cases indicating 

that the cells are under oxidative stress, so these organelles are being synthesized to protect the 

cell from further stress (Jarc and Petan 2019). Quantification of the ratiometric images showed 

significant increase between control and 20x excess serine cells by approximately 60%, and a large 

reduction between the 0.25x serine cells by 75% (Figure 2.3B). Previous studies have suggested 

that when cells become exposed to oxidative stress, lipid droplets tend to accumulate to protect the 

cell membranes from any peroxidation reactions (Bailey, Koster et al. 2015, Ackerman, Tumanov 

et al. 2018, Jarc and Petan 2019). This is to control the organelle homeostasis and membrane 

saturation to enable a longer supply of lipids for cell survival and energy production (Bailey, 

Koster et al. 2015, Jarc and Petan 2019). In our SRS images and quantifications, we observed a 

surplus of lipids clustered around the cell when subjected to excess serine, so these lipid droplets 

could be protecting the cell to promote proliferation and tumor progression.  
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Figure 2.3 Images obtained using SRS microscopy from saturated and unsaturated fatty acids to 
observe the lipid subtype changes in serine regulated cancer cells with statistical quantifications. 
A) SRS images at 2880 cm-1 of control, 0.25x serine, 10x serine, and 20x serine concentrated 
cells. The ratiometric images of 2880 cm-1/2850 cm-1 were processed to show the saturated 
lipids’ distribution and concentration throughout each individual cell unit. The images showed 
higher saturated lipids with 10x and 20x serine compared to the control condition. 0.25x serine 
cells displayed much lower saturated lipids throughout. In contrast, excess serine showed the 
lipids to congregate near the nucleus of the cells, whereas the control group showed saturated 
lipids dispersed around the cell very discretely. Depriving serine from the cancer cells resulted in 
very minimal saturated lipids, and they were not uniformly dispersed compared to other 
experimental groups. The distribution of saturated lipids is consistent in repeated experiments for 
all control and serine conditions. B) Quantification of saturated lipid (2880 cm-1) to total lipid 
(2850 cm-1) for HeLa cells showed significant differences. ****p<0.0001 and ***p<0.001 from 
2-way ANOVA test. C) SRS images at 3010 cm-1 of control, 0.25x serine, 10x serine, and 20x 
serine concentrated cells. The ratiometric images of 3010 cm-1/2850cm-1 were processed to 
evaluate the unsaturated lipids’ distribution and concentration throughout each cancer cell unit. 
Unsaturated lipids were largely reduced in deprived serine cells; however, they accumulated 
immensely in excess serine cells. These specific lipids are more clustered together near the 
nucleus similar to saturated lipids in both 10x and 20x serine HeLa cells. The control has some 
unsaturated lipids distributed, but it is more individual and separated compared to other test 
groups. The distribution of unsaturated lipids is consistent in repeated experiments for all control 
and serine conditions. D) Quantification of unsaturated lipid (3010 cm-1) to total lipid (2850 cm-

1) for cancer cells displayed large differences between each condition. ****p<0.001, 
***p<0.001, and *p<0.05 from 2-way ANOVA test.  
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Equivalent to saturated lipids, unsaturated lipids were substantially reduced in 0.25x serine 

cells but increased in excess serine cells compared to control cells (Figure 2.3C). Thus, total lipids 

were predominately minimized when cancer cells are deprived with serine but with more available 

serine, there is an increase in synthesized total lipids which can infer to the accumulation of 

reactive oxygen species (ROS) (Wang, Palmfeldt et al. 2019, Zhang and Boppart 2021). It has 

been previously suggested that polyunsaturated lipids are synthesized when ROS is elevated in 

response to oxidative stress (Wang, Palmfeldt et al. 2019, Cruz, Barreto et al. 2020, Zhang and 

Boppart 2021). Quantifications of the ratiometric images confirmed that deprived serine reduced 

unsaturated lipids by 18% while 10x and 20x increase in serine synthesized more lipids by 20% 

and 35%, respectively (Figure 2.3D). Like saturated lipids, the deprived serine cells show very 

minimal SRS signal of unsaturated lipids, and the lipid distribution is largely different than the 

control and surplus of serine in cells. Having an overabundance of serine showed lipids being 

compacted near the cell’s nucleus inferring that the HeLa cells are exhibiting some oxidative stress 

as they are relying on excess lipids for protection to survive and grow (Wang and Oram 2007, 

Cruz, Barreto et al. 2020, Zhang and Boppart 2021).  

The label-free SRS images displayed that depriving serine from cancer cells resulted in 

damaged lipid distribution and lower lipid aggregate compared to the control case, whereas adding 

a surplus of serine will produce greater lipid clusters compacted near the cell’s nucleus. Studies 

have suggested that exogeneous serine is necessary for the synthesis of membrane lipids such as 

unsaturated and saturated fatty acids as it is an important nutritional intake (Wang and Oram 2007, 

Esaki, Sayano et al. 2015). Our spontaneous results support this and further show that serine can 

continue to proliferate cancer further if excess amount is consumed, and there is lipid accumulation 

taking place with the overabundance of serine (See Supplemental Figure 2.5A). With label-free 
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SRS imaging, we can confirm our hypothesis in the changes of cancer cell lipid metabolism when 

serine is being regulated. The ratiometric images and quantifications showed how saturated and 

unsaturated lipids were enriched in 10x and 20x excess serine, and the cell morphology was larger 

and more stretched compared to the control and 0.25x deprived serine cells.  

2.3.3 SRS Imaging of Protein Metabolic Activity for Varied Concentrations of Serine in 

Cancer Cells 

Resembling lipid metabolism, we wanted to observe how protein was affected by the non-

essential amino acid serine in cancer cells. Since we were able to see a significant C-D protein 

peak in the Spontaneous spectra with significant quantification differences as previously discussed 

(See Supplemental Figure 2.5B), DO-SRS imaging was applied to observe the newly synthesized 

proteins for each experimental condition (Figure 2.4A). C-D protein signal is more intense when 

excess serine is added to cells while depriving serine resulted is almost no new protein synthesis. 

Compared to control, only 20x excess serine cells showed a higher protein signal by roughly 40% 

(Figure 2.4B). In contrast, depriving serine from cells reduced de novo protein synthesis by 

approximately 70%, making it remarkably different compared to the control group (Figure 2.4B). 

These results infer the possibility of autophagy inhibition from mTORC1 activation (Younce and 

Kolattukudy 2012) and an increase in insulin as the effect of serine has been previously suggested 

to elevate receptor numbers without changes in affinity (Galbraith and Buse 1981). Upregulation 

of insulin levels have implied ROS production and oxidative stress in addition to activating other 

stress-sensitive pathways (Evans, Goldfine et al. 2003, Ceriello and Motz 2004). Our results 

demonstrated that serine can indeed induce newly synthesized proteins promoting survival and 

growth in cancer cells.  
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Figure 2.4 SRS images of protein folding and Cytochrome c presence in cancer cells regulated 
with serine. 
A) SRS images of protein metabolic dynamics in HeLa cells. SRS images at 2930 cm-1 
demonstrate the total (CH) proteins. In the same region of interest, DO-SRS images visualized 
Deuterium-labelled protein (CDP) at channel 2175 cm-1. The ratiometric images of CDP/CHP 
were generated to display the newly synthesized proteins. Multiple cell units were selected to 
calculate the absolute intensities of CDP/CHP. B) Statistical analysis was performed for the 
ratiometric images, CDP/CHP, to compare the control and experimental conditions which resulted 
in significant outputs. ****p<0.0001, **p<0.01, and *p<0.05 from performed 2-way ANOVA 
test. C) SRS images of Cytochrome c distribution in HeLa cells were taken at the 1580 cm-1 
channel. The ratiometric images were evaluated at 1575 cm-1/2930 cm-1 to observe Cytochrome 
c’s distribution and concentration. Cytochrome c showed to be evenly distributed in both 10x 
and 20x serine groups, while its signal level was downregulated in the 0.25x serine condition. 
20x serine cells demonstrated to have more evenly distributed Cytochrome c compared to the 
control and deprived serine group. 10x serine cells have a better distribution of this protein 
compared to control, but it is more condensed than the 20x serine cells. D) Multiple cell units 
were selected to calculate the absolute intensities of 1575 cm-1/2930 cm-1. Large statistical 
differences were shown between each experimental condition. ****p<0.0001, **p<0.01 from 2-
way ANOVA test.  
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Using SRS microscopy, we imaged the Cytochrome c channel in HeLa cells treated with 

different serine concentration (Figure 2.4C). The spontaneous Raman spectra from Supplemental 

Figure 2.6A displayed a notable peak at 1575 cm-1 indicating the porphyrin ring of Cytochrome c 

(Kumamoto, Harada et al. 2018, Hniopek, Bocklitz et al. 2021, Li, Bagheri et al. 2022). The 

ratiometric analysis based on the Raman spectra showed notable differences between the control 

cells and excess serine cells by approximately 45% and a reduction in protein synthesis by around 

20% for 0.25x deprived serine cancer cells (See Supplemental Figure 2.6B). SRS imaging 

confirmed the Raman spectra results showing similar trends between each experimental condition 

and the control. We observed the most signal in 10x and 20x serine test groups whereas 0.25x 

deprived serine cells had almost no signal present. We normalized the intensity of 1575 cm-1 to 

the total protein level at 2930 cm-1 in order to analyze the subcellular level of Cytochrome c. As 

evident in Figure 2.4C, Cytochrome c is clearly present in cells that contain at least 1x serine levels 

(control) while reduction in serine concentration displays a depletion of this protein. In excess 

serine cases, Cytochrome c showed a consistent distribution of the protein throughout the cells 

especially towards the nucleus.  

Interestingly, the signal distribution between 10x and 20x excess serine differ significantly 

which was also verified quantitatively by approximately 35% (Figure 2.4D). Cells with 20x serine 

concentration showed a more compact formed of Cytochrome c while 10x serine and the control 

cells showed the protein signal to be more evenly dispersed inferring that Cytochrome c is probable 

to function in cancer development (Abramczyk, Brozek-Pluska et al. 2022). From our results, a 

concentration of 20x serine will cause a significant upregulation of Cytochrome c; therefore, 

resulting in faster cancer progression and cell growth. The notable changes in Cytochrome c levels 

between each condition demonstrates how mTORC1 regulates the synthesis of proteins when 
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amino acid levels are modified (Mukaneza, Cohen et al. 2019), and SRS imaging is a useful 

platform to visualize the metabolic changes and functions of the cells directly.  

Cytochrome c has two opposite functions in regards to cancer which include serving as a 

cell death biomarker in apoptosis and also being an essential protein to sustain life and respiration 

(Ow, Green et al. 2008). Since Cytochrome c is typically present in the mitochondria, its 

concentration reflects its contribution to apoptosis and oxidative phosphorylation (Abramczyk, 

Brozek-Pluska et al. 2022). With the signal being present at 1575 cm-1 for HeLa cells, both 

apoptosis and electron shuttling can take place which ultimately can lead to effective respiration 

(Vaughn and Deshmukh 2008). The release of Cytochrome c is suggested to cause apoptosis 

(Abramczyk, Brozek-Pluska et al. 2022) which is why depriving serine from cells causes not only 

a small signal in the 1575 cm-1 channel but also smaller and rounder cells. The evenly distributed 

Cytochrome c throughout the control and 10x excess serine cells demonstrates possible 

inflammation and cancer development (Garrido, Galluzzi et al. 2006, Gogvadze, Orrenius et al. 

2006). Thus, with SRS imaging, Cytochrome c can be used as a potential biomarker for detecting 

cellular damage and cell death in cancer diseases.  

2.4 Discussion 

Previous studies have suggested that many tumors cannot acquire enough serine from their 

environment (Sullivan, Mattaini et al. 2019, Hennequart, Labuschagne et al. 2021, Tajan, 

Hennequart et al. 2021, Zhao, Fu et al. 2021). Being a non-essential amino acid, serine derives 

from nutritional uptake and the serine synthesis pathway which comes from glycolysis (Kalhan 

and Hanson 2012, Gao, Lee et al. 2018, Hennequart, Labuschagne et al. 2021). Therefore, the 

variation in serine concentration has a great effect on the proliferation of cancer cells, particularly 

on lipid and protein metabolism, and understanding how much serine will affect the cell growth 
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and to what extent is imperative for patient diagnosis and treatment. Spontaneous Raman 

spectroscopy and SRS microscopy techniques were used to evaluate the metabolic effects of 

increased and decreased serine in HeLa cells. Heavy water was utilized to track de novo lipid and 

protein synthesis (Figure 2.2A) since carbon-deuterium bonds will produce distinct signals in the 

spectra’s “cell-silent” region (Figure 2.2B). Using SRS imaging, we can recognize how even non-

essential amino acids, such as serine, can play a vital role in cancer growth and progression and 

provide an alternative advance imaging platform to diagnose these diseases more efficiently.  

Biomolecules, such as lipids and proteins, have demonstrated to be viable indicators to 

measure disease progression (Heikal 2010). With DO-SRS, we were able to observe a significant 

increase in de novo lipogenesis when there was an increase in exogenous serine, and a remarkable 

decrease when cells were deprived from serine compared to the control group (Figure 2.2C). 

Saturated and unsaturated lipids were visualized at their corresponding wavenumbers to see how 

this amino acid affected these lipid subtypes (Figure 2.3). Ratiometric images were analyzed and 

quantified to evaluate a similar trend as the C-D lipids which can infer that serine can cause an 

oxidative imbalance when there is too much or not enough within cells. The increase in both 

saturated and unsaturated lipids especially the clusters around the cells when exposed to excess 

serine can be because the lipid droplets are protecting the cell to promote further progression and 

proliferation (Jarc and Petan 2019). Indeed, the surplus of lipids is essentially maintaining 

organelle homeostasis to allow for a longer cell survival and an increase in energy creation (Bailey, 

Koster et al. 2015). Depriving serine demonstrated a severe reduction in lipids potentially because 

mTORC1 becomes inactive and AMPK becomes active as a result, so ROS can be accumulated in 

response to this oxidative stress (Saxton and Sabatini 2017, Zhao, Hu et al. 2017, Mossmann, Park 

et al. 2018, Wang, Palmfeldt et al. 2019, Zhang and Boppart 2021).  
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Similar Raman techniques were applied to evaluate how protein metabolism was 

influenced with changes in serine concentration in HeLa cells. Like lipids, newly synthesized 

proteins were increased when excess serine was added in culture media compared to the control 

(Figure 2.4A). Moreover, 0.25x serine in cells downregulated the protein signals significantly for 

both the C-D and total protein signal. Because mTORC1 is prone to activation from serine 

oversupply, autophagy becomes inhibited and protein synthesis can increase from oxidative stress 

taking place, stimulating cancer cell growth (Galbraith and Buse 1981, Younce and Kolattukudy 

2012). In addition, Cytochrome c has been shown to be involved in the development of cancer 

diseases (Abramczyk, Brozek-Pluska et al. 2022), and we were able to observe the Raman peak at 

1575 cm-1, which corresponds to Cytochrome c, at different levels with the incorporation of varied 

serine concentration (See Supplemental Figure 2.6). Using SRS imaging, we visualized how the 

protein signal was more evenly dispersed between 10x and 20x excess serine cells, meaning that 

20x serine concentration could be causing even faster cancer progression as Cytochrome c is 

highly upregulated (Figure 2.4C). Cytochrome c was minimally present when serine was only 

present at 0.25x concentration with cells also being smaller in size which could elude to cell death 

(Nunez, Sancho-Martinez et al. 2010). With Cytochrome c distributed mostly in the mitochondria, 

its accumulation reflects oxidative phosphorylation and apoptosis (Cai, Yang et al. 1998, 

Abramczyk, Brozek-Pluska et al. 2022). Our results can conclude that Cytochrome c can be used 

as a biomarker for cellular damage in cancer, and that manipulating serine will result in either an 

upregulation or reduction in this protein synthesis.  

Overall, our study applies Raman techniques to reveal the effects of lipid and protein 

metabolism in cancer cells when there is a lack or oversupply of exogenous serine. Using 

spontaneous Raman, D2O-probed and label-free SRS imaging, we were able to observe and 
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confirm our results while also using statistical analysis to evaluate quantitatively how cancer cells 

were affected with this amino acid. Heavy water allowed us to locate molecules in situ, and label-

free imaging showed how lipid subtypes and specific proteins directly modify cancer metabolism. 

Following experiments can potentially look at how different cancer subtypes such as breast cancer 

metabolism are affected by various serine concentrations. It has been considered that breast cancer 

cells depend on increased serine that is induced by particular proteins (Possemato, Marks et al. 

2011). Furthermore, it would be interesting to observe how environmental signals, such as lack of 

oxygen, can influence the lipid and protein metabolic dynamics of cancer cells when serine is 

downregulated in cancer cells. Hypoxic stress is another rationale behind cell death with minimal 

serine, suggesting that extracellular serine is necessary for cell growth (Engel, Lorenz et al. 2020); 

however, it is unclear how much serine is required for tumor cells to proliferate and metastasize 

when exposed to minimal oxygen. Altogether, Raman and DO-SRS imaging have shown to exhibit 

potential techniques in monitoring the direct metabolic changes in cells that will decipher the 

functions between metabolism and cancer diseases.   
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2.5 Supplemental Figures 

 

 
Figure 2.5 Spontaneous Raman spectra using the parameters the following parameters: 90 
second acquisition time and accumulation of 3. 
A) Raman spectra of the CH region (2700 cm-1 – 3100 cm-1) obtained from control and 
experimental conditions: 0.25x serine, 10x serine, and 20x serine. B) Quantifications of the mean 
ratiometric results from CDL and CDP peaks for HeLa un cells under control and regulated serine 
groups. ****p<0.0001, ***p<00.1, **p<0.01 from 2-way ANOVA test.  
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Figure 2.6 Spontaneous Raman spectra ratiometric analysis for Cytochrome c to total protein. 
A) Spectra showing the peak at 1575 cm-1, corresponding to Cytochrome c for HeLa cells treated 
under different serine conditions in culture media. B) Quantification of Cytochrome c (1575 cm-

1) to total protein (2930 cm-1) for cancer cells shows significant differences between control and 
deprived and excess serine groups. ****p<0.001 and ***p<0.001from 2-way ANOVA test.  

Chapter 2, in full, is currently being prepared for submission for publications of the 

material. Bagheri, P.; Shi, L. The thesis author was the primary investigator and author of this 

material. 
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CONCLUDING REMARKS AND FUTURE PERSPECTIVE 

Various studies in the past years have indicated the impactful roles of amino acids in cancer 

cell metabolism. Amino acids function in different pathways that can feed cells and provide 

additional components for cancer cell proliferation. Both essential and nonessential amino acids 

have shown influences on lipid and protein syntheses in addition to influencing pathways that 

affect ROS homeostasis and regulation. Inhibiting amino acids has shown to result in successful 

cancer medications in vitro, but challenges for the clinical settings still exist.  

With high resolution and sensitivity, the non-invasive imaging technique of Raman 

scattering spectroscopy/microscopy can be used as an eminent tool and replace common methods 

such as MS- and MALDI-based spectroscopy for metabolic imaging. With integrations of 

deuterium oxide probing, we have successfully visualized newly synthesized lipids and proteins 

in cancer cells and their alterations regulated by amino acids. We are able to gain information such 

as dynamic tracing and molecular quantifications in more depth compared to other conventional 

tools. Raman imaging has shown to be a viable early diagnostic imaging technique for complex 

diseases such as cancer, and Raman modalities are likely to be optimized with higher signal 

intensity and a larger scale for imaging. 

For further investigation of metabolic imaging in cancer cells, the current platforms can be 

utilized for analyzing how environmental signals, such as the lack of oxygen, influence the 

metabolic activity of cells. Understanding the interplay between oxygen levels and amino acids is 

another area of study that has not been visualized closely with these non-invasive techniques. 

Indeed, it would be interesting to compare different cancer cell lines with the manipulations of 

amino acids to see if similar results will be present as seen in HeLa cells which would be useful 

information for clinical applications. On the other hand, this platform can be extended for 
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differentiating lipid subtypes in cells, by expanding the spectral library of lipid subtypes. This will 

allow us to unravel the particular lipid subtypes that are regulated by various types of amino acids. 

We envision broad applications of the SRS and DO-SRS platform for subcellular metabolic 

imaging for early diagnosis of cancer and other diseases.  
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