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Abstract

Advanced Learning, Estimation and Control in High-Precision Systems

by

Minghui Zheng

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Systems with fast self-learning ability, high precision, and effective vibration attenuation
play key roles in many areas including advanced manufacturing, data-storage systems, micro-
electronic systems, and medical robotics. This dissertation focuses on three topics to achieve
greater autonomy and accuracy in high-precision systems: (1) iterative learning control
(ILC), (2) vibration estimation and (3) vibration control.

ILC is an effective technique that improves the tracking performance of systems that
operate repetitively by updating the feedforward control signal iteratively from one trail to
the next. The key in the design of ILC is the selection of learning filters with guaranteed
convergence and robustness, which usually involves lots of tuning effort especially in high-
order ILC. To facilitate this procedure, this dissertation presents a systematic approach to
design learning filters for arbitrary-order ILC with guaranteed convergence, robustness and
ease of tuning. The filter design problem is transformed into an H-infinity optimal control
problem for a constructed feedback system. The proposed algorithm is further advanced
to the one that explicitly considers system variations based on µ synthesis. High-order
ILC enables the system to improve the performance through learning from more memory
data with higher efficiency and guaranteed robustness. The proposed ILC design method is
applied to a laboratory testbed of the Nikon wafer scanning system, and holds the potential
for other applications such as intelligent manufacturing and rehabilitation systems that need
considerable iterations of learning.

High-precision systems are usually subjected to high-frequency vibrations. Vibration es-
timation and suppression play key roles in high-precision systems. This dissertation explores
two techniques of vibration estimation: disturbance observer (DOB) and extended state
observer (ESO). A generalized DOB design procedure is proposed for a multi-input-multi-
output (MIMO) system based on H-infinity synthesis. The proposed technique releases
the DOB design from the plant inverse, assures the stability and minimizes the weighted
H-infinity norm of the dynamics from the disturbance to its estimation error. A phase com-
pensator is proposed for the ESO to push its estimation bandwidth from low frequency to
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high frequency; the ESO’s bandwidth is further pushed beyond the Nyquist frequency by
including the nominal model of the disturbance dynamics.

Based on the frequency-domain characteristics of the vibrations which can be obtained
either from vibration sensors or vibration estimators, this dissertation presents a systematic
frequency-domain design methodology for sliding mode control (SMC) to effectively suppress
vibrations as well as keep excellent transient performance. Specifically, a frequency-shaped
sliding mode control is proposed by introducing the loop-shaping technique into the design
of the sliding surface. The sliding surface is optimized based on H-infinity synthesis with
guaranteed stability and desired frequency characteristics. This work extends SMC’s appli-
cations to high-precision control systems which have demanding requirements in both time
and frequency domains, and hold the potential to break some limitations of linear controls.
The proposed vibration estimation and suppression techniques are applied to high-precision
high-speed data storage systems, and significantly enhance vibration attenuation while main-
taining excellent transient performance.
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Chapter 1

Introduction

1.1 High-Precision Systems

High-precision systems play essential roles in current industries including manufacturing and
information storage. This dissertation focuses on two kinds of high-precision systems: hard
disk drives (HDDs) and wafer scanners.

Hard Disk Drive

Data cloud and mobile media are opening a new market for data storage systems. HDD is
one of the major data storage systems nowadays because of its high capacity and low cost.
Figure 1.1 illustrates a single-stage HDD system including a platter, a spindle, a voice coil
motor (VCM), an actuator arm, and a read/write motion head. There are many data tracks
with high density on the platter. The head is driven by the VCM to read the data from
the platter. HDD is a high-speed high-precision system that has demanding requirement for
both the accuracy and robustness of the servo controller for the recording head. Figure 1.2
shows a famous analogy among the disk and other systems such as the human hair, dust
particles and smoke particles to help understand the precision level of the disk space.

Figure 1.1: Illustration of hard disk drives
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Figure 1.2: Hard disk space

A full-order HDD plant can be described by the following transfer function

P (p) =
kykv
p2

+
4∑
i=1

(
ωi

2

p2 + 2ξωip+ ωi2

)
(1.1)

where p is the Laplace variable. It is known as the Benchmark model for the single-stage
HDDs [1]. It is from the identification of an actual experimental HDD setup (rotation speed:
7200 rpm; number of servo sector: 220; sampling time: Ts=3.7879×10−5 s; acceleration
constant: kv=951.2 m/(s2A); position measurement gain: ky=3.937×106 track/m). The
four resonance frequencies ωi’s are 4100 Hz, 8200 Hz, 12300 Hz, and 16400 Hz; and the
corresponding damping factor ξ is 0.02. More details are provided in [1]. The bode plot of
the HDD model is provided in Figure 1.3. High frequency resonances are usually attenuated
by notch filters.
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Figure 1.3: Full-order model of HDD [1]
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There are two control tasks in HDDs: track seeking and track following, as shown in
Figure 1.1. The track-seeking task is to make the head fast and smoothly switch from one
data track to the target data track with small overshoot. The track-following task is to
make the head precisely follow the target data track with good robustness to vibrations.
During both the track-seeking and track-following processes, the head is subject to large
external high-frequency disturbances. These disturbances may excite the resonances of HDDs
and seriously affect the servo performance. Therefore, it is of fundamental importance to
attenuate the influence of such high-frequency disturbances.

Figure 1.4: Dual-stage hard disk drives

To increase the servo bandwidth of HDDs and enhance vibration suppression, recently
a piezoelectric actuator made from lead zirconate titanate (Pb[Zr(x)Ti(1-x)]O3, or PZT)
has been added to the end of the VCM stage in dual-stage HDDs, as shown in Figure 1.4.
With the PZT actuator, the HDD plant becomes a dual-input-single-output (DISO) system.
Furthermore, the PZT actuator has a limited stroke and can be easily saturated in presence
of large vibrations. Therefore, although such an additional actuator allows higher precision
and accuracy of HDDs, it brings more challenging and interesting control topics as well.
These topics include the identification of varying resonances without disabling the PZT loop
[2], the optimal allocation of the vibration compensation between the VCM and PZT loops
[3, 4], and the anti-windup schemes to reduce the saturation in the PZT loop [5–7].

Wafer Scanner

Wafter scanner plays a key role in high-precision semiconductor manufacturing. It is for the
photography that copying the circuit pattern from a mask to a wafer. The position accuracy
can be less than 1 nm. Figure 1.5 shows a laboratory testbed for the wafter scanner in the
Mechanical Systems and Control (MSC) laboratory, University of California, Berkeley. The
main components include the reticle stage, the wafter stage, the counter mass, and the laser
interferometer. The positions of the stages are measured by the laster interferometers. The
controller is realized by a LabVIEW real-time system with field programmable gate array
(FPGA) with a sampling frequency of 2500 Hz. More detailed descriptions of the testbed
can be found in [8]. Figure 1.6 shows one standard scanning trajectory which is repetitive
over iterations.
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Figure 1.5: Laboratory testbed for wafer scanning systems
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Figure 1.6: One scanning trajectory

1.2 Motivation and Contributions

Iterative Learning Control

Many high-precision mechanical systems in manufacturing operate repetitively. The repet-
itive nature motivates a powerful learning algorithm: iterative learning control (ILC). It
updates the feed-forward control signal iteratively based on the memory data from previous
iterations, aiming to suppress repetitive disturbances and improve the tracking performance
of the systems.

ILC has been applied to a variety of industrial systems including manipulators [9–12],
positioning stages [13, 14], HDDs [15, 16] and wafer scanning systems [8, 17, 18]. Reference
[19] provided detailed ILC analysis with applications to various industrial areas. The key
and main challenge in ILC lies in the design of learning filters with guaranteed convergence
and robustness, which usually involves lots of tuning especially in the design of high-order
ILC that utilizes more memory data.

To facilitate the design procedure, this dissertation presents a systematic framework
to synthesize arbitrary-order ILC with guaranteed convergence and ease of tuning. The
learning filter (matrix) design problem in ILC is transformed into an H-infinity optimal
control problem for a constructed feedback system. This methodology is proposed directly
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in iteration-frequency domain based on the infinite impulse response (IIR) systems instead
of the finite impulse response (FIR) systems to incorporate more general dynamic systems
into learning filters and gain more efficient computation. Detailed design procedure and
convergence analysis are provided. This framework is further improved through µ synthesis
to explicitly incorporate system variations. The proposed framework has produced promising
results in the design of ILC with arbitrary order and is readily to be extended to multi-input-
multi-output (MIMO) systems.

Vibration Estimation

High-precision systems including HDDs and wafer scanners are very sensitive to vibrations.
These vibrations usually have large peaks and may significantly degrade the precision and
accuracy. Therefore, it is of fundamental importance to attenuate the influence of such vi-
brations in high-precision systems. Various approaches have been proposed for vibration
estimation and suppression in the existing literature. These approaches can be categorized
into two groups: feedforward approach and feedback approach. The former one is gener-
ally dependent on known disturbance dynamics or measurements by sensors [20–22]. The
later one generally combines observers and control algorithms [23–25] to estimate, compen-
sate and suppress disturbances. Some reviews on these algorithms are provided in [26–28].
This dissertation explores two feedback approaches to estimate vibrations without vibration
sensors: disturbance observer (DOB) and extended state observer (ESO).

(a) Disturbance observer

DOB is a powerful technique to estimate and compensate disturbances in high-precision
systems. It is a plant-inverse based technique and has many industrial applications such as
HDDs [29, 30], power-assist electric bicycles [31], wafer scanning systems [32], manipulators
[33], and autonomous vehicles [34]. The general DOB design procedure includes two steps:
(a) design a stable inverse of the plant; and (b) design a Q-filter to maintain the causality and
robustness. However, designing a stable inverse of the plant is usually difficult for MIMO and
non-minimum phase systems. It is rather challenging to design a suitable plant inverse and
apply DOB technique to the systems with the inputs of higher dimension than the outputs.

To unnecessitate plant inverse, this dissertation presents a DOB design procedure for
a general MIMO system. The proposed DOB minimizes the weighted H-infinity norm of
the dynamics from the disturbances to its estimation error, and assures the stability. This
DOB design procedure is applicable not only to the square systems, but also to the systems
with the inputs of higher dimension than the outputs. Furthermore, being relaxed from
the restrictions of the conventional DOB structure, the proposed approach has more design
flexibilities and is promising to achieve better performance than the conventional DOB.
It is also worth mentioning that the proposed DOB is still an add-on algorithm aiming
to estimate and compensate the disturbances without redesigning the baseline feedback
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controller. Detailed evaluation has been performed on a dual-stage HDD plant that has
dual inputs and single output.

(b) Extended state observer

ESO is an alternative promising method to estimate the disturbances by treating them as
state variables. ESO was proposed in [35], generalized and implemented in discrete time
in [36]. The effectiveness of ESO for a large class of disturbances was demonstrated by
simulations and experiments [37–40]. ESO has several advantageous properties. It can
be incorporated into linear and nonlinear systems. It does not require an accurate plant
model or its inverse. ESO can estimate a large class of disturbances without changing the
observer’s structure and parameters. Because of such properties, ESO has been combined
with both linear and nonlinear controllers and applied to various systems [41–43]. The
existing ESO works well for slowly time-varying or low-frequency disturbances; however,
such good performance is not inherited to fast time-varying or high-frequency vibrations.
The challenge that limits its performance bandwidth comes into two: (1) phase loss caused
by both the plant and the ESO itself; (2) sensor’s sampling frequency.

This dissertation presents two approaches to extend ESO’s performance range from low
frequencies to high frequencies, and even beyond the Nyquist frequency when the vibration
dynamics is available. Firstly, a phase compensator is proposed to recover the phase loss
in standard ESO within certain frequency range; such compensated ESO provides accurate
estimates for both the states and the vibrations; secondly, a multi-rate observer is proposed
to incorporate the nominal dynamics of the vibrations and is able to estimate both the state
and the vibrations beyond the Nyquist frequency.

Nonlinear Vibration Control

In HDDs and other modern high-precision motion control systems, high-frequency vibration
suppression is always a challenging topic. It becomes even worse when there exist multiple
large peaks in the vibration spectrum. Besides the estimation of vibrations and system be-
haviors, feedback control algorithms have to be designed properly for vibration suppression.
Traditional linear control algorithms, such as loop shaping, linear quadratic regulator (LQR),
and H2/H∞ robust control, still dominate high-precision systems because of the comprehen-
sive and intuitive design methodology in frequency domain. Loop-shaping technique aims to
design certain filter which is shaped to mitigate the performance degradation at specific fre-
quencies [44]. The LQR algorithm minimizes certain weighted cost function which includes
the terms of the tracking error and the control effort [45, 46]. The H-infinity algorithm min-
imizes the effect of the vibrations to the tracking error, and has good robustness to external
vibrations [47, 48].

One limitation of linear time-invariant (LTI) feedback control is the ‘waterbed’ effect
as described in [49]. Another problem of linear control in HDDs is the switch of control
algorithms between track seeking and track following. To unify different tasks into one
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control scheme and reduce the ‘waterbed’ effect, nonlinear control has become popular in
HDD industry [50]. Specifically, sliding mode control (SMC) has been modified and applied
to HDD systems for its fast convergence and robustness to external disturbances [51–54].
Most of the existing literature utilizes SMC to improve the transient performance when
the track seeking is switched to the track following. These SMC algorithms are designed
and analyzed in time domain without considering the frequency-response characteristics
of the closed-loop systems, which are critically important for high-precision systems that
are subject to high-frequency vibrations. Therefore, it makes significant sense to explicitly
consider frequency-domain performances of the closed-loop systems when designing SMC,
which is rather challenging due to the nonlinearity of SMC.

The gap between the nonlinear systems and frequency analysis limits the application of
intuitive frequency-shaping techniques into SMC, which motivates several new prospectives
to the research on SMC. This dissertation presents two frequency-shaped SMCs utilizing ei-
ther the root locus technique or the H-infinity synthesis in robust control theory. The former
one is effective and easy to implement especially when there is only one peak in the vibration
spectrum; the latter one is a more comprehensive framework to design the sliding surface
in frequency domain. The shaping filter is considered as an inner loop feedback controller,
and the dynamics of the sliding surface is augmented into a feedback system. With this
idea, the sliding surface design problem is formulated as a convex H-infinity optimization
problem with linear matrix inequality (LMI) constraints, and the stability of the sliding
surface can be guaranteed in the presence of disturbances. The resulting shaping filter mini-
mizes the weighted H-infinity norm of the sliding dynamics and thus minimizes performance
degradation at the frequencies where the servo performance is seriously degraded by large
disturbances.

The proposed H-infinity based frequency-shaped SMC reveals different insights into SMC,
guarantees both the stability and the desired frequency characteristics of the sliding surface
dynamics in the presence of vibrations, and provides frequency-dependent control allocation.
Furthermore, an explicit sub-optimal filter is obtained to avoid on-line optimization when
the vibrations’ frequency characteristics change over time or among different disturbance
sources. Both the SMC algorithms and the shaping filters are designed in discrete time, and
thus can be readily implemented on actual mechanical systems. This theoretical methodology
has been evaluated on HDDs, and is potentially applicable to other advanced mechanical
systems such as industrial manipulators whose performance is extensively limited by strong
nonlinearities and vibrations introduced by flexibility.

1.3 Dissertation Organization

The remainder of the dissertation is organized as shown in Figure 1.7. Chapter 2 presents a
systematic framework to design arbitrary-order ILC in frequency domain; it is a feedforward
control technique to improve the tracking performance over iterations when the reference is
repetitive. Chapters 3 and 4 present vibration estimation techniques. Chapter 3 presents
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a generalized design procedure for DOB which estimates the disturbances of the system
without the explicit inverse of the plant. Chapter 4 presents two techniques to increase the
estimation bandwidth of ESO for both the state and the disturbance estimation. Chapters
5 and 6 present frequency-shaped SMC algorithms based on the root locus technique and
the H-infinity synthesis, respectively. The former one is easy to implement, and the stability
can be easily guaranteed when the vibrations have single peak frequency; the latter one is a
systematic framework to design the optimal shaping filter with guaranteed stability when the
vibrations have one or more peak frequencies. Chapter 7 presents the proposed frequency-
shaped SMC based on the estimators for both the states and the vibrations. Chapter 8
concludes this dissertation and discusses some future topics.

Figure 1.7: Dissertation organization
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Chapter 2

Iterative Learning Control

2.1 Introduction

Iterative learning control (ILC) is an effective technique to suppress repetitive disturbances
and improve the tracking performance of systems that operate in a repetitive manner. It
tunes the feedforward control signal iteratively from one trail to the next. ILC has been
applied to a variety of industrial problems. One main challenge in ILC is to design learning
filters to guarantee both the tracking error convergence and the robustness to system vari-
ations. A common design approach is based on the pseudo-inverse of the plant dynamics,
which may be hard to obtain, or introduce a sensitivity problem to unmodeled dynamics
[55]. An alternative approach with little tuning effort was proposed based on the H∞ optimal
control theory [56, 57]. This method was further improved by µ-synthesis technique to ex-
plicitly take system variations into account with acceptable compromise of the convergence
rate [58–61]. Comprehensive reviews of the basic formulations of ILC, its variations and the
frequency-domain design approaches are provided in [62–65].

Most research efforts for the H∞/µ-based approach have focused on the first-order ILC.
Recently the high-order ILC that utilizes more data from previous iterations has gained in-
creasing attention. Compared to the first-order ILC, the high-order ILC has more flexibilities
when designing learning filters and is promising to achieve better performance such as faster
tracking or additional robustness to some non-repetitive disturbances [66–70]. Despite such
favorable performances, designing multiple learning filters is a difficult task with even more
tuning efforts in the high-order ILC. To reduce such efforts, similar to the first-order ILC
case, H∞ synthesis was utilized to design learning filters in the high-order ILC [71, 72], in
which the algorithms were proposed in the super-vector framework based on a finite impulse
response (FIR) system and the lifting technique. However, the frequency-domain design
approach for high-order ILC has not been fully investigated in the existing literature.

This chapter develops a systematic frequency-domain design framework for high-order
ILC based on the H∞/µ synthesis to fill in the knowledge gap [73]. Because the algorithm
is designed in frequency domain, and every iteration is assumed to have infinite horizon, the
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systems in this chapter are represented by infinite impulse response (IIR) filters, which have
been extensively studied in control theory and are easier for implementation. Specifically,
a systematic approach of designing an arbitrary-order ILC algorithm is proposed in the
iteration-frequency domain based on an IIR system. The learning filters are generated off-line
through designing an H∞ optimal controller for a constructed feedback system. A µ-synthesis
based ILC is also developed to explicitly consider system variations. The effectiveness of
the proposed ILC algorithms is demonstrated on a wafer scanning testbed through both
simulations and experiments. The main contribution of the work presented in this chapter
lies in the novel frequency-design approach with systematic inclusion of both first-order and
high-order ILC.

2.2 Standard ILC

Consider a general discrete-time linear time invariant (LTI) system

y = P (u+ d) (2.1)

where y is the output, u is the control signal, d is the disturbance, and P is the plant. P
can be described either by an FIR model:

P = h0 + h1z
−1 + h2z

−2 + · · · (2.2)

or by an IIR model:

P =
b1z
−1 + b2z

−2 + ...+ bnz
−n

1 + a1z−1 + a2z−2 + ...+ anz−n
(2.3)

where z is the discrete frequency domain operator. As mentioned in the introduction, gen-
erally ILC is designed based on the FIR model (2.2); alternatively, this chapter designs ILC
based on the IIR model (2.3) that may include feedback terms and is more efficient for
practical implementation.

The structure of the ILC algorithm for the system in (2.1) is shown in Figure 2.1, where
the reference r is assumed to be repetitive over iterations. e=r−y is the tracking error,
and uf is the feedforward control signal that is refined by the ILC algorithm iteration by
iteration. C is a feedback controller. u=C(uf + e) is the total real-time control signal. Use
j to index the iterations. By assuming that the end time of each iteration is at infinity, the
tracking error during the jth iteration is

ej = Tuu
f
j + Trr + Tddj (2.4)

where Tu, Tr, and Td are the closed-loop transfer functions from uf to e, r to e, and d to e,
respectively,

Tu = −(1 + PC)−1PC

Tr = (1 + PC)−1

Td = −(1 + PC)−1P

(2.5)
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Figure 2.1: Control system with ILC.

A standard first-order ILC is designed as follows,

ufj+1 = Q(ufj + Lej) (2.6)

where the filter Q and the learning filter L are to be designed. Substituting Equation (2.6)
into Equation (2.4), we have

ej+1 = Tu[Q(ufj + Lej)] + Tddj+1 + Trr

= Q(1 + TuL)ej + Tr(1−Q)r

+ Td(dj+1 −Qdi)
(2.7)

Assuming that the disturbance d is consistent through iterations, i.e., dj+1 = dj, Equa-
tion (2.7) becomes

ej+1 = Q(1 + TuL)ej + Tr(1−Q)r + Td(1−Q)d (2.8)

A sufficient condition to guarantee the stability of Equation (2.8) with respect to ej is

‖Q(1 + TuL)‖∞ < 1 (2.9)

To eliminate the tracking error, ideally Q=1, and Equation (2.8) becomes

ej+1 = (1 + TuL)ej (2.10)

In this case, if ‖1+TuL‖∞<1, ej+1 converges to zero monotonically over iterations. However,
it is usually difficult to find a L such that |(1+TuL)(jw)|<1 is achieved over all frequencies.
A major challenge comes from system uncertainties in Tu which are usually large at high
frequencies. Therefore, to obtain robustness against system uncertainties and variations,
instead of setting Q=1, Q is often designed as a low-pass filter. As a compromise, this intro-
duces the effects of Tr(1−Q)r and Td(1−Q)d, as expressed in Equation (2.8). Nevertheless,
the reference r is usually a low-frequency signal, so that Tr(1−Q)r is almost zero. The dis-
turbance d, on the other hand, usually contains high-frequency components, which leads to
a nontrivial Td(1−Q)d.
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In general, a trade-off exists when designing Q: the robustness to system variations
requires a small gain of Q at high frequencies, while the disturbance rejection desires a high
bandwidth of Q. To address this trade-off effectively, we design ILC in two steps: (1) design
L through the minimization of ‖(1+TuL)W‖∞, where W is the weighting filter to ‘shape’ the
expected frequency response of (1+TuL)(jw); (2) design Q to guarantee ‖Q(1+TuL)‖∞<1.

2.3 First-order ILC Based on H-infinity Synthesis

The learning filter (denoted as L∞ in this section) design problem can be formulated as an
H∞ optimization problem:

min
L∞
‖(1 + TuL∞)W‖∞ (2.11)

where W is a frequency-dependent weighting filter to provide additional design flexibilities
and mitigate the trade-off in the design of Q (described in the end of Section II). This
section shows that the optimization problem (2.11) can be solved by transforming it into an
H∞ optimal control problem. To do so, a fictitious feedback control system is constructed
in Figure 2.2. Let Tzw denote the closed-loop transfer function from z to w, i.e., Tzw ,
Lf (M,L∞), where Lf (·) is the lower linear fractional transformation (LFT) and M is defined
in Figure 2.2. The following is to show that Tzw is exactly the transfer function whose H∞
norm is the one to be minimized, i.e.,

Tzw = (1 + TuL∞)W (2.12)

From Figure 2.2, [
w
g

]
= M

[
z
v

]
=

[
W Tu
W 0

] [
z
v

]
v = L∞g

(2.13)

Then

w = Wz + Tuv = Wz + Tu(L∞g)

= Wz + TuL∞(Wz) = (1 + TuL∞)Wz
(2.14)

Therefore, Equation (2.12) holds.
Assume Tzw has the following state-space realization,

Tzw v

[
Ac Bc

Cc Dc

]
(2.15)

The H∞ optimization problem (2.11) becomes designing a fictitious feedback ‘controller’ L∞
to minimize ‖Tzw‖∞, i.e.,

min
L∞,γ

γ

|λi(Ac)| < 1, ∀i
‖Tzw‖∞ < γ

(2.16)



CHAPTER 2. ITERATIVE LEARNING CONTROL 13

Figure 2.2: Constructed feedback system for first-order ILC

where λi(Ac) is the ith eigenvalues of Ac.
A standard method of solving the optimization problem (2.16) is transforming it into

a convex optimization problem with linear matrix inequality (LMI) constraints [74], which
can be efficiently solved thereafter. Once L∞ is obtained, a Q is designed to guarantee
‖Q(1+TuL∞)‖∞<1.

2.4 First-order ILC Based on Mu Synthesis

Based on the analysis in Section III, this section introduces a technique of designing a
robust ILC algorithm based on µ synthesis. In many related papers, the system uncertainty
is lumped as Tu = T̂u(1+ÑT∆T ), where T̂u is the nominal closed-loop response from uf to e,
∆T is the unknown dynamics (bounded) and ÑT is a weighting filter. Such a formulation,
however, is difficult to be explicitly related to the uncertainties in the actual plant. In this
chapter, the uncertainty is assumed explicitly in P , as shown in Figure 2.3, i.e.,

P (∆) = P̂ (1 + Ñ∆) (2.17)

where P̂ is the nominal model, ∆ is the unknown dynamics with ‖∆‖∞<1, and Ñ is the
weighting filter (system dependent) to characterize ∆ over different frequencies. The multi-
plicative uncertainty model in Equation (2.17) can capture a wide variety of plant variations.
As shown in Figure 2.3, with the uncertainty described in Equation (2.17), Tu(∆) becomes

Tu(∆) = Fu(H,∆)

= H21∆(I −H11∆)−1H12 +H22

(2.18)

where Fu(·) is the upper LFT, and H is defined as[
h
y

]
=

[
H11 H12

H21 H22

] [
s
uf

]
(2.19)

with

H11 = −Ñ(1 + P̂C)−1CP̂ H12 = Ñ(1 + P̂C)−1C

H21 = (1 + P̂C)−1P̂ H22 = (1 + P̂C)−1P̂C
(2.20)
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Figure 2.3: Uncertainties in P .

Similar to the formulation of H∞-based ILC, the following optimization problem can be
formulated

min
Lµ
‖(1 + Tµ(∆)Lµ)W‖∞ (2.21)

where Lµ denotes the learning filter designed based on µ synthesis. To solve the optimization
problem in Equation (2.21), a fictitious feedback control system is constructed in Figure 2.4,
whose closed-loop transfer function is Tzw(∆)=Fl[Fu(F,∆), Lµ], and F is defined as in Fig-
ure 2.4. The following is to show that Tzw(∆) is exactly the transfer function whose H∞-norm

Figure 2.4: Constructed feedback system (with uncertainties) for first-order ILC

is to be minimized, i.e.,
Tzw(∆) = (1 + Tu(∆)Lµ)W (2.22)

From Figure 2.4, hw
g

 = F

sz
v

 =

H11 0 H12

H21 W H22

0 W 0

sz
v

 (2.23)
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Noting v=Lµg, s=∆h and Equation (2.23),

h = H11s+H12v

= H11∆h+H12Lµg

= H11∆h+H12LµWz

(2.24)

we have
h = [1−H11∆]−1H12LµWz (2.25)

Therefore, from Equations (2.23) and (2.25),

w = H21s+Wz +H22v

= H21∆h+Wz +H22LµWz

= (H21∆[1−H11∆]−1H12Lµ + 1 +H22Lµ)Wz

= [(H21∆[1−H11∆]−1H12 +H22)Lµ + 1]Wz

(2.26)

Considering Equation (2.18), we have

w = [1 + Tu(∆)Lµ]Wz (2.27)

Therefore, Equation (2.22) holds. The optimization problem in Eq. (2.21) becomes a stan-
dard µ synthesis problem for the system in Figure 2.4. D-K iterations can be utilized to solve
the problem [75–77] . As long as ‖Q(1+Tu(∆)Lµ)‖∞<1, the ILC algorithm in Equation (2.6)
can guarantee the stability in spite of the uncertainty in P (Figure 2.3).

2.5 Arbitrary-order ILC

Figure 2.5: High-order ILC

As mentioned in the introduction, the high-order ILC can perform better (faster conver-
gence or robustness to certain non-repetitive disturbances) with more designing effort in the
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learning filters. This section extends the H∞ and µ syntheses for the first-order ILC to the
ones for the high-order ILC. A general Nth-order ILC (which uses both the control signals
and the error signals from N preceding iterations) has a standard learning law as follows [78]

ufj+1 =
N∑
i=1

Qi

(
ufj−N+i + L′iej−N+i

)
(2.28)

which is illustrated by Figure 2.5. Substituting Equation (2.28) into Equation (2.4), we have

ej+1 = Tu

N∑
i=1

Qi

(
ufj−N+i + L′iej−N+i

)
+ Tdd+ Trr

=
N∑
i=1

Qi

(
Tuu

f
j−N+i + Tdd+ Trr

)
+

N∑
i=1

QiTuL
′
iej−N+i + (1−Qf )(Tdd+ Trr)

=
N∑
i=1

Qi (1 + TuL
′
i) ej−N+i + (1−Qf )(Tdd+ Trr)

(2.29)

where
∑N

i=1Qi = Qf . Similar to the first-order ILC, Qf ideally equals to 1. In practice, Qf is
often designed as a low-pass filter with a specific bandwidth to gain robustness. If Qf = 1, the
tracking error during the (j + 1)th iteration is

ej+1 =
N∑
i=1

Qi
(
1 + TuL

′
i

)
ej−N+i (2.30)

which can be rewritten as
ej−N+2

ej−N+3
...
ej
ej+1

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
T1 T2 T3 · · · TN




ej−N+1

ej−N+2
...

ej−1

ej


, JEj−1

(2.31)

where Ti = Qi(1 + TuL
′
i),∀i = 1, 2, ..., N . Some related papers (e.g.[67]) on high-order ILC men-

tioned that if ‖J‖∞ < 1 the system is monotonically convergent over iterations. This is correct
for general linear systems but not applicable for the system (2.31): ‖J‖∞ ≥ 1 in Equation (2.31).
Therefore, for high-order ILC, it is very difficult to guarantee the monotonic convergence in general.
Instead, the system in Equation (2.31) is stable if [63]

‖ej+1‖2 < max{‖ei‖2, i = j, ..., j −N + 1} (2.32)
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Proposition 1: A sufficient condition for the stability of the system in Equation (2.31) in the
sense of Equation (2.32) is that

[
T1 T2 · · · TN

]
is stable and

‖
[
T1 T2 · · · TN

]
‖∞ <

1

N
(2.33)

Proof: Equation (2.33) implies that

‖Ti‖∞ <
1

N
(2.34)

which further implies that
N∑
i=1

‖Ti‖∞ < 1 (2.35)

Considering Equation (2.35) and

‖ej+1‖2 = ‖T1ej−N+1 + ...+ TNej‖2
≤ ‖T1ej−N+1‖2 + ...+ ‖TNej‖2
≤ ‖T1‖∞‖ej−N+1‖2 + ...+ ‖TN‖∞‖ej‖2
≤ (‖T1‖∞ + ...+ ‖TN‖∞) max{‖ej−N+1‖2, ..., ‖ej‖2}
≤ max{‖ej−N+1‖2, ..., ‖ej‖2}

(2.36)

Equation (2.32) holds and the system of Equation (2.31) is stable in the sense of Equation (2.32). It
is worth noting that condition (2.33) is a conservative condition which can be relaxed to condition
(2.35). �

Figure 2.6: Constructed feedback system for high-order ILC

Similar to the formulation of the first-order ILC, the following H∞ optimization problem can
be formulated

min
[Lki]N×N

‖
[
T1W1 T2W2 · · · TNWN

]
‖∞ (2.37)
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To solve Equation (2.37), a fictitious feedback system is constructed in Figure 2.6, where L̄∞ =
[Lki]N×N is to be designed, and

J̄ =

[
0N−1,1 IN−1.N−1

Q1 Q2 · · · QN

]
(2.38)

Ī =
[

01,N−1 1
]

(2.39)

S̄ =

[
0N−1,1 0N−1,1 · · · 0N−1,1

1 1 · · · 1

]
(2.40)

W̄ = diag{W1, W2, · · · , WN} (2.41)

Q̄ = diag{Q1, Q2, · · · , QN} (2.42)

The following proposition shows that the closed-loop response of the system in Figure 2.6 equals
to the transfer function whose H∞ norm is to be minimized in Equation (2.37).

Proposition 2: With the definition of M̄ in Figure 2.6, and the definitions of J̄ , Ī, S̄, W̄ and Q̄
in Equations (2.38)-(2.42), by setting L′i =

∑N
k=1 Lki with L̄∞ = [Lki]N×N ,

Tzw , Lf (M̄, L̄∞) =
[
T1W1 T2W2 · · · TNWN

]
.

Proof : From the definition of M̄ with the input [z v]T and the output [w g]T , as shown in
Figure 2.6, we have [

w
g

]
= M̄

[
z
v

]
=

[
Ī J̄W̄ ĪS̄Tu
Q̄W̄ 0

] [
z
v

]
v = L̄∞g

(2.43)

Further,

w = Ī J̄W̄ z + ĪS̄TuL̄∞g

= Ī(J̄ + S̄TuL̄∞Q̄)W̄z

= Ī(

[
0N−1,1 IN−1.N−1

Q1 Q2 · · · QN

]

+

[
0N−1,1 0N−1.N−1

Q1TuL
′
1 Q2TuL

′
2 · · · QNTuL

′
N

]
)W̄z

=
[

01,N−1 1
] [ 0N−1,1 IN−1.N−1

T1 T2 · · · TN

]
W̄z

=
[
T1W1 T2W2 · · ·TNWN

]
z

(2.44)

Therefore,
Tzw =

[
T1W1 T2W2 · · ·TNWN

]
(2.45)
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�

Assume Tzw has the following state-space realization,

Tzw v

[
Ac Bc
Cc Dc

]
(2.46)

Then the design of the learning filter L̄∞ can be formulated as a standard H∞ optimization problem
(which can be transformed into a convex optimization problem with LMI constraints thereafter) to
obtain the learning filter matrix L̄µ:

min
L̄∞

γ

λi(Ac) < 1, ∀i
‖Tzw‖∞ ≤ γ

(2.47)

As long as ‖Tpw‖∞ = ‖ĪJ‖ = ‖[T1, T2, ..., TN ]‖∞ < 1/N , based on Proposition 1, the stability
condition in Eq.(2.35) can be guaranteed. Otherwise, a different weighting filter matrix can be
designed, or additional low-pass or band-pass filters can be multiplied to Qf .

Figure 2.7: Constructed feedback system (with uncertainties) for high-order ILC

To obtain the robustness to large system variations, the multiplicative uncertainty in P (Equa-
tion (2.17)) is considered. Similarly, a fictitious feedback system (in Figure 2.7) is constructed, and
we have the following proposition.

Proposition 3: With the definition of F̄ in Figure 2.7, and the definitions of J̄ , Ī, S̄, W̄ and
Q̄ in Equations (2.38)-(2.42), by setting L′i =

∑N
k=1 Lki with L̄µ = [Lki]N×N ,

Tzw , Fl[Fu(F,∆), L̄µ]

=
[
T1(∆)W1 T2(∆)W2 · · · TN (∆)WN

]
.

(2.48)

Proof : From Figure 2.7,hw
g

 = F̄

sz
v

 =

 H11 0 H12

ĪS̄H21 Ī J̄W̄ ĪS̄H22

0 Q̄W̄ 0

sz
v

 (2.49)
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Noting

s = ∆h, v = L̄µg = L̄µQ̄W̄ z (2.50)

we have

h = H11s+H12v = H11∆h+H12L̄µg

= H11∆h+H12L̄µQ̄W̄ z
(2.51)

Then
h = (1−H11∆)−1H12L̄µQ̄W̄ z (2.52)

Therefore
s = ∆h = ∆[I −H11∆]−1H12L̄µQ̄W̄ z (2.53)

Considering Equation (2.50) and Equation (2.53)

w = ĪS̄H21s+ Ī J̄W̄ z + ĪS̄H̄22v

= Ī
[
S̄[H21∆(I −H11∆)−1H12 +H22]L̄µQ̄+ J̄

]
W̄z

= Ī
[
J̄ + S̄Tu(∆)L̄µQ̄

]
W̄z

= ĪJ(∆)W̄z

(2.54)

Therefore
Tzw(∆) =

[
T1(∆)W1 T2(∆)W2 · · · TN (∆)WN

]
(2.55)

�

Similar to the H∞-based ILC, as long as ‖Tpw(∆)‖∞ = ‖ĪJ(∆)‖ = ‖[T1(∆), ..., TN (∆)]‖∞ < 1/N ,
based on Proposition 1, the stability condition in Equation (2.35) can be guaranteed.

To quantify the guaranteed convergence rate level for ILC with different orders, we provide
the following proposition.

Proposition 4: Let γN defined as the H∞ norm of the closed-loop system from p to w in an
Nth-order ILC system; similarly, let γM defined as the H∞ norm of the closed-loop system from p
to w in an Mth-order ILC system. If

(γN )
1
N < (γM )

1
M (2.56)

then the Nth-order ILC system has better guaranteed convergence performance than the Mth-order
ILC system.

Remarks: Proposition 4 provides an easy and effective theoretical tool to compare the conver-
gence performances with different-order ILCs. For example, if γ1=0.8, and γ2=0.5; it makes sense
to state that the guaranteed convergence rate of the 1st-order ILC is lower than the 2nd-order ILC
because 0.8>0.51/2. It is worth noting that high-order ILC does not necessarily perform better
than first-order ILC.

Based on the Proposition 2 and Proposition 3, the ILC design problem has been transfered
into feedback controller design problems based on H∞ synthesis and µ synthesis respectively. It
is worth noting that these ILCs are not guaranteed to satisfy the convergence condition provided
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Notations Definitions

L Learning filter in general first-order ILC
L∞ Learning filter in H∞-based first-order ILC
Lµ Learning filter in µ-based first-order ILC

L′ Learning filter vector in general high-order ILC
L̄∞ Learning filter matrix in H∞-based high-order ILC
L̄µ Learning filter matrix in Hµ-based high-order ILC

Table 2.1: Notations of learning filters in different ILCs

in Proposition 1. The condition of Equation (2.32) should be checked after the ILCs have been
designed.

Table 2.1 provides the notations of learning filters in different ILCs. For a linear control system
as described in Equation (2.1), an Nth-order ILC control algorithm is designed as described in
Figure 2.1 and Equation (2.30); the learning filter matrix is designed based on H∞ synthesis (L̄∞)
and µ synthesis (L̄µ) for the constructed feedback systems in Figure 2.6 and Figure 2.7, respectively.
As long as ‖Tpw‖∞=‖[T1, T2, ..., TN ]‖∞<1/N , the convergence in the sense of Equation (2.32) can
be guaranteed. Otherwise, a different W or Q can be designed. Some discussions on the W and Q
design are provided in the following section.

2.6 Application

The effectiveness of the proposed H∞-based and µ-based ILCs is demonstrated and validated
through simulations and experiments on a wafer scanning system. A desired repetitive trajectory
for the scanning system is shown in Figure 1.6. The frequency response of the nominal closed-loop
system Tu is provided in Figure 2.8. Furthermore, to demonstrate the benefit of µ-based ILC,
large system variations (especially at high frequencies) are purposely added in simulations. The
frequency responses of the system with such large variations (Tu(∆)) are also provided in Figure 2.8.
In the following, two comparisons are studied: (1) the first-order and the second-order ILCs; (2)
the H∞-based and the µ-based ILCs.

First-order and second-order ILCs

This section validates the effectiveness of both first-order and second-order ILCs designed based
on H∞ synthesis, and also demonstrates the benefit of the second-order ILC: the second-order ILC
updates the feedforward control signals based on the memory data from previous two iterations,
which makes it possible to gain faster convergence compared to the first-order ILC. This comparison
is validated through both simulations and experiments. Simulation validation was provided in [73];
here we only provide experimental results to validate the effectiveness of the two ILCs. The results
are provided from Figure 2.9 to Figure 2.11.

In the application, for both the first-order and the second-order ILCs, the weighting filters W
are designed as a stable, first-order filter that satisfies W (ej0)=2, W (ej30·2πTs)=1 and W (ejπ)=0.1.
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Figure 2.8: Frequency responses of Tu (with and without uncertainties).

This means (1+L∞Tu) is expected to be small at low frequencies below 30Hz (cross frequency),
which would result a faster convergence performance when the reference is a low-frequency signal.
The cross frequency is expected to be higher if the reference has some components at higher
frequencies. Q in the first-order ILC and Qf in the second-order ILC are designed as a low-pass
filter with bandwidth of 300 Hz, to gain robustness of system variations beyond 300Hz. The
learning filters are obtained through solving the H-infinity optimization problems using the robust
control toolbox in MATLAB 2013a, and the order of the learning filters has been reduced to six
using approximation. Figure 2.9 shows the frequency responses of corresponding filters in the first-
order and second-order ILCs respectively: (1) W , Q and Q(1 + L∞Tu) in the first-order ILC; (2)
W1,2,Qf ,Q1, Q2, Q1[1 + (L11 + L21)Tu], and Q2[1 + (L12 + L22)Tu] in the second-order ILC. It is
observed that in the first-order ILC, ‖Q(1 + L∞Tu)‖∞<0dB for all w. Similarly, in the second-
order ILC, ‖Q2[1 + (L12 + L22)Tu]‖∞<‖Q1[1 + (L11 + L21)Tu]‖∞< − 6dB, which guarantees the
convergence according to Proposition 1. It is also worth noting that

ρ1 = ‖Q(1 + L∞Tu)‖∞ = 0.7219

and
ρ2 = ‖[Q1[1 + (L11 + L21)Tu, Q2[1 + (L12 + L22)Tu]‖∞ = 0.0963

from which we have
ρ1 > (ρ2)

1
2

Therefore, the second-order ILC system here has better guaranteed convergence performance than
the first-order ILC system. However, this does not mean that second-order ILC would always
perform better than the first-order ILC in general systems.

Figure 2.10 and Figure 2.11 show the tracking errors in the first-order and the second-order ILC
systems, in iteration domain and time domain respectively. Using the proposed ILC algorithms,
the tracking errors are significantly reduced after 1 iteration and even more after 3 iterations. In
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Figure 2.9: Frequency responses of filters (H∞-based ILC).

the first-order ILC system, the tracking error converges to a small band (1e-5 m) after 3 iterations;
while in the second-order ILC system, it takes only 2 iteration for the tracking error to converge
into the small band. Figure 2.10 shows the 2-norm of the tracking errors up to 7 iterations in both
the first-order and the second-order ILC systems. The second-order ILC utilizes two preceding
iteration data and it converges faster than the first-order ILC in this case.

From the experimental results, both the first-order ILC and the second-order ILC designed
based on the H∞ synthesis are effective for the wafer scanning system. Since the second-order ILC
utilizes more information and has more design flexibilities than the first-order ILC, with careful
design, it is possible to achieve faster convergence than the first-order ILC. In the wafer scanning
system, because the tracking error converges into a small region within 2 or 3 iterations, the third-
order ILC works very similarly to the second-order ILC. Furthermore, it is worth noting that the
tracking error does not converge to zero ultimately; such non-zero steady state errors come from
the non-repetitive disturbances in the actual systems.
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Figure 2.10: Tracking errors in iteration domain (H∞-based ILC).

0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−41st−order Iteration

Time (s)

E
rr

o
r(

m
)

 

 

0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−4 2nd−order Iteration

Time (s)

E
rr

o
r(

m
)

 

 

Iteration 0

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 0

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Figure 2.11: Tracking errors in time domain (H∞-based ILC).

H-infinity based and µ based ILCs

This section compares the H∞-based and the µ-based ILCs, and validates the benefit of the µ-
based ILC: the µ-based ILC explicitly considers system variations when designing the learning
filters and thus is more robust than the H∞-based ILC. Since the actual system variations are not
large enough to make the ILC system unstable, this comparison is validated by simulation only,
and system variations are purposely added in the simulations. This µ-based ILC is promising in
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Figure 2.12: Tracking errors in iteration domain (µ-based ILC).

the systems where variations are nontrivial, such as industrial manipulators.
The weighting filter W and the filter Q are with the same design in the H∞-based ILC. The

simulation results are provided in Figure 2.12. The ILC using H∞ synthesis is designed based
on the nominal closed-loop system Tu. It is worth noticing that L∞ is closed to the inverse of
Tu, which also provides an alternative and interesting way of designing the inverse of a plant. If
the injected repetitive d contains high-frequency components (>300Hz), Q is desired to have high
bandwidth (> 300 Hz) to suppress these disturbances. Consequently, Q(1 +L∞Tµ) is close to 0dB
around 300 Hz, which makes the ILC sensitive to system variations, and indicates the necessity of a
more conservative learning filter in the presence of the large system variations and high-frequency
disturbances. The ILC using µ synthesis is designed based on the model with large system variations
(Tu(∆)). Figure 2.12 compares the tracking errors up to 15 iterations in the H∞-based ILC system
and the µ-based ILC system, in which large system variations are purposely added. It is observed
that these system variations cause instability in the H∞-based ILC system, while the µ-based ILC
system maintains good tracking performance and reasonable convergence rate even with system
variations. The ideal case of using H∞-based ILC simulated on the nominal model without the
system variations is also provided in Figure 2.12 for reference.

2.7 Chapter Summary

This chapter has proposed a systematic approach to design learning filters for arbitrary-order ILC.
It is an off-line optimization procedure performed in iteration-frequency domain with guaranteed
convergence and ease of tuning. A feedback system is first constructed and the H∞ optimal control
design technique is applied thereafter to obtain the optimal learning filters. This approach is further
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advanced based on µ synthesis to explicitly take system variations into consideration. Important
characteristics such as the convergence and robustness are demonstrated and validated through
simulations and experiments on a wafer scanning system. Although this framework applies to
causal learning filter design, it can easily include the non-causal case by explicitly adding delays
into the constructed feedback system. As a follow-up exploration, the proposed framework will be
applied to a multi-input-multi-output system and extended to a more generic formulation where an
Nth-order ILC uses the information from both the preceding iterations and the current iteration,
which is an optimization procedure that involves both feedforward and feedback controls.
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Chapter 3

Disturbance Observer

3.1 Introduction

Disturbance observer (DOB) is a powerful technique to estimate and compensate the disturbance in
high-precision systems. It is a plant-inverse based technique and has many industrial applications
including hard disk drives (HDDs) and wafter scanning systems.

Figure 3.1: A general system with conventional DOB

Figure 3.1 shows a general system with a conventional DOB (in the dash rectangular box), in
which P (z) is the plant; C(z) is the baseline feedback controller; Pn(z) is a nominal model of the
plant; and Q(z) is a filter to maintain the causality and robustness of the DOB. The reference signal
r, the output signal y, the control signal u generated by C(z), the disturbance d, the disturbance
estimate d̂, and the control signal ue=u−d̂ injected into the plant are all defined in this figure. The
DOB includes a plant inverse P−1

n (z) and a filter Q(z); the input signals to the DOB are ue and
y, and the output signal is d̂. The intuitive idea of the conventional DOB is to utilize the inverse
of the plant model to reconstruct the plant’s input signals which consist of the control signal ue
and the actual disturbance d. A general DOB design procedure includes two steps: (1) design a
stable inverse of the plant; and (2) design a Q-filter to maintain the causality and robustness. The
plant inverse is usually obtained from a low-order nominal model of the plant. The Q-filter can be
designed as a low/high/band-pass filter based on the frequency characteristics of the disturbance
and the uncertainties in the plant.



CHAPTER 3. DISTURBANCE OBSERVER 28

Among numerous DOB design algorithms developed in recent years, robust control theory has
been utilized with guaranteed stability and robustness of the systems [79–82]. In [79], the DOB
design problem was transformed into the H∞ synthesis problem by finding an optimal static output
feedback gain for an extended plant. In [80–82], the Q-filter was designed through solving an H∞
optimization problem. However, these DOB design procedures were only applied to single-input-
single-output (SISO) systems and were based on the conventional DOB structure that requires a
well-designed stable inverse of plant. Usually designing a stable plant inverse is not trivial for some
SISO systems and even more challenging for multi-input-multi-output (MIMO) systems.

There exist some DOB design methods for MIMO systems in the literature. For example, the
method in [83] treated each input-output channel of the plant separately by ignoring the coupling
effect. However, this introduced plant modeling errors and the stability was difficult to guarantee.
An alternative method proposed in [3] first decoupled the system using the nominal model of the
plant and then followed the conventional DOB design procedure for SISO systems. These techniques
did not mitigate the issue of designing a good plant inverse in the DOB design. Furthermore, most
of them were only applicable to the square systems: systems with the same dimensions of the inputs
and outputs. It is rather challenging to apply these DOB techniques to the systems with the inputs
of higher dimension than the outputs.

To unnecessitate plant inverse and apply DOB to a general class of MIMO plant, instead of
following the conventional DOB structure, this chapter formulates the DOB design problem into
an H∞ optimization problem by treating the whole observer as a ‘black’ box without specifying
any explicit structure [4]. The proposed design methodology is different from the existing H∞
design methods for DOBs which still follow the conventional DOB structure with well-designed
plant inverse and Q-filters. Being relaxed from the restrictions due to the conventional the DOB
structure, the proposed approach has more design flexibilities and is possible to achieve better
performance than the conventional DOB. It is also worth mentioning that the proposed DOB is
still an add-on algorithm aiming to estimate and compensate the disturbance without redesigning
the baseline feedback controller.

3.2 Conventional DOB Design Methodology

As stated in the introduction, with well-defined P−1
n (z) and Q(z), the DOB can recover the actual

disturbance over specified frequency ranges. To further explain this, the transfer function from d
to d̂ is derived as follows. From Figure 3.1,

d̂ = Q(z)[P−1
n (z)y − (u− d̂)] (3.1)

which implies
(1−Q(z))d̂ = Q(z)Pn(z)−1y −Q(z)u (3.2)

Noting that y=P (z)[u−d̂+d] and u=− C(z)y,

y = P (z)[−C(z)y − d̂+ d] (3.3)

which implies
y = [1 + P (z)C(z)]−1P (z)(d− d̂) (3.4)
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Substituting u= − C(z)y and Equation (3.4) into Equation (3.1), after some manipulations, we
have

d̂ =
Q[P−1

n P + PC][1 + PC]−1

(1−Q) +Q[P−1
n P + PC][1 + PC]−1

d (3.5)

where z is omitted for simplicity. Note that if

Q(z) = 1 (3.6)

and
P−1
n (z)P (z) = 1 (3.7)

then d=d̂, which means that the actual disturbance d is completely reconstructed.
In general there are three considerations in DOB design: stability, causality, and robustness. (1)

Stability: if P (z) is a non-minimum phase model (i.e., the zeros of P (z) are unstable), there does not
exist a stable plant inverse satisfying Equation (3.7); an alternative stable plant inverse satisfying
P−1
n (z)P (z)≈1 should be designed. (2) Causality: if P (z) is strictly causal, then its inverse is

non-causal and not realizable; a Q(z) needs to be designed such that Q(z)P−1
n (z) is causal. (3)

Robustness: if there exist some uncertainties in P (z), i.e., P (z) = Pn(z)(1 + ∆(z)) where ∆(z)
denotes bounded un-modeled dynamics, Q(z) needs to be designed such that robustness of the
system is guaranteed. Detailed discussions can be found in [84].

3.3 Reformulation of DOB

This section formulates the DOB design problem into an H∞ optimization problem based on robust
control theory. Define Tf (z) as the transfer function from d to (d−d̂), i.e.,

d− d̂ = Tf (z)d (3.8)

From Equation (3.5),

Tf = 1− Q[P−1
n P + PC][1 + PC]−1

(1−Q) +Q[P−1
n P + PC][1 + PC]−1

(3.9)

In this section, the DOB design problem is transfered into the minimization of the H∞ norm of
Tf (z), i.e., ‖Tf (z)‖∞, which is defined as the supremum of the maximum singular value of Tf (ejΘ)
(Θ ∈ [0, 2π)),

‖Tf (z)‖∞ = sup
Θ∈[0,2π)

σ̄[Tf (ejΘ)] (3.10)

where σ̄[·] denotes the maximum singular value of a matrix. If σ̄[Tf (ejΩ)] is small over certain

frequency range, (d−d̂) would be small, and thus d̂ is a good estimate of d over this frequency
range.

Assume Tf (z) has the following state-space realization:

Tf :

 xc(k + 1)

d(k)− d̂(k)

 =

[
Ac Bc
Cc Dc

][
xc(k)

d(k)

]
(3.11)
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The following optimization is formulated to achieve the best disturbance estimate in the sense of
the smallest ‖Tf (z)‖∞,

min
Q(z), P−1

n (z)
‖Tf (z)‖∞

s.t. λi(Ac) ≤ 1 ∀i
Q(z)P−1

n (z) causal

(3.12)

where λi(Ac) denotes the ith eigenvalue of Ac. The optimization problem (3.12) is very difficult to
solve: it is not convex with respect to the decision variables Q(z) and P−1

n (z). To transform it into
a convex optimization problem, the following new variable D(z) is introduced:

D(z) = [D1(z) D2(z)] = [−Q(z) Q(z)P−1
n (z)] (3.13)

This leads to a new expression of Tf (z) with respect to the new variable D(z), as the following
proposition describes.

Proposition: With the definition of Tf in Equation (3.8), and the definition of D in Equa-
tion (3.13), Tf can be written as

Tf = Fl(M,D) = M11 +M12D(I −
[
M22

M32

]
D)−1

[
M21

M31

]
(3.14)

where Fl stands for the linear fractional transformation (LFT), and

M =

 1 −1
−C(1 + PC)−1P 1− C(1 + PC)−1P

(1 + PC)−1P (1 + PC)−1P

 (3.15)

Proof : Figure 3.2 is an equivalence of the system in Figure 3.1. M is the transfer function from

Figure 3.2: Equivalent representation for the system in Figure 3.1
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[d, d̂]T to [d− d̂, ue, y]T . Therefore, Tf = Fl(M,D) as described in Equation (3.14)
Based on the Proposition, the optimization problem (3.12) is reformulated as

min
D(z), causal

‖Fl(M(z), D(z))‖∞

s.t. λi(Ac) ≤ 1 ∀i
D2(z) = −D1(z)P−1

n (z)

(3.16)

for which the decision variable becomes D(z) with the constraint of D2(z)=−D1(z)P−1
n (z). This

constraint is a requirement induced from the conventional structure of DOB. Here this constraint
is relaxed to utilize H∞ synthesis and to provide more flexibilities in the DOB design. With the
constraint relaxing, the optimization problem becomes

min
D(z) causal, γ

γ

s.t. |λi(Ac)| < 1 ∀i
‖Fl(M(z), D(z))‖∞ < γ

(3.17)

Compared to the conventional DOB design, the proposed DOB design solves the optimization
problem (3.17) over a larger feasible region with the constraint relaxing, which results in a smaller
γ. This optimization problem can be reformulated into a convex optimization problem with linear
matrix inequality (LMI) constraints [74] which can be solved efficiently thereafter.

Remarks: The main differences between Problem (3.12) and Problem (3.17) arise from two
aspects: (a) Problem (3.17) considers D as the decision variable, while Problem (3.12) considers
Q and P−1

n as the decision variables; and (b) Problem (3.17) removes the constraint for D. With
variable transforming and constraint relaxing, Problem (3.17) can be reformulated into a convex
optimization problem with LMI constraints based on robust control theory. Furthermore, the
proposed DOB design procedure can be modified into the one that explicitly considers system
uncertainties based on µ synthesis.

3.4 Application to Dual-stage HDDs

In the literature, the generalized DOB design methodology for dual-stage HDDs has not been fully
investigated due to its dual-input-single-output (DISO) plant model whose inverse is not applicable.
Using the proposed DOB design procedure, the disturbance can be estimated and compensated in
both the voice coil motor (VCM) loop and the piezoelectric motor (PZT) loop.

The classic dual-stage HDD control scheme is shown in Figure 3.3 [85], in which Pv is the VCM
plant, Pm is the PZT plant, Cv is the baseline feedback controller for Pv, Cm is the baseline feedback
controller for Pm, and P̂m is the nominal plant of Pm. The signals are also defined in Figure 3.3: r
is the reference, y is the output, dv is the disturbance in the VCM loop, dm is the disturbance in
the PZT loop, and uv and um are the control signals generated by Cv and Cm respectively. The
position error signal (PES) is defined as e=r−y.

The H∞-based DOB (denoted as D) is designed as shown in Figure 3.4. The input signals to
D are uve, ume, and y; the output signals from D are d̂v and d̂m; uve=uv−d̂v and ume=um−d̂m.
Separating the design parameter D from other dynamics in Figure 3.4, an H∞-based DOB scheme
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Figure 3.3: Dual-stage HDD

Figure 3.4: Dual-stage HDD with DOB

can be constructed in Figure 3.5, where C and P are

C =

[
(1 + CmP̂m)Cv 0

0 Cm

]
, P =

[
Pv 0
0 Pm

]
(3.18)

Figure 3.5: H∞-based DOB design scheme

Denote

d =

[
dm
dv

]
, d̂ =

[
d̂m
d̂v

]
, ue =

[
uve
ume

]
(3.19)

Define M(z) as the MIMO system with inputs of [d, d̂] and outputs of [d − d̂, ue, y]. A LFT
representation of Figure 3.5 is obtained in Figure 3.6 to utilize the H∞ synthesis. It is easy to
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Figure 3.6: LFT representation of Figure 3.5

notice that M has the same mathematical representation as in Equation (3.15). Therefore, the
original DOB design problem is transformed into an H∞ synthesis problem as illustrated in Figure
3.6, i.e.,

min
D, causal, stabilizing

‖Fl(M,D)‖∞ (3.20)

Weighting filters: In general, adding weighting filters is necessary to enhance the performance
according to specific requirements. With the following general weighting filters,

W (z) =

[
Wv(z) 0

0 Wm(z)

]
(3.21)

the optimization problem becomes

min
D, causal, stabilizing

‖Fl(M,D)W‖∞ (3.22)

which can be further transformed into a convex optimization problem with LMI constraints as
stated in Section III.

3.5 Simulation Validation

SISO Case

In the first simulation study, the proposed DOB is applied to a single-stage HDD with a baseline
controller [86]. The disturbance is set as band-limited white noise. The weighting filter is designed
as a low-pass filter whose bode plot is provided in Figure 3.7.

The simulation results are provided in Figures 3.8-3.10. Figure 3.8 provides the bode plots of
D(z) and an exact non-causal plant inverse P−1

n (z) for comparison. It is worth noting that D1(z) is
close to 1 over a large frequency range, and the causal D2(z) is very close to the non-causal P−1

n (z).
This implies that in SISO systems, D(z) designed by the proposed procedure plays a similar role as
Q(z) and P−1

n Q(z) in the conventional DOB. Figure 3.9 provides the closed-loop bode plots from
d to d̂, which indicates d̂≈d over a large frequency range. Figure 3.10 shows the PES comparison
with and without the DOB. It is observed that the PES has been significantly reduced with the
proposed DOB.
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Figure 3.7: Bode plot of the weighting filter
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Figure 3.9: Bode plots from d to d̂
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DISO Case

In the second simulation study, the proposed DOB is applied to a dual-stage HDD benchmark model
[87]. The weighting filters Wv(z) and Wm(z) are designed based on the frequency characteristics of
the disturbance in both the VCM and the PZT loops. Similar to the assumption made in [3], it is
assumed that the disturbance in the VCM loop focuses around 1000 Hz and that the disturbance
in the PZT loop focuses around 2500 Hz. Therefore, Wv(z) and Wm(z) are designed as band-pass
filters or peak filters centered around 1000 Hz and 2500 Hz respectively. Figure 3.11 provides the
bode plots of Wv(z) and Wm(z) which are used in this simulation study.

Figure 3.11: Bode plots of weighting filters
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Simulation results are provided in Figures 3.12-3.18. Figure 3.12 compares the bode plots of the
system sensitivities with and without the proposed DOB. It is observed that the dual-stage HDD
with the proposed DOB has better vibration attenuation around 1000 Hz and 2500 Hz. Figures
3.13 to 3.16 show a practical case when the input disturbance data is modified from actual on-
drive test. Figures 3.13 and 3.14 provide the disturbance estimates: the proposed DOB is able to
estimate the disturbance in both the VCM loop and the PZT loop. The PES comparisons (with
and without DOB) in both time domain and frequency domain are provided in Figures 3.15 and
3.16 respectively. It is observed from Figure 3.16 that the amplitude of the PES around 1000 Hz
and 2500 Hz has been significantly reduced. Figures 3.17 and 3.18 provide the control signals in
VCM and PZT loops in both time domain and frequency domain. It is worth noticed that, with
the proposed DOB, the control effort around 1000 Hz increases in the VCM loop, while the one
around 2500 Hz increases in the PZT loop.

3.6 Chapter Summary

A generalized DOB design procedure has been proposed for both SISO systems and MIMO systems
based on H∞ synthesis. The proposed DOB assures the stability and minimizes the weighted H∞
norm of the dynamics from the disturbance to its estimation error. This DOB design procedure
is applicable not only to the square systems, but also to the systems with the inputs of higher
dimension than the outputs. Detailed evaluation has been performed on a dual-stage HDD plant
that has dual inputs and single output. The simulation results demonstrate the effectiveness of the
proposed DOB.
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Chapter 4

Extended State Observer

4.1 Introduction

During the track-following process of hard disk drives (HDDs), the read/write head is expected to
stay on the target data track with small position error signal (PES). This process is subjected to
vibrations both below and beyond the Nyquist frequency. Most of the external vibrations are below
the Nyquist frequency; and the vibrations beyond the Nyquist frequency are mainly caused by the
excitation of resonances. This chapter presents two techniques based on the extended state observer
(ESO) to estimate the high-frequency vibrations both below and beyond the Nyquist frequency.

Besides the disturbance observer (DOB) technique presented in Chapter 3, ESO, as a special
class of the high-gain observers, is an alternative promising method to estimate the disturbances by
treating them as state variables. Existing ESO works well for low-frequency disturbance estimation;
however, such good performance is not inherited to high-frequency disturbance estimation. The
main problem is the phase loss introduced by both the plant and the ESO itself. For low-frequency
disturbances, the effect of a small delay is not serious. However, in HDDs, the disturbances usually
include large high-frequency components, and a small delay may cause large estimation error. To
extend ESO’s performance range from low frequencies to high frequencies, this chapter presents
a phase compensator to recover the phase loss in the traditional ESO and increases the ESO’s
estimation bandwidth.

This chapter further pushes the estimation bandwidth of ESO beyond the Nyquist frequency
through multi-rate technique based on the priorly known nominal dynamic model of the vibra-
tions. Nyquist frequency limits the frequency range of the continuous-time signals that can be
reconstructed through the sampled discrete-time signals. In HDDs, there exist resonance modes
near and beyond the Nyquist frequency in the voice coil motor (VCM). Such resonance modes, if
excited, may generate vibrations beyond the Nyquist frequency which would seriously degrade the
servo performance. To capture such vibrations, motived by the ESO [88, 89] and Kalman filter
[90], this chapter presents a multi-rate extended observer to estimate the inter-sample behaviors of
the VCM and the vibrations beyond the Nyquist frequency.
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4.2 ESO: from Low Frequency to High Frequency

Consider a general linear system in continuous time described by

ẋ = Ax+B(u+ d)

y = Cx
(4.1)

where x ∈ <n×1 is the state vector; y ∈ < is the output; u ∈ < is the control input; d ∈ < is the
unknown disturbance; A ∈ <n×n; B ∈ <n×1; and C ∈ <1×n. Assume that (C,A) is observable; d
and its derivative ḋ are bounded by δd and δ′d respectively.

By treating d as a state variable, and ḋ as the unknown disturbance, the system (4.1) is rewritten
as [

ẋ

ḋ

]
=

[
A B
0 0

] [
x
d

]
+

[
B
0

]
u+

[
0
1

]
ḋ

y =
[
C 0

] [x
d

] (4.2)

Denote

Ae =

[
A B
0 0

]
, Be =

[
B
0

]
, Bd =

[
0
1

]
Ce =

[
C 0

]
, xe =

[
xT dT

]T
Then

ẋe = Aexe +Beu+Bdḋ

y = Cexe
(4.3)

A state observer can be designed for the augmented system (4.3) to estimate both the disturbance
d and the states x.

Observability Analysis

Before designing the observer for the system (4.3), the observability needs to be analyzed. Define

Q(λ;A,C) =

[
A− λI
C

]
(4.4)

where I∈<n×n is an identity matrix.

Theorem (PBH Test) [91]: The system (4.1) is observable if and only if Q(λ;A,C) has rank
n for all λ ∈ C. Based on this, we have the following proposition.

Proposition: System (4.2) is observable if and only if the following two conditions hold:
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(a) (C, A) is observable;
(b) rank{Q(0;Ae, Ce)}= n+ 1, where

Q(0;Ae, Ce) =

A B
0 0
C 0

 (4.5)

The proof is provided as follows.
(i) Sufficiency : we first prove that (a) and (b) imply the observability of the system (4.2).

Given any λ ∈ C, the following two cases are considered. (1) If λ 6= 0: the observability of (C, A)
implies that rank {Q(λ;A,C)} = n, which further implies that rank {Q(λ;Ae, Ce} = n+ 1. (2) If
λ = 0: rank{Q(0;Ae, Ce)}= n + 1. Therefore, ∀λ ∈ C, rank{Q(λ;Ae, Ce)}= n + 1, which implies
that (Ce, Ae) is observable.

(ii) Necessity : we now prove that the observability of the system (4.2) implies (a) and (b).
(1) The observability of (Ce, Ae) obviously implies the observability of (C,A). (2) The observ-
ability of (Ce, Ae) implies that rank{Q(λ;Ae, Ce)}= n + 1 (∀λ ∈ C), which further implies that
rank{Q(0;Ae, Ce}= n+ 1 by setting λ = 0. Therefore, the observability of augmented system (4.2)
implies conditions (a) and (b).

Many systems satisfy conditions (a) and (b). For example, for the following system matrices,

A =


−an−1 1 0 · · · 0
−an−2 0 1 · · · 0

: : : : :
−a0 0 0 0 0

 , B =


bn−1

bn−2

:
b0

 ,
C =

[
1 0 0 · · · 0

]
as long as b0 6= 0, conditions (a) and (b) are satisfied.

Standard Extended State Observer

The standard ESO for the system (4.1) is designed as follows,[
˙̂x
˙̂
d

]
=

[
A B
0 0

] [
x̂

d̂

]
+

[
B
0

]
u+[

Lx
Ld

]
(
[
C 0

] [x
d

]
−
[
C 0

] [x̂
d̂

]
)

(4.6)

where Lx = [β1 β2 ... βn]T and Ld = βn+1. Equation (4.6) is actually a standard state observer for
the system (4.2). From (4.2) and (4.6), we have[

ėx
ėd

]
=

[
A− LxC B
−LdC 0

] [
ex
ed

]
+Bdḋ

ed = Cd
[
ex ed

]T (4.7)
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where ex = x− x̂ is the state estimation error; ed = d− d̂ is the disturbance estimation error; and
Cd = [0 1]. ex and ed are preferred to be as small as possible in the presence of unknown ḋ.

During the design of the ESO (4.6), ḋ is actually assumed to be zero, i.e., ḋ = 0. This explains
why standard ESO is only effective for low-frequency disturbance estimation. Let G

′
d denote the

Figure 4.1: Dynamic system from d to d̂

transfer function from ḋ to ed. From (4.7), we have

G
′
d = Cd(pI −

[
A− LxC B
−LdC 0

]
)−1Bd

= (p+ LdC(pIx −A+ LxC)−1B)−1

(4.8)

where p is the Laplace variable. The relationship among d, d̂ and ḋ is shown in Figure 4.1. Let Gd
denote the transfer function from d to d̂, then

Gd = 1− pG′d
= 1− p(p+ LdC(pIx −A+ LxC)−1B)−1

(4.9)

Denote Gx = C(pIx −A+ LxC)−1B, then

Gd = 1− p(p+ LdGx)−1 =
LdGx

p+ LdGx
(4.10)

Ideally, Gd=1. The ideal case can be approximated by choosing a large Ld. If Ld�1 such that
|LdGx(jw)|�w, we have |Gd(jω)|≈1 and ∠Gd(jω)≈0◦. This explains why high gain (Ld) is required
for ESO. In practice, Gd proximately performs as a low-pass filter whose bandwidth depends on Ld.
To ensure accurate state estimates, Lx should also be large enough to reduce the effect of unknown
ḋ. Usually we select Ld > Lx,n > Lx,n−1 > ... > Lx,1 (i.e., βn+1 > βn > ... > β1).

Phase Compensation

This section extends the performance range of the standard ESO from low frequencies to high
frequencies, based on the assumption that the disturbances’ energy is concentrated over a certain
frequency range, for example, around ω0. Figure 4.2 provides the frequency response of Gd. It is
noticed that at low frequencies, the magnitude of Gd is approximately 1 and the phase of Gd is
approximately 0; the standard ESO works well for low-frequency disturbances. As the frequency
increases, the phase delay becomes larger and seriously degrades the accuracy of the estimation.
In this section, a phase compensator Gc is proposed to recover the phase loss, which results in a
compensated ESO.
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Figure 4.2: Frequency responses of Gd and Gdc

Let d̂c denote the estimated disturbance from the compensated ESO. Let Gdc denote the transfer
function from d to d̂c, i.e.,

d̂c = Gdcd =
LdGxGc
p+ LdGx

d (4.11)

Gdc is desired to have zero phase at ω0. With this goal, Gc is designed as

Gc =
p+ ω0/φ

p+ φω0
(φ > 1) (4.12)

Based on (4.12), the phase compensated at ω0 is

ϕm = arcsin
φ2 − 1

φ2 + 1
(4.13)

where φ is designed such that ∠Gdc(ω0) = 0, as shown in Figure 4.2. Gc can be realized by the
following system:

˙̂z = Acẑ +Bcd̂

d̂c = Ccẑ +Dcd̂
(4.14)

where Ac = −φω0, Bc = ω0/φ − φω0, Cc = 1, Dc = 1. From (4.6) and (4.14), the compensated
ESO becomes:  ˙̂x

˙̂z
˙̂
d

 =

A 0 B
0 Ac Bc
0 0 0

x̂ẑ
d̂

+

B0
0

u+

Lx(y − Cx̂)
0

Ld(y − Cx̂)


[
x̂

d̂c

]
=

[
I 0 0
0 Cc Dc

]x̂ẑ
d̂


(4.15)



CHAPTER 4. EXTENDED STATE OBSERVER 46

As explained previously, the ESO belongs to the class of high-gain observers. If the initial estima-
tion error is large, such high gains may cause the ‘peak phenomenon’ and make the linear ESO
impractical or even unsafe to use [92, 93]. Here nonlinear gains are designed as in [89] to reduce
such ‘peak phenomenon’.

Simulation Validation

Figure 4.3 compares the estimated disturbances by the standard ESO and the compensated ESO.
The disturbance source in Figure 4.3a is a sinusoid signal with the frequency of 1000 Hz. It is
observed that there is no delay between the disturbance and its estimate by the compensated ESO,
while the standard ESO estimates the disturbance with a non-trivial phase delay. The disturbance
source in Figure 4.3b is the actual audio vibrations in HDDs, whose energy is concentrated around
1000 Hz. Figure 4.3b shows that the compensated ESO has better disturbance estimate than the
standard ESO in the sense of smaller phase delay.
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Figure 4.3: Estimated disturbances by ESO

4.3 Multi-rate ESO: beyond the Nyquist Frequency

In HDDs, the sampling frequency is strictly limited by the number of the servo sectors which cannot
be increased arbitrarily. Meanwhile, one or more resonances beyond the Nyquist frequency exist in
the VCM of HDDs and may generate the vibrations which cannot be directly captured by the sam-
pled PES. Such ‘unobservable’ vibrations may seriously degrade the servo performance, and even
wipe data and damage the disks. Therefore, it is important and beneficial to quickly reconstruct
and suppress such high-frequency head motions beyond the Nyquist frequency. Reference [94] ap-
plied multi-rate notch filters to reduce the gain of the system beyond the Nyquist frequency for the
stability purpose. Atsumi, et al. [95–97] derived the sensitivity function in the sampled-data HDD
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control systems and designed stable resonant filters. These frequency-domain algorithms were able
to decrease the gain of the sensitivity function beyond the Nyquist frequency. There are also some
time-domain algorithms aiming to track signals beyond the Nyquist frequency [98].

This section proposes an alternative approach to enhance the servo performance beyond the
Nyquist frequency. Considering that the vibrations beyond the Nyquist frequency are usually
generated through the excitation of the resonances in HDDs, it is reasonable to assume a known
nominal dynamics of the vibrations [99, 100]. By incorporating the vibration dynamics, this section
proposes a multi-rate extended observer to estimate the inter-sample behaviors of VCM and high-
frequency vibrations [101].

Problem Description

As mentioned in the introduction, the vibrations beyond the Nyquist frequency may cause large
off-track behaviors of the heads which cannot be captured through the sampled PES, as illustrated
by Figure 4.4, Therefore, in the presence of such vibrations, a good estimate for the inter-sample
behaviors of PES is fundamental to enable fast updating of the control signal and suppress the
vibrations beyond the Nyquist frequency.

Figure 4.4: PES with components beyond Nyquist frequency

With the vibrations beyond the Nyquist frequency, the HDD control system becomes a multi-
rate system with fast vibration injection and slow PES measurement:

xp[(i+ 1)Tf ] = Apxp[iTf ] +Bp(u[iTf ] + d[iTf ]) (4.16a)

y[jTs] = Cpxp[jTs] + v[jTs] (4.16b)

where xp is the state vector; u is the control signal; y is the measured PES; d is the vibrations; v
is the measurement noise; Tf is the control signal updating rate and Ts is the PES sampling rate;
Ts = NTf where N is an integer. Ap, Bp and Cp are the plant matrices with compatible dimensions.
The Nyquist frequency is 1/(2Ts). To make the notations more clear, rewrite (4.16) as

xp(i+ 1) = Apxp(i) +Bpu(i) +Bpd(i) (i = 1, 2, 3, ..) (4.17a)

y(j) = Cpxp(j) + v(j) (j = N, 2N...) (4.17b)
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The control goal is (1) to estimate xp and d at the fast rate Tf based on the measured PES at the
slow rate Ts, and (2) to suppress d (which contains the components beyond the Nyquist frequency)
through the control signal u which is updated at the fast rate Tf .

Multi-rate Observer

To estimate the inter-sample behaviors of PES and the vibrations, this section proposes a multi-
rate extended observer by incorporating the nominal dynamics of the vibrations. This observer is
designed based on the techniques of ESO and Kalman filter. ESO allows estimation for both the
states and the disturbances by treating the disturbances as state variables [35, 89]. Rewrite the
system dynamics (4.17) as follows:[

xp(i+ 1)
d(i+ 1)

]
=

[
Ap Bp
0 1

] [
xp(i)
d(i)

]
+

[
Bp
0

]
u(i) +

[
0
1

]
w(i)

y(j) =
[
Cp 0

] [xp(j)
d(j)

]
+ v(j)

(4.18)

where w(i) = d(i+1)−d(i). ESO is essentially a state observer for the augmented system in (4.18).
If w(i) is deterministic but unknown, a high-gain state observer can be designed. If w(i) is process
noise, Kalman filter can be designed. In both ways, ESO implies an assumption of the disturbance
dynamics as follows

d(i+ 1) = d(i) + w(i) (4.19)

That is, d is assumed a constant plus the uncertainties w. This explains why ESO works well for
slowly time-varying / low-frequency disturbances.

Motivated by the assumption (4.19) made by the standard ESO theory, more complex vibration
dynamics can be introduced for vibration estimation beyond the Nyquist frequency. Assume d is
generated through certain dynamics which is driven by broadband noise w, i.e.,

xd(i+ 1) = Adxd(i) +Bdw(i)

d(i) = Cdxd(i)
(4.20)

Combining (4.17) and (4.20), the augmented system becomes[
xp(i+ 1)
xd(i+ 1)

]
=

[
Ap BpCd
0 Ad

] [
xp(i)
xd(i)

]
+

[
Bp
0

]
u(i) +

[
0
Bd

]
w(i)

y(j) =
[
Cp 0

] [xp(j)
xd(j)

]
+ v(j)

d(i) = Cdxd(i)

(4.21)

which is further written in a compact format

x(i+ 1) = Ax(i) +Bu(i) +Bww(i)

y(j) = Cx(j) + v(j)
(4.22)
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where

A =

[
Ap BpCd
0 Ad

]
, B =

[
Bp
0

]
, Bw =

[
0
Bd

]
C =

[
Cp 0

]
, x =

[
xTp xTd

]T (4.23)

For single-rate systems, conventional Kalman filter [90] provides the best linear estimation for x in
the sense of mean square error (MSE) when w and v are zero-mean white noises. Considering that
the augmented system (4.22) is a dual-rate system with slow measurement, multi-rate Kalman filter
[102] is designed with two steps: (1) prediction between the sampling instants and (2) correction
at the sampling instants.

Rewrite (4.22) with a unified time step k (k = 1, 2, 3...) as follows

x(kN + c+ 1) = Ax(kN + c) +Bu(kN + c) +Bww(kN + c)

y(kN) = Cx(kN) + v(kN)
(4.24)

where c = 0, 1, ..., N − 1; w(kN + c) and v(kN) are assumed to be zero-mean, Gaussian and white.
The multi-rate system (4.24) can be lifted into a single-rate system (Ts) as follows

x(kN +N) = ANx(kN) +

N−1∑
c=0

AN−1−cBu(kN + c) +

N−1∑
c=0

AN−1−cBww(kN + c)

y(kN) = Cx(kN) + v(kN)

(4.25)

Denote

Ae = AN ,

ue =
N−1∑
c=0

AN−1−cBu(kN + c),

we =
N−1∑
c=0

AN−1−cBww(kN + c)

(4.26)

Equation (4.25) can be rewritten in a more compact way

x(kN +N) = Aex(kN) + ue + we

y(kN) = Cx(kN) + v(kN)
(4.27)

Denote x̂(i|j) as the estimate of x(i) based on the measurement before and on time jTs. The
multi-rate Kalman filter for the system (4.24) is designed as follows.
(1) Prediction. There is no measurement available between the sampling instants; the best fast-rate
estimate between the sampling instants comes from the prediction based on the open-loop dynamics
(4.22) including the nominal vibration dynamics. Therefore, at the time instants t=(Nk + m)Tf
(∀m = 1, 2, .., N),

x̂(Nk +m|Nk) = Amx̂(Nk|Nk) +

m−1∑
c=0

Am−1−cBu(kN + c) (4.28)
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(2) Correction. At the time instants t=N(k + 1)Tf , new measurement y(Nk + N) is available;
therefore

x̂(Nk +N |Nk +N) = x̂(Nk +N |Nk) +K(k + 1)[y(Nk +N)− Cx̂(Nk +N |Nk)] (4.29)

Noting the correction law in (4.29) is based on the lifted model described by (4.27), the process
noise is we instead of w. Therefore, K is updated through the following equations:

K(k + 1) = M(k + 1)CT [CM(k + 1)CT + V ]−1;

M(k + 1) = AeM(k)ATe +We −AeM(k)CT [CM(k)CT + V ]−1CM(k)ATe
(4.30)

where V and We are the covariances of the noise v and we. That is, V = Cov(v) and

We =Cov(
N−1∑
c=0

AN−1−cBww(kN + c))

= E{[
N−1∑
c=0

AN−1−cBww(kN + c)][
N−1∑
c=0

AN−1−cBww(kN + c)]T }

= (
N−1∑
c=0

AN−1−cBw)W (
N−1∑
c=0

AN−1−cBw)T

(4.31)

where W=Cov(w) and E{·} denotes the expectation. Based on (4.21), the vibration estimate is

d̂ = Cdx̂d (4.32)

It is worth remarking that, usually d̂ is filtered by certain filter before it is added back to the feedback
loop to compensate the actual disturbances. Such filter can be a low/high/band-pass filter or phase
compensator to recover some phase loss or amplitude mismatch over certain frequency ranges as
discussed in [89].

In sum, by incorporating the nominal dynamics of the vibrations, this section has presented
the design of a multi-rate extended estimator based on the augmented system. The estimated PES
and vibrations between the sampling instants enable fast updating of the control signal.

Simulation Validation

The simulation is performed on the single-stage HDD Benchmark system described in Chapter 1.
The Nyquist frequency is 13200Hz. There exists one major resonance beyond the Nyquist frequency.
The disturbance file used in this simulation is provided in Figure 4.5, in which the top figure is the
frequency response of the nominal dynamics, and the bottom figure is the spectrum of the actual
injected disturbance.
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Figure 4.5: Disturbance file Figure 4.6: PES estimates

(a) Single-rate observer (b) Multi-rate observer

Figure 4.7: PES spectrum estimate

Figure 4.6 compares the actual PES and estimated PES in time domain. Due to the vibration
components beyond the Nyquist frequency, the estimated PES based on the single-rate observer
misses some off-track behaviors of the actual PES (for example, within the period from 0.0907 sec
to 0.0908 sec). Instead, the multi-rate observer is able to capture most of the PES’s behaviors.
Figure 4.7a compares the spectrum of the actual PES and the estimated PES through the single-
rate observer, in which the aliasing effect shows up. Figure 4.7b compares the spectrums of the
actual PES and the estimated PES through the multi-rate observer, in which even the PES beyond
the Nyquist frequency is reconstructed by the multi-rate observer. In sum, by incorporating the
disturbance dynamics and the design of the multi-rate extended observer, the estimation bandwidth
has been pushed beyond the Nyquist frequency.
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4.4 Chapter Summary

This chapter has explored the algorithms of pushing the bandwidth of the ESO to higher frequency
ranges based on a phase compensator and a priorly known nominal disturbance dynamics. For the
former one, the phase compensator recovers the phase loss in the standard ESO; such compensated
ESO provides more accurate estimates for both the states and the disturbances at high frequencies.
For the latter one, a multi-rate observer has been proposed to incorporate the nominal dynamics
of the vibrations and is able to estimate both the state and the vibrations beyond the Nyquist
frequency; large off-track behaviors of the VCM have been effectively captured. The simulation
study performed on the HDD Benchmark model has been provided to validate these benefits.
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Chapter 5

Frequency-shaped Sliding Mode
Control Based on Root Locus

5.1 Introduction

Discrete-time sliding mode control (SMC) is a powerful nonlinear technique that has been compre-
hensively studied in the existing literature. Various SMCs have been proposed to enhance system
performances: disturbance observer (DOB) based SMC [103] to increase the robustness to exter-
nal disturbances, robust terminal SMC [104] to overcome the singularity problem and gain faster
convergence. These SMC algorithms have been applied to various mechanical systems including
quadrotors [105], active suspension vehicle systems [106], manipulators [107] and spherical mobile
robots [108]. Comprehensive reviews on recent improvements and new perspectives of SMC have
been provided in [109–111].

SMC has been applied to hard disk drives (HDDs) due to its fast convergence and good ro-
bustness to unknown disturbances in the past few years. A SMC algorithm was applied to HDDs
to achieve a fast track-seeking performance in [51]. A time-optimal SMC algorithm with a time-
varying sliding surface was proposed in [52] for the smooth transition from the track-seeking process
to the track-following process, which was further improved to reduce the setting time during the
track-seeking process in [53]. Another sliding mode control for HDDs was also proposed based
on a time-optimal sliding surface to improve both the transient performance and the steady-state
performance [54]. SMC has been considered as a promising technique with excellent transient
performance in HDDs.

Aiming to extend the design of sliding mode control from time domain to frequency domain,
motivated by the frequency-shaped linear quadratic regulator (LQR), a frequency-shaped sliding
mode control (FSSMC) with a new switching plane was proposed and applied it to a flexible robot
manipulator in [112]. Many researchers then extended, improved and applied FSSMC to different
areas. A FSSMC based on the robust control theory was designed for a flexible arm in [113]. A
conventional sliding surface that can be made equivalent to the frequency-shaped one was provided
and applied to a single degree of freedom robot with a flexible appendage in [114] . A low-pass filter
was added to the control input to suppress chatter in SMC in [115]. The design of the frequency-
shaped sliding surface based on LQR weighting functions was discussed in [116]. A FSSMC with



CHAPTER 5. FSSMC BASED ON ROOT LOCUS 54

an inverse notch filter was designed to control the flying height of the pickup head in optical disk
dives in [117]. A FSSMC based on the output sampled measurements was designed to damp the
vibration amplitude of a smart beam at its resonance frequencies in [118].

In most of the aforementioned literature, FSSMC is motivated by the frequency-shaped LQR
control problem with frequency-varying weighting functions, aiming to attenuate the excitation
of undesired system dynamics and enhance the robustness. This chapter proposes an alternative
FSSMC with intuitive design guidelines; the proposed FSSMC is motivated by direct enhancement
at the frequencies where the performance is degraded by large peaks in the vibrations. Specifically,
to have customized control allocation for attenuating large peaks in the vibrations, the proposed
FSSMC increases the ‘local gain’ of SMC at these peak frequencies. Peak filters are utilized to
increase the local gain. Analysis based on root locus is provided for intuitive design and easy
stability analysis. Control algorithms and shaping filters are designed in the discrete time domain.
This makes analysis more complex than the continuous-time domain, but the design algorithms
and filters are directly implementable on actual HDDs.

5.2 Frequency-shaped SMC

A continuous-time nominal model that captures the central low-frequency characters of HDDs is[
ẏ
kyv̇

]
=

[
kyv
kykvu

]
(5.1)

where u is the control signal, y is the position of the head in the unit of tracks, v is the velocity, kv
is the acceleration constant, and ky is the position measurement gain.

Denote e1 = y − yr, and e2 = ė1 = kyv − ẏr. In HDD track-following control, yr and ẏr are set
as zero. From (5.1), the discrete-time error dynamics with unknown bounded disturbances is

e(k + 1) = Ae(k) +B(u(k) + d(k)) (5.2)

where

e(k) =

[
e1(k)
e2(k)

]
, A =

[
1 Ts
0 1

]
, B =

[
T 2
s kykv/2
Tskykv

]
,

Ts is the sampling time, and |d| ≤ D is the input disturbances.
In this section, a FSSMC algorithm is proposed to provide enhancements at the frequencies

where the servo performance is seriously degraded by large disturbances. A peak filter Qf is
introduced to shape sliding surface at the preferred frequencies. Qf can be regarded as a weighting
function to allocate the control effort in the frequency domain: it is expected that the controller
allocates more energy at the frequencies where the weight is large. Here, the peaks of Qf are
selected at the frequencies where PES is large.

Based on this idea, we have a different definition for the sliding surface in FSSMC as shown
in Figure 5.1. In the traditional definition of sliding surface st(k) = 0, st(k) is defined as st(k) =
He(k) =

[
1 h2

]
e(k) (h2 > 0). In the frequency-shaped sliding surface s(k) = 0, s(k) is modified

to

s(k) = H

[
Qf{e1(k)}
e2(k)

]
= ef (k) + h2e2(k) (5.3)
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Figure 5.1: Sliding surface definition

where ef is the filtered position error, i.e., ef = Qf{e1}. Assume that Qf has the following state-
space realization:

ew(k + 1) = Awew(k) +Bwe1(k)

Qf{e1(k)} = Cwew(k) +Dwe1(k)
(5.4)

Combining (5.2) and (5.4), the augmented system can be represented as

Ẽ(k + 1) = ÃẼ(k) + B̃(u(k) + d(k)) (5.5)

where
Ẽ(k) = (eTw(k), eT (k))T (5.6)

Ã(k) =

Aw Bw 0
0 A11 A12

0 A21 A22

 , B̃(k) =

 0
B1

B2

 (5.7)

The FSSMC control law is proposed as

u(k) = (H̃B̃)−1[(1− qTs)s(k)− H̃ÃẼ(k)− (εTs + β) sgn(s(k))] (5.8)

where β = H̃B̃D, H̃ = [Cw Dw h2], q > 0, 1 − qTs > 0, and 0 / ε < 1. Substituting (5.8) into
(5.2), after some algebra, the approaching dynamics of the system becomes

s(k + 1) = (1− qTs)s(k)− (εTs + γ(k))sgn(s(k)) (5.9)

where
γ(k) = β − H̃B̃d(k)sgn(s(k)) (5.10)

with 0 ≤ γ(k) ≤ 2β = γ.

5.3 Stability Analysis

Two conditions have to be satisfied to ensure the stability of SMC systems: (a) approaching
condition: the trajectory s(k), starting from any initial point, reaches to the sliding surface s(k) = 0
in finite time; and (b) sliding condition: after the trajectory reaches the sliding surface, it stays
on it. This means that the sliding surface s(k) = 0 should define stable dynamics for Ẽ(k), which
ensures the boundedness of the tracking error e1(k) and e2(k) when s(k) is bounded. The overall
stability analysis for System (5.2) with the controller (5.8) includes both the approaching phase
and the sliding phase.
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Approaching Phase

This part shows that the sliding surface s(k) = 0 will be reached in finite time if the approach-
ing dynamics satisfies (5.9). [88] proposed several conditions for a general class of discrete-time
approaching dynamics: (a) starting from any initial point, the trajectory will move monotonically
toward the switching plane and cross it in finite time; (b) once the trajectory has crossed the
switching plane for the first time, it will cross the plane again in every successive sampling period,
resulting in a zigzag motion about the switching plane; and (c) the trajectory stays in a band.

In the following, we prove that under Equation (5.9), conditions (a)-(c) are satisfied. That is,
s(k) will converge to and stay in the band [−∆, ∆], where

∆ =
εTs + γ

1− qTs
≥ εTs + γ(k)

1− qTs
= ∆(k) > 0 (5.11)

From Equation (5.9), we have

s(k + 1) = (1− qTs)|s(k)|sgn(s(k))− (εTs + γ(k))sgn(s(k))

= (|s(k)| −∆(k))(1− qTs)sgn(s(k))

When |s(k)| > ∆(k), sgn(s(k + 1)) = sgn(s(k)) and |s(k + 1)| = (|s(k)| −∆(k))(1− qTs) < |s(k)|,
which implies that s(k) would move towards the band monotonically; similarly, when |s(k)| < ∆(k),
sgn(s(k+1)) = −sgn(s(k)) and |s(k+1)| = (∆(k)−|s(k)|)(1−qTs) < ∆(k), which implies that s(k)
will go across the switching plane, change its sign at every step and stay in the band thereafter.

In summary, the controller (5.8) can drive the system (5.2) towards the sliding surface s(k) = 0
with the approaching dynamics (5.9) in finite time, and make it stay in the band [−∆, ∆] centered
around the sliding surface thereafter. In practical implementation, the discontinuous function sgn
is usually replaced by a saturation function to inhibit the chatter phenomenon.

Sliding Phase

To guarantee the stability of the overall system, the convergence of s(k) is not sufficient. In this
section, we derive conditions for both e1(k) and e2(k) to converge to zero when s(k) converges to
zero. First consider the continuous-time sliding surface s = 0, where

s = ef + h2e2 = Qf{e1}+ h2ė1 (5.12)

Assume that Qf has the transfer function realization: Qf (p) = B(p)/A(p), where p is the Laplace
variable. Then, the dynamics between s and e1 is

e1 =
1

B(p)
A(p) + h2p

s (5.13)

which can be realized by the block diagram in Figure 5.2.
Notice that the open-loop transfer function from s to e1 in Figure 5.2 is

G(p) =
1

h2

B(p)

A(p)

1

p
(5.14)
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Figure 5.2: Dynamics of sliding surface

and the closed-loop characteristic equation is

1 +
1

h2

B(p)

A(p)

1

p
= 0 (5.15)

Given a h2 > 0, if all of the closed-loop poles are in the left half plane, the systems from s to e1

and from s to e2 are stable; thus any bounded s yields bounded e1 and bounded e2. We have thus
transformed the stability analysis (in sliding phase) into a root-locus problem: as 1/h2 changes
from 0 to +∞, the poles of System (5.13) are on the root loci from the open-loop poles to the
open-loop zeros and −∞, and would never go into the right half plane.

For the discrete-time case, 5.12 is replaced by

s(k) = ef (k) + h2e2(k) = Qf{e1(k)}+ h2
2

Ts

z − 1

z + 1
e1(k) (5.16)

where Qf has the transfer function realization Qf (z) = Bd(z)/Ad(z), and the discretized version of
Qf (p) via Tustin transformation:

p =
2

Ts

z − 1

z + 1
(5.17)

Then the discrete-time dynamics between s(k) and e1(k) is

e1(k) =
1

Bd(z)
Ad(z) + h2

2
Ts

z−1
z+1

s(k) (5.18)

and the closed-loop characteristic equation is

1 +
1

h2

Ts
2

z + 1

z − 1

Bd(z)

Ad(z)
= 0 (5.19)

A root locus analysis similar to the continuous-time case can be performed. Alternatively, noticing
that the Tustin transformation preserves stability of the poles and zeros by the mapping (5.17)
(where the left-half plane is mapped to the inside of the unit cycle), we can directly conclude that
(5.18) is stable if and only if its continuous-time equivalent system (5.13) is stable.

5.4 Filter Design

This section discusses the design of the peak filters for FSSMC.
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Peak Filter with Single Peak (PFSP)

A continuous-time PFSP is

Qf (p) =
B(p)

A(p)
=
p2 + 2bwdp+ w2

d

p2 + 2awdp+ w2
d

(5.20)

with 0<a<b<1. The following shows if h2>0, the closed-loop poles of the system (5.13) with (5.20)
remain stable; namely, FSSMC has a guaranteed stable sliding surface.

Open-loop Poles

Open-loop Zeros

Arrow Direction: h2 varying from +∞ to zero

Im

Re

-bwd -awd

Figure 5.3: Root locus with a PFSP

Figure 5.3 shows that the root loci of the closed-loop system (5.13) with (5.20) as h2 changes
from +∞ to zero, which are always in the left half plane. More specifically, if both the open-loop
poles and zeros are in the stable region, a closed-loop pole can never be on the imaginary axis
(except the one at origin), or the root loci never enters the unstable region. To prove this, suppose
there exits a pole at p = γj(γ 6= 0). It must satisfy

1 +
1

h2

B(γj)

A(γj)

1

γj
= 0 (5.21)

Using (5.20), we have

∠
(w2

d − γ2) + 2bwdγj

(w2
d − γ2) + 2awdγj

1

γj
= (2n+ 1)π (5.22)

or

arctan

 2bwdγ
w2
d−γ2

− 2awdγ
w2
d−γ2

1 + 2bwdγ
w2
d−γ2

2awdγ
w2
d−γ2

 = −π
2

(5.23)

This means
(

1 + 2bwdγ
w2
d−γ2

2awdγ
w2
d−γ2

)
has to be 0, which is impossible. Therefore, the root loci never cross

the imaginary axis
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Actually, in the single peak filter case, the sliding surface is a 3rd-order system, and the stability
can be directly checked. Combining (5.13) and (5.20), we have

e =

[
p2 + 2awdp+ w2

d

h2p3 + (1 + 2awdh2)p2 + (h2w2
d + 2bwd)p+ w2

d

]
s (5.24)

The closed-loop poles satisfy

h2p
3 + (1 + 2awdh2)p2 + (h2w

2
d + 2bwd)p+ w2

d = 0 (5.25)

Note that the coefficients h2 > 0, (1 + 2awdh2) > 0, (h2w
2
d + 2bwd) > 0, w2

d > 0. From Routh test,
the system is stable if and only if (1 + 2awdh2)(h2w

2
d + 2bwd) − h2w

2
d > 0, which clearly holds as

(1 + 2awdh2) > 1 and (h2w
2
d + 2bwd) > h2w

2
d.

In summary, we obtain a conclusion on the stability of the proposed FSSMC with a PFSP: as
long as both the zeros and poles of (5.20) are stable, the sliding surface is guaranteed to be stable.

The corresponding discrete-time version of (5.20) based on Tustin transformation is

Qf (z) =
Bd(z)

Ad(z)
(5.26)

where Bd(z) = 4(z − 1)2 + 4Tsbwd(z − 1)(z + 1) + T 2
sw

2
d(z + 1)2, Ad(z) = 4(z − 1)2 + 4Tsawd(z −

1)(z+ 1) +T 2
sw

2
d(z+ 1)2. With such a filter, the discrete-time sliding surface (5.16) is stable if and

only if both the zeros and poles of the corresponding continuous-time filter (5.20) are stable.

Peak Filter with Multi-peaks (PFMP)

Usually there are more than one peaks at ωdi’s (i = 1, 2, ..., N) in the external vibrations. Such
cases can be handled by FSSMC with a PFMP

Qf (p) =
N∏
i=1

Bi(p)

Ai(p)
(5.27)

where Bi(p) = p2 + 2bwdip+ w2
di, and Ai(p) = p2 +2awdip+w2

di. Analogous to previous discussion,
a general dynamics between s and e1 with a PFMP can be represented as

e1 =
1∏N

i=1
Bi(p)
Ai(p)

+ h2p
s (5.28)

and the closed-loop characteristic equation is

1 +
1

h2

N∏
i=1

Bi(p)

Ai(p)

1

p
= 0 (5.29)

Although all the open-loop zeros and poles (except the one at origin) are in the left half plane,
the closed-loop root loci may cross the imaginary axes. In this case, the proposed root locus
method provides an intuitive way to decide the filter parameters a, b, and the sliding surface
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Figure 5.4: Root locus with a PFMP

parameter h2 in the p plane. For example, if we would like to design a three-peak filter with
n = 3, a = 0.03, b = 3, w1 = 900Hz, w2 = 1170Hz, w3 = 2500Hz, the root locus can be numerically
calculated and plotted, as shown in Figure 5.4. For this particular design, FSSMC can stabilize the
system when h2 > 0. The sliding surface can be further refined by selecting a suitable h2 based on
the transient performance.

For implementation, the equivalent discretized Qf (by Tustin Transform) is

Qf (z) =
N∏
i=1

Bdi(z)

Adi(z)
(5.30)

where Bdi(z) = 4(z−1)2+4Tsbwdi(z−1)(z+1)+T 2
sw

2
di(z+1)2, and Adi(z) = 4(z−1)2+4Tsawdi(z−

1)(z + 1) + T 2
sw

2
di(z + 1)2. The discrete dynamics between s(k) and e1(k) is described as

e1 =
1∏N

i=1
Bdi(z)
Adi(z)

+ h2
2
Ts

z−1
z+1

s (5.31)

with the closed-loop characteristics equation

1 +
1

h2

Ts
2

z + 1

z − 1

N∏
i=1

Bdi(z)

Adi(z)
= 0 (5.32)

(5.31) is stable if and only if (5.28) is stable.
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In most cases, it is not known in advance at which frequencies the servo performance is most
degraded. Such frequency ranges may be identified in real time through processing the error signal
e1(k) by an adaptive notch filter with an adjustable notch frequencies. Related work will be
presented in Chapter 7.

5.5 Simulation Validation

The proposed FSSMC is implemented on the single-stage HDD Benchmark system. For the imple-
mentation on the dual-stage HDDs, please see [119]. In this simulation study, the system is injected
with three sets of audio vibrations with peak frequencies around 1200Hz, 900Hz, 2500Hz respec-
tively. Two control algorithms are compared: the traditional SMC, and the proposed FSSMC.
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Figure 5.5: PES spectrum with audio vibration 1

Figures 5.5 to 5.7 show the spectrums of PES with three sets of audio vibrations. The accu-
mulative 3σ value of PES is calculated and shown at the top right corn of each figure. As shown
in Figure 5.5, the accumulative 3σ value of PES has been reduced from 0.37447 to 0.31265 by fre-
quency shaping, approximate 20% reduction; the amplitude reduction around the peak frequency
is approximate 50%. Similar results for the other two sets of audio vibrations are shown in Figure
5.6 (approximate 26% reduction of accumulative 3σ value of PES and 50% amplitude reduction
around the peak frequency) and Figure 5.7 (approximate 13% reduction of accumulative 3σ value
of PES and more than 50% amplitude reduction around the peak frequency). Figure 5.8 provides
the calculated frequency responses of the sensitivities when the third set of vibrations is injected.
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Figure 5.6: PES spectrum with audio vibration 2
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Figure 5.7: PES spectrum with audio vibration 3
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Figure 5.8: Measured frequency responses from vibration 3 to PES

Simulation results demonstrate the benefits of the proposed FSSMC: reduction of the overall
3σ value of PES, and reduction of the amplitude of the PES spectrum at specific frequencies, with
very small performance sacrifice at other frequencies.

5.6 Chapter Summary

This chapter has proposed a FSSMC algorithm based on the root locus technique to suppress high-
frequency peaks in the vibrations. Simulation results have validated the benefits of the proposed
FSSMC. From the theoretical viewpoint, this work provides comprehensive stability analysis and
a guideline for the filter design based on root-locus method, which provides great flexibility and
convenience in the frequency-domain controller design. A nice property of the proposed PFSP
design is that: as long as both the poles and the zeros of the shaping filter are stable, the sliding
surface is stable. This work can also be extended to a general case to address multiple peaks in the
vibrations. The peak frequencies of the shaping filters are assumed known, which otherwise can be
adaptively tuned based on online identification of large peaks in the vibrations.



64

Chapter 6

Frequency-shaped Sliding Mode
Control Based on H-infinity Synthesis

6.1 Introduction

Due to fast convergence and nice robustness to external disturbances, sliding mode control (SMC)
becomes an effective technique in high-precision systems in recent years [120, 121]. For example,
in hard disk drives (HDDs), several kinds of SMCs have been proposed to improve the transient
performance when the track seeking is switched to the track following [51–54]. However, theses
SMCs were designed and analyzed in time domain without considering the frequency-response
characteristics of the closed-loop systems, which are critically important for high-precision systems
that are subjected to narrow band disturbances such as high-frequency vibrations. Therefore, it
makes significant sense to explicitly consider frequency-domain performances of the closed-loop
systems when designing SMC, which is rather challenging due to the nonlinearity of SMC.

To extend the SMC design from time domain to frequency domain, frequency-shaped sliding
mode control (FSSMC) has been proposed and applied to different mechanical systems, such as
flexible robot manipulators [112, 114, 116], electrohydraulic servo-motors [115], pickup heads in
optical disk dives [117], and smart beams with resonances [118]. However, in most of the aforemen-
tioned literature, FSSMC was designed based on the frequency-shaped linear-quadratic regulator
(LQR). Furthermore, these shaping approaches were not generalized into a systematic methodology
and the stability of the sliding surface was usually difficult to guarantee. Chapter 5 proposed a
FSSMC with intuitive design guidelines motivated by the root locus technique, which is easy to
implement and guarantee the stability when there is only one peak frequency in the shaping filter.

This chapter makes one more step towards the frequency-domain design methodology for SMC,
and presents a systematic framework to design the sliding surface in frequency domain based on
the loop-shaping technique and the H∞ synthesis [122]. Similar to the work of [123] and [113], the
proposed deign procedure also involves H∞ synthesis. The difference is that the algorithm presented
here treats the shaping filter as an inner loop feedback controller, and augments the dynamics of
the sliding surface into a feedback system. With this idea, the stability of the sliding surface can be
guaranteed in the presence of disturbances. Furthermore, the shaping filter minimizes the weighted
H∞-norm of the sliding dynamics and thus minimizes performance degradation at wdi’s, where
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wdi’s (i = 1, 2, ..., N) denote these frequencies where the servo performance is seriously degraded
by large disturbances. Both the sliding mode control algorithm and the shaping filter are designed
in discrete-time, and thus can be readily implemented on actual mechanical systems. Furthermore,
this chapter presents an explicit sub-optimal solution to avoid on-line optimization when wd’s
change according to different disturbance sources.

6.2 Frequency-domain Analysis of Discrete-time SMC

This section provides a general SMC and the analysis in frequency domain. Consider a controllable
single-input-single-output (SISO) plant described by

e(k + 1) = Ape(k) +Bp(u(k) + d(k))

y(k) = Cpe(k)
(6.1)

where

e(k) =

[
e1(k)
e2(k)

]
∈
[
R(n−1)×1

R1×1

]
(6.2)

Ap =

[
A11 A12

A21 A22

]
∈
[
R(n−1)×(n−1) R(n−1)×1

R1×(n−1) R1×1

]
Bp =

[
0
bn

]
∈
[
R(n−1)×1

R1×1

]
Cp =

[
c1 c2

]
∈
[
R1×(n−1) R1×1

]
(6.3)

bn 6= 0; y(k) is the position error signal (PES); e(k) is the error signal; u(k) is the control input to
be designed; d(k) is the disturbance bounded by D, i.e., |d(k)| ≤ D.

It is worth noting that the controllability of [Ap, Bp] implies the controllability of [A11, A12].
This is an important property when designing sliding mode control. Brief explanation base on
Popov-Belovich-Hautus (PBH) test [124] is provided as follows. The controllability of [Ap, Bp]
implies

rank(
[
ρIn −Ap Bp

]
)

= rank(

[
ρIn−1 −A11 −A12 0
−A21 ρ−A22 bn

]
) = n

(6.4)

for all ρ ∈ C, which further implies

rank(
[
ρIn−1 −A11 −A12

]
) = n− 1 (6.5)

for all ρ ∈ C. Therefore, [A11, A12] is controllable.
In traditional discrete-time sliding mode control, the sliding surface is usually defined as s(k) = 0

[88, 125], where

s(k) = He(k)

=
[
h1, h2, , · · · , hn−1, 1

]
e(k)

= h̃e1(k) + e2(k)

(6.6)
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with h̃ =
[
h1, h2, , · · · , hn−1

]
. The control law must be designed so that the following two

conditions are satisfied to guarantee the stability of System (6.1) under control: (a) Approaching
condition: the trajectory s(k), starting from any initial point, enters in a vicinity (e.g. ±δ band)
of the surface s(k) = 0 in finite time steps and stays in the bound thereafter; (b) Sliding condition:
in the vicinity of s(k) = 0, e(k) remains bounded and exhibits stable dynamics.

Condition (a) can be guaranteed by appropriate approaching laws [88, 126, 127]

s(k + 1)− s(k) = −qTss(k)− εTssgn(s(k)) (6.7)

with ε > 0, q > 0, and 1− qTs > 0, where Ts is the sampling time. This approaching law drives the
trajectory s(k) towards the sliding surface and results in a zigzag motion along the sliding surface
with bounded amplitude [88]. There also exits several other kinds of approaching laws to guarantee
s(k) stay in the vicinity of the sliding surface [128, 129].

Condition (b) can be guaranteed by a stable sliding surface. From Equation (6.6), e2(k) =
s− h̃e1(k). From Equations (6.1) to (6.3),

e1(k + 1) = A11e1(k) +A12e2(k)

= (A11 −A12h̃)e1(k) +A12s(k)
(6.8)

where h̃ is designed to guarantee (A11 − A12h̃) is Schur (i.e., all the eigenvalues of (A11 − A12h̃)
are inside the unit circle on the complex plane). The controllability of (A11, A12) guarantees the
existence of such a h̃. After the trajectory is restricted within the vicinity the sliding surface (i.e.,
s(k) is small and bounded), e1(k) and e2(k) stay bounded.

In the following, the sliding surface dynamics in traditional SMC is newly analyzed in frequency
domain, based on which a FSSMC algorithm is proposed. In traditional SMC, denote P (z) as the
transfer function from s to y, i.e., y = P (z)s. Then P (z) can be obtained as follows. From
Equations (6.1)-(6.3) and (6.6),

e1(k + 1) = A11e1(k) +A12[s− h̃e1(k)] (6.9)

which can be represented through a transfer function, i.e.,

e1 = [zI − (A11 −A12h̃)]−1A12s (6.10)

Then,

y = c1e1 + c2e2

= c1e1 + c2(s− h̃e1)

=
[
(c1 − c2h̃)[zI − (A11 −A12h̃)]−1A12) + c2

]
s

, P (z)s

(6.11)

The two conditions for stability become (a) Approaching condition; (b) P (z) is stable. The stability
of P (z) requires that (A11 −A12h̃) is Schur; this is consistent with the statement in Section II.
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Figure 6.1: Sliding surface dynamics in FSSMC

Figure 6.2: Sliding surface dynamics with a weighting filter

6.3 H-infinity Based Frequency-shaped SMC

This section describes the design and analysis for FSSMC. As an extension of traditional sliding
mode control, FSSMC is proposed to provide specific performance enhancement at certain fre-
quencies. The stability of the sliding surface is one important issue when frequency shaping is
introduced. [127] provides one way to check the stability based on root locus technique. However,
this approach for stability checking may not be easy when the order of the sliding surface dynamics
is high. Here we presents a different frequency-shaping method based on H∞ synthesis which can
easily guarantee the stability of the sliding surface.

In FSSMC, to guarantee the stability and performance, besides the two conditions in the tra-
ditional SMC, there is an additional requirement for the sliding surface: the dynamics from s to y
should have desired frequency properties. In this chapter, to guarantee the stability of the sliding
surface, a shaping filter Qf (z) is newly introduced in the feedback loop, as shown in Figure 6.1. By
augmenting the sliding surface dynamics into a feedback structure, the FSSMC is enabled to sup-
press disturbances with known characteristics in frequency domain; and the order of the dynamics
is increased.

Denote the transfer function from y to s in FSSMC as T (z), i.e., y = T (z)s, then

T (z) =
P (z)

1 + P (z)Qf (z)
(6.12)

Similar to traditional SMC, in FSSMC, two conditions need to be satisfied: (1) Approaching
condition; (2) T (z) is stable. Additionally, T (z) should have desired frequency properties, i.e., T (z)
has small amplifications at frequencies wdi’s. Those requirements can be satisfied by designing
Qf (z) based on H∞ synthesis.

The following part of this section provides the design process of Qf (z), such that T (z) is stable
and has desired frequency property. To achieve small amplification of T (z) at wdi’s, a weighting
filter We(z) is introduced as shown in Figure 6.2.
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Define Pf (z) as the transfer function matrix from [s, yq]
T to [yf , y]T , and define Tf (z) as the

transfer function from s to yf . Assume Tf (z) and Pf (z) have the following state-space realizations,
respectively

Tf :


xf (k + 1)

ξ(k + 1)

yf (k)

 =

[
Ac Bc
Cc Dc

]
xf (k)

ξ(k)

s(k)

 (6.13)

Pf :


xf (k + 1)

yf (k)

y(k)

 =

 A B1 B2

C1 D11 D12

C2 D21 D22



xf (k)

s(k)

yq(k)

 (6.14)

with

A =

[
Ap 0

BwCp Aw

]
,
[
B1 B2

]
=

[
Bp −Bp

BwDp −BwDp

]
[
C1

C2

]
=

[
DwCp Cw
Cp 0

]
,

[
D11 D12

D21 D22

]
=

[
DwDp −DwDp

−Dp −Dp

] (6.15)

where [Ap, Bp, Cp, Dp] is a state-space realization for P (z), and [Aw, Bw, Cw, Dw] is a state-space
realization for We(z). To find a Qf filter which minimizes the H∞-norm of Tf , the following
optimization problem is formulated:

min
Qf , γ

γ (6.16a)

|λi(Ac)| < 1 ∀i (6.16b)

‖Tf‖∞ < γ (6.16c)

where λi(Ac) denotes the ith eigenvalue of Ac. Based on the following theorem, the optimization
problem (6.16) can be transformed into a convex optimization problem.

Theorem ([74]): For the system shown in Figure 6.2 with the state-space realizations in Equa-
tions (6.13-6.15), if D22 = 0, the following statements are equivalent:
(a) Ac is Schur and ‖Cc(zI −Ac)−1Bc +Dc‖∞ < γ;
(b) There exist symmetric matrices R and S satisfying

L1(R, γ) =

[
NR 0

0 I

]T 
AR+RAT RCT1 B1

C1R −γI D11

BT
1 DT

11 −γI

[NR 0

0 I

]
< 0A (6.17)

L2(S, γ) =

[
NS 0

0 I

]T 
AS + SAT SBT

1 CT1

BT
1 S −γI DT

11

C1 D11 −γI

[NS 0

0 I

]
< 0 (6.18)

L3(R,S) =

[
R I

I S

]
≥ 0 (6.19)
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where NR and NS denote the bases of the null spaces of (BT
2 , D

T
12) and (CT2 , D

T
21), respectively.

When D22 = 0, based on the Theorem 1, the optimization problem (6.16) can be reformulated as

Figure 6.3: Equivalent sliding surface dynamics with a weighting filter

a convex optimization problem with linear matrix equality (LMI) constraints (6.17-6.19) that are
dependent on Equations (6.13) to (6.15). Noting that Pf,22(z) = −P (z) and Eq. (6.11), D22 can
be non-zero; in this case, the following transformation can be made before applying Theorem 1 [74]

P ′f = Pf −
[
0 0
0 D22

]
(6.20a)

Q′f = [I −D22Qf ]−1Qf (6.20b)

Figure 6.3 illustrates such transformation. After Q′f is obtained through solving the convex opti-
mization problem (6.16), Qf can be obtained thereafter through Equation (6.20b).

6.4 An Explicit Suboptimal Solution

In general the suitable weighting filter differs among various disturbance sources. It is not efficient
to solve the optimization problem (6.16) every time when the disturbance sources change. This
motivates a shaping filter which is explicitly dependent on wd’s. One approach of obtaining the
parameter-dependent sub-optimal filter was proposed in [130, 131]. This approach requires that the
state-space matrices of Pf (z) are affine in the parameters of wd’s, which may not always be satisfied
and limits the flexibilities in the design of We. Furthermore, the constructed solutions through this
approach are usually conservative by taking linear parameter-varying systems into consideration.
This motivates an interesting question: is it possible to design an optimal/suboptimal shaping
filter that is explicitly dependent on the weighting filter? Within this motivation, the optimization
problem (6.16) is modified as follows,
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min
Qf{We}, γ{We}

γ{We} (6.21a)

|λi(Ac{We})| < 1 ∀i (6.21b)

‖Tf{We}‖∞ < γ(We) (6.21c)

It is challenging to obtain the optimal filter explicitly dependent on We. Alternatively, a sub-
optimal solution that is explicitly dependent on We is beneficial enough in practice. We provide
the following proposition for the construction of such a suboptimal filter.

Proposition: Suppose (1) P (z) is a stable minimum-phase system with a causal pseudo inverse
P †(z); (2) We(z) is a stable minimum-phase weighting filter; (3) Qf is the shaping filter incorpo-
rated in the ‘feedback’ loop as shown in Figure 6.1. The following design of Qf (z) can guarantee
the stability and bounded H∞-norm of the sliding surface dynamics:

Qf{We} = [γ∗(z)]−1We(z)− P †(z) (6.22)

where γ∗(z) is a stable, invertible and minimum-phase filter that satisfies ‖γ∗(z)‖∞ < 1 and

|γ∗(ejΘ)(1− P (ejΘ)P †(ejΘ))| << 1 ∀Θ ∈ [0, 2π) (6.23)

Proof: From the definition of Tf in Figure 6.2 (the transfer function from s to yf ),

Tf (z) =
P (z)

1 + P (z)Qf (z)
We(z)

=
P (z)

1 + P (z)([γ∗(z)]−1We(z)− P †(z))
We(z)

=
P (z)γ∗(z)

γ∗(z)(1− P (z)P †(z)) + P (z)We(z)
We(z)

(6.24)

From Equation (6.23), the magnitude of γ∗(z)(1−P (z)P †(z)) over a large frequency range is small;
therefore Tf (z)≈γ∗(z), and T (z)≈γ∗(z)/We(z). Noting that P (z), We(z) and γ∗(z) are all sta-
ble minimum-phase systems, the derivation in Equation (6.24) does not cause unstable zero-pole
cancellation. Therefore, Tf is stable and ‖Tf (z)‖∞<1.

This proposition provides an efficient approach to construct the shaping filter Qf (z) that is
strictly affine in the weighting filter We(z), which is usually designed based on the frequency
characteristics of the disturbances. Two follow-up remarks on P †(z) and γ∗(z) are provided as
follows.

• Remark 1: There are several ways to design P †(z). A good design of P †(z) should guarantee
that P (ejΘ)P †(ejΘ)=1 over a large frequency range. Considering P (z) is a stable minimum-
phase system, a simple design of P †(z) is suggested as follows

P †(z) = FP (z)P−1(z) (6.25)
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where P−1(z) is the exact inverse of P (z) and FP (z) is a filter to maintain the causality of
P †(z). For example, FP (z) can be designed in the following format

FP (z) = M

(
1

z + τ

)r
(6.26)

where M is a constant to maintain FP (ej0) = 1, r is an integer larger or equal to the relative
degree of P (z) to maintain the causality of P †(z), and τ is a small integer.

• Remark 2: The construction of Qf (z) using Equation (6.22) needs a good design of γ∗(z).
From Proposition 1, γ∗(z) should be biproper (i.e., γ(z) has equal number of poles and
zeros) and all the zeros and poles are stable; furthermore, it should be designed such that
Equation (6.23) is satisfied. Usually γ∗(z) can be designed as a low-pass filter because the
mismatch between P (z) and 1/P †(z) usually happens at high frequencies.

Based on Proposition 1 and the two follow-up remarks, the steps of constructing a shaping filter
that is explicitly dependent on We(z) are summarized as follows:

(a) Design a sliding surface according to Equation (6.6).

(b) Calculate the transfer function representation of the sliding surface dynamics P (z) according
to Equation (6.11).

(c) Design a causal (pseudo) inverse for P (z); suggestions are given in Remark 1 and Equa-
tions (6.25) to (6.26).

(d) Design γ∗(z) according to Equation (6.23); suggestions are given in Remark 2.

(e) Design the weighting filter We(z) based on the frequency characteristics of the disturbances
which can be obtained from either sensors or disturbance estimators (for example, disturbance
observers [132] or extended state observers [89].

(f) Design the shaping filter Qf (z) according to Equation (6.22).

Until now, a shaping filter Qf (z) that is explicitly dependent on (and affine in) the weighting
filter We(z) has been constructed. The shaping filter can guarantee both the stability and desired
frequency responses of the sliding surface dynamics.

6.5 Controller Design

This section provides sliding mode control design for the system (6.1) with the frequency-shaped
sliding surface defined in Figure 6.1. Assume Qf has been already obtained from Sections 3 (optimal
filter) or 4 (suboptimal filter), and it has the following state-space realization

Qf :

[
ξ(k + 1)

yq(k)

]
=

[
Ā B̄

C̄ D̄

][
ξ(k)

y(k)

]
(6.27)

Combining Equation (6.1) and Equation (6.27), the augmented system can be written as

xe(k + 1) = Aexe(k) +Be(u(k) + d(k)) (6.28)
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where xe(k) = [e(k)T , ξ(k)T ]T , and

Ae =

[
Ap 0
B̄Cp Ā

]
, Be =

[
Bp
0

]
(6.29)

Noting Equation (6.12), in frequency domain, the frequency-shaped sliding variable s is derived
as follows

s = T (z)−1y =
1

P (z)
y +Qf (z)y. (6.30)

From Equations (6.30) and (6.27), in time domain, the sliding variable s becomes

s(k) = He(k) + C̄ξ(k) + D̄Cpe(k)

=
[
H + D̄Cp C̄

] [e(k)
ξ(k)

]
, Hexe(k)

(6.31)

The frequency-shaped sliding mode controller is designed as

u(k) =[HeBe]
−1[(1− qTs)s(k)−HeAexe(k)−

(εT +HeBeD)sgn(s(k))]
(6.32)

where 0<qTs<1 and 0<ε�1. Substituting Equations (6.32) and (6.28) into Equation (6.31), the
actual approaching dynamics becomes

s(k + 1) = (1− qTs)s(k)−
[εTs + (HeBeD −HeBed(k))]sgn(s(k))

(6.33)

which guarantees that s(k) enters the band [−∆,∆] in finite time steps, where

∆=(εTs+η)/(1−qTs)>0 (6.34)

with η=HeBe(D−d)≥0. Detailed explanation is provided as follows. According to Equation (6.33),
the approaching dynamics can be written as follows

s(k + 1) = (|s(k)| −∆)(1− qTs)sgn(s(k)) (6.35)

If |s(k)|>∆, then sgn(s(k+1))=sgn(s(k)) and |s(k + 1)| = (|s(k)| − ∆)(1−qTs) < |s(k)|, s would
move towards the band monotonically; similarly, if |s(k)|<∆, then sgn(s(k+1))= − sgn(s(k)) and
|s(k+1)|=(∆−|s(k)|)(1−qT )<∆, s would cross the switching plane, change its sign at every step
and stay in the band thereafter. To reduce the chattering phenomenon in SMC, sgn(s(k)) is usually
replaced by a saturation function of s(k) in real implementation.

In summary, given P (z) and We(z), a shaping filter Qf (z) can be constructed through solving
the convex optimization problem (6.16). To address more general disturbances, We(z) is preferred
to be re-designed when the frequency characteristics of the disturbances change a lot. In these
cases, a shaping filter that is explicitly dependent on We(z) is desired, and Proposition 1 pro-
vides a construction approach for such a filter. After the shaping filter Qf (z) is constructed, a
frequency-shaped sliding surface is defined in Figure 6.1, and a sliding mode controller is designed
in Equation (6.32). Subsequently, the system (6.1) is stabilized with desired frequency properties.
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6.6 Simulation Validation

This section applies the proposed FSSMC to suppress the vibrations with multiple peak frequencies
in HDDs. To suppress this type of vibrations, the weighting filter is designed as a peak filter with
multiple peak frequencies at wdi’s,

We(z) =
N∏
i=1

Bi(z)

Ai(z)
(6.36)

where

Bi(z) = 4(z − 1)2 + 4Tsbiwdi(z − 1)(z + 1) + T 2
sw

2
di(z + 1)2

Ai(z) = 4(z − 1)2 + 4Tsaiwdi(z − 1)(z + 1) + T 2
sw

2
di(z + 1)2

N is the number of vibration peak frequencies to deal with; ai and bi are parameters to determine the
magnitudes and the widths of the peaks. In this simulation study, all the ai’s are set as 0.03, and all
the bi’s are set as 0.3. Three files of vibration data modified from actual drive tests are injected into
the simulation systems. Correspondingly, three shaping filters are utilized for the three vibration
sources: (1) single-peak case (Figure 6.4) with peak frequency of 1250 Hz (N=1, wd1=1250); (3)
double-peak case (Figure 6.6) with peak frequencies of 1250 Hz and 2500 Hz (N=2, wd1=1250 and
wd2=2500); (3) triple-peak case (Figure 6.8) with peak frequencies of 1250 Hz, 2500 Hz and 4000
Hz (N=3, wd1=1250, wd2=2500 and wd3=4000). The corresponding PES spectrum comparisons
are provided in Figures 6.5, 6.7, and 6.9, respectively.
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Figure 6.4: Bode plots of optimal and suboptimal shaping filters (single-peak)

To show the benefits of the proposed frequency-shaping techniques, three control algorithms
are compared: traditional SMC, the proposed FSSMC and the proposed suboptimal FSSMC.

(1)Comparison between SMC and FSSMC : In single-peak case, the Bode plot of Qf (z) is as
shown in Figure 6.4. Figure 6.5 indicates that the large peak around 1250 Hz has been reduced
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Figure 6.5: PES spectrum comparison (single-peak)
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Figure 6.7: PES spectrum comparison (double-peak)

significantly by FSSMC, and the 3σ value of PES has been reduced from 0.690 to 0.332, approx-
imately 52% reduction. Similar benefits have been demonstrated in both double-peak case and
triple-peak case. Figure 6.7 indicates that large peaks around 1250 Hz and 2500 Hz have been
reduced by FSSMC, and the 3σ value of PES has been reduced from 0.735 to 0.289, approximately
61% reduction. Figure 6.9 indicates that large peaks around 1250 Hz, 2500 Hz and 4000 Hz have
been reduced by FSSMC, and the 3σ value of PES has been reduced from 0.665 to 0.344, approxi-
mately 48% reduction. In summary, FSSMC has better performance than traditional SMC in the
sense of large vibration peak supression.

(2)Comparison between FSSMC and suboptimal FSSMC : Figure 6.4, 6.6 and 6.8 also compare
the optimal shaping filters and the suboptimal filters. The optimal filters are obtained through
solving the H∞ optimization problem and the suboptimal filters are obtained directly through
Proposition 1. Figure 6.5, 6.7 and 6.9 compare their corresponding PES spectrums. It is noticed
that, although the 3σ values of the PES have been slightly sacrificed using the sub-optimal filters,
the PES still have been reduced significantly compared to the traditional SMC without frequency
shaping. A brief summary of those improvements by FSSMC and suboptimal FSSMC are provided
in Table 6.1.
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Figure 6.8: Bode plots of optimal and suboptimal shaping filters (triple-peak)
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N wd’s (Hz) SMC Suboptimal FSSMC FSSMC

1 {1250} 0.69014 0.50924 (↓ 26%) 0.33236 (↓ 52%)

2 {1250, 2500} 0.73465 0.39708 (↓ 46%) 0.28943 (↓ 61%)

3 {1250, 2500, 4000} 0.66480 0.36467 (↓ 45%) 0.34433 (↓ 48%)

Table 6.1: Comparison of 3σ values of PES

6.7 Chapter Summary

This chapter has presented a frequency shaping method for the sliding surface based on H∞ syn-
thesis for performance enhancement of sliding mode control. The sliding surface dynamics has been
augmented as a ‘feedback’ system; the shaping filter has been considered as the feedback controller,
which assures the stability of the sliding surface and desired frequency responses. This method
minimizes the weighted H∞-norm of the sliding surface dynamics, and provides design flexibilities
in incorporating standard loop shaping techniques into sliding mode control. This approach has
been further advanced to be the weighting filter dependent FSSMC to gain greater efficiency and
more flexibilities. Detailed evaluations have been performed on a simulated hard disk drive, which
is subject to serious external vibrations with multiple peak frequencies. The effectiveness of the
suppression of vibrations has been demonstrated.



78

Chapter 7

Advanced Frequency-shaped Sliding
Mode Control

This chapter presents frequency-shaped sliding mode control (FSSMC) techniques when the state
variables are not directly measurable and/or the vibration information is not available through
vibration sensors and need to be obtained online.

7.1 ESO-based Frequency-shaped SMC

This section presents FSSMC algorithm based on the extended state observer (ESO) with the phase
compensator presented in Chapter 4. The ESO estimates both the states and the disturbances.
Based on these estimates, the FSSMC is implemented to further suppress large peaks in the dis-
turbances. The control scheme is provided in Figure 7.1. To illustrate the effectiveness of both the
ESO and the FSSMC, simulation study is performed on the hard disk drive (HDD) Benchmark
model, and four systems with different control schemes (listed in Table 7.1) are compared and
analyzed. The comparisons of the position error signal (PES) are provided in Figures 7.2 to 7.4.
The accumulative 3σ value of PES is calculated and provided in each figure.

Figure 7.1: Control scheme
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System index System

a Standard SMC with the conventional state observer

b Standard SMC with the standard ESO

c FSSMC with the standard ESO

d FSSMC with the compensated ESO

Table 7.1: Different systems studied in simulation
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Figure 7.2: PES spectrum comparison: systems (a) and (b)

Figure 7.2 compares (a) and (b), and the PES below 500 Hz is reduced by introducing the
standard ESO instead of the conventional state observer. Figure 7.3 compares (b) and (c), and
the PES around 1000 Hz is reduced by the frequency shaping technique in FSSMC. Figure 7.4
compares (c) and (d), and the PES around 500 Hz is reduced by the phase compensator in the
compensated ESO. Overall, the 3σ value of the PES has been reduced from 9.45% to 2.01%. The
sensitivity from the disturbances to the PES is a key criterion to evaluate the servo performance in
HDDs. Figure 7.5 provides both the calculated and the fitted frequency responses of the sensitivity
functions in systems (a) to (d). It is shown that system (d) has better vibration suppression
than systems (a) (b) and (c), with insignificant sacrifice at other frequencies. The effectiveness of
high-frequency vibration suppression is demonstrated.
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Figure 7.3: PES spectrum comparison: systems (b) and (c)
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Figure 7.5: Calculated and fitted sensitivities

7.2 Multi-rate Frequency-shaped SMC

There usually exist resonance modes near and beyond the Nyquist frequency in HDDs. Such
resonance modes, if excited, will generate vibrations beyond the Nyquist frequency which would
seriously degrade the servo performance. To capture such vibrations, a multi-rate extended observer
is designed based on the nominal dynamic model of the excitation process in Chapter 4. This
observer estimates both the states and the vibrations at a fast rate based on the sampled PES at
a slow rate.

This section presents the frequency-shaping beyond the Nyquist frequency in SMC based on
the multi-rate observer presented in Chapter 4. The whole control scheme is shown in Figure 7.6,
where Ts is the PES sampling rate, and Tf=Ts/N is the plant’s and the disturbances’ updating
rate. The vibration estimate is incorporated into the control signal to compensate the actual
vibrations. The controller is designed based on the state estimates by the observer. To enhance
the servo performance which is seriously degraded by the vibration beyond the Nyquist frequency,
in FSSMC, a peak filter Qf with the peak frequency beyond the Nyquist frequency (as shown
in Figure 7.7) is designed to shape the sliding surface. More details are available in [101]. Three
control algorithms are implemented into the simulation and the spectrums of the PES are compared:
single-rate SMC, multi-rate SMC, and multi-rate frequency-shaped SMC. In this simulation study,
Ts = 3.7879× 10−5 sec, and N = 4.



CHAPTER 7. ADVANCED FSSMC 82

Figure 7.6: Multi-rate control system for HDD
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Figure 7.9: PES comparison in time domain

Figures 7.8 and 7.9 compare the PES among the above three algorithms. The parameters in the
single-rate SMC and multi-rate SMC are set such that they have the same equivalent continuous-
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time system. As shown in Figure 7.8, the PES spectrums of the system with single-rate SMC and
the one with multi-rate SMC are close to each other below the Nyquist frequency. Comparatively,
the PES beyond the Nyquist frequency in the multi-rate SMC system has been reduced compared
to the one in the single-rate SMC system. Such reduction is contributed by the compensation of
actual vibration using the fast vibration estimate. Moreover, through comparing the PES spectrums
of the one with multi-rate SMC and the one with multi-rate FSSMC, it shows the PES beyond
the Nyquist frequency has been further reduced by introducing the frequency shaping beyond the
Nyquist frequency in FSSMC. Figure 7.9 compares the time-domain PES of the two systems with
single-rate SMC and multi-rate FSSMC. It is shown that the peak to peak value of the PES has
been reduced.

Multi-rate technique with nominal dynamic model of the disturbance allows frequency shaping
and vibration suppression beyond the Nyquist frequency.

7.3 Adaptive Frequency-shaped SMC

In modern high-precision motion systems, narrow-band disturbance rejection is always a challenging
topic [133–135]. Such disturbances, if not handled properly, may cause significant performance
degradation to the servomechanism. It becomes even worse when there exist multiple large unknown
peaks in the disturbances. Fortunately, in HDDs, the narrow-band disturbances are usually caused
by the non-repetitive run-out (NRRO), and the frequency range for each peak can be known in
advance [30, 136]. Based on such priorly known frequency ranges, band-pass filters can be utilized
to separate the vibrations into several frequency segments, and these central frequencies can be
easily identified online.

Figure 7.10: Control scheme

This section provides an adaptive frequency-shaped sliding mode control (AFSSMC) algorithm
to deal with such disturbances. The AFSSMC incorporates a peak filter with varying central
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frequencies to shape the sliding surface and thus provides on-line frequency-dependent control
allocation. The ESO presented in Chapter 4 is utilized here to estimate both the states and the
disturbances. The disturbance estimate is utilized to take place of the disturbance sensor, identify
the peak frequencies of the disturbance and adaptively tune the peak filter in AFSSMC; the state
estimate is utilized to generate the control signal. The whole control scheme is shown in Figure 7.10.
Assume the disturbance d contains multiple peak frequencies at wdi’s (i=1, 2, ..., N), where wdi’s are
not exactly known and need to be identified online. Band-pass filters (denoted as Bi’s, i=1, 2, ..., N)
are utilized to separate the disturbances into several frequency ranges. Examples of the band-pass
filters are shown in Figure 7.11 (N=2). The stability issue of the AFSSMC was briefly discussed in
[137]. For such time-varying systems, an alternative method to analyze the stability is the numerical
technique based on Lyapunov stability theory which has been recently applied to some other areas
[138–141].

Figure 7.11: Band-pass filters

Peak Frequency Estimation

Define di=Bi{d}, which represents the dominant component of d around wdi. It is reasonable to
assume that di(k) is a sinusoidal signal [30, 136, 142], i.e.,

di(k) = Ai sin(Ωdik + φi) + ni(k) i = 1, 2, 3... (7.1)

where Ωdi=2πTswdi, Ai represents the amplitude, φi represents the phase shift, and ni is reasonably
assumed as zero-mean white noise. Then we have

di(k) + di(k − 2) = 2 cos(Ωdi)di(k − 1) + ni(k) + ni(k − 2) (7.2)

which can be further written as

di(k) + di(k − 2) = θiφi(k) + n̄i(k) (7.3)
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with θi=2 cos(Ωdi), φi(k)=di(k − 1) and n̄i(k)=ni(k) + ni(k − 2). To identify θi, the following
standard adaptive identification algorithm is implemented,

eoi (k + 1) = di(k) + di(k − 2)− θ̂i(k)φi(k)

θ̂i(k + 1) = θ̂i(k) +
F (k)φi(k)eoi (k + 1)

λ1(k) + φTi (k)F (k)φi(k)

Fi(k + 1) =
1

λ1(k)
[Fi(k)− λ2(k)[Fi(k)φi(k)]2

λ1(k) + λ2(k)Fi(k)φi(k)2
]

(7.4)

where di(k) is assumed to be available, λ1(k) is usually selected as a constant close to (and less
than) 1, and λ2(k) is usually selected as constant 1. With persistence of excitation, θ̂i(k) converges
to θi. And

ŵdi =
cos−1(θ̂i/2)

2πTs
(7.5)

When d(k) is not directly measurable, it is replaced by its estimate d̂(k) which is obtained through
the ESO presented in Chapter 4.

The AFSSMC is evaluated through the simulation on the full-order HDD Benchmark model.
Two control algorithms are compared: traditional SMC and the proposed AFSSMC. Two cases are
simulated: narrow-band disturbances with single and multiple peak frequencies. More details are
available in [137]

(a) Single-peak Case

Figures 7.13 to 7.15 provide the simulation results when there is one peak frequency (wd=2500
Hz) in the disturbances, as shown in Figure 7.12. Figure 7.13 shows the identification of the peak
frequency. Figure 7.14 compares the PES spectrums with the AFSSMC and the traditional SMC:
the 3σ value of the PES has been reduced from 8.53% to 3.20%; the peak in the PES has been
suppressed significantly. Figure 7.15 compares the PES in time domain: the peak-to-peak value of
the PES has been reduced by the AFSSMC.

Figure 7.12: Narrow-band disturbances with single peak
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Figure 7.13: Frequency identification

Figure 7.14: PES spectrum comparison

(b) Multiple-peak Case

Figures 7.18 to 7.20 provide the simulation results when the disturbance contains three peak fre-
quencies (wd1=1200 Hz, wd2=2500 Hz and wd3=4000Hz), as shown in Figure 7.16. Prior informa-
tion of these frequency ranges for wdi’s is known as: 1000-1500 Hz, 2000-3000 Hz, and 3800-4800
Hz, respectively. Figure 7.18 shows the identification of the peak frequencies wdi’s. Figure 7.19
compares the PES spectrums with the proposed AFSSMC and the traditional SMC: the 3σ value
of the PES has been reduced from 55.17% to 23.72% and the peaks in the PES spectrum have been
suppressed. Figure 7.20 compares the PES in time domain, and the peak-to-peak value of the PES
has been reduced via AFSSMC.
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Figure 7.15: PES comparison in time domain

Figure 7.16: Narrow-band disturbances with multiple peak frequencies
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Figure 7.17: Band-pass filters

Figure 7.18: Frequency identification
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Figure 7.19: PES spectrum comparison

Figure 7.20: PES comparison in time domain

7.4 Chapter Summary

This chapter validates the effectiveness of the FSSMC algorithms when the states as well as the
external disturbances are neither available nor directly measurable. The ESO is implemented to
estimate both the states and the disturbances. The disturbance estimate is utilized to identify
the peak frequencies of the disturbances; the state estimate is utilized to generate the control
signal based on the control law. Multi-rate ESO allows the frequency shaping beyond the Nyquist
frequency. The online identification for the peak frequencies allows adaptive frequency shaping
when the vibration peak frequencies are not exactly known. Simulation study is performed on the
HDD Benchmark system, and the effectiveness of the FSSMCs based on ESO, multi-rate ESO, and
the adaptive frequency shaping techniques have been demonstrated.
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Chapter 8

Conclusions and Future Work

8.1 Concluding Remarks

This dissertation has explored several learning, estimation, and control algorithms to achieve greater
autonomy and accuracy in high-precision systems. The main contributions and conclusions are
summarized as follows.

• A systematic framework for the design of arbitrary-order iterative learning control (ILC)
has been proposed with guaranteed convergence and ease of tuning. The learning filters are
obtained through minimizing the H-infinity norm of a constructed feedback system. In this
framework, the period of each cycle in iterations is extended to infinity, and the systems
are represented by infinite impulse response (IIR) filters for easy implementation and effi-
cient computation. This approach has been further advanced to explicitly consider system
variations. Both simulations and experiments validate these properties.

• A generalized design procedure for the disturbance observer (DOB) has been proposed for
multi-input multi-output (MIMO) systems. The procedure releases the DOB design from the
inverse of the plant, which is difficult to obtain especially for non-minimum phase systems
and MIMO systems. The procedure is performed through solving an H-infinity optimization
problem from the disturbance to its estimation error, which can be easily solved through
robust control toolbox. This technique has been applied to a dual-stage hard disk drive
(HDD) and the effectiveness of the proposed DOB has been demonstrated.

• Two techniques have been explored to increase the estimation bandwidth of the extended
state observer (ESO): phase compensator and multi-rate ESO. The former one recovers the
phase loss introduced by the system and provides better estimates for high-frequency distur-
bances within specific frequency range. The latter one utilizes the nominal dynamics of the
disturbance, and shows the capability of capturing the hidden large off-track behaviors and
the vibrations beyond the Nyquist frequency in HDDs.

• Two frequency-shaped sliding mode control (FSSMC) algorithms have been proposed for
vibration suppression in high-precision systems. The first one is based on the root locus
technique, which is easy to design and shows effectiveness especially for the vibration with
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single large peak. The second one treats the sliding surface as a feedback system, and the
shaping filter is designed using the H-infinity robust control theory. This systematic design
framework guarantees the stability of the sliding surface, and shows great effectiveness and
advantages when the vibrations have multiple large peaks. Furthermore, this dissertation has
proposed a sub-optimal shaping filter which is explicitly dependent on the weighting filters
and holds the potential for the adaptive frequency shaping with efficient computation.

A promising use of the methodological frameworks presented in this dissertation is the development
of learning, estimation and control algorithms for advanced systems including manufacturing, in-
formation storage systems and autonomous robotics. These systems with self-learning abilities and
high precision hold the potential to further increase the capacity of automation in the tremendous
areas such as intelligent manufacturing.

8.2 Future Topics

Iterative Learning Control

A systematic approach of designing an arbitrary-order ILC has been presented in this dissertation.
Two follow-up directions will be explored in the future. (1) The proposed framework will be applied
to a MIMO system and extended to a more generic formulation where an Nth-order ILC uses the
information from both the preceding iterations and the current iteration, which is an optimization
procedure that involves both the feedforward and feedback controllers. (2) The proposed framework
will be extended to more generic cases that including both the causal and non-causal learning filters,
which is challenging and significant for the frequency-domain design of ILC that assumes infinite
horizon for each iteration.

Vibration Estimation

Vibration estimation without vibration sensors is a lastingly challenging topic in high-precision
systems. To achieve better vibration estimation at higher frequencies, several techniques have been
presented in this dissertation: DOB, ESO with phase compensation, and multi-rate ESO for the
estimation beyond the Nyquist frequency. These techniques are based on certain assumptions, such
as an accurate plant model and rich disturbance information. The future directions will explore the
possibilities of maintaining the performance of the proposed estimation techniques with less strict
assumptions: (1) the generalized DOB design procedure that explicitly considers system variations
as well as the saturations (nonlinear constraints) in the PZT loop in dual-stage HDDs; (2) the phase
compensation that can be implemented online without the prior information of vibration’s peak
frequencies; and (3) multi-rate estimation algorithm that utilizes less information of the vibrations
beyond the Nyquist frequency.

Nonlinear Vibration Suppression

Nonlinear control techniques for vibration suppression have several advantages compared to linear
control techniques. Take HDD as an example; there are two main challenges of linear control in
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HDDs: (1) the switch of different control algorithms between the track seeking and the track fol-
lowing; and (2) the ‘waterbed’ effect in linear time invariant (LTI) systems that limits the servo
performance. Nonlinear control provides some possibilities to address these challenges. However,
most of the nonlinear control techniques lack a systematic framework to quantitatively guarantee
the closed-loop performance in frequency domain, which is essential for high-precision systems.
This dissertation took a step towards this knowledge gap and proposed an H-infinity synthesis
for the FSSMC. Tow future directions will be explored for the completeness of the design frame-
work: (1) extension to MIMO systems which involves more complex mathematic considerations
and derivations; and (2) achieving theoretical limitation in SMC systems which is similar to the
Bode’s Integral Theorem in LTI systems.
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