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Abstract

A preliminary design of a health monitoring system for automated vehicles is developed and results of tests
in a high-fidelity nonlinear simulation are very encouraging. The approach is to fuse data from dissimilar
instruments using modeled dynamic relationships and fault detection and identification filters. The filters
are constructed so that the residual process has directional characteristics associated with the presence of a
fault, that is, static patterns. Sensor noise, process disturbances, system parameter variations, unmodeled
dynamics and nonlinearities all contribute to the blurring of these static patterns. A neural network residual
processor is trained to form a threshold detection mechanism that announces a fault when one is present by
recognizing fault patterns embedded in the residual. A health monitoring system based on this concept has
been constructed for the longitudinal mode and monitors seven sensors and two actuators. Work also contin-
ues in refining a detailed nonlinear vehicle simulation which is used as a testbed for evaluating the perfor-
mance of the health monitoring system.

Keywords. Automated Highway Systems, Automatic Vehicle Monitoring, Fault Detection and Fault
Tolerant Control, Neural Networks, Reliability, Sensors, Vehicle Monitoring.
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Executive Summary

A preliminary design of a health monitoring system for automated vehicles is developed

and results of tests in a high-fidelity nonlinear simulation are very encouraging. The

approach is to fuse data from dissimilar instruments using modeled dynamic relationships

and fault detection and identification filters. The filters are constructed so that the residual

process has directional characteristics associated with the presence of a fault, that is, static

patterns. Sensor noise, process disturbances, system parameter variations, unmodeled

dynamics and nonlinearities all contribute to the blurring of these static patterns. A

neural network residual processor is trained to form a threshold detection mechanism

that announces a fault when one is present by recognizing fault patterns embedded in

the residual. A health monitoring system based on this concept has been constructed for

the longitudinal mode and monitors seven sensors and two actuators. Work also continues

in refining a detailed nonlinear vehicle simulation which is used as a testbed for evaluating

the performance of the health monitoring system.
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Chapter 1

Introduction

A proposed transportation system with vehicles traveling at high speed, in close

formation and under automatic control demands a high degree of system reliability. This

requires a health monitoring and maintenance system capable of detecting a fault as it

occurs, identifying the faulty component and determining a course of action that restores

safe operation of the system. This report is concerned with vehicle fault detection and

identification and describes a vehicle health monitoring system approach based on analytic

redundancy.

Analytic redundancy methods for fault detection and identification use a modeled

dynamic relationship between system inputs and measured system outputs to form a residual

process. Nominally, the residual process is nonzero only when a fault has occurred and

is zero at other times. For an observable system, this simple definition is met by the

innovations process of any stable linear observer. A detection filter is a linear observer with

the gain constructed so that when a fault occurs, the residual responds in a known and

1



2 Chapter 1: Introduction

fixed direction. Thus, when a nonzero residual is detected, a fault can be announced and

identified.

In applications it is unrealistic to expect that a residual process would be nonzero only

when a fault has occurred. Sensor noise, process disturbances, system parameter variations,

unmodeled dynamics and nonlinearities all contribute to the magnitude of a residual. There

are many methods to reduce the impact of these effects on the residual but none reduce

their effect to zero. This means that some threshold detection mechanism must be built.

A simple threshold detection mechanism announces a fault when the size of a residual

exceeds some prescribed value. This prescribed value could be determined from empirical

studies which balance a rate of false alarm against a rate of miss alarm. A more complicated

residual processor might take into account the thresholds of all other residuals as well.

Reasoning that if the probability of simultaneous failures is very small, no fault is announced

when more than one residual exceeds a threshold. It is more likely that the nonzero residuals

are caused by noise or nonlinearities or some cause other than multiple faults. A neural

network residual processor is described in this report.

A complication arises when there are many possible faults because a fault detection filter

can only be designed to detect a limited number of faults. This is related to the order of

the vehicle dynamics. When more faults need to be identified, several fault detection filters

have to be used with each filter designed to detect and identify some but not all possible

faults. The vehicle fault detection system described in this report has four fault detection

filters. This raises two difficult design issues. First, some and probably all faults will not

be included in the design of one or more fault detection filters. When such a fault occurs,

the residual of all filters will respond, even the residuals of the filters that do not have the

fault included in their design. If a fault is not included in a fault detection filter design, the

directional characteristics of the residual will be undefined and the fault cannot be properly

identified. The challenge is to build a mechanism that recognizes when a fault detection

filter is responding to a fault for which it has not been designed and then to exclude the

residual of all such filters from the fault identification process. If it can be assumed that
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only one fault occurs at a time, then the residual processor can exclude the residual of any

fault detection filters that point to two or more faults.

A second design issue is how the faults should be grouped and identification delegated

among the fault detection filters. In a fault detection system that consists of a bank of fault

detection filters and a residual processor such as a neural network, fault isolation is done

through the combined effort of both system elements. The fault detection filter is a carefully

tuned device that uses known dynamic relationships to isolate a fault. The neural network

residual processor combines the residuals from several filters and resolves any ambiguity. It

is suggested that identifying a fault among a group of dynamically similar faults requires the

precision of and is best delegated to the fault detection filters. Furthermore, it is suggested

that the reliability of the neural network training would be improved if the fault groups

associated with each of the fault detection filters are dynamically dissimilar.

This paper is organized as follows. Section 2 describes the car models. Low-dimensional

linear models are used for fault detection filter design. A high fidelity nonlinear model is

used for evaluation and to obtain the linear models used for design. Section 3 describes the

faults to be identified by the fault detection system. Section 4 describes the design of the

fault detection filters. This includes how the faults are grouped for each fault detection filter

design, how the fault detection filter eigenstructure placement is done and how reduced-

order fault detection filters are formed. Section 5 presents an evaluation of the performance

of the fault detection filters in a nonlinear simulation. Section 6 describes a fault detection

filter residual processing system. Here a neural network is used to process residuals from

all fault detection filters to detect and identify which if any fault has occurred. Finally,

appendix A provides a very quick theoretical review of the Beard-Jones detection filter

problem.



Chapter 2

Vehicle Model and Simulation Development

In this section, vehicle models are developed for the design and evaluation of fault

detection filters. Three models are considered: (1) a six degree of freedom (DOF) nonlinear

vehicle model, (2) a computer model obtained from the Berkeley PATH research team

and derived in (Peng 1992), and (3) a linearized model used for detection filter design.

The derivation of equations for the six DOF nonlinear model is independent of that used

for the Berkeley simulation. The independent derivation was performed to be sure that

we understood all the assumptions, definitions and issues which underlie the Berkeley

simulation model. This exercise proved worthwhile in that we did uncover some differences

between our model and the Berkeley model, and we have contacted them to clarify these

differences. Resolution of these issues is pending.

All models can be used to describe a four-wheel-steering, four-wheel-drive vehicle.

This report, however, only considers rear-wheel-drive vehicles. The road gradient and

superelevation are assumed to be zero.

5
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2.1 Nonlinear Model

Equations that describe the six degree of freedom motion of a vehicle are developed

here. First, the coordinate systems are described. Then, the rotational equations of motion

are developed followed by the translational equations of motion.
2.1.1 Coordinate Systems

The motion of the vehicle will be referred to an Earth-fixed reference frame E which

is described by a right handed orthogonal axis system (X , Y , Z) fixed on the Earth. The

unit vectors along the X , Y , Z-axes are ex, ey and ez, respectively. A second reference

frame C fixed in the sprung mass of the vehicle is described by a right handed orthogonal

axis system (x, y, z) fixed along the central principal axes of the vehicle. The origin is at

the vehicle mass center where x points in the forward direction, y points to the left, and z

points upward. We assume that x and y are horizontal when the vehicle is at rest. Unit

vectors cx, cy, and cz are directed along x, y, and z, respectively. The orientation of C with

respect to E is given by a sequence of three angular rotations. First, there is a yaw rotation

ε about the aligned Z and z-axes. Let ax, ay and az be unit vectors along the displaced x,

y, z-axes. Then there is a roll rotation φ about the displaced y-axis ay. Let bx, by and bz

describe the directions of x, y, z-axes after this roll rotation. Last, there is a pitch rotation

θ about the displaced x-axis bx. The unit vectors cx, cy and cz describe the final orientation

of C. The relationships among the various unit vectors are



ax
ay
az


 =




cos ε sin ε 0
− sin ε cos ε 0

0 0 1






ex
ey
ez


 (2.1a)



bx
by
bz


 =




1 0 0
0 cosφ sinφ
0 − sinφ cosφ






ax
ay
az


 (2.1b)



cx
cy
cz


 =




cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ






bx
by
bz


 (2.1c)
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2.1.2 Rotational Equations of Motion

The angular velocity of the car relative to the Earth is

ω = ε̇ez + φ̇ax + θ̇by

Using the coordinate system transformations (2.1) the angular velocity is also given by

ω = (φ̇ cos θ − ε̇ cosφ sin θ)cx + (θ̇ + ε̇ sinφ)cy + (φ̇ sin θ + ε̇ cosφ cos θ)cz

= ωxcx + ωycy + ωzcz

Thus, the angular velocities of the car expressed in vehicle fixed axes, which are measured

numbers, become


ωx
ωy
ωz


 =




0

θ̇
0


+




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ






φ̇
0
0


+




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ







1 0 0
0 cosφ sinφ
0 − sinφ cosφ







0
0
ε̇




=




cos θ 0 − cosφ sin θ

0 1 sinφ
sin θ 0 cosφ cos θ






φ̇

θ̇
ε̇




If this expression is solved for the angular rates φ̇, θ̇ and ε̇, one obtains the rotational

kinematic equations of motion:


φ̇

θ̇
ε̇


 =




cos θ 0 sin θ
sin θ tan φ 1 − cos θ tanφ

− sin θ cos−1 φ 0 cos θ cos−1 φ






ωx
ωy
ωz


 (2.2)

The rotational dynamic equations governing the angular motions of the vehicle are

obtained from the Euler equations:

ω̇x =
mx

Ix
+ ωyωz

Iy − Iz
Ix

(2.3a)

ω̇y =
my

Iy
+ ωzωx

Iz − Ix
Iy

(2.3b)

ω̇z =
mz

Iz
+ ωxωy

Ix − Iy
Iz

(2.3c)

The applied moments mx, my and mz come from aerodynamic forces and interaction forces

between the tires and pavement. Expressions for these moments are discussed in a later

section.
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2.1.3 Translational Equations of Motion

The position vector from an Earth-fixed point to the center of mass of the car may be

described in terms of the earth-fixed unit vectors ex, ey and ez or the vehicle-fixed unit

vectors cx, cy and cz. Thus,

p = Xex + Y ey + Zez

= xcx + ycy + zcz

The velocity of the center of mass of the car then becomes,

v = Ẋex + Ẏ ey + Żez

= (ẋcx + ẏcy + żcz) + (ωxcx + ωycy + ωzcz)× (xcx + ycy + zcz)

= (ẋ− yωz + zωy)cx + (ẏ − zwx + xwz)cy + (ż − xwy + ywx)cz

= vxcx + vycy + vzcz

Solving for ẋ, ẏ, and ż in terms of x, y, z and ωx, ωy, ωz one obtains:

ẋ = vx + yωz − zωy (2.4a)

ẏ = vy + zωx − xωz (2.4b)

ż = vz + xωy − yωx (2.4c)

The acceleration of the center of mass of the car in both earth-fixed and vehicle-fixed

axes is

a = Ẍex + Ÿ ey + Z̈ez

= (v̇xcx + v̇ycy + v̇zcz) + (ωxcx + ωycy + ωzcz)× (vxcx + vycy + vzcz)

= (v̇x + ωyvz − ωzvy)cx + (v̇y + ωzvx − ωxvz)cy + (v̇z + ωxvy − ωyvx)cz

Expressing the forces acting on the vehicle F as

F = Fxcx + Fycy + Fzcz
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and using Newtons 2nd Law, F = ma, leads to the following dynamic translational equations

of motion.

v̇x = ωzvy − ωyvz +
Fx
m

(2.5a)

v̇y = ωxvz − ωzvx +
Fy
m

(2.5b)

v̇z = ωyvx − ωxvy +
Fz
m

(2.5c)

As before, the applied forces Fx, Fy and Fz come from gravity, aerodynamic forces and

interaction forces between the tires and pavement. Equations (2.2), (2.3), (2.4) and (2.5)

describe the motion of the car provided the applied forces and moments are known. These

expressions would be required if our objective were to construct a complete analytical model

or a computer simulation. At the present time, we have not taken this next step, and have

instead used the Berkeley simulation model for subsequent work. More work on force and

moment models may be attempted at a later date.

2.2 Linear Model

The nonlinear model in the previous section was generated primarily to better

understand and verify the Berkeley model. In this section, we generate a linearized model

directly from the Berkeley model. This will be done numerically rather than analytically.

The procedure is as follows.

First, a computer run is made in which the car goes straight at a constant speed of 25

m/s (' 56 mph) to obtain steady state values for each state. The nonlinear model is then

linearized about this nominal operating point using the central difference method. The

use of an analytical approach, that is taking partial derivatives, is impractical because this

model is too complicated.

The nonlinear model has the form :

ẋ = f(x, u) (2.6a)

y = Cx+Dẋ (2.6b)
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Suppose the nominal operating point is (x0, u0) where f(x0, u0) = 0. Take perturbations

x̃, ũ about the nominal point, that is, let

x = x0 + x̃

u = u0 + ũ

Also approximate ∂f
∂x and ∂f

∂u as

∂f

∂x
≈

∆f

∆x
=

f(x+ x̃, u)− f(x− x̃, u)

2x̃

∣∣∣∣
x=x0,u=u0

∂f

∂u
≈

∆f

∆u
=

f(x, u+ ũ)− f(x, u− ũ)

2ũ

∣∣∣∣
x=x0,u=u0

Equation (2.6a) may now be approximated as

ẋ0 + ˙̃x = f(x0, u0) +
∂f

∂x

∣∣∣∣
x=x0,u=u0

x̃+
∂f

∂u

∣∣∣∣
x=x0,u=u0

ũ+ · · ·

Dropping out higher order terms and using the approximations given above for the partial

derivatives, one obtains

˙̃x = Ax̃+ Bũ

ỹ = Cx̃+D ˙̃x

= (C +DA)x̃+DBũ

where

x̃ = [ma we vx x vy y vz z φ φ̇ θ θ̇ ε ε̇

wfl wfr wrl wrr X Y yr ẏr εdes α τb β ]T

ỹ = [ma we v̇x v̇y v̇z φ̇ θ̇ ε̇ wfl wfr wrl wrr ]T

ũ = [αc τbc βc ]T

A =

[
∆f

∆x

]∣∣∣∣
x=x0,u=u0

B =

[
∆f

∆u

]∣∣∣∣
x=x0,u=u0
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and where A is a 26× 26 real matrix and B is a 26× 3 real matrix. Symbols in x̃, ỹ and ũ

are defined in the list of symbols.

Several sizes of perturbations must be taken to find one that gives the best approximation

of the partial derivatives. If the perturbation is too small, there is a truncation error in

computing the difference f(x+x̃, u)−f(x− x̃, u). If the perturbation is too large, a roundoff

error occurs in computing f(x+ x̃, u) and f(x− x̃, u); also nonlinearities become important.

According to our experience, x̃
x and ũ

u ≈ 10−4 is a good rule for selecting the size of the

perturbation when using the central differences method. The resulting linear model can

then be tested in a simulation to see how well it describes the nonlinear model over the

speed range of 23 m/s to 27 m/s. When this was done, we found that the errors were under

10%.

The linear model generated as described above was intended for use in designing the

fault detection filters. This model has 26 states. Before using the model for filter design,

we decided to try to simplify the model to the extent possible without significant loss of

accuracy. The model simplification was accomplished in two steps, the first of which resulted

in no loss of accuracy.

By inspection of the equations, it was found possible to rearrange the sequence of states

such that the linearized equations assume the following partitioned form:

˙̃x =

[
˙̃x3
˙̃x4

]
=

[
A1 0
A2 A3

] [
x̃3

x̃4

]
+

[
B1

B2

]
ũ

ỹ =
[
C1 0

] [
x̃3

x̃4

]

where

x̃3 = [ma we vx vz z θ θ̇ wfl wfr wrl wrr α τb vy φ φ̇ ε̇ β ]T

x̃4 = [x X y ε Y yr ẏr εdes ]T

In this form, we see that both x̃3 and ỹ are independent of x̃4. Thus x̃4 can be deleted from

the model without affecting the transfer function from ũ to ỹ. Based on this observation,
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x̃4 is removed from the model, which then becomes

˙̃x3 = A1x̃3 + B1ũ

ỹ = C1x̃3

where A1 is an 18× 18 matrix, B1 is an 18× 3 matrix and C1 is a 12× 18 matrix.

If the four wheel speed state variables wfl, wfr, wrl, wrr are replaced by four new state

variables w̄f , w̄r, w̃f , w̃r defined as:

w̄f = wfl + wfr

w̄r = wrl + wrr

w̃f = wfl − wfr

w̃r = wfl − wrr

then the model exactly decouples into two subsystems. These are the longitudinal and

lateral dynamics, that is,

[
˙̃x1
˙̃x2

]
=

[
A1 0
0 A2

] [
x̃1

x̃2

]
+

[
B1 0
0 B2

] [
ũ1

ũ2

]

where

x̃1 = [ma we ẋ ż z θ θ̇ w̄f w̄r α τb ]T

x̃2 = [ w̃f w̃r ẏ φ φ̇ ε̇ β ]T

ũ1 = [αc τbc ]T

ũ2 = βc

Therefore, the longitudinal model becomes:

˙̃x1 = A1x̃1 +B1ũ1

and the lateral model becomes:

˙̃x2 = A2x̃2 +B2ũ2
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2.3 Reduced-Order Model

Previous manipulation has not involved any approximation. For further model

simplification, some approximation must occur. First, the actuator dynamics are neglected

because they are relatively fast and also they are in series with the other dynamics. At

this point, we are more concerned about simplifying the highly coupled dynamics and will

return to consider the actuator dynamics later. Hence, the actuator dynamic states are

deleted from the model. So the states for the longitudinal model are x̃1 and for the lateral

model are x̃2.

x̃1 = [ma we ẋ ż z θ θ̇ w̄f w̄r ]T

x̃2 = [ w̃f w̃r ẏ φ φ̇ ε̇ ]T

After the linear models are derived, the first thing one should do is check the eigenvalues.

Then, three approaches are presented to get reduced-order models. The first approach one

may consider to reduce the model is to set the derivatives of certain fast states to zero.

Using this philosophy, states with large negative eigenvalues can be dropped. However,

a correction should be made using the deleted states to remove the steady state error.

Consider a linear system modeled as :

ẋ = Ax+ Bu

y = Cx+Du

Suppose this model is written in a partitioned form.

[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u

y =
[
C1 C2

] [
x1

x2

]
+Du

where x2 contains the ‘fast states’. Set the derivative of x2 to zero and solve the resulting

equations for x2 as a function of x1 and u. This leads to

x2 = −A−1
22 A21x1 −A−1

22 B2u
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Substitute this result into the expressions for ẋ1 and y to obtain the reduced order model:

ẋ1 =
[
A11 − A12A

−1
22 A21

]
x1 +

[
B1 − A12A

−1
22 B2

]
u

y =
[
C1 −C2A

−1
22 A21

]
x1 +

[
D − C2A

−1
22 B2

]
u

this model preserves the static input-output relationships.

A second approach is to use balanced realization before implementing the method just

described. Balancing refers to an algorithm which finds a realization that has equal and

diagonal controllability and observability grammians. The diagonal of the joint grammian

g(i) can be used to reduce the order of the model. Since g(i) reflects the combined

controllability and observability of individual states, it is reasonable to remove those states

from the model that have a small g(i). Elimination of these states retains the most important

input-output characteristics of the original system. After balanced realization has been

done, the first method is used to obtain a reduced order model.

A third approach is a little different from the second one. After balanced realization has

been done, a truncation is used instead of the first method. For example, if the full-order

model is
[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u

y =
[
C1 C2

] [
x1

x2

]
+Du

then, the reduced-order model is

ẋ1 = A11x1 +B1u

This is the approach originally proposed by Moore (Moore 1981). Using this approach it is

possible to calculate a bound on the error introduced by deleting states.

2.3.1 Longitudinal Model

At the end of the previous section, section 2.2 which deals with the linear model, a

decoupled longitudinal model is developed. Its eigenvalues are -212.11, -166.04, -31.46, -

26.27, -0.04, −2.3 ± 6.65i and −1.53 ± 5.69i. Observe that two of these eigenvalues are
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significantly larger than the rest. From this we conclude that at least two state variables

can be dropped. In method one, by looking at the eigenvectors corresponding to the large

eigenvalues, we find that the two fast mode states are the sum of the front wheel speeds

w̄f and the sum of the rear wheel speeds w̄r. So, these two states are dropped to get a

seventh-order model. In methods 2 and 3, two states with smallest grammians are dropped.

These methods combine the states in such a way that they lose their physical significance,

so we can not explicitly identify the states that are being deleted. Here are some results

using the three methods for model reduction described earlier.

Order Reduction Method Eigenvalues

Method 1. −33.05 −25.85 −0.0484 −2.26± 6.71i −1.57± 5.67i

Method 2. −31.58 −26.23 −0.0449 −2.32± 6.65i −1.54± 5.69i

Method 3. −32.08 −26.05 −0.0449 −2.25± 6.04i −1.78± 5.82i

Table 2.1: Eigenvalues for the Longitudinal Dynamics Using Three Model Reduction
Methods.

The eigenvalues of each reduced-order model are given in table 2.1. The second method

is the best because the eigenvalues are closer to the true eigenvalues. This method uses

the balanced realization and drops unimportant states by letting their derivatives be zero.

One can also perform another test to see which method is best. That method is based on

frequency response. Bode diagrams for each input to each output are plotted to see their

responses to frequencies from 10−1 to 102 rad/s. The reason for choosing this frequency

range is that it roughly corresponds to that of the control inputs to a car. The Bode diagrams

also show that the frequency response of a model obtained with the second method is closest

to that of the full-order model.

The seven-state model involves the longitudinal dynamics only. No lateral dynamics and

no actuator dynamics are included. The states have no physical significance because they

are derived from the balanced realization as stated in section 2.3. The measured outputs

are

ym Engine manifold air mass (kg).
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yω Engine speed (rad/sec).

yẍ longitudinal acceleration (m/sec2).

yz̈ heave acceleration (m/sec2).

yq Pitch rate (rad/sec).

yyfs
Forward symmetric wheel speed (rad/sec).

yyrs Rear symmetric wheel speed (rad/sec).

and the control inputs are

α Throttle angle (deg).

β Brake torque (Nm).

The system matrices are given by

A =




−0.0514 −0.2203 0.2670 −0.0102 0.0145 0.0084 −0.0074

−0.2984 −7.7825 18.5490 −0.9359 0.1522 0.2418 0.0463
−0.3247 −19.1948 −49.4179 −3.2002 −4.9689 −2.3224 −0.0652

0.0440 2.2616 14.8614 −2.1396 6.4462 −0.2283 0.0394
0.0216 1.0707 8.3103 −7.1707 −0.6642 −0.2614 0.9221
0.0116 0.5739 3.6890 −1.0911 −0.6573 −1.0090 5.9643
0.0150 0.7490 4.6068 −1.4672 −1.0353 −6.5849 −2.5807




(2.7a)

B =




0.9509 −0.0341
2.8861 −0.0107
2.9813 0.0082

−0.4068 0.0116

−0.2001 0.0185
−0.1069 0.0040
−0.1389 0.0109




(2.7b)

C =




0.0080 0.4605 0.3771 0.1010 0.0541 0.0340 −0.0129

0.7411 2.8381 −2.9156 0.1484 −0.0552 −0.0503 −0.0048
0.0027 0.1650 −0.2533 0.0732 −0.0157 0.0094 −0.0005
0.0000 −0.0006 −0.0007 −0.0207 −0.0500 −0.0446 0.0694

−0.0000 −0.0024 0.0049 0.0108 0.0207 −0.0026 0.0009
0.4222 −0.1429 0.0360 0.2242 −0.1731 −0.0138 0.1051

0.4217 0.1241 −0.4239 −0.2778 −0.0356 −0.0740 0.0579




(2.7c)
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D =




0.0000 −0.0000
−0.0005 0.0004

0.0010 −0.0020
−0.0000 0.0001

0.0000 −0.0000
−0.0001 −0.0008

0.0013 −0.0010




(2.7d)

2.3.2 Lateral Model

At the end of previous section, section 2.2 dealing with the Linear Model, we also have a

decoupled lateral model. Its eigenvalues are -205.91 , -133.45 , −3.29±5.96i , −8.39±1.43i.

This model also contains two high frequency modes, so we again conclude that two state

variables can be dropped. By looking at the corresponding eigenvectors, we learn that the

two fast mode states are the difference of the front wheel speeds w̃f and the difference of the

rear wheel speeds w̃r. So following the procedure of method 1, these two states are dropped

to get a fourth-order model. In methods 2 and 3, two states with the smallest grammians

are dropped. Here are some results by using these three methods for model reduction.

Order Reduction Method Eigenvalues

Method 1. −2.95± 5.78i −8.80 ± 2.02i

Method 2. −3.29± 6.02i −8.31 ± 2.04i

Method 3. −4.18± 5.63i −9.49 ± 6.97i

Table 2.2: Eigenvalues for the Lateral Dynamics Using Three Model Reduction Methods.

The eigenvalues of each lateral reduced-order model are given in table 2.2. Once again,

the second method produces the best result. That is where we use balanced realization and

drop states by letting their derivatives be zero. Bode diagrams for each input to each output

also were plotted to see their responses to frequency from 10−1 to 102 rad/s. Looking at

the Bode diagrams confirmed that the second method is best.





Chapter 3

Fault Selection

Analytic redundancy is an approach to health monitoring that compares dissimilar

instruments using a detailed model of the system dynamics. Therefore, to detect a fault in

a given sensor, there must be a dynamic relationship between the sensor and other sensors

or actuators. That is, the information provided by a monitored sensor must, in some form,

also be provided by other sensors. Analytic redundancy also can be used to effectively

monitor the health of system actuators and even the dynamic behavior of the system itself.

But, as with sensors, if some part of the vehicle is to be monitored for proper operation,

then that part has to produce some observable dynamic effect.

In automated vehicles, these requirements preclude monitoring, for example,

nonredundant sensors such as obstacle detection sensors or lane position sensors. The

information provided by a radar or infrared sensor designed to detect objects in the vehicle’s

path has no dynamic correlation with other sensors on the vehicle. A sensor that detects the

vehicle’s position in a lane is the only sensor that can provide this information. Similarly, the

19
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health of the actuator that controls the position of the driver’s window is easily monitored

by the driver. But, unless specialized sensors are installed, no other part of the car is

affected by the operation of this actuator and there is no analytic redundancy.

Before describing how faults are modeled, it is necessary to describe how a fault detection

filter works. Most of the detail is left to appendix A. For a thorough background, several

references are available, a few of which are (Douglas 1993), (White and Speyer 1987) and

(Massoumnia 1986). Consider a linear time-invariant system with q failure modes and no

disturbances or sensor noise

ẋ = Ax+ Bu+
q∑

i=1

Fimi (3.1a)

y = Cx+Du (3.1b)

The system variables x, u, y and the mi belong to real vector spaces and the system maps

A, B, C, D and the Fi are of compatible dimensions. Assume that the input u and the

output y both are known. The Fi are the failure signatures. They are known and fixed and

model the directional characteristics of the faults. The mi are the failure modes and model

the unknown time-varying amplitude of faults. The mi do not have to be scalar values.

A fault detection filter is a linear observer that, like any other linear observer, forms a

residual process sensitive to unknown inputs. Consider a full-order observer with dynamics

and residual

˙̂x = (A+ LC)x̂+Bu− Ly (3.2a)

r = Cx̂+Du− y (3.2b)

Form the state estimation error e = x̂− x and the dynamics and residual are

ė = (A + LC)e−
q∑

i=1

Fimi

r = Ce

In steady-state, the residual is driven by the faults when they are present. If the system

is (C,A) observable, and the observer dynamics are stable, then in steady-state and in the
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absence of disturbances and modeling errors, the residual r is nonzero only if a fault has

occurred, that is, if some mi is nonzero. Furthermore, when a fault does occur, the residual

is nonzero except in certain theoretically relevant but physically unrealistic situations. This

means that any stable observer can detect the presence of a fault. Simply monitor the

residual and when it is nonzero a fault has occurred.

In addition to detecting a fault, a fault detection filter provides information to determine

which fault has occurred. An observer such as (3.2) becomes a fault detection filter when

the observer gain L is chosen so that the residual has certain directional properties that

immediately identify the fault. The gain is chosen to partition the residual space where each

partition is uniquely associated with one of the design fault directions Fi. A fault is identified

by projecting the residual onto each of the residual subspaces and then determining which

projections are nonzero.

Before the fault detection filter design (3.2) can begin, a system model with faults has

to be found with the form (3.1). Seven sensors and two actuators are associated with the

linearized longitudinal vehicle dynamics described in section 2.3.1. The sensors measure the

engine manifold airflow and engine speed, the vehicle forward and heave accelerations, the

pitch rate and the averaged speed of the forward wheels and the averaged speed of the rear

wheels. The actuators control the engine throttle and the brake torque.

3.1 Sensor Fault Models

Sensor faults can be modeled as an additive term in the measurement equation

y = Cx+ Eiµi (3.3)

where Ei is a column vector of zeros except for a one in the ith position and where µi

is an arbitrary time-varying real scalar. Now, for the fault detection filter design, faults

are expressed as additive terms to the system dynamics as in (3.1). Sensor faults may

be expressed in this way, as explained in (Douglas 1993), where the fault Ei in (3.3) is

equivalent to a two-dimensional fault Fi

ẋ = Ax+ Fimi with Fi =
[
F 1
i , F

2
i

]
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and where the directions F 1
i and F 2

i are given by

Ei = CF 1
i (3.4a)

F 2
i = AF 1

i (3.4b)

Using the linearized longitudinal dynamics of section 2.3.1, an engine manifold airflow

measurement is given by the first element of the system output (2.7). Therefore, any fault in

the engine manifold airflow sensor can be modeled as an additive term in the measurement

equation as in (3.3)

y = Cx+Du+ Eymµym

where

Eym =
[

1, 0, 0, 0, 0, 0, 0
]T

and where µym is an arbitrary time-varying real scalar. An equivalent two-dimensional fault

Fym found by solving (3.4) is

Fym =




0.1145 0.0232

0.9439 8.0234
0.3365 −94.5225

−2.8676 32.1570
3.5965 30.7195

21.5405 73.7392

15.5799 −179.3062




Other vehicle sensor fault directions are found in the same way.

3.2 Actuator Fault Models

A fault in a control input is modeled as an additive term in the system dynamics. In

the case of a fault appearing at the input of an actuator, that is the actuator command,

the fault has the same direction as the associated column of the system B matrix. A fault

appearing at the output of an actuator, the actuator position, has the same direction as the

associated column of the system A matrix.

For the vehicle longitudinal dynamics developed in section 2.3, the actuator dynamics

are relatively fast and, in an approximation, are removed from the system model. Thus,
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the control inputs are applied directly to the car dynamics through a column of the B

matrix and to the sensor outputs through a column of the feedforward D matrix. So, for

this system a control input fault has three directions. One fault direction is the B matrix

column. The other two directions come from treating the D matrix column as if it were a

sensor fault which is explained above.

The engine throttle control is the first element of the system input so one direction of

an engine throttle control fault is the first column of the B matrix from (2.7)

F 1
α =




0.9509
2.8861
2.9813

−0.4068
−0.2001
−0.1069
−0.1389




(3.5)

Because the linear model (2.7) has a control feedforward term, a throttle control fault also

shows up directly in the system outputs in a direction given by the first column of the D

matrix, that is,

Eα =




1.1894e− 07

−4.6361e− 04
1.0324e− 03

−3.6799e− 05
2.0846e− 06

−9.9046e− 05

1.3114e− 03




As with a sensor fault, this direction Eα leads to a two-dimensional dynamics fault direction

given by solving (3.4). Together with (3.5), an engine throttle fault is modeled as a three-

dimensional dynamics fault

Fα =




0.9509 −0.0023 −0.0002

2.8861 −0.0021 −0.0462
2.9813 −0.0074 −0.0911

−0.4068 −0.0220 0.0911
−0.2001 0.0300 0.1458
−0.1069 0.1758 0.5580

−0.1389 0.1273 −1.5206



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A fault model for the brake torque is developed in the same way and is given by

Fβ =




−3.4075 0.0423 0.0004
−1.0743 0.0370 0.0831

0.8178 0.1236 0.1275

1.1552 0.3200 −0.1217
1.8522 −0.4697 −0.2077
0.3980 −2.8685 −0.9034
1.0870 −2.0732 2.4854






Chapter 4

Fault Detection Filter Design

The fault detection filter design process consists of three steps. First, determine

how many fault detection filters are needed and if more than one, which filters will detect

and identify which faults. In a detection filter, the state estimation error in response to

a fault in the direction Fi remains in a state subspace T ∗i , a detection space. The ability

to identify a fault, to distinguish one fault from another, requires for an observable system

that the detection spaces be independent. Therefore, the number of faults that can be

detected and identified by a fault detection filter is limited by the size of the state space

and the sizes of the detection spaces associated with each of the faults. If the problem

considered has more faults than can be accommodated by one fault detection filter, then a

bank of filters will have to be constructed. The vehicle health monitoring system described

in this report considers nine system faults: seven sensor faults and two actuator faults.

Since the linearized longitudinal dynamics have only seven states, clearly more than one

fault detection filter is needed. In fact, a bank of four fault detection filters is built.

25
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Second, design the fault detection filters using eigenstructure assignment while making

sure that the eigenvectors are not ill-conditioned. The essential feature of a fault detection

filter is the detection space structure embedded in the filter dynamics. An eigenvector

assignment design algorithm explicitly places eigenvectors to span these subspaces and

provides a mechanism to ensure that the eigenvectors are as well-conditioned as possible.

System disturbances, sensor noise and system parameter variations are not considered in

the fault detection filter designs described in this report. For such a benign environment,

the filter designs are based on spectral considerations only; there is little else that can be

used to distinguish a good design from a bad design. The next design phase will include

models of a more realistic operating environment.

Third, form the reduced-order detection filters so that later, when noise and disturbance

models are developed, they can be included in the filters without need for a complete

redesign. A product of the detection space structure is that with respect to each fault there

is a large unobservable subspace. If the observable subspace that remains is factored out, a

reduced-order fault detection filter is formed which has no special subspace structure. One

reduced-order filter is formed for each fault in the fault detection filter design. Now, because

there is no special structure, the gains of the reduced-order filters can be chosen arbitrarily.

For example, the gains could minimize the residuals response to disturbances or sensor noise

in an H2 or H∞ norm. The important point is that the form of the reduced-order fault

detection filters is determined independently of and without any need for disturbance or

sensor noise models. Furthermore, once these models are designed, the reduced-order filters

are easily adjusted.

4.1 Fault Detection Filter Configuration

To determine how many and which faults may be included in a fault detection filter

design, the detection spaces for each of the faults, also called unobservability subspaces,

are formed. A detection space for a fault Fi is denoted by T ∗i . First, the dimensions of

the detection spaces are needed. Since the detection spaces are independent subspaces, the

sum of their dimensions for any given fault detection filter cannot exceed the dimension
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of the state-space. Second, the detection spaces for any given fault detection filter have

to be output separable and mutually detectable. These concepts are described in detail

in appendix A but briefly, output separability means that the output subspaces CT ∗i are

independent. Mutual detectability means that the sum of the detection spaces
∑
T ∗i is an

unobservability subspace. This condition ensures that the spectrum of the detection filter

can be assigned arbitrarily.

In practice it is just as easy to find a basis for the detection space as it is to find only the

dimension. The method used here is suggested for numerical stability in (Wonham 1985)

and is described in appendix A. Briefly, for a fault Fi, the approach is to find the minimal

(C,A)-invariant subspace W∗
i that contains Fi and then to find the invariant zero directions

of the triple (C,A,Fi), if any. If the invariant zero directions are denoted by Vi, then the

minimal unobservability subspace T ∗i is given by

T ∗i = W∗
i + Vi

The longitudinal linear model of section 2.3 has seven states, seven sensors and two

controls. As explained in section 3, each sensor and each actuator, that is, each control, is

to be monitored for a fault. It turns out that for all seven sensor faults and the two control

input faults described in section 3, the detection spaces are given by the fault directions

themselves. That is, for each fault,

T ∗i = ImFi

Since the detection space associated with each of the sensor faults is two-dimensional,

one fault detection filter can detect and identify at most three sensor faults. Therefore

at least three fault detection filters are needed to identify all seven sensor faults. The

detection spaces associated with the two actuator faults also are given by the fault directions

themselves and are three-dimensional. As with the sensor faults, the detection spaces

associated with the two actuator faults are given by the fault directions themselves and are

three-dimensional. Together, there are seven two-dimensional sensor faults and two three-

dimensional actuator faults. These should be combined in output separable and mutually
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detectable groups with seven or fewer directions. Many configurations are possible. The

configuration chosen for this design involves a bank of four fault detection filters and requires

some explanation.

In a fault detection system that consists of a bank of fault detection filters and a residual

processor such as a neural network, fault isolation is done through the combined effort of

both system elements. The fault detection filter is a carefully tuned device that uses known

dynamic relationships to isolate a fault. The neural network residual processor combines

the residuals from several filters and resolves any ambiguity. It is suggested that identifying

a fault among a group of dynamically similar faults requires the precision of and is best

delegated to the fault detection filters. Furthermore, it is suggested that the reliability of

the neural network training should be improved if the fault groups associated with each of

the fault detection filters are dynamically dissimilar. Given the above considerations, fault

detection filters are designed for the following groups of faults:

Fault detection filter 1.

Fym : Manifold air mass sensor.

Fyω : Engine speed sensor.

Fyẍ : Forward acceleration sensor.

Fault detection filter 2.

Fyz̈ : Heave acceleration sensor.

Fyrs : Rear symmetric wheel speed sensor.

Fyfs : Forward symmetric wheel speed sensor.

Fault detection filter 3.

Fyθ : Pitch rate sensor.

Fyz̈ : Heave acceleration sensor.

Fyrs : Rear symmetric wheel speed sensor.
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Fault detection filter 4.

Fuα : Throttle angle actuator.

Fuβ : Brake torque actuator.

To show that these fault sets are output separable, show that the columns of the CT ∗i

matrices are independent where T ∗i is any basis for the detection space T ∗i . Since for all

faults it turns out that the detection spaces are just T ∗i = ImFi, output separability requires

that the columns of the CFi matrices for each fault detection filter be independent. For

example, for the first fault detection filter, the columns of the matrix

[CFym , CFyω , CFyẍ]

are independent.

Showing that the fault sets are mutually detectable involves calculating invariant zeros

of each triple (C,A,F1), . . . , (C,A,Fq) and then showing that these are the same invariant

zeros as of the triple (C,A, [F1, . . . , Fq]). For example, for the first fault detection filter,

define the sets of invariant zeros

Ωym = Ω(C,A, Fym)

Ωyω = Ω(C,A, Fyω )

Ωyẍ = Ω(C,A, Fyẍ)

Ωy = Ω(C,A, [Fym , Fyω , Fyẍ])

where Ω(C,A,Fi) means the set of invariant zeros of the triple (C,A,Fi). The first fault

detection filter is mutually detectable because

Ωy = Ωym + Ωyω + Ωyẍ

4.2 Eigenstructure Placement

The fault detection filters are found using a left eigenvector assignment algorithm

described in appendix A. Since the calculations are somewhat long and they are the same
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for each detection filter, the calculation details are given for only one of the fault detection

filters. Apply Algorithm A.1 to the design of a fault detection filter for the first fault group:

the manifold air mass sensor, the engine speed sensor and the forward acceleration sensor.

The first step is to find the dimension of each detection space. This was discussed in

section 4.1 where it was shown that the detection spaces are given by the fault directions

themselves, that is, T ∗i = ImFi. The fault directions assigned to the first fault detection

filter are all sensor faults and all have dimension two

νym = dimT ∗ym = 2

νyω = dimT ∗yω = 2

νyẍ = dimT ∗yẍ = 2

The dimension of the fault detection filter complementary space T 0 is also needed. The

complementary space is any subspace independent of the detection spaces that completes

the state-space. Thus, for the first fault detection filter

X = T ∗ym ⊕ T
∗
yω ⊕ T

∗
yẍ ⊕ T 0

and the dimension of T 0 is one

ν0 = n− νym − νyω − νyẍ

= 7− 2− 2− 2

= 1

Next define the complementary faults sets. There are three faults Fym , Fyω and Fyẍ so

there are four complementary fault sets which are:

F̂ym = [Fyω , Fyẍ ] (4.1a)

F̂yω = [Fym , Fyẍ] (4.1b)

F̂yẍ = [Fym , Fyω ] (4.1c)

F̂0 = [Fym , Fyω , Fyẍ ] (4.1d)
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Now choose the fault detection filter closed-loop eigenvalues. Since the system model

includes no sensor noise, no disturbances and no parameter variations, there is little basis

for preferring one set of detection filter closed-loop eigenvalues over another. The poles are

chosen here to give a reasonable response time but are not unrealistically fast. The assigned

eigenvalues are

Λym = {−3,−6}

Λyω = {−4,−7}

Λyẍ = {−5,−8}

Λ0 = {−9}

The next step is to find the closed-loop fault detection filter left eigenvectors. For each

eigenvalue λij ∈ Λi, the left eigenvectors vij generally are not unique and must be chosen

from a subspace as vij ∈ Vij where Vij and another space Wij are found by solving

[
AT − λijI CT

F̂T
i 0

] [
Vij
Wij

]
=

[
0
0

]
(4.2)

The Vij are as follows and show that all but one left eigenvector are chosen from a three-

dimensional subspace.

V0 =




−0.7663
0.2813

−0.1156
−0.5620

−0.0102
−0.0451
−0.0477




Vym1
=




0.3937 −0.7842 −0.1471

0.6822 0.3075 0.4324
0.5448 0.3266 −0.2730
0.2407 −0.0918 −0.6586

−0.1232 0.4136 −0.5268
0.0978 −0.0631 0.0460

−0.0136 −0.0198 −0.0591




Vym2
=




0.8277 0.0947 −0.3123

0.0246 0.7596 0.4115
−0.1720 0.6151 −0.2647

0.0404 0.1735 −0.6844
−0.5226 0.0103 −0.4365

0.0996 0.0715 0.0254

0.0026 −0.0214 −0.0601



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Vyω1
=




0.5353 0.7323 −0.1351
−0.4034 −0.1608 0.1191
−0.1345 −0.0320 −0.2896
−0.5238 0.3196 −0.7240

0.4917 −0.5645 −0.5954
−0.1281 0.1248 0.0435
−0.0095 0.0217 −0.0560




Vyω2
=




0.6574 0.6199 −0.1569
−0.4388 −0.0851 0.0546
−0.0776 −0.0843 −0.2997
−0.3144 0.1954 −0.8739

0.5075 −0.7364 −0.3393
−0.1135 0.1443 −0.0133

0.0053 0.0089 −0.0599




Vyẍ1
=




0.8761 −0.3783 −0.0931

−0.2425 0.1176 0.1382
−0.0755 −0.0399 −0.2410
−0.3401 −0.5629 −0.7047

0.2197 0.7022 −0.6384
−0.0608 −0.1755 0.0656

−0.0193 −0.0266 −0.0756




Vyẍ2
=




0.8669 −0.4000 −0.0884

−0.2522 0.0978 0.1363
−0.0491 0.0203 −0.2501
−0.2781 −0.3670 −0.8468

0.3156 0.8138 −0.4326
−0.0741 −0.1817 0.0166

−0.0116 −0.0076 −0.0812




As explained in (Douglas and Speyer 1995b), to help desensitize the fault detection filter

to parameter variations, the left eigenvectors are chosen from vij ∈ Vij as the set with the

greatest degree of linear independence. The degree of linear independence is indicated

by the smallest singular value of the matrix formed by the left eigenvectors. Upper

bounds on the singular values of the left eigenvectors are given by the singular values

of V = [V0, Vym1
, Vym2

, Vyω1
, Vyω2

, Vyẍ1
, Vyẍ2

]. These singular values are

σ(V ) = {2.6458, 2.4312, 2.0705, 1.3067, 0.3067, 0.0242, 0.0130} (4.3)

If the left eigenvector singular value upper bounds were small, then all possible combinations

of detection filter left eigenvectors would be ill-conditioned and the filter eigenstructure

would be sensitive to small parameter variations. Since (4.3) indicates that the upper bounds

are not small, continue by looking for a set of fault detection filter left eigenvectors that

are reasonably well-conditioned. For this case, the best-conditioned set of left eigenvectors

from the set V nearly meets the upper bound and is given by

Ṽ =
[
v0, vym1

, vym2
, vyω1

, vyω2
, vyẍ1 , vyẍ2

]
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=




−0.7663 0.2481 −0.3779 −0.3262 −0.3840 0.4370 −0.3755
0.2813 0.8149 0.0602 0.3474 0.0545 −0.0314 0.1077

−0.1156 0.4356 0.5242 0.1223 0.2732 −0.2215 0.0543
−0.5620 −0.0202 0.4288 0.5909 0.4855 −0.5556 0.5520

−0.0102 −0.2693 0.6254 −0.6199 0.7284 −0.6627 −0.7139
−0.0451 0.1022 −0.0565 0.1560 −0.0866 0.0847 0.1720
−0.0477 −0.0355 0.0233 0.0149 0.0346 −0.0629 0.0236




where once again
v0 = V0

vym1
∈ Vym1

vym2
∈ Vym2

vyω1
∈ Vyω1

vyω2
∈ Vyω2

vyẍ1
∈ Vyẍ1

vyẍ2
∈ Vyẍ2

The singular values of this set of detection filter left eigenvectors are

σ(Ṽ ) = {1.7191, 1.4641, 1.0000, 0.9240, 0.2168, 0.0171, 0.0092}

Since the difference between the largest and the smallest singular values is only two orders

of magnitude, the detection filter gain will be small and the filter eigenstructure should not

be sensitive to small parameter variations.

The fault detection filter gain L is found by solving

Ṽ TL = W̃T (4.4)

where Ṽ is the matrix of left eigenvectors as found above, and W̃ is a matrix of vectors wij

which satisfy (a.13) [
AT − λijI CT

F̂T
i 0

] [
vij
wij

]
=

[
0
0

]

If the left eigenvector vij is a linear combination of the columns of Vij , wij is the same linear

combination of the columns of Wij where Vij and Wij are from (4.2). The W̃ for the first

fault detection filter is

W̃ =
[
w0, wym1

, wym2
, wyω1

, wyω2
, wyẍ1 , wyẍ2

]

=




0.0000 17.8806 23.0005 0.0000 −0.0000 −0.0000 −0.0000

−0.0000 −0.0000 0.0000 −0.7504 2.2110 0.0000 0.0000
0.0000 −0.0000 −0.0000 0.0000 −0.0000 −20.2591 −14.0152

−17.7474 6.4188 −7.7985 −6.7710 −10.2386 18.7932 −5.7161
220.5377 106.4884 −115.0230 −0.8805 −174.3199 323.5220 −35.9330
12.8111 −6.7819 10.1691 −9.6822 12.4763 −11.6560 −7.8435

5.4270 3.2914 −6.7082 17.4639 −11.7092 2.4288 13.3306



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The detection filter gain is found from (4.4) and is given by

L = (4.5)


−0.9444 −1.5605 18.3898 20.3959 −33.4718 −14.9397 −0.1545
−16.0816 −0.9793 46.3621 −15.7918 −97.3527 −1.4476 14.1137

97.3771 −16.7452 78.5443 −8.8050 28.0068 −12.8347 47.5303
−11.0019 −4.0789 39.0600 3.2445 213.9492 −20.9184 27.7123
−61.4309 31.0335 −204.1174 31.4592 −213.9106 45.9121 −126.8465
−251.1954 149.9014 −1127.4460 176.9975 −936.7994 175.4977 −575.9418

64.6381 −40.4210 437.0497 −239.8124 −6321.3974 64.8115 101.8300




To complete the detection filter design, output projection matrices Ĥym , Ĥyω and Ĥyẍ

are needed to project the residual along the respective output subspaces CT̂ ∗ym , CT̂ ∗yω and

CT̂ ∗yẍ . What this means is that, for example, T̂ ∗ym becomes the unobservable subspace of the

pair (ĤymC,A+ LC). Remember that by the definition of the complementary faults (4.1),

faults Fyω and Fyẍ lie in T̂ ∗ym and fault Fym does not. The effect is that the projected

residual is driven by fault Fym and only fault Fym .

A projection Ĥi is computed by first finding a basis for the range space of CT̂ ∗i where

again, T̂ ∗i is any basis for the detection space T̂ ∗i . This is done by finding the left singular

vectors of CT̂ ∗i . Denote this basis for now as hi. Then Ĥi is given by

Ĥi = I − hih
T
i

Output projections for the first fault detection filter are

Ĥym =




0.9986 0.0000 0.0000 0.0099 −0.0009 0.0170 −0.0322
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0099 0.0000 0.0000 0.6362 0.0065 −0.4776 −0.0571

−0.0009 0.0000 0.0000 0.0065 0.9995 0.0108 −0.0189
0.0170 0.0000 0.0000 −0.4776 0.0108 0.3594 0.0418

−0.0322 0.0000 0.0000 −0.0571 −0.0189 0.0418 0.0064




(4.6a)

Ĥyω =




0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0087 0.0000 0.0295 −0.0004 0.0384 −0.0792
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0295 0.0000 0.7062 0.0005 −0.3580 −0.2801
0.0000 −0.0004 0.0000 0.0005 1.0000 0.0006 0.0004
0.0000 0.0384 0.0000 −0.3580 0.0006 0.5637 −0.3410

0.0000 −0.0792 0.0000 −0.2801 0.0004 −0.3410 0.7214




(4.6b)
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Ĥyẍ =




0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.5276 0.1876 −0.0015 0.2370 −0.3973
0.0000 0.0000 0.1876 0.6790 0.0025 −0.4029 −0.1429

0.0000 0.0000 −0.0015 0.0025 1.0000 0.0032 0.0010
0.0000 0.0000 0.2370 −0.4029 0.0032 0.4943 −0.1772
0.0000 0.0000 −0.3973 −0.1429 0.0010 −0.1772 0.2992




(4.6c)

In summary, a fault detection filter for the system with sensor faults Eym , Eyω and Eyẍ

as in (3.3)

ẋ = Ax+ Bu

y = Cx+Du+ Eymµym +Eyωµyω + Eyẍµyẍ

is equivalent to a fault detection filter for the system with faults Fym , Fyω and Fyẍ as in (3.4)

ẋ = Ax+ Bu+ Fymµym + Fyωµyω + Fyẍµyẍ

y = Cx+Du

and has the form

˙̂x = (A + LC)x̂+Bu− Ly

zym = Ĥym(Cx̂+Du− y)

zyω = Ĥyω (Cx̂+Du− y)

zyẍ = Ĥyẍ(Cx̂+Du− y)

with L and the Ĥym , Ĥyω and Ĥyẍ given by (4.5) and (4.6). Calculations for the detection

filters for the other three fault groups are carried out in the same way and are not shown

here.

4.3 Reduced-Order Observers

An essential feature of a fault detection filter is that for each pair (ĤiC,A+LC), there

is an unobservable subspace T̂ ∗i that contains the complementary fault F̂i. This means that
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any fault in F̂i does not affect the residual when when the residual is operated upon by the

projector (Ĥi). Consider a detection filter

˙̂x = (A + LC)x̂+ Bu− Ly

zi = Ĥi(Cx̂− y)

If the state estimation error is e = x̂− x, then the error dynamics are

ė = (A+ LC)e−
q∑

i=1

Fimi (4.7a)

zi = ĤiCe (4.7b)

Now T̂ ∗i is (ĤiC,A+LC) unobservable means that T̂ ∗i is (A+LC)-invariant and ĤiCT̂
∗
i = 0.

Therefore, define the factor space X̄ i = X/T̂ ∗i and let P̄i be the canonical projection

P̄i : X 7→ X̄ i. Compute P̄i using singular value decomposition to find the null space of

(T̂ ∗i )T

P̄iT̂
∗
i = 0 (4.8)

Now let Āi and C̄i be maps induced on the factor space X̄ i by (A + LC) and ĤiC. These

are given by

P̄i(A+ LC) = ĀiP̄i

ĤiC = C̄iP̄i

Also, since T̂ ∗i is the unobservable subspace of (ĤiC,A+ LC), it follows that

P̄iFj 6=i = 0

P̄iFi 6= 0

The reduced-order fault detection filter error dynamics equivalent to (4.7) are given by

˙̄ei = Āiēi − P̄iFimi (4.9a)

zi = C̄iēi (4.9b)

where ēi ∈ X̄ i.
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Besides the lower-order, an important property of the reduced-order fault detection

filter (4.9) is that there is no special structure imposed on the dynamics. No Āi-invariant

subspaces need to be defined. Therefore, the reduced-order filter dynamics are arbitrarily

modified with a gain L̄i as

˙̄ei = (Āi + L̄iC̄i)ēi − P̄iFimi (4.10a)

zi = C̄iēi (4.10b)

This gain may be chosen to satisfy any secondary filter criterion such as to minimize

disturbances or sensor noise or the effect of parameter uncertainty. A reduced-order fault

detection filter with the error dynamics (4.10) is given by

˙̄xi = (Āi + L̄iC̄i)x̄i + P̄iBu− (P̄iL + L̄i)y (4.11a)

zi = Ĥi(C̄ix̄i − y) (4.11b)

The reduced-order fault detection filter (4.11) detects and identifies only the one fault Fi out

of the group of q design faults {F1, . . . , Fi, . . . , Fq}. Therefore, a family of q reduced-order

filters are needed to detect and identify all faults in the design set. In general, the order of

all q reduced-order filters is higher than the order of the full-state fault detection filter.

The fault detection filter designed in section 4.2 has three faults Fym , Fyω and Fyẍ .

The complementary faults F̂ym , F̂yω and F̂yẍ each produce a fourth-order detection space.

Therefore, each associated factor space will be third-order. Canonical projections for each

factor space are computed using singular value decomposition to solve (4.8). They are given

by

P̄ym =



−0.1426 −0.8445 −0.3770 0.1389 0.3061 −0.0968 0.0442

0.7495 −0.1743 −0.3539 −0.0444 −0.5243 0.0760 0.0057
0.4577 −0.0567 0.4589 0.6920 0.3086 0.0229 0.0457




P̄yω =



−0.3373 −0.0641 0.1332 −0.0431 0.9144 −0.1624 0.0090
−0.8472 0.4218 −0.0201 −0.1513 −0.2805 0.0356 −0.0312
−0.0975 0.1439 0.2912 0.9359 −0.0107 0.0789 0.0514




P̄yẍ =



−0.1295 −0.0390 0.1473 0.1254 0.9561 −0.1697 0.0371

−0.4027 0.0494 0.1933 0.8670 −0.1814 0.0962 0.0643
0.8605 −0.2963 0.0794 0.4021 0.0430 0.0276 0.0358



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The reduced-order fault detection filters are as follows. Note that each is third-order and

the combined system is ninth-order. This is two more than the full-order fault detection

filter of section 4.2.

Reduced-order fault detection filter to detect Fym from the set of faults Fym , Fyω and Fyẍ .

˙̄x =



−7.0685 −0.4295 −0.2956
−0.4295 −5.8586 −2.7384
−0.2956 −2.7384 −8.0729


 x̄+



−3.8172 0.0187
−0.7269 −0.0248

1.2773 0.0170


u+




16.1573 0 0 3.9056 148.1616 −5.2199 4.5504
18.3944 0 0 −16.5934 22.8931 15.8321 −2.6829

−15.7902 0 0 −11.2426 225.2354 5.9689 7.5751


 y

zym =




−0.5029 −0.2457 0.2491
0.0 0.0 0.0
0.0 0.0 0.0

−0.0236 −0.2090 −0.1581
0.0098 −0.0169 0.0233

0.0056 0.1507 0.1252
0.0177 0.0266 0.0058




x̄+




−0.0000 0.0000
0.0000 −0.0000
0.0000 −0.0000

−0.0001 0.0005
−0.0000 0.0000

0.0000 −0.0004
0.0000 −0.0000




u+




−0.9986 0 0 −0.0099 0.0009 −0.0170 0.0322
0 0 0 0 0 0 0

0 0 0 0 0 0 0
−0.0099 0 0 −0.6362 −0.0065 0.4776 0.0571

0.0009 0 0 −0.0065 −0.9995 −0.0108 0.0189
−0.0170 0 0 0.4776 −0.0108 −0.3594 −0.0418

0.0322 0 0 0.0571 0.0189 −0.0418 −0.0064




y

Reduced-order fault detection filter to detect Fyω from the set of faults Fym , Fyω and Fyẍ.

˙̄x =



−6.0954 −0.2736 1.6189

−0.2736 −9.4614 0.8762
1.6189 0.8762 −7.4432


 x̄+



−0.2832 0.0317

0.4874 −0.0034
0.8006 0.0179


u+




0 −2.2024 0 9.3196 88.3783 −18.3873 17.2499
0 0.2481 0 19.3040 −178.1764 −6.8141 −12.8500
0 −0.7344 0 2.4798 198.6644 5.3856 −2.9772


 y

zyω =




0 0 0

−0.0029 0.0098 0.0349
0 0 0

0.1133 0.2433 0.0309
0.0198 −0.0092 0.0109

−0.1122 −0.1260 0.2248

0.0243 −0.0932 −0.3161




x̄+




0 0

−0.0001 0.0001
0 0

−0.0004 0.0006
0.0000 −0.0000

−0.0005 −0.0001

0.0010 −0.0005




u+
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


0 0 0 0 0 0 0
0 −0.0087 0 −0.0295 0.0004 −0.0384 0.0792
0 0 0 0 0 0 0
0 −0.0295 0 −0.7062 −0.0005 0.3580 0.2801

0 0.0004 0 −0.0005 −1.0000 −0.0006 −0.0004
0 −0.0384 0 0.3580 −0.0006 −0.5637 0.3410
0 0.0792 0 0.2801 −0.0004 0.3410 −0.7214




y

Reduced-order fault detection filter to detect Fyẍ from the set of faults Fym , Fyω and Fyẍ .

˙̄x =



−7.9585 −1.4027 0.2690
−1.4027 −7.1497 −0.5553

0.2690 −0.5553 −9.8918


 x̄+



−0.0145 −0.0268

0.0116 0.0148
0.0103 0.0004


u+




0 0 −24.6267 11.7615 240.9060 −13.9996 9.8338
0 0 −0.5869 11.9707 257.8946 1.9564 −8.1247

0 0 0.1929 −20.4744 173.3469 12.7158 7.0952


 y

zyẍ =




0 0 0
0 0 0

−0.0063 0.2182 0.0244
0.0586 0.0431 −0.2381

0.0216 0.0059 0.0080
−0.0512 0.1255 0.2075

0.0046 −0.1642 −0.0178




x̄+




0 0
0 0

−0.0000 −0.0009
0.0000 0.0001

0.0000 −0.0000
−0.0000 −0.0007

0.0000 0.0006




u+




0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 −0.5276 −0.1876 0.0015 −0.2370 0.3973
0 0 −0.1876 −0.6790 −0.0025 0.4029 0.1429
0 0 0.0015 −0.0025 −1.0000 −0.0032 −0.0010
0 0 −0.2370 0.4029 −0.0032 −0.4943 0.1772
0 0 0.3973 0.1429 −0.0010 0.1772 −0.2992




y





Chapter 5

Fault Detection Filter Evaluation

Fault detection filter performance is evaluated using the nonlinear vehicle

simulation discussed in section 2. Sensor fault detection and identification performance

is evaluated by introducing a sensor bias into the data provided by the nonlinear simulation

to the fault detection filters. In the most benign test, the nonlinear vehicle simulation is

run in steady state at 25 meters per second forward speed with no turns while a bias is

added to one of the sensor outputs. In this test, the operating point is the same as that

used to derive the linearized dynamics for the fault detection filter design. Furthermore, the

vehicle dynamics are not stimulated resulting in data that is essentially linear. Thus, the

fault detection filter is operating in a nominal environment and the test does not provide

much useful information.

In a more useful test, the filters operate at an off-nominal condition, that is, the vehicle

operates in a steady state condition but not the same one used to generate the linearized

dynamics. This is achieved by increasing the throttle two degrees from the nominal value

41
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causing the steady state vehicle speed to be about two meters per second faster than the

nominal. If the vehicle dynamics were linear, the increased throttle setting would have

only a transient effect, if any, on the linear fault detection filter state estimates. The state

estimate errors and the filter residuals would asymptotically go to zero. Since the vehicle

dynamics are not linear and the vehicle operating condition is not the same as it would be

if the dynamics were linear, the filter state estimates and the residuals are not zero. The

top-left plot of figures 5.1-5.4 shows the magnitude of each reduced-order fault detection

filter residual as it responds to the off-nominal steady state condition.

Since most residuals are not zero, as is to be expected, the natural question to ask is

what magnitude residual should be considered small. The answer lies in comparing the size

of a nonzero residual due to non-linearities and the size of a nonzero residual due to a fault.

A residual scaling factor is chosen such that when a fault is introduced into the linearized

dynamics the magnitude of the corresponding reduced-order fault detection filter residual is

one. Since most residuals generated by the off-nominal operating condition have magnitude

less than about 0.2, they should not be easily mistaken for residuals generated by a fault.

Of course, the size of the residual is proportional to the size of the fault. The size of the

fault used for finding the residual scaling factors is determined as follows. For most sensors,

the size of the fault is given by the difference in magnitude between the sensor output at the

nominal and off-nominal steady state operating conditions. For some sensors, such as the

accelerometers and the pitch rate sensor, the output is zero in any steady state condition

and another method has to be used. For the longitudinal accelerometer, the size of the fault

is given by the largest transient value of the sensor output as the two-degree step throttle

command takes the vehicle from the nominal to the off-nominal condition. For the heave

accelerometer, even the transient is small during an acceleration maneuver so a another

value is chosen that represents a vehicle heave acceleration that is reasonably encountered

during normal vehicle operation. The pitch rate sensor is treated the same way as the heave

accelerometer.

Figure 5.1 shows the magnitudes of the residuals for the three reduced-order fault
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Figure 5.1: Residuals for Fault Detection Filter One: Manifold Air Mass Sensor, Engine

Speed Sensor and Forward Acceleration Sensor.

detection filters derived from the first fault design group: an air mass sensor fault, an

engine speed sensor fault and a longitudinal accelerometer fault. A sensor bias fault is

added after one second when filter initialization errors have died out. Only one sensor fault

is added at a time; simultaneous faults are not allowed. It is important to note that when

any of the sensor faults from the first fault design group occur, the residuals associated with

a fault detection filter designed for other faults have no meaning. This is why only three

residuals are shown in each plot of figure 5.1 while eleven residuals are generated by the

entire fault detection system. Distinguishing a meaningful residual from a non-meaningful

residual is left to the residual processing neural network described in the next section. All

reduced-order fault detection filter residuals respond closely to their linear counterparts.

The residual associated with the fault quickly approaches one and other residuals in the

fault group remain unaffected.

Figures 5.2 and 5.3 show the residuals for the three reduced-order fault detection filters
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Figure 5.2: Residuals for Fault Detection Filter Two: Pitch Rate Sensor, Forward Wheel

Speed Sensor and Rear Wheel Speed Sensor.

derived from the second and third sensor fault design groups. Residual scaling factors are

chosen in the same way as for the first fault design group. The reduced-order fault detection

filter performance indicated by figures 5.2 and 5.3 is the same as that indicated by figure 5.1.

Actuator fault identification performance is shown in figure 5.4. A throttle fault is

simulated by sending a two-degree step throttle command to the nonlinear simulation

but not to the fault detection filter. Even though a throttle fault stimulates the vehicle

nonlinear dynamics and the residual associated with the brake fault, figure 5.4 shows that

both positive and negative throttle faults are clearly identifiable from a brake fault. A brake

fault is simulated by applying a brake torque just large enough to slow the vehicle from 25

m/s to 21 m/s. This changes the vehicle steady state operating point by the same amount

as a four-degree throttle fault. Figure 5.4 shows that the brake fault is clearly identified.

It is interesting to note how well the throttle and brake faults are identified. Intuitively,
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Figure 5.3: Residuals for Fault Detection Filter Three: Heave Acceleration Sensor, Pitch
Rate Sensor and Rear Wheel Speed Sensor.
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Figure 5.4: Residuals for Fault Detection Filter Four: Throttle Actuator, Brake Actuator.

there should not be much difference in the vehicle behavior when the brake is applied or

when the throttle is decreased. Yet, the fault detection filter, using the vehicle dynamics,

finds there is enough difference between them to clearly distinguish one from the other.



Chapter 6

Residual Processing

The essential feature of a residual processor is to analyze the residues generated by

all fault detection filters and announce whether or not a fault has occurred. Nominally, the

residual process is zero in the absence of a fault and non-zero otherwise. However, when

driven by nonlinearities, the residual process can fail to go to zero even in the absence of

faults. This is noted in the simulation studies of section 5. Furthermore, the residual may

be nonzero when a fault occurs for which the fault detection filter is not designed. In this

case, the residual directional properties are not defined; the fault detection filter detects

but cannot isolate the fault. These are examples of ambiguities that are to be resolved by

the residual processor.

The approach taken here is to consider that the residuals from all fault detection filters

constitute a pattern, a pattern that contains information about the presence or absence of

a fault. Hence, residual processing is treated as a static pattern recognition problem. This

class of problems is ideally suited for application to a neural network.

47
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Multilayer feedforward networks, also referred to as multilayer perceptrons, are an

important class of neural networks that have proved extremely successful in pattern

recognition problems. Typically, the network consists of a set of source nodes or neurons

that constitute the input layer, one or more hidden layers of computation nodes, and an

output layer of computation nodes. The input signal propagates through the network layer-

by-layer. Each node in the network has a set of synapses, each of which is characterized by

a weight matrix and a nonlinear differentiable activation function. The activation function

limits the amplitude of the neuron output.

The neural networks described in this section each are applied to the residuals from

only one fault detection filter. That is, in its present form, when a fault occurs, the neural

network does not attempt to determine which fault detection filters are responding to a

design fault and which are responding to some unknown input. Thus, the present system

has four residual processors. Each processor is a multilayer perceptron with the following

characteristics:

Figure 6.1: Multi-Layer Perceptron Model.
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1. Each network considers the residual from only one filter.

2. Each network has one input layer, two hidden layers, and one output layer.

3. For the first three fault groups, the sensor fault groups, the input vector is u ∈ R3

and the output vector is y ∈ R3. For the fourth fault group, the actuator fault group,

u ∈ R2 and y ∈ R2.

4. The activation function is a sigmoidal function. This has a smooth nonlinearity which

is required later for a gradient vector calculation.

S(x) = 10
ex − 1

ex + 1
(6.1)

The training process involves the determination of the synaptic weights and the bias

vectors of the network. The backpropagation algorithm is the most widely used supervised

learning algorithm in neural network applications. It consists of two passes through the

different layers of the network: a forward pass and a backward pass. In the forward pass,

an input vector is applied to the input layer and its effect propagates through the network

to produce an output. In the present application, the fault detection filter residuals are

applied to the input layer. During this pass, the synaptic weights of the network are held

constant. In the backward pass, the synaptic weights are adjusted in accordance with

an error-correction rule. Here, the network output is compared with a desired network

output and an error vector is formed. As the error vector propagates backward through the

network, the synaptic weights are adjusted to minimize the error. In the present application,

the presence or absence of a fault announcement forms the desired output. Together, the

detection filter residuals and fault announcements form a neural network training set.

Since the learning rate for a conventional backpropagation algorithm can become

excessively slow, the learning phase of the neural network is viewed as a case of a nonlinear

unconstrained parameter optimization problem. The cost function is defined as the error

between the actual and the desired output over the entire training set. This is also known as

batch mode training, wherein weight updating is done after the presentation of the entire



50 Chapter 6: Residual Processing

set of training examples to the network. Each training example is also called a pattern

and one complete presentation of all training sets is called an epoch. The learning process

continues epoch-by-epoch until the synaptic weights and the bias vectors of the network

stabilize and the cost converges to some minimum value. The order of presentation of the

training examples within an epoch is randomized from one epoch to the next to make the

search in weight space stochastic over the learning cycles. This avoids the possibility of

limit cycles in the evolution of the synaptic weights.

The back propagation training algorithm requires that a gradient of the cost function

with respect to the synaptic weights and bias vectors be calculated. The required partial

derivatives may be calculated analytically as follows. Begin with an expression for the cost

function, the average error over one epoch given by

E =
j=N∑

j=1

ej

N

where E is the average error over one epoch, ej is the error for the jth pattern or training

set in the epoch and N is the number of patterns per epoch. The error ej is given by

ej =
1

2
(dj − yj)T (dj − yj)

where dj is the desired network output and yj is the actual output Note that dj and yj ∈ R3

or R2, depending on the network.

For the network shown in figure 6.1, the network output is given by

yj = S(h
j
3)

where h
j
3 is the input vector to the third layer for the jth training pattern and S(·) is the

activation function embedded in each node. The input vectors to the third layer and other

layers are given by

h
j
i = W

j
i · S(h

j
i−1) + Φ

j
i (6.2)

where hji , W
j
i and Φj

i are the input vector, weighting matrix and associated bias vector for

layer i and training pattern j. Note that hji , Φj
i and S(hji ) ∈ R3 and W j

i is a 3× 3 matrix.
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Again, S(·) is the activation function given by (6.1). From (6.2), the network output is

given by information from the second layer as

yj = S(W j
3 · S(hj2) + Φj

3)

Thus, the error function gradient is calculated backwards as

∂yj

∂hji
=

∂yj

∂hji+1

·W j
i+1 ·

∂S(hji )

∂hji

∂ej

∂hji
=

∂ej

∂hji+1

·W j
i+1 ·

∂S(hji )

∂hji

and with the boundary condition

∂ej

∂hj3
= (yj − dj)T · ∂S(hj3)

∂hj3

Hence, the error function gradient for the jth pattern is

∂ej

∂W j
i

=
∂ej

∂hji
· S(hi−1)

∂ej

∂Φ
j
i

=
∂ej

∂h
j
i

Finally the gradient vector for the cost is

∂E
∂Wi

=

∑j=N
j=1

∂ej

∂W j
i

N

∂E
∂Φi

=

∑j=N
j=1

∂ej

∂Φj
i

N

A Davidon-Fletcher-Powell algorithm is used to solve the unconstrained parameter

optimization problem. The algorithm converges in exactly n steps for a quadratic cost

and uses a rank two update for the Hessian matrix to ensure that at the end of every

iteration, the Hessian is positive definite. The algorithm is outlined below and with the

following notation:

xk : Parameter vector at the kth iteration.

F : Objective function.
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Sk : Direction of search at the kth iteration.

Hk : Hessian matrix at the kth iteration

Algorithm 6.1 (Davidon-Fletcher-Powell Parameter Optimization).

1) Set k = 0, x0 to the initial parameter vector and H0 = I .

2) Find the one-dimensional search direction Sk = −Hk · ∇FT (xk).

3) Minimize along Sk to get xk+1, that is, do a line search

min
αk

F (xk + αkSk)

4) Set

pk = xk+1 − xk = αkSk

yk = ∇FT (xk+1)−∇FT (xk)

5) Update the Hessian matrix:

Hk+1 = Hk +
pkp

T
k

yTk pk
− Hkyky

T
kH

T
k

yTkHkyk

6) Check for convergence. If convergence is not achieved, set k = k + 1 and go to step

(2).

In the present application the convergence check used is whether the change in the

Hessian matrix is small. Since the cost is not quadratic, the algorithm takes more than n

steps to converge for an n-dimensional optimization problem. The trained networks have

been tested and the results are summarized in figures 6.2 through 6.5. It is seen from all

figures that the trained neural networks are quite effective in announcing a fault very soon

after one occurs.

Figure 6.2 shows residuals from the first fault detection filter, the one that considers

sensor faults for the manifold air mass sensor, the engine speed sensor and the forward
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acceleration sensor. The faults are applied sequentially and one at a time. The decision

function of the network announces a zero if there is no fault and a one if there is a fault.

Note that all residuals are scaled by a factor of ten before being processed by the network.

This scaling can be avoided by scaling the weights of the first layer by the same magnitude.

The synaptic weights W and the bias vectors Φ for the first network are:

W=




0.155804 0.134528 −0.151691
−0.154178 0.065559 −0.227977
−0.052750 0.187670 0.235507

0.071434 −0.234352 0.001146

−0.001592 0.107922 −0.255098
−0.225173 −0.104908 0.127320

0.384729 0.026842 −0.194035
−0.176569 −0.383187 −0.290295

0.164612 −0.155957 0.346983




Φ=



−0.411395 0.586518 −0.167796

−0.071276 0.062116 −0.014957
0.535025 0.302601 1.098216




The first 3 rows of the weight matrix correspond to the first layer of the network. Rows 4,

5 and 6 correspond to the second layer and rows 7, 8 and 9 correspond to the third layer.

Similarly, the first row of Φ corresponds to the bias vector of the first layer nodes, and so

on.

Figure 6.3 shows residuals from the second fault detection filter, the one that considers

sensor faults for the pitch rate sensor, the forward symmetric wheel speed sensor and the

rear symmetric wheel speed sensor. The faults again are applied sequentially and one at

a time as for the first filter but the residuals are not scaled. The synaptic weights W and

bias vectors Φ for the second network are:

W=




0.456071 0.149415 −0.104004

−0.418542 0.094649 −0.164763
−0.184857 0.197932 0.159792

0.327377 −0.444597 −0.109918
−0.038376 0.057827 −0.254133
−0.339349 0.068775 0.114895

0.641334 0.029250 −0.353188
−0.170035 −0.374427 −0.328512

0.135355 −0.122547 0.277558




Φ=




0.049039 0.994333 −0.800334
0.716702 0.147230 −0.395788
0.844156 0.568572 1.471435




Figure 6.4 shows residuals from the third fault detection filter, the filter that considers

sensor faults for the heave accelerometer, the pitch rate sensor and the forward symmetric
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wheel speed sensor. The faults again are applied sequentially and one at a time as for the

first filter and again the residuals are not scaled. The synaptic weights W and bias vectors

Φ for the third network are:

W=




0.427967 0.199235 −0.134513

−0.397269 0.124967 −0.186824
−0.175831 0.283523 0.167301

0.281785 −0.441553 −0.126375
−0.088793 0.027302 −0.328136
−0.361911 0.031584 0.068693

0.612911 0.032435 −0.342027
−0.183339 −0.434450 −0.343878

0.139504 −0.135555 0.274775




Φ=



−0.045264 1.124374 −0.586397

0.938002 0.033609 −0.384049
1.030029 0.488223 1.378053




Finally, figure 6.5 shows residuals from the fourth fault detection filter, the filter that

considers actuator faults for the throttle and brake actuators. Note that two fault cases

are given for the throttle fault. The synaptic weights W and bias vectors Φ for the fourth

network are:

W=




0.377897 0.031862
−1.148921 0.465636

−0.466482 0.999481
0.059375 0.727932

−0.289151 0.004747
−0.025186 0.283940




Φ=



−1.744053 −0.463958

1.975143 −1.321055
2.845561 2.588340



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Figure 6.2: Residuals for Fault Detection Filter One: Manifold Air Mass Sensor, Engine

Speed Sensor and Forward Acceleration Sensor Faults.
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Figure 6.3: Residuals for Fault Detection Filter Two: Pitch Rate Sensor, Forward Symmetric

Wheel Speed Sensor and Rear Symmetric Wheel Speed Sensor.



Chapter 6: Residual Processing 57

Figure 6.4: Residuals for Fault Detection Filter Three: Heave Accelerometer, Pitch Rate

Sensor and Forward Symmetric Wheel Speed Sensor.
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Figure 6.5: Residuals for Fault Detection Filter Four: Throttle and Brake Actuators.



Chapter 7

Conclusions

Analytic redundancy is a viable approach to vehicle health monitoring. The fault

detection filters developed here are small, third-order linear filters, which should not be a

significant computational burden. Evaluating their performance in a high-fidelity nonlinear

simulation shows that the filter residuals quickly and clearly respond to the introduction of

a fault even in the presence of vehicle nonlinearities. A neural network residual processing

system effectively automates fault announcement by examining the fault detection filter

residuals for activity characteristic of a static pattern associated with a fault. Faults

are announced by the neural network very soon after they are introduced in the vehicle

simulation.

By directing development of the project components in parallel and seeing significant

progress in all areas, we are able to identify several important areas for future work:

model refinement, robust fault detection filter design, health monitoring system evaluation,

residual processing and neural network development, and platoon health monitoring.

59
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Model Refinement: Through a good working relation with the Berkeley PATH

researchers, development and refinement of the nonlinear simulation will continue. The

research division of the Ford Motor Company will be contributing a new tire model. In

addition to addressing the fidelity of the vehicle nonlinear dynamics model, simulation

development will also involve uncertainty models associated with process disturbances such

as winds and roads, sensor measurement uncertainty, system parameter uncertainty and

unmodeled dynamics. Fidelity of the modeled nonlinearities and uncertainties is very

important for a realistic assessment of any health monitoring system performance.

Robust Fault Detection Filter Design: Development of robust fault detection

filters will continue with three directions of investigation. First, the physical system

will be examined for the possibility of treating nonlinearities and disturbances as pseudo-

fault directions. This approach effectively decouples the nonlinearity or disturbance from

fault identifying residuals. Second, analysis will continue to develop a methodology for

determining which faults are assigned to which fault detection filters. This approach is

incorporated into the longitudinal fault detection filter preliminary designs. Faults are to be

grouped based upon their fault directions, residual directions or eigenvalue characteristics

to enhance robust performance. Third, parameter uncertainty in the linearized vehicle

dynamics is modeled as an input-output decomposition. This allows model uncertainty to

be treated as a disturbance.

Evaluation: As the vehicle nonlinear simulation and fault detection filter development

continues, evaluation of the health monitoring system will be extended to include a range of

operating points. Both longitudinal and lateral modes of vehicle dynamics will be included

as will the uncertainties discussed above.

Residual Processing - Neural Networks: The neural network residual processor

developed for the preliminary design will be extended to include the entire fault set.

Presently, one neural network is designed and trained for each fault detection filter or

family of reduced-order fault detection filters. When a fault occurs, a neural network will
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correctly identify the fault if the fault belongs to the fault detection filter design set. Results

are undefined when the fault does not belong to the design fault set. Extending the neural

network to include the entire fault set will allow the network, when a fault occurs, to identify

first the correct fault design set or sets and then the fault.

A second area of investigation is to research methods for determining probabilities of

false and miss alarms in the presence of system uncertainties and nonlinearities. One

feature of the reduced-order fault detection filters is that the error dynamics have no special

structure. This allows the filter gains to be chosen arbitrarily much like a Kalman filter.

With a reduced-order fault detection filter treated as a Kalman filter, modified forms of

techniques such as the Shiryayev Sequential Probability Ratio Test (SPRT) are applicable

to the residual analysis.

An essential feature of schemes such as the Shiryayev SPRT is to produce thresholds

that announce in minimum time whether a fault has occurred within a given probability of

false alarm. However, currently, residual tests such as the Shiryayev SPRT are developed

only for special stochastic processes. Extending schemes of this type to include residuals

from the fault detection filter could proceed by allowing a failure to produce a change in

several probability density functions rather than just one.

Platoon Health Monitoring: Work should begin towards extending the health

monitoring system for one vehicle to include the presence of multiple vehicles in a controlled

platoon configuration. Sensors required for control such as distance measurements will be

included in the fault set. Transmission of vehicle sensor outputs will be transmitted to

all vehicles. Feasibility and performance of an expanded health monitoring system will be

evaluated in an extended nonlinear simulation.





Appendix A

Fault Detection Filter Background

A linear time-invariant system with q failure modes and no disturbances or sensor

noise can be modeled (Beard 1971), (White and Speyer 1987), (Massoumnia 1986) by

ẋ = Ax+ Bu+
q∑

i=1

Fimi (a.1a)

y = Cx. (a.1b)

All system variables belong to real vector spaces x ∈ X , u ∈ U , y ∈ Y and mi ∈Mi

with n = dimX , p = dimU, m = dimY and qi = dimMi. The input u ∈ U is known

as is the output y ∈ Y . The failure modes mi ∈Mi are vectors that are unknown and

arbitrary functions of time and are zero when there is no failure. The failure signatures

Fi : Mi 7→ F i ⊆ X are maps that are known, fixed and unique. A failure mode mi

models the time-varying amplitude of a failure while a failure signature Fi models the

directional characteristics of a failure. Assume the Fi are monic so that mi 6= 0 implies

Fimi 6= 0. Actuator and plant faults are modeled with Fi as the appropriate direction from

63
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A or B. For example, a stuck actuator is modeled with Fi as the column of A associated

with the actuator dynamics and with mi(t) = −ui(t) + uic where uic is some constant.

A sensor fault can also fit this model with no need for additional dynamics (Beard 1971),

(White and Speyer 1987).

Consider a full-order observer of the form

˙̂x = (A+ LC)x̂+Bu− Ly (a.2a)

z = Cx̂− y. (a.2b)

The state estimation error e = x̂− x dynamics are

ė = (A + LC)e−
q∑

i=1

Fimi (a.3)

If (C,A) is observable and L is chosen so that A+LC is stable, then in steady-state and in

the absence of disturbances and modeling errors, the residual r is nonzero only if a failure

mode mi is nonzero and is almost always nonzero whenever mi is nonzero. It follows that

any stable observer can detect the occurrence of a fault. Simply monitor the residual z and

when it is nonzero a fault has occurred. A more difficult task is to determine which fault

has occurred and that is what a fault detection filter is designed to do.

A fault detection filter is an observer with the property that when mi(t) 6= 0, the error

e(t) remains in a (C,A)-invariant subspace W i which contains the reachable subspace of

(A + LC,Fi). Thus, the residual remains in the output subspace CWi. Furthermore, the

output subspaces CW1, . . . , CWq are independent so that z ∈
∑q

i=1 CW i has a unique

representation z = z1 + · · ·+ zq with zi ∈ CW i. The fault is identified by projecting z onto

each of the output subspaces CW i. The following statement of the detection filter problem,

sometimes called the Beard-Jones detection filter problem (BJDFP), is essentially the same

as that found in (Beard 1971) and (White and Speyer 1987) but is stated in the geometric

language of (Massoumnia 1986).

Definition A.1 (Detection Filter Problem). Given the system (a.1), with state-space

X and measurement-space Y, the detection filter problem is to find a set of subspaces
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W i ⊆ X , i = 1, . . . , q such that for some map L : Y 7→ X the following conditions are met:

(A+ LC)W i ⊆ W i Subspace invariance.

F i ⊆ W i Failure inclusion.

CWi ∩ (
∑

j 6=i
CWj) = 0 Output separability.

It can be shown (Massoumnia 1986), (White and Speyer 1987) that when (C,A) is

observable, the last condition, output separability, implies that the subspaces W1, . . . ,Wq

are independent.

It should be pointed out that for any subspace F i ⊆ X there is a minimal (C,A)-

invariant subspace F i ⊆ W∗
i ⊆ X . A method suggested by (Wonham 1985) for computing

a minimal invariant subspace is a recursive algorithm, the (C,A)-invariant subspace

algorithm.

W∗
i = limWk

i

where

Wk+1
i = ImFi + A

(
Wk

i ∩KerC
)

and where the recursion begins with

W0
i = 0

To ensure stability, the invariant subspaces Wi are usually chosen as a set of mutually

detectable, minimal unobservability subspaces or detection spaces (Beard 1971) as they are

also called in the context of fault detection. An unobservability subspace T ⊆ X or UOS is a

subspace with the property that T is the unobservable subspace of the pair (HC,A+LC) for

some L and H. This means not only that T is (C,A)-invariant but also that the spectrum

of (A+LC) induced on the factor space X/T may be placed arbitrarily within a conjugate

symmetry constraint and with respect to L such that (A+LC)T ⊆ T . Furthermore, when

(C,A) is observable, the entire spectrum of (A + LC) is arbitrary. If T (F) is the set of
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(C,A)-unobservability subspaces that contain F , then it can be shown that T (F) has a

smallest element denoted T ∗ (Willems 1982). The detection space is usually found as a

minimal UOS, T ∗, because there is no known parameterization of all UOS and algorithms

exist to compute the minimal UOS (White and Speyer 1987), (Massoumnia 1986).

One method for computing T ∗ is suggested by (Wonham 1985) as a numerically stable

method for finding supremal controllability subspaces. These are the dual of minimal

unobservability subspaces or detection spaces. There are two steps. First, for a fault Fi,

find the minimal (C,A)-invariant subspaceW∗
i using the recursive (C,A)-invariant subspace

algorithm as explained above. Next, calculate the invariant zero directions of the triple

(C,A,Fi), if any. Denote the invariant zero directions as V i. Then

T ∗i = W∗
i ⊕ Vi

Detection space calculations are described in detail in (Wonham 1985) with amplification

and examples given in (Douglas 1993).

Finally, a mutually detectable set of UOS {T ∗1, . . . ,T ∗q} is one which satisfies

Definition A.1 such that the sum
∑q

i=1 T
∗
i is also an UOS. While for any one UOS T i,

the spectrum of (A + LC) induced on X /T i may be placed arbitrarily with respect to L,

it is not necessarily true that the factor space spectrum is arbitrary when several UOS

are considered simultaneously. When a set of UOS T ∗1, . . . ,T ∗q is mutually detectable, the

spectrum of (A+ LC) induced on X/
∑q

i=1 T
∗
i is arbitrary and, when (C,A) is observable,

the entire spectrum of (A+ LC) is arbitrary.

Once the detection spaces are found, the next step is to find a fault detection filter gain.

The gain is not unique and several methods exist for finding one. Eigenstructure assignment

algorithms are described in (White and Speyer 1987) and (Douglas and Speyer 1995b)

and an H∞-bounded fault detection filter is described in (Douglas and Speyer 1995a).

The procedure applied in this report is a left eigenvector assignment algorithm

introduced in (Douglas 1993) and (Douglas and Speyer 1995b). This procedure is

used because it extends directly to one that hedges against sensitivity to parameter

uncertainty. Noise robustness algorithms such as the H∞-bounded fault detection filter
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of (Douglas and Speyer 1995a) are not used here because disturbances and sensor noise are

not yet included in the vehicle model. Furthermore, later, when they are included, the

reduced-order fault detection filters provide a natural way to accommodate noise without

the need for redesigning the filter.

The left eigenvector assignment algorithm works by assigning an eigenstructure in

the dual space to a set of intersecting detection space annihilators. This means that

left eigenvectors, which annihilate the detection spaces, are placed rather than right

eigenvectors, which span the detection spaces as is done in (White and Speyer 1987). Since

these annihilators intersect, care must be taken to ensure that the assigned eigenvectors are

consistent.

Before proceeding, it is necessary to establish a dual relation between unobservability

and controllability subspaces. First, introduce the following notation. X ′ denotes the dual

space of X and if C : X 7→ Y, then C′ denotes the dual map C′Y ′ 7→ X ′. Writing CT , the

transpose of matrix C , for the dual map C′ implies that bases have been chosen for X and

Y . Now, in (Wonham 1985) it is shown that if T ⊆ X is a (C,A)-unobservability subspace

then the annihilator of T denoted here by T ⊥ ⊆ X ′ is an (A′, C′)-controllability subspace

in the dual system. Second, if T is a (C,A)-unobservability subspace, the observable part

of the system is characterized by the factor space X /T and the induced system maps.

Furthermore, for any subspace T ⊆ X , the annihilator of T and the factor space X/T are

isomorphic, T ⊥ ' (X /T )′.

The dual relation between unobservability and controllability subspaces is useful because

any result found for controllability subspaces can be applied easily to the unobservability

subspaces of a detection filter. Consider the results of (Moore and Laub 1978) which are

paraphrased as follows. The first statement describes a set of vectors in the kernal of C

that can be assigned as closed-loop eigenvectors.

Theorem A.1. Let A : X 7→ X , B : U 7→ X and C : X 7→ Y . Then a set of linearly

independent vectors {v1, . . . , vk | vi ∈ KerC ⊆ X} satisfies (A + BK)vi = λivi for some

K : X 7→ U and distinct self-conjugate complex numbers λ1, . . . , λk if and only if vi and vj
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are conjugate pairs when λi and λj are and there exists a set of vectors {w1, . . . , wk|wi ∈ U}

such that [
A− λiI B

C 0

] [
vi
wi

]
=

[
0
0

]

It follows immediately that for a monic B, a set of vectors {v1, . . . , vk} satisfies theorem A.1

if and only if Kvi = wi.

The second result also from (Moore and Laub 1978) characterizes the set of all

eigenvectors that span a supremal (A,B)-controllability subspace R∗.

Theorem A.2. Let λ1, . . . , λk be a set of distinct, self-conjugate complex numbers that

satisfy

1) k ≥ dim(R∗) where R∗ is the supremal (A,B)-controllability subspace in KerC

2) at least one λi is real

3) no λi or Re(λi) is a transmission zero of (C,A,B)

Let Vi and Wi solve
[
A− λiI B

C 0

] [
Vi
Wi

]
=

[
0
0

]

Then R∗ = ImV1 + · · ·+ Im Vk.

Given the dual relationship between controllability and unobservability subspaces, the

application of Theorems A.1 and A.2 to detection filter design is immediate. First, consider

just one detection space T ∗i . Characterize the left eigenvectors that annihilate T ∗i and find

a detection filter gain Li that produces T ∗i . Next establish a consistency requirement on a

detection filter gain L that is to produce q detection spaces T ∗1, . . . ,T ∗q .

If T ∗i ⊆ X with dimension νi is a detection space for fault Fi, the annihilator (T ∗i )⊥

is the supremal controllability subspace of the dual system with (T ∗i )⊥ ⊆ KerF ′i and has

dimension n− νi. Let Λ̂i = {λi1, . . . , λin−νi} be a set of distinct self-conjugate complex

numbers that does not include any of the invariant zeros of the triple (F ′i , A
′, C′). By

Theorem A.2 the annihilator of T ∗i satisfies

(T ∗i )⊥ = Im Vi1 + · · ·+ ImVin−νi
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where the Vij are found, along with Wij , by solving

[
AT − λijI CT

FT
i 0

] [
Vij
Wij

]
=

[
0
0

]
(a.4)

where j = 1, . . . , n − νi and where λij ∈ Λ̂i. A set of linearly independent closed-loop left

eigenvectors vi1, . . . , vin−νi that spans (T ∗i )⊥ satisfies Theorem A.1 and is found by solving

[
AT − λijI CT

FT
i 0

] [
vij
wij

]
=

[
0
0

]
(a.5)

Since vij ∈ ImVij (a.4), the left eigenvectors may not be unique but they are constrained to

be arranged in conjugate pairs when the given closed-loop eigenvalues λij are in conjugate

pairs.

Now find a detection filter gain Li. By the remark following Theorem A.1, LTi satisfies

LTi vij = wij (a.6)

and (AT +CTLTi )vij = λijvij for each j = 1, . . . , n− νi. Form two matrices V̂i and Ŵi

V̂i =
[
vi1, . . . , vin−νi

]
(a.7a)

Ŵi =
[
wi1 , . . . , win−νi

]
(a.7b)

and solve LTi V̂i = Ŵi. A real solution for LTi always exists because the vij are linearly

independent and the assigned closed-loop poles λij and eigenvectors vij when complex are

arranged in conjugate pairs. Finally, Li, the detection filter gain found as the transpose

V̂ T
i Li = ŴT

i (a.8)

satisfies (A + LiC)T ∗i ⊆ T ∗i and places the spectrum of (A + LiC) induced on X/T ∗i as

σ(A + LiC|X /T ∗i ) = Λ̂i.

Because the detection filter has q detection spaces T ∗1, . . . ,T ∗q ⊆ X , the detection filter

gain L has to satisfy (a.8) for i = 1, . . . , q or

LT
[
V̂1, . . . , V̂q

]
=

[
Ŵ1, . . . , Ŵq

]
(a.9)
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Since the V̂i and Ŵi represent
∑q

i=1(n− νi) pairs of vectors (vij , wij ), care must be taken

to construct the V̂i and Ŵi conformably. If (a.9) is to have a solution for L, there can be

no more than n distinct pairs (vij , wij ) and of these, the vij must be linearly independent

and arranged in conjugate pairs if a solution is to be unique and real.

Finding a set of left eigenvectors consistent with (a.9) is not difficult but requires careful

bookkeeping. Since (T ∗i )⊥ and (X /T ∗i )′ are isomorphic, the closed-loop spectrum induced

on the factor space X /T ∗i is

σ(A + LiC|X /T ∗i ) = σ(A′ +C′L′i|(T ∗i )⊥) = Λ̂i

If Λi is the spectrum of (A + LiC) restricted to the invariant subspace T ∗i

Λi = σ(A + LC|T ∗i )

then the spectrum of (A+ LiC) is just

Λ = σ(A+ LiC) = Λi ∪ Λ̂i (a.10)

Now, the subspaces T ∗1, . . . ,T ∗q are independent when the faults are output separable and

(C,A) is observable (Massoumnia 1986), (White and Speyer 1987), so

Λ = Λ1 ∪ · · · ∪ Λq ∪ Λ0

where Λ0 is a set of ν0 = n− ν1 − · · · − νq eigenvalues associated with the complementary

space X̂ 0 = X /
∑q

i=1 T ∗i , ν0 = dim(X̂ 0),

Λ0 = σ(A+ LC|X /
q∑

i=1

T ∗i )

It follows from (a.10) that

Λ̂i =
q⋃

k=0
k 6=i

Λk (a.11)

Since the sets of assigned closed-loop poles Λ̂i intersect, the sets of vectors vij and wij

that solve (a.5) should also form intersecting sets compliant with (a.11). By (a.11),
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if λij ∈ Λi for i 6= 0, then λij ∈ Λ̂k 6=i and the vij and wij that satisfy (a.5) now must satisfy

0 = (AT − λijI)vij + CTwij

0 = FT
1 vij

...

0 = FT
i−1vij

0 = FT
i+1vij

...

0 = FT
q vij

For i = 0 and λij ∈ Λ0, then λij ∈ Λ̂k for k = 1, . . . , q and the vij and wij that satisfy (a.5)

now must satisfy

0 = (AT − λijI)vij + CTwij

0 = FT
1 vij

...

0 = FT
q vij

The detection filter gain computation algorithm suggested by (a.5)-(a.9) and modified

to force consistency among eigenvectors which span the intersecting detection space

annihilators, is as follows.

Algorithm A.1.

1) Find the dimensions of the detection spaces νi = dimT ∗i for i = 1, . . . , q and the

dimension of the complementary space ν0 = n−
∑q

i=1 νi.

2) Define the complementary fault sets

F̂i =

{
[F1, . . . , Fq ] for i = 0
[F1, . . . , Fi−1, Fi+1, . . . , Fq] for 1 ≤ i ≤ q

(a.12)

Define (q + 1) sets of distinct self-conjugate complex numbers Λ0,Λ1, . . . ,Λq where

dimΛi = νi and where no elements of Λi are zeros of the triple (C,A, F̂i). By the
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remarks at the end of section A, each of these sets may be specified arbitrarily except

for conjugate symmetry when (C,A) is observable and when the detection spaces T ∗i
are mutually detectable.

3) For i = 0, . . . , q and j = 1, . . . , νi and for λij ∈ Λi solve

[
AT − λijI CT

F̂T
i 0

] [
vij
wij

]
=

[
0
0

]
(a.13)

for pairs (vij , wij ) where the vij are linearly independent for all i, j. Let

Ṽi =
[
vi1 , . . . , viνi

]
(a.14a)

W̃i =
[
wi1 , . . . , wiνi

]
(a.14b)

4) Solve for the detection filter gain L as

[
Ṽ0, Ṽ1, . . . , Ṽq

]T
L =

[
W̃0, W̃1, . . . , W̃q

]T
(a.15)
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