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ABSTRACT

This paper develops a data synthesis methodology in PLANiTS (Planning and Analysis
Integration for Intelligent Transportation systems) using case-based reasoning. The reasoner con-
tains mechanisms for matching, ranking and analyzing past cases in relation to current cases. The
current cases consist of transportation improvement actions, performance measures and environ-
ments defined in terms of spatial, temporal and user dimensions. PLANiTS users can apply in-
creasing levels of stringency to match cases. We also discuss issues related to computer implemen-
tation and the limitations of case-based reasoning.

Key words: transportation planning; case-based reasoning; intelligent transportation systems.



SUMMARY

Intelligent transportation systems may support traveler decisions and improve
transportation system performance. To plan for systematic testing and deployment of such
systems, a framework for a new transportation planning methodology known as PLANiTS is
being developed. An important component of the methodology deals with synthesizing and
processing existing knowledge about transportation improvement actions, including new
transportation technologies, and presenting it to individuals involved in planning. The intention is
to support future planning decisions which will inevitably deal with deployment of new
technologies.

To synthesize and process existing transportation knowledge, we propose the use of Case-
Based Reasoning (CBR), a relatively new paradigm in Artificial Intelligence. Given a planning
context where individuals are exploring the impacts of transportation improvement actions in terms
of certain measures of performance, the Case-Based Reasoner determines the similarity of past
cases to the present situation, retrieves relevant cases from computer memory and informs the user
about the impacts of past solutions (transportation improvement actions) and their success or
failure. For example, if the impact of Advanced Transportation Management and Information
Systems or ATMIS is being considered on system-wide delay, then CBR will determine the
similarity of ATMIS cases implemented elsewhere.

The cases are stored in “case base.” All cases must contain transportation improvement
action(s), performance measure(s) and the context or environment. The user must define the
current case in terms of actions, performance measures and context and their spatial, temporal and
user dimensions. A matcher will provide a listing of similar cases by accessing them in the case
memory. PLANiTS users can match cases at different levels of stringency. A ranker will rank them
in accordance with their similarity to the current case. To predict performance measures when
several similar cases are retrieved, an analyzer provides estimates; and an adviser compiles
evidence from the cases and makes (qualitative) recommendations.

An important limitation of CBR in the context of transportation planning is that no two
cases are exactly similar. Judging similarity of cases is often difficult, and sometimes arbitrary,
because the methods for comparing cases are not well developed. The paper points out this and
other important issues in developing Case-Based Reasoning for transportation planning.

. . .
ill
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INTRODUCTION
New transportation technologies offer solutions to the continuing problems of traffic

congestion, air quality, safety and accessibility. To understand the extent of new technology
impacts, we can learn from similar technology implementations of the past. Specifically,
experiences with appropriate and inappropriate technology implementations provide a rich
resource. It is important to learn from successes as well as mistakes and failures; an important
source of innovative new solutions is probably retrospection about mistakes. In this regard, we
propose to use case-based reasoning as a transportation planning support tool that determines
similarity of historical cases to the current case, provides information on whether similar past cases
were successful and warns against potential mistakes/failures.

Transportation planning occurs in a complex political environment, where people must
analyze and judge several aspects of a problem based on available information. For example,
before implementing intelligent transportation systems, participants need to know their potential
benefits. Currently, there is well-founded skepticism about the role of new transportation
technologies among people involved in the transportation planning process. Case-Based Reasoning
(CBR) allows participants to be skeptical by examining past mistakes and successes and learning
from them. They can obtain insights regarding the role of new transportation technologies and
estimate their impacts/benefits. Initially, implementation decisions can be made by examining
evidence from (often limited) field operational tests along with experiences from actual
implementation of similar precursor technologies. Successful field operational tests and
implementations can be replicated in appropriate environments, whereas past mistakes can be
anticipated and avoided.

We have proposed a methodology called PLANiTS (Planning and Analysis Integration for
Intelligent Transportation Systems) which is a comprehensive tool designed to meet the needs of
the emerging planning processes. A detailed description of PLANiTS appears in Kanafani,
Khattak, and Dahlgren (1994) and Vlahos, Khattak, Kanafani, and Manheim (1994). PLANiTS is
designed to be used by agencies and citizens involved in transportation planning. To complement
structured analysis and modeling, we have proposed a knowledge base that synthesizes data in
meaningful ways. Specifically, a case base will contain synthesized transportation knowledge.
The basic functions provided are the presentation of information regarding previous cases to
participants, analysis of transportation improvement action impacts, and the provision of
judgements on similarity. PLANiTS case-base reasoner supports learning from experience with
transportation improvement actions.

CBR helps participants analyze the impacts of actions in terms of performance measures by
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displaying similar cases. Matching relevant cases allow users to draw inferences regarding values
of performance measures and obtain insights in the current context. Other functions include
ranking historical cases in terms of their similarity to the current case, using statistical techniques to
estimate parameters for the similar cases, examining subjective information about past cases,
particularly past mistakes that can be avoided, and storing new cases in the computer memory.

CBR takes advantage of the existing cases in transportation to seed a case-based system,
e.g., experiences with ATMIS precursor technologies such as information collection, processing
and dissemination technologies. The case-base becomes richer as the results from field operational
tests on new technologies are compiled and synthesized.

The following section provides an overview of PLANiTS  and discusses the application of

CBR in PLANiTS. The section on conceptual structure discusses issues related to case
representation, causal models and similarity. Next the implementation of CBR along with an
overview of CBR architecture is provided. Finally, the limitations of the methodology are
discussed.

PLANiTS  OVERVIEW
PLANiTS Components

PLANiTS has various bases described in Kanafani et al. (1994) and discussed briefly

below (Figure 1):

. The Policy and Goals Base contains mandates objectives and constraints communicated in
terms of appropriate policy factors to be satisfied and measures of performance to be
evaluated.

. The Strategy and Action Base contains a catalogue of possible actions and rules that can
recommend competing and associated actions.

. The Data and Knowledge Base provides access to data bases and has knowledge in terms
of theoretical and empirically established relationships between transportation objects.

. The Methods and Tools Base contains transportation models and generic methods of
analysis, and utilities and tools, e.g., for network analysis.

The glue that binds PLANiTS components together and allows deliberative planning and

analysis processes to occur is the Planning Vector, PV, which contains three sub-vectors:

. Action Vector, A, which contains the proposed set of actions that are the subject of the
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planning process.
. Criteria Vector, Y, which contains the measures of performance representing the goals for

which the actions are proposed.
. Environment Vector, E, which contains the descriptors of the context that are relevant to the

subject actions and impacts.

Thus, we have PV = [A, Y, E]
The planning vector allows users to select transportation actions, performance measures

and environmental descriptors. Users specify each of these elements in terms of their spatial,
temporal and user dimensions and analyze the planning vector with models, case-based reasoning
and expert systems. During the process of planning vector specification and analysis, people at
different locations can communicate by sending and receiving messages and sharing the planning
vector.

The knowledge and the methods bases are used to analyze the elements of the planning
vector and the results used to inform the decision making process involved in programming
projects.

Case-Based Reasoning in PLANiTS
CBR is part of the knowledge base in PLANiTS.  To present cases that can give meaningful

solutions and insights, it relies on rules and mathematical operations. CBR determines the
similarity of past cases to the current situation, and presents relevant cases stored in the computer
memory and informs the user on how similar situations were addressed and whether the previous
solutions (actions) were successful in achieving their objectives (Kolodner 1993; CBR 1989,
1990). However, the methods used to determine similarity are not well developed. Judging
similarity of cases is often difficult, and sometimes arbitrary (research on this topic is limited, see
Kolodner 1993 for a discussion of “preference heuristics”). Furthermore, there is a need to
develop a general structure for representing and retrieving cases to support users’ action
generation, criteria selection and evaluation activities in PLANiTS.

We use High Occupancy Vehicle (HOV) and Advanced Transportation Management and
Information Systems (ATMIS) examples throughout this paper. We choose the HOV lane’s
example because such lanes constituted a large portion of the recent planning projects in California
and they can potentially integrate new technologies, e.g., real-time rideshare matching systems.
Also the idea of priority for certain vehicles can be extended to include AHS (Automated Highway
Systems). That is, automated highways may allow certain vehicle types to travel faster than others.

3



The ATMIS example is appropriate because it represents a set of new technologies that are closest
to implementation. Moreover, there is some experience with precursor ATMIS technologies that
can seed the case base.

CONCEPTUAL STRUCTURE
A Structure for Representing Cases

A historical case must contain the elements of the planning vector. Cases consist of actions
implemented in an environment and their consequent impacts. The three elements of the planning
vector, namely actions, environment and performance measures are defined in terms of space, time
and user/traveler dimensions. For example, an HOV lane action (or an automated lane of the
future) must have a location, a time of operation and a vehicle occupancy threshold. It will
influence certain users traveling on a network during a certain time. The environment may consist
of the geographic area where the HOV lane was implemented, the time of its implementation and
the rideshare opportunities in the area.

The descriptors can be expressed more elaborately as follows:

. Spatial dimensions
Nodes and links
Technology
* Vehicles (type, number demanding service)
* Intelligent transportation systems

. Temporal dimensions
Yearly, monthly, daily
Peak, off-peak

. User/traveler dimensions
Traveler decisions (participation in labor force, home/office location, mode, route)

Traveler attributes (income, gender)
Travel purpose (work, shop)

Actions and performance measures each have a hierarchy. In PLANiTS, cases are indexed
according to their hierarchy as illustrated below:
Define action clusters,

Ai = Ial, a2, a3,..., ai1
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In the transportation planning context,

Ai = {roadway, transit, bicycle/pedestrian, intermodal/freight}

The sub-cluster level is,

Ajli = {alll~  312, a113,..., alii

a211, a212, a213,...,  a21i

ajli, ajl2, ajl3,...,  ajli)

For example,

Ajli = { HOVIRoadway, Bus prioritylTransit,

ATMISIRoadway, Transit information systemlTransit,...]

The reason for structuring the actions as a matrix (rather than a vector) is that certain sub-types of
actions, e.g., intelligent transportation systems, may be represented as rows. Further, actions are
specified in terms of three descriptors.

Where,

[Ajli] S’,T’,U’ = [HOVIRoadway]sl....,SkTl,...,Tk ul,...,uk

S’ symbolizes spatial dimensions--HOV links Sl,...,S,, SP+l can be whether HOV lane is

separated and Sk can be the number of HOV lanes in this example

T’ symbolizes temporal dimensions--times of HOV lane operation Tl,...,Tk,

U’ symbolizes user dimensions--vehicle occupancy thresholds at different times of operation
ul,...,uk.

For the ATMIS example, this specification is:

[Ajli] S’,T’,U’ = { ATMISIRoadway]Sl....,skTi,...,TkUI,...,Uk

Where,

Sl,..., Sk = network links where ATMIS is implemented,

TI,...,Tk = times when real-time information is available,
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Ul,...,UI< = traveler decisions: equipped with advanced traveler information device or unequipped.

Notice that for each [Ajli] s’,T’,U’ there will be n cases denoted by [Ajli], s’,T’,U’.  NOW

define performance clusters,

Y,= {Yl,  Y29 Y3,...,  yql

For example,

Y,= {congestion, air quality, safety, accessibility,...}

The next level is,

yrlq= {Yll19  Y112, Y113,..., Y1ls

Y211,  Y212, Y213,...,  Y2jq

Yrll,  Yrl23  Yrl39-.., YrlqI

For example,

Yr/q = { Person-delaylcongestion, Carbon-MonoxidelAir Quality, . . .

travel timelCongestion,  OzonelAir Quality,...}

Further,

[Yrl,] S’,T’JJ’ = [Person-delaylCongestion]sl,...,skTI~...~TkUI~...~Uk

Where,
S’ symbolizes spatial dimensions--links Sl,..., Sk where person-delay was measured/estimated in

the historical case,
T’ symbolizes temporal dimensions--times of day Tl,...,Tk when delay was

measured/estimated,

U’ symbolizes user dimensions--delay disaggregated by HOV eligible and non-eligible Ul,. . . ,Uk.

For the ATMIS example, this specification is:
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[Yrl,] S’,T’,U’ = [Person-delaylCongestion]si,...,skTi~...~TkUl~...~Uk

Where,

Sl,..., Sk = Person-delay on network links where real-time travel information is disseminated,

Tl,...,Tk = Person-delay during peak period/off-peak period incidents,

Ul,...,Uk = Person-delay for ATIS equipped and unequipped travelers.

The n cases are denoted by: [Yrlq]n  s’,T’JJ

The environment, E,,, is the context where actions are implemented and system

performance impacts estimated and/or measured. That is, it defines more generally where and
when the action was implemented and who did it impact? The environment is a filter that increases
in its stringency as illustrated below:
. Acceptable location where the historical case was implemented may vary from the country

(e.g., USA) to the State (e.g., California) on to the particular city where the current will be
implemented.

. Acceptable time when the historical case was implemented may vary from no time
constraint to the very recent (e.g., cases implemented within the past few years) to.

. Acceptable population density may have increasingly tighter bounds relative to the current
case.

Other information stored with each case is as follows:

. Case description (C,)

. Modeling intensity of study (M,) (Scale: O=low . . . l=High)

. Data Source (S,) (measured or estimated through model)

. Data Validity (V,) (Scale: O=invalid...l=valid)

. Quality of study (Qn) (Scale: O=bad... l=good)

. Case knowledge (1s) (success/failure, mistakes, community reactions to action, lessons

learnt)
. Case prescriptions (P’,)

The following prescriptions could be stored with specific cases:

+ The HOV lane implemented in location X was not effective in reducing traffic
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congestion due to lack of enforcement, therefore, consider allocating sufficient
resources for HOV enforcement.

+ The ATMIS implemented in area X was not effective in reducing traffic congestion

because community opposition to increased neighborhood traffic rendered surplus
capacity on alternate routes unusable, therefore, do not plan on using such surplus
capacity for route diversions.

If the retrieved cases contain such prescriptions, then users can examine them. If multiple
(retrieved) historical cases show similar patterns, then stronger recommendations can be
made. Ultimately, PLANiTS  CBR will provide a synthesis of multiple retrieved prescriptions.

Relationships between variables
We may have knowledge of important relationships that hold for cases. Relationships can

be of the following type (Kanafani, Khattak and Dahlgren 1994):
. R, Theoretical causal relationship, e.g., higher modal travel costs reduce the possibility of

its use or greater number of workers in a household cause more trips.
. R, Theoretical a-causal relationship, e.g., technology X dominates technology Y
. R, Observed (empirical) relationship (may be theoretical or unexplained)

The causal relationships that are present in the planning vector are:

[Yrl& S’,T’JJ’ R, { [Ajli], S’,T’,U’ [Ea,y]n S’,T’,U’ }

In words, this implies that when an action (HOV lane) is implemented in an environment (area), it
can theoretically cause certain impacts (reduction in person-delay); noting that the three elements
are defined in terms of their spatial, temporal and user dimensions. Replacing R, with R, would

mean that the relationship(s) also holds empirically. The causal relationships reflect a-priori
knowledge about the important relationships. Although such knowledge may be limited, it is
needed for matching at the descriptor level, as explained below.

Similarity Measures
Similarity is a continuum that can vary from a clone to completely dissimilar. Importantly,

similarity depends on the frame of reference. For example, at one level all humans are similar and
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at another everyone is unique. Similarity comes from sharing certain attributes and behaviors while
the dissimilarity comes from differences across attributes and behaviors. For case-based reasoning,
the degree of similarity between current and historical cases and the relative importance of the
planning vector descriptors are relevant.

At the simplest level, a historical case is similar to the current case when it exactly matches
the current case at the specified cluster, sub-cluster or descriptor level (Table 1). One can examine
the presence or absence of planning vector elements and/or their descriptors to determine similarity.

For the current case, PLANiTS users specify the actions [Ajli], s’, T’, U’ and the environment

[E,,], s’, T’, U’ and define the desired performance measures [Y,I,], s’, T’, U’. The current case can

then be compared with each historical case. If the historical case, satisfies certain conditions, then it
is retrieved and presented. Table 2 presents a systematic way to examine various possibilities for
matching.

At the cluster level, one can match Ai; for example, present all historical cases that relate to

highway actions; or match Y,, for example, present all cases that relate to traffic congestion.

Matching both Ai and Y, may retrieve highway cases that must provide information on traffic

congestion. Given Ai and Y,, one can also match the environment filter, for example present all

cases that occurred within a region and a time period and relate to highways with traffic congestion
as the performance measure. Similarly, cases can be matched at the sub-cluster level with increased
stringency. Matching Ajti may, for example, retrieve all HOV lane cases whereas, YrI, may

retrieve all cases that have the person-delay as criteria. The environment filter can increase
stringency as shown in the Table. Finally, at the descriptor level, only cases that match exactly on
spatial, temporal and user dimensions are retrieved. At this level, the retrieved case must contain
the important (causal) dimensions for the action and environment, specified in the current case, as
well as the performance measure at the disaggregate level specified by the participants, e.g.,
person-delay at such and such location and time of day, incurred by certain types of users.

With this structure, the aggregation of performance measures can occur simply

(aggregation is needed to get an overall estimate of the impacts). For example, if [Yrlq]n s’,T’J’

means delay (Y,) given congestion cluster (q), for a historical case n, on links (s), during peak

periods (t) for HOV eligible users (u), then the total person-delay can be obtained by aggregating:

Total delay = c si,...+%~Ti,...,Tk c ul?& [Y&J,

When the variables being matched are continuous, e.g., length of a facility, then exact
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matches will be unlikely. Similarity can be operationalized in such a situation by examining the
distance between the values of descriptors (and then specifying the thresholds/limits of
acceptability). One measure of distance between the value of a current case descriptor and stored
case descriptor can be written in a non-dimensional form as follows:

and

DA = I[Ajliln ‘k - [A& ‘k I !I [Ajli], 'k I + I [Ajli], 'k I

DE = I[Ea,yln ‘k - [E,ylc ‘k I 1 I CE,yln ‘k I + I CE,ylc ‘k I

Where, DA, DE= Distance between the values of the current and stored cases on the spatial

descriptor. These distances can be similarly calculated for the temporal and spatial descriptors.
Another type of similarity relates to relative dimensions. Such similarity is manifested when

the proportions between two cases are similar (however, their actual dimensions are different).
Cases are judged similar to the current case if the ratios of their respective descriptors are (nearly)
constant. That is, whether the following condition is satisfied,

This implies that the historical case is proportionally similar to the current case in terms of
its physical (spatial) dimensions. The historical case can be judged similar if it is a dimensionally
smaller or larger replica of the current case. The same logic can be extended to temporal and user
dimensions.

Table 3 shows the use of similarity measures to compute scores when descriptor
importance values are known. The objective is to select the closest historical case and use its Y,I,

value (person-delay) appropriately aggregated to predict the impacts for the current case. Assume
that there are n cases in the computer memory that are candidates for matching at the descriptor
level and that the importance of action and environment descriptors in influencing person-delay is
known. To estimate the “Similarity Index” scores for each of the n cases, we compute the degree
of match between the current and historical case and multiply it by the importance of the descriptor.
We sum the scores and normalize the answer by the sum of importance ratings. Then select the
case with the highest score. It is important to keep in mind that the matching operations can vary.
Other more complicated similarity measures can be formulated, however, at this point our purpose
is to identify this as an area of future research. Also, there is a need to develop importance criteria
based on theory and empirical evidence.
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IMPLEMENTATION OF CBR IN PLANiTS
In the PLANiTS prototype, users define their current case that consists of actions,

environment and performance measures in terms of spatial, temporal and user dimensions. Then
participants can begin using the case-based reasoner (other options include structured models and
expert systems). Users can browse through all available cases by opening an information window
about the selected case. Currently, the information that appears includes, a text description of the
case (C,), the planning vector elements and M,, Sn, V,, Qn, I’n, P’,.

The participants can adjust the degree of matching stringency for each element of the
planning vector. In the prototype, participants can choose three levels of stringency: low, medium
and high corresponding to the cluster, sub-cluster and descriptor level matching respectively. The
cases are reexamined each time the stringency is adjusted and only the matching cases appear in the
list. Figure 2 presents a view of the main CBR window in PLANiTS. Choosing to match action
will cause the reasoner to limit cases where, for low fit, the action cluster must match, for medium
fit, an HOV or ATMIS case must match and for high fit, an HOV case must match vehicle
occupancy level and number of HOV lanes, while an ATMIS case must match in-vehicle or
roadside sign parameter.

Choosing to use the environment filter limits cases based on geographic location and
temporal dimensions. Low fit matches all cases in the US (given that the current case is always in
the San Francisco Bay Area), medium fit matches recent cases in the State (cases in California that
are no more than ten years old), while high fit matches very recent cases in close vicinity (cases in
the San Francisco Bay Area, that are no more than a couple years old).

Choosing to match performance measures causes PLANiTS to limit cases to those which,
for low fit, match the primary category of the measure of performance (e.g., congestion). A
medium fit limits cases to those that match the sub-cluster level (person-delay). A high fit limits
cases to person-delay on specific links and at certain times.

Following is a description of how cases can be selected for further processing and
manipulation:

Rank
The historical cases will be ranked in terms of their similarity with the current case. The

rank function can sort historical cases based on aggregate score. That is, case summaries are
ordered according to a Similarity Index, which can be based simply on the number of matched
descriptors or a combination of the degree of match and importance weights attached to action and
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environment descriptors.

Analyze
The analyze function allows participants to perform statistical operations on similar cases,

such as averaging and summation. The analyzer combines data from the historical cases.
Typically, confidence in a result increases when several cases point in the same direction and vice

versa. Case similarity analysis uses small sample statistics (x2, t- and F-distribution) to analyze

results. The result of this analysis (e.g., performance measure values) can be presented using
descriptive statistics such as the number of very similar cases.

The analyzer can be particularly useful when predictions are needed. The predictions may
be relatively straight forward when the results from cases are equivalent; if not then, modification
of the historical cases may be considered. For example, if the congestion impacts of a three-person
per vehicle HOV lane are needed, while the similar historical cases relate to two and four persons
per vehicle HOV lanes, then the analyzer may simply interpolate to predict performance measures
for the current case (this of course assumes a causal model where the key factor influencing the
performance measure is the occupancy threshold).

Resolve
It is useful to resolve differences between the historical cases and the current case, if

possible. When comparing the current case to historical cases, several possibilities may arise. A
descriptor data item may be absent in the historical case but present in the current case or present in
the historical case but the value seems abnormal. In the first instance, users can be asked to: (i) find
a proxy in the historical case as a substitute, (ii) include the data item by assumption, (iii) ignore
the historical case altogether (iv) warn the users regarding the absence (particularly if important
data items are missing in the historical case). In the second instance, a plausible explanation would
be needed. If such an explanation cannot be found, then the confidence in the comparison would
be low and either a warning to this effect may be issued or the historical case can be ignored
altogether.

Advise
The prescriptive reasoning mechanism synthesizes evidence from historical cases, e.g.,

whether an action has potential for negative impacts such as igniting community conflicts, creating
congestion elsewhere, or falling much short of expectations. The mechanism warns against
potential problems and sensitizes participants to unexpected outcomes.
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At the simplest level, the advisor examines the number of successful and unsuccessful
similar cases. If successful similar cases (i.e., cases where the performance measures of interest
responded favorably to the action) exceed the unsuccessful cases, then the mechanism can infer
that the action has a higher possibility of success and recommend it.

Compare and Remove
The compare function allows comparison of the current case (i.e., participant specified

planning vector values of the descriptors) with the selected historical case(s) in a Table. The cases
are compared in terms of their action and environment descriptors. The performance data (present
only in the historical case but unknown for the current case) can also be viewed.

The remove function will allow the removal of any selected case that the user feels is not
applicable (the case is removed from the list of similar cases but not permanently from the
computer memory).

Accept
After participants choose particular levels of stringency and are satisfied with the similarity

of specific cases, they can accept the performance measure estimates. This means that the case
performance measure outcomes for the historical cases are averaged and saved as the evaluation of
the current performance measure. This value can be compared with structured modeling estimates
and reviewed during future deliberation on impacts.

Assimilate
New cases are acquired as information from studies, field operational tests and

implementations of technologies become available. The new cases are stored in the memory in
accordance with the PLANiTS  case base structure.

LIMITATIONS
An important limitation of CBR in transportation planning is that no two cases are exactly

similar. As we have seen, judging similarity is often difficult. Further, if two cases are judged
similar enough, it is likely that there will be wide variability in the performance of cases when they
are used to obtain insights for the current case. The variability can be due to errors in measurement,
differences in model types used for evaluation and their specifications, differences in contexts not
captured in the analysis and differences in researchers’ and users’ judgements across historical
cases. There are no easy procedures that deal with such issues. We recognize the issue of variation
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in apparently similar cases and hope to develop methods that distinguish between cases with

increasing accuracy.

SUMMARY
To support transportation planning processes, case-based reasoning can be used along with

structured models, semi-structured expert systems and unstructured electronic support for human
interactions. In this paper, we develop a methodology to represent and match similar past cases.
We have structured case representation in terms of action, performance measure and environment
clusters, sub-clusters and descriptors. The main functions include matching, ranking, analyzing,
comparing and assimilating. Given current case specifications, the matcher provides a listing of
similar cases by locating them in the case-base. Participants can match with increasing levels of
stringency. A ranker can rank similar cases in terms of their relative similarity to the current case.
An analyzer provides statistical analysis tools for predictions of performance measures and an
advisor compiles evidence from several historical cases. After an action is implemented and results
on its performance become available, an assimilator acquires and stores the information for future
use.

Developing the PLANiTS case-based reasoning further is challenging. The areas that need
development include causal models and similarity analysis. Furthermore, besides HOV lanes and
ATMIS, many more actions need to be considered. Similarly, a comprehensive set of evaluation
criteria needs to be examined.

Full development is ambitious requiring many more years, However, when fully
developed, CBR will likely enhance a participants’ creativity in exploring innovative new
technology solutions such as ITS by providing information on how other
technologies/transportation improvement actions have performed.
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Figure 1. PLANiTS components. (Source: Kanafani, Khattak and Dahlgren 1994)
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Figure 2. The Case-Based Reasoner.



Table 1. Cases matched according the planning vector elements: Descriptor level (hypothetical data).

Current
Case

Historical
Case 1

Historical
Case 2

Historical
Case 3

Historical
Case n

T-
T
T
T
I

Actions [AIli], s, T, U

Number of Time of
HOV lanes operation

(peak/all day)

1 peak only

occupancy
threshold

2+

Environment [E&, s, T, U

Geographic area Year Urban Area size
(Match on same implemented. (Match on +/-
State) (Match on 50%)

1990+)

I-80 Bay Area 1996 (proposed) 6 Million

1 peak only
Match Match

2 peak only
Not Match Match

2+
Match

4+
Not Match

LA
Match

Chicago
Not Match

1991
Match

1989
Not Match

8 Million
Match

6 Million
Match

1
Match

All day
Not Match

Buses only
Not Match

Orlando
Not Match

1984
Not Match

2 Million
Not Match II

1
Match

All day
Not Match

Buses only
Not Match

Seattle
Not Match

1987
Not Match

1 Million
Not Match

.

Notes:
Based on number of matches Case 1 is the closest to the current case



Table 2. Examples of case-based reasoning at the three levels

Actions

~~Zl~n~ [Ai]
Ex: All highway cases

Sub-Cluster
Level

[Ajd
Ex: All HOV lane cases

Matching

Performance measure Environment

Wrl [E, J s, T, U
Ex: All cases related to Ex:’ All cases in region X1 that occurred in Y1
congestion years and relate to urban area size 2 Z1

[Yqlrl
Ex: All cases related to person

EEa,,l s, T, u
Ex: All cases in region X1 -X2 that occurred in

delay Y1 - Y2 years and relate to urban area size 2
Z1 and I 22

Descriptor
Level
Matching

[Ajli] s, T* U Wqlrl s, T, u B,,l s, T, u
Ex: All HOV lane cases with Ex: Person-delay cases Ex: All cases in region X1 - (X2 + X3) that
s1 (number) HOV lanes, tl (24) disaggregated by links (s), occurred in Yl - (Y2 + Y3) years and relate to
hour operation and user times of day (t) and occupancy urban area size 2 Z1 and I Z3 where 22 > 23
occupancy threshold u1 levels (u)



Table 3. Calculation of Similarity Index scores

Actions/ Actions/ Actions/ Environment/ Environment/ Environment/
spatial temporal user spatial temporal user
descriptors descriptors descriptors descriptors ] descriptors descriptors

Current case [A&z Sk [AjdcTk [Ajdc”k [Ea,ylcSk [Ea,ylcTk [Ea&‘k.-.I
Historical case [Ajli]nsk
n

[Ea,ylnSk [&t,ylnTk [Ea,ylnUk

HOV example No. of HOV Time of occupancy Geographic Year Urban area size
lanes Operation threshold location implemented

Match Criteria Uk - Wa,,Jn  ‘k -
M,=

I[Ajdn ‘k - I[Ajdn Tk - I[Ajdn @a,,l. ‘k - 1 13a,yln Tk -
[A& ‘k 1 [A& Tk I [A& ‘k I DS,,lc ‘k 1 I&,& Tk 1 [Ea,ylc ‘k 1

Importance
I , =

[Ijlil'k [IjlilTk [Ijlil”k [I,,,] ‘k [Ia,ylTk [Ia,ylUk

Operations:
Similarity Index = &=I ,... x M, I,/ &=t ,,., X I,

Notes:
Other match criteria are possible, e.g., I[Ajli]n Sk - [Ajli], Sk I / {I [Ajli]n Sk I + l[Ajli]c  Sk I ) instead Of I[Ajli]n Sk - [Ajli], ‘k I




