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ABSTRACT OF THE DISSERTATION

Understanding Deleterious Variation

in Complex Populations

by

Bernard Youngsoo Kim
Doctor of Philosophy in Biology
University of California, Los Angeles, 2018

Professor Kirk Edward Lohmueller, Chair

Complex population demography can have subtle yet significant impacts on the genetic
variation of populations. Furthermore, complex demography can subtly affect natural selection
and therefore shapes the distribution of deleterious genetic variation. In my dissertation, | utilize
a variety of computational tools to model the impact of deleterious variation in complex
populations. In the first chapter, | investigated why among all human populations East Asians
have the most Neanderthal ancestry. | found that multiple interbreeding events between
Neanderthals and East Asians are required to explain the data, revising current models of
human history. In the second chapter, | developed new computational tools for estimating the
distribution of fithess effects using large datasets of genetic variants and estimated the amount
of selection on amino acid changing mutations in humans. Here | found fewer strongly
deleterious mutations compared to previous smaller studies, suggesting that neutral forces may
play a greater role in human evolution than previously appreciated. In Chapter 3, | investigated

the dynamics of deleterious genetic variation in hybrid populations using simulations and found



that differences in standing deleterious variation between parent populations can significantly
impact the evolution of hybrids. It is therefore essential that null models of hybrid evolution
consider the effects of deleterious variation before invoking processes such as hybrid

incompatibility or adaptive introgression to explain unusual patterns of genetic variation.



The dissertation of Bernard Youngsoo Kim is approved.
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John P. Novembre

Kirk Edward Lohmueller, Committee Chair
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CHAPTER 1:

SELECTION AND REDUCED POPULATION SIZE CANNOT EXPLAIN HIGHER AMOUNTS

OF NEANDERTAL ANCESTRY IN EAST ASIAN THAN IN EUROPEAN POPULATIONS



REPORT

Selection and Reduced Population Size Cannot Explain
Higher Amounts of Neandertal Ancestry in East Asian
than in European Human Populations

Bernard Y. Kim! and Kirk E. Lohmueller’.2.*

It has been hypothesized that the greater proportion of Neandertal ancestry in East Asians than in Europeans is due to the fact that
purifying selection is less effective at removing weakly deleterious Neandertal alleles from East Asian populations. Using simulations
of a broad range of models of selection and demography, we have shown that this hypothesis cannot account for the higher proportion
of Neandertal ancestry in East Asians than in Europeans. Instead, more complex demographic scenarios, most likely involving multiple

pulses of Neandertal admixture, are required to explain the data.

Initial genomic studies found Neandertal ancestry in non-
African populations, suggesting that some ancestral
admixture occurred between Neandertals and the ances-
tors of modern Eurasian populations.”” One proposed
explanation for this observation is that there was one pulse
of Neandertal admixture in the Levant before humans
migrated further into Europe and Asia.>* However, more
recent genomic studies” ~ show that there are higher levels
of Neandertal ancestry in East Asian populations than
in Europeans. Initially, such a finding would appear to
contradict the one-pulse admixture model. Additional
pulses of Neandertal admixture into East Asian popula-
tions would be required to explain the increased Nean-
dertal ancestry in East Asian populations.”®

Recently, Sankararaman et al.” proposed a provocative
hypothesis that could potentially rescue the one-pulse
admixture model. They hypothesized that Neandertal al-
leles were weakly deleterious in humans. Because current
evidence suggests that East Asian populations experienced
stronger historical bottlenecks and had smaller effective
population sizes,'*'* the ability of purifying selection to
remove weakly deleterious alleles from the population
might have been less effective in East Asians than in Euro-
peans.® The reason for this is that in the smaller East Asian
population, weakly deleterious alleles might have drifted
to higher frequencies. In the larger European population,
however, the effect of drift would be smaller. Thus, there
could have been a single pulse of Neandertal admixture
in the ancestral Eurasian population, but because Euro-
peans were better able than East Asians to remove weakly
deleterious Neandertal alleles, Neandertal ancestry appears
to have increased in East Asians.

Here, we used forward-in-time Wright-Fisher simula-
tions to explicitly test this hypothesis (Figure S1). To do
this, we wrote our own custom Python simulations, called
“Forward_Neanderthal” (see Web Resources). We simu-
lated 1,000,000 ancestry-informative sites as independent

loci, all of which received a single pulse of Neandertal
admixture at f,amix generations ago. However, each of
these ancestry-informative sites could biologically corre-
spond to a larger segment of Neandertal ancestry.

We assumed that a single admixture event between hu-
mans and Neandertals occurred t,qmix = 1,900 generations
ago. This time corresponds to 47,500 years ago if we as-
sume 25 years/generation. We chose this time to reflect a
plausible time at which admixture could have occurred be-
tween Neandertals and humans.”'® At each locus, at the
start of the simulation (at time f,qm,ix), we assumed that a
proportion (f) of the chromosomes contained Neandertal
ancestry. In practice, each of the 1,000,000 loci began the
simulation with the Neandertal ancestry at frequency f.
We examined f = {0.02, 0.04}, corresponding to plausible
amounts of Neandertal admixture in human popula-
tions.”* Although we note that there might have been a
distribution of values of initial Neandertal ancestry across
the genome, this variability should not affect our results
unless the initial starting frequency of Neandertal ancestry
were to differ between European and East Asian popula-
tions. Given that our models assume a single pulse of Nean-
dertal admixture in the ancestral Eurasian population,
which itself is randomly mating, there is little reason to
conclude that fshould vary between the populations under
the models we are testing.

We then allowed the populations to evolve to the pre-
sent day under demographic models with parameters esti-
mated from data (see below). We did this by adjusting the
frequencies of the alleles deterministically according to the
standard selection equations (see below) and by binomial
sampling to model genetic drift. The total number of chro-
mosomes drawn to form the next generation varied over
time to reflect the changes in population size over time.
At the end of the simulation, we examined the remaining
amount of Neandertal ancestry in each population. In
order to have a fair basis of comparison to Sankararaman

!Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; “Interdepartmental Program in
Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA

*Correspondence: klohmueller@ucla.edu

http://dx.doi.org/10.1016/{.ajhg.2014.12.029. ©2015 by The American Society of Human Genetics. All rights reserved.
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et al.,” for each site we sampled the same number of chro-
mosomes from our simulated populations as in the 1000
Genomes Project’” CEU (Utah residents with ancestry
from northern and western Europe from the CEPH collec-
tion; 174 chromosomes) and CHB (Han Chinese in Beijing,
China; 190 chromosomes) populations. Under the as-
sumption of independence and exchangeability among
sites, a single haplotype can be modeled as a series of Ber-
noulli draws with success p;...px over the k sites in the
genome (p; is the frequency in the sample of the Nean-
dertal allele at the i*" site). Therefore, the expected Nean-
dertal ancestry per haplotype is equivalent to the mean
frequency of Neandertal alleles (p;...px) in the sample. In
other words, E[Neandertal] = (l/k)Zf_lp,-. Thus, we com-
puted the average Neandertal ancestry per genome (p.;)
by averaging the per-site frequencies of Neandertal alleles
in the sample over all 1,000,000 sites. Our approach is
also analogous to that used in Sankararaman et al.,” except
that we assume that Neandertal ancestry is known rather
than inferred (see below for further discussion) and that
all sites are independent. We calculated the ratio of Nean-
dertal ancestry in the East Asian population to that in the
European population (R) by dividing the average ancestry
in the East Asian population by the average in the Euro-
pean population (R = pan_asx / pan_cur). We also recorded
the proportion of sites still polymorphic for Neandertal
ancestry in the sample (py,,), as well as the frequency of
Neandertal alleles only at those sites where the Neandertal
alleles were still segregating (pseg). We assessed simulation
variance by replicating the entire simulation process for a
given model 20 times. 95% confidence intervals (Cls)
were calculated as CI = p,;, +1.96¢, where p,;, and o denote
the mean and SD, respectively, of Neandertal ancestry per
individual over the 20 simulation replicates.

Because the effects that Neandertal alleles have on hu-
man fitness are unclear, we allowed Neandertal alleles to
have a range of effects from neutral to strongly deleterious.
We defined the relative fitness of individuals heterozygous
for Neandertal and human ancestry as 1 + hs and the
fitness of individuals homozygous for Neandertal ancestry
as 1 + s (s is the selection coefficient, and & is the domi-
nance coefficient). First, we used scalar values of s = {0,
-10"%, —-10"%, —10 3%, —10"?}. Additionally, we assumed
that the selection coefficients (s) of the Neandertal alleles
were drawn from a negative gamma distribution with pa-
rameters inferred from nonsynonymous SNPs by Boyko
etal.'® In particular, for the population-scaled selection co-
efficient, we used a gamma distribution that had a shape
parameter (¢ = 0.184) and a scale parameter (8 = 8,200).
Because this gamma distribution describes the distribution
of 2Ns, we divided the value of 2Ns by 2 x 25,636 (the
value of N used in Boyko et al.) to obtain the distribution
of the selection coefficient, s. The parameters of this
gamma distribution were estimated for new nonsynony-
mous mutations and might not necessarily reflect the
distribution of fitness effects for Neandertal alleles in hu-
mans. However, given the extremely limited information

regarding the distribution of fitness effects of Neandertal
alleles in humans, this gamma distribution is a reasonable
first approximation because it includes a mixture of nearly
neutral, weakly deleterious, and strongly deleterious
alleles.

We investigated multiple models of dominance (k). We
considered the standard models of codominance (h =
0.5) and recessive effects (h = 0). We also examined models
of underdominance (h = 2) and overdominance, where in-
dividuals who are heterozygous for Neandertal ancestry
have the lowest and highest fitnesses, respectively. Some
special care was needed when we used the gamma distribu-
tion of selective effects. The value of s from the Boyko
et al.'® gamma distribution refers to the fitness effect of
the heterozygous genotype, and 2s refers to the fitness
of the homozygous genotype. In our simulations, s refers
to the fitness effect of the homozygous genotype. Conse-
quently, for simulations where h = 0.5 and h = 0, we multi-
plied the value of s obtained from the gamma distribution
by 2.

We examined several different demographic models that
have been fit to the East Asian and European populations
(Tables S1 and S2). We first used the bottleneck models fit
by Keinan et al.'* (Table $1). The Keinan et al. bottleneck
model assumes an ancestral human population size of N
that then experienced two different bottlenecks, one of
which was at approximately the same time in the Euro-
pean and East Asian populations (about 4,000 generations
ago). However, this first bottleneck was older than the
pulse of Neandertal admixture (f,4mix = 1,900 generations
ago). Because this earlier bottleneck was completed prior to
the start of the simulations, we did not include it in the
model. Rather, we assumed that the population remained
at a constant size (N) until 3 generations ago, when a
bottleneck occurred. The duration of the bottleneck is
described by tpen, and the population size during the
bottleneck is Ny individuals. After the bottleneck, the pop-
ulation recovered to N individuals and remained that size
until the simulation finished. Note that the Keinan
et al."’ model considers the European and East Asian pop-
ulations separately from each other. As such, we also simu-
lated the two populations separately (Figure S1).

The degree to which the different models matched the
observed proportion of Neandertal ancestry in either pop-
ulation was quite variable (Figure 1A). In models where the
observed present-day Neandertal ancestry was approxi-
mately compatible with the amounts observed in empir-
ical data (between 0.5% and 5%), the ratio of Neandertal
ancestry in East Asians to Neandertal ancestry in Euro-
peans (R) was close to 1 (Figure 1B). It never matched the
R values estimated from empirical data® (R = 1.14-1.31).
This same result held regardless of the dominance coeffi-
cient, strength of selection, or initial proportion of Nean-
dertal ancestry in the ancestral population (f = 4%); Figures
S2 and S3).

In order to investigate the sensitivity of our results to
the precise demographic model assumed, we performed

The American Journal of Human Genetics 96, 454-461, March 5, 2015
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Predicted Neandertal Ancestry in East Asian and European Populations under the Keinan et al. Demographic Model when

Each column depicts results for a different dominance coefficient (k). I' denotes a gamma distribution of fitness effects. Error bars denote

approximate 95% confidence intervals on our simulations.

(A) The fraction of Neandertal ancestry in East Asian (ASN) and European (EUR) populations.

(B) Ratio of Neandertal ancestry in East Asians to Neandertal ancestry in Europeans (R). Horizontal lines indicate the ratios of mean
Neandertal ancestry observed in empirical comparisons of an East Asian and a European population.” Models where the final proportion
of Neandertal ancestry is concordant with the empirical data (between 0.5% and 5% in A) are colored black. Otherwise, they are colored
gray. Note that across these models, the maximum value of R is only slightly higher than 1.0. However, the lowest observed value of R in
the empirical data’ (in a comparison of IBS [Iberian population in Spain] and CHS [Southern Han Chinese]) is 1.14. Thus, demography
differences combined with purifying selection cannot generate an excess amount of Neandertal ancestry in East Asians relative to

Europeans as large as that seen in the empirical data.

additional simulations where we varied some of the bottle-
neck parameters. First, we investigated whether changing
the duration of the bottleneck (fze,) would affect our
results. In the initial model, we assumed that tz, = 100
generations. We conducted additional simulations with
tgien = SO generations and t)., = 200 generations. Impor-
tantly, in both cases, we kept the overall severity of the
bottleneck (F = tgen, / 2Np) the same as in the original
Keinan et al. study.'’ In order to do this, we changed the
number of individuals in the bottleneck (Table S1). We
found that the length of the bottleneck had little impact
on our results (Figures S4 and S5). For the models where
the observed present-day Neandertal ancestry was approx-
imately similar to the amount observed in empirical data
(between 0.5% and 5%), the ratio of Neandertal ancestry
in East Asians to Neandertal ancestry in Europeans (R) re-
mained close to 1 and did not match the R values estimated
from empirical data,” regardless of the dominance coeffi-
cient or strength of selection (Figures 54 and S5).

Second, we wanted to determine whether our results
would be qualitatively different if the bottleneck in East

Asia was actually more severe than estimated by Keinan
et al.'' We investigated models with bottlenecks 2- and
5-fold more severe than that estimated by Keinan et al.'’
Here, we kept the length of the bottleneck fixed at 100 gen-
erations (Table S1). Importantly, we did not change the
severity of the bottleneck in the European population;
we kept it at the original severity as estimated by Keinan
et al. When Neandertal sites were weakly deleterious,
nearly neutral, or recessive, increasing the severity of the
bottleneck had little effect on our results (Figures S6 and
$7). These models predicted R values close to 1, which is
too low to be compatible with the observed ratio of East
Asian to European Neandertal ancestry.” When h > 0.5
and s < —0.001, some R values were in the range of, or
even greater than, those seen in the empirical data (Figures
$6 and S7). However, the predicted proportion of Nean-
dertal ancestry in modern humans was too low in these
models (<0.5%; Figures S6A and S7A) to be compatible
with the observed data (>1%).” Thus, although the more
severe bottleneck might allow for some strongly selected
Neandertal sites to drift to higher frequency in East Asians

The American Journal of Human Genetics 96, 454-461, March 5, 2015
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(Left) The average Neandertal allele fre-
quency at the end of the simulation given
that the site segregates for the Neandertal
and human allele (py.). Note that here,
the average allele frequency in East Asia is
higher than that seen in Europe as a result
of the greater effects of genetic drift in East
Asia than in Europe.

(Center) The percentage of sites (out of a
total of 1,000,000 sites) where a Nean-
dertal allele and a human allele are both
still segregating at the end of the simula-
tion (p,.,). Note that fewer sites are segre-
gating in the East Asian population
because more were lost by genetic drift in
this population.
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(Right) The mean Neandertal ancestry per individual (p,)) is the product of both the mean frequency of alleles given that they are segre-
gating and the percentage of sites that are segregating. Note that these two effects cancel each other out. These results suggest that East
Asian and European individuals will have similar amounts of Neandertal ancestry under this model of demography and selection.

than in Europeans, such a model does not fit all aspects of
the data. In summary, even if the East Asian bottleneck
was 2- to 5-fold more severe than estimated, if we assume
that the severity of the bottleneck in Europe was accurately
estimated, purifying selection combined with the greater
effect of genetic drift in the East Asian population cannot
explain the higher proportion of Neandertal ancestry in
East Asians than in Europeans.

Our findings suggest that reduced efficacy of purifying
selection, due to greater genetic drift, in East Asians relative
to Europeans cannot explain the observed increase in the
proportion of Neandertal ancestry in East Asians. The
reason for this is that greater drift in East Asians had two
competing effects on Neandertal ancestry (Figure 2). For
sites where both the Neandertal and human alleles were
segregating at the end of the simulation, the Neandertal al-
leles tended to be at higher frequency in East Asians than
in Europeans (Figure 2; Table S3). However, greater drift
in East Asians also means that Neandertal alleles are lost
from the population at a faster rate. Our simulations pre-
dicted that East Asian populations should have fewer sites
with segregating Neandertal alleles than European popula-
tions (Figure 2; Table S3). These two competing effects of
drift canceled each other out, yielding R values close to 1.
For neutral alleles, this cancellation followed exactly
from the mathematical formulation of the Wright-Fisher
model. The expected value of the frequency of an allele
at initial frequency f does not change after a generation
of genetic drift, regardless of the population size.'?*"

To examine the mechanism of allele-frequency change
with selection, we conducted additional simulations in
which the population was set to the size of the bottlenecks
estimated in Keinan et al.'" We ran these simulations for
100 generations and recorded the average frequency of
the Neandertal alleles at the end of the simulation (which
would correspond to the end of the population bottlenecks
in the full demographic model). For the bottlenecks esti-

mated by Keinan et al.,'" the average Neandertal allele fre-
quencies were essentially the same in both populations
(Figure 3A; Figure S8). The nearly neutral theory predicts
that mutations where —1 < Ns < 0 (according to our
scaling of the relative fitnesses) are nearly neutral and are
primarily affected by drift rather than selection.'*?!%
Thus, Neandertal alleles where s > —0.0018 are predicted
to be nearly neutral and primarily affected by drift in
both populations, suggesting that the analytical predic-
tions for neutral alleles approximately hold here as well.
More strongly deleterious alleles also showed similar fre-
quencies between the two populations, indicating that
the subtle difference in the population size during the
East Asian and European bottlenecks is too small to show
a change in the effect of selection between the two popu-
lations in such a short time period. Because the bottleneck
was estimated to be only slightly more severe in East
Asia, the threshold at which alleles were nearly neutral
was fairly similar between the populations (bottom panel
of Figure 3A).

To examine whether the pattern seen in Figure 3A would
hold with a stronger bottleneck in East Asia, we made the
East Asian population size 5-fold smaller than that esti-
mated by Keinan et al.'' while keeping the European pop-
ulation size the same as originally estimated (Table S1).
Again, nearly neutral alleles (s > —0.0018) were primarily
affected by drift. As such, the Neandertal frequencies in
East Asian and Europeans were predicted to be the same
for the reasons discussed above (Figure 3B; Figure S8).
Only when the selection coefficients for Neandertal alleles
became more deleterious did we see a difference in allele
frequency. When s < —0.0018, we saw that East Asians
had a slightly higher frequency of Neandertal alleles than
did Europeans (Figure 3B). Here, Neandertal alleles were
predicted to be nearly neutral in East Asians but more
affected by selection in Europeans (bottom panel of
Figure 3B). This is the effect that Sankararaman et al.”
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Figure 3. Predicted Mean Neandertal
Allele Frequency at the End of the Popula-
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Ns changes as a function of s.
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102 with s > —0.0018 are nearly neutral (Ns >
—1) in both populations. In (B), when s <
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hypothesized could explain the higher Neandertal
ancestry in East Asians. But, our simulations suggest that
this effect is unlikely to occur in practice because it requires
a stronger bottleneck than that estimated for East Asia and
a selection too strong to be compatible with observed
amounts of Neandertal ancestry (see below).

Next, we wanted to assess whether other demographic
features not included in the Keinan et al.'' bottleneck
model would influence our conclusions. Specifically, the
Keinan et al.'* model does not consider shared ancestry be-
tween the East Asian and European populations, migration
between populations, or recent population growth. Thus,
we performed additional simulations under a different
human demographic model fit to the site-frequency spec-
trum of East Asian, European, and African populations.”
This model jointly considers both the European and East
Asian populations with migration between them and in-
cludes recent exponential population growth in both pop-
ulations. This model also includes an unsampled African
population that exchanges migrants with the European
and East Asian populations. We included the African pop-
ulation because we wanted to investigate whether a higher
migration rate between Africa and Europe than between
Africa and East Asia could increase the values of R. Because
the African population does not start with any Neandertal
ancestry, migrants from Africa would be unlikely to carry
Neandertal ancestry and would thus decrease the overall
proportion of Neandertal ancestry in the population into
which they migrate.

As before, we assumed that the Neandertal admixture
occurred at time t,ymix = 1,900 generations ago. In the
Gravel et al.>® model, this time occurred during the
Eurasian population bottleneck, after the ancestral African
population split from the ancestral Eurasian population.
Thus, we started our simulation by introducing Neandertal

the EUR population are more strongly
selected. Here, f= 2%.

ancestry at f = {0.02, 0.04} into the

ancestral Eurasian population, which

had size Ny,. After t; generations, this
population split into European and East Asian populations
with initial population sizes Ngro and Nasno, respectively,
and growth rates rgyr and rasy, respectively. The probabil-
ities of migration, m, were assumed to be symmetric and
were set to the previously estimated values.”” Migration
was assumed to be conservative, meaning that it does
not change the populations sizes.”* The frequency of the
Neandertal allele in the European population after migra-
tion (frur) Was frur = feur(l — Meur asx — Meur_arr) +
fasn(Meur asn) + farr(Meur arr), Where fyyg is the fre-
quency in the European population before migration.
These populations continued to grow exponentially for t,
generations, at which time the simulation was concluded.
Table S2 shows the parameter values used for these
simulations.

This more complex demographic model?** showed re-
sults similar to those from the Keinan et al.'’ model. The
ratio of Neandertal ancestry in East Asians to Neandertal
ancestry in Europeans (R) remained close to 1 (Figure 4;
Figure S9) for the models where the observed present-day
Neandertal ancestry was approximately similar to that
observed in empirical data (between 0.5% and 5%). Again,
the observed R values estimated from the empirical data
fell outside the range predicted by our models. Impor-
tantly, our implementation of the multi-population demo-
graphic model*® included a higher migration rate between
Africa and Europe than between Africa and East Asia. Thus,
the fact that this model did not yield R values consistent
with the observed data (Figure 4B) suggests that the previ-
ously estimated”” rates of differential migration between
African and non-African populations are insufficient to
dilute the Neandertal ancestry in Europeans in relation
to the Neandertal ancestry East Asians.

Our analyses are predicated on the assumption that the
amount of Neandertal ancestry in present-day East Asia is
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Figure 4. Predicted Neandertal Ancestry in East Asian and European Populations under the Gravel et al. Complex Demographic
Model when f= 2%

Each column depicts results for a different dominance coefficient (k). I denotes a gamma distribution of fitness effects. Error bars denote
approximate 95% confidence intervals on our simulations.

(A) The fraction of Neandertal ancestry in East Asian (ASN) and European (EUR) populations.

(B) Ratio of Neandertal ancestry in East Asians to Neandertal ancestry in Europeans (R). Horizontal lines indicate the ratios of mean
Neandertal ancestry observed in empirical comparisons of an East Asian and a European population.” Models where the final proportion
of Neandertal ancestry is concordant with the empirical data (between 0.5% and 5% in A) are colored black. Otherwise, they are colored
gray. Note that across these models, the maximum value of R is only slightly higher than 1.0. However, the lowest observed value of R in
the empirical data’ (in a comparison of IBS and CHS) is 1.14. Thus, demography differences combined with purifying selection cannot

generate an excess amount of Neandertal ancestry in East Asians relative to Europeans as large as that seen in the empirical data.

truly higher than that in Europe. Our study did not assess
whether there is differential performance of the statistical
approaches to identifying Neandertal ancestry across dif-
ferent human populations. Multiple statistical approa-
ches—including D statistics,”” a conditional-random-field
approach based on multiple summary statistics,” and
methods based on linkage disequilibrium®®>°—all suggest
that East Asians have 15%-30% more Neandertal ancestry
than European populations. These statistical methods
measure different features of the data and have distinct un-
derlying assumptions. Thus, the fact that they provide
concordant results suggests that differential power is un-
likely to explain the higher amount of Neandertal ancestry
in East Asia. However, to better address whether the
increased Neandertal ancestry in East Asia as inferred by
the D statistic could be an artifact of complex demography,
we conducted neutral coalescent simulations”® under the
Gravel et al.>> demographic model, in which we included
zero, one, or two pulses of Neandertal admixture® (Tables
S4 and S5). Importantly, unlike our previous results that
assumed that Neandertal ancestry could be unambigu-
ously identified, the D statistics were applied to simulated

genetic-variation data as done in practice. We found that
higher migration rates between Europe and Africa than be-
tween East Asia and Africa in a model with one pulse of
Neandertal admixture are not sufficient to generate the
observed increase in Neandertal ancestry in East Asian
populations (Table S4).

However, there are two possible ways a simple demo-
graphic model with one pulse of Neandertal admixture
could still explain the patterns seen in the data. First,
Neandertal alleles could have differential fitness effects in
European and East Asian populations (i.e., s is different be-
tween Europeans and East Asians). Second, if all Nean-
dertal sites are co-dominant or under-dominant and tend
to be moderately to strongly deleterious (s < —0.001), R
becomes larger (Figures 1 and 4; Figures S2 and S9 and
Table S3). Yet, as discussed previously, R only matched
the empirical data when the bottleneck in East Asia was
2- to 5-fold more severe than estimated (Figures S6 and
$7). However, for such a model to be compatible with the
amount of Neandertal ancestry observed in human popu-
lations,” the initial admixture proportion (f) would have
to be substantially greater than 10% (Figure 510). Without
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additional support, both of these models seem biologically
less plausible than alternative demographic models.

In sum, our simulations suggest that across a wide range
of biologically realistic models, a single pulse of Neandertal
admixture, combined with the reduced efficacy of purifying
selection against weakly deleterious alleles in East Asians,
cannot explain the R values observed in empirical data.
Instead, more complex demographic scenarios, possibly
including an additional pulse or wave of Neandertal ad-
mixture into East Asian populations, must be invoked.
Such two-pulse models have been shown to fit the ob-
served data®®® better than the single-pulse-with-migration
model,® even when only the genomic regions most likely to
be neutrally evolving are considered.” In our simulations,
across a range of different values for the strength of selec-
tion acting on Neandertal ancestry, a two-pulse model
with realistic admixture proportions®* could generate
the R values observed in the actual data (Figures S11 and
512 and Table S3), suggesting that such a model is one
viable explanation for differential patterns of Neandertal
ancestry between East Asian and European populations.

Supplemental Data

Supplemental Data include 12 figures and S tables and can be
found with this article online at http://dx.doi.org/10.1016/j.
ajhg.2014.12.029.
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Figure S1: Simulation scenario. At time ta.mix=1900 generations ago, a Neanderthal allele starts
at frequency f and changes frequency each generation via selection and drift. Note the
difference in bottleneck severity between the European and East Asian populations. See Tables
S1 and S2 for a description of the parameters used.
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Figure S2: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR)
populations under the Keinan et al."* demographic model when =4%. Each column depicts
results for a different dominance coefficient (h). I denotes a gamma distribution of fitness
effects. Error bars denote approximate 95% confidence intervals on our simulations. (A) The
fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry in East Asians to
Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of mean Neanderthal
ancestry observed in empirical comparisons of an East Asian and a European population’.
Models where the final proportion of Neanderthal ancestry is concordant with the empirical data

(between 0.5-5% in (A)) are colored in black. Otherwise, they are colored gray.
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Figure S3: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR)
populations under the Keinan et al."" demographic model when =4% with overdominance. Error
bars denote approximate 95% confidence intervals on our simulations. (A) The fraction of
Neanderthal ancestry. (B) Ratio of Neanderthal ancestry in East Asians to Neanderthal ancestry
in Europeans (R). Horizontal lines indicate the ratios of mean Neanderthal ancestry observed in
empirical comparisons of an East Asian and a European population’. Models where the final
proportion of Neanderthal ancestry is concordant with the empirical data (between 0.5-5% in
(A\)) are colored in black. Otherwise, they are colored gray.
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populations under the Keinan et al."" demographic model with a shorter bottleneck (tge,=50
generations). The overall severity of the bottleneck (F) was equal to that estimated in Keinan et
al. Here =4%. Each column depicts results for a different dominance coefficient (h). I denotes a
gamma distribution of fitness effects. Error bars denote approximate 95% confidence intervals
on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry
in East Asians to Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of

mean Neanderthal ancestry observed in empirical comparisons of an East Asian and a

European population’. Models where the final proportion of Neanderthal ancestry is concordant
with the empirical data (between 0.5-5% in (A)) are colored in black. Otherwise, they are colored

gray.
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on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry
in East Asians to Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of
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Figure S6: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR)
populations under the Keinan et al."* demographic model where the bottleneck in ASN was 2-
times more severe than that estimated by Keinan et al. The severity of the EUR bottleneck was
as estimated by Keinan et al. Here =4%. Each column depicts results for a different dominance
coefficient (h). I denotes a gamma distribution of fithess effects. Error bars denote approximate
95% confidence intervals on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio
of Neanderthal ancestry in East Asians to Neanderthal ancestry in Europeans (R). Horizontal
lines indicate the ratios of mean Neanderthal ancestry observed in empirical comparisons of an
East Asian and a European population’. Models where the final proportion of Neanderthal
ancestry is concordant with the empirical data (between 0.5-5% in (A)) are colored in black.
Otherwise, they are colored gray.
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Figure S7: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR)
populations under the Keinan et al."* demographic model where the bottleneck in ASN was 5-
times more severe than that estimated by Keinan et al. The severity of the EUR bottleneck was
as estimated by Keinan et al. Here =4%. Each column depicts results for a different dominance
coefficient (h). I denotes a gamma distribution of fithess effects. Error bars denote approximate
95% confidence intervals on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio
of Neanderthal ancestry in East Asians to Neanderthal ancestry in Europeans (R). Horizontal
lines indicate the ratios of mean Neanderthal ancestry observed in empirical comparisons of an
East Asian and a European population’. Models where the final proportion of Neanderthal
ancestry is concordant with the empirical data (between 0.5-5% in (A)) are colored in black.
Otherwise, they are colored gray.
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Figure S8: Predicted mean Neanderthal allele frequency at the end of the population
bottlenecks in East Asia (ASN) and Europe (EUR) for the recessive and underdominant cases
(h=0 and 2, respectively). (Left) Population sizes were set to those inferred in Keinan et al."
(Right) Population size in ASN was assumed to be 5-fold smaller than that estimated in Keinan
et al."" In all cases, constant sized populations were simulated for 100 generations. Here =2%.

17



>

h=0.5

0.03

0.02 -

Fraction of ancestry (o)

o o
o o
o -—
1 1

102 103 10“ 105 0

-102 103 10“ 105

-102 103 104 105

h=0

h=0.5

h=2

1.3

1.2

o 1.1
1.0

0.9-

- == == == .o

- - = = ==

- = -0 &=

-102 10 -10* 0% 0 T

Figure S9: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR)

102 10 -10* 0% 0 T

Selection coefficient (s)

102 10 -10* 0% 0 T

Population
SN

| [

populations under the Gravel et al.?? complex demographic model when f=4%. Each column
depicts results for a different dominance coefficient (h). I denotes a gamma distribution of
fitness effects. Error bars denote approximate 95% confidence intervals on our simulations. (A)
The fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry in East Asians to
Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of mean Neanderthal
ancestry observed in empirical comparisons of an East Asian and a European population’.
Models where the final proportion of Neanderthal ancestry is concordant with the empirical data
(between 0.5-5% in (A)) are colored in black. Otherwise, they are colored gray.
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Figure S10: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR)
populations under the Keinan et al."* demographic model when =10%. Each column depicts
results for a different dominance coefficient (h). I denotes a gamma distribution of fitness
effects. Error bars denote approximate 95% confidence intervals on our simulations. (A) The
fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry in East Asians to
Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of mean Neanderthal
ancestry observed in empirical comparisons of an East Asian and a European population’.
Models where the final proportion of Neanderthal ancestry is concordant with the empirical data
(between 0.5-5% in (A)) are colored in black. Otherwise, they are colored gray.
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Figure S11: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR)
populations under the Gravel et al.?? complex demographic model when =2% with a second
pulse of Neanderthal admixture into East Asia. Specifically, 920 generations ago, the amount of
Neanderthal ancestry at each site in East Asia was increased by 15% of the initial value of f (i.e.
here 0.003 was added to the frequency of Neanderthal alleles in the East Asian population).
Vernot and Akey®?* have estimated that that the second pulse of Neanderthal admixture into
East Asia was about 15% of the initial admixture proportion, concordant with our present
simulation. Each column depicts results for a different dominance coefficient (h). I denotes a
gamma distribution of fitness effects. Error bars denote approximate 95% confidence intervals
on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry
in East Asians to Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of
mean Neanderthal ancestry observed in empirical comparisons of an East Asian and a
European population’. Note that a broad range of selection coefficients provide values of R
compatible with the observed ratio. The model where s=-0.01 predicts R=16. This point was
omitted for plotting purposes.
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Figure S12: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR)
populations under the Gravel et al.?? complex demographic model when f=4% with a second
pulse of Neanderthal admixture into East Asia. Specifically, 920 generations ago, the amount of
Neanderthal ancestry at each site in East Asia was increased by 15% of the initial value of f (i.e.
here 0.006 was added to the frequency of Neanderthal alleles in the East Asian population).
Vernot and Akey®?* have estimated that that the second pulse of Neanderthal admixture into
East Asia was about 15% of the initial admixture proportion, concordant with our present
simulation. Each column depicts results for a different dominance coefficient (h). I denotes a
gamma distribution of fitness effects. Error bars denote approximate 95% confidence intervals
on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry
in East Asians to Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of
mean Neanderthal ancestry observed in empirical comparisons of an East Asian and a
European population’. Note that a broad range of selection coefficients provide values of R
compatible with the observed ratio. The model where s=-0.01 predicts R=16. This point was
omitted for plotting purposes.
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Table S1. Parameters used for the Keinan et al. bottleneck model

Populaton [N | F ts tBlen N5
Parameters inferred in Keinan et al.

ASN 10063 0.123 720 100 407
EUR 10085 0.091 640 100 549
Shorter bottleneck

ASN 10063 0.123 720 50 204
EUR 10085 0.091 640 50 275
Longer bottleneck

ASN 10063 0.123 720 200 814
EUR 10085 0.091 640 200 1098
2-fold more severe bottleneck

ASN 10063 0.246 720 100 275
EUR 10085 0.091 640 100 549
5-fold more severe bottleneck

ASN 10063 0.615 720 100 110
EUR 10085 0.091 640 100 549
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Table S2. Parameters used for the Gravel et al. model

Parameter Value

ty 980

b 920
Narr 14474
Np 1861
Nasno 550
NEeuro 1032
rasn 0.0048
reur 0.0038
MasN_AFR 0.78e-5
MEUR AFR 2.5e-5
MEUR ASN 3.11e-5
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Table S4: Expected D statistics under realistic models of human history assuming 0,1, or
2 pulses of Neanderthal admixture

Model P1 P2 Num P1 Num P2 D SE

No ASN EUR 84987 85221 -0.0014 0.0025

admixture
ASN AFR 90844 90332 -0.0028 0.0023
EUR AFR 90063 89785 -0.0015 0.0024

One pulse ASN EUR 102233 102151 0.0004 0.0022
ASN AFR 91001 109182 0.0908 0.0023
EUR AFR 90798 108897 0.0906 0.0022

Two pulse ASN EUR 106000 101487 0.0218 0.0021
ASN AFR 90837 113021 0.1088 0.0022
EUR AFR 90881 108552 0.0886 0.0022

D statistics were computed from data simulated using ms?® under the demographic model
estimated for human populations in Gravel et al.?? with our own modifications and those
suggested by Vernot and Akey®?*. Specifically, recent population growth, as used in Vernot and
Akey was included in the model. We simulated the three human populations and a Neanderthal
population that split from the human population 400,000 years ago. The Neanderthal population
had a constant size of 1500 individuals. The one pulse model includes a 500-year period of
migration between the ancestral non-African population and Neanderthals. The two-pulse model
includes the same migration as in the one pulse model, except it includes an additional 500
years of migration between the Neanderthal and East Asian populations. Note, we decreased
the human-Neanderthal migration rates by 2 relative to the values given in Vernot and Akey® to
give D statistics more comparable to those observed in actual data. The precise ms commands
for these models are given in Table S5.

The D test was computed as: D=(Num_P1-Num_P2)/(Num_P1+Num_P2). Our simulations
assume that the derived allele can be accurately inferred. As such, we simulated the three
human populations (EUR, AFR, ASN) and a Neanderthal population.

Standard errors were computed using a nonparametric bootstrap of the values shown in the
table. This is appropriate as each site was simulated independently of the others.

The D statistics for all the simulations without any Neanderthal admixture are within 2 standard
errors of 0. Further, the D statistic computed using ASN and EUR under the one pulse model
also is within 2 standard errors of 0. This suggests that a model with one pulse of Neanderthal
admixture cannot explain the higher Neanderthal ancestry in East Asia, even with a higher
migration rate between African and Europe than between Africa and East Asia. The two-pulse
model, however, predicts D statistics significantly >0.
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Table S5: ms commands for neutral coalescent simulations in Table S4

Model

Command

No admixture

ms41-s1-1411110-n42.051984e-01 -n 1 58.002735978 -n 2
70.041039672 -n 3 187.55-eg 0 1 482.46 -eg 0 2 570.18 -eg 0 3 720.23 -em
0240-em0240-em0340-em0340-em0120.7310-em021
0.7310-em 0 1 3 0.228072 -em 0 3 1 0.228072 -em 0 2 3 0.909364 -em 0 3
2 0.909364 -eg 0.006997264 1 0 -eg 0.006997264 2 2.089166e+01 -eg
0.006997264 3 3.006376e+01 -en 0.006997264 1 1.98002736 -en
0.031463748 2 7.774282e-01 -en 0.031463748 3 5.820793e-01 -¢j
5.453352e-02 3 2 -en 5.453352e-02 2 7.774282e-01 -em 5.453352e-02 1 2
4.386 -em 5.453352e-02 2 1 4.386 -ej 8.207934e-02 2 1 -en 8.207934e-02 1
1.98002736 -en 0.20246238 1 1 -ej 9.575923e-01 4 1

One pulse

ms41-s1-1411110-n42.051984e-01-n 1 58.002735978 -n 2
70.041039672 -n 3 187.55 -eg 0 1 482.46 -eg 0 2 570.18 -eg 0 3 720.23 -em
6.635294e-02240-em0340-em0340-em0120.7310-em0 21
0.7310 -em 0 1 3 0.228072 -em 0 3 1 0.228072 -em 0 2 3 0.909364 -em 0 3
2 0.909364 -eg 0.006997264 1 0 -eg 0.006997264 2 2.089166e+01 -eg
0.006997264 3 3.006376e+01 -en 0.006997264 1 1.98002736 -en
0.031463748 2 7.774282e-01 -en 0.031463748 3 5.820793e-01 -¢j
5.453352e-02 3 2 -en 5.453352e-02 2 7.774282e-01 -em 5.453352e-02 1 2
4.386 -em 5.453352e-02 2 1 4.386 -ej 8.207934e-02 2 1 -en 8.207934e-02 1
1.98002736 -en 0.20246238 1 1 -em 6.566895e-02 2 4 4.386000e+01 -ej
9.575923e-01 4 1

Two pulse

ms41-s1-1411110-n42.051984e-01-n 1 58.002735978 -n 2
70.041039672 -n 3 187.55 -eg 0 1 482.46 -eg 0 2 570.18 -eg 0 3 720.23 -em
0120.7310-em0210.7310-em 0 1 3 0.228072 -em 0 3 1 0.228072 -em O
230.909364 -em 0 3 2 0.909364 -eg 0.006997264 1 0 -eg 0.006997264 2
2.089166e+01 -eg 0.006997264 3 3.006376e+01 -en 0.006997264 1
1.98002736 -en 0.031463748 2 7.774282e-01 -en 0.031463748 3
5.820793e-01 -ej 5.453352e-02 3 2 -en 5.453352e-02 2 7.774282e-01 -em
5.453352e-02 1 2 4.386 -em 5.453352e-02 2 1 4.386 -ej 8.207934e-02 2 1 -
en 8.207934e-02 1 1.98002736 -en 0.20246238 1 1 -em 6.566895e-02 2 4
4.386000e+01 -em 6.635294e-02 2 4 0 -em 5.316553e-02 3 4
8.832178e+00 -em 5.384952e-02 3 4 0 -ej 9.575923e-01 4 1

See Table S4 for a description of the demographic model
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CHAPTER 2:

INFERENCE OF THE DISTRIBUTION OF SELECTION COEFFICENTS FOR NEW

NONSYNONYMOUS MUTATIONS USING LARGE SAMPLES
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ABSTRACT The distribution of fitness effects (DFE) has considerable importance in population genetics. To date, estimates of the DFE
come from studies using a small number of individuals. Thus, estimates of the proportion of moderately to strongly deleterious new
mutations may be unreliable because such variants are unlikely to be segregating in the data. Additionally, the true functional form of
the DFE is unknown, and estimates of the DFE differ significantly between studies. Here we present a flexible and computationally
tractable method, called Fitdadi, to estimate the DFE of new mutations using the site frequency spectrum from a large number of
individuals. We apply our approach to the frequency spectrum of 1300 Europeans from the Exome Sequencing Project ESP6400 data
set, 1298 Danes from the LuCamp data set, and 432 Europeans from the 1000 Genomes Project to estimate the DFE of deleterious
nonsynonymous mutations. We infer significantly fewer (0.38-0.84 fold) strongly deleterious mutations with selection coefficient
Isl > 0.01 and more (1.24-1.43 fold) weakly deleterious mutations with selection coefficient Isl < 0.001 compared to previous
estimates. Furthermore, a DFE that is a mixture distribution of a point mass at neutrality plus a gamma distribution fits better than
a gamma distribution in two of the three data sets. Our results suggest that nearly neutral forces play a larger role in human evolution

than previously thought.

KEYWORDS deleterious mutations; diffusion theory; population genetics; site frequency spectrum

fundamental concept in population genetics is the dis-

tribution of fitness effects (DFE) of new mutations. The
DFE refers to the proportion of new mutations that have
particular effects on fitness. The DFE is a crucial quantity in
evolutionary genetics because it determines how selection
affects genetic variation (Eyre-Walker and Keightley 2007),
the conditions under which recombination could evolve
(Keightley and Otto 2006), and the spectrum of mutations
potentially involved in genetic diseases (Eyre-Walker 2010).
Further, an accurate DFE is required for robust inference of
the amount of adaptive evolution across taxa (Boyko et al.
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2008; Gossmann et al. 2012; Castellano et al. 2016; Galtier
2016); a topic of widespread interest. Because this distribu-
tion is so important, considerable effort has been put forth
toward estimating it in several species.

In organisms that allow experimental manipulation, the
DFE can be directly estimated. Here, the DFE is either derived
from direct measurements of fitness from a collection of
single-step mutants, or indirectly inferred from observed
changes in population fitness in mutation accumulation
(MA) experiments (Eyre-Walker and Keightley 2007;
Bataillon and Bailey 2014). The first approach, in combina-
tion with high-throughput methods, has been successfully
applied to examine the full spectrum of (even weak) selection
coefficients of mutations in small mutational target regions
in a number of viral, bacterial, and yeast systems (Fowler
et al. 2010; Hietpas et al. 2011; Boucher et al. 2014). They
frequently report a gamma or unimodal, similarly shaped
distribution of fitness effects (Bataillon and Bailey 2014),
or a bimodal distribution with a second cluster of highly del-
eterious mutations (Acevedo et al. 2014; Bank et al. 2014;

Genetics, Vol. 206, 345-361 May 2017
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Boucher et al. 2014). The second approach infers the DFE
from fitness trajectories of a collection of populations over
time in MA experiments, without directly identifying the mu-
tations involved. Assuming that the true DFE is gamma dis-
tributed, they estimate the parameters of a gamma DFE that
best fit to the observed changes in the mean and variance of
fitness among replicate populations (Halligan and Keightley
2009). These studies point to a shape of the DFE that is less
leptokurtic than an exponential distribution, with the mode
different from zero. This could indicate that the true under-
lying DFE is more complex than the gamma distribution
(Halligan and Keightley 2009), or reflect a bias of MA-based
methods toward mutations with large fitness effects (Eyre-
Walker and Keightley 2007). In summary, experimental
estimates of the DFE suggest that a substantial proportion
of new mutations are strongly deleterious. However, due
to the inherent limitations of these methods, inference of
the exact functional form of the genome-wide DFE is
challenging.

A second category of methods to infer the DFE involves
examining patterns of neutral and putatively deleterious ge-
netic variation in natural populations, and finding the model
of demographic history and purifying selection that can match
the observed level of variation. This framework has been
applied to many species including humans (Eyre-Walker
et al. 2006; Keightley and Eyre-Walker 2007; Boyko et al.
2008; Li et al. 2010), Drosophila (Keightley and Eyre-Walker
2007; Kousathanas and Keightley 2013), yeast (Koufopanou
et al. 2015), orangutans (Ma et al. 2013), gorillas (McManus
et al. 2015), and mice (Halligan et al. 2013). Many of these
studies suggest that the DFE has a strongly leptokurtic distri-
bution, conflicting with the MA-based estimates. Consistent
with the bimodal DFE found by many site-directed mutagen-
esis studies (Bataillon and Bailey 2014; Boucher et al. 2014),
they find a large proportion of nearly neutral mutations, as
well as many strongly deleterious mutations. For example,
previous studies in humans (Eyre-Walker et al. 2006; Boyko
et al. 2008) have estimated the parameters of a gamma dis-
tribution for the DFE of new nonsynonymous mutations.
These studies have found ~57-61% of new nonsynonymous
mutations to be moderately to strongly deleterious (|s| = 10~3),
about 15-16% to be weakly deleterious (10~ = [s| < 1073),
and the remainder (24-28%) to be nearly neutral (Figure 1).

The estimates of the DFE from genetic variation data for
humans by Eyre-Walker et al. (2006) and Boyko et al. (2008)
have been widely used in human population genetic studies.
For example, these DFEs were used to estimate differences in
the genetic load across human populations (Henn et al
2016), to model the ancient introgression of Neanderthal
alleles into humans (Harris and Nielsen 2016), as a model
for the frequency spectrum of deleterious polymorphisms in
simulating data for disease studies (Uricchio et al. 2016), to
evaluate the contribution of background selection to diversity
on the Y chromosome in humans (Wilson Sayres et al. 2014),
and to estimate the strength of selection acting on disease
genes (Moon and Akey 2016). While the Boyko et al. (2008)

B. Y. Kim, C. D. Huber, and K. E. Lohmueller

study has had considerable impact in the field, it is important
to appreciate that the estimates of the DFE were made using a
sample of a small number of individuals. As such, most of the
variation segregating in those samples is likely to be neutral
or nearly neutral. Inferences about the proportion of moder-
ately and strongly deleterious mutations largely come from
assuming the gamma distribution approximates the DFE of
new mutations well, and then tabulating the proportion in
those categories predicted by the gamma distribution. In
other words, the second mode of strongly deleterious and
lethal mutations observed by experimental studies is un-
likely to be directly observed in polymorphism data sets,
and these proportions are extrapolated from the long tail
of the DFE.

This extrapolation of the proportion of strongly deleterious
mutations may not be accurate. A more recent study using
exome sequencing data from 200 Danish individuals (Li et al.
2010) estimated a DFE that differs considerably from that
inferred in Boyko et al. (2008) or from the experimental
estimates in lower organisms. Specifically, Li et al. (2010)
found a mixture distribution consisting of a neutral point
mass and gamma distribution fit best to their data (Figure 1).
Additionally, they estimated that only 1% of new mutations
have |s| > 10~ (compared to 57% in Boyko et al. 2008), and
78% of new mutations fall in the 10~* = |s| < 1073 range
(compared to 15% in Boyko et al. 2008). Li et al. (2010) attrib-
uted this difference in the DFEs to their study considering a
larger sample of individuals. As such, they surmised that they
sampled more weakly deleterious variants, allowing more ac-
curate inferences. However, this explanation has not been
tested using simulations or larger data sets. Thus, the propor-
tions of moderately vs. strongly deleterious nonsynonymous
mutations in humans, as well as the functional form of the
DFE, remain elusive.

Due to large-scale genome and exome sequencing projects,
samples of hundreds to thousands of individuals are available
(Tennessen et al. 2012; Fu et al. 2013; Lohmueller et al.
2013; The 1000 Genomes Project Consortium 2015). These
large data sets should yield more reliable inferences of the
DFE because moderately deleterious polymorphisms should
be segregating, albeit at low frequency, in these samples
(Supplemental Material, Figure S1 in File S1). As such, it
should be possible to determine the functional form of the
DFE and directly estimate the proportion of moderately and
strongly deleterious mutations.

However, amajor roadblock to using these new data sets for
inference of the DFE is a lack of suitable software for inference
from large samples. Generally, methods to infer the DFE
summarize the allele frequency information of two classes
of sites, one assumed to be neutral and the other selected by
the site frequency spectrum (SFS). Then, they find the DFE
that, under the inferred model of demography fit to the SFS
from neutral sites, fits the observed SFS from selected sites.
The method of Keightley and Eyre-Walker (2007), DFE-
alpha, models demography using a Wright-Fisher transition
matrix. It can only consider demographic models with one or
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two size changes due to computational complexity, and it can
be slow for the two-size-change model. This is particularly
limiting in large samples of human genetic variation since a
single-size-change demographic model is insufficient for
capturing the excess of rare variation in human popula-
tions (Keightley and Eyre-Walker 2007; Kousathanas and
Keightley 2013). Another class of methods to infer the DFE
uses the Poisson random field (PRF) approach (Sawyer
and Hartl 1992; Hartl et al. 1994; Williamson et al. 2005;
Eyre-Walker et al. 2006; Boyko et al. 2008; Li et al. 2010).
This approach has been implemented in the program
PRFREQ (Boyko et al. 2008), but that implementation
becomes numerically unstable when applied to samples
larger than a few hundred individuals. The program dadi
(Gutenkunst et al. 2009) uses a similar framework, but
implementing a DFE is slow due to the way that the DFE
is repeatedly integrated (Figure S2in File S1). Thus, there is
a need for a new software tool to infer the DFE from large
samples.

In this study, we first extend the program dadi to analyze
arbitrary DFEs in a computationally efficient manner. We
implement these features in a module for §adi, which we call
Fitfadi. We then use this approach to estimate the DFE of
deleterious, nonsynonymous mutations from multiple large
human data sets. We consider several different functional
forms for the DFE. We find that across the multiple data sets,
a mixture distribution where a proportion of mutations are
neutral and the remainder are gamma distributed fits best.
Analysis of multiple data sets suggests there are fewer
strongly deleterious mutations where |s| > 102 (0.38-
0.84 fold) than previously estimated in Boyko et al. (2008)
(35%), regardless of the functional form of the DFE. Further,
our results are not consistent with a model where 99% of new
mutations have a selection coefficient weaker than 1073, as
suggested by Li et al. (2010). Because we anticipate that our
estimates of the DFE will be useful in subsequent simulation
studies, we provide SFS_CODE (Hernandez 2008) and SLiM
(Messer 2013) commands to simulate data where mutations
have fitness effects from these DFEs.
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Materials and Methods
Fitdadi: software to infer the DFE

Here we present our new software, Fitdadi, to infer distribu-
tions of selection coefficients of new mutations under the PRF
model using the SFS. Fitdadi is a module that extends the
functionality of the Python package, dadi (Gutenkunst et al
2009). Specifically, adi uses diffusion theory to compute the
expected SFS for a set of demographic parameters and selec-
tion coefficients. Fitdadi offers a substantial computational im-
provement over the existing implementation of dadi for models
involving more than a single selection coefficient. To do this,
Fitdadi computes SFSs for a range of selection coefficients and
saves each SFS into an array. Then, subsequent integrations of
the DFE are done using the array of precomputed SFSs. This
process results in a substantial improvement in computational
speed compared to the existing implementation of dadi, which
recomputes the SFS for each selection coefficient in each step of
the optimization process (Figure S2 in File S1). Fitdadi also
allows parallel computation of the SFS by using multiple cores
or a cluster. Importantly, Fitadi leverages the modular nature
of dadi to allow the user to define any arbitrary demographic
model and DFE, including DFEs that are complex mixture dis-
tributions. Lastly, we incorporated an optimization routine that
allows for constrained optimization of complex mixture distri-
butions. Below we describe our inference procedure in greater
detalil, starting with inference of demography, followed by the
details of Fitdadi. We then discuss a simulation study to assess
its performance, both under the assumptions of the PRF model
as well as when some are violated, and then the data sets that
we use to infer the DFE in humans.

Inference using the SFS

We inferred demography and selection from segregating sites
in a maximum likelihood framework (Williamson et al. 2005,
Boyko et al. 2008, Gutenkunst et al. 2009). Because both
demography and selection affect patterns of deleterious
mutations, our inference of the DFE begins (as done in
Williamson et al. 2005 and Boyko et al. 2008) by first
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estimating a demographic model for putatively neutral, syn-
onymous sites. Then, conditional on the demographic param-
eter estimates, we infer the parameters for the DFE of
nonsynonymous mutations.

To do this, we summarized synonymous and nonsynon-
ymous sites with the SFS. The SFS can be described as a vector,
X = [X,,X,, ..., X,—1], in which each entry X; describes the
number of SNPs at frequency i in a data set of size n chromo-
somes. In the PRF framework, each entry in the SFS is as-
sumed to be comprised of independent sites (Sawyer and
Hartl 1992; Hartl et al. 1994).

Additionally, we folded the SFS to avoid difficulties with
misidentification of the ancestral state (Hernandez et al.
2007). This form of the SFS counts the number of SNPs
of minor allele frequencies (MAFs) 1 to n/2 without taking
the ancestral state into account. The folded SFS has been
shown to perform well at inferring the DFE of deleterious
mutations (Keightley and Eyre-Walker 2007; Boyko et al.
2008; Tataru et al. 2016).

Inference of demography

Ademographicmodel, the parameters of which are denoted as
©Op, was fit to the SFS of synonymous sites with dadi
(Gutenkunst et al. 2009). Here, adi uses a diffusion approx-
imation to compute the distribution of allele frequencies
given some demographic model, f(x; ©p). Then, the expected
number of SNPs at frequency i in a sample of size n chromo-
somes can be written as:

1 .
Bx)= [ #0-x e @

The multinomial likelihood, computed with the folded SFS, is
maximized to estimate the demographic parameters:

Efx|0p] "

where X; denotes the observed count of SNPs at frequency i
in the folded SFS. The multinomial likelihood uses the pro-
portions of SNPs at a particular frequency in the sample
rather than the counts from the model. Therefore, it does
not require an a priori assumption about the mutation rate
or ancestral population size. The mutation rate of synony-
mous sites, denoted s, was then computed as the scaling
factor difference between the optimized SFS and the data.

When fitting models incorporating periods of rapid expo-
nential growth with Hadi, we set the program parameter dadi.
Inference.set_timescale_factor=1075, in contrast to the de-
fault setting of 10~3. In Hadi, periods of exponential growth
are approximated with a series of instantaneous size changes
and, if the time steps are not small enough, parameters re-
lated to exponential growth will not be inferred correctly.
This causes the demographic model to inaccurately predict
the expected numbers of rare variants, biasing downstream
inference of selection.
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Inference of selection

To infer the DFE, we developed the Fitdadi module, which
uses dadi and some of the methodological improvements of
Ragsdale et al. (2016). First, we condition on the demo-
graphic model that was fit to synonymous sites using the
procedure described above. Given that demography, dadi is
used to compute a distribution of allele frequencies f(x; ©p, ),
where Oy, is a vector containing the demographic param-
eters inferred from synonymous sites and 7y is a single
population-scaled selection coefficient. Specifically, y = 2Nas,
where N, is the ancestral population size, but it is rescaled in
each time period of the demographic model by the fold size
change relative to the ancestral population. A DFE, denoted
g(vy), can be incorporated by generating f(x; ©p, y) for a
range of v, then weighting the contribution of each of these
frequency spectra by g(y) (Boyko et al. 2008):

© L . A
Exj=3 [ [ 200, vie(viom)ddy
3

In the standard implementation of dadi, this process is time
consuming because the SFS must be computed repeatedly
during each step of optimization. In other words, f(x; ©p, ¥)
is computed each time a given value of vy is evaluated in a
DFE. This process can be especially slow for large ranges of y
and for large sample sizes. Therefore, similar to Ragsdale
et al. (2016), we initially computed the SFS for a range of
selection coefficients, and then cached these results to avoid
recomputing the frequency spectra (Figure S2 in File S1). In
addition, we computed many frequency spectra in parallel
to save time, added compatibility for user-defined DFEs,
modified the optimization routines available in #adi to work
with cached spectra, and added the option to use constrained
optimization for the inference of complex mixture distribu-
tions. These extensions are part of the Fitdadi module.

Toinfer selection, we fixed the demographic parameters to
the maximum-likelihood estimates (MLEs) inferred from syn-
onymous sites, ©p. Then, we fit a DFE, the parameters of
which are denoted as ©pgg, to the folded SFS of nonsynon-
ymous sites by maximizing the Poisson likelihood:

L(X*|6p, OprE) =Hexp(— E[X,-' |ép, ODFED

X EB(L*@:’GJE]_ 4)

X!
Unlike the multinomial likelihood, the Poisson likelihood
requires an a priori assumption about the mutation rate for
nonsynonymous sites, fys. To obtain this, we multiplied our
estimate of 65 by an assumed ratio of the nonsynonymous to
synonymous mutation rate, fys/s, to obtain Oys. Specifically,
we assumed the ratio to be fys/6s = 2.31 (Huberet al. 2016),
but also estimated the DFE using fys/0s = 2.5 to provide a
fair comparison to Boyko et al. (2008).



Each DFE is defined as an integrable function over a log-
spaced range of 600 selection coefficients over intervals be-
tween |s| = [1078, 0.5]. We considered any portion of
the DFE smaller than |s| = 1078 to be effectively neutral
(]s| = 0), and any variants of |s| > 0.5 to have negligible
probability of being found in polymorphism data (i.e., not
found in the data). Note that here we only consider the del-
eterious DFE but this function can easily be extended to in-
corporate positive selection (Huber et al. 2016).

Fitdadi includes many of the standard DFEs (Boyko et al.
2008; Kousathanas and Keightley 2013), such as a gamma
distribution and several mixture distributions. Specifically,
we investigated mixture distributions where a proportion of
mutations are neutral; with the rest following a gamma dis-
tribution as well as a mixture distribution where a fraction is
neutral, a fraction is lethal, and the remainder follows an
exponential distribution of fitness effects. Lastly, Fitdadi in-
cludes arbitrary mixture distributions with a fixed number of
fitness classes, or bins, where each bin can have its own
range of selection coefficients (called the “discrete DFE”).
Fitdadi infers the proportion of new mutations in each fit-
ness class. For mixture distributions incorporating a point
mass at neutrality or lethality, we define the DFE so it can
be treated as a single integrable function. We add the area
of the point mass to a part of the distribution that is as-
sumed to be neutral or lethal. For example, to add a point
mass of neutral mutations to the “neutral+gamma DFE,”
we add the probability mass of neutral mutations, pyey, t0
the |s| = [0, 108] portion of the distribution. Then, we
integrate the gamma DFE between |s| = [0, 10~8] and
sum it with pp., to obtain the total mass of neutral muta-
tions. Additionally, we used the SLSQP algorithm (Kraft
1988) as implemented in SciPy 0.17.1 to perform con-
strained optimization for mixture distributions incorporat-
ing more than two components. Throughout, we will use
and B to denote the shape and scale parameters of the
gamma distribution, respectively, and \ to denote the rate
parameter of the exponential distribution. The DFEs we
report will be scaled by the ancestral population size. To
estimate confidence intervals (C.1.’s) for our data, we Pois-
son resampled the nonsynonymous SFS and refit the DFE
to the resampled data (Boyko et al. 2008). We note these
C.I’s are likely too narrow because they assume indepen-
dence between all sites and do not account for the uncer-
tainty in the demographic inference.

Simulations

To assess the performance of Fitdadi, we performed forward-
in-time simulations under different models of selection and
demography. Simulations of independent sites were done
using the program PReFerSIM (Ortega-Del Vecchyo et al.
2016), which simulates unlinked SNPs under the PRF model.
We simulated synonymous sites separately with a population-
scaled mutation rate of #s = 4000 to approximately match
the amount of synonymous genetic diversity in our data sets. We
simulated nonsynonymous sites at a ratio of 2.5 nonsynonymous

to 1 synonymous site, in other words using Lys/Ls = 2.5.
These simulations included sample sizes of n = 24 and
n = 2596 chromosomes using a demographic model of
constant size, a twofold instantaneous size change, and
the demography inferred from the LuCamp data. We con-
sidered a variety of DFEs, which are described in more detail
in specific instances below.

Because the PRF model makes several restrictive assump-
tions that are likely to not apply to real data sets, we
performed an additional set of forward simulations violating
these assumptions, and assessed the effect on inferences
using Fitdadi. Specifically, we investigated the effects that
unmodeled linkage, background selection, and population
structure might have on our inference of the DFE. To do this,
we simulated 100-150 Mb regions using the recombination
rate and arrangement of functional elements on human
chromosome 1 (Huber et al. 2016) using the forward simu-
lation program SLiM (Messer 2013). We assumed a gamma
DFE for both nonsynonymous (a = 0.2, B = 200) and con-
served noncoding sites (o = 0.0415, B = 50; see Torgerson
et al. 2009). We assume that 400 generations ago, the an-
cestral population expanded eightfold and split into eight
genetically isolated populations. This population size in-
crease reflects the Neolithic expansion into Europe under
the demic diffusion model (Chikhi et al. 2002; Gazave
et al. 2014). We then sampled 100 chromosomes equally
across the eight populations, combined them together, and
analyzed them as though they were from a single popula-
tion. The ancestral population was simulated for a burn-in
period of 10N generations. To avoid prohibitively slow for-
ward simulations, we simulated with an ancestral effective
population size of 1000 and scaled mutation rate, recombina-
tion rate, selection coefficients, and demographic parameters
accordingly (Aberer and Stamatakis 2013). We then fit a single
population demographic model (which is the incorrect model)
to the synonymous SNPs in each simulated data set using dadi.
Then, conditional on these demographic parameters, we
inferred the DFE using Fitdadi. Our goal with these simula-
tions is to mimic what researchers do in practice; where they
do not know the true demographic model, but try to fit a
simplified model to the data.

Data

We downloaded SNP data for 432 unrelated European (EUR)
individuals from the 1000 Genomes Project phase 3 release
(The 1000 Genomes Project Consortium 2015); 6503 individ-
uals from the National Heart, Lung, and Blood Institute
ESP6500SI-V2 European American (EUR) data set (Tennessen
et al. 2012; Fu et al. 2013); and 2000 Danish individuals from
the LuCamp project (Lohmueller et al. 2013). The 1000 Ge-
nomes phase 3 data were downloaded from the European
Bioinformatics Institute file transfer protocol site http://
ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/. Re-
lated individuals were removed by sampling only mothers and
fathers from trios or extended families. Only SNPs from the
phase 3, exome-targeted sequencing which passed the strict

DFE from Large Samples

32



mask filter were used. The total length of sites considered in
the analysis, Ls + Lys, was computed by taking this filter-
ing into account. Variants were annotated using the 1000 Ge-
nomes Project-filtered annotations. The Exome Sequencing
Project (ESP) ESP6400 data set was downloaded from the
Exome Variant Server (http://evs.gs.washington.edu/EVS/).
Only sites with 1800 or more European individuals sequenced,
according to the site-by-site annotations, were used for the
analysis. The LuCamp data were obtained from Lohmueller
et al. (2013). For computational tractability, a hypergeometric
distribution was used to project the LuCamp and ESP data sets
down to sample sizes of 1298 and 1300 diploids (Gutenkunst
etal 2009), respectively, after filtering problematic individuals.
All 432 unrelated European individuals from the 1000 Ge-
nomes Project were used. From these data, we assembled
the folded SFS of synonymous and nonsynonymous sites,
which were used for subsequent inference. To examine the
effect of a smaller sample size on inference of demography
and selection, we also projected the data down to a sample
size of 24 chromosomes.

Estimating s from 2Ns

The DFEs inferred using the approach described above were
for the population-scaled selection coefficient, scaled by twice
the ancestral population size (y = 2N,s). Because we were
interested in the distribution of s, we needed to estimate Nj.
We computed N, from the value of s inferred from synony-
mous sites (Table S1 in File S1) using the equation 85 =
4NapLs. Detailed information about these parameters used
for our analysis can be found in Table S2 in File S1. However,
this value of N, depends on assumptions about the per-base-pair
mutation rate and the ratio of possible nonsynonymous to
synonymous sites, Lys/Ls, since these quantities are computed
from the total number of coding sites, Ls + Lys. We assumed
the mutation rate to be w = 1.5 X 1078 to reflect estimates of
the mutation rate in the human exome (Ségurel et al. 2014).
For comparison to results from Boyko et al. (2008), we as-
sumed the mutation rate to be u = 1.8 X 10~8. For the re-
analysis of the Boyko et al. (2008) data set, we assumed the
same ancestral population size, N = 7778 diploids, instead of
computing it. To compute the total number of coding sites,
Ls + Lys, in each data set, we intersected the coding exons
from the University of California Santa Cruz canonical tran-
script with the relevant filters for each data set. For the
1000 Genomes data, we intersected the phase 3 strict mask,
the exome targets, and the hg19 coding exons. For the analysis
of the ESP data set, we used the intersection of the hgl9
coding exons and the site-by-site annotations to count the total
number of coding sites for which n = 2600 alleles had been
sequenced. For the LuCamp data, we obtained the value of
Ls + Lys from Lohmueller et al. (2013).

Data availability

This research uses previously published data sets obtained as
previously described. The Fitdadi software is available at
https://github.com/LohmuellerLab/fitdadi.
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Results

Validation of Fitdadi by comparison to
previous analyses

We first examined the performance of Fitdadi by fitting a
demographic model and DFE to the African-American SFS
from Boyko et al. (2008). Fitdadi produces similar estimates
of the shape and scale parameters of the gamma distribution
compared to Boyko et al. (2008) (Boyko: a = 0.184, B =
2488; Fitdadi: a = 0.179, B = 3161). Additionally, Fitdadi
produced similar estimates of the proportions of mutations in
different bins of the DFE (Table S3 in File S1).

Performance on simulated data

We further investigated the performance of Fitdadi by per-
forming forward simulations under the PRF model (see
Materials and Methods). We first considered the best-fit DFE
of Boyko et al. (2008), rescaled to have an ancestral popula-
tion size of N = 10,085 diploids (o = 0.184, B = 3226).
Fitdadi is able to accurately infer the DFE from our simulated
data sets (Table 1). Predictably, the variance of our estimates
of the most deleterious portion of the DFE (|s| > 1072) is
five- to sixfold greater for the small (n = 24) samples. How-
ever, for the samples of size n = 2596, the variance in the
estimates of this portion of the DFE is significantly reduced
and overall estimates of the proportions of the DFE where
|s| > 1072 are accurate. Therefore, this sample size should
allow us to accurately infer the most deleterious portions of
the DFE.

Because it is not certain that the DFE is truly gamma
distributed, we simulated data sets of 2596 chromosomes
with other DFEs. Again, we scaled these DFEs to an ancestral
population size of 10,085 diploids. We considered the mixture
distribution of Li et al. (2010), which consists of 20% neutral
and 80% gamma-distributed (¢« = 4, B = 2.148) selection
coefficients (the neutral +gamma DFE). We also considered a
mixture distribution consisting of five bins, (the discrete DFE)
with breaks at |s| = [0, 1075, 1074, 1073, 102, 1]. Within
each bin, the values of s were uniformly distributed. We ex-
amined three weighting schemes for this distribution. First,
we computed the probability mass in each bin from the mix-
ture distribution of Li et al. (2010). Then, we computed the
probability mass in each bin from a gamma distribution with
parameters « = 0.203 and B = 1082.1, but where the mass
in the |s| = [102, 1] bin was placed into the |s| = [1072,
1072) bin, and the opposite case where the mass in the |s| =
[1073, 10~2) bin was placed into the |s| = [1072, 1] bin.
This was done to evaluate whether we could distinguish be-
tween these discrete DFEs and to evaluate our ability to dis-
tinguish strongly deleterious mutations from moderately
deleterious mutations in a large sample.

We find that if the true underlying DFE is distributed
according to the Liet al. (2010) neutral +gamma distribution,
the discrete DFE is able to estimate the true DFE, albeit with
some limitations (Figure 2, A and B). For example, when the
true DFE follows Li et al. (2010), our inference under the
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Table 1 Performance of Fitdadi on simulated data sets

Demography Nenr a (shape) B (scale) 0<Isl<10™> 10°°<Isl<10™% 1072 <Isl< 1073 10 3<Isl<10-2 10-2<lsl
True? — 0.184 32660 0.182 0.096 0.146 0.219 0.357
Constant 2596 0.180 + 0.010 3712.2 + 980.2 0.186 + 0.009 0.095 + 0.002  0.144 + 0.006  0.213 + 0.013 0.363 + 0.016
size 24 0.185 + 0.028 3613.1 = 4196.7 0.182 = 0.017 0.097 * 0.009 0.148 + 0.023 0.221 = 0.043 0.353 * 0.060
Two-fold 2596 0.191 + 0.007 2606.0 + 410.7 0.178 = 0.008 0.098 + 0.002  0.152 + 0.004  0.230 + 0.009 0.341 + 0.010
expansion 24 0.187 * 0.023 3259.8 *+ 2612.6 0.181 = 0.016 0.097 * 0.008 0.149 + 0.019 0.223 + 0.036 0.350 * 0.050
LuCamp 2596 0.182 + 0.008 3411.9 + 5585 0.184 *+ 0.008 0.096 * 0.001 0.145 + 0.004 0.216 += 0.008 0.358 =+ 0.009
24 0.186 + 0.027 34354 *+ 32499 0.182 = 0.017 0.097 = 0.009  0.148 + 0.022  0.222 + 0.042 0.351 * 0.060

95% intervals were estimated as + 1.96 SD of 100 replicates in each simulation set. chr, chromosome.

“ Values show the true DFE used to simulate the data.

“ Here the simulation was scaled to an ancestral population size of N = 10,085 diploids.

discrete DFE correctly estimates a negligible fraction of mod-
erately or strongly deleterious new mutations (|s| > 103),
and correctly infers a mode of weakly deleterious mutations
(10~ = |s| < 1073). However, estimates of the proportion
of nearly neutral and neutral mutations (|s| < 10~4) are less
accurate (Figure 2A). When we simulate with the discretized
distribution of Li et al. (2010), our estimates of the propor-
tions of the discrete DFE are unbiased (Figure 2B). Addition-
ally, we can distinguish between DFEs with varying
proportions of moderately and strongly deleterious muta-
tions (Figure 2, C and D). Although it is unlikely that the
DFE of any natural population is discretized in this manner,
these results show that the discrete DFE can help to approx-
imate the general form of the underlying DFE, even if the true
DFE is multimodal. This mimics what would be done in prac-
tice, where the precise functional form of the DFE is not
known a priori. Therefore, fitting the discrete DFE should
provide a general idea of the true DFE, especially if the true
DEFE is significantly multimodal. Notably, the discrete distri-
bution can distinguish between strongly and moderately del-
eterious mutations at our sample size of 2596 chromosomes.

Simulations with linkage and population structure

The procedure of first inferring demography from the synon-
ymous SFS and then selection from the nonsynonymous SFS
provides unbiased estimates of selection, even in the presence
of linkage (Boyko et al. 2008; Messer and Petrov 2013;
Comeron 2014). In other words, this methodology controls
for the effects of selection at linked sites. However, it is un-
clear what effect population structure might have on infer-
ence of the DFE. It is well known that such cryptic structure
affects the SFS and may bias demographic inference (Ptak
and Przeworski 2002; Gazave et al. 2014). Further, large
human resequencing data sets may contain cryptic popula-
tion structure (Novembre and Ramachandran 2011). For ex-
ample, the 1000 Genomes European sample is comprised of
five different subpopulations. To examine the performance of
Fitdadi when applied to data sets where the assumptions
of the PRF model and a single, unstructured population are
violated, we performed forward simulations including back-
ground selection and population structure (see Materials and
Methods). We fit a single population, single-size-change de-
mographic model to synonymous sites; and then, conditional

on the size-change demographic model, a gamma DFE to
nonsynonymous sites for each simulation replicate. Even when
using the incorrect demographic model, we accurately infer se-
lection from simulated data in the presence of linkage and pop-
ulation structure (Figure 3). Importantly, the single-size-change
demographic model provides a reasonable approximation to the
SFS when there are both population expansions and structure
(Figure 3A). This in turn allows for the accurate estimation
of both the shape and scale parameters of the gamma DFE
(Figure 3B).

Therefore, simulations and a comparison to existing em-
pirical data suggest that Fitdadi can reliably infer the DFE in
the presence of complex demographic scenarios. Below we
present additional simulation scenarios to examine the per-
formance of Fitdadi with varying sample sizes and when the
assumed demography and DFE are misspecified.

Demographic inference

We begin by fitting a demographic model to the synonymous
SFS of each of the three data sets (LuCamp, ESP, and 1000
Genomes) using dadi. Briefly, this demographic model incor-
porates an out-of-Africa bottleneck, a recovery period, and
recent exponential population growth (Figures S3 and S4 in
File S1). Our estimates of demography as well as the inferred
population sizes are presented in Tables S1 and S2 in File S1.
Predictably, the parameter describing the magnitude of re-
cent population expansion is harder to infer when using a
sample size of 24 chromosomes than when using the larger
sample sizes (n = 2596 chromosomes). Although the demo-
graphic model we infer is biased by linked selection, this step
controls for these effects when inferring selection (Boyko
et al. 2008; Kousathanas and Keightley 2013; Messer and
Petrov 2013; Huber et al. 2016).

Inference of the DFE from large data sets

Here we estimate the DFE for new nonsynonymous mutations
using large samples. First, like previous studies, we fit a
gamma distribution to the DFE (Table S4 in File S1). We infer
a strongly leptokurtic distribution where there are many neu-
tral and nearly neutral mutations (i.e., 34-37% of new mu-
tations have |s| < 1074), as well as a class of strongly
deleterious mutations (i.e., 15-22% of new mutations have
|s| > 1072). Interestingly, the estimates from the three
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Figure 2 The discrete DFE can recover the approximate form of the DFE from simulated data. The distributions of the proportions of mutations with
different selective effects, as inferred by the discrete DFE for 100 simulated data sets, are shown. Each simulation set assumed the demographic model
fit to the LuCamp synonymous SFS. A red point depicts the true proportions of the simulated DFE. The true DFE for each set is: (A) the continuous neutral+gamma
distribution of Li et al. (2010} (e, = 0.2, « =4, B = 1.065 X 10~4), (B) the discretized version of that distribution, (C-F) a gamma DFE (a« =0.215, B = 567.1), but
where (C and E) the mass of the 102 = Is| < 102 bin was added to the 10~2 =< Isl bin, and (D and F) where the mass of the 102 =< Isl bin was
added to the 1073 = Isl < 102 bin. The data sets simulated for (C) and (D) had sample sizes of n = 2596 chromosomes, while the data sets for (E)

and (F) had sample sizes of n = 24 chromosomes.

different data sets are generally concordant, though the 95%
C.L’s sometimes do not overlap. While this may suggest that
the differences cannot be attributable to limited amounts of
data in the SFS, we caution that these C.L’s are likely too
narrow because they do not account for the nonindepen-
dence of SNPs or the uncertainty of demographic estimates.

When compared directly to Boykoet al. (2008), the best-fit
gamma DFEs inferred from all three data sets are generally
shifted toward neutrality (Table 2 and Tables S4 and S5 in
File S1), even when matching the mutation rates to those of
Boyko et al. (2008) (u = 1.8 X 108 and Lys/Ls = 2.5). We
infer 19.2-22.9% of new mutations have a selection coeffi-
cient |s| < 10~5, compared to the 18.3% observed by Boyko
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et al. (2008). This corresponds to a 1.05- to 1.25-fold in-
crease. Additionally, we infer 24.5-29.8% of new mutations
are strongly deleterious (|s| > 10~2), which corresponds to a
0.69- to 0.84-fold decrease of the 35.5% inferred by Boyko
et al. (2008). Taken together, when assuming a gamma dis-
tribution for the DFE, all three data sets suggest fewer
strongly deleterious mutations than seen in Boyko et al.
(2008).

Next, we explored the fit of complex DFEs to these large
samples. Using the same combination of mutation rates as
with the gamma, we fit the neutral+gamma mixture distri-
bution; a mixture distribution of a point mass of neutral, a
point mass of lethal, and exponentially distributed new

Figure 3 Inference of the DFE is robust to misspecifica-
tion of the demographic model and background selec-
tion. Points show the MLEs of the (A) demographic
parameters and (B) DFE parameters inferred from
100 simulated data sets with linkage and population
structure. Red lines denote the true values and the yel-
low dots denote the median estimates across the
100 data sets. Estimates of time of expansion (7;) and

S 00 01
N‘l /Nanc
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a (shape)

the ratio of current to ancestral population size (N1/Nanc)
‘e tend to be biased because demography is incorrectly
0.2 0_'3 modeled due to background selection, but estimates
of the DFE are unbiased.
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Table 2 MLEs of various DFEs

Data set DFE Parameter MLEs Log-likelihood AIC IAAICIe
LuCamp Gamma a=0.215, B = 562.1 —3334.7 6673.4 13
Neu+gamma Prey = 0.164, o = 0.338, B = 367.7 —3327.2 6660.4 0
Neu+exp+let Preu = 0.304, poyo = 0.613, A = 66.56 —3337.8 6681.6 21.2
Discrete® p, = 0.309, p, = 0.024, p; = 0.247, p, = 0.372 —3334.1 6676.2 15.8
1kG EUR Gamma a=0.186, B = 875.0 —1450.5 2905.0 0
Neu+gamma Prey = 0.031, @ = 0.199, B = 820.6 —1450.8 2907.6 2.6
Neu+exp+let Preu = 0.312, Poyo = 0.509, A = 41.48 —1472.0 2950.0 45
Discrete® Py = 0.286, p, = 0.099, p; = 0.222, p, = 0.305 —1453.4 2914.8 9.8
ESP EUR Gamma a=0.169, B = 13274 -3012.6 6029.2 2.6
Neu+gamma Prew = 0.092, a = 0.207, B = 1082.3 —3010.3 6026.6 0
Neu+exp+let Peu = 0.341, pexo = 0.504, X = 63.90 —3071.6 6149.2 122.6
Discrete® p1 = 0.334, p; = 0.041, p3 = 0.201, p4 = 0.306 —3029.5 6067.0 40.4

These results are reported assuming Lyg/Ls = 2.31 and u = 1.5X10 2. See Table S4 in File 51 for additional information. The shape and scale parameters of the gamma
distribution are denoted with « and B, respectively, and the rate parameter of the exponential distribution is denoted with A. Neu, neutral; exp, exponential; let, lethal; 1kG,

1000 Genomes.
4 Change in AIC relative to the model with the lowest AIC.

2 In terms of Isl, these parameters correspond to the ranges of Isl corresponding to: [0, 10-5), [10-5, 10-4), [10-4, 10-3), and [10-3, 10-2), respectively. The mass in the [10-2, 1]

range is the complement of the total mass of the four aforementioned categories.

mutations (the “neutral+exp+lethal” DFE); and the dis-
crete DFE described previously. The MLEs, as well as the
proportion of mutations with varying selection coefficients
predicted by these distributions, are depicted in Table 2,
Table 3, and Table S4 in File S1.

When we assume g = 1.5 X 108 and Lys/Ls = 2.31, the
neutral+gamma DFE fit best to the LuCamp and ESP data
sets as reflected by the highest log-likelihood and Akaike
information criterion (AIC) score (Table 3 and Table S4 in
File S1). The gamma still fit best to the 1000 Genomes data
set. Compared to the gamma DFEs inferred previously for
two data sets, our best-fitting DFEs predict slightly fewer
(0.92-0.98 fold) new mutations with |s| > 1072, and slightly
more (1.06-1.18 fold) new mutations of |s| < 10735.
When we matched the mutation rates of Boyko et al. (2008)
with w4 = 1.8 X 1078 and Lys/Ls = 2.5, the discrete DFE fit
best to the LuCamp data set (Table 3 and Table S4 in File 51).
However, the gamma DFE continued to fit best to the 1000 Ge-
nomes and ESP data sets under these assumptions. The best
fitting DFEs are depicted in Figure 4 and Figure S5 in File S1,
and a comparison of the model to the SFS of the data are
shown in Figure S6 in File S1. When using the larger mutation
rate, we find the discrete DFE to fit best to the LuCamp data
set, which predicts significantly fewer (0.54 fold) new muta-
tions of |s| < 1072 than the gamma DFE fit using the same
mutation rate.

One concern is that biases in SNP calling may affect these
inferences. One way to test for this is by masking the singletons
in the analysis, since singletons may be enriched for false SNPs
due to sequencing errors (Boyko et al. 2008). We fit the
gamma and neutral+gamma DFEs while masking the single-
ton category in the SFS and find little difference in the
inferred DFEs (Table S6 in File S1). This finding suggests
our inferences are robust to potential errors in SNP calling
in these data sets.

The DFEs we have inferred thus far differ from that inferred
in Boyko et al. (2008). In that study, 35.5% of new nonsynon-

ymous mutations were inferred to be strongly deleterious in
African-Americans, and 37.9% in Europeans. We infer fewer
new strongly deleterious nonsynonymous mutations, even
when matching the mutation rates used in Boyko et al.
(2008) (Figure 4 and Figure S5 in File S1). Furthermore,
the distribution of 2Ns also shows fewer strongly deleterious
mutations (27.1-36.9% of mutations with 2Ns > 100)
than seen in Boyko et al. (2008) (40.4% of mutations with
2Ns > 100; Figure S5 in File S1). Our results remain consis-
tent across data sets and assumed forms of the DFE.

Additionally, our estimates of the DFE differ substantially
from the estimates provided by Liet al. (2010). Specifically, Li
et al. (2010) infer almost no strongly or moderately delete-
rious new nonsynonymous mutations. That is, 1% of new
nonsynonymous mutations have selection coefficients of
1073 < |s| < 1072 and 0% have a selection coefficient
|s| > 102 (Figure 1). All of our estimates infer that at least
~30% of new nonsynonymous mutations have a selection
coefficient |s| > 10~3, even when the assumed mutation rate
is small (Figure 4 and Table 3). Our simulations suggest if the
true underlying DFE follows that suggested by Li et al.
(2010), we should be able to estimate those proportions us-
ing both the neutral+gamma and the discrete DFE (Figure 2,
A and B). The fact that our inferences did not show similar
estimates to those inferred by Li et al. (2010) suggests that
our data and analyses are not consistent with the distribution
inferred by Li et al. (2010) (Table S5 in File S1). In the fol-
lowing sections, we explore several reasons why the different
studies infer different DFEs.

Assessing the role of sample size and model
misspecification using simulations

One possibility for the distinct estimates of the DFE is that the
three studies used different sample sizes. Larger samples will
have more moderately and strongly deleterious variants seg-
regating than will smaller data sets (Figure S1 in File S1). To
investigate the effect of sample size on our ability to infer the

DFE from Large Samples
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10-5<Isl < 104 104 <Isl <1073 103< sl <102 10-2< sl

0<1Isl <105

Best fit DFE

o Lns/Ls

Table 3 We infer more nearly neutral (Isl < 10-°) and fewer strongly deleterious (Is| > 10-2) new mutations than previous studies

Data set
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DFE, we simulated 200 data sets, without linkage, of sample
sizes n = 12, 24, 100, 250, and 500 chromosomes. Each data
set was simulated using the demographic model and gamma
DFE inferred from the LuCamp data set.

First, we simulated neutral synonymous sites and inferred
the demographic parameters from each data set. This was
done in two ways. First, we estimated the parameters from the
full demographic model that was used to generate the data
(herein the “full” model). Second, we inferred the parameters
in a demographic model with only three instantaneous size
changes (herein the “three-epoch” model). This is meant to
mimic the situation in Boyko et al. (2008), where the true
demography of the European population was likely complex,
but simpler three-epoch demographic models could accu-
rately fit the synonymous SFS. Next, as done in our inference
and in previous studies, we estimated the parameters of a
gamma distribution for the DFE of nonsynonymous muta-
tions, conditioning separately upon the two demographic
models.

When the full demographic model was fit to the simulated
data sets, we found the variance of our estimates, both of
demography and selection, decreased as sample size in-
creased (Figure S7 in File S1). We were unable to correctly
infer the magnitude of recent population growth with small
sample sizes, consistent with previous work (Keinan and
Clark 2012; Nelson et al. 2012; Tennessen et al. 2012; Fu
et al. 2013). However, this did not affect the inference of
selection as long as the demographic model fit reasonably
well to synonymous sites (Figure S7 in File S1). At small
sample sizes, the three-epoch model could fit the synony-
mous SFS well and thus estimates of selection were also un-
biased. However, we found that for sample sizes >100
chromosomes, the three-epoch model increasingly became
unable to account for the excess of rare variants caused by
recent growth. The inability to account for the rare variants in
the sample then biased the estimates of both the shape and
scale parameters of the gamma distribution. However, this
effect seems to be negligible at a sample size of 24 chromo-
somes (Figure S7 in File S1).

As long as the demographic model fits the observed SFS of
synonymous sites, small sample sizes can estimate the param-
eters in a gamma distributed DFE, even when the demographic
model is not the correct one. The accuracy of the estimates
increases with sample size, especially for the scale parameter,
and notably provides better estimates of the strongly deleteri-
ous portion of the DFE (Figure S7B in File S1 and Table 1).
Thus, the results of Boyko et al (2008) are unlikely to be
affected by misspecification of demography due to small sam-
ple size.

Another possibility for the varying estimates of the DFE is
that the DFE itself may be misspecified. Although parametric
distributions are convenient for approximating the DFE, the
true form of the DFE is unknown. Additionally, we have shown
that the neutral+gamma DFE and the discrete DFE can fit
large data sets better than the gamma DFE. To investigate an
example of what would happen if the DFE is misspecified, we
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Figure 4 The distribution of selection coefficients of new mutations under our best-fit DFEs compared to Boyko et al. (2008). Results are presented for
the best-fit DFE to each full data set and the best-fit DFE when the data were projected down to n = 24 chromosomes. C.I.'s were estimated by Poisson
resampling the nonsynonymous SFS and fitting a DFE 200 times. C.1.'s for the DFE fit to the Boyko et al. (2008) European data set were unavailable. Note
that our models predict more nearly neutral mutations (0 < Isl < 10~3) and fewer strongly deleterious mutations (10~2 < Isl) than Boyko et al. (2008),
across all mutation rates. Top panel denotes our favored mutation rate while the bottom panel denotes the mutation rate used by Boyko et al. (2008).
See Figure S5 in File S1 for a comparison of the population-scaled selection coefficients (2Ns).

simulated 100 data sets without linkage for the best-fit
neutral+gamma DFE inferred from the LuCamp data set, scaled
to an ancestral population size of 10,085 diploids (ppe, = 0.164,
o = 0.338, B = 358.8). We also downsampled each data set to
n = 24 chromosomes. Then, we fit a gamma and neutral +gamma
DFE to each full and downsampled data set.

When the true DFE is neutral+gamma distributed, infer-
ence of the DFE from small samples overestimates the pro-
portion of strongly deleterious mutations (Figure 5). When the
DFE is correctly specified, we obtain unbiased estimates of the
DFE even from small samples. However, at a sample size of n =
24 chromosomes, both the gamma and neutral+gamma dis-
tributions have a similar log-likelihood (Figure 5A). This was
also observed in Boyko et al. (2008). Then, the extra parame-
ter in the neutral +gamma distribution penalizes the true DFE
when choosing the best-fit DFE by AIC score. This leads one to
choose the gamma distribution as the best-fit DFE to the small
sample, even when the true DFE follows a neutral+gamma
distribution. Fitting the gamma distribution yields a DFE with
more new mutations with |s| > 102 and a decrease in the
proportion of new mutations with |s| < 1075 compared to the
true DFE (Figure 5B).

Assessing the role of sample size using real data

Next, we investigated the role that sample size has on in-
ference of the DFE from real data. To do this, we projected our
synonymous and nonsynonymous frequency spectra down to
a sample size of n = 24 chromosomes to match the sample
size of Boyko et al. (2008), then fit a demographic model and
DFEs as previously described. Here we used the mutation rate
assumptions u = 1.5 X 1078 and Lyg/Lg = 2.31, but
also matched the mutation rate of Boyko et al. (2008)
(v = 1.8 X 1078 and Lys/Ls = 2.5). Then, we fit the
gamma, neutral+gamma, and discrete DFEs—which were

the best-fitting distributions to the full data—to the down-
sampled data sets.

As predicted by our simulations, there is generally little
difference in the fit of the different DFESs to the downsampled
data sets in terms of log-likelihood (Table S5 in File S1). The
neutral+gamma and discrete DFEs often fit better than the
gamma, but the difference in log-likelihood is small (0.1-0.6
log-likelihood units). Thus, the gamma DFE is selected as the
best-fit DFE for all downsampled data sets by AIC. These
results mimic what was observed in our simulations, al-
though the pattern is not wholly consistent across data sets
and mutation rates. When we assume . = 1.8 X 1075 and
Lys/Ls = 2.5, the gamma DFE fits best to both the full and
downsampled 1000 Genomes and ESP data sets (Figure 4
and Table S5 in File S1). There also appears to be little dif-
ference between the gamma DFE fit to the full and down-
sampled data. By contrast, the discrete DFE fits best to the
LuCamp data under these mutation rates. Additionally, the
neutral+gamma fit best to the full ESP and LuCamp data
when we assume p = 1.5 X 1075 and Lyg/Lg = 2.31. The
gamma DFE fit to the downsampled versions of these data
sets predicts more strongly deleterious (|s| > 1072) and
more nearly neutral (|s| < 10~°) new mutations (Figure 4
and Table S5 in File S1). The DFE fit to the 1000 Genomes
data using the lower mutation rates does not follow this pat-
tern. The gamma DFE fits best to both versions of the data set,
yet the estimates from the small data set still predict more
strongly deleterious new mutations. These results seem to
corroborate the results from our simulations. That is, fitting
a DFE using a small sample may result in misspecification of
the DFE, which, in turn, may cause inaccuracies in the
inferred proportions of the DFE. We believe this may explain
some of the differences between the findings of Boyko et al.
(2008) and the findings in this study.

DFE from Large Samples
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Figure 5 Small sample size and misspecification of the DFE can explain some of the differences between previous estimates and our estimates. Gamma
and neutral+gamma DFEs were fit to 100 simulated data sets of sample sizes n = 24 and n = 2596 chromosomes, where the true DFE was neutral+
gamma distributed (D¢, = 0.164, a = 0.338, B = 358.8). (A) The distributions of the difference in log-likelihood between the gamma and neutral+gamma
distributions. When the sample size is large (n = 2596) the neutral+gamma distribution has a higher log-likelihood than the gamma distribution. However,
the small samples (n = 24) are unable to distinguish between the gamma and neutral+gamma distributions. (B) The estimated proportions of new mutations
having different selective effects when fitting the gamma and neutral+gamma distributions. Note that when n = 24, the gamma distribution overpredicts
the proportion of strongly deleterious mutations (Isl = 0.01). Red dots denote the true proportion of mutations in each bin. The boxes cover the first and
third quartiles, and the band represents the median. The whiskers cover the highest and lowest datum within 1.5 times the interquartile range from the first
and third quartiles. Lastly, any data outside that region are plotted as outlier points.

Assessing the role of the likelihood function
using simulations

Next, we investigated the performance of the multinomial vs.
Poisson likelihoods at inferring the DFE. In this study, as well
as in Boyko et al. (2008), we fit the DFE using the Poisson
likelihood, which uses an a priori estimate of the population-
scaled mutation rate, 6, to fit the curvature of the SFS as well
as the total number of SNPs. Too few segregating variants
would suggest the presence of strongly deleterious variants
that are not segregating in the sample (Boyko et al. 2008).

The multinomial likelihood fits the curvature of the SFS
while conditioning on the total number of SNPs. As such, the
number of SNPs provides no additional information. The
multinomial inference is similar to how the DFE was inferred
by Lietal. (2010) in that they only used information from the
curvature of the SFS. Note, however, Li et al. (2010) fit the
population frequency spectrum using a least-squares approach
while the multinomial likelihood fits the sample frequency
spectrum. As such, the multinomial likelihood function does
not strictly mirror the procedure of Li et al (2010). Using the
multinomial likelihood is convenient because it does not
require any prior assumptions about the population scaled
mutation rate, 6, yet may be underpowered when trying to
identify the proportion of strongly deleterious mutations, un-
less such variants are segregating in the sample.

To compare the two likelihood methods at varying sample
sizes, we fit the full model to simulated data sets of n = 12, 24,
50, 100, 150, 200, and 250 chromosomes using both the

B. Y. Kim, C. D. Huber, and K. E. Lohmueller

multinomial and Poisson likelihoods (Figure S8 in File S1).
Again, we simulated 200 data sets at each sample size with
the LuCamp demography and a gamma DFE with parameters
o = 0.203 and B = 1082.1. In general, the accuracy of our
shape parameter estimate improves as the sample size in-
creases, and we find the multinomial and Poisson likelihoods
can both be used to reliably estimate the shape parameter.
While this trend holds true for the scale parameter using the
Poisson likelihood, we find that we are unable to accurately
infer the scale parameter using the multinomial likelihood,
even for a sample of n = 250 chromosomes. For example,
nearly 50% of all the parameter estimates lie close to the max-
imum bound and 25% lie close to the minimum bound allowed
during optimization. We found that this result can be explained
by the likelihood surface being exceptionally flat with respect
to the scale parameter. In other words, we cannot estimate the
strength of purifying selection using only the curvature of the
SFS with these sample sizes. Therefore, because Li et al. (2010)
fit only the curvature of the SFS and excluded rare variants
(<2% MAF) in a sample of size of n = 400 chromosomes,
the power to detect strongly deleterious variants may be
quite low, resulting in different parameter estimates from
those in Boyko et al. (2008) and our present work.

Discussion

Wedeveloped a computational method to infer the DFE of new
mutations from large data sets, and then estimated the DFEs
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for nonsynonymous mutations using the SFS of 432 Europeans
from the 1000 Genomes Project, 1300 Europeans from the
ESP, and 1298 Europeans from the LuCamp project. The new
DFEs suggest there are fewer strongly deleterious mutations
than previously estimated (Figure 4). Although we find a
neutral+gamma mixture DFE fits best to the ESP and
LuCamp data sets, a gamma DFE seems to be a better fit to
the 1000 Genomes data (Table 3). Nevertheless, our best-fit
DFEs predict 0.38 to 0.84 as many strongly deleterious new
mutations compared to the current, widely used estimates
of Boyko et al. (2008). Additionally, these findings are ro-
bust to assumptions about the mutation rate or the assumed
functional form of the DFE. We show small sample size can
lead to incorrect estimates of the DFE, specifically when the
DFE is approximated with a parametric distribution that is
not the true distribution (Figure 5). Therefore, our esti-
mates provide an important update to previous studies of
the DFE that used smaller sample sizes. Our current esti-
mates of the DFE, particularly the estimates of the propor-
tion of moderately and strongly deleterious mutations,
should be more reliable and precise than previous estimates.
To facilitate their utility for future researchers, we provide
scripts for implementing these models on GitHub (see
Materials and Methods).

Ourresults suggest misspecification of the DFE may explain
some of the differences in the DFEs we infer from small and
large data sets. This is particularly relevant because the true
DFE is almost certainly not a parametric distribution. At small
sample sizes, different forms of the DFE tended to similarly fit
the data in terms of log-likelihood (Table S5 in File S1).
Therefore, the DFE that had fewer parameters (i.e., gamma)
was selected as the best-fit DFE. Additionally, we infer more
strongly deleterious (|s| > 10~2) new mutations from the
downsampled data sets. We showed through simulations
that even if the true DFE is neutral+gamma distributed, a
gamma DFE is selected as the best fit to a small sample.
Furthermore, this leads to inaccuracy in recovering the true
proportions of the DFE (Figure 5). While the neutral + gamma
distribution is also unlikely to be the true DFE, our simula-
tions reproduce the patterns observed when downsampling
the real data. Therefore, large sample size not only helps to
improve the precision of the estimated DFEs, but also helps to
approximate the correct form of the DFE. We expect this
question to be better resolved as additional and larger se-
quencing data sets continue to be generated in the future.

A gamma or similarly shaped distribution of deleterious
mutations is well supported by experimental estimates of the
DFE in laboratory organisms (Martin and Lenormand 2006;
Bataillon and Bailey 2014), although some studies suggest
more complex distributions (Halligan and Keightley 2009;
Hietpas et al. 2011; Jacquier et al. 2013). A number of theo-
retical models also predict the functional form of the DFE
(Huber et al. 2016). Most progress in this regard comes from
phenotype fitness-landscape models such as Fisher’s geomet-
ric model (FGM) (Martin and Lenormand 2006; Chevin et al.
2010; Lourengo et al. 2011; Tenaillon 2014; Huber et al.

2016) and biophysical models of protein stability (Cherry
1998; Goldstein 2013; Serohijos and Shakhnovich 2014).
Under fairly general assumptions, the predicted DFE under
these models for a perfectly adapted population is gamma
distributed (Martin and Lenormand 2006; Martin 2014;
Serohijos and Shakhnovich 2014), and a strongly leptokurtic
shape would suggest that most mutations have low pleiot-
ropy (Martin and Lenormand 2006; Lourenco et al. 2011).
However, our finding of a neutral+gamma distribution sug-
gests that the general FGM is inadequate, since it does not
predict the neutral point mass. Alternatively, our support for a
neutral point mass might not reflect truly neutral mutations,
but rather slightly beneficial mutations that behave effec-
tively neutral under the historically small human population
size (Huber et al. 2016). Since these mutations would segre-
gate at frequencies similar to neutral mutations, and since we
do not explicitly model the effect of beneficial mutations on
the SFS, our method would place these mutations at the
neutral point mass. Such slightly beneficial mutations are
predicted under FGM when deleterious mutations fix and
move the population away from the optimal phenotype
(Lourengo et al. 2011). Slightly deleterious mutations can
fix in the population when the effect of drift is large, Le.,
the effective population size is small. Thus, our support for
the neutral+gamma distribution might be consistent with a
large effect of drift in the relatively small human population
(Huber et al. 2016). Alternatively, a recent change in the
selective environment could have moved the human popula-
tion away from the phenotypic optimum at many genes, lead-
ing to a similar increase of the proportion of slightly beneficial
mutations (Martin and Lenormand 2006; Chevin et al. 2010;
Lourenco et al. 2011; Bank et al. 2014).

Additionally, our results show that estimates of the DFE are
sensitive to the mutationrate. For any given dataset, assuming
a higher nonsynonymous mutation rate will result in the
inference of stronger purifying selection due to the increased
number of SNPs expected (but not observed) relative to the
nonsynonymous mutation rate. There are two assumptions
that factor into the calculation of the nonsynonymous muta-
tion rate: First, it is unclear what the true mutation rate is.
Whole genome, pedigree-based estimates suggest a mutation
rate of about 108 per base pair per generation, exome-based
estimates suggest rates of 1.5 X 1078, and phylogenetic
estimates suggest a mutation rate in the range of 2.0-2.5 X
108 (Ségurel et al. 2014). Second, we infer a mutation rate
from synonymous sites, but use that mutation rate to make an
a priori assumption about the nonsynonymous mutation rate.
Many studies have the nonsynonymous mutation rate at 2.5
times the synonymous mutation rate, but we believe 2.31 to
be a more accurate estimate, as this takes into account the
CpG mutational bias and a 3:1 transition:transversion ratio
(Huber et al. 2016). These two factors combined can result in
large differences in the DFE. For example, the gamma DFE fit
to the LuCamp data predicts 15% of mutations to be strongly
deleterious (|s| > 10~2) when assuming fys/0s = 2.31 and
p = 1.5 X 108, but 25% of new mutations to be strongly
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deleterious when assuming fys/60s = 2.5 and p = 2.5X1078.
Although our results remain qualitatively consistent across
the range of mutation rates, uncertainty about the true rate
leads to uncertainty in estimating the DFE.

Anotherimportant aspect of our results is the consistency of
our estimates of the DFE between data sets. Our estimates of
the DFE suggest a skew toward neutrality compared to pre-
vious studies, and we infer a consistent range of neutral (|s| <
105, 24-26%), moderately deleterious (103 < |s| <1072,
25-33%), and strongly deleterious (|s| < 1072, 14-22%)
new mutations between the three data sets. The consistency
of our results across data sets suggests our inferences are
accurate and robust to sampling from different populations,
sequencing, bioinformatic processing, and sample size. This
suggests the DFEs we have inferred are reliable updates to
the DFEs inferred by Eyre-Walker et al. (2006) and Boyko
et al. (2008).

It is also worth noting that our methodology has key dif-
ferences from that of Li et al. (2010). Li et al. (2010) esti-
mated the DFE using the population frequency spectrum
excluding rare variants (MAF < 2%), under a constant size
demographic model using a least-squares method, and fit
the curvature of the SFS while not considering the total
number of SNPs in the sample. The extent to which these
methodological differences as well as differences in se-
quencing or bioinformatic processing of the data between
their study and our present study contribute to the different
estimated DFEs remains unclear. However, we have shown
that for small and moderately sized samples, fitting only the
curvature of the SFS is insufficient for estimating the scale
parameter of the DFE. In other words, for smaller samples,
the number of SNPs in the data must be considered to esti-
mate the proportions of moderately and strongly deleteri-
ous new mutations, since moderately to strongly deleterious
mutations are unlikely to be found in the sample.

Fitdadi infers the DFE for new mutations rather than seg-
regating variants. Interestingly, even inference using the mul-
tinomial likelihood function, which only uses the frequencies
of segregating variants, still infers the DFE for new muta-
tions. We used simulations to compare the DFE of new
mutations to that of segregating variants (Figure S9 and
Table S7 in File 51). The DFE of segregating variants de-
pends on the sample size and is shifted to be more neutral
than that of new mutations. Approximating the DFE of
segregating variants using a gamma distribution reveals
a different shape parameter than that of new mutations
(Table S7 in File S1); confirming that Fitdadi, when ap-
plied to segregating variants, estimates the DFE of new
mutations. While long-tailed distributions such as the
gamma do not directly capture the mode of very strongly
deleterious new mutations observed by many experimen-
tal studies (Eyre-Walker and Keightley 2007), the propor-
tion could be extrapolated from the DFEs we inferred. For
example, for a gamma-distributed DFE, the proportion of
new mutations that is lethal would be computed as the mass
of the distribution greater than |s| > 1.
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Our results argue that, provided the demographic model fit
to the data can adequately match the SFS of neutral synon-
ymous sites, inference of the DFE should be robust to cryptic,
unmodeled, population structure. In other words, the skew in
the frequency spectrum due to demography must be repro-
duced accurately, but inference of selection is relatively robust
to the way the skew is modeled. This result is consistent with
the work of Ma et al. (2013). Alternately, other studies rescale
the entries of the nonsynonymous SFS independently to
match the skew of the synonymous SFS from the standard
neutral model (Eyre-Walker et al. 2006; Galtier 2016; Tataru
et al. 2016). However, this method is not always accurate for
demographies including recent, rapid expansions since the
skew on neutral and selected sites may differ (Eyre-Walker
et al. 2006). Further, fitting many independent scaling pa-
rameters to large samples can be problematic (Tataru et al.
2016). Thus, Fitdadi offers an advantage over the rescaling
methods in these contexts.

Although Fitdadi was developed to work with large se-
quencing data sets, it still has several limitations. The infer-
ence framework we use becomes increasingly slower for
larger samples and requires significant computational re-
sources and time to initially generate the SFS for the range
of selection coefficients. Additionally, the frequency spectrum
becomes difficult to compute for larger selection coefficients
(2Ns > 10,000). This is mainly because finer integration grids
must be used to accurately estimate low frequency variants.
Also, like the method of Boyko et al. (2008), our method
assumes additive selective effects and should be interpreted
as averaging of selection over all heterozygotes and genetic
backgrounds. Nevertheless, we anticipate that our method
will be useful for estimating the DFE across the tree of life
as polymorphism data sets from different species continue to
accumulate.

Our results suggest that there may be more weakly and
moderately deleterious nonsynonymous mutations than pre-
viously appreciated. This has a number of important impli-
cations for medical genetic studies. These variants could
possibly contribute to disease risk. However, these mutations
could also confound statistical tests that compare observed
levels of variation to those predicted by population genetic
models. For example, using the DFE of Boyko et al. (2008)
would predict fewer segregating deleterious variants be-
cause more new mutations were estimated to be strongly
deleterious and would not segregate in the sample. How-
ever, if those mutations were instead only moderately dele-
terious, some could drift up in frequency and actually
segregate in the sample. Further, a common approach to
modeling how deleterious variants affect complex traits
(Eyre-Walker 2010) assigns mutational effects on a trait as
a function of their effects on fitness. This approach has been
widely used to quantify the architecture of complex traits
(Morris et al. 2012; Mancuso et al. 2016), to study the ef-
fects of demography on traits (Lohmueller 2014a; Simons
et al. 2014), and to assess the power of rare variant associ-
ation tests (Uricchio et al. 2016). The accuracy and realism



of these models depend on having accurate estimates of
the DFE.

Additionally, the DFE determines the extent to which
background selection affects patterns of neutral variation.
Accurately characterizing the reduction in diversity (i.e., ef-
fective population size N,) should reduce bias when trying to
learn the true demography of a population using sites linked
to selected variants (Ewing and Jensen 2016; Schrider et al.
2016). We used a deterministic approximation (Nicolaisen
and Desai 2013) of the models of Zeng and Charlesworth
(2011) to contrast the effects of background selection pre-
dicted from the DFE of Boyko et al. (2008) and the DFEs we
inferred in our study (Figure S10 in File S1). We computed
the reduction in N, (i.e., increase in the rate of coalescence)
as a function of time due to background selection for the two
different mutation rates used in our inferences (u = 1.5 X
1078, Lys/Ls = 2.31; u = 1.8 X 1078 and Lys/Ls = 2.5) as
well as the higher deleterious mutation rate of McVicker et al.
(2009): u = 7.4 X 108, also assuming Lys/Lg = 2.5. Impor-
tantly, all the DFEs predict that background selection will
reduce diversity and skew the SFS toward an excess of rare
variants compared to models of constant population size
(Figure S10 in File S1). However, DFEs with fewer strongly
deleterious mutations, like the best fit DFEs to the ESP EUR
and LuCamp data sets, predict less of an overall reduction in
neutral diversity compared to Boyko et al. (2008). Further,
the change in coalescent rates over time varies across DFEs,
suggesting that the degree to which background selection
affects the curvature of the SFS does depend on the specific
DEFE.

More broadly, our results have important implications for
understanding and quantifying deleterious variants across
human populations (Lohmueller et al. 2008; Lohmueller
2014b; Simons et al. 2014; Do et al. 2015). Specifically, the
fate of strongly deleterious mutations is relatively insensitive
to population demography. The fate of weakly and moder-
ately deleterious mutations, however, is linked more closely
with effective population size (Henn et al. 2016). Human
evolution in particular is influenced by nearly neutral
processes due to relatively small effective population sizes.
Then, a DFE containing fewer strongly deleterious new muta-
tions suggests the nature of purifying selection in humans may
be different from what is currently understood. For example,
larger proportions of moderately and weakly deleterious mu-
tations may suggest greater differences in the proportion of
segregating deleterious mutations and genetic load between
human populations (Henn et al. 2016). Accurate inferences of
the DFE are critical in this regard as researchers begin to use
explicit models of demography and selection to quantify dif-
ferences in the amounts of deleterious variants across popula-
tions (Brandvain and Wright 2016; Gravel 2016).
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Supplemental Results

Table S1. Demographic model parameter estimates from synonymous sites.

Nchr 0s N T+ N; T Nc Tc
LuCamp 2596 4261.2 0.08984 0.01 1.0512 0.07304 31.270 0.01158
1kG 864 5984.9 0.08469 0.01 1.1007 0.07043 53.283 0.02009
ESP 2600 64151 0.11949 0.01 1.3111 0.05254 98.65 0.01502
LuCamp 24 44389 0.07554 0.01 0.8703 0.10652 53.09° 0.01311
1kG 24 61224 0.07447 0.01 0.9606 0.08805 93.23° 0.01991
ESP 24 67356 0.08887 0.01 0.9787 0.08434 63.79° 0.01758

Note: See Figure S3 for a pictorial representation of the model.

Parameter descriptions:

N;: Population size relative to the ancestral population

Ti: Time, in units of 2Nanc generations (Nanc is the ancestral population size)

Os: The population mutation rate of synonymous sites.

T is fixed in this model.

*These estimates are unreliable and can range from 50-200 with no appreciable change in the
fit of the model.
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Table S2. Parameters used to scale the DFE in terms of s.

Lns/
Necnr  Bs Ls Ons M Lstlys Ls Lns Nanc
LuCam 20,043, 5,726, 14,316,
p 2596 4261.2 10652.9 1.8e-8 582 738 844 10334
25 26,673, 7,620, 19,052,
1kG 864 5984.9 ) 14962.3 1.8e-8 114 890 224 10907
31,427, 8,979, 22,448,
ESP 2600 6415.1 16037.7 1.8e-8 992 426 566 9922
LuCam 20,043, 6,055, 13,988,
p 2596 4261.2 9843.3 1.5e-8 582 463 119 11728
2.3 26,673, 8,058, 18,614,
1kG 864 5984.9 1 13825.1 1.5e-8 114 343 771 12378
31,427, 9,494, 21,933,
ESP 2600 6415.1 14818.8 1.5e-8 992 862 130 11261
LuCam 20,043, 5,726, 14,316,
p 24 4438.9 11097.3 1.8e-8 582 738 844 10766
25 26,673, 7,620, 19,052,
1kG 24 61224 ’ 15306.0 1.8e-8 114 890 224 11158
31,427, 8,979, 22,448,
ESP 24 6735.6 16839.0 1.8e-8 992 426 566 10418
LuCam 20,043, 6,055, 13,988,
p 24 4438.9 10253.9 1.5e-8 582 463 119 12217
2.3 26,673, 8,058, 18,614,
1kG 24 61224 1 14142.7 1.5e-8 114 343 771 12663
31,427, 9,494, 21,933,
ESP 24 6735.6 15559.2 1.5e-8 992 862 130 11823

Parameter descriptions:

Bs: The population scaled synonymous mutation rate

Ons: The population scaled nonsynonymous mutation rate

Ls: The number of synonymous sites

Lns: The number of nonsynonymous sites

Nanc: The ancestral population sizes computed from 6s=4NancuLs
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Table S3. Inference using Fitoadi on the African-American dataset from Boyko et al.
(2008).

dadi® Boyko et al.
NcurrlNanc 3352 3296
Texp 7067 6809
fitdadi Boyko et al.
a (shape) 0.179 0.184
B (scale) 3161 2488
0<|s|<1e-4 27.7% 27.9%
le-4 < |s| <1e-
4 14.1% 14.7%
1e-2<|s| <1e-
3 20.9% 21.9%
1e-2<|s| 37.3% 35.5%

Notes: Population sizes are reported relative to the ancestral population size, and times are
reported in units of generations. The scale parameter of the gamma distribution is scaled in
terms of the ancestral population size. The proportion of new mutations in each range of
selective effects was computed from the gamma distribution.

Demographic inference was done using the standard framework of dadi.
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Table S7. The DFE of new mutations and the DFE of segregating sites.

a (shape)

Sample MLE B (scale) MLE
True DFE of new mutations 0.187 0.0356
Gamma distribution fit to s (s is known)
segregating variants, 2n=24 0.112 0.00201
segregating variants, 2n=864 0.164 0.00634
new mutations 0.187 0.0356

Gamma distribution inferred from SFS with Fitoadi and multinomial

likelihood
2n=24 0.163 2.39*
2n=864 0.194 0.0248
Gamma distribution inferred from SFS with Fitdadi and Poisson likelihood
2n=24 0.166 0.0497
2n=864 0.189 0.0364

Notes: These results represent a single simulation replicate. We show that Fitoadi infers the
DFE of new mutations correctly for many replicates in Figure S7. These DFEs are scaled in
terms of s. *The estimated scale parameter is likely inaccurate due to the small sample size as
well as the fact the multinomial likelihood was used.
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Figure S1. The expected contribution of mutations with various selective effects to the
nonsynonymous SFS in (A) a sample of 2596 chromosomes and (B) a sample 24
chromosomes under the demographic model and DFE inferred from the full LuCamp
dataset. Note that fewer than 1000 moderately to strongly deleterious mutations (blue and red)
are segregating in the small sample, while more than 20,000 of them are predicted to be
segregating in the large sample.
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Fitting a DFE with default dadi
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Fitting the DFE with Fitdadi
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Figure S2. A flow chart depicting the efficiency of Fitdadi compared to the default
implementation of dadi. Fitting a DFE with the default implementation of dadi is slow because
the same frequency spectra must be calculated for each step in the optimization of the DFE. We
compute the spectra once and call the saved frequency spectra for each optimization step.
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Figure S3. A pictorial representation of the demographic model fit to the SFS of
synonymous sites of our datasets. The times denote the length of time of each epoch. See
Table S1 for the parameter values we inferred from the data.
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Figure S4. Comparison of the observed synonymous SFS to the SFS from the best fitting
demographic model. Each SFS has been folded, then truncated to 25 entries. All the alleles of
frequency 25 or greater in the folded frequency spectrum are summed into the last entry.
Because these demographic models were fit using the multinomial likelihood, the model SFS
has been scaled by 6s.
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Figure S5. The distribution of population-scaled selection coefficients (Y=2Ns) of new
mutations for our best-fit DFEs compared to Boyko et al. (2008). This figure is the same as
Figure 4, except estimates are scaled by twice the ancestral population size. Results are
presented for the best fit DFE to each full dataset and the best fit DFE when the data were
projected down to n=24 chromosomes. Our DFEs predict more nearly neutral mutations
(0=|2Ns|<0.1) and fewer strongly deleterious mutations (100<|2Ns|) than Boyko et al. (2008),
regardless of the mutation rate or the manner in which selection coefficients are parameterized
(Figure 4). The top panel denotes our favored mutation rate while the bottom panel denotes the
mutation rate used by Boyko et al. (2008).
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Figure S6. Comparison of the observed nonsynonymous SFS to the SFS from the best
fitting demographic and selective models. For the full data, the discrete, neutral+gamma,
and neutral+gamma are the best fitting DFEs to the 1000 Genomes, ESP, and LuCamp
datasets, respectively. To the downsampled datasets, the neutral+gamma, gamma, and gamma
DFEs are the best fitting DFEs to the 1000 Genomes, ESP, and LuCamp datasets, respectively.
Each SFS has been folded, then truncated to 25 entries. All the alleles of frequency 25 or
greater in the folded frequency spectrum are summed into the last entry.
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Figure S7. Mis-specification of the demographic model has little effect on selection
inference from small samples. Two hundred datasets were simulated under the demographic
model fit to the LuCamp synonymous SFS (Table S1, Figure S3) for a range of sample sizes.
True values are depicted with a red line. (A) Parameter estimates of the correct demographic
model (full model) and a three epoch model fit to the simulated data. (B) Parameter estimates of
the gamma DFE as well as the proportions of each range of selective effect for a range of
sample sizes assuming Lns/Ls=2.5 and p=1.8e-8 (a=0.203, =1082.1). The shape and scale
parameters are directly inferred, and the proportions are computed from the gamma distribution.
For the full model, sample size does not bias inference of selection. The accuracy of the
selection inference conditioned on the three epoch demography declines with increasing sample
size because the simple demographic model cannot account for the excess of rare variation in
the data. The boxes cover the first and third quartiles, and the band represents the median. The
whiskers cover the highest and lowest datum within 1.5 times the interquartile range from the
first and third quartiles. Lastly, any data outside that region are plotted as outlier points.
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Figure S8. Fitting only the curvature of the SFS is insufficient for estimating the scale
parameter of the gamma DFE, especially at small sample sizes. Depicted are the relative
performances of the multinomial and Poisson likelihoods when fitting a gamma DFE to 200
simulated datasets of varying sample sizes. The multinomial likelihood only fits the curvature of
the SFS while the Poisson likelihood accounts for the total number of SNPs in the data.
Simulations were performed using the demographic model and gamma DFE inferred from the
LuCamp dataset, assuming Lns/Ls=2.5 and u=1.8e-8 (a=0.203, =1082.1). True parameter
values are depicted with a red line, and the slope of the black line is 1. The density plots
describe the marginal densities of the MLEs of the simulation replicates. (A) Shape parameter
(a) of the gamma distribution. (B) Scale parameter (8) of gamma distribution. Note the bimodal
distribution of the MLEs of the scale parameter at the optimization boundaries when the
multinomial likelihood is used.
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Figure S9. The DFE of segregating sites versus the DFE of new mutations. DFEs from
three different simulations are shown as discretized histograms. In the first two, the selection
coefficients of only the segregating variants in samples of size n=24 and n=864 chromosomes
were tallied. In the third, the selection coefficients of new mutations (which could be
segregating, fixed, or lost) were tallied. The DFEs of only segregating sites show a distinct skew
towards neutrality, reflecting that strongly deleterious variants are less likely to be found
segregating in smaller samples. Additionally, our simulations show a clear distinction between
the DFE of new mutations and that of segregating variants.
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Figure S$10. The reduction in genetic diversity due to background selection as a function
of time. The reduction in Ne was computed using the deterministic approximation in Nicolaisen
and Desai (2013), assuming: a chromosome of length 100Mb with 1.5% coding sequence; a
recombination rate of 1x10® per bp; mutation rates similar to those used in our study as well as
the deleterious mutation rate of McVicker et al. (2009) of 7.4x10° per bp; and the DFEs inferred
in our study as well as that of Boyko et al. (2008). Except the DFE from Boyko et al. (which
assumed a mutation rate of 1.8x10®), the DFEs used to compute the reduction in diversity for
the various mutation rates are the best-fitting gamma or neutral+gamma DFEs inferred using
their respective mutation rates. The DFEs used for the mutation rate of 7.4x10°® are the best-
fitting DFEs inferred assuming the mutation rate was 1.8x107%. These calculations assume a
constant population size of 10,000 diploids, and values of N, less than 10,000 are due to
background selection reducing linked neutral diversity.
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CHAPTER 3:

DELETERIOUS VARIATION SHAPES THE GENOMIC LANDSCAPE OF INTROGRESSION
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ABSTRACT

While it is appreciated that population size changes can impact patterns of deleterious
variation in natural populations, less attention has been paid to how gene flow affects and is
affected by the dynamics of deleterious variation. Here we use population genetic simulations to
examine how gene flow impacts deleterious variation under a variety of demographic scenarios,
mating systems, dominance coefficients, and recombination rates. Our results show that
admixture between populations can temporarily reduce the genetic load of smaller populations
and cause increases in the frequency of introgressed ancestry, especially if deleterious
mutations are recessive. Additionally, when fitness effects of new mutations are recessive,
between-population differences in the sites at which deleterious variants exist creates heterosis
in hybrid individuals. Together, these factors lead to an increase in introgressed ancestry,
particularly when recombination rates are low. Under certain scenarios, introgressed ancestry
can increase from an initial frequency of 5% to 30-75% and fix at many loci, even in the
absence of beneficial mutations. Further, deleterious variation and admixture can generate
correlations between the frequency of introgressed ancestry and recombination rate or exon
density, even in the absence of other types of selection. The direction of these correlations is
determined by the specific demography and whether mutations are additive or recessive.
Therefore, it is essential that null models of admixture include both demography and deleterious

variation before invoking other mechanisms to explain unusual patterns of genetic variation.

INTRODUCTION
There is tremendous interest in quantifying the effects that demographic history has had
on the patterns and dynamics of deleterious variation and genetic load [1-7]. Several studies
have suggested that recent human demography has had little impact on load [8,9] while others
have suggested weak, but subtle differences between human populations [10-14]. All of these

studies have typically focused on how population size changes, such as expansions and
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bottlenecks, have affected deleterious variation. Other types of complex demography, however,
have received considerably less attention.

In particular, gene flow may be important for shaping patterns of deleterious variation.
Population admixture, or hybridization between closely related species, appears to be quite
common in nature [15] and has had a significant role in shaping human genomes [16]. Gene
flow alone can subtly change the effects of selection on deleterious variation [12], but should
have notable fitness consequences if deleterious variation is distributed differently between
admixing populations. For example, Neanderthals likely had a higher genetic load than
coincident human populations due to the former’s smaller long-term population size [17,18]. As
a result, it is thought that gene flow from Neanderthals into the ancestors of modern humans
could have increased the genetic load of some human populations by 0.5% [17], and that linked
selection removed much of Neanderthal ancestry from humans since that time. In contrast,
domesticated species likely have increased genetic load due to domestication bottlenecks and
hitchhiking of deleterious alleles with artificially selected variants [19-21]. Gene flow from wild
populations could alleviate the genetic load of domesticated species, and increases in the
frequency of wild-population ancestry should be observed in the domesticated population [22].
Such changes in patterns of introgression are important to consider when studying how natural
selection shapes the evolution of hybrid ancestry, a major goal in evolutionary biology.

Differences in the distribution of deleterious variation between hybridizing populations is
one reason why natural selection may shape the evolution of hybrid ancestry. Hybridization can
also decrease the fitness of a population, for instance, if the parent lineages have diverged
significantly and evolved genomic incompatibilities, or if parent lineages have evolved under
unique and strong selective pressures in different environments. In both cases, linked selection
removes hybrid ancestry especially in regions of low recombination and high functional density
[23—25]. This creates genome wide, negative correlations between the local recombination rate,

or functional density, and the frequency of introgressed ancestry, a pattern that is observed in
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humans [23,25,26], swordtail fish [25], and mice [27]. The similar outcomes of both these
processes mean that models of selection on deleterious variation should be considered before
interpreting genomic patterns of introgression as evidence of divergence and speciation.

Another complication to studying the effects of deleterious mutations on introgression is
that strongly deleterious new mutations are more likely to be fully or partially recessive [28-30].
Furthermore, dominance coefficients vary between species, and can range from close to
additive in humans [13] to mostly recessive in Arabidopsis [30]. If some proportion of deleterious
recessive variants is private to a population, admixed populations could experience heterosis
when recessive variants are masked (heterozygous) in hybrid individuals [31]. As a result,
heterosis may participate in a tug-of-war on hybrid ancestry with additive variants by increasing
the frequency of linked ancestry [17], increasing apparent migration rates in regions linked to
selected variants [32,33], particularly when gene flow occurs in a highly structured population
[34]. Heterosis should also increase the probability that introgressed ancestry will persist in an
admixed population, even if the introgressed ancestry contains more deleterious alleles [17].
Given the extent to which hybridization is thought to be common to all species [15], with levels
of shared polymorphism in taxa such as Arabidopsis motivating arguments for the bifurcating
species concept to be revoked [35], it is crucial to understand the contribution of heterosis to
patterns of hybrid ancestry.

Hybridization also transfers novel adaptive variants between evolutionarily distinct
lineages [36]. In humans, many Neanderthal variants are thought to be adaptive [37], possibly
affecting phenotypes such as skin pigmentation [38,39], the response to oxygen levels at high
altitudes [40,41], and immunity to pathogens [42]. In this case, the introduction of beneficial
alleles via gene flow will also oppose the effect of linked selection from deleterious variation,
since introgressed ancestry would increase in frequency by hitchhiking with adaptively
introgressed variants. Interestingly, North American populations of Drosophila melanogaster

exhibit an overall enrichment for introgressed African ancestry in genomic regions of low
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recombination [43,44]. The divergence time between these two D. melanogaster populations is
small, and so selection on hybrid individuals may be driven by adaptive variants that arose over
shorter time scales than genomic incompatibilities. On the other hand, no correlation between
recombination rate and introgression is observed in invasive Californian sunflowers [45]. How
selection against additive deleterious variation, selection for adaptive variants, and heterosis
interact to determine these genomic patterns is unknown.

The objective of this study is to develop a clearer idea for null models of the dynamics of
introgression in hybridizing populations while considering the effect of deleterious variants on
fitness. Specifically, we aim to understand how selection on introgressed ancestry is determined
by differences in the effective population size, mating system, genome structure, recombination
rate, distribution of fitness effects, and distribution of dominance coefficients. Previous
simulation and empirical work have shown that for at least some systems, deleterious variation
is a significant modulator of gene flow [17,18,22,24,25], but few studies have investigated these
questions outside of demographic models specific to a system. This study presents a series of
simulations utilizing demographic models that generalize biological scenarios of interest by
borrowing population genetic parameters and genomic structure from humans and Arabidopsis
thaliana, two markedly different organisms with markedly different population genetic
parameters. We include a realistic distributions of fitness effects and simulate under various
models of dominance. In addition, we examine how the relationship between the genomic
landscape of introgressed ancestry and recombination rates or functional content is determined

by the underlying demography.

RESULTS
Forward simulations
We used SLiM 3.0 [46] in conjunction with tools from pyslim [47] and msprime [48] to

simulate a series of five models of admixture in the presence of deleterious variation. Each of
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the five models was based on a divergence model where an ancestral population at equilibrium
splits into two subpopulations. At some time after the split, a single pulse of admixture occurs at
a proportion of 5%, in one direction and for a single generation. Due to practical considerations
only an initial admixture proportion of 5% was simulated. Figure 1 provides a cartoon

representation of these models and the specific model parameters can be found in Table S$1.
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Figure 1. The demographic models used for the simulations. After a burn-in period of 10N
(100,000) generations, a single population diverged into two subpopulations. The demography
of the subpopulations was modified in ways that changed the distribution of deleterious
variation. 2N, (20,000) generations after the split, a single pulse of admixture occurred such that
5% of the ancestry of the recipient population came from the donor population. Arrows in each
panel denote the direction of gene flow. The simulation was run for N4 (10,000) additional
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generations after admixture. Population sizes were changed as shown for each model. See

Table S1 for specific parameter values for each model.

All simulated sequence included genic structure (exon/intron/intergenic regions), which
was either randomly generated or incorporated from a reference genome as described in the
following sections. Only new nonsynonymous mutations were assigned nonzero selection
coefficients, which were drawn from a gamma distribution of fitness effects (DFE) with shape
parameter 0.186 and E[s]= -0.01314833 [49] except when specified otherwise. In other words,
no positively selected mutations were simulated.

Throughout, we will refer to the subpopulation that migrants originate from as the donor
subpopulation, and the subpopulation that migrants join as the recipient subpopulation.
Furthermore, we will refer to ancestry in the recipient subpopulation that originated in the donor
subpopulation as introgression-derived ancestry. We use p; to denote the total proportion of
ancestry that is introgression-derived in the recipient subpopulation.

See the Methods for additional details on the simulations.

Demography and recombination rate create differences in load between populations

To better understand how deleterious variants shape patterns of introgressed ancestry,
we first simulated small genomic segments with randomly generated genic structure, of length
~5 Mb and selection coefficients from a gamma DFE. Two hundred simulation replicates using
each of the 5 demographic models in Figure 1 (parameters in Table S1), each of the per base
pair recombination rates r= 10, 107, 10, and 10, and additive (h=0.5) or recessive (h=0.0)
fitness effects were generated, for a total 8,000 independent replicates.

In the 20,000 generations between the population split and admixture event, deleterious

mutations accumulate at different rates across subpopulations for each unique model (Figure
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$1), illustrated by the relative difference in subpopulation fithess in Figure 2. We report

subpopulation fitness while ignoring the deleterious variants that have fixed in both

subpopulations, since selection will not act on globally monomorphic variants. Because some

weakly deleterious variants will fix in one subpopulation yet be lost in the other, each

subpopulation’s fithess also steadily decreases through time.
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Figure 2. The change in the ratio of fithess over time due to demography. Each individual plot

depicts the ratio of the mean fitness of the recipient population (wr) to the donor population (wp)

for the demographic models shown in Figure 1. The mean (dotted line) and the 25" to 75"

percent quantiles are shown for 200 simulation replicates. The vertical gray line depicts the time

of gene flow, and the horizontal dashed black line depicts wr/ws=1. Different colors denote

distinct recombination rates used in the simulations. Left panel denotes additive mutations

(h=0.5) while the right panel shows recessive mutations (h=0).

74



In the additive fithess model, this relative difference in fithess is simply determined by
relative differences in subpopulation size. When there are no differences in subpopulation size
(Model 0), the fitness of both donor and recipient subpopulations decreases at approximately
the same rate (wr = wp, Figure 2). A similar pattern is for a short bottleneck in the recipient
population (wr = wp , Model 1, Figure 2), reflecting the insensitivity of additive genetic load
(measured in terms of the number of deleterious variants per haplotype in Figure $2) to short-
term changes in Ne [8]. In contrast, long-term differences in population size (Models 2-4, Figure
2) provide enough time for deleterious variants to drift to higher frequency in the smaller
subpopulation, resulting in substantial differences (approximately 5%) in fithess between
subpopulations.

When deleterious mutations are recessive, a qualitatively similar relationship between
subpopulation size and subpopulation fitness is generally observed. When there are no
differences in population size (Model 0), the fithess of donor and recipient subpopulations
decreases at a similar rate (wr = wp, Figure 2). A short bottleneck in the recipient population
(Model 1) increases the frequency of homozygous, recessive genotypes immediately post-
bottleneck (Figure S$3) which slightly decreases the recipient subpopulation’s fitness
immediately before admixture (Figure 2). Finally, similar to the additive fithess model, long-term
differences in population size result in substantial differences (>10%) in relative fitness between
admixing populations.

The recombination rate is a key factor in determining differences in fithness between the
two subpopulations. When the recombination rate is low, the fitness of the smaller
subpopulation decreases at a lower rate, reflecting the reduced efficacy of purifying selection in
low recombination regions [50]. Relative subpopulation differences in fitness between high
recombination (r=10%) and low recombination (r=107) simulations are about 2% for the additive

fitness model and about 8% for the recessive fithness model.
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Demography and recombination determine changes fitness post-admixture

Similar to the manner in which they affect subpopulation differences in fitness,
recombination rates interact with demography to determine changes in subpopulation fitness
after admixture.

When fitness effects are additive, admixture is unlikely to cause immediate and large
changes in fitness, while subpopulation differences in fitness lead to gradual changes in fitness
over time. If admixing subpopulations have the same fitness (Models 0 and 1, Figures 2 and
$1), admixture predictably has no impact on the recipient population’s fitness. If donor
haplotypes have lower fitness than the recipient (Model 2, Figure 2), the recipient population’s
fitness is negligibly decreased by admixture (Figure S2), specifically because relative
differences in donor and recipient are relatively small (<10%) and the initial frequency of donor
ancestry is always 5%. If instead the donor subpopulation has higher fitness (Models 3 and 4,
Figure 2), recipient fitness is relatively unaffected at the time of admixture but increases over
time (Figure S2) as the fitter haplotypes experience directional selection. The velocity and
magnitude of these changes depends on the recombination rate, as variants originating from the
same subpopulation are generally selected in the same direction, and these variants remain on
the same haplotypes when recombination is low.

When fitness effects are recessive, admixture instead causes immediate and large
changes in fitness as recessive alleles are masked in heterozygous, hybrid individuals (Figures
2 and $1). The qualitative patterns observed are consistent across all demographic models, but
the magnitude of these changes is significantly larger in simulations where the recipient
subpopulation has lower fithess. The recombination rate again plays a key role in determining
fitness in the recipient subpopulation, with the largest changes in fithess occurring in simulations
with low recombination. This occurs because the largest differences in pre-admixture fitness are
observed when recombination is low (Figure 2), but also because the heterozygosity of hybrids

is maximized if recombination does not occur between donor and recipient haplotypes. This
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linkage effect is particularly important as most of the variants under selection should have weak
effects, since selection is likely to prevent strongly deleterious variants from drifting to high

frequency even in a small population.

Demography and recombination rate determine patterns of introgression

We next explore changes the frequency of introgressed ancestry (p;) over time in the
different models.

In the additive fithess case, changes in the frequency of introgression-derived ancestry
are directly predictable from the differences in subpopulation fitness. When there are no
differences in load (wr= wp, Models 0 and 1, Figures 2 and S1) between mixing haplotypes,
selection does not favor a particular ancestry and donor subpopulation ancestry remains, on
average, at the initial admixture proportion of 5% in the recipient (Figure 3). If donor
subpopulation haplotypes have lower fitness as in Model 2 (Figures 2 and S1) deleterious
donor ancestry is removed by selection, leading to a long-term p; of less than 5%. If instead the
donor subpopulation has higher fitness (Models 3 and 4, Figure 2), p; is increased above 5% by
selection. This increase is greatest (p; = 75%) when there is an expansion after the time of

admixture and in regions of low recombination (Model 4).
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Figure 3. The frequency of introgression-derived ancestry (p/) in each model. Earlier
generations are not shown since p/=0 prior to admixture. The mean (dotted line) and the 25" to
75" percent quantiles are shown for 200 simulation replicates. The vertical gray line depicts the
time of gene flow, and the horizontal dashed black line depicts the initial admixture proportion of
0.05. Different colors denote distinct recombination rates used in the simulations. Left panel

denotes additive mutations (h=0.5) while the right panel shows recessive mutations (h=0).

In a recessive fitness model, selection initially favors donor ancestry in the recipient
subpopulation. In all cases (Models 0-4, Figure 3), the frequency of introgression-derived
ancestry increases after admixture, regardless of whether the donor subpopulation’s fitness is
less fit or more fit than the recipient. This effect is explained by heterosis, which occurs when

recessive deleterious variants are masked as heterozygotes in hybrid individuals (Figure S3),
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particularly in the generations immediately following admixture. At this time point, recombination
has had little chance to shuffle donor and recipient haplotypes and heterozygosity is maximized
in admixed individuals.

Again, the recombination rate is a key parameter that determines patterns of
introgressed ancestry. As described previously, variants that are selected in the same direction
remain linked when recombination is low (=10, Figure 3), maximizing the effect of selection
and minimizing selective interference between recombinant haplotypes. When recombination is
high (r=10), the proportion of donor ancestry is unaffected by selection post-admixture (long-
term p=5%, Figure 3), as recombination quickly decouples variants under selection from their
ancestry backgrounds. Importantly, when recombination rates are low (r=10°), the frequency of
introgressed ancestry can increase substantially to up to 75% in the recipient population,
despite the initial admixture proportion of 5%. Even with higher recombination rates, when
deleterious mutations are recessive and there is a population expansion at the time of admixture

(Model 4), introgressed ancestry can increase up to 25% frequency.

The impact of the population split time on heterosis

So far, we have fixed the split time before admixture at 2N generations, a substantial
time for differences in deleterious variation to accumulate between subpopulations. To further
examine the relationship between split time and selection on introgression-derived ancestry, we
simulated with Models 0 and 4 but also varied the time between the split and admixture (ts). For
simulations with a demography analogous to Model 0, we simulated two divergent populations
of equal size. For those analogous to Model 4, the recipient subpopulation’s size was reduced
to 1,000 diploids immediately after the split and recovered to the original size at the same time
that gene flow occurred. The recombination rate was set to =10 in these simulations.

Figure 4 depicts the long-term proportion of introgressed ancestry, p;, 10,000

generations after the admixture event for these two sets of models. We found that across our
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range of simulated s, the long-term frequency of introgressed ancestry increases monotonically
with s regardless of the underlying demography. Longer split times result in more deleterious
variation being unique to each subpopulation, causing heterosis after admixture as private
deleterious variants are masked by introgressed ancestry (Figure S4). However, these
differences appear to reach equilibrium after 20,000 generations (Figure 4), about when most
deleterious variants are private to one subpopulation (Figure S4). We also found as a
bottleneck increases in duration, differences in subpopulation fithess become a significant
contributor to the increase in long-term p;, but note the apparent equilibrium at 20,000
generations. At a split time and thus bottleneck time of >20,000 generations, heterosis and
differences in load increase long-term p; nearly 2-fold relative the model with no differences in
load (compare Model 0 to Model 4 in Figure 4). When parametrizing the population split times
in terms of the realized Fsr values computed from the SNPs in the simulation output, we find
that even for low levels of differentiation (Fsr>0.04), there is a pronounced increase in
introgressed ancestry (Figure 4). Interestingly, simulations with large long-term p; (e.g. Model 4
at 1,000 generations or Model 0 at 5,000 generations) can have a level of differentiation of
Fs1<0.2 at the time of admixture, suggesting that even moderate levels of differentiation
between subpopulations are sufficient to drive heterosis in low recombination regions (Figure

4).
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Figure 4. Population split time before admixture and population size impact the amount of
introgressed ancestry when mutations are fully recessive. The proportion of ancestry that is
introgression-derived, p;, at the time of N (10,000) generations after admixture, is shown for
200 simulation replicates and two demographic models (Model 0 and Model 4, refer to Figure 1)
for a range of times between subpopulation divergence and the admixture event. The
recombination rate in all simulations is r=10° per base pair. Violin plots represent the density
while dot and whiskers represent the mean and one standard deviation to either side. The
horizontal dashed black line represents the initial admixture proportion of 0.05. Note that as the

split time increases,

Human genome structure results in a heterogeneous landscape of introgression

So far, we have shown how selection on load shapes introgression-derived ancestry in a
set of simple simulations. However, recombination rates and gene density are heterogeneous
across actual genomes, and our simulations suggest this variation also could influence the

genomic landscape of introgression.
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To investigate how a realistic genomic structure affects patterns of introgression, we
simulated with three of the demographic models described previously (Models 0, 2, and 4) using
exon definitions and recombination map for a 100 Mb segment of human chromosome 1. We
fixed the exon definitions and recombination map to be the same for all simulations. Only new
nonsynonymous mutations were assigned non-zero selection coefficients drawn from a gamma
DFE. In addition to simulating both additive and recessive fitness effects separately, we also
simulated an inverse relationship between dominance coefficients and selection coefficients,
which we will refer to as the h(s) relationship, using the function estimated by Henn et al. [13].
We generated 100 simulation replicates for each of the three demographic models. At the end
of each simulation, we split the simulated chromosome into non-overlapping 100kb windows
and computed the frequency of introgression-derived ancestry, exon density, and the average
per base pair recombination rate in each window.

The frequency of introgression-derived ancestry generally exhibited genome-wide
increases after admixture when mutations were partially or fully recessive and varied in
accordance with differences in Ne between subpopulations when mutations were additive. In the
model with equal subpopulation sizes (Model 0), we observed no average change in the
frequency of introgression-derived ancestry when mutations were additive. When new
deleterious mutations were partially or fully recessive, we observed an overall genome-wide
increase in the frequency of introgression-derived ancestry (Figure 5), with many regions
reaching high frequency (>50%) in single simulation replicates (Figure S5). This increase in
frequency is only due to selection on recessive mutations and local variation in recombination

rate, since no positively selected mutations were simulated.
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Figure 5. The average genomic landscape of introgression in simulations with human genomic

structure. The frequency of ancestry that is introgression-derived is shown for non-overlapping

100 kb windows in a simulated 100 Mb region of chromosome 1. The model numbers refer to

the models shown in Figure 1. Points represent a single value for each 100 kb window and
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lines are loess curves fitted to the data. The horizontal black dashed line represents the initial
frequency of introgression-derived ancestry, p/=0.05. Vertical blue bars represent genes in
which deleterious mutations can occur. Red curves denote the results for recessive mutations,
orange curves show the results for additive mutations, and blue curves show the results for

simulations with a h(s) relationship.

In the model where introgressing haplotypes carried a larger deleterious burden (Model
2) and when deleterious mutations were not all recessive, we observed an overall depletion of
introgressed ancestry consistent with the effects of purifying selection upon introgressed
ancestry (Figure 5). However, in simulations with fully recessive mutations, the effects of
heterosis were strong enough such that many genomic regions showed average increases in
frequency of 1.5 to 2 times that of the initial introgression frequency of 5%. Importantly, Harris
and Nielsen [17] predicted that heterosis would increase the frequency of introgressed ancestry
by only a few percent, but our simulations with a similar demographic model show that larger
increases in the frequency of introgressed ancestry, especially in exon-dense and low
recombination regions.

Finally, when we simulated the introgression of haplotypes from a subpopulation with
lower genetic load (Model 4), we observed drastic, genome-wide increases in the average
frequency of introgressed ancestry in the recipient subpopulations (Figure 5) as well as many
fixed loci in individual simulations (Figure S5), regardless of whether fitness effects of mutations
were additive or recessive. For example, local regions of the simulated chromosome showed an
average increase in introgressed ancestry from an initial frequency of 5% up to 50-60%
frequency. Furthermore, peaks of introgression are highly correlated between the simulations
with different models of dominance, suggesting that the interplay between exon density and

recombination strongly affects the way that selection acts on introgressed ancestry in this
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model. This is the type of signature that would be unlikely to be generated under neutral
demographic models and could be mistakenly attributed to adaptive introgression.

It is also notable that the frequency of introgression-derived ancestry (p;) in each window
appears to be driven not only by recombination but by exon density, or the local concentration of
sites at which deleterious mutations can occur. For recessive mutations, p; is greatly increased
on the left-hand side of the simulated chromosome, which tends to be more gene-rich than the
right-hand side of the chromosome (Figures 5 and S5). Importantly, the recombination rate was
not significantly correlated with exon density (Spearman’s p=-0.0457, p=0.149) in our
simulations, showing these factors likely act independently to shape the landscape of
introgression.

To more formally explore these relationships, we examine the correlations between
genomic features and the average frequency of introgressed ancestry across 100 simulation
replicates, measured in 100 kb windows (Figures 6 and 7). In the model of equal subpopulation
sizes (Model 0), the frequency of introgression-derived ancestry is not significantly related to the
recombination rate or exon density when mutations have additive effects, but is positively
correlated to exon density when fitness effects are fully or partially recessive (Figure 7). The
h(s) relationship results in intermediate levels of introgression relative to simulations with strictly
additive or fully recessive new mutations. For Model 2, the frequency of introgression-derived
ancestry is positively correlated to the recombination rate and negatively correlated to exon
density when fitness is additive. When fitness effects are fully recessive for this model, the
frequency of introgressed ancestry is negatively correlated to recombination rate (middle panel
in middle row in Figure 6) and positively correlated to exon density (middle panel in middle row
in Figure 6). However, under the h(s) relationship, introgression derived ancestry is not
significantly correlated to the recombination rate but is correlated with exon density. Lastly,
when introgressed ancestry comes from a larger subpopulation with a lower deleterious burden

than the recipient subpopulation (Model 4), the frequency of introgression-derived ancestry is
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always negatively correlated with recombination rate, and positively correlated with exon

density. For Model 4, these correlations are observed for all models of dominance.
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Figure 6. The relationship between recombination rate and frequency of introgressed ancestry
for different demographic and selective scenarios. The frequency of introgression-derived
ancestry (p)) is plotted against the average recombination rate of non-overlapping 100 kb
windows in each window at time Na (10,000) generations after admixture. Gray dots represent
the average p; of a single window in 100 simulation replicates, while red dots represent the
average p; of 5% of windows as ordered by rank of recombination rate. Rank was randomly
assigned for ties. The horizontal black line represents the initial p, of 5%. Spearman’s p is
computed for the relationship between recombination rate and p; in each window and p-values

indicate the significance of Hi: p#0. The model numbers refer to the models shown in Figure 1.
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Figure 7. The relationship between exon density and frequency of introgressed ancestry for
different demographic and selective scenarios. The frequency of introgression-derived ancestry
(p1) is plotted against the average exon density of non-overlapping 100 kb windows in each
window at time Na (10,000) generations after admixture. Gray dots represent the average p; of a
single window in 100 simulation replicates, while red dots represent the average p; of 5% of
windows as ordered by rank of exon density. Rank was randomly assigned for ties. The
horizontal black line represents the initial p; of 5%. Spearman’s p is computed for the
relationship between recombination rate and p, in each window and p-values indicate the

significance of Hi: p#0. The model numbers refer to the models shown in Figure 1.

Deleterious mutations impact the length of introgression deserts

Using these same simulations, we examined how selection on deleterious variation after
admixture might influence the distribution of introgression deserts, or long stretches of the
genome of the recipient population devoid of introgressed ancestry (Figure S6). When
subpopulation fitnesses are expected to be the same (Model 0), the distribution of introgression

deserts for models with deleterious mutations is similar to a neutral model, suggesting that
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selection does not appreciably impact the distribution of deserts. When introgression-derived
ancestry is expected to be deleterious (Model 2), simulations with additive fitness are enriched
for longer ancestry deserts, though only slightly so. If instead introgression-derived ancestry is
less deleterious than ancestry in the recipient population (Model 4), the length distribution of
introgression deserts is shifted to be shorter, with the shortest introgression deserts occurring in
models with recessive mutations (h=0) where both selection on load and heterosis act

synergistically to increase the frequency of introgressed ancestry.

Introgression on the X chromosome

The observation that human X chromosomes are five-fold more resistant to introgression
than the human autosome has been interpreted as a signature of genomic incompatibility
between Neanderthals and humans, caused by an overrepresentation of male hybrid sterility
genes on the X chromosome [23]. However, the evolution of the X chromosome differs from the
autosomes in a number of important aspects, particularly in the strength of selection on
deleterious variants [51], which may contribute to differences in patterns of introgression [17,18].
It is additionally unclear how selection on recessive variants might contribute, or counteract, the
apparent resistance of the X chromosome to introgression.

To investigate the expected patterns of introgression on the X chromosome, we modeled
X chromosome admixture with the simulation framework previously described. Although we
used the same DFE for all these simulations, we utilized an analogous model of fithess that
accounts for dosage compensation and the hemizygous sex [51,52]. Chromosome structure,
recombination rates, and the DFE were the same as the simulations of human chromosome 1.
See Methods for additional details on the calculation of fitness in these simulations.

Our simulations show that deleterious variation alone can result in significant differences
between introgression on the X and the autosomes (Figure 8). When fitness is additive,

stronger selection occurs on the X chromosome as deleterious variants are exposed in males.
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This does not affect the X to autosome introgression ratio (X/A ratio) for Model 0, since both
populations carry a similar burden of deleterious variants. For Model 2, selection removes
introgressed ancestry from the X more quickly (X/A < 1), and for Model 4, selection increases
the frequency of introgressed ancestry more than the autosome (X/A > 1). When fitness is
recessive, the effect of heterosis is weaker for the X chromosome, since the hemizygous sex
cannot be heterozygous. This effect also results in less observed introgression on the X than
the autosome (X/A < 1) for all considered models. Finally, under the h(s) relationship, our
models predict amounts of introgression that are intermediate between strictly additive or strictly

recessive models.
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Figure 8. Differences in introgression between the X chromosome and autosomes. The
average frequency of introgression-derived ancestry across the entire simulated chromosome
(p1) at time Na (10,000) generations after admixture is shown for three demographic models and

three models of fitness. Model numbers refer to the models shown in Figure 1. Bars represent
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the mean p; of 100 simulation replicates and error bars represent standard errors of the means.

The horizontal dashed black line represents the initial p, of 5%.

Arabidopsis genome structure results in a homogeneous landscape of introgression

Human-like demography and genomic parameters may not generalize well for the
purpose of understanding introgression in other species. Functional density, recombination
rates, effective population sizes, dominance, and the DFE can differ by an order of magnitude
between species. To provide an alternative picture of how introgression dynamics are driven by
deleterious variation in a natural system where dominance and selection have been estimated,
we simulated Models 0, 2, and 4 using the genomic structure of Arabidopsis thaliana.

While the simulated demography was similar to the ones described previously, we used
exon definitions and a recombination map of most (29.1 out of 30.4 Mb) of A. thaliana
chromosome 1, and chromosome structure was fixed to be the same in all 100 simulation
replicates. Both exon density and recombination rates are higher in A. thaliana (medians of
100kb windows 4.8x10™" and 4.6x107, respectively) than humans (medians of 100kb windows
1.6x107 and 8.04x107°, respectively). The ancestral population size was set to N4a=100,000
diploids, and the DFE to a gamma distribution with shape parameter 0.185 and E[s]= -
0.0004866 [30]. We also assumed that dominance coefficients followed the h(s) relationship
estimated by that study and did not simulate scenarios with only additive or only recessive new
mutations. To the best of our knowledge, this is the only estimate of the h(s) relationship in a
natural population other than humans. We split the simulated chromosome into non-overlapping
100kb windows and computed the frequency of introgression-derived ancestry, exon density,

and the average recombination rate in each window.
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The genomic landscape of introgression in our simulated Arabidopsis population varied
little (Figure 9), even in a single simulation replicate of the same demographic model (Figure
S7). For Model 0, introgressed ancestry rose quickly from an initial frequency of 5% to about
24%, Na generations after admixture. There was little spatial variation in the frequency of
introgression-derived ancestry. For example, p; did not appear to be affected by the paucity of
exons near the centromere (Figure 9). In Model 2, introgression-derived ancestry was quickly
removed from the recipient subpopulation. This meant that p, decreased to 0% across the whole
chromosome. The converse was true for Model 4, where introgression-derived ancestry was
favorable, and selection resulted in a complete replacement of recipient population ancestry

(p=100%).
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window and lines are loess curves fitted to the data. The horizontal black dashed line represents
the initial frequency of introgression-derived ancestry, p/=0.05. Vertical blue bars represent
genes in which deleterious mutations can occur. Blue curves show the results for simulations

with a h(s) relationship.

Introgression is more likely in partially selfing populations than outcrossing populations

A notable life history feature distinguishing Arabidopsis thaliana from its congeners is the
capability to self-fertilize [53]. Populations that are capable of self-fertilization may experience
an overall reduced N, leading to an accumulation of weakly deleterious variants relative to an
outcrossing population, and increased levels of inbreeding depression. On the other hand,
strongly deleterious recessive mutations should be purged in a selfing population [54,55].
Relative differences in the types of deleterious variation between groups with different mating
systems may then initiate another kind of selective tug-of-war after admixture.

To investigate how deleterious mutations affect levels of introgression when admixture
occurs between two populations with different mating systems, we simulated gene flow between
a partially selfing and an outcrossing subpopulation using the same A. thaliana parameters as
described in the previous section. We limited our simulated demographic model to Model 0 so
that any differences in deleterious variation between subpopulations could be attributed to the
mating system. Seven different gene flow scenarios were simulated, with selfing probabilities of
0%, 25%, 50%, and 75% in either subpopulation (Figure 10). Specifically, we simulated: first,
with two outcrossing populations (0% to 0%); then with the outcrosser (0%) as the donor and
the partial selfer (selfing probabilities of 25%, 50%, 75%) as the recipient, then the partial selfer
(25%, 50%, 75%) as the donor and the outcrosser (0%) as the recipient. Self-incompatibility

alleles were not simulated.
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Figure 10. The impact of partial selfing on the frequency of introgression-derived ancestry in
Model O (Figure 1) with Arabidopsis genomic structure. The frequency of introgression-derived
ancestry (p;) at time Na (10,000) generations after admixture is plotted for seven different
scenarios of admixture between a partially selfing population and an outcrossing population. Bar
plots denote the average p; of 100 simulation replicates and error bars represent standard errors
of the averages. The horizontal dashed black line represents the initial p; of 5%, and the
horizontal dashed blue line represents the p, that is expected between when both
subpopulations are outcrossers. Labels on the x-axis denote the probability of selfing in the

population that is partially selfing.

Our simulations show that the long-term frequency of introgression (10,000 generations
after admixture) depends on the proportion of selfing individuals in the selfing subpopulation
(Figure 10). In other words, selfing reduces N relative to an outcrosser, resulting in increased

drift and a greater accumulation of deleterious mutations. These differences in load result in
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patterns of introgression qualitatively similar to those observed previously in this study. In the
simulations between two outcrossing populations, p; increases from 5% to a long-term 20-25%,
due to heterosis from the large proportion of recessive mutations predicted by the h(s)
relationship. This is the same result as the simulations of Model 0 in the previous section. When
the outcrosser is the donor, p; increases monotonically with the selfing probability of the
recipient, this time above the fraction expected between two outcrossing populations. When the
partially selfing population is the donor, long-term p; usually increases by heterosis from the
initial 5% value, although the long-term p; monotonically decreases as the selfing probability
increases. At a selfing probability of 75%, the outcrossing population is almost completely
resistant to introgression. In the absence of fitness epistasis, it is likely that a combination of
high recombination rates and strong initial selection from differences in deleterious mutations
between populations counteracts any loss of donor ancestry from the purging of strongly

deleterious recessive variants.

DISCUSSION

We have shown through simulations that deleterious variation can greatly influence the
dynamics of introgression between admixing populations, in markedly different directions,
magnitudes, and manners depending on the demographic model, mating system, models of
selection, and genomic structure. In particular, the recombination rate is a key parameter that
determines the way in which deleterious variants accumulate between populations and how
selection acts on introgression-derived ancestry after admixture, ultimately determining the
genomic landscape of introgression.

Our work demonstrates how demography can shape patterns of deleterious variation in
different populations. Previous studies have examined the role of population size changes
[1,8,12,56,57] and serial founder effect models [13,58] on deleterious variation. Interpreting how

differences in the distribution of deleterious variation impact fithess has been a contentious
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issue [4,5,7,9,11]. In this study, we observed that admixture can increase the fitness of the
recipient population, sometimes drastically if the donor population is of larger long-term effective
population size and thus carries lower genetic load. Generally, gene flow is observed to drive
smaller, subtle changes in fitness. Nevertheless, the influx of new alleles can result in a
rearrangement of deleterious variants in an admixed population (Figures S2 and S3), and
subtle changes to fitness can lead to significant shifts in the frequency of introgressed ancestry
(e.g. see Model 0, h=0.0, in Figure 3). These effects can be long lasting, persisting for
thousands of generations in some of our simulations (Figures 2, 3, S$1). If hybridization is a
significant feature of a study population, studies concerning load should consider the fitness
consequences of admixture as well as population size changes.

That dynamics of introgression-derived ancestry can be driven by deleterious variation is
also important for the study of selection on gene flow between populations or species. Patterns
of introgression between hybridizing species are often asymmetric, vary across the genome,
and can be driven by demography at expansion fronts [59], dispersal processes [60], or by
natural selection. However, when natural selection is implicated as driving changes in
introgression-derived ancestry, processes such as genomic incompatibility or adaptive
introgression are invoked to explain variation in introgression across the genome. We have
shown that differences in demography and mating system create between-population
differences in standing deleterious variation, and that selection upon these differences provides
an alternative hypothesis to selection on alleles transplanted onto a new genomic background
or new environment. To the best of our knowledge, only a few studies have considered the
contribution of selection on deleterious variation to observed patterns of introgression
[12,24,32], and mostly in specific systems [17,18,22,25].

Selection on deleterious variation may be particularly important for determining patterns
of introgression in natural populations that are out of demographic equilibrium. Models of

increased genetic drift predict accumulations of genetic load at the edges of expanding
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populations [13,58] which suggests introgression into the expanding population could be driven
by selection on genetic load. We have also shown that population bottlenecks can greatly affect
patterns of introgression, particularly when assuming a recessive fitness model. If recessive
deleterious variation also creates heterosis in admixed individuals, the effects of heterosis and
population size will be synergistic, further enhancing introgression in genomic regions of low
recombination. Our simulations also directly suggest heterosis may contribute to the pervasive
patterns of introgression and shared polymorphism between different species in the genus
Arabidopsis [35] even if hybridizing species have similar amounts of deleterious variation.

Because selection can alter patterns of introgression even if hybrid ancestry is not
explicitly deleterious, genome-wide inferences of admixture proportions that assume neutrality
are likely to be biased. For instance, our simulations predict the amount of introgression is
strongly influenced by deleterious mutations in Arabidopsis, and the manner in which this occurs
is dependent on the demography. Observed proportions of ancestry range from 0% for Model 2
to 100% for Model 4 (Figures 9 and S8), despite the true admixture proportion of 5%. Taking
the observed proportion of introgressed ancestry at face value, researchers would not infer the
true initial admixture proportion of 5% accurately. Similarly, linkage disequilibrium patterns are
often used to infer the timing of admixture events and to test competing demographic
hypotheses about admixture [61]. If the distribution of segments of introgressed ancestry can be
altered by deleterious mutations relative to what is predicted under a neutral model (e.g. Model
4 in Figure S7), these inferences can also be biased. To circumvent this problem, we
recommend focusing on putatively neutral regions of the genome far from genes.

Likewise, our simulations may provide grounds for a plausible alternative explanation of
the negative correlation between recombination rate and introgressed African ancestry
observed in North American populations of D. melanogaster [43,44], which is the opposite of
what is usually observed by other empirical studies of hybridization. Corbett-Detig and Nielsen

[44] proposed that widespread adaptive introgression could bring along larger linkage blocks in
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low recombination regions. If D. melanogaster has accumulated genetic load through the serial
colonization of the world in association with humans [62,63], selection may favor introgression
of the origin population (African) haplotypes in low recombination regions, similar to what we
observed in Model 4 of our simulations. This could act synergistically with the effect of heterosis,
which can happen in significant amounts even when divergence is low (Figure 4), and the
divergence for which significant increases in introgressed ancestry are observed is comparable
to that between populations of D. melanogaster [64]. Admittedly, our models bear little
resemblance to the estimated demography of D. melanogaster (e.g. [63]). Similar to humans [8],
there may be little difference in additive load between populations due to recent demography,
and we have not simulated with a DFE and model of dominance estimated from D.
melanogaster. Further study of these population genetic features is necessary to estimate the
relative contribution of these processes to the genomic pattern of introgression in D.
melanogaster.

Importantly, we do not claim that deleterious variation can explain all the patterns of
introgression in any species, but rather that it is a plausible alternative explanation and therefore
possible confounder that is important to consider when testing hypotheses about the nature of
selection on gene flow. It is alternatively possible that colonizing populations of D. melanogaster
experience a reduction in the rate of fixation of adaptive alleles due to reduced Ne, creating
favorable conditions for the introgression of parent population haplotypes. Additionally, there is
strong evidence for the role of sexual selection and fitness epistasis between the X and the
autosomes in separating populations of D. melanogaster [65-67]. In hybridizing swordtail fish,
recombination rates are positively correlated with the frequency of introgressed ancestry even
when the minor parent population, analogous to the donor population in our simulations, has a
larger effective population size [25]. This pattern suggests that hybrid ancestry has an overall
deleterious effect, meaning that genomic incompatibility is the dominant force shaping hybrid

genomes in that system. In humans, regions of high recombination rate are enriched for
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introgressed Neanderthal ancestry particularly in genes that code for virus-interacting proteins
[41], suggesting that in these regions putatively adaptive variants were more likely to recombine
off the deleterious Neanderthal background and increase in frequency. In these two latter cases,
selection on deleterious variation or heterosis may instead obscure genome-wide signals of
incompatibility or adaptive introgression.

Because selection on additive and recessive variation can act in complementary or
opposing directions, our study also highlights the fundamental importance of understanding the
distribution of selection coefficients and their relationship to dominance coefficients in natural
populations (i.e. the h(s) relationship). In this study, we simulated human genomic structure,
where new mutations are more likely to have additive fitness effects [13], and Arabidopsis
genomic structure, where deleterious new mutations are likely to be more recessive [30]. In
these two scenarios, we found that modes of dominance interacted with demography,
recombination rates, and functional density in complex ways. Importantly, we observed an
increase in introgressed ancestry as a result of the heterosis effect even when mutations were
not completely recessive, that is, dominance was modeled with the h(s) relationship. While the
effects observed in the present study may be applicable to real populations with realistic
amounts of dominance, the h(s) relationship is unknown for virtually all natural systems.
Therefore, we cannot easily predict the contribution of heterosis to introgression and shared
polymorphism between closely related species.

Nevertheless, the underlying demographic model will determine how additive and
recessive new mutations should interact after gene flow. For example, the introgression of
deleterious haplotypes in Model 2 was facilitated by heterosis but impeded by additive load,
leading to uncertainty about the overall contribution of the effects of deleterious variation in
certain scenarios, such as Neanderthal to human admixture [17]. In other demographic models,
selection on additive and recessive variants should operate in the same direction. As another

example, if admixture occurs between a partially selfing and outcrossing population, our
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simulations predict that selection works to remove ancestry from the selfing population, since it
carries an overall larger burden of deleterious variants. It may yet be possible that strongly
deleterious recessive variants, which should be purged in the selfer, play a role in preventing
some introgression from the outcrossing to the selfing population. Without knowing the h(s)
relationship for a specific system, it is difficult to disentangle the effects of selection on additive
Versus recessive variation.

Our work further highlights the importance of considering deleterious variation when
comparing complementary lines of evidence to make inferences about selection on hybrids.
Even in the absence of fitness epistasis, our models predict an overall depletion of hybrid
ancestry on the X chromosome compared to the autosomes. While the magnitude of this
difference (about 1.5-fold) is far less than the 5-fold difference observed in humans [23], our
results clearly show that simpler models of deleterious variation have the potential to mimic
some of the signals that are considered evidence of hybrid incompatibility. Granted, we have
only provided a simple model of selection on sex chromosomes to contrast to previous
simulations of the autosomes, while ignoring the fact that recombination, chromosome structure,
and the DFE are unlikely to be the same between the X and the autosomes. Additionally, it has
been shown that sex-biased demographic processes have occurred throughout human history
[68—72]. Future work should test the extent to which our results hold across more realistic
population genetic models.

The recombination rate also plays a key role in determining the landscape of
introgressed ancestry in the presence of deleterious variation. Models of Hill-Robertson
interference [50,73] predict that deleterious mutations will not be removed as effectively in
regions of the genome with low recombination rates because they may be linked to the non-
deleterious alleles at other sites. We observe this effect in our simulations, where fitness
declines the fastest when recombination rates are low, both pre- and post- admixture (Figure

S$2). However, we observe the opposite effect immediately after admixture. Specifically, in our
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simulations, the fitness in the admixed population increased the most for the lowest
recombination rates, suggesting that deleterious mutations were most effectively eliminated
when recombination rates were the lowest (Figure S2). This occurs because selection for a
haplotype will be most effective when all alleles on a haplotype tend to have weak fithess effects
in the same direction [17,18,67]. For example, if introgression-derived ancestry carries fewer
deleterious variants than the other haplotypes in the recipient population, selection will act to
increase the frequency of the protective alleles contained within the introgressed ancestry. This
applies directly to our simulations of admixture since immediately following an admixture event,
all the protective or deleterious variants are found on the same haplotype. Higher rates of
recombination will shuffle selected variants onto different haplotypes, creating selective
interference between recombinant haplotypes.

One significant limitation of our study is that we have not considered all possible
combinations of demographic, selective, and genomic parameters relevant for all species. For
example, heterosis appears to stabilize long-term patterns of introgression at some frequency,
but we only simulated an admixture fraction of 5%. It is possible that the magnitude or direction
of observed changes may change with different major and minor parent ancestry proportions. It
is therefore difficult to directly assess whether the specific conclusions seen for one combination
of parameters will directly apply in a different specific system. Instead, our goal is to highlight
the need to consider deleterious variation as a possible null model that should be investigated
and rejected before attributing unusual patterns of introgressed ancestry to other evolutionary
processes. That being said, we have observed some commonalities across models. For
example, in Model 4, when mutations are either fully recessive or have an intermediate
dominance coefficient assigned as a function of the selection coefficient, we observe an
increase in introgressed ancestry in the recipient populations when either using simple models
(Figure 3), models relevant for human populations (Figure 5) or models relevant for A. thaliana

(Figure 6).
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This interplay between deleterious variation and recombination has substantial
implications for detecting adaptive introgression. A major objective of genomic studies of
hybridization is to identify loci that are adaptively introgressed and to ascertain the overall
importance of introgression to adaptive evolution [37]. Genomic regions that contain
introgressed haplotypes at high frequency are considered likely candidates for adaptive
introgression [37,40,74,75], but we have shown that selection on genetic load can increase the
frequency of introgression-derived ancestry, even in the absence of beneficial new mutations.
Thus, outlier-based approaches that compare summary statistics computed for a particular
window of the genome to a null distribution that does not account for deleterious variation may
be misled. Linked deleterious variants may also impede positive selection on introgressed
adaptive variants, particularly if they are recessive [76]. Because recombination can move an
adaptive variant off of ancestry backgrounds of varying fitness, standard models of adaptive
evolution, especially ones that do not consider deleterious variation, are unlikely to accurately
describe genomic patterns generated by adaptive introgression. Finally, it may be difficult to
differentiate heterosis due to the masking of deleterious recessive alleles from heterozygote
advantage at introgressed loci, despite the fact that these are two very different evolutionary
processes with dramatically different biological interpretations.

Our results argue that new null models are needed in studies seeking to identify
candidates of adaptive introgression. These new null models should include deleterious genetic
variation, as well as complex demography. In order for these models to accurately capture the
dynamics of deleterious variation, they should also include realistic parameters for the DFE of
deleterious mutations and the relationship between dominance coefficients and selection
coefficients. Lastly, the new null models should also include realistic models of the variation in
recombination rate across the genome, as recombination rate is a key determinant of the

dynamics of introgression (Figure 3). Failure to consider deleterious variation in a realistic way
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in studies of admixing populations or hybridizing species can mislead inferences about the

evolution of hybrids.

MATERIALS AND METHODS
Simulation details

All simulations were performed with SLiM 3.0 [46]. We chose to discard from our
simulations, and therefore from calculations of fithess, mutations that were fixed in the ancestral
or both subpopulations. Although fixed deleterious variants contribute to the overall genetic load
of finite populations, they will have no effect on the relative differences between admixing
subpopulations and no effect on the dynamics of introgression-derived ancestry. Therefore,
each fithess calculation does not reflect the true fitness of each population, but rather the fitness
components that are relevant during gene flow.

An admixture event in SLiM is handled by modifying the way the parents in each
generation are chosen (SLiM manual 5.2.1). For example, at an admixture proportion of 5% the
recipient population reproduces as follows. Five percent of the parents of the recipient
population, in that generation, are chosen from the donor population, and 95% of the parents

are chosen from the recipient population.

Scaling of forward simulations

We rescaled simulation parameters by a scaling constant, ¢, to reduce the computational
burden of forward simulations. Population sizes were scaled to be N/c, times to t/c, selection
coefficients to sc, and the mutation rate to yc. Recombination rates were scaled as 0.5(1-(1-
2)°), which is approximately rc for small r and small c. The total length of simulated sequence
was not changed in scaled simulations. Note, the simulation parameters we reference in this
paper are always unscaled. The manner in which we scaled simulations follows Algorithm 1 in

Uricchio and Hernandez [77] and is similar to how Lange and Pool [78] simulated populations of
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Drosophila melanogaster, although the primary features of interest in our simulations are related
to the dynamics of introgression-derived ancestry through time.

Because scaled simulations may not exactly recapitulate the dynamics of unscaled
simulations, we used a set of test simulations to choose ¢=5 for most simulations. The dynamics
of p, for scaled simulations (c=2, 5, and 10) were compared to an unscaled simulation (c=1),
using the demography of Model 4, a gamma DFE, and additive fitness (h=0.5). Per base pair
recombination rates of =107 and 10® were simulated separately. Although all scaled
simulations exhibit slight differences from the unscaled simulations, a scaling factor of c=5
provided a reasonably accurate representation of the unscaled dynamics of p; (Figure S$8) while
keeping simulation run times within reasonable limits. We additionally note that our intent in this
study is to understand qualitative patterns of introgression rather than to obtain accurate
qualitative estimates from a particular system, and the qualitative patterns are consistent

irrespective of the scaling factor.

Tracking introgression

The proportion of admixture that is introgression-derived (p;) was tracked in one of two
ways: by placing marker mutations at a fixed interval or by tracking the tree sequences
(genealogies) across the simulated genome. In the former case, p; was estimated by placing
marker mutations in the donor population immediately before the admixture event. These
mutations were spaced at 500 base pair intervals over the genome of every individual. After
admixture, p; was estimated in the recipient population by taking the averaged allele frequency
of marker mutations per window, or throughout the whole simulated chromosome. In the latter
case, the true ancestry proportions were calculated, since the information on start/end
coordinates and the lineages that trace their ancestry back through donor and recipient

populations is preserved. Although tracking tree sequences provides the most accurate
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estimate of p;,, marker mutation tracking was used for computational efficiency in some

simulations.

Simulations with randomly generated chromosomal structure

The sequences from simulations with randomly generated chromosome structure were
approximately 5Mb in length, and contained intergenic, intronic, and exonic regions, but only
nonsynonymous new mutations experienced natural selection. The per base pair mutation rate
was constant and set to y=1.5x10"® and we set nonsynonymous and synonymous mutations to
occur at a ratio of 2.31:1 [79]. The selection coefficients (s) of new nonsynonymous mutations
were drawn from a gamma-distributed DFE with shape parameter 0.186 and expected selection
coefficient E[s] = -0.01314833 [49] for both additive and recessive dominance models.

The chromosomal structure of each simulation was randomly generated by drawing
exon lengths from Lognormal(u = log(50), 02 = log(2)), intron lengths from Lognormal(u =
log(100),02 = log(1.5)), and the length of noncoding regions from Unif(100,5000), following
the specification in the SLiM 3.0 manual (7.3), which is modeled after the distribution of intron
and exon lengths in Deutsch and Long [80]. The per base pair per chromosome recombination
rate (r) was fixed in each simulation, but we varied r between different sets of simulations where
re{10°,107,10%,10%. Lastly, we simulated 200 replicates for each set of simulations, of each
specific hand r.

Chromosome-wide Fsr was calculated for all variants from exons, introns, and intergenic
regions by calculating Fsr at individual sites following Hudson et al. [81] and by combining Fsr

across sites following Bhatia et al. [82].

Simulations of human genomic structure
In simulations of fixed chromosome structure from the human genome, we fixed the

structure to 100 Mb randomly chosen from human genome build GRCh37, chromosome 1
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(chr1:5,005,669-105,005,669). The exon ranges were defined by the GENCODE v14
annotations [83] and the sex-averaged recombination map by Kong et al. [84], averaged over a
10 kb scale. The per base pair mutation rate was constant and set to y=1.5x10® and we set
nonsynonymous and synonymous mutations to occur at a ratio of 2.31:1 [79]. The selection
coefficients (s) of new nonsynonymous mutations were drawn from a gamma-distributed DFE
with shape parameter 0.186 and expected selection coefficient E[s] = -0.01314833 [49] for all
models of dominance. All other new mutations were neutral. We simulated additive fitness
(h=0.5), recessive fitness (h=0), and the h(s)=0.5/(1-7071.07s) relationship [13] separately,

using the same DFE for s for each simulation. All simulations were scaled by a factor of ¢=5.

Simulations of Arabidopsis genomic structure

In simulations of fixed chromosome structure from the genome of Arabidopsis thaliana,
we fixed the structure to 29.1 Mb from chromosome 1 (chr1:488,426-29,588,426). The exon
ranges were defined using the Araport11 annotations [85] and the recombination map using
Salomé et al. [86]. The per base pair mutation rate was constant and set to y=7x10° and we
again set nonsynonymous and synonymous mutations to occur at a ratio of 2.31:1. The
selection coefficients (s) of new nonsynonymous mutations were drawn from the gamma
distribution estimated by Huber et al. [30] (shape parameter 0.185 and E[s] = -0.00048655). We
simulated dominance with the h(s) relationship estimated by that study: h(s)=1((1/0.987) —
39547s). Simulations were scaled at c=100, but we note that we could not test the difference

between ¢=100 and smaller scaling factors (e.g. c=50) due to limits on computational time.

Avoiding heterosis in the additive fithess model
Computing fitness as additive (h=0.5) within a locus but multiplicative across loci was
problematic for our simulations because it created heterosis in admixed individuals. This

occurred because the product of a fitness decrease reduces fitness less than the sum of a
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fitness decrease. As a simple example, imagine two additive deleterious alleles are in a single
individual, each with selection coefficient s where s is the absolute value of the selection
coefficient. If they are found as a single homozygous site, the fitness decrease is usually
computed as 1-s. If they are found as two heterozygous sites, the fithess would be computed as
(1-0.5s)?>=1-s+0.25s%. The fitness of the heterozygous individual is larger than the homozygous
individual by 0.25s?, despite carrying the same number of deleterious variants. Because
admixed individuals are more likely to carry deleterious alleles as heterozygotes than non-
admixed individuals, the fithess of the admixed individuals was always higher than a non-
admixed individual in the above computation of fitness, even when the number of deleterious
variants per individual was the same.

Our intent was to examine the contribution of genetic load to selection on introgressed
ancestry, but we identified an inherent advantage of heterozygosity in the additive model that
biased the direction of selection to favor introgressed ancestry. To address this, we computed
heterozygote fitness at a locus as 1-hs and homozygote fitness as (1-0.5s)? and the fitness
across loci was computed multiplicatively. In the additive case (h=0.5), an individual’s fitness
was then multiplicative across all deleterious variants, such that an individual j carrying i variants

each with selection coefficient s; had fithess w;:

i

Fitness is then monotonically related to the number of deleterious variants regardless of
zygosity and is approximately equivalent to additive fitness. This computation in essence
created a slight underdominance-like effect, but importantly this effect was caused by the
difference in homozygous fitness rather than a difference in heterozygote fitness (i.e. the
dominance coefficient). In practice, the difference in homozygous fitness is negligible for weakly
deleterious alleles and strongly deleterious alleles are unlikely to be found as homozygotes.

Therefore, the overall underdominance effect should be minimal. To confirm this, we simulated
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100Mb of human chromosome 1 in an equilibrium population, with selection coefficients drawn
from a gamma DFE with the two fithess models. The frequency spectrum was unaffected by our
calculation of fithess (Figure S9), suggesting our simulations approximate the standard additive
model well.

We used the same calculation for additive and partially recessive fithess models for
consistency when simulating the h(s) relationship. Completely recessive fitness (h=0) was
computed the standard way, that is, as 1-s; when homozygous for the deleterious allele and as

1 otherwise.

Selection on the X chromosome

We modeled fithess of the sex chromosomes following the framework described by
Charlesworth et al. [52] and Veeramah et al. [51], with a slight modification to preserve the
multiplicative fitness scenario described for the autosome. The specific fithess models for each
dominance scenario — additive, recessive, and with the h(s) function — are presented in Table
S2. Importantly, the fitness of females that are homozygous and males that have the selected
allele are the same, and, in the additive model, heterozygous females have an intermediate
fitness. This models dosage compensation in females, assuming levels of gene expression map

to the same fitness values for males and females.

Data availability
All scripts necessary for reproducing the simulations, parsing the simulation output, and
creating the figures displayed in this manuscript are available at:

https://github.com/LohmuellerLab/admixture_load_scripts.
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Supplemental Results

Table S1. Demographic parameters of the simulated models shown in Figure 1.

Model Ns Nrs Nr Tm Trs Tspiit

Model 0 1 - 1 0.5 - 1.5
Model 1 1 0.1 1 0.5 0.5025 1.5
Model 2 0.1 - 1 0.5 - 1.5
Model 3 1 - 0.1 0.5 - 1.5
Model 4 1 0.1 1 0.5 - 1.5

NOTE.—AIl population sizes are relative to the ancestral population size (Na), where Na=10,000
diploids unless specified otherwise. All times are in units of generations/(2N,) from the present
day. Parameters are defined as follows. Ns: size of the source subpopulation, Ngg: size of the
bottleneck in the recipient population, Nr: size of the recipient population, T: time of migration,
Tre: time at which the bottleneck in the recipient population began, Tt time at which the

subpopulations diverged
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Table S2. Fitness model for sex chromosomes.

genotype
dominance XX heterozygote XX homozygote XY
Additive (h=0.5) (1+hs) (1+hs)? (1+hs)?
Recessive 1 (1+0.5s)? (1+0.5s)?
h(s) (1+hs) (1+0.5s)? (1+0.5s)?

NOTE.—h denotes the dominance coefficient and (1+0.5s)? is approximately equal to (1-s).
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Figure S1. The change in the mean fitness of the donor and recipient subpopulation in each

model. The mean (solid line) is shown for 200 simulation replicates. The vertical grey line

depicts the time of gene flow. Different colors denote distinct recombination rates used in the

simulations. The left two panels depict simulations with recessive mutations (h=0) while the right

two panels show simulations with additive mutations (h=0.5). Variants that are fixed in both

subpopulations are not considered in the calculation of fithess. The model numbers refer to the

models shown in Figure 1.
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replicates. The vertical gray line depicts the time of gene flow. Different colors denote distinct
recombination rates used in the simulations. The left panel shows simulations with recessive
mutations (h=0) while the right panel shows simulations with additive mutations (h=0.5).
Variants that are fixed in both subpopulations are not counted. The model numbers refer to the

models shown in Figure 1.
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Figure S3. The change in the mean number of homozygous derived deleterious sites per
individual in the recipient subpopulation. The mean (solid line) is shown for 200 simulation
replicates. The vertical gray line depicts the time of gene flow. Different colors denote distinct
recombination rates used in the simulations. The left panel shows simulations with recessive
mutations (h=0) while the right panel shows simulations with additive mutations (h=0.5).
Variants that are fixed in both subpopulations are not counted. The model numbers refer to the

models shown in Figure 1.
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replicates and two demographic models. (B) Fsr increases continuously in Models 0 and 4 after

the split. Increased drift in Model 4 drives larger increases in Fsr.
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Figure S5. The genomic landscape of introgression in one replicate of simulations with human
genomic structure. The frequency of ancestry that is introgression-derived is shown for non-
overlapping 100 kb windows in a simulated 100 Mb region of chromosome 1. The model
numbers refer to the models shown in Figure 1. Points represent a single value for each 100 kb
window and lines are loess curves fitted to the data. The horizontal dashed black dashed line
represents the initial frequency of introgression-derived ancestry, p=0.05. Vertical blue bars
represent genes in which deleterious mutations can occur. Red curves denote the results for
recessive mutations, orange curves show the results for additive mutations, and blue curves

show the results for simulations with a h(s) relationship.
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numbers refer to the models shown in Figure 1. Points represent a single value for each 100 kb
window and lines are loess curves fitted to the data. The horizontal dashed black line represents
the initial frequency of introgression-derived ancestry, p/=0.05. Vertical blue bars represent
genes in which deleterious mutations can occur. Blue curves show the results for simulations

with a h(s) relationship.
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