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ABSTRACT OF THE DISSERTATION 

 

Understanding Deleterious Variation 

in Complex Populations 

 

by 

 

Bernard Youngsoo Kim 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2018 

Professor Kirk Edward Lohmueller, Chair 

 

 

Complex population demography can have subtle yet significant impacts on the genetic 

variation of populations. Furthermore, complex demography can subtly affect natural selection 

and therefore shapes the distribution of deleterious genetic variation. In my dissertation, I utilize 

a variety of computational tools to model the impact of deleterious variation in complex 

populations. In the first chapter, I investigated why among all human populations East Asians 

have the most Neanderthal ancestry. I found that multiple interbreeding events between 

Neanderthals and East Asians are required to explain the data, revising current models of 

human history. In the second chapter, I developed new computational tools for estimating the 

distribution of fitness effects using large datasets of genetic variants and estimated the amount 

of selection on amino acid changing mutations in humans. Here I found fewer strongly 

deleterious mutations compared to previous smaller studies, suggesting that neutral forces may 

play a greater role in human evolution than previously appreciated. In Chapter 3, I investigated 

the dynamics of deleterious genetic variation in hybrid populations using simulations and found 
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that differences in standing deleterious variation between parent populations can significantly 

impact the evolution of hybrids. It is therefore essential that null models of hybrid evolution 

consider the effects of deleterious variation before invoking processes such as hybrid 

incompatibility or adaptive introgression to explain unusual patterns of genetic variation. 
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CHAPTER 1: 

SELECTION AND REDUCED POPULATION SIZE CANNOT EXPLAIN HIGHER AMOUNTS 

OF NEANDERTAL ANCESTRY IN EAST ASIAN THAN IN EUROPEAN POPULATIONS 
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Supplemental Results 

 
 
Figure S1: Simulation scenario. At time tadmix=1900 generations ago, a Neanderthal allele starts 
at frequency f and changes frequency each generation via selection and drift. Note the 
difference in bottleneck severity between the European and East Asian populations. See Tables 
S1 and S2 for a description of the parameters used. 
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Figure S2: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR) 
populations under the Keinan et al.11 demographic model when f=4%. Each column depicts 
results for a different dominance coefficient (h). Γ denotes a gamma distribution of fitness 
effects. Error bars denote approximate 95% confidence intervals on our simulations. (A) The 
fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry in East Asians to 
Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of mean Neanderthal 
ancestry observed in empirical comparisons of an East Asian and a European population7. 
Models where the final proportion of Neanderthal ancestry is concordant with the empirical data 
(between 0.5-5% in (A)) are colored in black. Otherwise, they are colored gray. 
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Figure S3: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR) 
populations under the Keinan et al.11 demographic model when f=4% with overdominance. Error 
bars denote approximate 95% confidence intervals on our simulations. (A) The fraction of 
Neanderthal ancestry. (B) Ratio of Neanderthal ancestry in East Asians to Neanderthal ancestry 
in Europeans (R). Horizontal lines indicate the ratios of mean Neanderthal ancestry observed in 
empirical comparisons of an East Asian and a European population7. Models where the final 
proportion of Neanderthal ancestry is concordant with the empirical data (between 0.5-5% in 
(A)) are colored in black. Otherwise, they are colored gray. 
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Figure S4: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR) 
populations under the Keinan et al.11 demographic model with a shorter bottleneck (tBlen=50 
generations). The overall severity of the bottleneck (F) was equal to that estimated in Keinan et 
al. Here f=4%. Each column depicts results for a different dominance coefficient (h). Γ denotes a 
gamma distribution of fitness effects. Error bars denote approximate 95% confidence intervals 
on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry 
in East Asians to Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of 
mean Neanderthal ancestry observed in empirical comparisons of an East Asian and a 
European population7. Models where the final proportion of Neanderthal ancestry is concordant 
with the empirical data (between 0.5-5% in (A)) are colored in black. Otherwise, they are colored 
gray. 
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Figure S5: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR) 
populations under the Keinan et al.11 demographic model with a longer bottleneck (tBlen=200 
generations). The overall severity of the bottleneck (F) was equal to that estimated in Keinan et 
al. Here f=4%. Each column depicts results for a different dominance coefficient (h). Γ denotes a 
gamma distribution of fitness effects. Error bars denote approximate 95% confidence intervals 
on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry 
in East Asians to Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of 
mean Neanderthal ancestry observed in empirical comparisons of an East Asian and a 
European population7. Models where the final proportion of Neanderthal ancestry is concordant 
with the empirical data (between 0.5-5% in (A)) are colored in black. Otherwise, they are colored 
gray. 
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Figure S6: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR) 
populations under the Keinan et al.11 demographic model where the bottleneck in ASN was 2-
times more severe than that estimated by Keinan et al. The severity of the EUR bottleneck was 
as estimated by Keinan et al. Here f=4%. Each column depicts results for a different dominance 
coefficient (h). Γ denotes a gamma distribution of fitness effects. Error bars denote approximate 
95% confidence intervals on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio 
of Neanderthal ancestry in East Asians to Neanderthal ancestry in Europeans (R). Horizontal 
lines indicate the ratios of mean Neanderthal ancestry observed in empirical comparisons of an 
East Asian and a European population7. Models where the final proportion of Neanderthal 
ancestry is concordant with the empirical data (between 0.5-5% in (A)) are colored in black. 
Otherwise, they are colored gray. 
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Figure S7: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR) 
populations under the Keinan et al.11 demographic model where the bottleneck in ASN was 5-
times more severe than that estimated by Keinan et al. The severity of the EUR bottleneck was 
as estimated by Keinan et al. Here f=4%. Each column depicts results for a different dominance 
coefficient (h). Γ denotes a gamma distribution of fitness effects. Error bars denote approximate 
95% confidence intervals on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio 
of Neanderthal ancestry in East Asians to Neanderthal ancestry in Europeans (R). Horizontal 
lines indicate the ratios of mean Neanderthal ancestry observed in empirical comparisons of an 
East Asian and a European population7. Models where the final proportion of Neanderthal 
ancestry is concordant with the empirical data (between 0.5-5% in (A)) are colored in black. 
Otherwise, they are colored gray. 
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Figure S8: Predicted mean Neanderthal allele frequency at the end of the population 
bottlenecks in East Asia (ASN) and Europe (EUR) for the recessive and underdominant cases 
(h=0 and 2, respectively). (Left) Population sizes were set to those inferred in Keinan et al.11 
(Right) Population size in ASN was assumed to be 5-fold smaller than that estimated in Keinan 
et al.11 In all cases, constant sized populations were simulated for 100 generations. Here f=2%. 
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Figure S9: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR) 
populations under the Gravel et al.22 complex demographic model when f=4%. Each column 
depicts results for a different dominance coefficient (h). Γ denotes a gamma distribution of 
fitness effects. Error bars denote approximate 95% confidence intervals on our simulations. (A) 
The fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry in East Asians to 
Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of mean Neanderthal 
ancestry observed in empirical comparisons of an East Asian and a European population7. 
Models where the final proportion of Neanderthal ancestry is concordant with the empirical data 
(between 0.5-5% in (A)) are colored in black. Otherwise, they are colored gray.  
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Figure S10: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR) 
populations under the Keinan et al.11 demographic model when f=10%. Each column depicts 
results for a different dominance coefficient (h). Γ denotes a gamma distribution of fitness 
effects. Error bars denote approximate 95% confidence intervals on our simulations. (A) The 
fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry in East Asians to 
Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of mean Neanderthal 
ancestry observed in empirical comparisons of an East Asian and a European population7. 
Models where the final proportion of Neanderthal ancestry is concordant with the empirical data 
(between 0.5-5% in (A)) are colored in black. Otherwise, they are colored gray. 
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Figure S11: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR) 
populations under the Gravel et al.22 complex demographic model when f=2% with a second 
pulse of Neanderthal admixture into East Asia. Specifically, 920 generations ago, the amount of 
Neanderthal ancestry at each site in East Asia was increased by 15% of the initial value of f (i.e. 
here 0.003 was added to the frequency of Neanderthal alleles in the East Asian population). 
Vernot and Akey6,24 have estimated that that the second pulse of Neanderthal admixture into 
East Asia was about 15% of the initial admixture proportion, concordant with our present 
simulation. Each column depicts results for a different dominance coefficient (h). Γ denotes a 
gamma distribution of fitness effects. Error bars denote approximate 95% confidence intervals 
on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry 
in East Asians to Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of 
mean Neanderthal ancestry observed in empirical comparisons of an East Asian and a 
European population7. Note that a broad range of selection coefficients provide values of R 
compatible with the observed ratio. The model where s=-0.01 predicts R=16. This point was 
omitted for plotting purposes.  
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Figure S12: Predicted Neanderthal ancestry in East Asian (ASN) and European (EUR) 
populations under the Gravel et al.22 complex demographic model when f=4% with a second 
pulse of Neanderthal admixture into East Asia. Specifically, 920 generations ago, the amount of 
Neanderthal ancestry at each site in East Asia was increased by 15% of the initial value of f (i.e. 
here 0.006 was added to the frequency of Neanderthal alleles in the East Asian population). 
Vernot and Akey6,24 have estimated that that the second pulse of Neanderthal admixture into 
East Asia was about 15% of the initial admixture proportion, concordant with our present 
simulation. Each column depicts results for a different dominance coefficient (h). Γ denotes a 
gamma distribution of fitness effects. Error bars denote approximate 95% confidence intervals 
on our simulations. (A) The fraction of Neanderthal ancestry. (B) Ratio of Neanderthal ancestry 
in East Asians to Neanderthal ancestry in Europeans (R). Horizontal lines indicate the ratios of 
mean Neanderthal ancestry observed in empirical comparisons of an East Asian and a 
European population7. Note that a broad range of selection coefficients provide values of R 
compatible with the observed ratio. The model where s=-0.01 predicts R=16. This point was 
omitted for plotting purposes.  
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Table S1. Parameters used for the Keinan et al. bottleneck model 

Population N F tB tBlen NB 

Parameters inferred in Keinan et al.    

ASN 10063 0.123 720 100 407 

EUR 10085 0.091 640 100 549 

Shorter bottleneck    

ASN 10063 0.123 720 50 204 

EUR 10085 0.091 640 50 275 

Longer bottleneck    

ASN 10063 0.123 720 200 814 

EUR 10085 0.091 640 200 1098 

2-fold more severe bottleneck    

ASN 10063 0.246 720 100 275 

EUR 10085 0.091 640 100 549 

5-fold more severe bottleneck    

ASN 10063 0.615 720 100 110 

EUR 10085 0.091 640 100 549 
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Table S2. Parameters used for the Gravel et al. model 

Parameter Value 

t1 980 

t2 920 

NAFR 14474 

Nb 1861 

NASN0 550 

NEUR0 1032 

rASN 0.0048 

rEUR 0.0038 

mASN_AFR 0.78e-5 

mEUR_AFR 2.5e-5 

mEUR_ASN 3.11e-5 
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Table S4: Expected D statistics under realistic models of human history assuming 0,1, or 
2 pulses of Neanderthal admixture 
 

Model P1 P2 Num P1 Num P2 D SE 

No 
admixture 

ASN EUR 84987 85221 -0.0014 0.0025 

 ASN AFR 90844 90332 -0.0028 0.0023 

 EUR AFR 90063 89785 -0.0015 0.0024 

       

One pulse ASN EUR 102233 102151 0.0004 0.0022 

 ASN AFR 91001 109182 0.0908 0.0023 

 EUR AFR 90798 108897 0.0906 0.0022 

       

Two pulse ASN EUR 106000 101487 0.0218 0.0021 

 ASN AFR 90837 113021 0.1088 0.0022 

 EUR AFR 90881 108552 0.0886 0.0022 

D statistics were computed from data simulated using ms25 under the demographic model 
estimated for human populations in Gravel et al.22 with our own modifications and those 
suggested by Vernot and Akey6,24. Specifically, recent population growth, as used in Vernot and 
Akey was included in the model. We simulated the three human populations and a Neanderthal 
population that split from the human population 400,000 years ago. The Neanderthal population 
had a constant size of 1500 individuals. The one pulse model includes a 500-year period of 
migration between the ancestral non-African population and Neanderthals. The two-pulse model 
includes the same migration as in the one pulse model, except it includes an additional 500 
years of migration between the Neanderthal and East Asian populations. Note, we decreased 
the human-Neanderthal migration rates by 2 relative to the values given in Vernot and Akey6 to 
give D statistics more comparable to those observed in actual data. The precise ms commands 
for these models are given in Table S5.  
 
The D test was computed as: D=(Num_P1-Num_P2)/(Num_P1+Num_P2). Our simulations 
assume that the derived allele can be accurately inferred. As such, we simulated the three 
human populations (EUR, AFR, ASN) and a Neanderthal population. 
 
Standard errors were computed using a nonparametric bootstrap of the values shown in the 
table. This is appropriate as each site was simulated independently of the others. 
 
The D statistics for all the simulations without any Neanderthal admixture are within 2 standard 
errors of 0. Further, the D statistic computed using ASN and EUR under the one pulse model 
also is within 2 standard errors of 0. This suggests that a model with one pulse of Neanderthal 
admixture cannot explain the higher Neanderthal ancestry in East Asia, even with a higher 
migration rate between African and Europe than between Africa and East Asia. The two-pulse 
model, however, predicts D statistics significantly >0.  
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Table S5: ms commands for neutral coalescent simulations in Table S4 
 

Model Command 

No admixture ms 4 1 -s 1 -I 4 1 1 1 1 0 -n 4 2.051984e-01 -n 1 58.002735978 -n 2 
70.041039672 -n 3 187.55 -eg 0 1 482.46 -eg 0 2 570.18 -eg 0 3 720.23 -em 
0 2 4 0 -em 0 2 4 0 -em 0 3 4 0 -em 0 3 4 0 -em 0 1 2 0.7310 -em 0 2 1 
0.7310 -em 0 1 3 0.228072 -em 0 3 1 0.228072 -em 0 2 3 0.909364 -em 0 3 
2 0.909364 -eg 0.006997264 1 0 -eg 0.006997264 2 2.089166e+01 -eg 
0.006997264 3 3.006376e+01 -en 0.006997264 1 1.98002736 -en 
0.031463748 2 7.774282e-01 -en 0.031463748 3 5.820793e-01 -ej 
5.453352e-02 3 2 -en 5.453352e-02 2 7.774282e-01 -em 5.453352e-02 1 2 
4.386 -em 5.453352e-02 2 1 4.386 -ej 8.207934e-02 2 1 -en 8.207934e-02 1 
1.98002736 -en 0.20246238 1 1 -ej 9.575923e-01 4 1 

One pulse ms 4 1 -s 1 -I 4 1 1 1 1 0 -n 4 2.051984e-01 -n 1 58.002735978 -n 2 
70.041039672 -n 3 187.55 -eg 0 1 482.46 -eg 0 2 570.18 -eg 0 3 720.23 -em 
6.635294e-02 2 4 0 -em 0 3 4 0 -em 0 3 4 0 -em 0 1 2 0.7310 -em 0 2 1 
0.7310 -em 0 1 3 0.228072 -em 0 3 1 0.228072 -em 0 2 3 0.909364 -em 0 3 
2 0.909364 -eg 0.006997264 1 0 -eg 0.006997264 2 2.089166e+01 -eg 
0.006997264 3 3.006376e+01 -en 0.006997264 1 1.98002736 -en 
0.031463748 2 7.774282e-01 -en 0.031463748 3 5.820793e-01 -ej 
5.453352e-02 3 2 -en 5.453352e-02 2 7.774282e-01 -em 5.453352e-02 1 2 
4.386 -em 5.453352e-02 2 1 4.386 -ej 8.207934e-02 2 1 -en 8.207934e-02 1 
1.98002736 -en 0.20246238 1 1 -em 6.566895e-02 2 4 4.386000e+01 -ej 
9.575923e-01 4 1 

Two pulse ms 4 1 -s 1 -I 4 1 1 1 1 0 -n 4 2.051984e-01 -n 1 58.002735978 -n 2 
70.041039672 -n 3 187.55 -eg 0 1 482.46 -eg 0 2 570.18 -eg 0 3 720.23 -em 
0 1 2 0.7310 -em 0 2 1 0.7310 -em 0 1 3 0.228072 -em 0 3 1 0.228072 -em 0 
2 3 0.909364 -em 0 3 2 0.909364 -eg 0.006997264 1 0 -eg 0.006997264 2 
2.089166e+01 -eg 0.006997264 3 3.006376e+01 -en 0.006997264 1 
1.98002736 -en 0.031463748 2 7.774282e-01 -en 0.031463748 3 
5.820793e-01 -ej 5.453352e-02 3 2 -en 5.453352e-02 2 7.774282e-01 -em 
5.453352e-02 1 2 4.386 -em 5.453352e-02 2 1 4.386 -ej 8.207934e-02 2 1 -
en 8.207934e-02 1 1.98002736 -en 0.20246238 1 1 -em 6.566895e-02 2 4 
4.386000e+01 -em 6.635294e-02 2 4 0 -em 5.316553e-02 3 4 
8.832178e+00 -em 5.384952e-02 3 4 0 -ej 9.575923e-01 4 1 

See Table S4 for a description of the demographic model 
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Supplemental Results 
 
Table S1. Demographic model parameter estimates from synonymous sites. 

  nchr θS N1 T1
a N2 T2 NC TC 

LuCamp 2596 4261.2 0.08984 0.01 1.0512 0.07304 31.270 0.01158 

1kG 864 5984.9 0.08469 0.01 1.1007 0.07043 53.283 0.02009 

ESP 2600 6415.1 0.11949 0.01 1.3111 0.05254 98.65 0.01502 

LuCamp 24 4438.9 0.07554 0.01 0.8703 0.10652 53.09b 0.01311 

1kG 24 6122.4 0.07447 0.01 0.9606 0.08805 93.23b 0.01991 

ESP 24 6735.6 0.08887 0.01 0.9787 0.08434 63.79b 0.01758 

Note: See Figure S3 for a pictorial representation of the model. 
Parameter descriptions: 
Ni: Population size relative to the ancestral population 
Ti: Time, in units of 2NANC generations (NANC is the ancestral population size) 
θS: The population mutation rate of synonymous sites. 
aT1 is fixed in this model.   
bThese estimates are unreliable and can range from 50-200 with no appreciable change in the 
fit of the model. 
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Table S2. Parameters used to scale the DFE in terms of s. 

  nchr θS 
LNS/
LS θNS μ LS+LNS LS LNS NANC 

LuCam
p 2596 4261.2 

2.5 

10652.9 1.8e-8 
20,043,

582 
5,726,

738 
14,316,

844 10334 

1kG 864 5984.9 14962.3 1.8e-8 
26,673,

114 
7,620,

890 
19,052,

224 10907 

ESP 2600 6415.1 16037.7 1.8e-8 
31,427,

992 
8,979,

426 
22,448,

566 9922 

LuCam
p 2596 4261.2 

2.3
1 

9843.3 1.5e-8 
20,043,

582 
6,055,

463 
13,988,

119 11728 

1kG 864 5984.9 13825.1 1.5e-8 
26,673,

114 
8,058,

343 
18,614,

771 12378 

ESP 2600 6415.1 14818.8 1.5e-8 
31,427,

992 
9,494,

862 
21,933,

130 11261 

LuCam
p 24 4438.9 

2.5 

11097.3 1.8e-8 
20,043,

582 
5,726,

738 
14,316,

844 10766 

1kG 24 6122.4 15306.0 1.8e-8 
26,673,

114 
7,620,

890 
19,052,

224 11158 

ESP 24 6735.6 16839.0 1.8e-8 
31,427,

992 
8,979,

426 
22,448,

566 10418 

LuCam
p 24 4438.9 

2.3
1 

10253.9 1.5e-8 
20,043,

582 
6,055,

463 
13,988,

119 12217 

1kG 24 6122.4 14142.7 1.5e-8 
26,673,

114 
8,058,

343 
18,614,

771 12663 

ESP 24 6735.6 15559.2 1.5e-8 
31,427,

992 
9,494,

862 
21,933,

130 11823 

Parameter descriptions: 
θS: The population scaled synonymous mutation rate 
θNS: The population scaled nonsynonymous mutation rate 
LS: The number of synonymous sites 
LNS: The number of nonsynonymous sites 
NANC: The ancestral population sizes computed from θS=4NANCμLS
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Table S3. Inference using Fit∂a∂i on the African-American dataset from Boyko et al. 
(2008). 

  ∂a∂ia Boyko et al. 

Ncurr/Nanc 3.352 3.296 

Texp 7067 6809 

  fit∂a∂i Boyko et al. 

α (shape) 0.179 0.184 

β (scale) 3161 2488 

0 ≤ |s| < 1e-4 27.7% 27.9% 
1e-4 ≤ |s| < 1e-
4 14.1% 14.7% 
1e-2 ≤ |s| < 1e-
3 20.9% 21.9% 

1e-2 ≤ |s| 37.3% 35.5% 

Notes: Population sizes are reported relative to the ancestral population size, and times are 
reported in units of generations. The scale parameter of the gamma distribution is scaled in 
terms of the ancestral population size. The proportion of new mutations in each range of 
selective effects was computed from the gamma distribution. 
aDemographic inference was done using the standard framework of ∂a∂i. 
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Table S7. The DFE of new mutations and the DFE of segregating sites. 

Sample 
α (shape) 

MLE β (scale) MLE 

True DFE of new mutations 0.187 0.0356 

Gamma distribution fit to s (s is known) 

segregating variants, 2n=24 0.112 0.00201 

segregating variants, 2n=864 0.164 0.00634 

new mutations 0.187 0.0356 

Gamma distribution inferred from SFS with Fit∂a∂i and multinomial 
likelihood 

2n=24 0.163 2.39* 

2n=864 0.194 0.0248 

Gamma distribution inferred from SFS with Fit∂a∂i and Poisson likelihood 

2n=24 0.166 0.0497 

2n=864 0.189 0.0364 

Notes: These results represent a single simulation replicate. We show that Fit∂a∂i infers the 
DFE of new mutations correctly for many replicates in Figure S7. These DFEs are scaled in 
terms of s. *The estimated scale parameter is likely inaccurate due to the small sample size as 
well as the fact the multinomial likelihood was used.
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Figure S1. The expected contribution of mutations with various selective effects to the 
nonsynonymous SFS in (A) a sample of 2596 chromosomes and (B) a sample 24 
chromosomes under the demographic model and DFE inferred from the full LuCamp 
dataset. Note that fewer than 1000 moderately to strongly deleterious mutations (blue and red) 
are segregating in the small sample, while more than 20,000 of them are predicted to be 
segregating in the large sample. 
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Figure S2. A flow chart depicting the efficiency of Fit∂a∂i compared to the default 
implementation of ∂a∂i. Fitting a DFE with the default implementation of ∂a∂i is slow because 
the same frequency spectra must be calculated for each step in the optimization of the DFE. We 
compute the spectra once and call the saved frequency spectra for each optimization step. 
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Figure S3. A pictorial representation of the demographic model fit to the SFS of 
synonymous sites of our datasets. The times denote the length of time of each epoch. See 
Table S1 for the parameter values we inferred from the data.  
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Figure S4. Comparison of the observed synonymous SFS to the SFS from the best fitting 
demographic model. Each SFS has been folded, then truncated to 25 entries. All the alleles of 
frequency 25 or greater in the folded frequency spectrum are summed into the last entry. 
Because these demographic models were fit using the multinomial likelihood, the model SFS 
has been scaled by θS. 
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Figure S5. The distribution of population-scaled selection coefficients (ϒ=2Ns) of new 
mutations for our best-fit DFEs compared to Boyko et al. (2008). This figure is the same as 
Figure 4, except estimates are scaled by twice the ancestral population size. Results are 
presented for the best fit DFE to each full dataset and the best fit DFE when the data were 
projected down to n=24 chromosomes. Our DFEs predict more nearly neutral mutations 
(0≤|2Ns|<0.1) and fewer strongly deleterious mutations (100≤|2Ns|) than Boyko et al. (2008), 
regardless of the mutation rate or the manner in which selection coefficients are parameterized 
(Figure 4). The top panel denotes our favored mutation rate while the bottom panel denotes the 
mutation rate used by Boyko et al. (2008). 
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Figure S6. Comparison of the observed nonsynonymous SFS to the SFS from the best 
fitting demographic and selective models. For the full data, the discrete, neutral+gamma, 
and neutral+gamma are the best fitting DFEs to the 1000 Genomes, ESP, and LuCamp 
datasets, respectively. To the downsampled datasets, the neutral+gamma, gamma, and gamma 
DFEs are the best fitting DFEs to the 1000 Genomes, ESP, and LuCamp datasets, respectively. 
Each SFS has been folded, then truncated to 25 entries. All the alleles of frequency 25 or 
greater in the folded frequency spectrum are summed into the last entry. 
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Figure S7. Mis-specification of the demographic model has little effect on selection 
inference from small samples. Two hundred datasets were simulated under the demographic 
model fit to the LuCamp synonymous SFS (Table S1, Figure S3) for a range of sample sizes. 
True values are depicted with a red line. (A) Parameter estimates of the correct demographic 
model (full model) and a three epoch model fit to the simulated data. (B) Parameter estimates of 
the gamma DFE as well as the proportions of each range of selective effect for a range of 
sample sizes assuming LNS/LS=2.5 and μ=1.8e-8 (α=0.203, β=1082.1). The shape and scale 
parameters are directly inferred, and the proportions are computed from the gamma distribution. 
For the full model, sample size does not bias inference of selection. The accuracy of the 
selection inference conditioned on the three epoch demography declines with increasing sample 
size because the simple demographic model cannot account for the excess of rare variation in 
the data. The boxes cover the first and third quartiles, and the band represents the median. The 
whiskers cover the highest and lowest datum within 1.5 times the interquartile range from the 
first and third quartiles. Lastly, any data outside that region are plotted as outlier points. 
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Figure S8. Fitting only the curvature of the SFS is insufficient for estimating the scale 
parameter of the gamma DFE, especially at small sample sizes. Depicted are the relative 
performances of the multinomial and Poisson likelihoods when fitting a gamma DFE to 200 
simulated datasets of varying sample sizes. The multinomial likelihood only fits the curvature of 
the SFS while the Poisson likelihood accounts for the total number of SNPs in the data. 
Simulations were performed using the demographic model and gamma DFE inferred from the 
LuCamp dataset, assuming LNS/LS=2.5 and μ=1.8e-8 (α=0.203, β=1082.1). True parameter 
values are depicted with a red line, and the slope of the black line is 1. The density plots 
describe the marginal densities of the MLEs of the simulation replicates. (A) Shape parameter 
(α) of the gamma distribution. (B) Scale parameter (β) of gamma distribution. Note the bimodal 
distribution of the MLEs of the scale parameter at the optimization boundaries when the 
multinomial likelihood is used. 
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Figure S9. The DFE of segregating sites versus the DFE of new mutations. DFEs from 
three different simulations are shown as discretized histograms. In the first two, the selection 
coefficients of only the segregating variants in samples of size n=24 and n=864 chromosomes 
were tallied. In the third, the selection coefficients of new mutations (which could be 
segregating, fixed, or lost) were tallied. The DFEs of only segregating sites show a distinct skew 
towards neutrality, reflecting that strongly deleterious variants are less likely to be found 
segregating in smaller samples. Additionally, our simulations show a clear distinction between 
the DFE of new mutations and that of segregating variants. 
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Figure S10. The reduction in genetic diversity due to background selection as a function 
of time. The reduction in Ne was computed using the deterministic approximation in Nicolaisen 
and Desai (2013), assuming: a chromosome of length 100Mb with 1.5% coding sequence; a 
recombination rate of 1x10-8 per bp; mutation rates similar to those used in our study as well as 
the deleterious mutation rate of McVicker et al. (2009) of 7.4x10-8 per bp; and the DFEs inferred 
in our study as well as that of Boyko et al. (2008). Except the DFE from Boyko et al. (which 
assumed a mutation rate of 1.8x10-8), the DFEs used to compute the reduction in diversity for 
the various mutation rates are the best-fitting gamma or neutral+gamma DFEs inferred using 
their respective mutation rates. The DFEs used for the mutation rate of 7.4x10-8 are the best-
fitting DFEs inferred assuming the mutation rate was 1.8x10-8. These calculations assume a 
constant population size of 10,000 diploids, and values of Ne less than 10,000 are due to 
background selection reducing linked neutral diversity. 
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ABSTRACT 

While it is appreciated that population size changes can impact patterns of deleterious 

variation in natural populations, less attention has been paid to how gene flow affects and is 

affected by the dynamics of deleterious variation. Here we use population genetic simulations to 

examine how gene flow impacts deleterious variation under a variety of demographic scenarios, 

mating systems, dominance coefficients, and recombination rates. Our results show that 

admixture between populations can temporarily reduce the genetic load of smaller populations 

and cause increases in the frequency of introgressed ancestry, especially if deleterious 

mutations are recessive. Additionally, when fitness effects of new mutations are recessive, 

between-population differences in the sites at which deleterious variants exist creates heterosis 

in hybrid individuals. Together, these factors lead to an increase in introgressed ancestry, 

particularly when recombination rates are low. Under certain scenarios, introgressed ancestry 

can increase from an initial frequency of 5% to 30-75% and fix at many loci, even in the 

absence of beneficial mutations. Further, deleterious variation and admixture can generate 

correlations between the frequency of introgressed ancestry and recombination rate or exon 

density, even in the absence of other types of selection. The direction of these correlations is 

determined by the specific demography and whether mutations are additive or recessive. 

Therefore, it is essential that null models of admixture include both demography and deleterious 

variation before invoking other mechanisms to explain unusual patterns of genetic variation. 

 

INTRODUCTION 

There is tremendous interest in quantifying the effects that demographic history has had 

on the patterns and dynamics of deleterious variation and genetic load [1–7]. Several studies 

have suggested that recent human demography has had little impact on load [8,9] while others 

have suggested weak, but subtle differences between human populations [10–14]. All of these 

studies have typically focused on how population size changes, such as expansions and 
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bottlenecks, have affected deleterious variation. Other types of complex demography, however, 

have received considerably less attention. 

In particular, gene flow may be important for shaping patterns of deleterious variation. 

Population admixture, or hybridization between closely related species, appears to be quite 

common in nature [15] and has had a significant role in shaping human genomes [16]. Gene 

flow alone can subtly change the effects of selection on deleterious variation [12], but should 

have notable fitness consequences if deleterious variation is distributed differently between 

admixing populations. For example, Neanderthals likely had a higher genetic load than 

coincident human populations due to the former’s smaller long-term population size [17,18]. As 

a result, it is thought that gene flow from Neanderthals into the ancestors of modern humans 

could have increased the genetic load of some human populations by 0.5% [17], and that linked 

selection removed much of Neanderthal ancestry from humans since that time. In contrast, 

domesticated species likely have increased genetic load due to domestication bottlenecks and 

hitchhiking of deleterious alleles with artificially selected variants [19–21]. Gene flow from wild 

populations could alleviate the genetic load of domesticated species, and increases in the 

frequency of wild-population ancestry should be observed in the domesticated population [22]. 

Such changes in patterns of introgression are important to consider when studying how natural 

selection shapes the evolution of hybrid ancestry, a major goal in evolutionary biology. 

Differences in the distribution of deleterious variation between hybridizing populations is 

one reason why natural selection may shape the evolution of hybrid ancestry. Hybridization can 

also decrease the fitness of a population, for instance, if the parent lineages have diverged 

significantly and evolved genomic incompatibilities, or if parent lineages have evolved under 

unique and strong selective pressures in different environments. In both cases, linked selection 

removes hybrid ancestry especially in regions of low recombination and high functional density 

[23–25]. This creates genome wide, negative correlations between the local recombination rate, 

or functional density, and the frequency of introgressed ancestry, a pattern that is observed in 
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humans [23,25,26], swordtail fish [25], and mice [27]. The similar outcomes of both these 

processes mean that models of selection on deleterious variation should be considered before 

interpreting genomic patterns of introgression as evidence of divergence and speciation. 

Another complication to studying the effects of deleterious mutations on introgression is 

that strongly deleterious new mutations are more likely to be fully or partially recessive [28–30]. 

Furthermore, dominance coefficients vary between species, and can range from close to 

additive in humans [13] to mostly recessive in Arabidopsis [30]. If some proportion of deleterious 

recessive variants is private to a population, admixed populations could experience heterosis 

when recessive variants are masked (heterozygous) in hybrid individuals [31]. As a result, 

heterosis may participate in a tug-of-war on hybrid ancestry with additive variants by increasing 

the frequency of linked ancestry [17], increasing apparent migration rates in regions linked to 

selected variants [32,33], particularly when gene flow occurs in a highly structured population 

[34]. Heterosis should also increase the probability that introgressed ancestry will persist in an 

admixed population, even if the introgressed ancestry contains more deleterious alleles [17]. 

Given the extent to which hybridization is thought to be common to all species [15], with levels 

of shared polymorphism in taxa such as Arabidopsis motivating arguments for the bifurcating 

species concept to be revoked [35], it is crucial to understand the contribution of heterosis to 

patterns of hybrid ancestry. 

Hybridization also transfers novel adaptive variants between evolutionarily distinct 

lineages [36]. In humans, many Neanderthal variants are thought to be adaptive [37], possibly 

affecting phenotypes such as skin pigmentation [38,39], the response to oxygen levels at high 

altitudes [40,41], and immunity to pathogens [42]. In this case, the introduction of beneficial 

alleles via gene flow will also oppose the effect of linked selection from deleterious variation, 

since introgressed ancestry would increase in frequency by hitchhiking with adaptively 

introgressed variants. Interestingly, North American populations of Drosophila melanogaster 

exhibit an overall enrichment for introgressed African ancestry in genomic regions of low 
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recombination [43,44]. The divergence time between these two D. melanogaster populations is 

small, and so selection on hybrid individuals may be driven by adaptive variants that arose over 

shorter time scales than genomic incompatibilities. On the other hand, no correlation between 

recombination rate and introgression is observed in invasive Californian sunflowers [45]. How 

selection against additive deleterious variation, selection for adaptive variants, and heterosis 

interact to determine these genomic patterns is unknown. 

The objective of this study is to develop a clearer idea for null models of the dynamics of 

introgression in hybridizing populations while considering the effect of deleterious variants on 

fitness. Specifically, we aim to understand how selection on introgressed ancestry is determined 

by differences in the effective population size, mating system, genome structure, recombination 

rate, distribution of fitness effects, and distribution of dominance coefficients. Previous 

simulation and empirical work have shown that for at least some systems, deleterious variation 

is a significant modulator of gene flow [17,18,22,24,25], but few studies have investigated these 

questions outside of demographic models specific to a system. This study presents a series of 

simulations utilizing demographic models that generalize biological scenarios of interest by 

borrowing population genetic parameters and genomic structure from humans and Arabidopsis 

thaliana, two markedly different organisms with markedly different population genetic 

parameters. We include a realistic distributions of fitness effects and simulate under various 

models of dominance. In addition, we examine how the relationship between the genomic 

landscape of introgressed ancestry and recombination rates or functional content is determined 

by the underlying demography. 

 

RESULTS 

Forward simulations 

 We used SLiM 3.0 [46] in conjunction with tools from pyslim [47] and msprime [48] to 

simulate a series of five models of admixture in the presence of deleterious variation. Each of 
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the five models was based on a divergence model where an ancestral population at equilibrium 

splits into two subpopulations. At some time after the split, a single pulse of admixture occurs at 

a proportion of 5%, in one direction and for a single generation. Due to practical considerations 

only an initial admixture proportion of 5% was simulated. Figure 1 provides a cartoon 

representation of these models and the specific model parameters can be found in Table S1. 

 

Figure 1. The demographic models used for the simulations. After a burn-in period of 10NA 

(100,000) generations, a single population diverged into two subpopulations. The demography 

of the subpopulations was modified in ways that changed the distribution of deleterious 

variation. 2NA (20,000) generations after the split, a single pulse of admixture occurred such that 

5% of the ancestry of the recipient population came from the donor population. Arrows in each 

panel denote the direction of gene flow. The simulation was run for NA (10,000) additional 
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generations after admixture. Population sizes were changed as shown for each model. See 

Table S1 for specific parameter values for each model. 

 

All simulated sequence included genic structure (exon/intron/intergenic regions), which 

was either randomly generated or incorporated from a reference genome as described in the 

following sections. Only new nonsynonymous mutations were assigned nonzero selection 

coefficients, which were drawn from a gamma distribution of fitness effects (DFE) with shape 

parameter 0.186 and E[s]= -0.01314833 [49] except when specified otherwise. In other words, 

no positively selected mutations were simulated. 

 Throughout, we will refer to the subpopulation that migrants originate from as the donor 

subpopulation, and the subpopulation that migrants join as the recipient subpopulation. 

Furthermore, we will refer to ancestry in the recipient subpopulation that originated in the donor 

subpopulation as introgression-derived ancestry. We use pI to denote the total proportion of 

ancestry that is introgression-derived in the recipient subpopulation. 

 See the Methods for additional details on the simulations.  

 

Demography and recombination rate create differences in load between populations 

 To better understand how deleterious variants shape patterns of introgressed ancestry, 

we first simulated small genomic segments with randomly generated genic structure, of length 

~5 Mb and selection coefficients from a gamma DFE. Two hundred simulation replicates using 

each of the 5 demographic models in Figure 1 (parameters in Table S1), each of the per base 

pair recombination rates r = 10-6, 10-7, 10-8, and 10-9, and additive (h=0.5) or recessive (h=0.0) 

fitness effects were generated, for a total 8,000 independent replicates. 

 In the 20,000 generations between the population split and admixture event, deleterious 

mutations accumulate at different rates across subpopulations for each unique model (Figure 
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S1), illustrated by the relative difference in subpopulation fitness in Figure 2. We report 

subpopulation fitness while ignoring the deleterious variants that have fixed in both 

subpopulations, since selection will not act on globally monomorphic variants. Because some 

weakly deleterious variants will fix in one subpopulation yet be lost in the other, each 

subpopulation’s fitness also steadily decreases through time.  

 

 

Figure 2. The change in the ratio of fitness over time due to demography. Each individual plot 

depicts the ratio of the mean fitness of the recipient population (wR) to the donor population (wD) 

for the demographic models shown in Figure 1. The mean (dotted line) and the 25th to 75th 

percent quantiles are shown for 200 simulation replicates. The vertical gray line depicts the time 

of gene flow, and the horizontal dashed black line depicts wR/wS=1. Different colors denote 

distinct recombination rates used in the simulations. Left panel denotes additive mutations 

(h=0.5) while the right panel shows recessive mutations (h=0). 
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In the additive fitness model, this relative difference in fitness is simply determined by 

relative differences in subpopulation size. When there are no differences in subpopulation size 

(Model 0), the fitness of both donor and recipient subpopulations decreases at approximately 

the same rate (wR ≈ wD, Figure 2). A similar pattern is for a short bottleneck in the recipient 

population (wR ≈ wD , Model 1, Figure 2), reflecting the insensitivity of additive genetic load 

(measured in terms of the number of deleterious variants per haplotype in Figure S2) to short-

term changes in Ne [8]. In contrast, long-term differences in population size (Models 2-4, Figure 

2) provide enough time for deleterious variants to drift to higher frequency in the smaller 

subpopulation, resulting in substantial differences (approximately 5%) in fitness between 

subpopulations.  

When deleterious mutations are recessive, a qualitatively similar relationship between 

subpopulation size and subpopulation fitness is generally observed. When there are no 

differences in population size (Model 0), the fitness of donor and recipient subpopulations 

decreases at a similar rate (wR ≈ wD, Figure 2). A short bottleneck in the recipient population 

(Model 1) increases the frequency of homozygous, recessive genotypes immediately post-

bottleneck (Figure S3) which slightly decreases the recipient subpopulation’s fitness 

immediately before admixture (Figure 2). Finally, similar to the additive fitness model, long-term 

differences in population size result in substantial differences (>10%) in relative fitness between 

admixing populations. 

The recombination rate is a key factor in determining differences in fitness between the 

two subpopulations. When the recombination rate is low, the fitness of the smaller 

subpopulation decreases at a lower rate, reflecting the reduced efficacy of purifying selection in 

low recombination regions [50]. Relative subpopulation differences in fitness between high 

recombination (r=10-6) and low recombination (r=10-9) simulations are about 2% for the additive 

fitness model and about 8% for the recessive fitness model. 
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Demography and recombination determine changes fitness post-admixture 

 Similar to the manner in which they affect subpopulation differences in fitness, 

recombination rates interact with demography to determine changes in subpopulation fitness 

after admixture.  

When fitness effects are additive, admixture is unlikely to cause immediate and large 

changes in fitness, while subpopulation differences in fitness lead to gradual changes in fitness 

over time. If admixing subpopulations have the same fitness (Models 0 and 1, Figures 2 and 

S1), admixture predictably has no impact on the recipient population’s fitness. If donor 

haplotypes have lower fitness than the recipient (Model 2, Figure 2), the recipient population’s 

fitness is negligibly decreased by admixture (Figure S2), specifically because relative 

differences in donor and recipient are relatively small (<10%) and the initial frequency of donor 

ancestry is always 5%. If instead the donor subpopulation has higher fitness (Models 3 and 4, 

Figure 2), recipient fitness is relatively unaffected at the time of admixture but increases over 

time (Figure S2) as the fitter haplotypes experience directional selection. The velocity and 

magnitude of these changes depends on the recombination rate, as variants originating from the 

same subpopulation are generally selected in the same direction, and these variants remain on 

the same haplotypes when recombination is low. 

   When fitness effects are recessive, admixture instead causes immediate and large 

changes in fitness as recessive alleles are masked in heterozygous, hybrid individuals (Figures 

2 and S1). The qualitative patterns observed are consistent across all demographic models, but 

the magnitude of these changes is significantly larger in simulations where the recipient 

subpopulation has lower fitness. The recombination rate again plays a key role in determining 

fitness in the recipient subpopulation, with the largest changes in fitness occurring in simulations 

with low recombination. This occurs because the largest differences in pre-admixture fitness are 

observed when recombination is low (Figure 2), but also because the heterozygosity of hybrids 

is maximized if recombination does not occur between donor and recipient haplotypes. This 
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linkage effect is particularly important as most of the variants under selection should have weak 

effects, since selection is likely to prevent strongly deleterious variants from drifting to high 

frequency even in a small population. 

 

Demography and recombination rate determine patterns of introgression 

 We next explore changes the frequency of introgressed ancestry (pI) over time in the 

different models. 

 In the additive fitness case, changes in the frequency of introgression-derived ancestry 

are directly predictable from the differences in subpopulation fitness. When there are no 

differences in load (wR ≈ wD, Models 0 and 1, Figures 2 and S1) between mixing haplotypes, 

selection does not favor a particular ancestry and donor subpopulation ancestry remains, on 

average, at the initial admixture proportion of 5% in the recipient (Figure 3). If donor 

subpopulation haplotypes have lower fitness as in Model 2 (Figures 2 and S1) deleterious 

donor ancestry is removed by selection, leading to a long-term pI of less than 5%. If instead the 

donor subpopulation has higher fitness (Models 3 and 4, Figure 2), pI is increased above 5% by 

selection. This increase is greatest (pI = 75%) when there is an expansion after the time of 

admixture and in regions of low recombination (Model 4). 
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Figure 3. The frequency of introgression-derived ancestry (pI) in each model. Earlier 

generations are not shown since pI=0 prior to admixture. The mean (dotted line) and the 25th to 

75th percent quantiles are shown for 200 simulation replicates. The vertical gray line depicts the 

time of gene flow, and the horizontal dashed black line depicts the initial admixture proportion of 

0.05. Different colors denote distinct recombination rates used in the simulations. Left panel 

denotes additive mutations (h=0.5) while the right panel shows recessive mutations (h=0). 

 

 In a recessive fitness model, selection initially favors donor ancestry in the recipient 

subpopulation. In all cases (Models 0-4, Figure 3), the frequency of introgression-derived 

ancestry increases after admixture, regardless of whether the donor subpopulation’s fitness is 

less fit or more fit than the recipient. This effect is explained by heterosis, which occurs when 

recessive deleterious variants are masked as heterozygotes in hybrid individuals (Figure S3), 
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particularly in the generations immediately following admixture. At this time point, recombination 

has had little chance to shuffle donor and recipient haplotypes and heterozygosity is maximized 

in admixed individuals.    

 Again, the recombination rate is a key parameter that determines patterns of 

introgressed ancestry. As described previously, variants that are selected in the same direction 

remain linked when recombination is low (r=10-9, Figure 3), maximizing the effect of selection 

and minimizing selective interference between recombinant haplotypes. When recombination is 

high (r=10-6), the proportion of donor ancestry is unaffected by selection post-admixture (long-

term pI=5%, Figure 3), as recombination quickly decouples variants under selection from their 

ancestry backgrounds. Importantly, when recombination rates are low (r=10-9), the frequency of 

introgressed ancestry can increase substantially to up to 75% in the recipient population, 

despite the initial admixture proportion of 5%. Even with higher recombination rates, when 

deleterious mutations are recessive and there is a population expansion at the time of admixture 

(Model 4), introgressed ancestry can increase up to 25% frequency.  

 

The impact of the population split time on heterosis 

So far, we have fixed the split time before admixture at 2N generations, a substantial 

time for differences in deleterious variation to accumulate between subpopulations. To further 

examine the relationship between split time and selection on introgression-derived ancestry, we 

simulated with Models 0 and 4 but also varied the time between the split and admixture (ts). For 

simulations with a demography analogous to Model 0, we simulated two divergent populations 

of equal size. For those analogous to Model 4, the recipient subpopulation’s size was reduced 

to 1,000 diploids immediately after the split and recovered to the original size at the same time 

that gene flow occurred. The recombination rate was set to r=10-9 in these simulations. 

Figure 4 depicts the long-term proportion of introgressed ancestry, pI, 10,000 

generations after the admixture event for these two sets of models. We found that across our 
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range of simulated ts, the long-term frequency of introgressed ancestry increases monotonically 

with ts regardless of the underlying demography. Longer split times result in more deleterious 

variation being unique to each subpopulation, causing heterosis after admixture as private 

deleterious variants are masked by introgressed ancestry (Figure S4).  However, these 

differences appear to reach equilibrium after 20,000 generations (Figure 4), about when most 

deleterious variants are private to one subpopulation (Figure S4). We also found as a 

bottleneck increases in duration, differences in subpopulation fitness become a significant 

contributor to the increase in long-term pI, but note the apparent equilibrium at 20,000 

generations. At a split time and thus bottleneck time of >20,000 generations, heterosis and 

differences in load increase long-term pI nearly 2-fold relative the model with no differences in 

load (compare Model 0 to Model 4 in Figure 4). When parametrizing the population split times 

in terms of the realized FST values computed from the SNPs in the simulation output, we find 

that even for low levels of differentiation (FST>0.04), there is a pronounced increase in 

introgressed ancestry (Figure 4). Interestingly, simulations with large long-term pI (e.g. Model 4 

at 1,000 generations or Model 0 at 5,000 generations) can have a level of differentiation of 

FST<0.2 at the time of admixture, suggesting that even moderate levels of differentiation 

between subpopulations are sufficient to drive heterosis in low recombination regions (Figure 

4). 
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Figure 4. Population split time before admixture and population size impact the amount of 

introgressed ancestry when mutations are fully recessive. The proportion of ancestry that is 

introgression-derived, pI, at the time of NA (10,000) generations after admixture, is shown for 

200 simulation replicates and two demographic models (Model 0 and Model 4, refer to Figure 1) 

for a range of times between subpopulation divergence and the admixture event. The 

recombination rate in all simulations is r=10-9 per base pair. Violin plots represent the density 

while dot and whiskers represent the mean and one standard deviation to either side. The 

horizontal dashed black line represents the initial admixture proportion of 0.05. Note that as the 

split time increases, 

 

Human genome structure results in a heterogeneous landscape of introgression 

So far, we have shown how selection on load shapes introgression-derived ancestry in a 

set of simple simulations. However, recombination rates and gene density are heterogeneous 

across actual genomes, and our simulations suggest this variation also could influence the 

genomic landscape of introgression. 
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To investigate how a realistic genomic structure affects patterns of introgression, we 

simulated with three of the demographic models described previously (Models 0, 2, and 4) using 

exon definitions and recombination map for a 100 Mb segment of human chromosome 1. We 

fixed the exon definitions and recombination map to be the same for all simulations. Only new 

nonsynonymous mutations were assigned non-zero selection coefficients drawn from a gamma 

DFE. In addition to simulating both additive and recessive fitness effects separately, we also 

simulated an inverse relationship between dominance coefficients and selection coefficients, 

which we will refer to as the h(s) relationship, using the function estimated by Henn et al. [13]. 

We generated 100 simulation replicates for each of the three demographic models. At the end 

of each simulation, we split the simulated chromosome into non-overlapping 100kb windows 

and computed the frequency of introgression-derived ancestry, exon density, and the average 

per base pair recombination rate in each window.  

The frequency of introgression-derived ancestry generally exhibited genome-wide 

increases after admixture when mutations were partially or fully recessive and varied in 

accordance with differences in Ne between subpopulations when mutations were additive. In the 

model with equal subpopulation sizes (Model 0), we observed no average change in the 

frequency of introgression-derived ancestry when mutations were additive. When new 

deleterious mutations were partially or fully recessive, we observed an overall genome-wide 

increase in the frequency of introgression-derived ancestry (Figure 5), with many regions 

reaching high frequency (>50%) in single simulation replicates (Figure S5). This increase in 

frequency is only due to selection on recessive mutations and local variation in recombination 

rate, since no positively selected mutations were simulated. 
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Figure 5. The average genomic landscape of introgression in simulations with human genomic 

structure. The frequency of ancestry that is introgression-derived is shown for non-overlapping 

100 kb windows in a simulated 100 Mb region of chromosome 1. The model numbers refer to 

the models shown in Figure 1. Points represent a single value for each 100 kb window and 
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lines are loess curves fitted to the data. The horizontal black dashed line represents the initial 

frequency of introgression-derived ancestry, pI=0.05. Vertical blue bars represent genes in 

which deleterious mutations can occur. Red curves denote the results for recessive mutations, 

orange curves show the results for additive mutations, and blue curves show the results for 

simulations with a h(s) relationship. 

 

In the model where introgressing haplotypes carried a larger deleterious burden (Model 

2) and when deleterious mutations were not all recessive, we observed an overall depletion of 

introgressed ancestry consistent with the effects of purifying selection upon introgressed 

ancestry (Figure 5). However, in simulations with fully recessive mutations, the effects of 

heterosis were strong enough such that many genomic regions showed average increases in 

frequency of 1.5 to 2 times that of the initial introgression frequency of 5%. Importantly, Harris 

and Nielsen [17] predicted that heterosis would increase the frequency of introgressed ancestry 

by only a few percent, but our simulations with a similar demographic model show that larger 

increases in the frequency of introgressed ancestry, especially in exon-dense and low 

recombination regions.  

Finally, when we simulated the introgression of haplotypes from a subpopulation with 

lower genetic load (Model 4), we observed drastic, genome-wide increases in the average 

frequency of introgressed ancestry in the recipient subpopulations (Figure 5) as well as many 

fixed loci in individual simulations (Figure S5), regardless of whether fitness effects of mutations 

were additive or recessive. For example, local regions of the simulated chromosome showed an 

average increase in introgressed ancestry from an initial frequency of 5% up to 50-60% 

frequency. Furthermore, peaks of introgression are highly correlated between the simulations 

with different models of dominance, suggesting that the interplay between exon density and 

recombination strongly affects the way that selection acts on introgressed ancestry in this 
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model.  This is the type of signature that would be unlikely to be generated under neutral 

demographic models and could be mistakenly attributed to adaptive introgression. 

It is also notable that the frequency of introgression-derived ancestry (pI) in each window 

appears to be driven not only by recombination but by exon density, or the local concentration of 

sites at which deleterious mutations can occur. For recessive mutations, pI is greatly increased 

on the left-hand side of the simulated chromosome, which tends to be more gene-rich than the 

right-hand side of the chromosome (Figures 5 and S5). Importantly, the recombination rate was 

not significantly correlated with exon density (Spearman’s ρ=-0.0457, p=0.149) in our 

simulations, showing these factors likely act independently to shape the landscape of 

introgression. 

To more formally explore these relationships, we examine the correlations between 

genomic features and the average frequency of introgressed ancestry across 100 simulation 

replicates, measured in 100 kb windows (Figures 6 and 7). In the model of equal subpopulation 

sizes (Model 0), the frequency of introgression-derived ancestry is not significantly related to the 

recombination rate or exon density when mutations have additive effects, but is positively 

correlated to exon density when fitness effects are fully or partially recessive (Figure 7). The 

h(s) relationship results in intermediate levels of introgression relative to simulations with strictly 

additive or fully recessive new mutations. For Model 2, the frequency of introgression-derived 

ancestry is positively correlated to the recombination rate and negatively correlated to exon 

density when fitness is additive. When fitness effects are fully recessive for this model, the 

frequency of introgressed ancestry is negatively correlated to recombination rate (middle panel 

in middle row in Figure 6) and positively correlated to exon density (middle panel in middle row 

in Figure 6). However, under the h(s) relationship, introgression derived ancestry is not 

significantly correlated to the recombination rate but is correlated with exon density. Lastly, 

when introgressed ancestry comes from a larger subpopulation with a lower deleterious burden 

than the recipient subpopulation (Model 4), the frequency of introgression-derived ancestry is 
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always negatively correlated with recombination rate, and positively correlated with exon 

density. For Model 4, these correlations are observed for all models of dominance. 

 

Figure 6. The relationship between recombination rate and frequency of introgressed ancestry 

for different demographic and selective scenarios. The frequency of introgression-derived 

ancestry (pI) is plotted against the average recombination rate of non-overlapping 100 kb 

windows in each window at time NA (10,000) generations after admixture. Gray dots represent 

the average pI of a single window in 100 simulation replicates, while red dots represent the 

average pI of 5% of windows as ordered by rank of recombination rate. Rank was randomly 

assigned for ties. The horizontal black line represents the initial pI of 5%. Spearman’s ρ is 

computed for the relationship between recombination rate and pI in each window and p-values 

indicate the significance of H1: ρ≠0. The model numbers refer to the models shown in Figure 1. 
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Figure 7. The relationship between exon density and frequency of introgressed ancestry for 

different demographic and selective scenarios. The frequency of introgression-derived ancestry 

(pI) is plotted against the average exon density of non-overlapping 100 kb windows in each 

window at time NA (10,000) generations after admixture. Gray dots represent the average pI of a 

single window in 100 simulation replicates, while red dots represent the average pI of 5% of 

windows as ordered by rank of exon density. Rank was randomly assigned for ties. The 

horizontal black line represents the initial pI of 5%. Spearman’s ρ is computed for the 

relationship between recombination rate and pI in each window and p-values indicate the 

significance of H1: ρ≠0. The model numbers refer to the models shown in Figure 1.  

 

Deleterious mutations impact the length of introgression deserts 

 Using these same simulations, we examined how selection on deleterious variation after 

admixture might influence the distribution of introgression deserts, or long stretches of the 

genome of the recipient population devoid of introgressed ancestry (Figure S6). When 

subpopulation fitnesses are expected to be the same (Model 0), the distribution of introgression 

deserts for models with deleterious mutations is similar to a neutral model, suggesting that 
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selection does not appreciably impact the distribution of deserts. When introgression-derived 

ancestry is expected to be deleterious (Model 2), simulations with additive fitness are enriched 

for longer ancestry deserts, though only slightly so. If instead introgression-derived ancestry is 

less deleterious than ancestry in the recipient population (Model 4), the length distribution of 

introgression deserts is shifted to be shorter, with the shortest introgression deserts occurring in 

models with recessive mutations (h=0) where both selection on load and heterosis act 

synergistically to increase the frequency of introgressed ancestry. 

 

Introgression on the X chromosome 

 The observation that human X chromosomes are five-fold more resistant to introgression 

than the human autosome has been interpreted as a signature of genomic incompatibility 

between Neanderthals and humans, caused by an overrepresentation of male hybrid sterility 

genes on the X chromosome [23]. However, the evolution of the X chromosome differs from the 

autosomes in a number of important aspects, particularly in the strength of selection on 

deleterious variants [51], which may contribute to differences in patterns of introgression [17,18]. 

It is additionally unclear how selection on recessive variants might contribute, or counteract, the 

apparent resistance of the X chromosome to introgression. 

To investigate the expected patterns of introgression on the X chromosome, we modeled 

X chromosome admixture with the simulation framework previously described. Although we 

used the same DFE for all these simulations, we utilized an analogous model of fitness that 

accounts for dosage compensation and the hemizygous sex [51,52]. Chromosome structure, 

recombination rates, and the DFE were the same as the simulations of human chromosome 1. 

See Methods for additional details on the calculation of fitness in these simulations. 

Our simulations show that deleterious variation alone can result in significant differences 

between introgression on the X and the autosomes (Figure 8). When fitness is additive, 

stronger selection occurs on the X chromosome as deleterious variants are exposed in males. 
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This does not affect the X to autosome introgression ratio (X/A ratio) for Model 0, since both 

populations carry a similar burden of deleterious variants. For Model 2, selection removes 

introgressed ancestry from the X more quickly (X/A < 1), and for Model 4, selection increases 

the frequency of introgressed ancestry more than the autosome (X/A > 1). When fitness is 

recessive, the effect of heterosis is weaker for the X chromosome, since the hemizygous sex 

cannot be heterozygous. This effect also results in less observed introgression on the X than 

the autosome (X/A < 1) for all considered models. Finally, under the h(s) relationship, our 

models predict amounts of introgression that are intermediate between strictly additive or strictly 

recessive models. 

 

 

Figure 8. Differences in introgression between the X chromosome and autosomes. The 

average frequency of introgression-derived ancestry across the entire simulated chromosome 

(pI) at time NA (10,000) generations after admixture is shown for three demographic models and 

three models of fitness. Model numbers refer to the models shown in Figure 1. Bars represent 

h=0.5 h=0 h(s)
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the mean pI of 100 simulation replicates and error bars represent standard errors of the means. 

The horizontal dashed black line represents the initial pI of 5%. 

 

 

Arabidopsis genome structure results in a homogeneous landscape of introgression 

 Human-like demography and genomic parameters may not generalize well for the 

purpose of understanding introgression in other species. Functional density, recombination 

rates, effective population sizes, dominance, and the DFE can differ by an order of magnitude 

between species. To provide an alternative picture of how introgression dynamics are driven by 

deleterious variation in a natural system where dominance and selection have been estimated, 

we simulated Models 0, 2, and 4 using the genomic structure of Arabidopsis thaliana.  

While the simulated demography was similar to the ones described previously, we used 

exon definitions and a recombination map of most (29.1 out of 30.4 Mb) of A. thaliana 

chromosome 1, and chromosome structure was fixed to be the same in all 100 simulation 

replicates. Both exon density and recombination rates are higher in A. thaliana (medians of 

100kb windows 4.8×10-1 and 4.6×10-7, respectively) than humans (medians of 100kb windows 

1.6×10-2 and 8.04×10-9, respectively). The ancestral population size was set to NA=100,000 

diploids, and the DFE to a gamma distribution with shape parameter 0.185 and E[s]= -

0.0004866 [30]. We also assumed that dominance coefficients followed the h(s) relationship 

estimated by that study and did not simulate scenarios with only additive or only recessive new 

mutations. To the best of our knowledge, this is the only estimate of the h(s) relationship in a 

natural population other than humans. We split the simulated chromosome into non-overlapping 

100kb windows and computed the frequency of introgression-derived ancestry, exon density, 

and the average recombination rate in each window. 
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The genomic landscape of introgression in our simulated Arabidopsis population varied 

little (Figure 9), even in a single simulation replicate of the same demographic model (Figure 

S7). For Model 0, introgressed ancestry rose quickly from an initial frequency of 5% to about 

24%, NA generations after admixture. There was little spatial variation in the frequency of 

introgression-derived ancestry. For example, pI did not appear to be affected by the paucity of 

exons near the centromere (Figure 9). In Model 2, introgression-derived ancestry was quickly 

removed from the recipient subpopulation. This meant that pI decreased to 0% across the whole 

chromosome. The converse was true for Model 4, where introgression-derived ancestry was 

favorable, and selection resulted in a complete replacement of recipient population ancestry 

(pI=100%).  
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Figure 9. The average genomic landscape of introgression in simulations with Arabidopsis 

genomic structure. The frequency of ancestry that is introgression-derived is shown for non-

overlapping 100 kb windows in a simulated 29.1 Mb region of chromosome 1. The model 

numbers refer to the models shown in Figure 1. Points represent a single value for each 100 kb 
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window and lines are loess curves fitted to the data. The horizontal black dashed line represents 

the initial frequency of introgression-derived ancestry, pI=0.05. Vertical blue bars represent 

genes in which deleterious mutations can occur. Blue curves show the results for simulations 

with a h(s) relationship. 

 

Introgression is more likely in partially selfing populations than outcrossing populations  

 A notable life history feature distinguishing Arabidopsis thaliana from its congeners is the 

capability to self-fertilize [53]. Populations that are capable of self-fertilization may experience 

an overall reduced Ne leading to an accumulation of weakly deleterious variants relative to an 

outcrossing population, and increased levels of inbreeding depression. On the other hand, 

strongly deleterious recessive mutations should be purged in a selfing population [54,55]. 

Relative differences in the types of deleterious variation between groups with different mating 

systems may then initiate another kind of selective tug-of-war after admixture. 

To investigate how deleterious mutations affect levels of introgression when admixture 

occurs between two populations with different mating systems, we simulated gene flow between 

a partially selfing and an outcrossing subpopulation using the same A. thaliana parameters as 

described in the previous section. We limited our simulated demographic model to Model 0 so 

that any differences in deleterious variation between subpopulations could be attributed to the 

mating system. Seven different gene flow scenarios were simulated, with selfing probabilities of 

0%, 25%, 50%, and 75% in either subpopulation (Figure 10). Specifically, we simulated: first, 

with two outcrossing populations (0% to 0%); then with the outcrosser (0%) as the donor and 

the partial selfer (selfing probabilities of 25%, 50%, 75%) as the recipient, then the partial selfer 

(25%, 50%, 75%) as the donor and the outcrosser (0%) as the recipient. Self-incompatibility 

alleles were not simulated.  
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Figure 10. The impact of partial selfing on the frequency of introgression-derived ancestry in 

Model 0 (Figure 1) with Arabidopsis genomic structure. The frequency of introgression-derived 

ancestry (pI) at time NA (10,000) generations after admixture is plotted for seven different 

scenarios of admixture between a partially selfing population and an outcrossing population. Bar 

plots denote the average pI of 100 simulation replicates and error bars represent standard errors 

of the averages. The horizontal dashed black line represents the initial pI of 5%, and the 

horizontal dashed blue line represents the pI that is expected between when both 

subpopulations are outcrossers. Labels on the x-axis denote the probability of selfing in the 

population that is partially selfing. 

 

Our simulations show that the long-term frequency of introgression (10,000 generations 

after admixture) depends on the proportion of selfing individuals in the selfing subpopulation 

(Figure 10). In other words, selfing reduces Ne relative to an outcrosser, resulting in increased 

drift and a greater accumulation of deleterious mutations. These differences in load result in 
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patterns of introgression qualitatively similar to those observed previously in this study. In the 

simulations between two outcrossing populations, pI increases from 5% to a long-term 20-25%, 

due to heterosis from the large proportion of recessive mutations predicted by the h(s) 

relationship. This is the same result as the simulations of Model 0 in the previous section. When 

the outcrosser is the donor, pI increases monotonically with the selfing probability of the 

recipient, this time above the fraction expected between two outcrossing populations. When the 

partially selfing population is the donor, long-term pI usually increases by heterosis from the 

initial 5% value, although the long-term pI monotonically decreases as the selfing probability 

increases. At a selfing probability of 75%, the outcrossing population is almost completely 

resistant to introgression. In the absence of fitness epistasis, it is likely that a combination of 

high recombination rates and strong initial selection from differences in deleterious mutations 

between populations counteracts any loss of donor ancestry from the purging of strongly 

deleterious recessive variants. 

 

DISCUSSION 

We have shown through simulations that deleterious variation can greatly influence the 

dynamics of introgression between admixing populations, in markedly different directions, 

magnitudes, and manners depending on the demographic model, mating system, models of 

selection, and genomic structure. In particular, the recombination rate is a key parameter that 

determines the way in which deleterious variants accumulate between populations and how 

selection acts on introgression-derived ancestry after admixture, ultimately determining the 

genomic landscape of introgression. 

Our work demonstrates how demography can shape patterns of deleterious variation in 

different populations. Previous studies have examined the role of population size changes 

[1,8,12,56,57] and serial founder effect models [13,58] on deleterious variation. Interpreting how 

differences in the distribution of deleterious variation impact fitness has been a contentious 
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issue [4,5,7,9,11]. In this study, we observed that admixture can increase the fitness of the 

recipient population, sometimes drastically if the donor population is of larger long-term effective 

population size and thus carries lower genetic load. Generally, gene flow is observed to drive 

smaller, subtle changes in fitness. Nevertheless, the influx of new alleles can result in a 

rearrangement of deleterious variants in an admixed population (Figures S2 and S3), and 

subtle changes to fitness can lead to significant shifts in the frequency of introgressed ancestry 

(e.g. see Model 0, h=0.0, in Figure 3). These effects can be long lasting, persisting for 

thousands of generations in some of our simulations (Figures 2, 3, S1). If hybridization is a 

significant feature of a study population, studies concerning load should consider the fitness 

consequences of admixture as well as population size changes. 

That dynamics of introgression-derived ancestry can be driven by deleterious variation is 

also important for the study of selection on gene flow between populations or species. Patterns 

of introgression between hybridizing species are often asymmetric, vary across the genome, 

and can be driven by demography at expansion fronts [59], dispersal processes [60], or by 

natural selection. However, when natural selection is implicated as driving changes in 

introgression-derived ancestry, processes such as genomic incompatibility or adaptive 

introgression are invoked to explain variation in introgression across the genome. We have 

shown that differences in demography and mating system create between-population 

differences in standing deleterious variation, and that selection upon these differences provides 

an alternative hypothesis to selection on alleles transplanted onto a new genomic background 

or new environment. To the best of our knowledge, only a few studies have considered the 

contribution of selection on deleterious variation to observed patterns of introgression 

[12,24,32], and mostly in specific systems [17,18,22,25]. 

Selection on deleterious variation may be particularly important for determining patterns 

of introgression in natural populations that are out of demographic equilibrium. Models of 

increased genetic drift predict accumulations of genetic load at the edges of expanding 
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populations [13,58] which suggests introgression into the expanding population could be driven 

by selection on genetic load. We have also shown that population bottlenecks can greatly affect 

patterns of introgression, particularly when assuming a recessive fitness model. If recessive 

deleterious variation also creates heterosis in admixed individuals, the effects of heterosis and 

population size will be synergistic, further enhancing introgression in genomic regions of low 

recombination. Our simulations also directly suggest heterosis may contribute to the pervasive 

patterns of introgression and shared polymorphism between different species in the genus 

Arabidopsis [35] even if hybridizing species have similar amounts of deleterious variation. 

Because selection can alter patterns of introgression even if hybrid ancestry is not 

explicitly deleterious, genome-wide inferences of admixture proportions that assume neutrality 

are likely to be biased. For instance, our simulations predict the amount of introgression is 

strongly influenced by deleterious mutations in Arabidopsis, and the manner in which this occurs 

is dependent on the demography. Observed proportions of ancestry range from 0% for Model 2 

to 100% for Model 4 (Figures 9 and S8), despite the true admixture proportion of 5%. Taking 

the observed proportion of introgressed ancestry at face value, researchers would not infer the 

true initial admixture proportion of 5% accurately. Similarly, linkage disequilibrium patterns are 

often used to infer the timing of admixture events and to test competing demographic 

hypotheses about admixture [61]. If the distribution of segments of introgressed ancestry can be 

altered by deleterious mutations relative to what is predicted under a neutral model (e.g. Model 

4 in Figure S7), these inferences can also be biased. To circumvent this problem, we 

recommend focusing on putatively neutral regions of the genome far from genes. 

Likewise, our simulations may provide grounds for a plausible alternative explanation of 

the negative correlation between recombination rate and introgressed African ancestry 

observed in North American populations of D. melanogaster [43,44], which is the opposite of 

what is usually observed by other empirical studies of hybridization. Corbett-Detig and Nielsen 

[44] proposed that widespread adaptive introgression could bring along larger linkage blocks in 
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low recombination regions. If D. melanogaster has accumulated genetic load through the serial 

colonization of the world in association with humans [62,63], selection may favor introgression 

of the origin population (African) haplotypes in low recombination regions, similar to what we 

observed in Model 4 of our simulations. This could act synergistically with the effect of heterosis, 

which can happen in significant amounts even when divergence is low (Figure 4), and the 

divergence for which significant increases in introgressed ancestry are observed is comparable 

to that between populations of D. melanogaster [64]. Admittedly, our models bear little 

resemblance to the estimated demography of D. melanogaster (e.g. [63]). Similar to humans [8], 

there may be little difference in additive load between populations due to recent demography, 

and we have not simulated with a DFE and model of dominance estimated from D. 

melanogaster. Further study of these population genetic features is necessary to estimate the 

relative contribution of these processes to the genomic pattern of introgression in D. 

melanogaster. 

Importantly, we do not claim that deleterious variation can explain all the patterns of 

introgression in any species, but rather that it is a plausible alternative explanation and therefore 

possible confounder that is important to consider when testing hypotheses about the nature of 

selection on gene flow. It is alternatively possible that colonizing populations of D. melanogaster 

experience a reduction in the rate of fixation of adaptive alleles due to reduced Ne, creating 

favorable conditions for the introgression of parent population haplotypes. Additionally, there is 

strong evidence for the role of sexual selection and fitness epistasis between the X and the 

autosomes in separating populations of D. melanogaster [65–67]. In hybridizing swordtail fish, 

recombination rates are positively correlated with the frequency of introgressed ancestry even 

when the minor parent population, analogous to the donor population in our simulations, has a 

larger effective population size [25]. This pattern suggests that hybrid ancestry has an overall 

deleterious effect, meaning that genomic incompatibility is the dominant force shaping hybrid 

genomes in that system. In humans, regions of high recombination rate are enriched for 
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introgressed Neanderthal ancestry particularly in genes that code for virus-interacting proteins 

[41], suggesting that in these regions putatively adaptive variants were more likely to recombine 

off the deleterious Neanderthal background and increase in frequency. In these two latter cases, 

selection on deleterious variation or heterosis may instead obscure genome-wide signals of 

incompatibility or adaptive introgression. 

Because selection on additive and recessive variation can act in complementary or 

opposing directions, our study also highlights the fundamental importance of understanding the 

distribution of selection coefficients and their relationship to dominance coefficients in natural 

populations (i.e. the h(s) relationship). In this study, we simulated human genomic structure, 

where new mutations are more likely to have additive fitness effects [13], and Arabidopsis 

genomic structure, where deleterious new mutations are likely to be more recessive [30]. In 

these two scenarios, we found that modes of dominance interacted with demography, 

recombination rates, and functional density in complex ways. Importantly, we observed an 

increase in introgressed ancestry as a result of the heterosis effect even when mutations were 

not completely recessive, that is, dominance was modeled with the h(s) relationship. While the 

effects observed in the present study may be applicable to real populations with realistic 

amounts of dominance, the h(s) relationship is unknown for virtually all natural systems. 

Therefore, we cannot easily predict the contribution of heterosis to introgression and shared 

polymorphism between closely related species.  

Nevertheless, the underlying demographic model will determine how additive and 

recessive new mutations should interact after gene flow. For example, the introgression of 

deleterious haplotypes in Model 2 was facilitated by heterosis but impeded by additive load, 

leading to uncertainty about the overall contribution of the effects of deleterious variation in 

certain scenarios, such as Neanderthal to human admixture [17]. In other demographic models, 

selection on additive and recessive variants should operate in the same direction. As another 

example, if admixture occurs between a partially selfing and outcrossing population, our 
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simulations predict that selection works to remove ancestry from the selfing population, since it 

carries an overall larger burden of deleterious variants. It may yet be possible that strongly 

deleterious recessive variants, which should be purged in the selfer, play a role in preventing 

some introgression from the outcrossing to the selfing population. Without knowing the h(s) 

relationship for a specific system, it is difficult to disentangle the effects of selection on additive 

versus recessive variation. 

Our work further highlights the importance of considering deleterious variation when 

comparing complementary lines of evidence to make inferences about selection on hybrids. 

Even in the absence of fitness epistasis, our models predict an overall depletion of hybrid 

ancestry on the X chromosome compared to the autosomes. While the magnitude of this 

difference (about 1.5-fold) is far less than the 5-fold difference observed in humans [23], our 

results clearly show that simpler models of deleterious variation have the potential to mimic 

some of the signals that are considered evidence of hybrid incompatibility. Granted, we have 

only provided a simple model of selection on sex chromosomes to contrast to previous 

simulations of the autosomes, while ignoring the fact that recombination, chromosome structure, 

and the DFE are unlikely to be the same between the X and the autosomes. Additionally, it has 

been shown that sex-biased demographic processes have occurred throughout human history 

[68–72]. Future work should test the extent to which our results hold across more realistic 

population genetic models. 

The recombination rate also plays a key role in determining the landscape of 

introgressed ancestry in the presence of deleterious variation. Models of Hill-Robertson 

interference [50,73] predict that deleterious mutations will not be removed as effectively in 

regions of the genome with low recombination rates because they may be linked to the non-

deleterious alleles at other sites. We observe this effect in our simulations, where fitness 

declines the fastest when recombination rates are low, both pre- and post- admixture (Figure 

S2). However, we observe the opposite effect immediately after admixture. Specifically, in our 
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simulations, the fitness in the admixed population increased the most for the lowest 

recombination rates, suggesting that deleterious mutations were most effectively eliminated 

when recombination rates were the lowest (Figure S2). This occurs because selection for a 

haplotype will be most effective when all alleles on a haplotype tend to have weak fitness effects 

in the same direction [17,18,67]. For example, if introgression-derived ancestry carries fewer 

deleterious variants than the other haplotypes in the recipient population, selection will act to 

increase the frequency of the protective alleles contained within the introgressed ancestry. This 

applies directly to our simulations of admixture since immediately following an admixture event, 

all the protective or deleterious variants are found on the same haplotype. Higher rates of 

recombination will shuffle selected variants onto different haplotypes, creating selective 

interference between recombinant haplotypes. 

One significant limitation of our study is that we have not considered all possible 

combinations of demographic, selective, and genomic parameters relevant for all species. For 

example, heterosis appears to stabilize long-term patterns of introgression at some frequency, 

but we only simulated an admixture fraction of 5%. It is possible that the magnitude or direction 

of observed changes may change with different major and minor parent ancestry proportions. It 

is therefore difficult to directly assess whether the specific conclusions seen for one combination 

of parameters will directly apply in a different specific system. Instead, our goal is to highlight 

the need to consider deleterious variation as a possible null model that should be investigated 

and rejected before attributing unusual patterns of introgressed ancestry to other evolutionary 

processes. That being said, we have observed some commonalities across models. For 

example, in Model 4, when mutations are either fully recessive or have an intermediate 

dominance coefficient assigned as a function of the selection coefficient, we observe an 

increase in introgressed ancestry in the recipient populations when either using simple models 

(Figure 3), models relevant for human populations (Figure 5) or models relevant for A. thaliana 

(Figure 6). 
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This interplay between deleterious variation and recombination has substantial 

implications for detecting adaptive introgression. A major objective of genomic studies of 

hybridization is to identify loci that are adaptively introgressed and to ascertain the overall 

importance of introgression to adaptive evolution [37]. Genomic regions that contain 

introgressed haplotypes at high frequency are considered likely candidates for adaptive 

introgression [37,40,74,75], but we have shown that selection on genetic load can increase the 

frequency of introgression-derived ancestry, even in the absence of beneficial new mutations. 

Thus, outlier-based approaches that compare summary statistics computed for a particular 

window of the genome to a null distribution that does not account for deleterious variation may 

be misled. Linked deleterious variants may also impede positive selection on introgressed 

adaptive variants, particularly if they are recessive [76]. Because recombination can move an 

adaptive variant off of ancestry backgrounds of varying fitness, standard models of adaptive 

evolution, especially ones that do not consider deleterious variation, are unlikely to accurately 

describe genomic patterns generated by adaptive introgression. Finally, it may be difficult to 

differentiate heterosis due to the masking of deleterious recessive alleles from heterozygote 

advantage at introgressed loci, despite the fact that these are two very different evolutionary 

processes with dramatically different biological interpretations.  

Our results argue that new null models are needed in studies seeking to identify 

candidates of adaptive introgression. These new null models should include deleterious genetic 

variation, as well as complex demography. In order for these models to accurately capture the 

dynamics of deleterious variation, they should also include realistic parameters for the DFE of 

deleterious mutations and the relationship between dominance coefficients and selection 

coefficients. Lastly, the new null models should also include realistic models of the variation in 

recombination rate across the genome, as recombination rate is a key determinant of the 

dynamics of introgression (Figure 3). Failure to consider deleterious variation in a realistic way 
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in studies of admixing populations or hybridizing species can mislead inferences about the 

evolution of hybrids. 

 

MATERIALS AND METHODS 

Simulation details 

All simulations were performed with SLiM 3.0 [46]. We chose to discard from our 

simulations, and therefore from calculations of fitness, mutations that were fixed in the ancestral 

or both subpopulations. Although fixed deleterious variants contribute to the overall genetic load 

of finite populations, they will have no effect on the relative differences between admixing 

subpopulations and no effect on the dynamics of introgression-derived ancestry. Therefore, 

each fitness calculation does not reflect the true fitness of each population, but rather the fitness 

components that are relevant during gene flow. 

An admixture event in SLiM is handled by modifying the way the parents in each 

generation are chosen (SLiM manual 5.2.1). For example, at an admixture proportion of 5% the 

recipient population reproduces as follows. Five percent of the parents of the recipient 

population, in that generation, are chosen from the donor population, and 95% of the parents 

are chosen from the recipient population. 

 

Scaling of forward simulations 

 We rescaled simulation parameters by a scaling constant, c, to reduce the computational 

burden of forward simulations. Population sizes were scaled to be N/c, times to t/c, selection 

coefficients to sc, and the mutation rate to μc. Recombination rates were scaled as 0.5(1-(1-

2r)c), which is approximately rc for small r and small c. The total length of simulated sequence 

was not changed in scaled simulations. Note, the simulation parameters we reference in this 

paper are always unscaled. The manner in which we scaled simulations follows Algorithm 1 in 

Uricchio and Hernandez [77] and is similar to how Lange and Pool [78] simulated populations of 
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Drosophila melanogaster, although the primary features of interest in our simulations are related 

to the dynamics of introgression-derived ancestry through time. 

 Because scaled simulations may not exactly recapitulate the dynamics of unscaled 

simulations, we used a set of test simulations to choose c=5 for most simulations. The dynamics 

of pI for scaled simulations (c=2, 5, and 10) were compared to an unscaled simulation (c=1), 

using the demography of Model 4, a gamma DFE, and additive fitness (h=0.5). Per base pair 

recombination rates of r=10-7 and 10-8 were simulated separately. Although all scaled 

simulations exhibit slight differences from the unscaled simulations, a scaling factor of c=5 

provided a reasonably accurate representation of the unscaled dynamics of pI (Figure S8) while 

keeping simulation run times within reasonable limits. We additionally note that our intent in this 

study is to understand qualitative patterns of introgression rather than to obtain accurate 

qualitative estimates from a particular system, and the qualitative patterns are consistent 

irrespective of the scaling factor. 

 

Tracking introgression 

The proportion of admixture that is introgression-derived (pI) was tracked in one of two 

ways: by placing marker mutations at a fixed interval or by tracking the tree sequences 

(genealogies) across the simulated genome. In the former case, pI was estimated by placing 

marker mutations in the donor population immediately before the admixture event. These 

mutations were spaced at 500 base pair intervals over the genome of every individual. After 

admixture, pI was estimated in the recipient population by taking the averaged allele frequency 

of marker mutations per window, or throughout the whole simulated chromosome. In the latter 

case, the true ancestry proportions were calculated, since the information on start/end 

coordinates and the lineages that trace their ancestry back through donor and recipient 

populations is preserved. Although tracking tree sequences provides the most accurate 
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estimate of pI, marker mutation tracking was used for computational efficiency in some 

simulations. 

 

Simulations with randomly generated chromosomal structure 

 The sequences from simulations with randomly generated chromosome structure were 

approximately 5Mb in length, and contained intergenic, intronic, and exonic regions, but only 

nonsynonymous new mutations experienced natural selection. The per base pair mutation rate 

was constant and set to μ=1.5×10-8 and we set nonsynonymous and synonymous mutations to 

occur at a ratio of 2.31:1 [79]. The selection coefficients (s) of new nonsynonymous mutations 

were drawn from a gamma-distributed DFE with shape parameter 0.186 and expected selection 

coefficient E[s] = -0.01314833 [49] for both additive and recessive dominance models. 

The chromosomal structure of each simulation was randomly generated by drawing 

exon lengths from 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝑙𝑜𝑔(50) , 𝜎1 = 𝑙𝑜𝑔(2)), intron lengths from 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 =
𝑙𝑜𝑔(100) , 𝜎1 = 𝑙𝑜𝑔(1.5)),	and the length of noncoding regions from 𝑈𝑛𝑖𝑓(100,5000), following 

the specification in the SLiM 3.0 manual (7.3), which is modeled after the distribution of intron 

and exon lengths in Deutsch and Long [80]. The per base pair per chromosome recombination 

rate (r) was fixed in each simulation, but we varied r between different sets of simulations where 

r∈{10-6,10-7,10-8,10-9}. Lastly, we simulated 200 replicates for each set of simulations, of each 

specific h and r. 

Chromosome-wide FST was calculated for all variants from exons, introns, and intergenic 

regions by calculating FST at individual sites following Hudson et al. [81] and by combining FST 

across sites following Bhatia et al. [82]. 

 

Simulations of human genomic structure 

In simulations of fixed chromosome structure from the human genome, we fixed the 

structure to 100 Mb randomly chosen from human genome build GRCh37, chromosome 1 
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(chr1:5,005,669-105,005,669). The exon ranges were defined by the GENCODE v14 

annotations [83] and the sex-averaged recombination map by Kong et al. [84], averaged over a 

10 kb scale. The per base pair mutation rate was constant and set to μ=1.5×10-8 and we set 

nonsynonymous and synonymous mutations to occur at a ratio of 2.31:1 [79]. The selection 

coefficients (s) of new nonsynonymous mutations were drawn from a gamma-distributed DFE 

with shape parameter 0.186 and expected selection coefficient E[s] = -0.01314833 [49] for all 

models of dominance. All other new mutations were neutral. We simulated additive fitness 

(h=0.5), recessive fitness (h=0), and the h(s)=0.5/(1-7071.07s) relationship [13] separately, 

using the same DFE for s for each simulation. All simulations were scaled by a factor of c=5. 

 

Simulations of Arabidopsis genomic structure 

In simulations of fixed chromosome structure from the genome of Arabidopsis thaliana, 

we fixed the structure to 29.1 Mb from chromosome 1 (chr1:488,426-29,588,426). The exon 

ranges were defined using the Araport11 annotations [85] and the recombination map using  

Salomé et al. [86]. The per base pair mutation rate was constant and set to μ=7×10-9 and we 

again set nonsynonymous and synonymous mutations to occur at a ratio of 2.31:1. The 

selection coefficients (s) of new nonsynonymous mutations were drawn from the gamma 

distribution estimated by Huber et al. [30] (shape parameter 0.185 and E[s] = -0.00048655). We 

simulated dominance with the h(s) relationship estimated by that study: h(s)=1((1/0.987) – 

39547s). Simulations were scaled at c=100, but we note that we could not test the difference 

between c=100 and smaller scaling factors (e.g. c=50) due to limits on computational time. 

 

Avoiding heterosis in the additive fitness model 

Computing fitness as additive (h=0.5) within a locus but multiplicative across loci was 

problematic for our simulations because it created heterosis in admixed individuals. This 

occurred because the product of a fitness decrease reduces fitness less than the sum of a 



 107 

fitness decrease. As a simple example, imagine two additive deleterious alleles are in a single 

individual, each with selection coefficient s where s is the absolute value of the selection 

coefficient. If they are found as a single homozygous site, the fitness decrease is usually 

computed as 1-s. If they are found as two heterozygous sites, the fitness would be computed as 

(1-0.5s)2=1-s+0.25s2. The fitness of the heterozygous individual is larger than the homozygous 

individual by 0.25s2, despite carrying the same number of deleterious variants. Because 

admixed individuals are more likely to carry deleterious alleles as heterozygotes than non-

admixed individuals, the fitness of the admixed individuals was always higher than a non-

admixed individual in the above computation of fitness, even when the number of deleterious 

variants per individual was the same. 

Our intent was to examine the contribution of genetic load to selection on introgressed 

ancestry, but we identified an inherent advantage of heterozygosity in the additive model that 

biased the direction of selection to favor introgressed ancestry. To address this, we computed 

heterozygote fitness at a locus as 1-hs and homozygote fitness as (1-0.5s)2
, and the fitness 

across loci was computed multiplicatively. In the additive case (h=0.5), an individual’s fitness 

was then multiplicative across all deleterious variants, such that an individual j carrying i variants 

each with selection coefficient si had fitness wi: 

𝑤; =	<(1 + 0.5𝑠?)
?

	 

Fitness is then monotonically related to the number of deleterious variants regardless of 

zygosity and is approximately equivalent to additive fitness. This computation in essence 

created a slight underdominance-like effect, but importantly this effect was caused by the 

difference in homozygous fitness rather than a difference in heterozygote fitness (i.e. the 

dominance coefficient). In practice, the difference in homozygous fitness is negligible for weakly 

deleterious alleles and strongly deleterious alleles are unlikely to be found as homozygotes. 

Therefore, the overall underdominance effect should be minimal. To confirm this, we simulated 
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100Mb of human chromosome 1 in an equilibrium population, with selection coefficients drawn 

from a gamma DFE with the two fitness models. The frequency spectrum was unaffected by our 

calculation of fitness (Figure S9), suggesting our simulations approximate the standard additive 

model well. 

We used the same calculation for additive and partially recessive fitness models for 

consistency when simulating the h(s) relationship. Completely recessive fitness (h=0) was 

computed the standard way, that is, as 1-si when homozygous for the deleterious allele and as 

1 otherwise. 

 

 

Selection on the X chromosome 

 We modeled fitness of the sex chromosomes following the framework described by 

Charlesworth et al. [52] and Veeramah et al. [51], with a slight modification to preserve the 

multiplicative fitness scenario described for the autosome. The specific fitness models for each 

dominance scenario – additive, recessive, and with the h(s) function – are presented in Table 

S2. Importantly, the fitness of females that are homozygous and males that have the selected 

allele are the same, and, in the additive model, heterozygous females have an intermediate 

fitness. This models dosage compensation in females, assuming levels of gene expression map 

to the same fitness values for males and females. 

 

Data availability 

All scripts necessary for reproducing the simulations, parsing the simulation output, and 

creating the figures displayed in this manuscript are available at: 

https://github.com/LohmuellerLab/admixture_load_scripts. 
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Supplemental Results 

Table S1. Demographic parameters of the simulated models shown in Figure 1. 

Model NS NRB NR Tm TRB Tsplit 

Model 0 1 -- 1 0.5 -- 1.5 

Model 1 1 0.1 1 0.5 0.5025 1.5 

Model 2 0.1 -- 1 0.5 -- 1.5 

Model 3 1 -- 0.1 0.5 -- 1.5 

Model 4 1 0.1 1 0.5 -- 1.5 

NOTE.—All population sizes are relative to the ancestral population size (NA), where NA=10,000 

diploids unless specified otherwise. All times are in units of generations/(2NA) from the present 

day. Parameters are defined as follows. NS: size of the source subpopulation, NRB: size of the 

bottleneck in the recipient population, NR: size of the recipient population, Tm: time of migration, 

TRB: time at which the bottleneck in the recipient population began, Tsplit: time at which the 

subpopulations diverged 
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Table S2. Fitness model for sex chromosomes. 

  genotype 

dominance XX heterozygote XX homozygote XY 

Additive (h=0.5) (1+hs) (1+hs)2 (1+hs)2 

Recessive 1 (1+0.5s)2 (1+0.5s)2 

h(s) (1+hs) (1+0.5s)2 (1+0.5s)2 

NOTE.—h denotes the dominance coefficient and (1+0.5s)2 is approximately equal to (1-s). 
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Figure S1. The change in the mean fitness of the donor and recipient subpopulation in each 

model. The mean (solid line) is shown for 200 simulation replicates. The vertical grey line 

depicts the time of gene flow. Different colors denote distinct recombination rates used in the 

simulations. The left two panels depict simulations with recessive mutations (h=0) while the right 

two panels show simulations with additive mutations (h=0.5). Variants that are fixed in both 

subpopulations are not considered in the calculation of fitness. The model numbers refer to the 

models shown in Figure 1. 
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Figure S2. The change in the mean number of derived deleterious sites (s<0) per haplotype in 

each model in the recipient subpopulation. The mean (solid line) is shown for 200 simulation 

replicates. The vertical gray line depicts the time of gene flow. Different colors denote distinct 

recombination rates used in the simulations. The left panel shows simulations with recessive 

mutations (h=0) while the right panel shows simulations with additive mutations (h=0.5). 

Variants that are fixed in both subpopulations are not counted. The model numbers refer to the 

models shown in Figure 1. 
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Figure S3. The change in the mean number of homozygous derived deleterious sites per 

individual in the recipient subpopulation. The mean (solid line) is shown for 200 simulation 

replicates. The vertical gray line depicts the time of gene flow. Different colors denote distinct 

recombination rates used in the simulations. The left panel shows simulations with recessive 

mutations (h=0) while the right panel shows simulations with additive mutations (h=0.5). 

Variants that are fixed in both subpopulations are not counted. The model numbers refer to the 

models shown in Figure 1. 
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Figure S4. The relationship of the split time to measures of divergence between subpopulations 

in Models 0 and 4 (refer to Figure 1). The vertical gray lines represent the time between 

population divergence and admixture (100, 250, 500, 1,000, 2,500, 5,000, 10,000, 20,000, 

25,000, 30,000, 35,000, and 40,000 generations) in the demographic models as depicted in 

Figure 4. (A) Population split time and population size impact the number of sites private to 

each subpopulation at the time of admixture. The numbers of sites that are private to the donor 

and recipient subpopulations, or shared between subpopulations, are shown for 200 simulation 

replicates and two demographic models. (B) FST increases continuously in Models 0 and 4 after 

the split. Increased drift in Model 4 drives larger increases in FST.  

A

B
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Figure S5. The genomic landscape of introgression in one replicate of simulations with human 

genomic structure. The frequency of ancestry that is introgression-derived is shown for non-

overlapping 100 kb windows in a simulated 100 Mb region of chromosome 1. The model 

numbers refer to the models shown in Figure 1. Points represent a single value for each 100 kb 

window and lines are loess curves fitted to the data. The horizontal dashed black dashed line 

represents the initial frequency of introgression-derived ancestry, pI=0.05. Vertical blue bars 

represent genes in which deleterious mutations can occur. Red curves denote the results for 

recessive mutations, orange curves show the results for additive mutations, and blue curves 

show the results for simulations with a h(s) relationship. 

Model 0

●●

●●

●

●

●

●

●
●●●●●

●

●●●●●
●
●●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●
●
●●●●●●●●●

●

●

●●

●

●

●●●●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●●
●●

●

●

●●

●

●

●

●●●●

●

●●●●●●

●

●

●●●●

●

●●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●●
●●
●●●

●

●

●
●

●

●

●●

●

●

●

●●●●●●●●●●●●●
●

●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

●

●●●●●●●●●●●●●●●●●
●
●●

●

●

●

●

●●●

●

●

●●●●

●

●

●●●

●

●

●

●●●●●●●●
●
●

●

●

●●●●●●●

●

●●●●●

●

●

●

●
●

●

●

●
●●●●●

●

●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●●●●●●●●●●●
●
●

●●●●●●●

●

●

●●

●

●

●

●●●

●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●●●

●

●

●

●

●
●

●
●

●

●
●

●●

●●

●●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●●●●●

●

●

●●

●

●●●

●
●

●

●

●●●●●●●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●●●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●●●
●
●●●

●

●●●

●

●

●

●

●●●●●●●●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●

●●
●

●

●
●●●●●●●●●●●●

●
●

●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●

●

●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●

●

●

●

●
●●
●

●

●

●●●●
●
●●

●

●●●

●

●

●
●

●

●

●

●●●

●

●

●●●●●●●●

●

●

●

●●

●

●

●
●●●

●
●

●

●●●●

●

●

●

●●

●

●

●

●●●●

●

●

●
●

●

●

●●●●●

●

●

●●●●●●●●●●●

●

●

●

●

●
●
●●●●●●●●●●●●●●

●

●

●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●●

●

●●●●●

●

●●

●

●

●
●

●

●●●●

●

●●

●●●
●
●
●●●

●

●

●●

●●

●●●●

●

●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●●

●

●

●

●●●●●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●●●●●●●

●

●

●

●

●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●●
●
●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●
●

●

●

●
●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●●●●●●●●

●
●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●●●●●●
●
●●●●●●●

●
●●

●

●

●

●

●

●●●

●

●●●●
●
●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●
●●

●
●

●

●●●●●

●

●

●●

●

●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●
●

●

●●

●

●

●

●

●●

●

●
●
●

●

●

●●●●●
●

●

●●●●●

●

●

●●●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●●●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●
●
●●●●●

●

●●
●●●●●●●

●

●●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●●●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●●●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●
●

●

●

●

●

●

●●
●

●
●
●

●

●●●

●
●

●

●

●
●

●

●

●
●

●●●

●

●

●●●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●●

●

●

●
●●●●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●●●●●●●●●

●

●●●●

●
●●●●●●

●

●●●

●

●

●

●●

●
●

●
●
●

●

●●●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●●
●
●●●●●

●

●

●

●

●

●

●
●●

●

●●●●●●
●
●

●

●

●

●

●

●

●

●

●
●

●
●
●●●●●

●

●
●●●●●●●●●●●●●●

●

●
●
●

●

●●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●●

●
●●●●●●●●●

●

●

●●●●●

●

●

●

●●●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●●●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●
●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●
●

●

●●●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●●●●●●

●

●

●
●

●

●●

●

●●●●
●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●●●●●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●
●●●●●●●●●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●●●●

●

●●

●

●●●●
●
●●

●

●

●

●

●

●

●

●

●

●●●
●
●●●

●

●

●

●●●●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●
●
●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●

●

●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●●●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●
●

●
●
●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●
●●●

●

●●●●

●●

●

●

●

●●
●
●
●●●●

●

●

●
●●●●

●

●

●

●

●

●

●
●

●

●

●
●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●
●
●●●●●●●●

●

●

●

●●

●●

●

●

●

●●●●●●
●
●●●●

●
●

●●●●●●

●

●●●●●●●●●●●●●

●

●

●

●●●●

●

●●●

●

●●

●

●

●

●●●●●●●●●●●●●
●

●

●

●●

●
●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●●0.00

0.25

0.50

0.75

0.0e+00 2.5e+07 5.0e+07 7.5e+07 1.0e+08

 

Dominance coefficient, (h )

●

●

●

0

0.5

h(s)

Model 2

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●

●

●●●
●

●

●●●●●●●●●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●●
●●●●●●●●

●

●●
●●
●

●

●●●●●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●

●

●●

●

●
●●
●
●
●

●

●●●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●●

●

●●●●●●

●

●●●●

●

●

●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●
●
●
●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●
●
●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●

●

●●

●
●●●●●●●●

●
●

●

●

●●●●

●●

●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●

●

●

●●

●
●

●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●●●●●●●●●

●

●

●

●●●

●

●

●

●

●●

●●●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●

●●

●●●
●

●

●

●

●

●

●●●●●●●●●●
●●
●●●●●●●

●

●

●

●

●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●

●

●●●●
●
●●●●●●●●●●●

●

●●

●●

●●●●

●

●

●

●

●

●●

●

●

●●●●●●●●●●

●●

●

●●

●
●

●●●

●

●●●●●
●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●●●

●

●

●

●●●●●●●

●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●
●
●

●

●
●●

●

●●

●●

●

●●
●
●●●●●●●

●
●●●●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●

●

●●●●●

●

●●

●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●
●

●

●

●

●

●●
●●
●
●●●●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●
●

●

●●●●●●

●

●●●●

●

●

●

●

●

●

●●

●

●●●

●
●
●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●

●

●

●

●
●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●●
●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●●●●●●●●

●

●

●●●●

●

●

●

●●●

●

●

●
●●●●●●

●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●
●●●●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●

●

●

●

●●

●

●

●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●●●

●

●

●

●
●●●

●●
●●

●

●

●

●

●●●●●●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●●●●●

●
●●

●●●●●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●●●●●●●●●●

●

●

●●

●

●●●

●

●●
●
●●●●●●

●

●

●●●

●

●●

●

●

●●●●●●●
●

●

●

●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●

●
●
●●

●

●

●

●
●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●●●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●●
●

●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●●●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●●●●

●

●

●
●●●●

●
●●●●●●●●●

●
●●

●

●

●●●●●

●●

●●

●

●●●
●
●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●●

●

●●●

●
●●●

●

●
●
●●●●●●

●

●

●

●

●●●●●●●●●

●

●●●●●
●
●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●●●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●

●

●
●
●

●

●●●●●

●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●

●

●●

●

●

●

●
●
●

●

●●●●●●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●

●●

●

●●●●●
●

●

●

●

●

●

●
●

●

●●●●●●●●●

●

●
●

●

●

●

●●

●
●●
●●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●●
●
●●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●●●●●●●●●●

●

●●●●

●
●
●●●●●●●●●●●●●●●●●

●

●

●
●
●
●●●●●

●

●

●

●

●
●
●
●
●●

●

●●●
●
●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●
●

●

●

●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●●●
●
●●●

●
●

●

●●●●●●●●●●●●●●●●●

●

●●

●
●
●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●
●
●●●●●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●●●●●●

●

●●●●●

●

●

●●
●
●●

●

●

●

●●●●●

●

●

●

●●●●
●
●●●●●●●

●

●

●

●

●

●●

●

●●
●
●
●●●●●●●●●

●
●

●

●

●

●

●

●

●
●●●●

●

●

●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●●●●●●●●●●●●

●

●
●●

●

●●

●●

●

●●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●
●
●●●

●

●

●
●●●●●●●

●

●

●

●●●●●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●0.00

0.25

0.50

0.75

1.00

0.0e+00 2.5e+07 5.0e+07 7.5e+07 1.0e+08

 

Model 4

●●●●●

●

●

●●●

●

●

●
●

●

●●●●●

●

●●●

●

●

●

●

●●●

●

●

●

●●●●●●●●●

●

●

●

●

●●●●●●●●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●
●
●●●●●●●●●●

●

●

●

●
●
●●●

●

●

●

●●
●
●

●
●

●

●●●●●●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●●●●●●

●

●●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●
●●●●

●

●●

●

●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●
●
●
●●●●●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●●
●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●●●●
●●
●

●

●

●

●

●

●

●

●●●●●●

●

●

●
●

●

●

●

●●●

●

●

●●

●

●●●

●

●●●●

●●
●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●

●
●

●

●

●

●●●●●●●●

●

●

●

●
●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●●●●

●

●●●

●

●●●●

●

●

●

●

●●●●●●●●●

●

●●●●●●

●

●
●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●●●●
●
●●

●

●

●

●●●●

●
●●
●

●

●●

●

●

●●●●●●●●●●●●●

●

●●●●●

●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●●●●●●●●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●●●

●

●

●

●

●

●
●

●

●
●●●●

●
●
●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●
●
●●●●

●

●

●
●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●
●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●●●●●

●

●

●

●

●

●

●●
●●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●

●

●

●●●●

●

●

●

●
●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●
●●
●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●●●●
●●
●
●

●

●●

●
●

●

●●

●

●
●

●

●●

●●
●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●●●●●●●●●●●●●

●

●

●

●●●●●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●●●

●
●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●●●●●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●●

●

●

●
●●

●

●

●

●●●●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●●●●

●

●

●●●●

●

●
●
●●●●●●●●●●●●●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●

●●

●●

●

●

●

●●●●

●

●

●●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●
●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●●●

●

●

●

●●●●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●●

●●
●
●●●●●

●

●

●

●●●●●●
●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.0e+00 2.5e+07 5.0e+07 7.5e+07 1.0e+08

Genomic position

 



 116 

 

Figure S6. The density distribution of introgression desert lengths for simulations of human 

chromosome 1. Introgression deserts are segments without any hybrid ancestry. Model 

numbers refer to the models shown in Figure 1. 
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Figure S7. The genomic landscape of introgression in one replicate of simulations with 

Arabidopsis genomic structure. The frequency of ancestry that is introgression-derived is shown 

for non-overlapping 100 kb windows in a simulated 100 Mb region of chromosome 1. The model 

numbers refer to the models shown in Figure 1. Points represent a single value for each 100 kb 

window and lines are loess curves fitted to the data. The horizontal dashed black line represents 

the initial frequency of introgression-derived ancestry, pI=0.05. Vertical blue bars represent 

genes in which deleterious mutations can occur. Blue curves show the results for simulations 

with a h(s) relationship. 
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Figure S8. Scaled simulations accurately reproduce introgression in simulations with no scaling. 

The average frequency of introgressed ancestry (pI) of 100 simulation replicates of Model 4 and 

additive fitness (h=0.5) is plotted through time. The average pI for four different scaling factors 

(c=1, 2, 5, and 10) is shown. The simulations in this study use c=5 unless mentioned otherwise. 

Details are provided in the Methods. 
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Figure S9. The site frequency spectrum of nonsynonymous variants is the same when fitness is 

calculated as multiplicative within a locus as it is when fitness is additive within a locus. 

Simulations were of an equilibrium population with 100 Mb of human genomic structure in a 

sample of size n=2,000 chromosomes. Confidence intervals represent standard errors 

computed from 100 simulation replicates. All variants at frequency ≥25 are summed together in 

the last entry of the SFS. 
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