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Abstract

Despite being intuitive, cognitive effort has proven difficult to define quantitatively. Here, we 

proposed to study cognitive effort by investigating the degree to which the brain deviates from its 

default state, where brain activity is scale-invariant. Specifically, we measured such deviations by 

examining changes in scale-invariance of brain activity as a function of task difficulty and posited 

suppression of scale-invariance as a proxy for exertion of cognitive effort. While there is some 

fMRI evidence supporting this proposition, EEG investigations on the matter are scant, despite the 

EEG signal being more suitable for analysis of scale invariance (i.e., having a much broader 

frequency range). In the current study we validated the correspondence between scale-invariance 

(H) of cortical activity recorded by EEG and task load during two working memory (WM) 

experiments with varying set sizes. Then, we used this neural signature to disentangle cognitive 

effort from the number of items stored in WM within participants. Our results showed monotonic 
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decreases in H with increased set size, even after set size exceeded WM capacity. This behavior of 

H contrasted with behavioral performance and an oscillatory indicator of WM load (i.e., alpha-

band desynchronization), both of which showed a plateau at difficulty levels surpassing WM 

capacity. This is the first reported evidence for the suppression of scale-invariance in EEG due to 

task difficulty, and our work suggests that H suppression may be used to quantify changes in 

cognitive effort even when working memory load is at maximum capacity.

Keywords

working memory; cognitive effort; scale-invariance; EEG

Introduction

Cognitive effort is a seemingly intuitive aspect of cognition, yet has proven difficult to 

quantify because of gaps in both its operationalization and theory. Regarding 

operationalization, researchers lack consensus on a neural signature of mental effort. As a 

result, different measurements such as response time, brain activity in regions including 

dorsal anterior cingulate cortex, or pupil diameter have been used as indicators of effort (see 

Westbrook & Braver, 2015 for a review).

From a theoretical perspective, some researchers, at least implicitly, equate mental effort 

with working memory load (Garbarino & Edell, 1997; Kitzbichler, Henson, Smith, Nathan, 

& Bullmore, 2011), whereas others see working memory load and effort as confounded 

measures that could, in theory, be separable (Vogel & Machizawa, 2004). For example, the 

decision making literature commonly defines effort as the set of processes that determine the 

level of performance that will be realized based on the characteristics of a given task and the 

individual’s available information processing capacity (e.g., working memory capacity) 

(Bonner & Sprinkle, 2002; Kahneman, 1973; Shenhav et al., 2017). The utility of effort, 

therefore, is to optimize the allocation of limited (or unlimited but shared) cognitive 

resources between different tasks based on the expected cost and value of exerting cognitive 

control. From this definition, it logically follows that if an individual is performing at their 

maximum ability level (e.g., at their working memory capacity limit), no more effort will be 

exerted for that specific task, because it is not judicious. To test whether individuals can 

exert seemingly “fruitless” cognitive effort—that is, whether it is possible to exert cognitive 

effort in the absence of behavioral performance gains— we propose a different view on 

cognitive effort and then apply it in conjunction with research on working memory capacity.

Effort as suppression of scale-free brain activity

In the current study we use a theoretical framework that operationalizes the amount of 

cognitive effort as the degree of deviations in current brain states from those more proximal 

to the default-mode brain states. In this framework, we assume the brain at rest is organized 

at a critical state (de Arcangelis, Perrone-Capano, & Herrmann, 2006; Kitzbichler, Smith, 

Christensen, & Bullmore, 2009), because such a state provides maximum dynamic range for 

a network (Gautam, Hoang, McClanahan, Grady, & Shew, 2015; Kinouchi & Copelli, 2006), 

and optimizes active information storage and transfer (Boedecker, Obst, Lizier, Mayer, & 
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Asada, 2012; Shriki et al., 2013; Shriki & Yellin, 2016; Tanaka, Kaneko, & Aoyagi, 2008). 

However, as a task requires increasingly disproportionate allocation of resources due to its 

higher demands, the brain moves further away from criticality (i.e., departing further from 

the default state) as a trade-off for gaining specificity for the task at hand (Gollo, 2017). In 

order to measure these changes in brain state, we utilize the Hurst exponent (H), which is a 

common way of measuring large-scale critical dynamics in the brain and estimates the scale-

invariance of brain activity signals. Scale-invariance in biological signals refers to a property 

of signals where all measured time scales contribute to a signal of interest, with no particular 

timescale having a dominant contribution. In summary, we propose that suppression of 

scale-invariance in brain activity (i.e., decreases in H) signals degree of departure from 

default brain states and can be used as a measure of cognitive effort.

Some supporting evidence for our hypothesis comes from fMRI research on scale-free 

dynamics of fMRI timeseries, which have demonstrated that global Blood Oxygenation 

Level Dependent (BOLD) activity of the brain becomes less scale-free (lower H) in the 

presence of cognitive tasks and other modulators of cognitive effort (Barnes, Bullmore, & 

Suckling, 2009; Churchill et al., 2016; He, 2011). Specifically, fMRI timeseries have lower 

H when individuals are: 1) performing hard vs. easy perceptual decision tasks, (Churchill et 

al., 2016), 2) performing a visual detection task vs. open-eyes rest (He, 2011), 3) performing 

an n-back task versus rest (Barnes et al., 2009), 4) performing novel tasks vs. more familiar 

tasks (Churchill et al., 2016), and 5) when participants were under physical and mental 

burden (Churchill et al., 2015). These findings suggest that suppression of H may be a 

generalizable neuroimaging marker of increased cognitive effort.

Working memory load and cognitive effort

Within the context of neuroimaging studies of working memory tasks, a core challenge for 

identifying a neural signal of effort involves disentangling effort signals from working 

memory storage signals. This is because, until working memory capacity is reached, 

exerting more effort often enables meeting larger working memory demands. EEG research 

on visual working memory points to a capacity limit (referred to as K) beyond which the 

individual cannot maintain any more mental representations of the presented items (i. e., 

working memory load is maximum). Specifically, recent research in visual working memory 

suggests a limit of 3-4 items for K (Adam, Vogel, & Awh, 2017; Fukuda, Awh, & Vogel, 

2010; Luck & Vogel, 2013; Rouder et al., 2008), but see (Alvarez & Cavanagh, 2004)). 

Additionally, this research has suggested that the primary role of alpha band (8-12 Hz) 

oscillations (α) in the context of visual working memory is to maintain distinct working 

memory representations rather than to suppress irrelevant information (Foster & Awh, 2019). 

This indicates that as the number of relevant items in working memory increases, α will 

systematically decrease until working memory capacity (K) is reached (Adam, Robison, & 

Vogel, 2018; Fukuda, Kang, & Woodman, 2016; Fukuda, Mance, & Vogel, 2015) and will 

asymptote there.

Therefore, translating the fMRI work examining H and cognitive effort to EEG experiments 

on oscillatory activity and K can provide us with the framework needed to investigate the 

distinction between cognitive effort and working memory load. Pertinently, previous 
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literature has shown that BOLD fMRI signal fluctuations are linked to scale-free fluctuations 

in EEG measurements of neural activity (Van de Ville, Britz, & Michel, 2010). As such, an 

effort-related suppression in scale-invariance, which is inherently a scale invariant 
measurement, would also be expected at the electrophysiological timescale. Additionally, 

studying these broadband effects with EEG will potentially be more fruitful than with fMRI 

since this method overcomes the limited range of timescales that can be examined for H in 

fMRI due to its slow sampling rate. To our knowledge, this relationship between suppression 

of H and cognitive effort beyond K has not yet been investigated using EEG, where it would 

provide a critical validation of the fMRI findings using a more direct measure of neural 

activity and a faster time-scale.

Experiments overview and hypotheses

In the current study, we analyzed two visual working memory EEG experiments including a 

‘Remember N’ task (Experiment 1) and a Discrete Whole-Report task (Experiment 2)1. In 

both experiments, a memory array was presented to participants while they maintained 

fixation on the center of the screen. Memory load was parametrically varied (N = 1, 2, 3, or 

6 items)2. We hypothesized that scale-invariance (H) of the EEG signal during the retention 

interval would decline parametrically with increasing task load, even beyond K (i.e., beyond 

3-4 items). In contrast, α suppression has been shown to plateau for set sizes beyond K. As 

such, we further predicted that the pattern of H across set sizes would significantly diverge 

from the pattern of α across set sizes because α suppression would not continue to decrease 

beyond K. These predictions assume that cognitive effort is distinguishable from the amount 

of information held in working memory (i. e., working memory load). This does not mean 

that we are hypothesizing working memory load and cognitive effort signals to be 

independent, just that effort can continue passed one’s working memory capacity which 

distinguishes it from working memory load. In summary, we propose that (1) scale-

invariance of cortical brain activity as recorded by EEG can be used as a metric of cognitive 

effort within individuals, and (2) this broad-band signal characteristic can dissociate visual 

working memory load from effort.

Methods

Experiment 1 Methods

Participants—Experiment 1 included 31 participants (18-35 years old; 17 female) from 

the University of Oregon and surrounding community (Mance, 2015). A total of 6 were 

excluded from analyses because of excessive EEG artifacts (see Artifact Rejection), leaving 

a final sample of 25 participants. Participants gave written informed consent, and 

experimental procedures were approved by the University of Oregon’s Committee for the 

Protection of Human Subjects (CPHS) and Institutional Review Board (IRB). All 

participants had normal or corrected-to-normal visual acuity and reported no history of 

neurological disorders.

1Aspects of experiment 1 and 2 were previously published in (Mance, 2015) and (Adam, Robison, & Vogel, 2018), respectively.
2For experiment 2, N = 1, 3, and 6.
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Stimuli—Participants were seated ~100 cm from a 17-in. cathode ray tube monitor. Stimuli 

were rendered using the Psychophysics toolbox (Brainard, 1997; Pelli, 1997). Participants 

remembered colored squares presented on a medium gray background (RGB = 120 120 120) 

while maintaining fixation on a small white dot (0.2°). A pool of eight distinct colors: red 

(RGB = 255 0 0), green (0 255 0), blue (0 0 255), yellow (255 255 0), magenta (255 0 255), 

cyan (0 255 255), white (255 255 255), and black (1 1 1) were used to choose the colors 

from in each trial. Each square subtended 1°, and each square was placed at one of 32 

locations on the screen (equally spaced grid of 4 x 8 locations, placed within a portion of the 

display subtending 8.1° to the left or right of fixation and 4.7° above or below fixation.

The Remember N Task—On each trial, participants were first given a cue which 

indicated how many items they should encode from the upcoming display (e.g., “Remember 

3”) and pressed the spacebar to initiate the trial. The cue presentation was un-speeded but 

had a minimum duration of 600 ms. After a blank baseline (1,200 ms), participants briefly 

viewed six colored squares (150 ms) and remembered all or some of these squares across a 

delay (1,150 ms). Participants were instructed to try their best to only remember the cued 

number of items and to ignore the rest (Figure 1), but they were not instructed about which 

particular items to remember (they could freely choose). To respond, participants clicked the 

color in the response grid corresponding to the color remembered at that location. During the 

response, participants only had the option to respond to as many items as they were cued to 

remember (for example, if the cue was “Remember 1”, they could only make one response 

during the recall phase). After the participant had made all responses the cue for the next 

trial appeared after 500 ms. There were a total of 150 trials per set-size (30 blocks of 20 

trials, ~2.5 hours).

Data Acquisition and Analysis—Data were acquired with an SA Instrumentation 

amplifier with a band-pass of .01-80 Hz and digitized at 250 Hz in LabView 6.1. We 

measured EEG from 20 tin electrodes mounted in an elastic cap (Electrocap International, 

Eaton, OH) at International 10/20 sites F3, Fz, F4, T3, C3, Cz, C4, T4, P3, Pz, P4, T5, O1, 

and O2 and five nonstandard sites: OL midway between T5 and O1, OR midway between 

T6 and O2, PO3 midway between P3 and OL, PO4 midway between P4 and OR, and POz 

midway between PO3 and PO4 (Figure S1). All sites were recorded using a left-mastoid 

reference and re-referenced offline to the algebraic average of the left and right mastoids. 

The vertical electrooculogram (EOG) was recorded from an electrode placed ~1 cm below 

the right eye. The horizontal EOG was recorded from electrodes placed ~1 cm lateral to the 

external canthus of each eye. Electrode impedances were kept below 3 kΩ. Participants were 

instructed not to move their eyes or blink during the trial until the test array appeared on the 

screen. Trials including horizontal eye movements, blinks, blocking (amplifier saturation 

after drift), or excessive noise were excluded from analysis (mean = 16.8% of trials).

Artifact Rejection—For horizontal eye movement rejection, we used a split-half sliding 

window approach (window size = 150 ms, step size = 10 ms, threshold = 20 μV) on the 

HEOG signal, where a 150 ms time window was slid in steps of 10 ms from the beginning to 

the end of the trial. If the change in voltage from the first half to the second half of the 

window was greater than 20 μV, it was marked as an eye movement and rejected. We also 
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used a sliding window step function to check for blinks in the VEOG (window size = 100 

ms, step size = 10 ms, threshold = 40 μV). For blocking rejection, we slid a 200 ms time 

window in steps of 50 ms and excluded trials for blocking if any EEG electrode had at least 

20 consecutive time-points (i.e. 80 ms) that were within 1 μV of each other. We excluded 

trials for excessive noise if any electrode had peak-to-peak amplitude greater than 200μV 

within a 15 ms time window. Data were visually inspected to confirm that rejection criteria 

were working as expected; some additional trials were manually rejected. Six participants 

were excluded for excessive artifacts (fewer than 70 good trials per condition on average, 

remaining n = 25). After rejection, included participants had an average of 110 trials per 

condition (SD = 22.5).

Estimation of α Power—To estimate alpha power (8-12 Hz), we first band-pass filtered 

the raw EEG signal for each trial and electrode using a two-way least-squares FIR filter, 

‘eegfilt.m’, (Delorme & Makeig, 2004). We calculated instantaneous power with the 

MATLAB Hilbert transform (‘hilbert.m’). Because we were interested in event-related 

changes to alpha power as a function of memory load, we analyzed percent change in alpha 

power from +300 ms to +1150 ms interval in Experiment 1 and from +400 ms to +1300 ms 

in Experiment 2 (all with respect to onset of the memory array) compared to the baseline 

period (500 ms to 100 ms before the memory array onset). This means that the delay period 

included in the analysis for both experiments start 150 ms after the memory array is removed 

from the screen and end with the end of the retention interval. For each participant and 

electrode, we first averaged single-trial power across each load condition, then calculated the 

percent change in alpha power for each condition relative to a baseline period (500 ms to 

100 ms before the memory array).

Estimation of Scale-Invariance (H)—Scaling analyses of temporal signals seek to 

determine whether all measured frequencies (or timescales) contribute to the signal of 

interest. Scale-invariance occurs when no particular frequency (or timescale) has a dominant 

contribution to the signal, implying that the signals have long-range temporal dependency. 

This dependency is indexed via the Hurst exponent H, where H ≤ 0.5 indicates short-range 

dependency, H=0.5 denotes an uncorrelated process, and H ≥ 0.5 indicates long-range 

dependency. The typical H values reported for fMRI rest and task data with very low 

frequency components (i. e., [0.01-0.1] Hz) are in the range of [0.7-1] (Churchill et al.,2015; 

2016; 2007; He, 2011). H is directly related to the β exponent in P(f) ∝ f−β, where P is the 

power of the signal as a function of frequency (f), such that H = (1+β)/2. The typical β 
values reported for EEG in healthy individuals are in the range of 1-2.5, which corresponds 

to H ~ 1-1.75 (Dehghani et al., 2010; Freeman, Holmes, Burke, & Vanhatalo, 2003).

While there exist many different methods to estimate H, the wavelet leader multifractal 

(WLMF) formalism has emerged as a powerful technique that is highly efficient and robust 

to signal non-stationarity (Jaffard, Lashermes, & Abry, 2007). We applied the WLMF 

method on the EEG signal during retention interval (after memory array and before 

response) to quantify the scale-invariance of the EEG signal during maintenance. The 

wavelet transform uses translated and dilated versions of a basis function Ψ([t – k]/a) to 

analyze the signal of interest at different delays and time scales. The wavelet coefficient 
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dx(a, k) measures signal energy present at delay k and time scale a by calculating the 

integral:

dx(a, k) = 1
a∫ x(t)Ψ t − k

a dt

At a range of dyadic scales, i.e., a = 2j for integer j. Wavelet leaders Lx(a, k) are 

subsequently calculated as the largest coefficient value ∣dx (a′, k′)∣ within a narrow temporal 

neighbourhood of k, for any scale a′ ≤ a. Multifractal scaling is then defined by the function:

1
K ∑k ∣ Lx(2j, k) ∣q = Cq2jς(q)

Which describes wavelet power as a function of time scale, for a range of different scaling 

exponents q, in terms of a characteristic function ς(q). Typically parameterized as a 

polynomial expansion ς(q) = Σpcp(qp/p!), the log-cumulants cp define the scaling behavior 

of the signal x(t).

The raw EEG signal was first band-pass filtered to 4-30 Hz and then WLMF was applied to 

the delay interval (same as alpha power analysis; starting 150 ms after the memory array is 

removed from the screen and end with the end of the retention interval). In this study, we 

focused on first-order cumulant c1, which is closely linked to the monofractal scaling 

parameter H (Wendt, Abry, & Jaffard, 2007). An exploratory analysis of the higher-order 

cumulants (c2 and c3) did not show a relationship between them and the memory load in our 

two experiments. The band-pass filtering was done because 1) EEG components above 30 

Hz could be contaminated with EMG signals, which could be driven by facial muscular 

signals of exerting effort and 2) components slower than 4 Hz are not well characterized in 

the signal due to the short length of the delay interval.

Canonical Correlation Analysis—In a canonical correlation analysis (CCA), two sets 

of variables are related together (as opposed to many variables to a single dependent 

variable) and the degree of relationship between the two sets of variables is assessed 

(Hotelling, 1936). An advantage of multivariate methods such as CCA over univariate 

methods is that they reveal the linear relationship between all spatial (every electrode) and 

task-related (every task load level) contrasts simultaneously without introducing multiple 

comparisons problem or requiring a-priori contrasts.

For two datasets X and Y, CCA identifies pairs of canonical weighting vectors wx and wy 

which produce corresponding linear latent variables lx = Xwx and ly = Ywy, such that 

correlation ρXY = corr(lx, ly) is maximized and orthogonal to any other latent variable pairs. 

We used CCA to find latent variables that relate either scale-invariance (H) of the 20 

electrodes (bottom set of variables in Figure 2A) to the task loads (top set of variables in 

Figure 2A) or the alpha desynchronization of the 20 EEG electrodes (bottom set of variables 

in Figure 2B) to the task loads (top set of variables in Figure 2B). Each task load (i.e., set 

size) was dummy coded as a binary variable, so the number of total latent variables possible 

was N-1 (i.e., the rank of the smaller set of variables), where N is the number of levels of 
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load in each experiment (N = 4 in experiment 1; N = 3 in experiment 2). Only the primary 

latent variables in the experiments are shown in the results because no secondary (or tertiary 

for Exp. 1) latent variables were large enough (ρXY > 0.25) in either experiment to be 

considered meaningful. Small effects, conventionally in the range of r = [0.15 0.25] (Kirk, 

2012), are not of interest here because a biomarker with smaller than medium effect size (i. 

e., r = 0.25) (Kirk, 2012) will likely not have practical utility due to lack of sufficient 

sensitivity. Each electrode’s or task load’s contribution to the latent variable is represented 

by the canonical weight of the observed variable which is the Pearson correlation coefficient 

of that variable with the latent variable. The stability of the latent variables is evaluated by 

the error bars of the canonical weights on both left and right sets, which are the 95% 

confidence intervals calculated by bootstrapping the data (3000 samples with replacement) 

to create distributions for the canonical weights similar to (Kardan et al., 2017). The strength 

of the association between the two sets in a latent variable is represented by the correlation 

between the two sides (double sided arrows in Figure 2). As such, the relationship 

represented in a latent variable is considered strong and stable if the correlation is large (ρXY 

> 0.4) and there is at least one variable in each side (i.e., at least one electrode and one task 

load) whose weight reliably differs from zero across the bootstrapped samples (i. e., 

omnibus non-parametric p<0.05).

Both α power and H values were z-scored across all trials within each participant to remove 

baseline differences not related to task conditions in the CCA. Supplementary to the CCA, 

Tables S1 and S2 show global H values (i. e., average over all electrodes) in each condition 

before z-scoring for both experiments and provide all univariate pairwise comparisons for 

conditions using paired t-tests.

Statistical Power—Following our hypothesis regarding relationships between electrode 

data and set sizes, we simulated the CCA analysis to estimate statistical power for detecting 

a true correlation between electrodes’ data and a contrast delineating a set size from the 

other set sizes (e.g., contrast C = [−1 −1 +1 −1] delineates set size 3 in Experiment 1). This 

was done in 5 steps. First, we generated a random Gaussian variable Norm(0,1) for N levels 

of set size and 20 electrodes for n participants. Second, to create a true correlation between 

the generated electrodes data and a set size contrast, we introduced a bias (i. e., a uniformly 

distributed random variable with an expected value above zero) in the generated electrode 

data for one set size (chosen randomly). We did this by adding a βbias * Unif(0,1) to the 

generated data for that set size and subtracting βbias * Unif(0,1) from the other set sizes. This 

produces a difference of βbias in the expected values of the electrode data for the biased set 

size compared to electrode data of other set sizes. Third, through trial and error iterations, 

we found that βbias = 0.62 induced correlations that closely resembled the minimum effect 

size of interest (r = 0.25, see CCA analysis). This value of βbias resulted in true correlations 

in the range of r = [0.24 0.26] between the set size contrast (i. e., dummy variables coding 1 

for the biased set size and −1 for the other set sizes) and the generated electrodes data for 

Experiment 1. Fourth, we then applied the CCA procedure explained in the previous 

section3 to the generated data to determine whether the CCA weight for the biased set size 

3The only difference being that instead of 3000 resamples for each CCA, we did 300 resamples to cut down processing time in each 
loop of the simulation.
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in the primary latent variable was found to be significant at α = 0.05. Finally, we repeated 

step (4) 500 times, with N = 4 and n = 25 to simulate the final sample size for Experiment 1. 

Statistical power was estimated to be 0.78 by calculating the proportion of times in the 500 

runs where the induced correlation was found to be significant in the simulated CCAs.

Experiment 1 Results

The average number of correctly reported items was 0.96 (SD = 0.03) items, 1.84 (SD = 

0.13) items, 2.35 (SD = 0.35) items, and 2.29 (SD = 0.44) items for set sizes 1, 2, 3, and 6, 

respectively. This pattern of performance is consistent with our assumption that working 

memory capacity in this task would be limited to around 3 items; when the set size increased 

from 3 to 6 items, the number of correctly reported items did not increase (t = −0.545, p = 

0.588, N.S.).

CCA Results for Scale-Invariance—In the Remember N task, the primary latent 

variable from the CCA showed a strong (R2 = 0.254, p < 0.001) and stable relationship (see 

Figure 2A bottom panel) between the number of to-be-remembered items and the scale-

invariance of the EEG signal during retention, where a global decrease in H (especially in 

occipital and parietal regions, see Figure 2B) tracked increases in task load. Importantly, the 

decrease in scale-invariance corresponded monotonically to task load, where each load level 

had a significantly larger canonical weight than the previous one (except for when going 

from load 1 to 2, perhaps due to both loads being relatively easy). The canonical weights 

were r1 = −0.63, r2 = −0.39, r3 = 0.24, and r6 = 0.78 for each set size, respectively. The 

significant increment from load 3 to 6 (one-sided arrow in Figure 2A top) follows our 

hypothesis that H is sensitive to the exerted cognitive effort rather than the capacity limits of 

visual working memory.

CCA Results for α Desynchronization—As shown in Figure 2C, the primary CCA 

latent variable relating change in α power during the retention period and task load showed a 

strong and stable relationship (R2 = 0.239, p < 0.001) between the two sets of variables. As 

expected, lower α power in the posterior electrodes (occipital and parietal, see Figure 2D) 

corresponded to higher task load. The canonical weights were r1 = −0.83, r2 = −0.09, r3 = 

0.66, and r6 = 0.25 for each set size, respectively. Importantly, the correspondence was not 

monotonic as indicated by the canonical weight for load 6 not being larger than canonical 

weight for load 3 (in fact it was marginally smaller; non-parametric p = 0.057). Thus, the 

relationship between alpha power and task load diverged from the monotonic 

correspondence between H and task load that we reported above. This bifurcation (see one-

sided arrows in Figure 2A and C top panels) in the relationship between task load and H 
versus alpha was statistically significant (Fischer’s Z = 2.66, p = 0.008), supporting our 

hypothesis that posterior α desynchronization is sensitive to working memory load rather 

than cognitive effort. Together, the results from the first experiment suggest that working 

memory load and cognitive effort are distinguishable and can be tracked by alpha band 

desynchronization versus broad-band characteristics of the EEG signal (H).
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Experiment 2 Methods

Participants—A group of 31 participants (ages between 18 to 35, 12 women) were 

recruited from the University of Oregon and surrounding community (Adam et al., 2018). 

All participants had self-reported normal or corrected-to-normal visual acuity and normal 

color vision. All participants gave informed consent and completed the 3-hr session for $30 

in compensation. Four participants were excluded from analyses for having fewer than 70 

trials per condition on average after artifact rejection (remaining n = 27). After rejection, 

included participants had an average of 148 trials per condition (SD = 39.5).

Stimuli—Stimuli and procedures were similar to Experiment 1. The key difference was that 

for this lateralized whole-report task, participants were cued to attend either the left- or 

right-half of the display before the onset of the memory array. They were asked to remember 

all items presented in the cued hemifield. The cue was a small pink and green diamond, 

approximately 0.2° tall by 0.4° wide and was presented 0.4° above the fixation cross. 

Participants remembered colored squares presented on a medium gray background (RGB = 

127.5 127.5 127.5) while maintaining fixation on a small black dot (0.12°). A pool of nine 

distinct colors: red (RGB = 255 0 0), green (0 255 0), blue (0 0 255), yellow (255 255 0), 

magenta (255 0 255), cyan (0 255 255), orange (255 128 0), white (255 255 255), and black 

(1 1 1) were used to choose the colors from in each trial. Each square subtended 1.2° and 

they could appear anywhere within a portion of the display subtending 7.0° to the left or 

right of fixation and 5.2° above or below fixation as long as there was a minimum distance 

of at least 1.5 squares between the centroids of any two squares.

Discrete Whole-Report Task—Each trial began with a blank inter-trial interview (500 

ms) followed by the spatial cue (1100 ms) which indicated which side of the screen to 

attend. After the cue period ended, a memory array containing an equal number of items on 

both sides of the screen (cued and uncued) was presented for 250 ms. The colors of squares 

in the memory array were chosen without replacement within each side (i.e., all cued colors 

were unique but might be repeated on the uncued side of the display). After encoding, 

participants remembered the items across a blank delay of 1300 ms. At test, a 3×3 matrix of 

the nine possible colors was presented at the location of each item on both the attended and 

unattended side. Similar to the Remember N task in Experiment 1, participants were 

instructed to click the color in each matrix corresponding to the color presented at the 

location (see Figure 3). The response period ended after participants made a response for all 

items on the attended side. Participants clicked the mouse to initiate the beginning of the 

next trial.

Data Analysis and Statistical Methods—Artifact rejection, alpha power analysis, 

wavelet analysis for H, and the CCA analysis were the same as described in Experiment 14. 

For statistical power, the parameters of the simulation were set at N = 3, n = 27, and βbias = 

0.60 for Experiment 2, which determined a statistical power of 0.72 for the analysis. The 

simulation showed that Experiment 2 would have sufficient power (conventionally 0.8) to 

detect effects only if they are equal to or larger than r = 0.29.

4Analysis where we only calculated alpha desynchronization for trials ipsilateral to lateralized electrodes yielded very similar results.
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Experiment 2 Results

The average number of correctly reported items was 0.95 (SD = 0.04) for set size 1, 2.41 

(SD = 0.33) for set size 3, and 2.53 (SD = 0.53) for set size 6. This, again, indicates that 

average K was still less than 3 even for 6 items, and was not significantly different from 

average K for set size 3 (t = 1.129, p = 0.264, N.S.).

CCA Results for Scale-invariance—Replicating the Remember N task, the primary 

latent variable from the CCA in the lateralized Whole-Report task showed a very strong (R2 

= 0.416, p < 0.001) and stable relationship between the number of presented items to be 

remembered in the task and the scale-invariance of the EEG signal during retention (Figure 

4A). Again, a global decrease in H tracked increases in the task load. The canonical weights 

for each set size in this latent variable were r1 = −0.78, r3 = −0.13, and r6 = 0.91, 

respectively. Importantly, the decrease in scale-invariance changed monotonically with task 

load, where the canonical weight for each load level was significantly larger than the 

previous one including from load 3 to 6. This follows our hypothesis that H is sensitive to 

the exerted cognitive effort in visual working memory tasks.

CCA Results for α Desynchronization—The primary CCA latent variable relating 

change in α power and task load was not stable, as the 95% confidence intervals for all of 

the electrodes contained zero (Figure 4C bottom). The task load levels were not significantly 

different from one another (Figure 4C top), although there was a numerical trend of 

suppression of α power for 6 items compared to 1 item. Thus, the relationship between task 

load and alpha power did not follow the pattern we observed in Experiment 1. However, 

since the latent variable was not stable, the canonical correspondence for α suppression in 

this experiment was not conclusive with regards to our hypothesis about distinguishing 

working memory load from cognitive effort.

Discussion

In this study we proposed a model for measuring cognitive effort via scale-invariance of 

brain activity. We conceptualized effort as the process of overcoming the cost of departure 

from automaticity or rest (Shenhav, 2017), and operationalized such departure as the degree 

of H suppression in EEG. H is a useful candidate for investigating effortful states because 

scale-free activity patterns are an emergent property of a network at a critical state. 

Therefore, we hypothesized that the degree of suppression of H signified the degree of 

departure from default-state criticality of the brain as the brain tunes to a specific (non-

automatic) task. When H is not suppressed, small perturbations can lead to large changes in 

brain state (Chialvo, 2004), thereby enabling rapid adaptability to heterogeneous external 

demands (Gisiger, 2001). But when disproportionate allocation of resources to a specific 

cognitive task is required, this susceptibility is sacrificed as brain networks move further 

away from this critical state. In other words, a departure from criticality represents a change 

from a more flexible to a more engaged brain state. Our results supported this hypothesis, as 

we found a monotonic correspondence between H suppression and task load across two 

experiments. This is the first reported evidence for changes in scale-invariance due to task 

difficulty as measured with EEG (a relatively high frequency signal), complementing 
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previous research relating H suppression of BOLD activity (a very low frequency signal) to 

task difficulty (Churchill et al., 2016).

To determine whether there is more to cognitive effort than working memory load (Heitz, 

Schrock, Payne, & Engle, 2008), we compared the relationship between H and task load to 

the relationship between α suppression and task load within individuals. We found that, 

whereas the number of recalled items and the degree of α suppression (indicating working 

memory load) hardly increased after intermediate task difficulty levels (in other words, both 

nearly plateaued after K), H continued to increase with task load beyond working memory 

capacity. This suggests that H is more sensitive to neural processes associated with task 

difficulty than with overt performance. Consequently, by showing a neurobiological 

dissociation between cognitive effort and the amount of information available for 

manipulation in working memory, our results support the theoretical account of cognitive 

effort that distinguishes it from information in working memory. In other words, there is a 

difference between effort and working memory load and individuals can exert seemingly 

“fruitless” cognitive effort.

Unlike α suppression, the differences in the task design of the two experiments did not 

change the behavior of H with regards to task load. Specifically, the differences in the 

experimental designs could test if certain aspects of the tasks such as: (1) the inhibition of 

the distracting information, (2) the number of internal representations, or (3) the perception 

of items or their iconic memory traces is responsible for the suppression of scale-invariance. 

In the Remember N experiment when participants were cued to only remember one item, the 

other five items on the screen were essentially distractors. If scale-invariance was primarily 

driven by inhibition of irrelevant information, the relationship between set size and H should 

have been in the opposite direction between the two experiments, since the greatest amount 

of suppression of irrelevant information is required in set-size 1 trials in Experiment 1 (five 

distractors) and set-size 6 in Experiment 2 (six distractors). If H was modulated by the 

number of internal representations, its behavior would be similar to α power (Foster et al., 

2019), i.e., it would plateau beyond ~3 items. Finally, if H was modulated by the visual 

display imbalance between the different set sizes (or a form of iconic memory trace), then 

we should have only seen a correspondence between scale-invariance and set size in the 

whole-report task (Experiment 2) and not in Experiment 1 since the number of items on the 

screen was constant in Experiment 1(6 items were always shown).

Importantly, the scale-invariance of EEG signals in our experiments is a broad-band 

characteristic of the signal that is directly related to the proximity of the brain to a critical 

state and was not driven by changes in any particular narrow-band signals. Even though H is 

(anti)correlated with narrow-band oscillations such as theta, alpha, and beta band power of 

the EEG signal (see supplementary Figure S2), its relationship with task difficulty was not 

driven by any of these specific narrow-band oscillation correlates (regarding cognitive tasks 

modulating beta and theta oscillations see (Engel & Fries, 2010; Sederberg, Kahana, 

Howard, Donner, & Madsen, 2003). We demonstrated this by applying CCA to investigate 

the correspondence between theta (4-7 Hz) as well as beta (13-30 Hz) band powers of the 

electrodes with the set sizes in both experiments similar to the analyses done for α and H. 

Neither theta nor beta band powers mimicked H suppression’s relationship with set size (see 
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supplementary results: CCA for theta and beta bands). Even though it is the case that one 

needs to examine the broad-band signal to get the effects in the CCA analyses presented in 

this study, it is important to make clear that we are not claiming that there are no narrow-

band analyses that can track task load levels; we are only arguing that our H results here are 

not driven by a specific narrow band. We think it is important to show that because our 

theoretical framework is based on shifts in scale-invariance of brain activity and estimating 

changes in brain state; and not on theories related to particular oscillatory components.

While H is systematically reduced with task complexity, without a measure of subjective 

effort, it is not clear that H suppression reflects volitional effort. However, before moving on 

to discussion of alternative accounts and counter arguments for them, it should be noted that 

part of this work’s motivation is to argue for a different perspective on how we could 

conceptualize cognitive effort based on deviations from default scale-free brain states. In this 

view, we do not argue for loss of brain criticality (H suppression) as a way of approximating 

subjective effort ratings, rather we see H suppression and subjective effort rating as 

complementary ways of observing an effortful state. As such, we think that in the same way 

that physical effort or stress could be measured with self-reported ratings or by more 

objective estimates (e. g. muscle and cardiovascular load, and cortisol levels), cognitive 

effort as a latent variable could also be evaluated through complementary but not redundant 

measures including self-reported ratings of subjective effort and/or measures of criticality in 

brain networks as quantified with H. Nevertheless, it is highly important for future studies to 

examine the strength of relationship between subjective cognitive effort and H suppression 

of brain activity. For instance, previous studies have shown only modest correlations 

between subjective and objective estimates of physical exertion (Jakobson et al., 2013), or 

stress (Van Eck & Nicolson, 1994).

There are some limitations and caveats in our study that should be discussed. At the core of 

all of the limitations mentioned in the next three paragraphs is the fact that we interpreted 

task complexity as being directly related to cognitive effort in this dataset. While a more 

difficult task does not necessarily guarantee the exertion of more cognitive effort from 

participants, below we argue that it was likely the case in these studies that participants 

exerted more effort with increasing task load. However, future work, which includes 

subjective measures of effort will obviate the need for post-hoc arguments.

First, the current studies were not designed to ensure that participants were motivated to 

modulate their effort exertion as a function of task load (e.g., through monetary incentives). 

In particular, one could argue that participants did not behave differently between set size 3 

and 6 trials as reflected by equivalent performance levels between the two conditions. To 

investigate this, we calculated the Hurst exponent from the ‘remember-3’ trials of the 

remember-N task in which participants were able to remember 3 items (i.e., participants had 

to remember 3 out of the 6 presented items and they successfully did so; we refer to these as 

3/3 trials), and compared these with the Hurst exponent from ‘remember-6’ trials in which 

participants were able to remember 3 items (i.e., participants had to remember 6 out of the 6 

presented items and they only succeeded in remembering 3; we refer to these as 3/6 trials). 

This analysis was performed to directly assess that participants were, at the very least, doing 

something different between remember 6 vs. remember 3 trials even when the amount of 
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successfully maintained information was exactly equal within the same individual with 

equated visual stimulation (the number of presented items on screen is always 6 in this task). 

We found a significant global (averaged over all electrodes) decrease in H in the 3/6 trials 

(Mean = 1.00, SD = 0.151) compared to the 3/3 trials (Mean = 1.04, SD = 0.136) within 

participants (paired t-test, t(24) = −3.61, p<0.01), suggesting that trials with extra to-be-

remembered items were treated differently by the participants in a manner that is detectable 

with H suppression. We interpret this difference in H as a cognitive effort signal, where 

participants were exerting more effort in the 3/6 trials compared to the 3/3 trials because 

they were trying to remember more items (i.e., they are supposed to remember all 6), but 

they were unable to. It is important to reiterate that in both cases participants stored the same 

amount of information, i.e., 3 items, and had the same amount of visual information on the 

screen, i.e., 6 items.

Second, H suppression could be explained by other factors that scale with task complexity 

but are not directly related to cognitive effort (i. e. only indirectly related to cognitive effort). 

These factors could include fear of failure or stress / anxiety (Cohen, 2011; Eysenck, 1985). 

First, since success in the whole-report and the remember-N tasks is not binary, fear of 

failure is less likely to be applicable to these tasks. For example, achieving a performance of 

3 is still partial success in a remember-6 trial. In that sense, there are very few complete 

failures in the task (i.e., participants rarely get 0 correct). Second, we would argue that 

participants were likely neither underperforming due to stress nor giving up due to the extra 

task demands, since performance did not drop for the “remember 6” condition compared to 

the “remember 3” condition in either experiment (in both cases, people successfully recalled 

around 2.5 items). A potential caveat, however, is that there may be a cost-free form of stress 

such that the increased stress is not detrimental to performance but causes H suppression, 

hence H could be not scaling with effort but with a cost-free form of stress.

One final piece of evidence to support our argument that H suppression is related to 

cognitive effort as opposed to task difficulty or a benign form of stress comes from its 

relationship with performance when external task difficulty is held constant. We analyzed 

data from (Adam, Robison, & Vogel, 2018) in which participants performed the whole-

report task (same as in Experiment 2) with the set size held constant at 6 items (see 

supplementary section Repeated set-size 6 whole-report task for details). This provided us 

with a larger sample size and enough trials to compare the Hurst exponent in ‘lower’ 

performance trials (fewer than 3 items remembered) with H in ‘higher’ performance trials 

(more than 3 items remembered) within the same task difficulty level (i.e., all load 6). We 

found that global H during the maintenance interval was lower for high performance trials 

(Mean = 1.02, SD = 0.158) compared to low performance trials (Mean = 1.16, SD = 0.185) 

within participants (paired t-test, t(33) = −5.27, p<0.01). This relationship between H 

suppression and performance within the same level of task difficulty suggests that decreased 

H is likely related to exerting beneficial cognitive effort rather than being a detrimental 

stress signal that we would hypothesize would either hurt performance or not affect it at all.

Because of the limitations discussed above, future work will be necessary to further 

delineate the relationship between subjective cognitive effort, external factors like stress and 

motivation, and cognitive load. Important future directions include: 1) having more levels of 
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difficulty, 2) having other types of cognitive tasks, 3) recording self-report measures of 

subjective effort, and 4) manipulating levels of reward to alter motivation levels. Factors 

such as motivation, fatigue, stress, and arousal could interact with both subjective effort and 

successful task performance (Esterman & Rothlein, 2019), and it will be important in future 

work to independently manipulate the contribution of each factor to task performance and 

subjective cognitive effort. For example, higher levels of motivation and/or lower levels of 

fatigue could increase the participants’ tolerance for expending cognitive effort without 

greatly affecting working memory capacity (see Bonner & Sprinkle, 2002; Botvinick & 

Braver, 2015). Along these lines, previous research has shown that self-reported fatigue due 

to physical burdens, such as chemotherapy treatment and chemotherapy recovery, could 

disrupt brain function in a manner that is unrelated to objective working memory 

performance (Kardan et al., 2019). Moreover, such physical burdens in this cohort have been 

shown to alter the scaling properties (i. e., H) of fMRI timeseries (Churchill et al., 2015). To 

shed light on these issues, an experimental design with multiple levels of task loads both 

below and above working memory capacity could be fully crossed with low vs. high reward 

conditions. In such an experiment, participant’s subjective effort and motivation in some 

trials could be collected via infrequent experience sampling to be used in conjunction with 

the neural measures used here. With this experiment one could test if H suppression is 1) 

correlated with subjective effort and 2) tracks more levels of task load beyond capacity for 

the high reward condition compared to the low reward condition. In other words, if H 

suppression plateaus or decreases for high task loads when motivation is low but increases 

(i.e., more H suppression) with high task loads when motivation is high, that would mean 

that the H suppression model of effort is a robust indicator of effortful states and that the 

maximum tolerance for H suppression is dictated by motivation (unlike the maximum 

capacity of working memory).

In conclusion, we used the time scale-invariance characteristic of the EEG signal (H) to 

dissociate visual working memory load from the cognitive effort exerted for the task at hand. 

Our work further demonstrates the utility of H as a neuromarker of cognitive effort. These 

results have theoretical implications for research on motivation and cognitive fatigue, as they 

support our theoretical framework of modeling an effortful state as departures from the 

brain’s self-organized criticality at rest. Additionally, we ruled out interpretations of 

cognitive effort that equate it with the information in working memory by providing 

evidence that scale-invariant brain activity can be suppressed further than indicators of 

working memory load.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Experiment 1: “Remember N” task procedures. At the beginning of every trial, participants 

were cued about how many items to remember from the upcoming memory array. Memory 

arrays always contained six items shown in random locations. At response, participants only 

recalled as many items as they were asked to remember.
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Figure 2. 
The primary latent variables of the CCA analysis for the Remember N task in Experiment 1. 

(A) The primary relationship between scale-invariance (H) of the EEG electrodes during the 

retention period (pink) with the number of items to remember (orange). The double-headed 

arrows show the strength of the correlation between the bottom set (electrodes) and the top 

set (task loads). The vertical axis in each panel shows the contribution of an electrode 

(bottom) or a specific task load (top) to the latent variable as indicated by the size of its 

normalized CCA weight. The error bars show bootstrapped 95% confidence intervals around 

the means for the weights. The asterisks show statistical significance in the difference 

between weights of adjacent levels of task load (i.e., 1 item to 2 items, 2 items to 3 items, 

and 3 items to 6 items), *p < 0.05 and **p <0.01. (B) Topographic demonstration of the 

CCA weights on the H exponent. (C) The primary relationship between the 

desynchronization of α band power from baseline during the retention period (blue) with the 

number of items to remember (orange). One-sided arrows demonstrate difference in CCA 

weight for set size 6 in the relationship between task load and H versus task load and alpha 

power. (D) Topographic demonstration of the CCA weights on alpha power.
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Figure 3. 
Experiment 2 “Whole-Report” task procedures. At the beginning of every trial participants 

were given a cue indicating which side of the screen to remember from the upcoming 

memory array. Memory arrays could contain 1, 3, or 6 items shown in random locations on 

each side; at response participants only recalled items from the cued side.
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Figure 4. 
The primary latent variables of the CCA analysis for the Whole-Report task in Experiment 

2. (A) The primary relationship between the scale-invariance (H) of the EEG electrodes 

during retention period (pink) with the number of items to remember (orange). The double-

headed arrows show the strength of the correlation between the bottom set (electrodes) and 

the top set (task loads). The vertical axis in each panel shows the contribution of an electrode 

(bottom) or a specific task load (top) to the latent variable as indicated by the size of its 

normalized CCA weight. The error bars show bootstrapped 95% confidence intervals around 

the means for the weights. The asterisks indicate statistical significance in the difference 

between weights of adjacent levels of task load (i.e., 1 item to 2 items, 2 items to 3 items, 

and 3 items to 6 items), where *p < 0.05 and **p <0.01. (B) Topographic demonstration of 

the CCA weights on the H exponent. (C) The primary relationship between the 

desynchronization of α band power from baseline during retention period (blue) with the 

number of items to remember (orange). (D) Topographic demonstration of the CCA weights 

on alpha power.
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