Title
Estimation of global vehicular methyl bromide emissions: Extrapolation from a case study in Santiago, Chile

Permalink
https://escholarship.org/uc/item/9zp1j5b8

Journal
Geophysical Research Letters, 26(3)

ISSN
0094-8276

Authors
Chen, Tai-Yih
Blake, Donald R
Lopez, Jimena P
et al.

Publication Date
1999-02-01

DOI
10.1029/1998GL900214

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Estimation of global vehicular methyl bromide emissions: Extrapolation from a case study in Santiago, Chile

Tai-Yih Chen, Donald R. Blake, Jimena P. Lopez and F. Sherwood Rowland
Department of Chemistry, University of California, Irvine.

Abstract. Between June 1 and June 8, 1996, 144 whole air samples were collected in Santiago, Chile. The temporal and geographical enhancement of CH3Br correlated with incomplete combustion tracers emitted from vehicles during the morning commute. From these, a city-wide CH3Br/CO volume emission ratio of 2.2 x 10^-6 was measured in ambient air. Without using the CO measurements, we estimate an annual release of 8.9 tons of CH3Br in Santiago based solely upon enhanced concentrations observed throughout the study area during the morning traffic period. This enhancement corresponds to 8.0 x 10^-6 kg CH3Br emitted for each liter of gasoline used (leaded and unleaded). By scaling the annual gasoline usage in Santiago to countries still using leaded gasoline, and assuming the above 8.0 x 10^-6 kg/L value holds true, a global vehicular CH3Br emission of 4 ± 3 Gg/year is calculated. This small vehicular CH3Br emission source strength will not improve the current CH3Br budget imbalance.

Introduction

Methyl bromide (CH3Br) has a global tropospheric average concentration of 9.5 ± 0.5 pptv and an atmospheric lifetime of approximately 0.7-0.8 year [Yvon-Lewis and Butler, 1997; Colman et al., 1998; Wingenter, 1998]. Methyl bromide accounts for 50 to 60% of the total organic bromine that enters the stratosphere [Wamsley et al., 1998]. Once these organobromine compounds are photolyzed in the stratosphere, the released bromine atom participates in ozone destroying cycles. Bromine compounds are estimated to contribute up to 25% of stratospheric ozone destruction in springtime polar regions [McElroy et al., 1986; Anderson et al., 1998; Poulet et al., 1992].

The most recent global CH3Br source strength estimate is 122 Gg/yr, while sinks are estimated at 205 Gg/yr [Butler and Yung, SOS1997]. This indicates that the CH3Br budget is not well understood. One area of uncertainty is emissions from vehicular exhaust. Few vehicles were used in previous studies and a wide range of emissions was reported. Using a 1974 Opel Kadett C operating in neutral gear, Baumann and Humann's [1987] results suggested the CH3Br mass emission factor (BHEF) was 23% (15-28%) of emitted bromine. Using a 1972 Ford LTD and a 1973 Dodge Dart, Hao [1986] reported a CH3Br mass emission factor of 0.12 ± 0.11%. Using the same BHEF value, Speigelstein estimated 15 Gg/yr (8.6-22) of CH3Br emissions in 1991, but an U.S.E.P.A. study estimated 0.5-1.5 Gg/yr for 1992 [Penkett et al., 1995].

From the worldwide bromine content in leaded gasoline (23 ± 2.5 Gg/yr in 1995) and again the BHEF value, Thomas et al. [1997] estimated 5.7 ± 1.7 Gg/yr was emitted in 1995. From 12 samples collected along busy roads in Norwich, Middlesbrough and Newcastle (UK), Baker et al. [1998] reported annual emissions of 1.5 Gg for 1995, and a range of 1-3 Gg/yr.

Experimental

In this paper global CH3Br emissions are estimated based on whole air samples collected throughout Santiago, Chile. Santiago has a population of 5 million people and 735,000 vehicles, 673,000 of which are passenger cars [INE, 1995]. The city is situated in a basin at an average altitude of 520 m. The coastal ranges are to the west and Andes mountains to the east of the city. The Mapocho and Maipo river valleys cut through the coastal ranges to the northwest and southwest.

Between June 1 and June 8, 1996, 144 whole air samples were collected in evacuated 2-liter stainless steel canisters in Santiago. A study region of 25.0 x 21.4 km (70° 31.8' – 70° 47.4' W and 33° 21.6' – 33° 32.7' S) was divided into a 7 x 6 grid (Figure 1), covering most of metropolitan Santiago. With the collaboration of 30 Pontificia Universidad Catolica de Chile (PUC) students and faculty members, forty-five samples were collected at approximately 5 a.m. on June 4 at the grid locations noted in Figure 1. Minimal vehicular activity was observed before 5:30 a.m.; however, several samples were collected around 6 a.m., after the morning bus service started. An additional 43 samples were collected at the same locations at 9 a.m., after morning traffic activities were fully developed. A comparison of the two grid results represents the effects of meteorological transport and emissions.

Two samples were also collected inside and another sample outside the 2 km long Zapata tunnel to estimate the collective CH3Br emissions of the many types of vehicles traveling in the tunnel. Moderate to heavy traffic of passenger vehicles (roughly 2/3 of total) and large freight trucks were observed moving at approximately 40 km/hr.

Observations of surface wind direction and strength were made at most of the sampling locations. In general, the study area had very weak wind (< 0.8 m/s) and stable atmospheric conditions. The non-SI unit of degree/hr is used in Figure 1 to illustrate that movement of air parcels during the study period is almost entirely within the study area.

The samples were returned to our UC Irvine laboratory for gas chromatographic analysis of methane, CO, 72 nonmethane hydrocarbons (NMHCs), 28 halocarbons and 5 alkyl nitrates. Detailed analytical descriptions are given in Hurst [1990] and Blake et al. [1996].

Results and Discussion

Evidence of Methyl Bromide Release in Vehicular Exhaust

The 5 a.m. and 9 a.m. median values of carbon monoxide (CO), ethyne, iso-pentane, ethylene dibromide, (EDB), and CH3Br are given in Table 1. The calculation for CH3Br to CO emission ratio is illustrated in Figure 2, and will be discussed in

Copyright 1998 by the American Geophysical Union.

0094-8276/98/1998GL900214$5.00
The influence of a terrestrial CH$_3$Br source contributed to the larger scattering observed at lower CO levels. The elevated concentrations observed at 9 a.m. are most prominent along a northeast to southwest direction across Santiago. This enhanced concentration pattern falls on the major traffic routes and clearly illustrates the impact of motor vehicle usage during the morning commute. However, the 5 a.m. CH$_3$Br median value of 29 pptv was significantly higher than the 9.3 pptv upwind value observed at the nearby Chilean coast (enhanced compared to similar latitude concentrations), suggesting that CH$_3$Br has additional sources not associated with morning activities.

Concentration matrices for CO, ethyne, i-pentane, EDB and CH$_3$Br are constructed using Stanford Graphics' inverse distance square method. The results of these 7 x 6 matrices are displayed in Figures 3-5 as 3-D color contours. Concentration levels observed are plotted in the Z-axis and color-coded. The mixing ratios of gases observed at 5 a.m. were generally much lower than those at 9 a.m., consistent with the observation of lower early morning vehicular activity.

The elevated concentrations observed at 9 a.m. are most prominent along a northeast to southwest direction across Santiago. This enhanced concentration pattern falls on the major traffic routes and clearly illustrates the impact of motor vehicle usage during the morning commute. The calm and stable atmospheric conditions contributed to maintain the chemical distribution of tracers near their local sources.

Both the 5 a.m. and 9 a.m. CH$_3$Br concentration profiles (Fig. 5, A and B) are clearly different than the other gases. Very high levels of CH$_3$Br were observed in the rural farming area in the northwest communities of Quilicura, Renca and Pudahuel. The land in that area had been plowed but not planted. Because CH$_3$Br concentration levels in this farm region were very high at 5 a.m., there was most likely a continuous terrestrial source of CH$_3$Br in that region. The presence of elevated CH$_3$Br at 9 a.m. throughout a 10 x 10 km area suggests a regional rather than a point source. The strength and possible identity of this unknown source will be investigated in future studies.

For each of the 42 grid locations, the 5 a.m. CH$_3$Br concentration was subtracted from the 9 a.m. value. The difference (Fig. 5C) reveals the same morning commute pattern as seen in CO and ethyne (Fig. 3). The difference in CH$_3$Br concentrations (9 a.m. - 5 a.m.) was correlated to the same changes in CO levels (Table 1 and Fig. 2), and a CH$_3$Br to CO volume emission ratio of 2.2 ± 0.2 x 10$^{-6}$ was calculated.

<table>
<thead>
<tr>
<th>CO (pptv)</th>
<th>Ethyne</th>
<th>i-Pentane</th>
<th>EDB</th>
<th>CH$_3$Br</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 a.m.</td>
<td>1872</td>
<td>14158</td>
<td>9281</td>
<td>1.91</td>
</tr>
<tr>
<td>9 a.m.</td>
<td>5391</td>
<td>50998</td>
<td>19199</td>
<td>4.24</td>
</tr>
<tr>
<td>5 a.m. - 5 a.m.</td>
<td>3519</td>
<td>36840</td>
<td>9918</td>
<td>2.33</td>
</tr>
</tbody>
</table>

*Thirteen samples collected near local CH$_3$Br or CO sources were removed from the data set for the emission ratio calculation.
vehicular compositions probably have the most direct impact on CH$_3$Br emissions.

Because each of the 7 x 6 grid cells represents an area of 3.57 x 3.57 km and normally only one sample was collected per grid cell, the features of the 3-D contour will shift depending on wind direction and strength. This is most likely the cause of the large deficit and surplus of differential CH$_3$Br observed in the northwest rural region (Fig. 5C). A z-axis concentration scale of 0-100 pptv was used in Figure 5C because of this surplus. However, the morning traffic enhancement pattern is well illustrated by the 0-22 pptv color scale.

Estimation of Santiago Vehicular Methyl Bromide Emissions and Emission Ratios

The emission budget of a compound can be estimated by taking the differences in concentration at two time periods, multiplied by the volume of air affected. The previously discussed CH$_3$Br median value increased by 12 pptv between 5 a.m. and 9 a.m. The study area is 25.0 x 21.4 km. The boundary layer height of approximately 200 ± 100m at 9 a.m. was visually estimated. A "box" of air above Santiago with a volume of 1 x 1012 liters is assumed. The 43 surface wind observations gave a median wind strength of 0.3 m/s (or 1.1 km/hr, with an estimated range of 0-2 km/hr). This estimate agrees well with observations from the Chilean CONAMA monitoring stations and supports a one day ventilation of the study volume.

An enhancement of 12 pptv CH$_3$Br in this partially ventilated 1 x 1012 liter "box" corresponds to 6.1 kg of CH$_3$Br released in Santiago between 5 a.m. and 9 a.m. The uncertainty in boundary layer height and wind speed places the upper and lower limit at 10.3 and 2.6 kg/4hrs, respectively. In addition to the 1 x 1012 liter box calculation which extends over the entire study area, a smaller area partial "box" calculation was made for the traffic corridor only. The calculated traffic corridor CH$_3$Br emission budget yields the same result. This suggests that the 12 pptv CH$_3$Br increase used in the box calculation is consistent with the morning traffic emissions. Similarly heavy traffic and congestion were observed throughout the city from 6 a.m. to 10 p.m. during our three visits in August 1995, June and again in November 1996. If we assume CH$_3$Br is released during the high traffic hours only (6 a.m. to 10 p.m.) and the release rate remain constant throughout the year, an annual Santiago vehicular CH$_3$Br release rate of 8.9 (-5, +6) x 109 kg is calculated.

In 1995, Santiago used 3.92 x 108 liters of unleaded and 7.16 x 108 liters of leaded gasoline (0.31 g Pb/liter, [World Bank, 1996], for a total of 1.11 x 109 liters [SEC, 1995]). This corresponds to a CH$_3$Br to gasoline (both leaded and unleaded) emission ratio of 8.0 x 10$^{-6}$ kg/L. If it's assumed that CH$_3$Br is only emitted from vehicles that use leaded gasoline, then the CH$_3$Br/leaded gasoline ratio is 1.2 x 10$^{-4}$ kg/L, or 0.040 g of CH$_3$Br emitted per gram of lead. In 1995, Santiago consumed 89 tons of bromine in leaded gasoline (Br:Pb weight ratio of 0.4), suggesting a CH$_3$Br to bromine mass emission factor of 10% (4-17%). This Santiago emission factor is lower than the BHEF value of 23% (15-28%) and perhaps more representative of urban situations.

Estimation of Global Vehicular Methyl Bromide Emissions

In 1995, 1.06 x 1012 liters of gasoline were used globally. Nine unleaded-only countries (United States, Japan, Canada, Germany, Brazil, South Korea, Sweden, Colombia and Austria) consumed 5.93x1011 liters of unleaded gasoline, or 56% of world
gasoline consumption [Thomas, 1995 and UN, 1997]. Assuming the Santiago CH3Br/gasoline emission ratio is similar for all other countries still using leaded gasoline, we estimate global vehicular emissions are 4 ± 3 Gg/year.

An alternative method is to extrapolate by lead usage in gasoline. The 7.16 x 10^8 liters of Santiago leaded gasoline contained 2.2 x 10^7 kg of lead. Thomas et al. [1999] estimated 5.0 x 10^7 kg of lead used in gasoline worldwide in 1995. This implies a global CH3Br emissions of 2.0 (0.8-3.4) Gg/yr, within the lower range of the 4 ± 3 estimate. Given the variability in global vehicular composition, traffic conditions, emission factors and other uncertainties, 4 ± 3 Gg/year is likely a better estimate.

Conclusions

Grid sampling during different times of day demonstrates the atmospheric impact of vehicular usage during the morning commute. In Santiago, methyl bromide emissions are associated with vehicular exhaust, but also have a significant and apparently continuously emitting unidentified source. The city-wide CH3Br to vehicular composition, traffic conditions, emission factors and global CH3Br emissions of 2.0 (0.8-3.4) Gg/yr, within the lower range of the 4 ± 3 estimate. Assuming the Santiago CH3Br to gasoline usage ratio is 2.2 x 10^-6, approximately 8.0 x 10^8 kg of CH3Br is released per liter of gasoline used in Santiago and likely other cities that still use leaded gasoline. Assuming the Santiago CH3Br to gasoline usage ratio is representative of countries still using leaded gasoline, a global vehicular CH3Br emission of 4 ± 3 Gg/year is estimated. Results from this study suggest the vehicular CH3Br source strength is several times less than the upper limit reported previously and will not narrow the gap between CH3Br sources and sinks.

Acknowledgements.

We thank past and present UCI Rowland/Blake research group members, Professors J. Rivera, P. Cereceda, V. Arancibia, M. Valderrama, Lugi, Mr. F. Requelmé, J. Alvarez, faculty, staff and students of PUC departments of engineering, chemistry and geography, and P. Ayola of CONAMA for their generous assistance in this project. This project was funded by DOE NIGEC-95-320.

References

Tai-Yih Chen, Donald R. Blake, Jimena P. Lopez and F. Sherwood Rowland, Department of Chemistry, 516 Rowland Hall, University of California, Irvine, 92697-2025, U.S.A. (email: tchen@uci.edu; dbblake@uci.edu; jplope@uci.edu; rowland@uci.edu)

(Received June 15, 1998; revised October 23, 1998; accepted October 29, 1998)