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Integrated (epi)-Genomic Analyses Identify Subgroup-Specific 
Therapeutic Targets in CNS Rhabdoid Tumors

A full list of authors and affiliations appears at the end of the article.

SUMMARY

We recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two 

transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying 

therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 

ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-

specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with 

distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with 

differential cellular responses to a panel of signaling and epigenetic inhibitors. Significantly, we 

discovered that differential methylation of a PDGFRB-associated enhancer confers specific 

sensitivity of group 2 ATRT cells to dasatinib and nilotinib, and suggest that these are promising 

therapies for this highly lethal ATRT subtype.

In Brief

Torchia et al. show that atypical teratoid rhabdoid tumors (ATRTs) are composed of three 

epigenetic subgroups that correlate with differential cellular responses to a panel of signaling and 
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epigenetic inhibitors. Specifically, dasatinib and nilotinib are identified as promising therapeutics 

for group 2 ATRTs.

INTRODUCTION

Rhabdoid tumors (RT) are highly malignant, multi-lineage neoplasms of early childhood 

originally described in kidneys and soft tissues, but most frequently seen in the CNS where 

they are called atypical teratoid rhabdoid tumors (ATRTs). ATRTs were historically 

considered incurable, and although outcomes have improved with intensified multimodal 

therapy, most patients survive less than 1 year after diagnosis (Chi et al., 2008; Hilden, 2004; 

Lafay-Cousin et al., 2012; Tekautz, 2005).

Biallelic SMARCB1 loss-of-function alterations are diagnostic of all RTs (Versteege et al., 

1998). Up to 35% of ATRTs patients have heritable SMARCB1 alterations, which 

predispose to multiple RTs (Eaton et al., 2011). Indeed, Smarcb1+/− mice also develop soft-

tissue- or neural-crest-derived RTs (Klochendler-Yeivin et al., 2000; Roberts et al., 2002), 

and ATRTs can arise from conditional inactivation of Smarcb1 (Han et al., 2016). 

SMARCB1 is a constitutive component of the SWI/SNF chromatin-remodeling complex, 

which exhibits substantial structural and functional diversity during neurogenesis. Loss of 

SMARCA4 (Hasselblatt et al., 2011), which encodes another component of the SWI/SNF 

complex in some ATRTs, further underscores SWI/SNF-directed epigenetic mechanisms as 

critical in ATRT development. Although cumulative data support a central role for 

SMARCB1 in RT initiation, specific mechanisms driving tumor development remain 

unclear. SMARCB1 deficiency leads to aberrant nucleosomal positioning by the SWI/SNF 

complex and is associated with upregulation of EZH2, a histone methyl transferase of the 

repressive PRC2 complex (Roberts and Orkin, 2004) with consequent deregulation of 

multiple downstream signaling pathways. These observations have led to RT therapies 

targeting EZH2 and other downstream pathways (Kim and Roberts, 2016; Wilson et al., 

2010).
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Surprisingly, despite the highly malignant and heterogeneous nature of ATRTs, exome 

studies indicate only recurrent SMARCB1 coding alterations (Johann et al., 2016; Lee et al., 

2012). We recently reported that ATRTs comprised at least two transcriptional subtypes with 

different clinical phenotypes (Torchia et al., 2015). While group 1 ATRTs with neurogenic 

signatures correlated with superior survival, group 2 ATRTs with mesenchymal signatures 

had aggressive, treatment-resistant phenotypes and dismal outcomes. However, mechanisms 

underlying varied therapeutic responses in ATRT patients remain unclear. Therefore, we 

performed an integrated genomic and functional epigenomic analysis of a large cohort of 

primary tumors and cell lines to elucidate subgroup-specific therapeutic sensitivities in 

ATRT.

RESULTS

ATRTs Comprise Three Epigenetic Subtypes with Distinct Clinical Profiles and Genotypes

We integrated whole-genome sequencing (WGS), whole-exome sequencing (WES), high-

resolution copy number profiling, and RNA-sequencing (RNA-seq) analyses with gene 

expression and methylation profiling on a total of 191 primary tumors (Table S1). Consistent 

with prior studies, coding region single-nucleotide variation (SNV) rate was low with only 

recurrent SMARCB1 coding mutations (Figure 1A, Table S2). However, intergenic mutation 

rate was significantly higher (0.64 mutation/Mb), suggesting that non-coding alterations may 

be important in ATRT (Figure 1A). Interestingly, we identified a spectrum of 379 copy 

number alterations (CNAs), including whole-arm gains and losses, focal deletions, 

duplications, and complex inter- and intrachromosomal gene rearrangements and uncovered 

1.84–3.57 structural alterations/ATRT (Figure 1B; Tables S2 and S3). Cell adhesion, neural 

development, and chromatin-remodeling genes were targeted by recurrent coding region 

CNAs in up to 20% of ATRTs (Table S4) (Figure S1), and SMARCB1 lacked previously 

reported mutational hotspots (Bourdeaut et al., 2011; Jackson et al., 2009). Notably, 

SMARCB1 loss in 55.8% of ATRTs analyzed arose from structural events including exon 

duplications and gene fusions to HOR-MAD2 and GTPBP1 (Figures 1C–1E; Table S5), 

indicating structural alterations as predominant mechanisms for SMARCB1 loss in ATRTs.

Unsupervised cluster analyses of 450k methylation micro-array data from 162 ATRTs 

revealed three epigenetic classes with high concordance to gene expression subtypes 

determined from 90 primary ATRTs (Figures 2A and 2B, S2A–S2E). While group 1 ATRTs 

comprised a single methylation cluster, group 2 tumors further segregated into two 

methylation subtypes (group 2A and 2B). ATRT subtypes correlated with distinct clinical 

and genotypic features (Figures 2C and 2D; Table S6); group 1 and 2A tumors arose 

predominantly in the supratentorial/cerebral (38/52; 73.1%) and infratentorial (cerebellum, 

brain stem) (42/64; 65.6%) locations, respectively. Group 1 and 2A ATRTs were seen in the 

oldest (median age 24 months; 95% confidence interval [CI] = 20.70–26.55) and youngest 

(median age 12 months; 95% CI = 11.05–13.00) children, respectively. Group 2B ATRTs 

encompassed more heterogeneous locations and included infra- (9/34; 26.5%), supratentorial 

(17/34; 50.0%), and all spinal (8/34; 23.5%) tumors. Group 2B patients spanned a broader 

age distribution and comprised the majority of patients older than 3 years of age (12/32; 

37.5%). We found no significant subgroup association with gender or tumor metastases.
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Although SNV alteration rates were comparable across subgroups, we observed genotypic 

differences; group 2B tumors had more focal genomic alterations (mean = 1.83; 95% CI = 

1.43–2.31 alterations/tumor; p = 0.0024) than group 1 (mean = 0.86; 95% CI = 0.65–1.12 

alterations/tumor) and 2A (mean = 0.88; 95% CI = 0.68–1.13 alterations/tumor; Figures 2C 

and Table S6) tumors. While group 1 tumors were distinguished by recurrent chr14 gains 

and chr19 losses, group 2B tumors exhibited focal copy number losses across multiple 

chromosomes, and group 2A ATRTs were genomically bland (Figure S3). Strikingly, our 

analyses revealed the type of genetic event leading to SMARCB1 loss also differed between 

ATRT subgroups (p = 2.79 × 10−4; Figure 2C; Table S6). Most group 1 tumors (30/45; 

66.7%) exhibited focal/subgenic alterations with predicted retention of the SMARCB1 
transcriptional start site; however, group 2B tumors had large deletions encompassing 

SMARCB1 and frequently additional chr22 genes, thus indicating 

SMARCB1genotype:phenotype correlations in ATRTs.

ATRT Subgroups Have Distinct Lineage-Enriched Functional Genomes

Our observation of specific genotypes suggests that SMARCB1 loss may have different 

functional consequences in ATRT subtypes. To define core molecular and cellular features of 

ATRT subgroups, we integrated supervised analyses of transcriptional and methylation data 

and observed that, while ATRTs generally exhibited a hypermethylated genome relative to 

other pediatric brain tumors, group 2A ATRTs had the lowest CpG island methylation levels 

compared with group 1 and 2B tumors (Figure S4A). Distribution of differentially 

methylated probes in CpG islands or gene bodies were similar across subgroups (Figure 

S4B); however, methylation and expression levels of lineage and developmental signaling 

genes differed significantly between subgroups (Figure 3A). These findings were 

corroborated by ingenuity pathway analyses (Figure 3B; Table S7), which revealed 

neurogenic genes (FABP7, ASCL1, MYCN, c1orf61) and genes involved in NOTCH 

(DLL1/3 HES5/6), glutamate receptor (SLC17A8, SLC17A6), and axonal guidance 

(TUBB2B/3/4A, SEMA6A) signaling, were most highly expressed and hypomethylated in 

group 1 ATRTs. BMP signaling (BMP4, BAMBI, GDF5, FOXC1) and mesenchymal 

differentiation (SERPINF1, CLDN10, FBN2, MSX1, PDGFRB) genes were most 

differentially expressed and methylated in group 2A/B tumors (Figure 3C; Table S7). Group 

2A tumors were further distinguished by enrichment of visual cortex/hindbrain development 

(OTX2), retinol (RBP1, RBP7, RDH5, RDH10), and tyrosine (TYR) metabolism genes, 

while upregulation of MYC and HOXB/C clusters was seen in group 2B tumors (Figure 3C). 

Detailed analyses showed high concordance of CpG methylation patterns at promoters with 

ATRT subtypes, thus suggesting epigenetic regulation of developmental/cell lineage 

signaling pathways in ATRTs (Figures 3D and S5). Interestingly, while many group 2A 

enriched genes had functions in pluripotency and EMT, group 2B ATRTs exhibited 

heterogeneous profiles with enrichment of interferon signaling, cell adhesion, and 

cytoskeletal genes (Figure 3B).

To further investigate the distinct functional epigenome of ATRT subgroups, we performed 

high-resolution, genome-wide chromatin accessibility mapping using the assay for 

transposase-accessible chromatin (ATAC)-sequencing (ATAC-seq) analyses on five primary 

tumors (two group 1 and 2A, one group 2B) and four ATRT cell lines. In keeping with 
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methylation and transcriptional analyses, principle component and correlation analysis of 

primary ATRT ATAC-seq data showed segregation and association of ATRT subtypes with 

distinct ATAC-seq profiles (Figure 4A; Table S8). Integration of ATAC-seq footprints with 

RNA-seq data revealed open chromatin landscape in group 2A ATRTs that correlated with 

generally increased gene expression patterns in contrast to more closed chromatin 

landscapes and decreased gene expression patterns in group 1 tumors, while group 2B 

ATRTs exhibited an intermediate profile (Figure 4B). Specifically, we observed that group 1 

(ASCL1, FABP7) and group 2A/B (OTX2, ZIC1/4, ZIC5/2) cell lineage genes and multiple 

signaling genes including ligands of NOTCH (DLL1, HES6) and BMP (BMP4, MSX2) 

pathways displayed open chromatin in a subtype-specific pattern. ATAC-seq analyses of 

ATRT cell lines showed similar patterns indicating that subgroup lineage and signaling 

features were maintained in cell lines (Figures 4C and 4D). These data suggest that ATRT 

subgroups and SMARCB1 genotypes correlate with distinct functional epigenomes and 

indicate that epigenomic mechanisms drive lineage-specific gene expression and potential 

targetable therapeutic pathways in ATRTs.

NOTCH and BMP Signaling Drive ATRT Subgroup-Specific Cell Growth

To investigate subtype-specific therapies, we used expression profiling to determine 

molecular grouping of ten ATRT cell lines including 78C and 34C, respectively, derived 

from tumors T13 (group 1), T45 (group 2B), and established lines CHLA02, CHLA04, 

CHLA05, CHLA06, CHLA266, BT12, BT16, and SH. Prediction analysis of microarray 

(PAM) analyses of gene expression data from primary ATRTs reproducibly classified cell 

lines into subgroups 1 and 2 which, respectively, showed enrichment of neurogenic/NOTCH 

and mesenchymal/BMP signaling genes seen in corresponding primary ATRT subtypes. 

Western blot analyses confirmed expression of NOTCH intracellular domain (NICD) and 

phosphorylated SMAD1/5 (pSMAD1/5), respective effectors of NOTCH and BMP signaling 

in primary group 1 and 2 ATRTs and corresponding cell lines (Figure 5A), indicating that 

subtype signaling pathways were maintained.

To evaluate functional significance of NOTCH and BMP signaling, we used DAPT (N-[N-

(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester), a γ-secretase inhibitor 

(Geling et al., 2002), and dorsomorphin (DM) (Yu et al., 2008) to, respectively, assess 

effects of NOTCH and BMP inhibition on a panel of group 1 (78C, CHLA05, CHLA02) and 

group 2A/B (SH, CHLA06, BT16) cell lines with most consistent growth phenotypes. Cell 

viability assays showed robust dose-dependent growth inhibition of group 1 and 2 cell lines 

with DAPT and DM treatment, respectively (Figures 5B and S6A), while cross-treatment of 

group 1 and 2 cell lines respectively with DM and DAPT had insignificant growth effects. 

Western blot and qRT-PCR analyses confirmed growth inhibition by DAPT correlated with 

dose-dependent downregulation of NICD and NOTCH transcriptional targets HES1 and 

HES5 in group 1 lines (Figures 5C and S6B). Similarly, we observed a dose-dependent 

decrease in pSMAD1/5 and BMP target genes SOST and BAMBI in group 2 cell lines 

(Figures 5D and S6B). Changes in NICD and pSMAD1/5 levels after DAPT and DM 

treatments also correlated with increased cell death in TUNEL assays (Figure S6C). We 

confirmed that the growth effects of γ-secretase inhibitors were mediated via NOTCH 

signaling in group 1 cells using siRNA-mediated knockdown of the NOTCH effector RBPJ, 
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which significantly diminished growth of group 1 (CHLA04/05) but not group 2 cell lines 

(BT12/BT16) (Figure 5E). These data collectively indicate that NOTCH and BMP are 

important ATRT subgroup-specific survival pathways and attractive pharmacologic targets.

Epigenetic Regulation of an Enhancer Element Underlies Group 2 ATRT Sensitivity to 
Pharmacologic Inhibitors of PDGFRB Signaling

Recent studies report promising therapies targeting various epigenetic and signaling 

pathways in ATRTs (Ginn and Gajjar, 2012); however, the relevance of these agents to 

ATRT subtypes is unknown as prior studies examined a few cell lines. To identify additional 

subgroup-specific targets, we tested the effects of 14 small molecules targeting epigenetic 

pathways on growth of three group 1 (CHLA04, 02, 05) and five group 2 ATRT 

(CHLA266/06, SH, BT16/12) lines (Figure S7A). We selected small-molecule inhibitors 

with well-defined in vitro cellular activity that target Bromo/BET domain proteins (JQ1, 

PFI-1,2 GSK2801, SGC-CBP30), methyltransferases (GSK343, UNC1999, UNC0642, 

UNC0638, A-366, J4, DOT1L, LLY507), and histone deacetylases (LAQ824). Cell viability 

assays showed that five of the 14 compounds had consistent significant effects on cell 

growth (>30% reduction in cell viability), including UNC0638, UNC1999, JQ1, LAQ824, 

and J4. LAQ824 and J4 significantly diminished growth of all cell lines. In contrast, 

UNC0638, UNC1999, and JQ1 treatment induced >30% reduction in viability of all three 

group 1 cell lines but did not affect three out of five group 2 cell lines (Figures 6A, 6B, S7A, 

and S7B). Interestingly, gene expression analyses showed that EHMT2 (encodes G9a), 

EZH2, BRD4, and related loci (BRD1-BRD7) were highly expressed across all ATRTs (data 

not shown), and suggest that therapeutic sensitivity to epigenetic inhibitors may be 

dependent on a distinct functional chromatin landscape in ATRT subtypes.

Dasatinib and nilotinib are ATP-competitive small-molecule multi-tyrosine kinase inhibitors 

(TKIs) of BCR-ABL fusion protein, stem cell factor receptor, platelet-derived growth factor 

receptor (PDGFR), and Src family kinases (Rix et al., 2007). Both drugs are widely used in 

treatment of leukemia (Kantarjian et al., 2006) and some solid tumors (Araujo and 

Logothetis, 2010) but have not been extensively investigated in pediatric brain tumors. We 

therefore tested the sensitivity of ATRT cell lines to dasatinib and nilotinib as gene 

expression data indicated that PDGFRB was most differentially expressed between ATRT 

subgroups. In contrast to the relative insensitivity of group 2 ATRTs to epigenetic inhibitors, 

the growth of all five group 2 cell lines tested, including CHLA266 that was reported 

previously to be dasatinib sensitive (Kolb et al., 2008), was robustly diminished after 

dasatinib and nilotinib treatment (Figures 6A and 6B). Importantly, neither drug 

significantly affected the growth of group 1 cell lines. The well-characterized pharmacology 

of these drugs make them ideal candidates for clinical translation, hence we sought to further 

investigate the pharmacologic properties and mechanisms underlying the robust effect of 

both drugs on group 2 ATRT cell growth. Half-maximal inhibitory concentration (IC50) 

assays revealed group 2 cell lines were up to 1,000 times more sensitive to dasatinib than 

group 1 cell lines (IC50 range 1.01 ± 0.02 to 5.23 ± 0.13 μM versus 3.98 ± 0.90 to 49.95 nM 

for group 1 and 2, respectively) (Figure 6C). As there are no reports of dasatinib efficacy in 

brain tumors, we tested dasatinib treatment in vivo using a BT16 orthotopic xenograft model 

which recapitulates classical rhabdoid morphology (Figure S7C) with predictable 
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engraftment rates. Mice with BT16 xenografts treated with daily intraperitoneal dasatinib 

(30 mg/kg) injections for 2 weeks had significantly prolonged survival compared with 

vehicle-treated controls (Figure 6D). Bioluminescence imaging (BLI) of a subset of tumor-

bearing mice showed that drug treatment correlated significantly with decreased BLI signals 

(p = 0.043; Figure 6D).

To investigate mechanisms for dasatinib sensitivity, we compared expression of known 

dasatinib targets in ATRT subtypes. Integrated analyses identified PDGFRB as the most 

significantly differentially expressed locus in group 2 versus group 1 ATRTs (>2-fold 

change, p = 6.35 × 10−5) (Figure 6E), which was confirmed by western blot analyses of 

primary ATRTs (Figure 6F). CSF1R, which also encodes a potential dasatinib/nilotinib 

target and maps next to PDGFRB, was not differentially expressed or methylated in primary 

tumors or cell lines. These findings suggested that differential epigenetic regulation leading 

to PDGFRB upregulation may underlie the distinct sensitivity of group 2 cells to dasatinib 

and nilotinib. Consistent with high PDGFRB expression in group 2 ATRTs, ATAC-seq 

analyses revealed open chromatin at the PDGFRB but not the CSF1R promoter, specifically 

in group 2 primary tumors and cell lines (Figures 7A and 7B). Interestingly, ATAC-seq 

analyses also identified a distinct region of open chromatin in group 2 tumors and cell lines 

that corresponded to a potential regulatory domain 50 kb upstream of the PDGFRB 
promoter within exon 1 of CSF1R (chr5:149,491,285–149,493,716) (Figures 7A and 7B). To 

examine whether juxtaposition of the PDGFRB promoter and putative enhancer by 

chromatin looping underlies PDGFRB upregulation in group 2 ATRTs, we performed C3D 

analyses on primary tumor ATAC-seq data to evaluate the probability of peak associations 

(Thurman et al., 2012). The Pearson correlation co-efficient calculated for ATAC-seq peaks 

within a 500 kb window of the PDGFRB promoter showed significant correlations between 

the PDGFRB promoter and putative enhancer only in group 2 tumors, T26 (0.5170; p < 

0.0001) and T27 (0.3028; p = 0.0067) (Figure 7C), and strongly supported direct interaction 

of the PDGFRB promoter and putative enhancer specifically in group 2 ATRTs. Detailed 

analyses of CSF1R and PDGFRB revealed hypomethylation of six CG residues within the 

putative enhancer in group 2 tumors and cell lines that correlated significantly with 

PDGFRB but not CSF1R expression (Figure 7D). Alignment with ENCODE data indicated 

features characteristic of enhancers in this region (Filippova et al., 1996; Malik et al., 2014), 

including differential H3KMe1, H3K4Me3, and H3K27Ac marks, and binding sites for 

multiple transcription factors including Myc network proteins, FOS and CTCF (Figures 7A 

and S8A). Together with the significant enrichment of MYC and FOS expression seen in 

group 2 ATRTs (Figure S8B), these findings suggest that differential epigenetic regulation of 

the putative enhancer underlies PDGFRB upregulation and distinct group 2 ATRT sensitivity 

to dasatinib and nilotinib. To confirm and map the putative PDGFRB enhancer, we 

performed H3K27Ac chromatin immunoprecipitation sequencing (ChIP-seq) on two 

dasatinib/nilotinib-resistant group 1 (CHLA04, 05) cell lines and a representative dasatinib/

nilotinib-sensitive group 2 (BT12) cell line. Peak analyses showed that enriched H3K27Ac 

marks aligned with the predicted enhancer region only in group 2 lines, indicating enhancer 

activity only in group 2 ATRT cells (Figure 7B). 3C analyses revealed co-enrichment of 

probes mapping to the PDGFRB enhancer and promoter regions in BT12 and CHLA05 cells 

(Figure 8A). Of note, a second peak in the PDGFRB gene body was not associated with 

Torchia et al. Page 7

Cancer Cell. Author manuscript; available in PMC 2017 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



H3K27Ac enrichment in BT12 cells. Taken together with the enrichment of H3K27Ac 

marks at the putative PDGFRB enhancer in BT12 but not CHLA04 and 05 cells, these data 

indicate that direct interaction of a distant active enhancer and promoter via chromatin 

looping facilitates PDGRB expression in group 2 ATRT cells (Figure 8B). Consistent with 

these observations, western blot analyses showed high phospho-PDGFRB (pPDGFRB) 

expression in group 2, but not group 1 ATRT cell lines (Figure 8C), and robust 

downregulation of pPDGFRB after dasatinib treatment in group 2 cells (Figure 8D). 

Collectively, our results suggest that epigenetic regulation via differential methylation of a 

PDGFRB-associated enhancer specifically drives the sensitivity of group 2 ATRTs to small-

molecule inhibitors of the PDGFRB signaling axis and indicate that dasatinib/nilotinib are 

important agents for the particularly lethal group 2 ATRTs.

DISCUSSION

ATRTs are highly malignant cancers with substantial heterogeneity in disease presentation 

and poorly defined biology for which best therapeutic approaches are undefined. Here, we 

demonstrate that ATRTs comprise three epigenetic subtypes that correlate with distinct 

tumor locations, patient age, lineage-enriched methylation and transcriptional signatures, 

and unique global and SMARCB1-specific genotypes. Our data reveal that ATRT subgroups 

are associated with a distinct epigenomic landscape and sensitivity to inhibitors of NOTCH, 

BMP, PDGFRB, and epigenetic signaling. Significantly, we discovered that differential 

methylation of a PDGFRB enhancer underlies the robust and distinct sensitivity of group 2 

ATRTs to dasatinib and nilotinib, two well-characterized and widely used cancer drugs.

Cumulative studies indicate that a convergence of epigenomic features reflecting cellular 

origins and specific somatic alterations underlies diverse tumor phenotypes (Feinberg et al., 

2006). Here, we observed that ATRTs segregate into subtypes with specific lineage-enriched 

methylation signatures, distinct tumor location, and age of presentation suggestive of origins 

from different neural progenitors. In the predominantly supratentorial group 1 ATRTs, we 

observed distinct methylation and enrichment of neurogenic loci including forebrain markers 

LHX2 (Roy et al., 2014) and MEIS2 (Cecconi et al., 1997), as well as FABP7 and ASCL1, 

markers of radial glial neural progenitors (Anthony et al., 2004), indicating these as potential 

cell of origins for group 1 ATRTs. In contrast, differentially methylated and expressed loci in 

group 2 ATRTs were primarily mesenchymal lineage/signaling (BMP/PDGFRB) and mid/

hindbrain development (ZIC1, -2, -4, -5, OTX2, HOXB/C) genes and suggest that group 

2A/B ATRTs, which are primarily infratentorial and spinal tumors, develop from mid/

hindbrain neural progenitors. Enrichment of neuronal development pathways in group 1 

tumors contrasted with a dominance of stem cell differentiation and pluripotency pathways 

in group 2A ATRTs. We also observed that, in contrast to group 1 and 2B, group 2A tumors 

were associated with global CpG island hypomethylation, a more open chromatin landscape 

and overall increased gene expression patterns reminiscent of more primitive cell types. 

These data further suggest that group 2A tumors, which arise in the youngest patients (12.00 

months 95% CI = 11.05–13.00), originate from highly primitive neural precursors. Our 

findings corroborate a recent study that also reported three epigenetic subtypes of ATRTs 

with distinct enhancer landscapes (Johann et al., 2016), and a study of murine ATRTs 

derived from a conditional ROSA-Cre model (Han et al., 2016). Our data revealed that 
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ATRTs have rare coding mutations but exhibit subtype-enriched patterns of CNAs and 

SMARCB1 genotypes, and suggest different mechanisms of tumor initiation and 

progression in ATRT subtypes. Notably SMARCB1 deletions in group 2B ATRTs were 

frequently accompanied by copy number-driven gene expression changes in candidate 

modifier loci with neurogenic and epigenetic functions, including BCR, MKL, and EP300 
(Kaartinen et al., 2001).

As ATRTs lack other recurrent coding alterations, there has been substantial interest in 

epigenetic therapies for ATRTs. Specifically, promising studies of EZH2 (Knutson et al., 

2013) and BET domain (Tang et al., 2014) inhibitors have been reported. Intriguingly, while 

our screen of small epigenetic inhibitors confirmed the therapeutic effects of UNC1999 and 

JQ1, respectively EZH2 and BET domain inhibitors, we observed growth inhibitory effects 

predominantly in group 1 lines. Similarly, we observed that only group 1 lines were sensitive 

to UNC0638, a chemical compound for histone methyl transferase G9a, while LAQ824, a 

histone acetylase inhibitor, diminished growth in all cell lines. These findings may reflect 

more general epigenetic functions of histone deacetylases versus histone methyl 

transferases. Interestingly, the cellular responses to epigenetic compounds overlapped with 

the sensitivity to inhibitors of NOTCH and BMP signaling pathways, critical mediators of 

lineage-specific progenitor cell survival (Ericson et al., 1998). Specifically, group 1 cells 

with neurogenic transcriptional and epigenomic profiles were sensitive to DAPT, UNC0638, 

and UNC1999, while group 2 cell lines with limited features of neural differentiation were 

largely insensitive to these three inhibitors. In contrast, we observed a distinct sensitivity of 

group 2 cell lines to inhibitors of BMP and PDGFRB, both mediators of mesenchymal 

signaling. Of note, recent reports indicate a functional and physical interaction of the 

G9a/GLP and polycomb repressive complex 2 (PRC2) epigenetic silencing machineries and 

co-regulation of neuronal developmental genes by G9a and PRC2 (Mozzetta et al., 2014). 

These observations collectively indicate that lineage-associated epigenomic landscapes of 

ATRTs have critical implications for the development of ATRT subtype-specific therapies. 

Future investigations to define contributions of other epigenetic modifiers implicated by our 

genomic and experimental data will clearly be important for informing the development of 

ATRT therapies.

Our data extend an earlier report of PDGFRA/B expression in some ATRTs and rhabdoid 

tumor sensitivity to TKIs (Koos et al., 2010). Here, we observed that nilotinib and dasatinib 

have growth inhibitory effects only in group 2 ATRT cells, including the CHLA266 cell line 

reported previously to be dasatinib sensitive (Kolb et al., 2008). Importantly, our studies 

show that dasatinib significantly prolongs the survival of mice with orthotopic group 2 

ATRT xenografts, thus indicating that dasatinib can accumulate at a sufficient concentration 

for tyrosine kinase inhibition in brain tumors. Our studies also suggest that PDGFRB 

expression is a promising biomarker for dasatinib sensitivity in ATRTs. These findings have 

significant implications for ATRT treatment as the safety and efficacy of dasatinib are 

established in adults and children. Interestingly, consistent with the reported enrichment of 

BMP signaling/mesenchymal lineage genes in non-CNS RTs (Birks et al., 2011; Chun et al., 

2016; Gadd et al., 2010), we observed an overlap in the methylation profiles of non-CNS 

RTs and group 2 ATRTs (data not shown), which suggests that some group 2 ATRTs and 

non-CNS tumors characteristically seen in very young children with rhabdoid predisposition 
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syndrome, may have common or closely related cellular origins. Indeed, we observed that 

dasatinib and nilotinib also robustly inhibited the growth of G401, a renal RT cell line (data 

not shown) and suggest potential roles for dasatinib and nilotinib in non-CNS RT treatment.

Despite evidence of a critical etiologic role for SMARCB1 in RT initiation, the pathobiology 

of ATRTs remains poorly elucidated. Our data suggest that SMARCB1 loss via diverse 

mechanisms in different cellular contexts, together with additional epigenetic and genetic 

events, underlies the clinical heterogeneity of human ATRTs. These observations have 

significant implications for the fundamental understanding and targeting of SWI/SNF 

function in neoplastic growth and clinical management of ATRTs. Specifically, our analyses, 

which reveal a spectrum of alterations throughout SMARCB1, indicate that current 

diagnostic methods may underestimate the frequency of SMARCB1 alterations in ATRTs. 

We have identified known and potential drugs and drug-like inhibitors with different 

therapeutic effects in molecular subtypes of ATRTs. In addition to nominating dasatinib and 

nilotinib as promising repurposed drugs for ATRTs, our comprehensive characterization of 

ATRT cell lines provides a rich resource for the further development of other candidate 

ATRT drugs. Most importantly, our study underscores the significant limitations of current 

chemoradiotherapeutic regimens used uniformly for all ATRT patients. Together with our 

earlier observations that indicate differential outcomes for molecular subtypes of ATRTs, our 

study provides a critical framework for informing pre-clinical studies as well as risk- and 

biology-stratified clinical trials for ATRTs.

EXPERIMENTAL PROCEDURES

Tumor and Patient Information

All tumors and clinical information were collected through an international collaborative 

network (see Supplemental Experimental Procedures) with consent as per protocols 

approved by the Hospital Research Ethics Board at participating institutions. In total, 194 

CNS (191 primary and 3 recurrent) and 9 non-CNS RT samples were collected for genomic 

analyses (Table S3). All ATRTs were diagnosed according to the World Health Organization 

CNS tumor classification criteria (Louis and Wiestler, 2007) and confirmed by BAF47 

immunostains (BD Biosciences, catalog no. 612110). Biallelic SMARCB1 alterations were 

confirmed using FISH, MLPA, targeted exons 1–9 Sanger sequencing, or WGS/WES 

analyses. DNA or RNA from snap frozen tumor were investigated with one or more of 

WGS/WES, RNA-seq and high-resolution copy number/SNP, gene expression, and 

methylation array analyses; 123 samples with DNA from formalin-fixed, paraffin-embedded 

materials were analyzed with the Illumina 450k methylation arrays. Animal studies were 

conducted in accordance with the policies and regulations for ethical treatment of animals 

approved for the Toronto Center for Phenogenomics.

Statistical Analyses

Difference in nucleotide transition/transversion rates from WGS SNV calls were determined 

using the two-proportion Z test with Yates’ correction for continuity. Significance of 

differences in gender, location, metastasis, and individual genomic loci between ATRT 

subgroups were analyzed using a two-sided Fisher’s exact test. The Kruskal-Wallis test was 
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used to assess the significance of tumor subgroups in relation to age and counts of genomic 

alterations. Student’s t test and the Mann-Whitney-Wilcoxon test with false discovery rate 

(FDR) correction were used, respectively, to test for differences in gene expression and 

methylation between groups. All analyses were conducted in the R statistical environment 

(v2.15.2) or with SPSS version 22.0. A p value of <0.05 was regarded as significant for all 

analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

ATRTs are considered to be genetically homogeneous with bland genomes. Our 

integrated genomic studies indicate a higher non-coding mutation rate and predominantly 

structural coding alterations, which suggest a more complex ATRT genome. We identify 

three epigenetic ATRT subtypes associated with distinct genotypic, chromatin, and 

functional landscapes that correlate with cellular responses to various signaling and 

epigenetic pathway inhibitors. Significantly, we identify two well-characterized cancer 

drugs, dasatinib and nilotinib, as promising therapeutic agents for group 2 ATRTs. 

Together with our earlier findings, our data provide compelling rationale for the 

development of a risk- and biology-stratified trial for ATRTs.
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Highlights

• ATRTs comprise three molecular and epigenetic subgroups: group 1, 2A, and 

2B

• Distinct chromatin landscape drives subgroup-specific lineage and signaling 

features

• ATRT subgroups exhibit distinct sensitivity to signaling and epigenetic 

inhibitors

• Epigenetically regulated PDGFRB enhancer drives TKI sensitivity in group 2 

ATRTs
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Figure 1. ATRT Coding Genome Is Predominantly Targeted By Structural Alterations
(A) Global genome and coding region somatic mutation rate in ATRTs. Median somatic 

mutation rates/Mb were calculated using WGS and WES data on 26 primary ATRTs with 

matched normal DNA. Boxplot middle represents median, box boundaries represent first and 

third quartiles; whiskers represent min and max values.

(B) Circos plot of recurrent structural alterations, including SCNAs and gene 

rearrangements, from integrated WGS, RNA-seq, SNP, and 450k methylation array copy 

number data of 180 primary ATRTs.
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(C) Schema of SMARCB1 alterations relative to DNA binding domain (DBD) and repeat 

regions 1 and 2 (Rp1 and Rp2) domains in the SMARCB1 protein.

(D) Schema of a chr22q intrachromosomal fusion of SMARCB1 exon 5 (gray) and 

HORMAD2 exon 11 (orange) identified by RNA-seq in ATRT T51 with consensus sequence 

and RT-PCR and Sanger sequencing validation of the fusion mRNA.

(E) Schematic of a chr22q intrachromosomal translocation involving SMARCB1 intron 5 

(gray) and GTPBP1 intron 1 (blue) identified by WES in ATRT T12 with CREST predicted 

mRNA consensus sequence of respective gene fragments and PCR and Sanger sequencing 

validation of breakpoint.

See also Figure S1, Tables S1, S2, S3, S4, and S5.
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Figure 2. ATRTs Comprise Three Epigenetic Subgroups with Distinct Clinical Profiles and 
Genotypes
(A and B) ATRTs were classified by unsupervised consensus hierarchical (HCL) and non-

negative matrix factorization (NMF) cluster analyses of 450k methylation array (A) or 

Illumina HT12 gene expression array data (B). Adjusted Rand Index indicates concordance 

in methylation and gene expression clusters. Most stable tumor grouping indicated by 

highest cophenetic coefficient (Coph. Coef; k = 3) with 250 genes and 10,000 methylation 

probes are shown.

(C) Clinical, molecular, and genotypic features of 177 primary ATRTs. Tumor subgroups 

determined by methylation or gene expression are indicated by red (group 1), blue (group 
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2A), green (group 2B) or gray (group not available) bars; clinical (tumor location, patient 

age, metastatic status), global patterns of CNAs (chromosomal or subchromosomal/focal), 

and type of SMARCB1 alterations in individual tumors are indicated. Clinical or molecular 

features with significant subgroup correlation are indicated in red. SMARCB1 alterations 

were classified as focal (point mutations, small indels, intergenic deletions) or broad 

(intragenic events, large deletions).

(D) Tumor location, median age, and age distribution in ATRT subgroups. Boxplot middle 

represents median, box boundaries represent first and third quartiles, and whiskers represent 

10th and 90th percentiles.

See also Figures S2, S3, and Table S6.
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Figure 3. ATRT Subgroups have Distinct Lineage-Enriched Transcriptional and Methylation 
Signatures
(A) Starburst plot of ATRT subgroup-specific genes with reciprocal changes in methylation 

(x axis) and gene expression (y axis). Genes associated with group 1 (left panel; red), group 

2A (middle panel; blue), and group 2B (right panel; green) ATRTs are highlighted.

(B) Top ten (top axis) enriched pathways for each subgroup was determined by ingenuity 

pathway analysis (IPA) of subgroup-specific genes with ±2-fold difference in expression; 

relative enrichment of pathways is shown on bottom axis.
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(C) Gene expression heatmap of subgroup-enriched neural/mesenchymal lineage and 

NOTCH/BMP/HOX signaling genes in ATRT determined by supervised t test with FDR 

correction. Genes enriched in individual subgroups, or shared by subgroups 2A and 2B are 

shown by solid and dashed boxes, respectively.

(D) Heatmaps show methylation levels of representative lineage genes in ATRT subgroups; 

methylation status of probes in ASCL1, OTX2, and HOXB2 are shown relative to 

transcriptional start sites.

See also Figures S4, S5, and Table S7.
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Figure 4. ATRT Subgroups Have Unique Chromatin Landscape and Functional Genomes
(A) Principle component analysis (PCA) and correlation analysis of ATAC-seq data from 

five primary ATRTs. Aligned sequence reads from ATAC-seq profiling were converted to 

peak tag counts using HOMER software for PCA and correlation analysis using DiffBind 

software; color gradients indicate sample relatedness. Heatmap shows peaks enriched in 

group 1 and 2 ATRTs.

(B) Genome-wide chromatin openness profiles of group 1 (T4, 13), 2A (T26, 27), and 2B 

(T45) ATRTs. Differentially open chromatin peaks (FDR < 0.5) were identified using 

DiffBind analysis of ATAC-seq data. Heatmap shows average read density in 20 bp bins 
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(range ±2.5 kb from peak center) and FPKM values of corresponding genes in individual 

tumors determined by RNA-seq. The color scale is proportional to read enrichment and 

normalized between ChIP-seq experiments relative to input DNA.

(C and D) ATAC-seq alignment tracks for subgroup-specific lineage (C) and signaling (D) 

genes in primary tumors and cell lines. Gene tracks are shown relative to hg19 RefSeq 

annotation and ATRT molecular group (red, 1; blue, 2A; green, 2B).

See also Table S8.
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Figure 5. NOTCH and BMP Inhibitors Have Subgroup-Specific Effects on ATRT Cell Growth
(A) Molecular subtype of ten ATRT cell lines is shown with a heatmap of PAM predicted 

gene classifiers based on primary ATRT gene expression data and western blot analyses of 

NOTCH intracellular domain (NICD) and pSMAD1/5 expression in cell lines and primary 

tumors. UW228 medulloblastoma cell line served as a control (C) for SMARCB1 

expression; tubulin served as loading control.

(B) MTS assays of group 1 and 2 cell lines respectively at 3 and 5 days post-treatment with 

DAPT and dorsomorphin (DM), cell viability is normalized to DMSO-treated controls.
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(C and D) Effect of DAPT and DM on NOTCH and BMP signaling in ATRT cells was 

confirmed by qRT-PCR analyses of respective target genes and western blot analyses for 

NICD and pSMAD1/5 in group 1 (C) and group 2 (D) cell lines treated with increasing 

doses (black triangles) of DAPT or DM, and cross-treated with a single dose of DM or 

DAPT; ± signs indicate presence or absence of specific drugs. mRNA levels are normalized 

to actin, and to carrier treated controls (black bars). Significance was calculated using 

Student’s t test.

(E) Cell viability of group 1 (CHLA04, 05) and group 2 (BT12, 16) cell lines treated with 

RBPJ (25 nM) and scrambled control (20 nM) siRNA were assessed using Alamar blue 

assays; western blot and qRT-PCR analyses confirmed RBPJ knockdown.

Error bars show ±SEM (n = 3).

See also Figure S6.
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Figure 6. Subgroup-Specific Effect of Signaling and Epigenetic Pathway Inhibitors on ATRT Cell 
Growth
(A) Cell viability of cell lines treated with indicated small molecules for 7 days was 

determined by the MTS assays relative to DMSO controls over 5–7 days. Error bars show 

±SEM (n = 3).

(B) Summary of MTS assays for cell lines treated with indicated chemicals. + and − indicate 

> or <30% reduction in cell viability, respectively.

(C) Group 1 and 2 cell lines were treated with 0.3 nM–10 μM dasatinib; IC50 was 

determined using Alamar blue assays at day 6 post-treatment.
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(D) Kaplan-Meier survival analysis of mice with orthotopic BT12 cell line xenografts 

treated with 30 mg/kg intraperitoneal dasatinib injections for 2 weeks. Dot plot (middle bar 

represents mean, whiskers represent 10th and 90th percentiles) and BLI images depicting 

tumor mass at day 21 post-injection in three representative control and treated mice. 

Differences in survival and tumor growth were assessed using log rank (Mantel-Cox) test 

and ANOVA analysis, respectively.

(E) Gene expression heatmap of PDGFRB (red) and putative receptor (green) and cytosolic 

tyrosine kinase (brown) targets of dasatinib/nilotinib in ATRTs. Significance was determined 

by FDR adjusted Student’s t test.

(F) Western blot analyses of total and pPDGFRB in primary ATRTs.

See also Figure S7.
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Figure 7. A PDGFRB Enhancer Element Exhibits Differential Methylation and Chromatin 
Association in Group 2 ATRTs
(A) Schema of CSF1R (green) and PDGFRB (purple) relative to UCSC and/or ENCODE 

tracks and flanking genes (chr5:149,370,252-149,566,612) with a zoomed view of putative 

enhancer relative to exon 1 and gene body of CSF1R (blue) and PDGFRB promoter (purple) 

(chr5:149,479,360-149,545,365), 450k probe locations, DNaseI hypersensitivity, and 

ENCODE cell line tracks for H3K27Ac, H3K4Me1, and H3K4Me3 ChIP-seq data. Probes 

in PDGFRB promoter and putative enhancer with relative hypomethylation in group 2 

ATRTs is shown in red font and dashed pink and orange boxes.

Torchia et al. Page 31

Cancer Cell. Author manuscript; available in PMC 2017 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B) ATAC-seq signal for CSF1R/PDGFRB in primary ATRTs and cell line data is shown 

with C3D predicted associations (curved lines) of PDGFRB enhancer and promoter (boxed). 

Bottom track shows H3K27Ac ChIP-seq signal for BT12, a dasatinib-sensitive group 2 cell 

line. Group 1, 2A, and 2B primary ATRTs and cell lines are indicated in red, blue, and 

green, respectively.

(C) Correlation matrix of associated open chromatin regions in a 120 kb window around the 

PDGFRB promoter predicted by C3D analysis of ATAC-seq data from tumors T26 (top 

panel) and T27 (bottom panel). Absolute correlation is shown proportional to size of colored 

squares, positive and negative correlations are indicated in blue and red, respectively. All 

correlations were tested within a 500 kb window of PDGFRB promoter and adjusted for 

statistical significance (FDR method); blank squares indicate insignificant correlations.

(D) Pearson’s correlation/linear regression analyses of PDGFRB and CSF1R gene 

expression (log2, y axis) and methylation levels (β value, x axis) at the enhancer domain, 

PDGFRB gene body, North (N) shore, CpG island, and PDGFRB promoter. Location of 

differentially methylated CSF1R-PDGFRB probes based on 450k array data of 75 ATRTs is 

schematized.

See also Figure S8.
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Figure 8. A Promoter-Enhancer Loop Regulates PDGFRB Expression and Confers Dasatinib/
Nilotinib Sensitivity in Group 2 ATRT
(A) 3C analyses of PDGFRB enhancer:promoter interaction in ATRT cell lines CHLA05 

(red) and BT12 (blue). Plot indicates relative co-amplification and interaction frequency of 

an anchor primer in the putative enhancer with test primers located at various distances in 

the CSF1R/PDGFRB gene body and promoter (gray bars).

(B) Schema of 3C analysis indicating DNA looping and direct interaction of PDGFRB 
promoter and an enhancer 50 kb upstream.

(C) Western blot analyses of pPDGFRB expression in ATRT cell lines.

(D) Western blot and corresponding densitometric analyses of total and pPDGFRB 

expression in group 2 cell lines post-treatment with 50 nM of dasatinib (+) and DMSO (−). 

Error bars show ±SEM (n = 3).
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