
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Practical, Scalable, and Efficient Privacy-Preserving Computation

Permalink
https://escholarship.org/uc/item/9zq7751x

Author
Hussain, Siam Umar

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9zq7751x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Practical, Scalable, and Efficient Privacy-Preserving Computation

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Siam Umar Hussain

Committee in charge:

Professor Farinaz Koushanfar, Chair
Professor Andrew B. Kahng
Professor Ryan Kastner
Professor Bill Lin
Professor Tajana Simunic Rosing

2021

Copyright

Siam Umar Hussain, 2021

All rights reserved.

The Dissertation of Siam Umar Hussain is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2021

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . ix

List of Tables . xii

Acknowledgements . xiv

Vita . xvii

Abstract of the Dissertation . xix

Chapter 1 Introduction . 1
1.1 Efficient and Scalable MPC Frameworks . 3
1.2 General Purpose Hardware Platform for Privacy-Preserving Computation 5
1.3 Co-design and Optimization of Privacy-Preserving Computation and Hardware . 5
1.4 Real-World Applications . 6
1.5 Co-optimization of Crypto Primitives and ML Inference . 8

Chapter 2 Background . 10
2.1 Notations . 10
2.2 Secure Multi-Party Computation (MPC) . 10
2.3 Oblivious Transfer . 11
2.4 Yao’s Garbled Circuit . 12

2.4.1 Garbled Circuit Optimizations . 13
2.4.2 Extension of GC for the Malicious Security Model 14

2.5 Beaver-Micali-Rogaway . 15
2.6 Arithmetic Sharing . 16

2.6.1 Addition and Multiplication in AS . 17
2.7 Machine Learning Layers . 17

Chapter 3 Efficient and Scalable MPC Frameworks . 19
3.1 Overview . 19

3.1.1 Automatic Generation of Optimized Boolean Logic 20
3.1.2 Rich Programming Paradigm . 21
3.1.3 Scalability in Terms of Memory Footprint . 22
3.1.4 Reliability . 24
3.1.5 Evaluation Results . 24
3.1.6 Summary of Contributions . 25

3.2 Netlist Generation through HDL Synthesis . 25
3.2.1 Synthesis Flow . 26

iv

3.2.2 Offline Circuit Synthesis . 27
3.2.3 Adaptation to BMR and GMW protocols . 28

3.3 Execution Flow of the GC Back-end . 29
3.3.1 Function Composition Formats . 29
3.3.2 Scalability Analysis . 30

3.4 Program Interface . 32
3.4.1 Protocol Instantiation . 32
3.4.2 Variables . 33
3.4.3 Functional Building Blocks . 33
3.4.4 Neural Network Building Blocks . 35
3.4.5 Cautions . 36

3.5 Evaluation of GC Frameworks . 37
3.5.1 Synthesis . 37
3.5.2 Runtime and Memory Footprint of Matrix-multiplication 38
3.5.3 Runtime and Memory Footprint of CNN Inference with LeNet-5 40
3.5.4 Benchmarking the Program Interface . 41

3.6 Evaluation of BMR Framework . 41
3.6.1 Auction . 42
3.6.2 Voting . 43

3.7 Brief Overview of Existing GC Frameworks . 43
3.8 Summary . 47

Chapter 4 General Purpose Hardware Platform for Privacy-Preserving Computation . 48
4.1 Overview . 48

4.1.1 FPGA vs GPU as Acceleration Platform . 50
4.1.2 Summary of Contributions . 50

4.2 Global Flow . 51
4.2.1 Security Model and Terminology . 51
4.2.2 System Setup . 51
4.2.3 Client-Server Model . 52
4.2.4 Netlist Format . 53
4.2.5 Execution Steps of FASE . 54

4.3 Architecture of FASE . 55
4.3.1 Key Generator . 56
4.3.2 Garbling Engine . 56
4.3.3 Control Logic . 57
4.3.4 Memory Management . 58
4.3.5 Collector . 60

4.4 Scheduling the Gates . 61
4.4.1 Setting the priority . 62
4.4.2 Adding Gates to the Queue . 63

4.5 Evaluation . 63
4.5.1 Benchmark Functions . 63
4.5.2 Resource Utilization . 65

v

4.5.3 Evaluation of Scheduling and Memory Management 66
4.5.4 Comparison with Previous Work . 66
4.5.5 Improvement in Throughput over Software Approach 67

4.6 Summary . 69

Chapter 5 Custom Co-design and Optimization of Privacy-Preserving Computation
and Hardware . 70

5.1 Overview . 70
5.1.1 Summary of Contributions . 72

5.2 Global Flow . 73
5.2.1 Security Model . 73
5.2.2 System Setup . 73
5.2.3 Client-Server Model . 74

5.3 Architecture of MAXelerator . 75
5.3.1 Segment 1: MUX_ADD . 76
5.3.2 Segment 2: TREE . 77
5.3.3 Accumulator and Support for Signed Inputs . 77

5.4 Hardware Setting and Results . 78
5.4.1 GC Engine . 78
5.4.2 Label Generator . 79
5.4.3 Resource Utilization . 80
5.4.4 Performance Comparison with the Prior-art GC Implementation 81

5.5 Practical Design Experiments . 82
5.5.1 Deep Learning Benchmarks . 82
5.5.2 Generic ML Applications . 83

5.6 Summary . 85

Chapter 6 Real-World Applications . 86
6.1 Overview . 86
6.2 Secure Localization for Smart Cars . 87

6.2.1 Summary of Contributions . 90
6.2.2 Triangle Localization Algorithm . 90
6.2.3 Related Work . 92
6.2.4 Global Flow . 94
6.2.5 Protocol with Yao’s GC . 95
6.2.6 Protocol with BMR . 100
6.2.7 Effect of the Motion of Cars . 101
6.2.8 Distance Compensation . 102
6.2.9 Netlist Generation . 103
6.2.10 Invocation of the MPC Protocols . 105
6.2.11 Evaluation: Error Analysis . 106
6.2.12 Evaluation: Circuit Synthesis . 108
6.2.13 Evaluation: Timing . 109

6.3 Authentication with Noisy Keys . 110

vi

6.3.1 Summary of Contributions . 113
6.3.2 Physical Unclonable Function (PUF) . 113
6.3.3 Related Work . 115
6.3.4 Threat Model . 118
6.3.5 Authentication Function . 119
6.3.6 Protocol Initialization . 120
6.3.7 Protocol for Binary Response . 121
6.3.8 Extension for Integer Response . 122
6.3.9 Security of the Authentication Function . 124
6.3.10 Security of the Authentication Protocol . 128
6.3.11 Generating GC Netlist . 130
6.3.12 Implementing LSH . 131
6.3.13 Evaluation Settings . 133
6.3.14 Evaluation of the Authentication Protocol . 133
6.3.15 Evaluation of Protocol for Integer Response . 134

6.4 Privacy Preserving k-Nearest Neighbor Search . 135
6.4.1 Summary of Contributions . 136
6.4.2 Related Work . 137
6.4.3 Distance Function . 137
6.4.4 Generation of Netlist . 137
6.4.5 Combinational Garbled Circuit . 138
6.4.6 Sequential Garbled Circuit . 139
6.4.7 1-NNS in Multi-Party Setting . 141
6.4.8 Evaluation: Memory Footprint of 1-NNS . 142
6.4.9 Evaluation: Timing of 1-NNS . 142
6.4.10 Evaluation: Memory Footprint of :-NNS . 143

6.5 Private Set Intersection . 144
6.5.1 Circuit Design . 144
6.5.2 Evaluation . 149

6.6 Summary . 150

Chapter 7 Co-optimization of Crypto Primitives and ML Inference 151
7.1 Overview . 151
7.2 Related Work . 156

7.2.1 Cryptographic Optimization . 156
7.2.2 ML Optimization . 157

7.3 Global Flow and Threat Model . 158
7.3.1 Threat Model . 159

7.4 COINN Model Customization . 160
7.4.1 Ciphertext-aware Quantization . 160
7.4.2 Factored Matrix-Multiplication . 161
7.4.3 Automated Parameter Configuration . 163

7.5 Cryptographic Protocols . 163
7.5.1 Matrix-Multiplication . 164

vii

7.5.2 Linear Layers in the Amortized Setting . 167
7.5.3 Non-linear Layers . 169
7.5.4 Cost Breakdown and Comparison with Previous Works 170

7.6 Oblivious BNN Inference . 171
7.6.1 Binary Matrix Multiplication . 172
7.6.2 Nonlinear Layers . 173
7.6.3 Training Adaptive BNN . 173

7.7 Evaluation of COINN: Generic DNN Inference . 173
7.7.1 Evaluation of COINN Optimizations . 175
7.7.2 Comparison with Prior Work . 179
7.7.3 Model Customization Runtime . 181
7.7.4 Evaluation on Microbenchmarks . 182

7.8 Evaluations of BNN Inference . 183
7.8.1 Evaluating Flexible BNNs . 184
7.8.2 Oblivious Inference . 185

7.9 Summary . 188

Chapter 8 Conclusion and Open Challenges . 189

Appendix A Command Line Options and Available Functions in TinyGarble2 192

Appendix B Architecture of FASE . 195

Bibliography . 197

viii

LIST OF FIGURES

Figure 3.1. Memory usage (MB) for matrix multiplication through GC. Batch size
limitation is not applied to TinyGarble2. 39

Figure 3.2. Trade-off between the run-time and memory footprint for matrix multipli-
cation through TinyGarble2 in the malicious setting. 39

Figure 4.1. FASE system architecture on the server side. 52

Figure 4.2. Architecture of FASE. (Please see Figure B.1 at Appendix B for an enlarged
version.) . 55

Figure 4.3. Wrapper module around the BRAM of Output Keys. 59

Figure 4.4. Different types of gate dependencies. 62

Figure 5.1. System configuration of MAXelerator framework. 74

Figure 5.2. Schematic of the tree-base multiplication. 76

Figure 5.3. The high-level configuration and functionality of the parallel GC cores in
segment 1: MUX_ADD . 77

Figure 5.4. Percentage resource utilization per MAC for different bit-widths. 80

Figure 6.1. Triangle Localization Algorithm. The lost car is & and the assisting cars
are �, �, and �. The calculated location of & is the centroid of the triangle
���. 91

Figure 6.2. Overview of the Localization Algorithm . 94

Figure 6.3. The regions of uncertainty for car � in locating the other cars. The
uncertainty region of the lost car& is markedwith stripes and the uncertainty
region of the other two assisting cars � and � is marked with dots. 99

Figure 6.4. The)A8!>2 netlist to compute the location of the lost car & with help from
three assisting cars �, �, and � through the BMR protocol. Only the netlist
for computing the vertex � is shown in detail. 100

Figure 6.5. Illustration of parallel invocations of GC protocol. 105

Figure 6.6. Error Analysis. 107

Figure 6.7. Authentication protocol. 118

Figure 6.8. Extracting multiple LSH bits from single random permutation c. 132

ix

Figure 6.9. Illustration of the actual path, Euclidean distance and taxicab distance 138

Figure 6.10. Combinational circuit for 1-NN. It consists of = taxicab distance and (=−1)
min modules. 139

Figure 6.11. Sequential circuit for 1-NNS. It consists of 1 taxicab distance and 1 min
module. For a dataset of size =, the circuit is required to be garbled/evaluated
= times. 140

Figure 6.12. Sequential circuit for :-NNS. It consists of 1 taxicab distance, : min, and
: −1 max modules. It requires to be evaluated = times where = is the size
of the dataset (. 141

Figure 6.13. Comparison of memory footprints of 1NNS with combinational and se-
quential approach . 142

Figure 6.14. Comparison of garbling times of 1NNS with combinational and sequential
approach . 143

Figure 6.15. Memory footprint of :-NNS with sequential approach 143

Figure 6.16. High-level circuit description of the Sort-Merge-Compare-Shuffle for
Private Set Intersection. Three operations are performed at each stage:
merge, compare, and sort. 145

Figure 7.1. Accuracy and secure inference runtime of a 7-layer DNN on CIFAR-10
dataset using prior work: Delphi [1], SafeNet [2], XONN [3], AutoPri-
vacy [4], and CrypTFlow2 [5]. The★ symbol represents COINN. 154

Figure 7.2. Overview of COINN. The plaintext model customization is only performed
once per DNN and provides the optimized network for COINN secure
inference. 158

Figure 7.3. Example 4×4 weight matrix approximated via clustering with + = 4. The
approximated matrix, can be represented as a tuple (�, ,̃). 162

Figure 7.4. Plaintext operations and their equivalent ciphertext realization in COINN
oblivious inference framework. 164

Figure 7.5. Effect of quantization bitwidth on communication cost (bars) and accuracy
(curve). The numbers on the horizontal axis show the bitwidth for homo-
geneous quantization of weights/inputs across all layers. Q represents the
heterogeneous bitwidths found by COINN. 176

Figure 7.6. Heterogeneous parameters across ResNet-32 layers found by COINN
configurator. (a) Quantization bitwidths. (b) Number of clusters + 177

x

Figure 7.7. Effect of factored multiplication on inference accuracy and communication
cost of linear operations. Q represents the baseline quantized DNN.
Numbers to its left represent homogeneous + for all layer weights. Q+C
represents heterogeneous + configuration found by COINN. 178

Figure 7.8. Communication for baseline and COINN optimized models, where Q
represents quantized model and Q+C further applies clustering to enable
factored multiplication. 178

Figure 7.9. Breakdown of setup and amortized times for the under LAN and WAN
settings. 179

Figure 7.10. CIFAR-10 test accuracy of each architecture at different widths. Our
Adaptive BNN trains a single network that can operate at all widths,
whereas previous work (XONN) trains a separate BNN per width 184

Figure 7.11. Runtime and communication cost of each architecture at different widths . 184

Figure 7.12. Improvements in LAN runtime and communication compared to XONN.
Our protocols achieve 2× to 12× in runtime and 5× to 12× communication
reduction . 185

Figure 7.13. Breakdown of communication cost at linear and nonlinear layers for BC2
network. Our protocol significantly reduces XONN’s GC-based linear layer
cost, with a slight increase in nonlinear layer cost . 185

Figure 7.14. Accuracy and runtime of our oblivious BNN inference, compared with
contemporary research with same server-client scenario (two-party HbC).
XONN [3] evaluates BNNs, whereas Cryptflow2 [5], Delphi [1], SafeNet [2],
and AutoPrivacy [4] evaluate non-binary models. 186

Figure 7.15. Runtime in WAN setting with ∼ 20MBps bandwidth and ∼ 50 ms network
delay . 187

Figure B.1. Enlarged Architecture of FASE . 196

xi

LIST OF TABLES

Table 3.1. Comparison of the No. of non-XORs of TinyGarble with Frigate 38

Table 3.2. Run-time (ms) for matrix multiplication through GC 38

Table 3.3. Inference on one image with LeNet through GC . 41

Table 3.4. Run-time (ms) for the operations in TinyGarble2 . 41

Table 3.5. Evaluation on privacy-preserving auction. 44

Table 3.6. Evaluation on privacy-preserving voting. 44

Table 4.1. HSCD format to store the netlist . 53

Table 4.2. Benchmark Functions . 65

Table 4.3. Resource Utilization of FASE . 66

Table 4.4. Evaluation of the Effect of the Memory Optimization 67

Table 4.5. Comparison of FASE with previous GC accelerators 68

Table 4.6. Comparison of FASE on FPGA with TinyGarble [6] on CPU 68

Table 5.1. Resource usage of one MAC unit . 80

Table 5.2. Throughput Comparison of MAXelerator with state-of-the-art GC frame-
works. Throughput is computed in number of MACs per sec 81

Table 5.3. Number of XOR and non-XOR gates, amount of communication and
computation time for each benchmark. 82

Table 5.4. Ridge Regression Runtime Improvement . 84

Table 6.1. Privacy-preserving applications presented in this chapter. 86

Table 6.2. Number of XOR and non-XOR gates in the netlists . 109

Table 6.3. Timing results . 110

Table 6.4. The numbers of non-XOR gates in the generated netlist for different values
of threshold fraction C . 131

Table 6.5. Computational time and memory utilization complexity for two different
implementations of LSH. 133

xii

Table 6.6. Timing evaluation of the authentication protocol in the two settings for
different values of the threshold fraction C. 134

Table 6.7. Private set intersection (Bitwise-AND variant). 149

Table 6.8. Private set intersection (SMCS variant). 150

Table 7.1. TytaNN secure execution cost for core operations in a DNN. Here, ^ is the
security parameter that is set to 128. 163

Table 7.2. Cost of different phases of linear layers in COINN and previous works. #B;>C
is number of slots in vectorized HE operations. �>BC"D;C (@) is cost of one
scalar multiplication inZ@ in HE. @ is cipher-text modulus which is ∼ 3×
larger than plain-text modulus ? ≈ 21022 . 170

Table 7.3. COINN benchmarks. 174

Table 7.4. Evaluation of COINN in LAN and WAN settings. Q and C denote quantiza-
tion and clustering, respectively. 179

Table 7.5. Performance comparison of COINN with best prior work. “Improv.” shows
the improvement in total runtime. CTF2 refers to CrypTFlow2 [5]. 180

Table 7.6. Runtime of COINN model customization and fine-tuning, normalized by
the target DNN’s training time on one NVIDIA Titan XP GPU. Here, Q and
C denote the quantization and clustering stages, respectively. 182

Table 7.7. Evaluation on convolution layers of TytaNNwith regular matrix multiplication 182

Table 7.8. Evaluation on convolution layers of TytaNN with factored matrix multiplica-
tion, 1 = 16 . 183

Table 7.9. Evaluation on ReLU of TytaNN (including AS-GC conversions) 183

Table 7.10. Summary of the trained binary network architectures evaluated on the
CIFAR-10 dataset . 183

xiii

ACKNOWLEDGEMENTS

I would like to start with expressing my sincere gratitude to my Ph.D. advisor, Professor

Farinaz Koushanfar for her continuous support and guidance. I would like to thank my committee

members, Professor Andrew B. Kahng, Professor Ryan Kastner, Professor Bill Lin, and Professor

Tajana Simunic Rosing for their valuable suggestions and advice during my doctoral study. I

had the honor to work with and learn from Professor Ahmad-Reza Sadeghi, Professor Thomas

Schneider, Dr. Rosario Cammarota, and Dr. Kristin Lauter. I was fortunate to work with

several brilliant researchers. In particular, I would like to thank Dr. Ebrahim Songhori, Dr.

Bita D Rouhani, Dr. Sadegh M Riazi, Sudha Yellapantula, Mohammad Samragh, Mohammad

Ghasemzadeh, Huili Chen, Mojan Javaheripi, and Xinqiao Zhang. Finally, I would like to express

my most sincere gratitude to my parents, my wife, my brother and sisters, and my friends for

their unconditional support.

The work in this dissertation is, in part, based on the following papers.

Chapter 3, in part, has been published at (i) 2021 IEEE Security & Privacy (S&P) and

appeared as: Siam U Hussain, Sadegh M Riazi, and Farinaz Koushanfar, “The Fusion of Secure

Function Evaluation and Logic Synthesis”, and (ii) 2020 ACM Workshop on Privacy-Preserving

Machine Learning in Practice (PPMLP) and appeared as: Siam U Hussain, Baiyu Li, Farinaz

Koushanfar, and Rosario Cammarota. “TinyGarble2: Smart, Efficient, and Scalable Yao’s Garble

Circuit”, and (iii) 2019 IEEE International Symposium on Hardware Oriented Security and Trust

(HOST) and appeared as: Sadegh M Riazi, Mojan Javaheripi, Siam U Hussain, and Farinaz

Koushanfar, “MPCircuits: Optimized Circuit Generation for Secure Multi-Party Computation”

(iv) 2015 IEEE Symposium on Security & Privacy (S&P) and appeared as: EbrahimM Songhori,

SiamUHussain, Ahmad-Reza Sadeghi, Thomas Schneider, and Farinaz Koushanfar, “TinyGarble:

Highly Compressed and Scalable Sequential Garbled Circuits”. The dissertation author was the

primary investigator of the first two papers.

Chapter 4, in full, is a reprint of the material as it appeared at 2019 IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM) and appeared as: Siam U Hussain

xiv

and Farinaz Koushanfar, “FASE: FPGA Acceleration of Secure Function Evaluation”. The

dissertation author was the primary investigator of the paper.

Chapter 5, in part, has been published at (i) 2018 ACM/IEEE Design Automation

Conference (DAC) and appeared as: SiamUHussain, Bita D Rouhani, Mohammad Ghasemzadeh,

and Farinaz Koushanfar, “MAXelerator: FPGA Accelerator for Privacy Preserving Multiply-

Accumulate (MAC) on Cloud Servers”, and (ii) 2018 ACM Transactions on Reconfigurable

Technology and Systems (TRETS) and appeared as: Bita D Rouhani, Siam U Hussain, Kristin

Lauter, and Farinaz Koushanfar, “ReDCrypt: Real-Time Privacy-Preserving Deep Learning

Inference in Clouds Using FPGAs”. The dissertation author was the primary investigator of the

first paper.

Chapter 6, in part, has been published at (i) 2019 IEEE International Symposium

on Hardware Oriented Security and Trust (HOST) and appeared as: Sadegh M Riazi, Mojan

Javaheripi, SiamUHussain, and Farinaz Koushanfar, “MPCircuits: Optimized Circuit Generation

for Secure Multi-Party Computation”, and (ii) 2018 ACM Transactions on Design Automation

of Electronic Systems (TODAES) and appeared as: Siam U Hussain, Sadegh M Riazi, and

Farinaz Koushanfar, “SHAIP: Secure Hamming Distance for Authentication of Intrinsic PUFs”,

and (iii) 2018 ACM Transactions on Design Automation of Electronic Systems (TODAES) and

appeared as: Siam U Hussain, and Farinaz Koushanfar, “P3: Privacy Preserving Positioning for

Smart Automotive Systems”, and (iv) 2016 ACM/IEEE Design Automation Conference (DAC)

and appeared as: Siam U Hussain, and Farinaz Koushanfar, “Privacy Preserving Localization

for Smart Automotive Systems”, and (v) 2015 ACM/IEEE Design Automation Conference

(DAC) and appeared as: Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, and

Farinaz Koushanfar, “Compacting Privacy-Preserving k-Nearest Neighbor Search Using Logic

Synthesis”. The dissertation author was the primary investigator of (ii), (iii), and (iv).

Chapter 7, in part, has been accepted to (i) ACM Conference on Computer and Commu-

nications Security as: Siam U Hussain, Mojan Javaheripi, Mohammad Samragh, and Farinaz

Koushanfar. “COINN: Crypto/ML Codesign for Oblivious Inference via Neural Networks”, and

xv

(ii) 2021 Conference on Computer Vision and Pattern Recognition (CVPR) as: Mohammad

Samragh, Siam U Hussain, Xinqiao Zhang, and Farinaz Koushanfar, “On the Application of

Binary Neural Networks in Oblivious Inference”. The dissertation author was the primary

investigator of both papers.

This dissertation was supported, in parts, by the Office of Naval Research (ONR)

(N00014-17-1-2500), National Science Foundation (NSF)/Semiconductor Research Corporation

(SRC) (1619261 / 2016-TS-2690), Multidisciplinary University Research Initiative (MURI)

(FA9550-14-1-0351), NSF GC@Scale (CNS-1619261), and NSF Trust-Hub (CNS-1649423)

grants.

xvi

VITA

2011 Bachelor of Science in Electrical & Electronic Engineering, Bangladesh University
of Engineering & Technology

2015 Master of Science in Electrical & Computer Engineering, Rice University, Houston,
TX

2021 Doctor of Philosophy in Electrical Engineering (Computer Engineering), University
of California San Diego

PUBLICATIONS

[1] Siam U Hussain, Mojan Javaheripi, Mohammad Samragh, and Farinaz Koushanfar.
"COINN: Crypto/ML Codesign for Oblivious Inference via Neural Networks". To appear
in ACM Conference on Computer and Communications Security, 2021.

[2] Siam U Hussain, Mohammad Samragh, Xinqiao Zhang, K. Huang and F. Koushanfar, On
the Application of Binary Neural Networks in Oblivious Inference, IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, May, 2021.

[3] Siam UHussain, SadeghMRiazi, and Farinaz Koushanfar. "The Fusion of Secure Function
Evaluation and Logic Synthesis". IEEE Security & Privacy (S & P), 19(2), 2021.

[4] Siam U Hussain, Baiyu Li, Farinaz Koushanfar, and Rosario Cammarota. "TinyGarble2:
Smart, Efficient, and Scalable Yao’s Garble Circuit". In ACM Workshop on Privacy-
Preserving Machine Learning in Practice (PPMLP), 2020.

[5] Huili Chen, Siam U Hussain, Fabian Boemer, Emmanuel Stapf, Ahmad-Reza Sadeghi,
Farinaz Koushanfar, and Rosario Cammarota. "Developing Privacy-Preserving AI Systems:
the Lessons Learned". In ACM/IEEE Design Automation Conference (DAC), 2020.

[6] Siam U Hussain and Farinaz Koushanfar. "FASE: FPGA Acceleration of Secure Function
Evaluation". In IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2019.

[7] Sadegh M Riazi, Mojan Javaheripi, Siam U Hussain, and Farinaz Koushanfar. "MPCircuits:
Optimized Circuit Generation for Secure Multi-Party Computation". In IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2019.

[8] Ebrahim M Songhori, Sadegh M Riazi, Siam U Hussain, Ahmad-Reza Sadeghi, and
Farinaz Koushanfar. "ARM2GC: Simple and Efficient Garbled Circuit Framework by
Skipping". In ACM/IEEE Design Automation Conference (DAC), 2019.

xvii

[9] Siam U Hussain, Sadegh M Riazi, and Farinaz Koushanfar. "SHAIP: Secure Hamming
Distance for Authentication of Intrinsic PUFs". ACM Transactions on Design Automation
of Electronic Systems (TODAES), 23(6), 2018.

[10] Siam U Hussain and Farinaz Koushanfar. "P3: Privacy Preserving Positioning for Smart
Automotive Systems". ACM Transactions on Design Automation of Electronic Systems
(TODAES), 23(6), 2018. xvi

[11] Bita D Rouhani, Siam U Hussain, Kristin Lauter, and Farinaz Koushanfar. "ReDCrypt:
Real-Time Privacy-Preserving Deep Learning Inference in Clouds Using FPGAs". ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 11(3), 2018.

[12] Siam U Hussain, Bita D Rouhani, Mohammad Ghasemzadeh, and Farinaz Koushanfar.
"MAXelerator: FPGA Accelerator for Privacy Preserving Multiply-Accumulate (MAC) on
Cloud Servers". In ACM/IEEE Design Automation Conference (DAC), 2018.

[13] Siam UHussain, MehrdadMajzoobi, and Farinaz Koushanfar. "BIST for Online Evaluation
of PUFs and TRNGs". In Mark Tehranipoor, Domenic Forte, Garrett S. Rose, and Swarup
Bhunia, editors, Security Opportunities in Nano Devices and Emerging Technologies,
chapter 14, page 257. CRC Press, 2017.

[14] Siam U Hussain, Mehrdad Majzoobi, and Farinaz Koushanfar. "A Built-In-Self-Test
Scheme for Online Evaluation of Physical Unclonable Functions and True Random Number
Generators". IEEE Transactions on Multi-Scale Computing Systems(TMSCS), 2(1), 2016.

[15] Siam U Hussain and Farinaz Koushanfar. "Privacy Preserving Localization for Smart
Automotive Systems". In ACM/IEEE Design Automation Conference (DAC), 2016.

[16] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider, and
Farinaz Koushanfar. "TinyGarble: Highly Compressed and Scalable Sequential Garbled
Circuits". In IEEE Symposium on Security & Privacy (S&P), 2015.

[17] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, and Farinaz Koushanfar.
"Compacting Privacy-Preserving k-Nearest Neighbor Search Using Logic Synthesis". In
ACM/IEEE Design Automation Conference (DAC), 2015.

[18] Siam U Hussain, Sudha Yellapantula, Mehrdad Majzoobi, and Farinaz Koushanfar. "BIST-
PUF: Online, Hardware-Based Evaluation of Physically Unclonable Circuit Identifiers". In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2014.

xviii

ABSTRACT OF THE DISSERTATION

Practical, Scalable, and Efficient Privacy-Preserving Computation

by

Siam Umar Hussain

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California San Diego, 2021

Professor Farinaz Koushanfar, Chair

In today’s data-driven world, we are conflicted with two opposing phenomena. On the

one hand, collection and analysis of an enormous amount of data have resulted in rapid advances

in technologies and services, especially the ones based on Artificial Intelligence (AI). On the

other hand, existing and potential dangers of data misuse have created serious concern about data

privacy. Privacy-preserving computation presents powerful cryptographic tools to tackle this

conflict by enabling analysis on data with assurance of provable privacy guarantee. However,

this capability comes with significant computation and communication overhead deterring its

adoption in practical data-intensive applications. Moreover, understanding the details of the

cryptographic methods often appears to be a daunting task for application developers. This

xix

dissertation contributes towards enabling data-intensive systems with provable privacy guarantee

in realistic settings. Our work addresses the challenge of practical privacy-preserving computation

from three directions. First, we develop open-source frameworks with efficient and scalable

execution of privacy-preserving protocols as well as a rich programming interface to abstract the

details of protocol execution from the users. Second, we speed up the computations required for

the protocols through custom-designed hardware platforms. Our designs include both generic

and application-specific accelerators achieving a minimum of 110× improvement in throughput-

per-core over the best prior art. Third, we devise several practical privacy-preserving applications

including secure localization, authentication with noisy keys, and :-nearest neighbor search on

private data. Our most exciting application is a mixed protocol system for privacy-preserving AI

with 4.7×–14.4× speed up over state-of-the-art.

xx

Chapter 1

Introduction

In the era of big data, ensuring privacy of sensitive user content is a standing challenge.

While in many cases these data are used in scenarios that are beneficial to the data providers,

misuse of the personal data may adversely affect the data owner. However, completely blocking

access to the data will deprive the user of many beneficial features. The ideal solution to this

conundrum is to ensure control of users over how their data is used. Especially with the recently

enforced data privacy regulations worldwide, corporations have a justified interest and obligation

to protect users’ privacy. Even though several heuristic methodologies for privacy-preserving

computing have been suggested, it is difficult to assure their resilience due to the large space of

possible breaches. Solutions based on provably secure cryptographic primitives hold a promise to

provide privacy guarantees within the standard security model. These primitives can be broadly

categorized into two approaches differing in capabilities, computation style, and applicable

scenarios: Multi-Party Computation (MPC) protocols and Homomorphic Encryption (HE). MPC

allows multiple parties to jointly compute a function without revealing their respective inputs to

one other. HE allows a party to compute on data encrypted by another party. Both approaches

incur substantial computation and/or communication overhead compared to plaintext computation.

Over the past decade, substantial research efforts, both in algorithmic optimization and efficient

realization have resulted in tremendous improvement in this domain. This dissertation contributes

to the effort towards making MPC-based applications practical and efficient.

1

The primary focus of this dissertation is enabling data-intensive systems with provable

privacy guarantee in practical settings. We advance the field of privacy-preserving computation

from the following three different perspectives.

• We present three open-source frameworks that help develop efficient and scalable MPC-

based applications. Our first framework, named TinyGarble [6], supports developing

applications based on the 2-party computation (2PC) protocol – Yao’s Garbled Circuit

(GC) [7]. As shown by evaluations both from us and independent researchers, TinyGarble

currently provides the highest efficiency for GC-based applications. We extended a subset

of the capabilities of TinyGarble to support the Beaver-Micali-Rogaway (BMR) [8] protocol

– a multi-party extension of GC – in the framework named MPCircuits [9]. Recently, we

open-sourced the TinyGarble2 framework [10], an upgraded version of TinyGarble, with a

more user-friendly programming interface, better scalability, and enhanced security.

• We increase the execution speed of the GC protocol through hardware accelerators built

on FPGA. We designed two accelerators: FASE [11], which supports privacy-preserving

execution of any generic function, and MAXelerator [12], which is designed specifically

for Machine Learning (ML) inference.

• We developed several real-world applications based on the frameworks. The applications

include authentication with noisy keys, secure localization, :-nearest neighbor search on

private data, private set intersection, and oblivious ML inference. Since in recent years

most of the data-intensive operations, e.g., medical diagnosis, predictive test in phone

keyboards, fraud detection, financial advice, targeted advertising, are employing ML,

we devised a custom mixed protocol system, incorporating GC and protocols based on

Oblivious Transfer (OT) [13] and Arithmetic Sharing (AS) [14], for oblivious inference

on Deep Neural Network (DNN) and one of its special variant named the Binarized

Neural Network (BNN).

In the following, we provide a brief overview of these contributions and later elaborate

on them in subsequent chapters.

2

1.1 Efficient and Scalable MPC Frameworks

We developed three open-source MPC frameworks: TinyGarble, TinyGarble2 for the

GC protocol which supports two parties, and MPCircuits for the BMR protocol which is an

extension of GC supporting more than two parties. A crucial step of utilizing both of these

protocols is to compile the function being computed to its Boolean logic representation. Our

first framework TinyGarble presents a novel automated methodology based on powerful logic

synthesis techniques for generating and optimizing compressed Boolean circuits. Moreover,

TinyGarble achieves an unprecedented level of compactness and scalability by using a sequential

circuit description for GC. This framework introduces new libraries and transformations, such

that the sequential circuits can be optimized and securely evaluated by interfacing with available

garbling frameworks. The circuit compactness makes the memory footprint of the garbling

operation fit in the processor cache, resulting in fewer cache misses and thereby fewer CPU cycles.

Our proof-of-concept implementation of benchmark functions demonstrates a high degree of

compactness and scalability. At the time of its publication, TinyGarble improved the results of

existing automated tools for GC generation by orders of magnitude; for example, TinyGarble can

compress the memory footprint required for 1024-bit multiplication by a factor of 4,172, while

decreasing the number of non-XOR gates by 67%. Moreover, with TinyGarble we were able to

implement functions that had never been reported before, such as SHA-3. Even though several

automated tools have emerged since then, TinyGarble remains the most efficient one.

Recently, we published TinyGarble2 – an upgraded version of the TinyGarble framework.

TinyGarble2 provides a couple of enhancements over its predecessor. In TinyGarble, to benefit

from the powerful logic synthesis techniques the user needed to describe her function in a

Hardware Description Language (HDL), e.g., Verilog. TinyGarble2 provides a rich C++ library

with arithmetic and logic building blocks for developing GC-based secure applications. It thus

provides the convenience of a programming language along with the efficiency of TinyGarble.

The framework offers abstractions among three layers: the C++ program, the GC back-end, and

3

the Boolean logic representation of the function being computed. This allows employing the most

optimized versions of all pertinent components to compose arbitrary functions while providing

the convenience of a programming language. In addition, TinyGarble2 provides a library with

parameterized implementations of basic building blocks of Convolutional Neural Networks

(CNN), which can be used to compose any privacy-preserving CNN inference. Another significant

improvement is the support for the malicious security model along with the honest-but-curious

model supported by TinyGarble. We evaluate TinyGarble2 on micro-benchmarks and the LeNet-5

CNN. Our evaluations show that TinyGarble2 is the only framework offering scalable execution

in both security models. Moreover, TinyGarble2 performs 6× faster on LeNet-5 compared to the

fastest existing scalable framework in the honest-but-curious model and is 43% more efficient in

terms of memory footprint.

In the MPCircuits framework, we demonstrate that the methodology presented by

TinyGarble to generate optimized Boolean logic for the two-party GC protocol is equally

applicable to the multi-party BMR protocol. MPCircuits presents an end-to-end tool-chain to

facilitate practical scalable MPC realization. To illustrate the practicality of MPCircuits, we

design and implement a set of five functions that represent real-world MPC problems. We chose

the benchmarks in a way that they inherently have different computational and communication

complexities and are good candidates to evaluate MPC protocols. We also formalize the metrics

by which a given protocol can be analyzed. We provide extensive experimental evaluations for

these benchmarks; two of which were the first reported solutions in multi-party settings. Our

experimental results indicate that MPCircuits reduced the computation time of MPC protocols by

up to 4.2× compared to the state-of-the-art.

4

1.2 General Purpose Hardware Platform for Privacy-
Preserving Computation

We developed two FPGA accelerators to speed up the computation required for the GC

protocol: FASE and MAXelerator. They are designed to allow cloud servers to provide secure

services to a large number of clients in parallel while preserving the privacy of the data from both

sides. Among them, FASE is the general-purpose accelerator supporting computation of any

given function through GC. General-purpose GC accelerators before FASE had low throughput

due to inefficient management of resources. In FASE, we designed a pipelined architecture

along with an efficient scheduling scheme to ensure optimal usage of the available resources.

The scheme is built around a simulator of the hardware design that schedules the workload

and assigns the most suitable task to the encryption cores at each cycle. This, coupled with

optimal management of the read and write cycles of the embedded memory on FPGA, results

in a minimum 2 orders of magnitude improvement in terms of throughput per core for the

reported benchmarks compared to the best previous generic GC accelerator. Moreover, through

application of state-of-the-art GC optimizations, we reduced the resource usage by the encryption

core requires by 17%.

1.3 Co-design and Optimization of Privacy-Preserving
Computation and Hardware

Our second1 FPGA accelerator for GC, named MAXelerator, is an excellent example of

the performance enhancement possible by application specific hardware platform. MAXelerator

is the first hardware accelerator that is customized for privacy-preserving ML on cloud servers.

Cloud-based ML is being increasingly employed in various data-sensitive scenarios. While

it enhances both efficiency and quality of the service, it also raises concerns about privacy

of the users’ data. In this work, we show that for the majority of the ML applications, the
1Chronologically, MAXelerator was published before FASE. However, since it is a specialized version of FASE,

we changed the order of their appearance in this manuscript.

5

privacy-sensitive computation boils down to either matrix multiplication, which is a repetition

of Multiply-Accumulate (MAC), or the MAC itself. We design an FPGA architecture for

privacy-preserving MAC to accelerate the ML computation based on the GC protocol. At the

time of its publication, MAXelerator was 985× faster than the then fastest generic GC accelerator

on FPGA [15]. It is also 4× faster compared to FASE for matrix multiplication. We corroborate

the effectiveness of this accelerator with real-world case studies in privacy-sensitive scenarios.

1.4 Real-World Applications

We developed several real-world privacy-preserving applications based on our GC and

BMR frameworks. On one hand, support for such practical applications is a testament to the

powerful capabilities of these frameworks. On the other hand, development of these applications

pointed out scopes of improvements in the design of the frameworks which helped us enhance

them. The applications we developed include secure localization, authentication with noisy keys,

and :-Nearest Neighbors Search (:-NNS) on private data, which we describe next.

Secure Localization. We designed and implemented the first privacy-preserving local-

ization method based on provably secure primitives for smart automotive systems [16, 17]. Using

this method, a car, lost due to unavailability of GPS, can compute its location with assistance

from three nearby cars while the locations of all the participating cars including the lost car

remain private. Technological enhancement of modern vehicles, especially in navigation and

communication, necessitates parallel enhancement in security and privacy. Previous approaches

to maintaining user location privacy suffered from one or more of the following drawbacks:

trade-off between accuracy and privacy, one-sided privacy, and the need for a trusted third party

that presents a single point to attack. The localization method presented here is one of the very

first location-based services that eliminates all these drawbacks. Two protocols for computing the

location are presented – one based on the two-party GC protocol and one based on the multi-party

BMR protocol. The protocols exhibit trade-offs between performance and resilience against

6

collusion. Proof-of-concept implementation of the protocol shows that the operation can be

completed within only 355 ms enabling localization of even moving cars.

Authentication with Noisy Keys. Our authentication system is named SHAIP [18] – a

secure Hamming distance-based mutual authentication protocol that allows an unlimited number

of authentications by employing an intrinsic Physical Unclonable Function (PUF) [19]. PUFs

generate keys based on the inherent manufacturing variations of devices. These keys generally

show some variations (noise) every time they are reproduced. Even though our system is designed

for PUF it is also applicable to biometric authentication, which also deals with noisy keys, with

little or no modification. These authentication schemes rely on secure computation of certain

distance functions between the submitted and stored keys. In this work, we expose vulnerabilities

of previous Hamming distance-based authentication schemes. Specifically, we show that an

adversary can recover the stored key in linear (in terms of key length) number of attempts. We

then present a secure authentication protocol based on the GC protocol. We show that our scheme

is effective with all state-of-the-art intrinsic PUFs. The proposed scheme is lightweight and does

not require any modification to the underlying hardware.

:-Nearest Neighbors Search (:-NNS) onPrivateData. We introduced the first efficient,

scalable, and practical method for privacy-preserving :-Nearest Neighbors Search (:-NNS) in

the two-party setting based on the GC protocol [20]. The approach enables performing the widely

used :-NNS in sensitive scenarios where none of the parties reveal their information while they

can still cooperatively find the nearest matches. In contrast with the existing GC-based approaches

that only accept function descriptions as combinational circuits, we employed sequential circuit

approach presented first by the TinyGarble framework. Our proof-of-concept implementation of

the :-NNS demonstrates the applicability, efficiency, and scalability of the suggested methods.

Later in MPCircuits [9], we extended the design to multi-party settings executed through the

BMR protocol. This implementation inherits the efficiency in run-time, though scalability in

terms of memory footprint in the multi-party settings is still an open challenge.

7

1.5 Co-optimization of Crypto Primitives and ML Inference

The applications described above are based on either GC or its multiparty extension

BMR. A recent trend in the domain of privacy-preserving computation is to adopt a mixed

protocol model where the most efficient protocol for a particular operation is chosen, securely

switching between different protocols when necessary. We adopt this approach in developing

privacy-preserving ML inference system where the inference is performed without revealing

the client’s private inputs to the server or revealing server’s proprietary ML weights to the

client. Furthermore, we adopt a co-optimization approach where we not only design efficient

cryptographic protocols for ML inference but also customize the ML model to be more amenable

to the privacy-preserving computation. Our research in this field resulted in two oblivious

inference systems – one for generic Deep Neural Network (DNN) and one for the Binarized

Neural Network (BNN).

Our framework for oblivious DNN inference is named COINN – an efficient, accurate,

and scalable framework designed for the two-party setting. In our system, to speed up the

oblivious inference while maintaining high accuracy, we make three interlinked innovations in

the plaintext and ciphertext domains: (i) we develop a new domain-specific low-bit quantization

scheme tailored for high-efficiency ciphertext computation, (ii) we construct novel techniques for

increasing data re-use in secure matrix-multiplication allowing us to gain significant performance

boosts through factored operations, and (iii) we propose customized cryptographic protocols that

complement our optimized DNNs in the ciphertext domain. By co-optimization of the aforesaid

components, COINN brings an unprecedented level of efficiency to the setting of oblivious DNN

inference, achieving an end-to-end runtime speedup of 4.7×–14.4× over the state-of-the-art. We

demonstrate the scalability of our proposed methods by optimizing complex DNNs with over

100 layers and performing oblivious inference in the Billion-operation regime for the challenging

ImageNet dataset.

While COINN is for generic DNN, in SlimBin, we explore the application of BNN in

8

oblivious inference. We make two contributions in this work. First, we devise lightweight

cryptographic protocols designed specifically to exploit the unique characteristics of BNNs.

Second, we present dynamic exploration of the runtime-accuracy tradeoff of BNNs in a single-shot

training process. While previous works trained multiple BNNs with different computational

complexities (which is cumbersome due to the slow convergence of BNNs), we train a single

BNN that can perform inference under different computational budgets. Compared to the

state-of-the-art in oblivious inference of non-binary DNNs, our approach reaches 3× faster

inference at the same accuracy. Compared to XONN [3], the state-of-the-art in oblivious inference

of binary networks, we achieve 2×-12× faster inference while obtaining higher accuracy.

9

Chapter 2

Background

In this chapter, we provide a brief overview of the privacy-preserving primitives employed

in this work. We also review the basic building blocks of Deep Neural Networks (DNN).

2.1 Notations

Throughout this manuscript, we represent scalars with lowercase G, vectors with bold

lowercase x, 2-dimensional matrices with uppercase - , and higher-order tensors with bold

uppercase letters X. Element selection is denoted by square brackets x[8] and G〈8〉 denotes the

8-th bit of scalar G. 0 denotes a vector/matrix/tensor with all the entries set to 0. We denote the

computational security parameter with ^ and set it to 128 following recent works [21, 6, 22].

2.2 Secure Multi-Party Computation (MPC)

Secure Multi-Party Computation (MPC) is a set of cryptographic protocols that allow two

or more parties to jointly compute a function on their private inputs without revealing the inputs

to each other. In MPC, the intermediate results of computation are shared between the computing

parties such that no single party can learn the actual value. The efficiency of performing various

arithmetic and logical operations through an MPC protocol depends on the employed sharing

schemes. In the end, one or more parties learn the output. The security of MPC is analyzed in

the following security models.

10

• Honest but Curious: In this model, all parties follow the protocol honestly yet may try to

learn additional information about the other partys’ data from the information at hand.

• Malicious: In this model, any party can deviate from the protocol to learn more information

about the other party’s data or to produce incorrect results.

2.3 Oblivious Transfer

Oblivious Transfer (OT) [13] is a cryptographic protocol between a receiver Alice and

a sender Bob. OT allows Alice to choose and receive one from a set of messages provided by

Bob without revealing her choice. In a 1-out-of-2 OT protocol (OT2_), Bob holds a pair of _-bit

messages {`0, `1} ∈ {0,1}_; Alice holds a choice bit f ∈ {0,1} and obtains `f without revealing

f. Alice learns nothing about the other message `1−f.

OT employs public-key cryptography which is costly. An extension of this protocol,

called OT extension [23], allows performing a large number of OT2_ with a fixed number of base

OTs and linear (in terms of the number of OT2_) number of less expensive private-key operations.

Moreover, by following [24], the majority of the computation of OT can be performed in the

offline phase, enabling a very fast online phase.

In this work, we employ two versions of OT extension: random OT (ROT2_) and correlated

OT (COT2_) [25]. In ROT2_, instead of choosing his messages, Bob receives random messages

{`0, `1} and Alice receives `f. The communication cost of one ROT2_ is a ^-bit message

embedding the selection bit f from Alice to Bob. Note that the cost of ROT2_ is independent of

the message length _. In COT2_, Bob chooses a correlation function i(`) and receives a random

message `. Alice receives ` if f = 0 and i(`) if f = 1. The communication cost of one COT2_

is the cost of one ROT2_ plus a _-bit message from Bob to Alice, i.e., ^ +_.

11

2.4 Yao’s Garbled Circuit

Yao’s Garbled Circuit (GC) [7] is currently the most efficient 2PC protocol. It allows

two parties Alice and Bob to jointly compute a function 2 = � (0, 1) on their private inputs 0

from Alice and 1 from Bob. At the end of the protocol, one or both of them learn the output

2. In GC, a function � is represented as a Boolean logic circuit, called netlist, consisting the

logic gates AND: (U, V, W, ∧) and XOR: (U, V, W, ⊕), where U and V are the two input wires and

W is the output wire of a gate. The values associated with the wires U, V, and W are G, H, and I

respectively. Note that GC supports any 2-input 1-output logic gate, along with the NOT gate.

For simplicity, we focus on these two gates here. The sets of wires associated with Alice’s input,

Bob’s input, and the output are called �, �, and �, respectively.

Alice, the garbler, garbles the circuit as follows. For each wire, F in the netlist, she

assigns two ^-bit random labels !0F and !1F, corresponding to the values 0 and 1, respectively,

and a 1-bit random mask _F. If the value of a wire is E, then the masked value, observed by

Bob, the evaluator, is Ê = E ⊕ _F. For each gate in the netlist, Alice generates a garbled truth

table by encrypting the output labels with the corresponding input labels. Let � be a hash

function modeled as a random oracle. Each row of the garbled truth table �) of a gate (U, V, W,

C ∈ {∧,⊕}), is computed as

�) (2Ĝ + Ĥ) = � (!GU ‖ Ĝ, !
H

V
‖ Ĥ) ⊕ !IW ‖ Î (2.1)

Alice sends the garbled tables, the labels corresponding to her input values, and the masked

values of each input wire to Bob. Bob obtains the labels corresponding to his input values

obliviously through OT21. At this point, for each input wire, F ∈ �∪� with value E, Bob holds

the label !EF. For each gate (U, V, W, C ∈ {∧,⊕}) connected to the input wires, he holds !GU ‖ Ĝ

and !H
V
‖ Ĥ and can decrypt only one row of the gabled table to obtain !IW ‖ Î. He then uses these

labels to compute the labels and masked values of the outputs of the subsequent gates. This way,

12

the final output that Bob can learn is the masked values Ê of the output wires F ∈ �. In the last

step of the GC protocol, Alice sends the masks _F of the output wires F ∈ � and Bob computes

the actual value E of each output wire as E = Ê ⊕_F. This step can be reversed to let Alice learn

the final output.

2.4.1 Garbled Circuit Optimizations

The GC protocol has gone through several optimizations. We briefly discuss the most

important ones here.

(i) Point and Permute [8]. According to this optimization, the label of each wire is

appended by a select bit, such that the select bits for the two labels of the same wire are inverse

of each other. Even though the select bits are public, the association between select bits and

semantic value of the wire is random and private to the garbler. Besides allowing the use of more

efficient encryption, it also makes the evaluation simpler since the evaluator can simply decrypt

the appropriate row based on the public select bits of the wire labels.

(ii) Free-XOR [26]. In this optimization, the XOR gates do not require garbling, i.e.,

computation of the hash function or communication of the garbled tables. Alice generates a

random ^-bit key Δ which is known only to her. For each wire F, she generates the label !0F

and sets !1F = !0F ⊕Δ. Moreover, for each XOR gate (U, V, W, ⊕), the masks are computed as

_W = _U ⊕_V. With this convention, during garbling, Alice computes the 0-label for the output

wire of an XOR gate as !0W = !0U ⊕ !0V. During evaluation, Bob computes !IW ‖ Î = !GU ‖ Ĝ ⊕ !
H

V
‖ Ĥ.

(iii) Row Reduction [27]. In this optimization, the size of the garbled tables for non-XOR

is reduced by 25%. Instead of generating the label for the output wire of a gate randomly, it is

computed as a function of the labels of the inputs such that the first entry of the garbled table

becomes all 0s and no longer needs to be sent.

(iv) Half Gate [28]. In this optimization, each non-XOR gate is broken into two half-gates,

for which one party knows one input. It employs both free-XOR and row reduction such that each

13

half-gate can be garbled with single encryption. As a result, the size of the non-XOR gate truth

table is reduced by a further 25%.

(v) Fixed-key Block Cipher [21]. This optimization allows efficient garbling and

evaluation non-XOR gates using fixed-key AES with a unique identifier for each gate. The output

label !IW is encrypted with the input labels !GU and !
H

V
using the following encryption function

� (!GU, !
H

V
,), !IW) = c() ⊕ ⊕ !GU, (2.2)

where = 2!GU ⊕ 4!
H

V
⊕) , c is a fixed-key block cipher (instantiated with AES), and) is a

unique gate identifier.

Among the optimizations discussed above, only free-XOR concerns the netlist generation

process. A GC-optimized netlist implies that it has the least number of non-XOR gates.

2.4.2 Extension of GC for the Malicious Security Model

Yao’s GC is proven to be secure in the honest-but-curious security model [29, 21]. While

this model is sufficient in a large number of applications, certain applications, e.g., authentication,

the Function as a Service (FaaS), require security in the malicious security model. Among

various protocols that are secure in the malicious security model, the most efficient realization to

date is the Authenticated Garbling protocol presented in [22]. The critical enhancements in this

protocol over the semi-honest version are the following: (8) to XOR-share the mask bit itself for

each wire between Alice and Bob, (88) to authenticate their shares using Message Authentication

Codes (MAC) - to ensure that none of them can alter their respective shares of the mask bit during

the protocol execution, and (888) to compute (by both parties) the garbled tables in a distributed

manner, where each wire has two sets of labels - one generated by each party. Since the parties

compute the garbled tables together, one OT21 is required per gate, as opposed to per input wire

as in the honest-but-curious model. The garbled circuit is authenticated in the sense that neither

Alice nor Bob can change the logic of the circuit and/or the protocol without being caught.

14

The protocol presented in [22] is further optimized in [30]. Themost notable enhancements

by [30] are compatibility with half gate optimization [28] and avoiding communication of the

MACs for each row of the garbled tables.

2.5 Beaver-Micali-Rogaway

Beaver-Micali-Rogaway (BMR) [8] is a multi-party extension of Yao’s GC, supporting

more than two parties. All the parties jointly participate in the preparation of the garbled circuit,

and no subset of colluding parties can learn any value internal to the netlist. The function is of

the form 2 = � (00, 01, ..., 0=−1), where there are = parties involved and 08 is the private input of

the 8-th party. This protocol has two main phases: garbling and evaluation. In the first phase, all

parties jointly create the garbled version of the circuit. In the second phase, each party receives

partial information from other parties and begins to evaluate the circuit locally. The garbling

phase is usually the most costly stage in the protocol execution. However, since it is independent

of the actual inputs from the participating parties, it can be pre-computed in advance.

Garbling. In this phase, all parties assign two random labels for every wire in the circuit, one for

semantic value zero and one for semantic value one. !G
F,8
∈ {0,1}^ denotes random label of wire

F for the semantic value G ∈ {0,1} held by party %8 8 = 1...= where = is the total number of parties.

For each gate, parties encrypt output labels using �, a double-key pseudorandom function, and

use two input labels as keys. Consider a gate (U, V, W, C ∈ {∧,⊕}). The values associated with

the wires U, V, and W are G, H, and I respectively. In the case of an AND gate: (U, V, W, ∧),

output label for semantic value 1 (!1W) is encrypted using the two input labels of semantic value 1

(!1
U,8

and !1
V,8
). Since there are four possible input combinations for any two-input Boolean gate,

parties create four different encryptions of the correct output label and their corresponding input

keys. The collection of all four encrypted values is called a garbled table. More precisely, for

15

every U, V ∈ {0,1}, the output label for W ∈ {0,1} is encrypted as

{(=⊕
8=1

� !G
U,8
, !

H

V,8
(6 ◦ 9) ⊕ ! 9W,I

)}=
9=1

(2.3)

where 6 is the unique ID number for a gate and ◦ denotes concatenation operation. In order

to mask the relationship between labels and actual semantic values, each party also assigns a

permutation bit _8F and sets _F = ⊕=8=1_
8
F. All four encrypted values are permuted according to

permutation bits.

Evaluation. Given the collection of = keys for each input wire, all parties can decrypt one row

of each garbled table (those connected to input gates) and generate the output keys of those gates.

The evaluation process continues until output gates are reached. Therefore, the evaluation process

can be computed locally once each party has the correct combination of all = keys for all input

gates. Note that none of the intermediate values are revealed to any party. The semantic value of

each wire is XOR-shared among all parties. All labels are unintelligible by themselves. At the

end of the protocol, each party only sends her share of the output wires’ labels such that everyone

can locally compute the plaintext output result. Please see [31] for more detailed explanation.

Free-XOR Optimization. Kolesnikov et al. [26] proposed a method that eliminates the need

for creating garbled tables for XOR gates, rendering them almost free of cost. To utilize this

technique, each party %8 needs to create a one-time random number Δ8 ∈ {0,1}^. Same as before,

!0
F,8

is generated randomly but !1
F,8

is set to Δ8 ⊕ !0F,8 for every wire. Due to this correlation

of labels, the output label of each XOR gate can be computed by XORing the two input labels

without any communication between parties.

2.6 Arithmetic Sharing

We denote the arithmetic share (AS) [14] of an integer G between two parties Alice and

Bob as JGK. For 1-bit arithmetic sharing, JGK = JGK� + JGK� mod 21, where JGK� is held by Alice

and JGK� is held by Bob with JGK, JGK�, JGK� ∈ Z21 . To reveal a shared variable, Alice and Bob

16

send their respective shares to each other and reconstruct the actual value locally. All operations

on arithmetic shared values are performed in ring Z21 , i.e., operations are mod 21. For simplicity

we do not explicitly mention mod 21.

2.6.1 Addition and Multiplication in AS

In AS, addition of shared variables is free since each party can locally add their shares

without communication. Multiplication can be performed through COT following [32]. Let us

consider the scalar product JIK = JFK�JGK�. For each bit 8 ∈ [1], Alice and Bob engage in one

COT2
1
. Bob acts as the sender with the correlation function q(`8) = `8 + JGK� ∗28 and receives `8.

Alice acts as the receiver with choice bit f8 = JFK�〈8〉 and receives `f8 = `8 +f8JGK� ∗28. Alice

and Bob then compute JIK� =
∑1−1
8=0 `f8 and JIK� = −

∑1−1
8=0 `8, respectively. The communication

cost of computing each multiplication is 1(^ + 1).

2.7 Machine Learning Layers

Contemporary DNNs comprise two classes of layers: linear (convolution, fully-connected,

batch normalization, and average-pooling) and non-linear (max-pooling and ReLU). We briefly

explain commonly used layers in each category.

Convolution. Aconvolution layer (CONV) is a linear operation � (X,W,b) :R�×�1×�1→

R"×�2×�2 , where X ∈ R�×�1×�1 is the 3-way input tensor, W ∈ R"×�×:×: is the 4-way weight

tensor, b ∈ R" is the bias vector, and Y ∈ R"×�2×�2 is the 3-way output tensor. The plaintext

operation of CONV can be represented as a matrix-multiplication followed by bias addition

. =, · - +b where , ∈ R"×# is achieved by reshaping the original 4-way tensor into a 2�

matrix and - ∈ R#×! is formed by sliding through the original 3-way tensor and vectorizing the

corresponding windows into matrix rows. Each element of the output is computed via a vector

dot product (VDP) and the total number of VDPs required for the matrix-multiplication is " × !.

Fully-Connected. The fully-connected (FC) layer takes a vector x ∈ R# and generates

17

the output vector y =, ×x+b where, ∈ R"×# and 1 ∈ R" are the weight and bias, respectively.

Similar to CONV, the matrix-vector multiplication consists of " VDPs between rows of, and x.

Batch Normalization. Batch normalization (BN) is a common linear operation applied

on the output of CONV layers to adjust the range of numerical values. At test time, BN computes

y(�#)
8

= U8y8 + V8, where U8 and V8 are constant scalars, y8 is one row of the output . ∈ R"×! from

the preceding CONV, and y(�#)
8

is the corresponding row after BN.

Pooling. Contemporary DNNs include two forms of pooling layers, namely max-

pooling (MP) and average-pooling (AP). These layers extract : × : windows from the input

X ∈ R�×�1×�1 and compute the average or the maximum value in the enclosed window as

the output. Assuming the : × : windows are non-overlapping, pooling layers reduce data

dimensionality from � ×�1×�1 to � × �1
:
× �1

:
.

ReLU. This layer often follows a linear layer to introduce non-linearity in the model. A

ReLU operation simply replaces negative inputs with zero and keeps positive values intact.

18

Chapter 3

Efficient and Scalable MPC Frameworks

3.1 Overview

Two standing challenges that users face while developing privacy-preserving systems

through MPC protocols are: (i) efficient realization of the different steps of the protocol as well

as its various optimizations, and (ii) understanding the cryptographic details that ensure the data

privacy. The first complication often results in a high inefficiency in the protocol execution. The

latter is even more critical, triggering possible security breaches if the protocol is not followed

properly. In this chapter, we present three MPC frameworks providing an end-to-end solution that

bridges the gap between usability and secure realization of MPC protocols. Our main focus here

is on MPC protocols based on Boolean circuits, i.e., GC and BMR protocols. Later in Chapter 7,

we present efficient realization of MPC protocols based on arithmetic circuits.

The practicality of MPC frameworks primarily depends on the following properties:

(8) fast protocol execution, (88) automatic generation of Boolean logic optimized for MPC,

(888) scalability in terms of memory footprint, (8E) reliability, and (E) a rich programming

paradigm. The first two properties received a lot of attention from the researchers over the past

years. Various optimizations, to both the protocol [26, 27, 28, 21] and the automatic generation

of netlists [6, 33, 34, 29] have resulted in orders of magnitude reduction in the run-time. Recently,

with the surge in the development of practical privacy-preserving systems, scalability, reliability,

and a rich programming paradigm are becoming increasingly important. However, while

19

existing frameworks focus on a subset of these properties, none of them demonstrate the best

possible performance on all the properties. Our first framework TinyGarble [6] provides the best

performance in Boolean logic generation and reliability for the 2PC GC protocol. We extend

these contributions to the BMR protocol for MPC in our subsequent work named MPCircuits [9].

Our most recent framework TinyGarble2 [10] provides the best performance in scalability in

addition to a rich programming paradigm for GC, while also inheriting the contributions

of its predecessor TinyGarble. In terms of fast execution, both TinyGarble and TinyGarble2

implement the most recent optimizations to the GC protocol. MPCircuits is interfaced to the

BMR framework presented in [31] which implements the most recent optimizations to the BMR

protocol. In the following, we elaborate on these properties.

3.1.1 Automatic Generation of Optimized Boolean Logic

As explained in Section 2.4.1, an MPC-optimized netlist implies that it has the least

number of non-XOR gates. The research on optimizing Boolean logic has followed two parallel

paths. On the one hand, several custom compilers supporting (or designing) various programming

languages have emerged for addressing this issue. However, such custom compilers have been

shown to have reliability issues and limitations in global optimization [33]. On the other hand,

techniques for interpreting a behavioral description in a Boolean format are widely researched

for designing digital integrated circuits (IC). Design automation for the purpose of IC design is a

true engineering success story; the tools have enabled us to scale our chips to billions of gates to

support complicated tasks. There was a wide gap between the capabilities of conventional IC

design automation tools to compile sophisticated functions and what could be achieved by the

custom MPC compilers.

Our first GC framework, named TinyGarble, bridges this gap by formulating GC netlist

generation as an atypical circuit synthesis task that can be addressed and scaled with standard

IC logic synthesis tools. TinyGarble presents a synthesis library and a set of optimization

goals to generate the optimized Boolean logic netlists for GC by using logic synthesis tools.

20

To date, TinyGarble remains the most efficient netlist generation tool as verified by the study

of Frigate [33]. In our subsequent work, named MPCircuits [9], we extend the methodology

presented in TinyGarble to the BMR protocol, which supports more than two parties.

3.1.2 Rich Programming Paradigm

A limitation of TinyGarble is the lack of a rich programming paradigm; the users have

to describe the function in Verilog HDL. Our most recent GC framework, named TinyGarble2,

combines efficient circuit generation with a rich programming language along with a more flexible

protocol execution flow. TinyGarble2 provides a rich C++ library with common arithmetic and

logical building blocks, the netlists of which are generated by logic synthesis tools. Moreover, it

provides an automated toolchain that allows users to generate and incorporate any custom circuit

into the program interface of the framework.

The TinyGarble2 framework is developed in three layers. The first layer includes the

pre-compiled (through TinyGarble) GC-optimized netlist. The second layer is the protocol

execution back-end that takes a netlist as input and executes the protocol. The abstraction of

netlist generation and protocol execution allows TinyGarble2 to benefit from all the existing

netlist optimization techniques as well as support any user-defined bit-width for the variables.

Users can access this layer directly and run any combination of netlists. The third layer, which is

a program interface to the GC back-end, allows more convenience as it supports using common

arithmetic and logical building blocks (e.g., =, +, -, ×, ÷, %, √ , if-else, <, >, &, |, ∧ etc.)

to develop applications. The GC back-end internally manages the secure transfer of shares among

consecutive operations (netlists) according to user-defined flags. The software distribution of

TinyGarble2 includes the most optimized netlists to date for the building blocks generated by

TinyGarble.

One exciting feature of TinyGarble2 is that its GC back-end has two versions for two

different security models: honest-but-curious and malicious. These two versions are transparent

to the program interface. This feature allows the user to execute the same netlist/program in the

21

security model of their choice without re-writing or recompiling their code. To the best of our

knowledge, only one of the existing frameworks- EMP-Toolkit [35] supports GC execution in

the malicious model. However, it does not provide a program interface and lacks scalability in

terms of memory footprint. As demonstrated by our experimental results, TinyGarble2 supports

scalable execution in both security models.

3.1.3 Scalability in Terms of Memory Footprint

The allocation of memory is one of the primary limiting factors in the application of

GC to practical size problems such as Convolutional Neural Network (CNN) inference, which

has been possible only by heavily specializing the native input data types, e.g., by binarization

of either activations or weights. For instance, LeNet-5 [36] – a small Convolutional Neural

Networks (CNN) – requires 341: Multiply-Accumulate (MAC) operations per inference [37].

Even for moderately large CNNs such as VGG-16 [38], the number of MACs reaches billions.

Each MAC, in turn, requires O
(
12

)
gates for a 1-bit fixed-point representation. As a result,

the secure execution of an entire CNN as a single netlist without compromising privacy (e.g.,

without revealing any intermediate results to any party) results in an unmanageably large memory

footprint. Scalability is the primary limiting factor in the existing GC frameworks as explained in

the following.

A number of the existing GC frameworks [33, 34, 32, 39, 29] support C or C++ or subsets

of them. Among them, Frigate [33] and CBMC-GC [34] focus on generating the optimized

netlist which can later be executed through any GC back-end. This approach requires that the

entire netlist is generated before the protocol execution, thus increases the peak memory and

hurts the scalability. Even though ABY [32] provides the execution back-end, it also generates

the entire netlist ahead of the execution resulting in scalability issues.

The PCF [29] and TinyGarble [6] frameworks partially solve the scalability issue. Through

run-time loop unrolling and sequential GC, respectively, they ensure that not all the garbled

gates reside in the memory at the same instance. However, this unrolling process slows down

22

the protocol execution by PCF. Moreover, its netlists are 50-80% less optimized compared

to the recent frameworks. In the sequential GC by TinyGarble, the same netlist is executed

through the protocol for a pre-specified number of cycles. However, TinyGarble only supports

homogeneous loops, while most of the practical problems require heterogeneous loops, i.e., loops

where possibly different netlists are executed at every cycle.

To the best of our knowledge, two existing frameworks provide scalability in terms of

memory footprint while also allowing the comfort of a programming language – Obliv-C [39]

and EMP-Toolkit [35]. Obliv-C is a custom compiler that supports GC-based privacy-preserving

computation.Being an extension of the gcc compiler, Obliv-C inherits its memory management

procedures. However, this inheritance comes with limitations. First, Obliv-C does not support

abstraction between netlist generation and protocol execution, therefore cannot use the best

netlist generation tools. Run-time netlist generation results in an additional slowdown in

execution. Moreover, Obliv-C does not allow logic level optimizations, hence it misses

noteworthy optimization opportunities for certain functions (e.g., Hamming Distance which is

widely used in secure authentication [18, 40, 41]). Second, Obliv-C only supports a subset of

native data types in C, i.e., integers with bit-widths of 16, 32, and 64 bits, incurring additional

overhead for applications that require more flexible data representation. Third, a custom compiler

may result in unreliable binaries.

The EMP-toolkit [35] also presents a similar framework. Its execution engine is faster

than both Obliv-C and ABY. While it supports arbitrary bit-width, it does not support operation

involving variables with mismatched bit-widths that results in additional overhead in practical

applications (this is also true for Obliv-C). An important feature of this framework is the support

for the malicious security model while other frameworks target only the honest-but-curious

model. However, their maliciously secure framework does not have a programming interface. A

user can generate a netlist using the interface from the honest-but-curious framework and use it

with the malicious one but will suffer from scalability issues similar to ABY.

23

3.1.4 Reliability

Beside efficient Boolean logic representation, one crucial advantage of industrial logic

synthesis tools is benefiting from their reliability. In contrast to the custom GC synthesis tools,

the industrial tools go through rigorous quality control. The study by the Frigate framework [33]

in 2016, found reliability issues in all the existing GC frameworks, except TinyGarble. Since

TinyGarble2 uses the netlists generated by TinyGarble, we expect it to inherit reliability features

of TinyGarble.

3.1.5 Evaluation Results

To demonstrate the enhanced efficiency and scalability of TinyGarble2, we designed a

C++ library for privacy-preserving CNN inference through the GC protocol. The library includes

parameterized implementations of the CNN layers (e.g., convolution layer, fully connected layer,

ReLU, Maxpool, ArgMax, etc.) that can be plugged in to compose any CNNmodel. An exclusive

feature of TinyGarble2 – computation involving variables with mismatched bit-widths, allows

the most optimized implementation of the different layers of the CNN. We built the CNN model

LeNet-5 [36] to run inference on the MNIST dataset [42] with the CNN library of TinyGarble2.

In our implementation, privacy-preserving inference on one input image requires 58s with a

peak memory usage of 46MB. This is 6×, 18×, respectively faster and 43%, 64%, respectively

more memory efficient compared to EMP-toolkit and Obliv-C. Moreover, TinyGarble2 is the

only framework with the scalability to run CNN inference in the malicious model. In addition to

CNN, we evaluate our framework on micro-benchmarks and compare the run-time and memory

usage with EMP-Toolkit, Obliv-C, and ABY – the existing end-to-end frameworks that support

developing with C/C++. Our evaluations show that TinyGarble2 is the only framework that is

scalable in terms of memory footprint both in honest-bit-curious and malicious settings.

24

3.1.6 Summary of Contributions

As mentioned, TinyGarble2 inherits all the contributions of TinyGarble and improves

upon them. Therefore, we summarize the contributions of the TinyGarble2 framework here.

• We present an end-to-end GC framework with the following properties:

– A GC-execution back-end with all recent optimizations.

– A C++ library with common arithmetic and logical building blocks.

– Scalable execution through secure transfer of shares.

– Ease of programming with any generic C++ compiler.

• We present a C++ library for privacy-preserving CNN inference through the GC protocol.

• We support GC execution of the same program through either of honest-but-curious or

malicious security models.

• We demonstrate the enhanced execution speed and scalability of TinyGarble2 over existing

GC frameworks for both micro-benchmarks and practical systems.

In the following, we first describe how we adapt the logic synthesis tools to generate

optimized Boolean logic for MPC. Next, we outline the execution flow of the GC back-end

of TinyGarble2 followed by its program interface. Finally, we present the evaluation results

demonstrating the superior performance of our MPC frameworks.

3.2 Netlist Generation through HDL Synthesis

As described in Section 2.4.1, Yao’s protocol requires the function to be represented as

a Boolean circuit. Previous work like FairPlay [43] and WYSTERIA [44] used custom-made

languages to describe a function and generate the circuit for GC operations. In our TinyGarble

framework, the user may describe a function in a standard HDL like Verilog or VHDL. She may

also write the function in a high level language like C/C++ and convert it to HDL using a HLS

tool. TinyGarble uses existing HDL synthesis tools to map an HDL to a list of basic binary gates.

In digital circuit theory, this list is called a netlist. The netlist is generated based on various

25

constraints and objectives such that it is functionally equivalent to the HDL/HLS input function.

Exploiting synthesis tools helps to reduce both number of non-XOR gates in the circuit and the

garbling time while also making the framework easily accessible.

3.2.1 Synthesis Flow

In the first step, a synthesis converts functional description of a circuit into a structural

representation consisting of standard logical elements. Then, it converts this structural represen-

tation into a netlist specific to the target platform. In both steps, the synthesis tool works under a

set of user defined constraints/objectives like minimizing the total delay or limiting the area. In

the following, we describe the details of these two steps and how we manipulate the synthesis

tools in each of the steps to generate optimized netlists for GC.

Synthesis library. The first step in the synthesis flow is to convert arithmetic and

conditional operations like add, multiply, and if-else to their logical representations that fits best

to the user’s constraints. For example, the sum of two N-bit numbers can be replaced with an

N-bit ripple carry adder in case of area optimization or an N-bit carry look ahead adder in case of

timing optimization. A library that consists of these various implementations is called a synthesis

library. We develop our own synthesis library that includes implementations customized for

SFE. In this library, we build the arithmetic operations based on a full adder with one non-XOR

gate [45] and conditional operations based on a 2-to-1 multiplexer (MUX) with one non-XOR

gate [26].

Technology library. The next step is to map the structural representation onto a

technology library to generate the netlist. A technology library contains basic units available

in the target platform. For example, tools targeting Field Programmable Gate Arrays (FPGAs)

like Xilinx ISE or Quartus contain Look-Up Tables and Flip Flops in their technology libraries,

which form the architecture of an FPGA. On the other hand, tools targeting Application Specific

Integrated Circuits (ASICs) like Synopsys DC, Cadence, and ABC, may contain a more diverse

26

collection of elements starting from basic gates like AND, OR, etc., to more complex units like

FFs. The technology library contains logical descriptions of these units along with performance

parameters like their delay and area. The goal of the synthesis tool in this step is to generate a

netlist of library components that best fit the given constraints. For HDL synthesis, we use tools

targeting ASICs as they allow more flexibility in their input technology library. We design a

custom technology library that contains 2-input gates as required by the front-end GC tools. We

set the area of XOR gates to 0 and the area of non-XOR gates to a non-0 value. By choosing

area minimization as the only optimization goal, the synthesis tool produces netlists with the

minimum possible number of non-XOR gates.

An additional feature of our custom technology library is that it contains non-standard

gates (other than basic gates like NOT, AND, NAND, OR, NOR, XOR, and XNOR) to increase

flexibility of mapping process. For example, the logical functions � = �∧� and � = (¬�) ∧�

requires equal effort in garbling/evaluation. However by using only standard gates, the second

function will require two gates (a NOT gate and an AND gate) and store one extra token for ¬�

in the memory. We include four such non-standard gates with an inverted input in our custom

library.

For synthesis of sequential circuits, the technology library includes memory elements.

These elements can be implemented as FFs which are connected to a clock signal. Although in

conventional ASIC design FFs are typically as costly as four AND gates, in our GC application,

FFs do not have any impact on the garbling/evaluation process as they require no cryptographic

operations. Therefore, we set the area of FFs to 0 to show its lack of impact on computation and

communication time of garbling/evaluation. Moreover, we modify our FFs such that they can

accept an initial value. This helps us remove extra MUXs in standard FF design for initialization.

3.2.2 Offline Circuit Synthesis

In TinyGarble, we use HDL synthesis tools in an offline manner to generate a circuit for a

given functionality. This offline synthesis followed by a topological sort provides a ready-to-use

27

circuit description for any GC framework. This approach, unlike online circuit generation, does

not require misspending time for circuit generation during garbling/evaluation. It also enables

the use of beneficial synthesis optimization techniques that were previously infeasible for online

generation. Moreover, the synthesis tools have a global view of the circuit, unlike previous work

that manually optimized small modules of the circuit. This allows more effective optimization

for any arbitrary function and set of constraints.

However, the offline approach has certain limitations when it comes to generating circuits

for extremely large functions. Fortunately, the sequential description helps to overcome most

limitations as it generates more compact circuits. Sequential circuits are radically smaller than

combinational ones with the same functionality. This property allows synthesis tools to perform

more effective circuit optimization. Moreover, the compatibility of our sequential descriptions

with standard synthesis tools simplifies the workflow of circuit generation for SFE applications.

3.2.3 Adaptation to BMR and GMW protocols

The GC execution of TinyGarble supports secure two-party computation in the honest-

but-curious model. However, the capability of its netlist generation tool-chain goes well beyond

that. The primary target of the netlist generation methodology presented in the previous section

is to take advantage of the free-XOR optimization. Fortunately, equivalent optimizations are

available in a number of related MPC protocol based on the Boolean logic representation of a

given function.

In our work titled MPCircuits [9], we present the first automated methodology to generate

Boolean circuits, customized for the BMR protocol, which is an extension of GC with support

for more than two parties. This work adapts the interfaces to the synthesis and technology

libraries of TinyGarble to accept inputs from multiple parties. We also develop five practical

privacy-preserving applications, namely, stable matching, voting, auction, set intersection and

:-nearest neighbor search on this framework and report their performance on the implementation

of the BMR protocol presented in [46]. Each benchmark captures a different set of requirements

28

and domains, which ensures the applicability of MPCircuits to diverse scenarios. Out of the five

benchmarks, we elaborate on the private set intersection in Section 6.5.

Inspired by TinyGarble, Demmler et. al. employed logic synthesis tools to generate

netlists for the GMW protocol [47]. Since the round complexity of the GMW protocol depends

on the depth of the netlist, they developed a tool-chain to optimize the netlist not only for size

but also for depth. Their work showed a reduction of depth by up to 14% even over manually

optimized netlists.

GC, BMR, and GMW protocols involve logic gates whose functionalities are fixed (e.g.,

AND, OR). Therefore, TinyGarble, MPCircuits and the work in [47] employ ASIC synthesis

tools. Dessouky et. al. [48] introduce protocols involving lookup tables (LUTs) which can be

programmed to realize arbitrary functions. To generate the Boolean circuits, this work employs

multi-input LUT-based synthesis tools which form the core of synthesis for FPGAs.

3.3 Execution Flow of the GC Back-end

The TinyGarble2 framework is developed in three layers. The first layer includes the

pre-compiled GC-optimized netlist. The second layer is the back-end that executes the GC

protocol on any given set of netlists. The third layer provides an interface between the back-end

and arithmetic/logical function building blocks. In this section, we elaborate on the execution flow

of the back-end and explain how it helps the realization of scalable privacy-preserving applications.

The users can directly access this level from the command line or using a configuration file

(please see Appendix A for the command-line options). However, it is more convenient to use

the functionalities from the second layer (described in the next section) to develop applications.

3.3.1 Function Composition Formats

The GC back-end allows compositions of the functions with the three formats in Eqs 3.1 -

3.3 as well as any hybrid combinations. The first format with homogeneous loops represents

the sequential GC introduced by TinyGarble. In TinyGarble2, we provide more freedom with

29

support for heterogeneous loops in formats ii and iii.

� ≡ 5 (5 (... 5 ()...)) (3.1)

� ≡ 50(51(... 5&−1()...)) (3.2)

� ≡ 5% (50(), 51(), ..., 5&−1())) (3.3)

TinyGarble2 also supports a special case of format i: � ≡ 5 (), 5 (), ..., 5 (). In this case,

formally known as the amortized execution, the garbling of the sub-functions 5 are independent

of each other. After every cycle, instead of transferring the shares of the output wires to the input

wires, the input wires are reset to the initial states. Even though this can be performed through the

traditional GC execution flow, there is a benefit in packing multiple garbling operations into one.

As explained in Section 2.3, the cost of OT extension remains relatively unchanged with increasing

number of OT21 invocations. If multiple garbling operations are packed into one, the invocations of

OT21 for the input wires of all the functions are performed through one invocation of OT extension.

As a result, the offline pre-processing time remains relatively unchanged, irrespective of the

number of garbling, resulting in a reduction of the mean run-time. Note that a hybrid composition

of these two variations is the following: � ≡ 5 (5 (... 5 ()...)), 5 (5 (... 5 ()...)), ..., 5 (5 (... 5 ()...)).

Here, inputs are reset after every certain number of cycles. To enable this, we introduce the option

to reset the FFs at a user-specified interval, as opposed to resetting only at cycle 0 in TinyGarble.

3.3.2 Scalability Analysis

We first analyze scalability in the honest-but-curious security model. If the number of

input wires and gates in the netlist of � is |� | and |� |, respectively, the memory footprint in

traditional GC execution (i.e., all existing frameworks except [6, 29, 39, 35]) is O
(
|� | + |� |

)
.

This is because, in the traditional execution flow, all the garbled gates and wire labels reside

together in the memory. In TinyGarble2, each garbled gate is overwritten by the next one after

the computation of that gate is completed. As a result, at any time instance, only one of the

30

garbled gates resides in the memory. However, wire labels cannot be overwritten after each

use since each gate may have a fanout of more than one. The decomposition of � into smaller

sub-functions creates a logical boundary beyond which the internal wires of a sub-function

will not be needed. As a result, after the computation of each sub-function, the labels of the

internal wires can be safely overwritten. Thus, the required memory depends on the number

of input wires and the number of AND gates (which is also the number of internal wire labels)

in a sub-function. Therefore, the memory footprint in TinyGarble2 in the honest-but-curious

model is O
(
|6 |" + |8 |"

)
, where, |6 |" is the number of gates in the largest among the netlists that

constitute the system and |8 |" is the largest among the numbers of inputs to the netlists.

In the honest-but-curious model, the reduction in memory footprint comes at no or

negligible additional cost. However, in the malicious model, there is a trade-off between run-time

and memory. The mean run-time of GC protocols in the malicious setting is significantly reduced

in amortized execution. For the particular protocol, called authenticated garbling [22], adopted in

this work, the mean run-time in the function independent phase is O
(|6 |d
;>6(g)+;>6 | 5 |

)
, where |6 | is the

number of AND gates in the function 5 , g is the number of execution of 5 and d is the statistical

security parameter. Note that even though the complexity is defined for amortized execution

of the same function, i.e., format i, this particular phase is function independent, meaning that

the run-time only depends on the total number of AND gates, irrespective of their composition

or internal connections. Therefore, the run-time reduction is also available in formats ii and

iii as well as functions developed with the program interface described in the next section. As

a result, while decomposing the execution into smaller sub-functions results in a reduction in

memory footprint, it increases the run-time.

To deal with this issue, instead of dynamically breaking up the function � into smaller

sub-functions, we set the total number of AND gates garbled in one batch as a user-defined

parameter. This allows the user to execute arbitrarily large functions at the expense of a small

increase in run-time by setting the batch size according to the maximum available memory. This

is not possible by the implementation of the authenticated garbling protocol by the EMP-toolkit,

31

for which the maximum number of gates in a function is limited by the available memory of the

system. Moreover, the increase in run-time with reduced batch size diminishes with larger batch

sizes. As a result, for large enough memory (few hundred MB as shown by the evaluation results

in Section 3.5.2) there is no discernible change in run-time with changes in batch size.

3.4 Program Interface

The third layer of TinyGarble2 architecture – the program interface provides convenient

access to the GC back-end for the users. It provides functions of common arithmetic and logical

building blocks (e.g., =, +, -, ×, ÷, %, √ , if-else, <, >, &, |, ∧ etc.) along with necessary

GC primitives. Listing 1 shows the TinyGarble2 code for the Millionaires’ Problem1. The list of

all available operations are given in Appendix A. Currently, it supports signed integers with any

bit-width from 1 to 64. Note that the GC back-end support any arbitrary length variables. To

use variables with more than 64 bits from the program interface, the developers need to merge

multiple integers. In the following, we describe different components of the program interface in

the sequence they appear in a program.

3.4.1 Protocol Instantiation

The program starts with the instantiation of the desired GC back-end. TinyGarble2

provides two versions of the back-end for the two different security models: honest-but-curious

and malicious. The rest of the interface after the protocol instantiation is identical for both

models. Therefore, this is the only place where the users need to specify the security model. It is

also possible to specify the security model from the command line during run-time. To the best

of our knowledge, TinyGarble2 is the only framework that provides a program interface to GC

execution in the malicious model and allows such a seamless switch between the two models.
1Yao’s Millionaires’ Problem is a classic example of secure two-party computation where Alice and Bob want to

compare their wealth without revealing the actual wealth value.

32

Listing 1. TinyGarble2 code for the Millionaires’ Problem

void main(int argc, char** argv) {
/*set-up party (ALICE or BOB) and io
from command line arguments*/
TGPI = new TinyGarblePI(io, party);
uint8_t bits = 64;
int64_t a = 0, b = 0;
if (party == ALICE) cin >> a;
else cin >> b;
tg_int a_x(ALICE, bits, a);
tg_int b_x(BOB, bits, b);
tg_int res_x(NONE, 1);
TGPI->lt(res_x, a_x, b_x, bits);
uint8_t res = TGPI->reveal(res_x, 1);
cout << "result = " << res << endl;

}

3.4.2 Variables

There are three different type of private variables: variables owned by Alice, variables

owned by Bob, and shared variables to hold the result of computations. The users need to specify

the owner during variable declaration (default is shared). For the first two types of variables, the

execution back-end internally generates the shares and sends them to respective parties (through

OT for variables owned by Bob). This process is transparent to the user writing the program.

Furthermore, the user can define any variable as a vector just by specifying the dimension during

declaration. TinyGarble2 supports up to 4D vectors. This is particularly important for defining

the tensors in CNN layers. The parties may choose together to reveal the actual value of any

variable to either or both parties.

3.4.3 Functional Building Blocks

These building blocks are wrappers around the online computation (garbling and eval-

uation) of the GC protocol for the common arithmetic and logical operations. They take

pre-generated shares (from either OT or a previous functional block) as inputs and generates

the shares associated with the output of the function. The wrappers select the netlists according

33

to the operation and the bit-widths of the input. The compiled binary includes pointers to the

pre-compiled netlist files from the first layer of TinyGarble2 in the installation directory. This

abstraction allows the use of the most optimized netlist for a particular operation.

According to the study [33] by Mood et. al., the netlists generated by the TinyGarble

framework holds less than or equal AND gates compared to corresponding netlists generated by the

other frameworks. However, its enhanced efficiency comes from using standard logic synthesis

tools and therefore needs the function to be written in a Hardware Description Language (HDL)

as opposed to a programming language like C/C++. In TinyGarble2, netlists of the necessary

operations are pre-compiled with the TinyGarble framework and provided with the software

distribution. Along with the functions from [6], the first layer includes optimized versions of

division and square-root operations that were first presented in [16, 17]. As a result, developers

have the convenience of programming in C++ while benefiting from the efficiency of the HDL

synthesis tools. We designed a parser to convert the netlist generated by the synthesis tools to a

binary file compatible with the GC back-end. This step is done only once per netlist, irrespective

of the number of user-pairs or the number of GC execution per pair. In addition to the available

functions, the program interface offers a blank wrapper that allows the users to incorporate any

new Boolean netlist into their code.

Besides operations between secret variables, TinyGarble2 also supports the assignment

of any secret variable to any public constant (e.g., initialization of a variable, resetting a counter)

or computations involving a secret and a public variable. The complexity of addition, subtraction,

comparison operations between a 1-bit secret and a 1-bit public value is O
(
1
)
, which is the same

as the operation between a pair of secret values. However, for multiplication and division, the

complexity becomes O
(
1
)
if one of the values is public as opposed to O

(
12

)
when two secret

variables are involved.

34

3.4.4 Neural Network Building Blocks

As an optional fourth layer to the TinyGarble2 framework, we provide the common

components for inference with Convolutional Neural Networks (CNN) - Convolution layer, Fully

Connected (FC) layer, ReLU, Maxpool, ArgMax, and more. It also includes functionalities to

reshape tensors containing shared variables. These building-blocks can be plugged into any

CNN developed with C/C++ by simply specifying their dimensions. Even though generally

CNNs are built with Python, automated tools are available to convert any trained Python model

to C/C++ [49, 50]. The CNN building blocks in the third layer of TinyGarble2 are mostly based

on the functions from its second layer. However, for three of the blocks, namely Convolution, FC,

and ReLU they directly access the GC back-end.

For Convolution and FC, we provide a custom implementation of the matrix multiplication

operation which forms the backbone of both these operations. Each element of the matrix

product is computed through the dot products of two vectors which in turn requires a series of

multiply-accumulate (MAC) operations. It is easy to compute MAC through the multiply and

addition functionality of the functional layer of TinyGarble2. However, in doing so it has to

alternately read the netlists for the multiplication and addition netlists for every MAC. Each layer

in an NN model may include 105 to 107 MACs. Alternate reads of two netlists for such larger

instances result in a small but non-negligible increase in the execution time. To tackle this issue,

we compile the sequential circuit (including FFs) of the MAC netlist and garble it through the

GC back-end following format i. ReLU operation can also be performed with the 8 5 -4;B4 and

comparison (<) function. However, it would require 21 AND gates to compute the ReLU of a

1-bit variable. In our custom implementation, it only require 1 AND gates.

A unique feature of TinyGarble2, which is not available in either EMP-Toolkit or Obliv-C,

is computation involving variables of mismatched bit-widths. The run-time for CNN inference

through GC with 1 bit fixed-point representation is O
(
12

)
. The quantized model parameters of

the different layers of the CNN require different numbers of bits to hold them. Moreover, in the

35

Convolution and FC layers, the variable to hold the result of MAC requires a larger bit-width

compared to the inputs to these layers to ensure accuracy. Without the variable bit-width support,

the input bit-widths need to be as large as that of MAC. This results in significant increases in

run-times by EMP-Toolkit or Obliv-C, as shown by our evaluation.

3.4.5 Cautions

We conclude this section by discussing some of the facts that the developers need to

be aware of. Note that most of these are inherent to the GC protocol or privacy-preserving

computations in general.

Loop condition. Even though TinyGarble2 C++ library supports the comparison

operations (<,>), they cannot be used as conditions in for or while loops. Since none of the

parties know the result of the comparison, there is no way of knowing when to end the loop.

Therefore, it would result in an infinite loop.

Asymmetric operation. Both Alice and Bob have to run the same binary with the

command line parameter specifying the party-ID. Moreover, every conditional operation on a

secret variable, where the condition involves the party-ID, has to be symmetric. If there is a

mismatch in the operations by the parties, it may result in a deadlock or undefined operations.

Operations involving the same variable. The result of operations like addition, sub-

traction, comparison, or logical operations between the same variable can be computed locally

without going through the garbling process. If such conditions arise in the behavioral description

of the function in HDL before compiling through the logic synthesis tool, that tool removes

the redundant operation during optimization. However, if this condition is present in the C++

code, our current implementation treats them as two different variables. To bypass the extra

computation, we would have to check for this condition before every operation. We believe that

this is a rare occasion that does not justify putting this overhead on every operation.

36

3.5 Evaluation of GC Frameworks

We first evaluate the performance of the Boolean logic generation of TinyGarble (which

is inherited by TinyGarble2). Then we evaluate the run-time and memory usage of TinyGarble2

on two benchmarks – matrix multiplication of varying dimensions and CNN and compare

them with three current frameworks, namely, EMP-Toolkit, Obliv-C, and ABY. We chose the

reference frameworks based on the following criteria: (a) end-to-end framework with all the

state of the art optimizations listed in Section 2.4.1, and (b) rich functionality with a standard

programming language (e.g., C or C++) for developing any practical program. EMP-Toolkit,

ABY and TinyGarble2 (as well as majority of the recent GC frameworks e.g., [21, 6]) sets the

security parameter ^ to 128. However, Obliv-C sets it to 80. Since each label is ^-bit in GC, both

the run-time and memory usage is linearly dependent on its value. Therefore, while reporting the

evaluation results of Obliv-C, we report the values adjusted for ^.

Evaluation Setup. We performed the experiments on an Intel Xeon CPU E5-2650 v4

@ 2.20GHz with 128GB memory running Ubuntu 18.04.3 LTS Operating System (OS). The

evaluation is performed in the LAN setting with a network throughput of 500 Mbps and latency

of 2 ms.

3.5.1 Synthesis

At the time of its publication, TinyGarble demonstrated superiority over the existing

custom GC compilers. Even though a number of GC compilers have been developed by various

research groups since then, TinyGarble still remains the most efficeint one. The Frigate [33]

framework has been shown to outperform all other previous compilers, except TinyGarble. In

Table 3.1, the number of non-XOR gates in selected benchmark functions generated by these two

frameworks are compared.

37

Table 3.1. Comparison of the No. of non-XORs of TinyGarble with Frigate

Function Frigate TG Improvement
Sum 1024 1,025 1,023 0.20%
Compare 1024 1026 1,023 0.29%
Hamming 160 719 159 77.89%
Mult 32 995 993 0.20%
MatrixMult 5x5 32 128,252 127,225 0.80%
AES 128 10,383 6,400 38.36%

3.5.2 Runtime and Memory Footprint of Matrix-multiplication

In this experiment, we compute the product of two square matrices through GC. The

bit-width of each matrix element is set to 64. First, we report the run-time by the frameworks for

different dimensions of the matrices in Table 3.2. In the honest-but-curious model, TinyGarble2

performs better than both Obliv-C and ABY while having similar run-time as EMP-Toolkit. In the

malicious model, supported only by TinyGarble2 and EMP-Toolkit, the run-time of TinyGarble2

is slightly longer compared to EMP-Toolkit. However, this is a small price for enabling scalability

in memory footprint as we discuss next.

Table 3.2. Run-time (ms) for matrix multiplication through GC

Model Dim. 10×10 20×20 30×30 40×40

HbC

ABY 8945 70785 335949 -
Obliv-C 6235 24720 77038 181222
EMP 915 4947 14689 32207
TinyGarble2 911 5036 14948 33235

Mal EMP 12291 96110 - -
TinyGarble2 13746 112003 375689 -

We plot the memory footprint for GC execution by the frameworks as a function of the

matrix dimension in Figure 3.1. In the honest-but-curious model, all three frameworks, except

ABY show scalability. With ABY, the memory usage by ABY increases as O
(
�3

)
for computing

the product of two � ×� matrices. As a result, beyond a certain maximum value of the matrix

dimension (� = 40), the GC execution exhausts the entire available memory of the system

(128GB) and is terminated by the OS. Even though EMP-Toolkit supports scalable execution in

38

0

20000

40000

10 20 30 40
Square Matrix Dimension

ABY Obliv-C EMP-Toolkit TinyGarble2

(a) Honest-but-curious

0

30000

60000

10 20 30
Square Matrix Dimension

EMP-Toolkit TinyGarble2

(b)Malicious

Figure 3.1. Memory usage (MB) for matrix multiplication through GC. Batch size limitation is
not applied to TinyGarble2.

the honest-but-curious model, it lacks scalability in the malicious model as shown by the plot

in Figure 3.1(b). We could only compute up to � = 20. With TinyGarble2, we could compute

up to � = 30, without limiting the batch-size. However, TinyGarble2 can actually compute the

matrix product of any arbitrary dimension by limiting the batch size, which is shown by our next

evaluation.

0.75

1

1.25

1.5

1.75

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

t(M
) /

 t(
∞

)

Maximum Allowed Memory (MB), M

D=10 D=20 D=30 D=40

Figure 3.2. Trade-off between the run-time and memory footprint for matrix multiplication
through TinyGarble2 in the malicious setting.

39

In this evaluation, we observe the trade-off between run-time and memory footprint for

matrix multiplication through TinyGarble2. In Figure 3.2, we plot the ratio C (")/C (∞) as a

function of ", where " is the maximum allowed memory usage set by the user, C (") is the

run-time for memory-limited execution, and C (∞) is the run-time for execution without memory

limitation. For � = 40, which cannot be computed without limiting memory, C (∞) is set to

C (120GB). The plot shows that for a small memory footprint, the run-time increases with the

reduction of memory. However, with large enough memory (∼ 250 MB), the run-time is almost

constant.

3.5.3 Runtime and Memory Footprint of CNN Inference with LeNet-5

Wehave implemented the CNNmodel LeNet-5 [36] using the CNN library of TinyGarble2.

We evaluate the model for inference on the MNIST dataset [42] with a pre-trained quantized

model. In our setting, the input from Alice is the trained CNN model parameters and the input

from Bob is the image. In the honest-but-curious setting, we compare the performance of

TinyGarble2 with EMP-Toolkit and Obliv-C since ABY cannot handle such large operations. We

also report the run-time and memory usage by TinyGarble2 in the malicious setting. None of the

existing frameworks support such large operations in the malicious setting.

The bit-widths of the weights and activations vary from 16 to 24 for different layers

of LeNet-5 to achieve an accuracy of 96%. However, the intermediate variables required for

computation of the MACs in convolution and FC layers require more bits than the inputs to

these layers. We have found through experimentation that to compute the correct results, 64

bits are required to hold the MAC outputs. Since none of EMP-Toolkit and Obliv-C support

computation involving variables with mismatched bit-widths, while implementing the CNN with

them we used 64-bit integers for all the inputs and intermediate variables. TinyGarble2 supports

computation involving variables of any bit-width between 1 and 64, even when the bit-widths do

not match. This allows us to implement a much efficient version of LeNet-5 compared to the

other frameworks. In our version, we set the bit-width of the input variables of different layers to

40

the minimum requirements and that of the MAC outputs to 64 bits. Run-time and memory usage

for inference on one image with different frameworks are presented in Table 3.3.

Table 3.3. Inference on one image with LeNet through GC

Run-time in sec Peak-memory in MB
Obliv-C 3.01E+03 127.73
EMP-Toolkit 3.43E+02 80.51
TinyGarble2 5.81E+01 45.83

The table shows that TinyGarble2 performs 6 ×, 18×, respectively faster and 43%, 64%,

respectively more memory efficient compared to EMP-toolkit and Obliv-C. In the malicious

settings, the inference time by TinyGarble2 is 74 min when the memory footprint is limited to

2GB. Even though this run-time may not be practical, the fact that TinyGarble2 can perform such

large computation with only 2GB memory demonstrates its scalability in both security models.

3.5.4 Benchmarking the Program Interface

Finally, we report the run-time in the two security models for the functions available in

the program interface in Table 3.4. The reported values are for 64-bit integer operations. We

group similar operations with identical run-time complexity.

Table 3.4. Run-time (ms) for the operations in TinyGarble2

Operations HbC Mal
Add, Sub, Bit-wise AND, OR 0.02 4.48
Multiplication 0.55 12.59
Division, Modulus 1.71 45.83
Square root 2.26 30.47
Hamming 0.01 4.54

3.6 Evaluation of BMR Framework

In this section we present the evaluation result on the MPCircuits framework. We analyze

two applications here – auction and voting. Later in Section 6.5, we elaborate on the Private Set

41

Intersection (PSI) and present the evaluation results. First, we discuss the metrics by which we

characterize each MPC application. We outline the metrics and the reason for their importance

in practical realization of the MPC protocols.

• Execution time ()): The total execution time of the protocol comprises the time required

for garbling/evaluating the circuit ()��) as well as time spent on the communication)� .

In a general case, these two can overlap in time depending on whether the implementation

is pipelined/multi-threaded or not and hence,) ≤)�� +)� . The distinction between the

two timing parameters is important since)�� mostly depends on the computational power,

whereas,)� depends on the network quality (delay and bandwidth).

• Communication (�><<): Maximum number of bytes exchanged between any two parties.

The “maximum” is required for protocols in which communication between parties are

asymmetric. In the BMR protocol, the communication between each two parties can be

computed as the multiplication of number of non-XOR gates, a constant factor (=9), number

of parties minus one (=−1), and the bit-length of each wire label (usually 128).

• Memory footprint and scalability ("4<): One of the important characteristics for

each MPC protocol is the amount of memory allocated in the end-to-end execution.

Protocols/frameworks that consume a high volume of memory have limited scalability in

real-world scenarios where the input size from each party is large.

Evaluation Setup. The experiments are performed on a server equipped with 24 core

Intel(R) Xeon(R) E5-2650 v4 @2.20GHz CPU with 256GB of RAM. We run all = parties in the

same LAN network with 20ms round-trip latency and 10Gbps bandwidth.

3.6.1 Auction

In this application, each party %8 inputs a 1-bit 1838, 8 = 1...=. The outputs of computation

are the index (ID) of the highest bidder 8<0G and the highest bid value G?0H = <0G(G1, ..., G=).

We perform experiments for different numbers of participants (=) in the auction for two

values of 1. Table 3.5 shows the results. As can be seen, the optimized Boolean circuits using

42

MPCircuits technology libraries reduce the number of AND gates by 3.3×. Bogetoft et al. [51]

have proposed a solution for secure auction based on multiple “Trusted Third Parties (TTPs)”.

TTPs compute the true outcome of the auction on behalf of the bidders. In this computation

model, if all TTPs collude, the real input of all parties are revealed, whereas, in our approach,

all parties securely process the auction and even if all other parties collude, nothing is revealed.

The approach of [52] also requires a separate party called “Auction Issuer”. The methodology

in [43] additionally requires outsourcing the computation to two TTPs. Larson et al. [53] design

a method based on a verifiable secret sharing scheme. The drawback of their approach is that not

all participants in the auction are involved in the secure computation protocol and the security

relies on the evaluators. Therefore, our solution is the only solution that (i) has constant round

complexity and (ii) guarantees security even for cases where all other parties are corrupted.

3.6.2 Voting

In this application, each party %8 inputs the index of the candidate to whom she wants to

vote (E>C48). Number of candidates is =2 and each E>C48 is ;6(=2)-bit. The outputs of computation

is the index of the candidate, =ℎ, with the highest vote.

Table 3.6 shows the experimental results for different number of parties (voters) and

candidates. As can be seen, MPCircuits is between 1.4-2.7× more efficient compared to standard

utilization of logic synthesis tools. Civitas [54] is a secure voting system which is verifiable

and coercion-resistant but requires five different type of agents for its execution. Fujioka et

al. [55] also propose a solution for secure auctions but it requires two additional entities called

administrator and the counter conspire. In contrast, our solution does not involve any additional

agents or entities.

3.7 Brief Overview of Existing GC Frameworks

In this section, we present a brief overview of the existing general purpose GC frameworks.

Realization of a function through GC entails two major steps: compiling the function description

43

Table 3.5. Evaluation on privacy-preserving auction.

Non-optimized Optimized

1 = #XOR #AND #XOR #AND $)

(s)
)��
(s)

)

(s)
�><<

(MB)
"4<

(MB)

16
4 69 324 261 97 0.74 0.62 2.39 0.04 10.25
8 140 761 600 228 1.69 1.91 6.62 0.22 10.29
16 281 1638 1281 492 3.51 4.48 15.06 1.01 18.14

32
4 133 660 534 194 0.74 0.66 3.41 0.08 10.31
8 269 1547 1229 454 1.66 1.83 6.50 0.44 10.36
16 539 3324 2621 975 3.48 4.34 16.85 2.01 30.65

Table 3.6. Evaluation on privacy-preserving voting.

Non-optimized Optimized

=2 = #XOR #AND #XOR #AND $)

(s)
)��
(s)

)

(s)
�><<

(MB)
"4<

(MB)

2 8 7 17 18 8 1.57 1.77 9.35 3.3 KB 10.09
16 19 43 45 16 3.29 4.29 13.76 0.02 10.09

4
4 17 50 23 37 0.71 0.54 3.25 0.02 10.09
8 49 128 105 79 1.64 1.80 6.46 0.08 10.08
16 123 294 249 147 2.99 4.11 14.23 0.30 10.08

8 16 250 739 545 388 3.40 4.01 15.40 0.80 15.30

to a free-XOR optimized netlist of Boolean logic and executing the GC protocol on the netlist.

While some of the frameworks support both these steps, some of them focus on only one of them,

more commonly the first one.

The first realization of the GC protocol is the Fairplay [43] framework. It introduces the

Secure Function Definition Language (SFDL) to write the functions. The Fairplay compiler

converts the functions to a netlist in Secure Hardware Definition Language (SHDL) which is

later garbled through the GC execution framework.

CBMC-GC [56] presents a compiler that accepts the input in a subset of ANSI-C. It

employs a bit-precise model checker, CBMC, to translate C programs into equivalent Boolean

netlist in ASCII format. An updated version of this framework is presented later [34]. This

framework does not include a GC-execution back-end.

44

The PCF framework [29] accepts the function description in a subset of C. The function

is then converted to LCC byte-code through the LCC compiler and then the PCF compiler

converts it to GC optimized netlist in a condensed ASCII format called Portable Circuit Format

(PCF). PCF provides its own GC execution back-end to garble the netlist. One of the prominent

features of its GC back-end is runtime loop unrolling. This ensures that all the garbled gates

do not need to reside on the memory at the same time. However, this feature also slows down

the execution. The long run-time is further aggravated by the absence of at least two of the

most recent GC protocol optimizations – half gate [28] and fixed-key block cipher [21] that the

framework precedes. Moreover, the generated netlists are 50-80% less optimized in terms of the

number of non-XOR gates on the reported benchmarks compared to the recent frameworks.

The Obliv-C [39] framework presents an extension of the C language to develop secure

applications based on GC. The main addition in Obliv-C is the obliv qualifier that can be

applied to the C types to indicate to the compiler that the variable is private. In this framework,

compilation and execution are unified into one task. The output of the framework is a compiled

binary that executes the function securely through GC. ObliVM [57] is a similar framework that

accepts the input function in Java and outputs a Java class file. However, this framework does not

support the fixed-key block cipher optimization and therefore results in ∼ 6× slower execution

compared to the fastest execution back-ends. One beneficial feature available in both Obliv-C

and ObliVM is the support for sub-linear oblivious access to arrays when the index depends on

the private data (in general such access takes linear time w.r.t. the size of the array).

The TinyGarble [6] framework provided the most memory-efficient version of GC

execution before TinyGarble2. Its introduction to sequential GC resulted in the most compact

representation of any given function. However, its usability is limited by the requirement

of homogeneous loops and function description in an HDL as opposed to a general-purpose

programming language. The most significant contribution of TinyGarble is its ability to re-

purpose existing logic synthesis tools to generate GC optimized netlist for the input function

written in a Hardware Description Language (HDL) like Verilog or VHDL. To date, the circuit

45

generation tool-chain of TinyGarble generates the most efficient netlists.

The Frigate [33] framework accepts the input in a custom language that resembles C.

Similar to CBMC-GC, it only provides the compiler, not the GC execution back-end. It presents

an efficient representation of the netlist such that the read time is minimized during garbling.

In addition to presenting the framework, the authors examine the reliability of the previous

frameworks and found out that most of them suffer from reliability issues. For example, in their

experiments, CBMC-GC, Obliv-C, ObliVM, and PCF crashed on programs that should have

been compiled correctly. Moreover, some of the netlists generated by ObliVM, and PCF were

incorrect. Many of these issues have since then been taken care of by the respective developers.

Frigate and CBMC-GC are currently the most efficient among the GC compilers that accept the

function in a programming language (as opposed to an HDL as in TinyGarble).

The EMP-toolkit [35] provides an efficient GC execution framework along with indepen-

dent implementations of several other security primitives like OT. The most important feature

of this framework is that it is one of the few publicly available tool for GC execution in the

malicious setting. It implements the authenticated garbling [22] presented in Section 2.4.2.

This is currently the fastest maliciously secure implementation of GC. This framework also

includes a netlist generation tool. However, the efficiency of the tool is inferior compared to

most of the other GC frameworks [6, 33, 56]. Moreover, even though it accepts the function

description in C++, we found the available features to be very limited which makes it unsuitable

for developing practical systems. For example, it supports comparison operation, but the result

of the comparison cannot be used as an input to a subsequent operation (e.g., obliv if in

Obliv-C, MUX in ABY, if-else in TinyGarble2). As another example, it does not support

shared or secret constants. Any constant value assigned to a variable is known to either Alice or

Bob or both. These limitations make the implementation of functions like ReLU or Maxpool

very difficult if not impossible.

46

3.8 Summary

In this chapter, we presented our open-source MPC frameworks. Among them, the most

recent one, inheriting the capabilities of the previous ones, is TinyGarble2 – a GC framework

for developing privacy-preserving applications with C++. The framework presents the most

optimized implementations of the basic arithmetic and logical building blocks, which can be

combined to develop a wide range of practical applications. In addition to the convenience of a

programming language, TinyGarble2 provides the best possible performance in terms of speed

and memory efficiency. Furthermore, TinyGarble2 allows scalable execution of practical sized

problems in both honest-but-curious and malicious security models – an issue not addressed

by the majority of the existing GC frameworks. The enhanced capability of TinyGarble2 is

demonstrated by a library for privacy-preserving CNN inference through GC. Our evaluations

show that TinyGarble2 outperforms the existing frameworks both in run-time and memory usage.

Acknowledgement. This chapter, in part, has been published at (i) 2021 IEEE Security

& Privacy (S&P) and appeared as: Siam U Hussain, Sadegh M Riazi, and Farinaz Koushanfar,

“The Fusion of Secure Function Evaluation and Logic Synthesis”, and (ii) 2020 ACM Workshop

on Privacy-Preserving Machine Learning in Practice (PPMLP) and appeared as: Siam U Hussain,

Baiyu Li, Farinaz Koushanfar, and Rosario Cammarota. “TinyGarble2: Smart, Efficient, and

Scalable Yao’s Garble Circuit”, and (iii) 2019 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST) and appeared as: Sadegh M Riazi, Mojan Javaheripi, Siam

U Hussain, and Farinaz Koushanfar, “MPCircuits: Optimized Circuit Generation for Secure

Multi-Party Computation” (iv) 2015 IEEE Symposium on Security & Privacy (S&P) and

appeared as: Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider,

and Farinaz Koushanfar, “TinyGarble: Highly Compressed and Scalable Sequential Garbled

Circuits”. The dissertation author was the primary investigator of the first two papers.

47

Chapter 4

General Purpose Hardware Platform for
Privacy-Preserving Computation

4.1 Overview

We developed two FPGA-based hardware platform to accelerate the computations required

for the GC protocol. Their purpose is to facilitate the cloud servers to provide secure services to

a large number of clients in parallel. In this chapter, we present our generic hardware platform

FASE: FPGA Acceleration of Secure Function Evaluation [11]. As explained in Section 2.4, in

GC, the underlying function is represented as a Boolean circuit, called a netlist. The truth-tables

of that netlist is encrypted, and the computation is performed on the encrypted netlist. Generation

and communication of these encrypted tables between the server and the client cause large

overhead compared to the plain-text computation. For a cloud server that is communicating

simultaneously to a large number of clients through parallel channels, efficient generation of the

encrypted tables becomes a challenge. As we show in this paper, generating them on our FPGA

accelerator brings down the protocol execution time within the practical limit.

Prior to FASE, a number of works [58, 59, 15] accelerated GC with FPGAs, including

our own work MAXelerator [58]. A secure MIPS processor is presented in GarbledCPU [59],

where the netlist is always the Boolean circuit of the processor, upon which the binary of the

secure function is loaded. This allows the user the ease of programming in any suitable language.

However, it pays the price by having to execute a large netlist. GarbledCPU provides three

48

versions with trade-off between speed and privacy, and even in the least secure version, the

overhead is too high for practical purposes.

Our first work in this domain, MAXelerator [58] presented an FPGA accelerator for

the GC execution of a Multiply-Accumulate (MAC) for matrix-multiplication, which is the

basic building block of a large number of ML models. While it achieves high throughput by

custom-designing this specific application, its usage is limited to a specific scenario, which

prompted us to develop a general purpose accelerator. For example, in one of our case studies,

when applied to the privacy-preserving recommendation system presented in [60], acceleration

of the MAC operation by ∼50× resulted in only 1.5× overall acceleration since only 2/3rd of the

operations involved MAC. FASE, which supports any generic function, does not achieve such a

high improvement on a specific operation (MAC), however, for the same problem, the overall

process is accelerated by ∼12×.

A generic GC accelerator on FPGA is presented in [15]. However, this design was not

able to utilize the full capability of the underlying hardware for a couple of reasons. First,

it employs very simple scheduling of the Boolean gates that may lead to a large number of

encryption units being unused for a significant time throughout the operation. Second, it does

not involve any pipeline and therefore incurs a large time gap between consecutive inputs to the

encryption units. More importantly, it employs SHA-1 for encryption, which is considered not to

be secure anymore [61, 62, 63]. The authors claim that it is adequate for preserving privacy in

the context of garbled circuits, where cryptography is applied at many levels. However, such a

statement without a formal security proof is not acceptable and may lead to security breaches.

In FASE, we employ AES [64] for encryption similar to all the recent GC realizations

on either software or hardware, especially after the appearance of the fixed key block cipher

optimization presented by JustGarble [21]. We also optimize the realization of the AES core

specifically for GC and achieve around 17% reduction in resource usage per core compared to

MAXelerator or GarbledCPU, two of the most recent secure realization of GC. Our pipelined

architecture allows the encryption cores to receive one gate each cycle. To ensure the optimal

49

usage of the cores, i.e., minimum idle cycles, we design a scheduling algorithm built around

a software simulator for our FPGA accelerator. Moreover, we design a memory management

wrapper around the embedded memory to ensure optimal use of the limited read/write ports. As a

result, FASE demonstrates minimum 2 orders of magnitude improvement in terms of throughput

per core over [15].

4.1.1 FPGA vs GPU as Acceleration Platform

There are several advantages of an FPGA accelerator over a processor with multiple cores.

In a processor, the threads communicate among themselves through shared memory resources.

To ensure that the threads do not read stale variables or there are no race conditions we need to

create barriers both before and after a thread accessing that memory. The time overhead of the

barrier is much higher than the time of generating one garbling table. As a result, parallelizing

the GC operation do not result in improvement in timing. Parallelization of garbling operation on

GPU is presented in [65, 66], but these works precede the row reduction optimization described

in Section 2.4.1. Therefore, they do not manage the dependency among gates. In FPGA, however,

we can precisely control the operation in sync with the clock. Our FSM precisely schedules the

garbling operations in the parallel cores to make sure that all the variables (in this case the labels)

are written and read in order without the use of a barrier.

4.1.2 Summary of Contributions

In brief, the contributions of FASE are the following,

• We present a pipelined garbling framework that is able to receive one gate every cycle.

This allows us to garble multiple gates in parallel using a single garbling core.

• We optimize the encryption core, AES, exclusively for the GC protocol. This results in

17% reduction in resource usage compared to the most recent secure FPGA realization of

GC.

• We design an efficient scheduling scheme for our pipelined architecture built around a

50

simulator of the FPGA design. It ensures near optimal use of the encryption cores under

the constraints of gate dependency and memory access collision.

• We achieve minimum 2 orders of magnitude improvement in terms of throughput per core

compared to the most recent generic GC accelerator on FPGA.

The source code of FASE is available at https://github.com/siamumar/FASE.

4.2 Global Flow

4.2.1 Security Model and Terminology

In accordance with most of the recent realization of the GC protocol [6, 33, 29, 44, 34] we

adopt the honest-but-curious security model, which assumes that both parties follow the protocol

honestly yet may try to learn additional information from the information at hand. We use the

term XOR gates to refer to XOR, XNOR and NOT gates, and the term non-XOR gates to refer to all

other gates (e.g., AND, OR, NAND, etc). In addition to these gates, our GC framework supports

D Flip-Flops (DFFs) with inputs �, and � and output &. At reset, The value at input � passes

to &, otherwise, at each positive edge of the clock, value at input � passes to &. The Boolean

circuit representing the function � being executed through GC is referred to as the netlist, and

the circuit that we design on FPGA to generate the garbled tables is referred to as the circuit. The

term netlist cycle is used to refer to the clock cycles pertaining to the netlist, and the term cycle is

used to refer to the clock cycles pertaining to the circuit on FPGA.

4.2.2 System Setup

The overall system setup of FASE is presented in Figure 4.1. The cloud server includes

a Central Processing Unit (CPU) as the host and an FPGA-based accelerator to perform the

garbling operation. The GC accelerator on FPGA generates the garbled tables along with the

labels for both garbler (server) and evaluator (client) and sends them to the host CPU. The CPU

stores them in a buffer (not shown in the figure) and reads back when requested for an inference

51

Garbled Tables

Garbler Keys

Evaluator Input

Garbler Keys

Alice

Garbled Tables

Evaluator Keys

Bob

Garbler Input

OT Evaluator Keys

Host CPU
GC Accelerator

on FPGA
Output masksOutput masks

Figure 4.1. FASE system architecture on the server side.

task by a client. Note that FASE only accelerates the GC computation on the server side and is

independent of the GC realization on the client side. Garbling and evaluation are similar tasks,

and our garbling engine can also act as the evaluator engine with few tweaks. In general, the

bottleneck of GC protocol evaluation is communication as also shown in the prior works [6]. As

such, acceleration of GC evaluation on the client side is not effectual to reduce the overall latency.

However, in the cloud server setting, where a single server is simultaneously communicating

with a large number of clients via multiple channels, generating the garbled tables becomes the

bottleneck. Therefore, accelerating this process is beneficial on the server side, but not on the

client side. The presence of FASE on the server side is invisible to the clients except for the

speed up in service.

4.2.3 Client-Server Model

In our setting, the cloud server acts as the garbler and the client acts as the evaluator.

The motivation behind this setting is that the garbling operation does not require any input from

any party. It is only during evaluation that the inputs are required. FASE keeps generating the

garbled tables independently and sends them to the host CPU along with the generated labels for

the input wires of the netlist. When requested by the client, the host CPU simply performs the

garbling with one of the stored garbled circuits.

52

4.2.4 Netlist Format

The netlist is the Boolean representation of the function 2 = � (0, 1), where 0, and 1

are inputs from the server and the client respectively. The netlist file holds information of the

number of netlist input bits (i.e., the total number of bits in 0 and 1), the numbers of FFs, XOR

and non-XOR gates in the netlist, and the indices of the gates generating the final output 2. It

also holds information of the input and output indices, and the Boolean logic of each gate. In

addition, it may also have stall entries indicating that the inputs of the next gate are not ready in

the current cycle.

JustGarble [21] introduced the SCD format to represent the netlist. The SCD format

employs efficient indexing of the gates and wires that results in a compact file. However, it

requires access to multiple elements of the arrays at the same time which is not amenable to the

embedded memory used to store the netlist on FPGA. FASE uses the indexing format of the SCD

file but stores the netlist in a new HSCD format shown in Table 4.1 that supports reading the

netlist in streaming style. �, �, INPUT_0, and INPUT_1 are indices of the inputs to the DFFs

and gates respectively. LOGIC holds the 4 output bits of the gate’s truth table where the inputs

are in the order 00, 01, 10, 11. IS_OUTPUT is a one-bit value that is set to 1 if the DFF or gate’s

output is connected to the netlist output 2. The index of the gate’s output wire is the index of the

gate in this list, thus does not need to be stored explicitly.

Table 4.1. HSCD format to store the netlist

of Lines Content

4 Netlist parameters
(input and output bit lengths, number of dffs, gates etc)

of dffs � ‖ � ‖ 1111 ‖ IS_OUTPUT
of gates INPUT_0 ‖ INPUT_1 ‖ LOGIC ‖ IS_OUTPUT
of stalls - ‖ - ‖ 0000 ‖ 0

53

4.2.5 Execution Steps of FASE

Our implementation is distributed over two platforms: the host CPU and FASE on the

FPGA together act as the garbler. The netlist is generated at the host CPU and transferred to

FASE. This step is performed only once per function, irrespective of the number of clients or the

number of executions.

Then for each client, the following steps are performed.

1. FASE generates ' (free-XOR, Section 2.4.1) and the AES key (fixed-key block cipher,

Section 2.4.1) and sends to the host.

2. FASE generates keys for constant values 0 and 1 and sends them to the host. These keys

are used if the initial values of the DFFs are assigned to constants.

3. For each netlist cycle

(a) For each DFF

i. If this is the first netlist cycle, the keys for the & input of the FFs are assigned

either to a constant key (corresponding to 0 or 1 depending on the value) or to

the key of input �. In the latter case, the input keys are generated and sent to the

host.

ii. For the rest of the netlist cycles, keys for the & inputs of the DFFs are copied

from keys at the � inputs.

(b) For each gate

i. If the inputs of the gate are connected to the netlist inputs 0 or 1, FASE generates

the keys corresponding to those inputs and sends them to the host.

ii. FASE generates the garbled table and output key and sends the garbled table to

the host.

54

garbled
tables

address

Key Generator

Input Keys

Key Regsiter

Garbled Tables

Output Keys
D

is
tr

ib
ut

or

w
r_

en

ad
dr

es
s

ga
te

 id

ga
te

 in
fo

se
le

ct

keys

input
keys

input
keys

garbled
tables

output
keys

ad
dr

es
s

w
r_

en

se
le

ct

st
at

us

w
r_

en

ad
dr

es
s

st
at

us

st
at

e

tag

index

data

Netlist

Masks

C
ol

le
ct

or

Garbling Engine

Key Expansion

AES AES AES AES

FIFO

FIFO

output
keys

To
 th

e
ho

st
 C

PU

FSM

XOR

Figure 4.2. Architecture of FASE. (Please see Figure B.1 at Appendix B for an enlarged version.)

iii. If the output of the gate is connected to the netlist output H, the mask bit (Point

and Permute, Section 2.4.1) is stored to an internal register file.

(c) At the end of each netlist cycle, all the mask bits are transferred to the host.

4. The host CPU performs the communication with the client, including OT, and jointly

compute the output H.

Note that, generation of the garbled tables is independent of the inputs 0 or 1. Therefore,

FASE does not need any information from the host after the netlist is transferred. On the other

hand, the host CPU receives the garbled tables for each non-XOR gate and the mask of each bit of

the output 2. However, the key of the output of each gate is only used internally inside FPGA to

generate the garbled tables and outputs of the subsequent gates and not sent to the host.

4.3 Architecture of FASE

Figure 4.2 shows the different components of FASE. The heart of the system is the

pipelined garbling engine that is capable of receiving one gate per cycle. Its inputs and outputs

are stored in six different memories: Netlist, Key Register, Input Keys, Output Keys, Masks, and

55

Garbled Tables. Three of them are dedicated to storing the keys. The Key Register stores the two

most recently generated keys. The Input Keys memory stores the keys associated with the netlist

inputs 0 and 1. The rest of the keys, generated either by the garbling engine or XOR is stored in

the memory named Output Keys. Efficient synchronous management of these memories is key to

the optimal usage of the encryption cores inside the garbling engine. The garbling operation is

executed by the control logic, consisting of the Finite State Machine (FSM) and the distributor,

according to the steps described in Section 4.2.5. The collector works in parallel to the control

logic to collect and transfer the generated data from FASE to the host CPU. In addition, FASE

incorporates a key generator for the random keys associated with the netlist inputs.

4.3.1 Key Generator

The key generator consists of 2^ True Random Number Generators (TRNG), each of

which generates 1 random bit per cycle. The TRNGs are implemented with sets of ring oscillators

following the design presented in [67]. The clocks to the TRNGs are controlled through two

clock buffers each connected to ^ TRNGs. Each set of TRNGs is only enabled when new keys

need to be generated as described in Section 4.2.5.

4.3.2 Garbling Engine

Given the two keys associated with the value 0 of the two inputs and the Boolean logic of

the gate, the garbling engine generates the garbled table and the key associated with the value

0 of the output. Note that according to the free-XOR optimization, the key for the value 1 of a

wire is generated by XORing the key for value 0 with '. The garbling engine incorporates both

the row-reduction and half-gate optimizations and thus the generated tables have two rows per

gate. No garbled tables are generated for the XOR gates. Output keys of these gates are generated

by the XOR block.

The garbling engine has four AES cores. They have a 10 stage pipelined architecture.

Therefore, generating the garbled table and output key of each non-XOR gate requires 10 cycles.

56

However, the garbling engine can accept one gate per cycle due to the pipelined architecture.

Even though it increases the throughput by a large margin compared to the previous accelerators,

it also creates a dependency issue since the output keys of the gate, 6= sent to the garbling engine

at the =-th cycle is not ready until =+10-th cycle. Therefore, from cycles =+1 to =+9 only the

gates that are independent of the output of 6= can be sent to the garbling engine. We solve this

issue by smart scheduling elaborated in Section 4.4.

As shown in Eq. 2.2, the encrypted key is again XORed with the input keys and the gate

identifier. These keys are passed through 10-stage FIFOs to be XORed with the AES output.

The AES encryption function accepts two inputs: the plain-text, which is a function of

the input keys, and the AES key. According to the fixed key block cipher optimization [21], the

AES key is fixed for all the AES cores for one garbling session. This allows us to instantiate

only one common key expansion module for all the four AES cores. As a result, the resource

utilization by the garbling engine is reduced by around 17%. In our implementation, the key

expansion module has 5 pipeline stages. To ensure that the expanded key is ready before the

garbling of the first gate starts, we insert idle states if necessary (i.e., if the number of DFFs in

the netlist is less than 4) between step (1) and (3-b) of the steps described in Section 4.2.5.

4.3.3 Control Logic

The control logic consists of the FSM and the distributor. The distributor controls the

source of the input keys fed to the garbling engine. The FSM performs the following tasks:

• Fetch the current gate from the netlist and determine the source of its input keys.

• If the source is the Input Keys memory, and not already generated, turn on the key generator.

• If the source is the Output Keys memory, and not already computed, stall the operation.

• If both the input keys of the current gate is ready, increment the gate index to fetch the

next gate.

• Determine the source of the output keys for each gate based on the gate logic (XOR or

non-XOR).

57

• Control the storing of the masks based on the IS_OUTPUT value for the gate.

• Once all the garbled tables are computed, reset the gate index and increment the netlist

cycle.

4.3.4 Memory Management

Netlist. This is implemented on a BRAM that stores the netlist in the HSCD format

presented in Section 4.2.4. BRAMs have one cycle latency from receiving the input address (gate

index) to providing the data (input indices and logic of the gate). Before proceeding to the next

gate, i.e. increasing the gate index, the control logic needs to read the input indices of the current

gate for checking if the input keys are ready. This would result in a latency of 2 cycles per gate.

Note that the previous GC accelerators did not need to deal with this issue. MAXelerator [58]

performed only one specific function and the netlist of that function was embedded into its control

logic. The generic accelerator in [15] arranged the circuits in layers of independent gates and

only garbled gates of one layer at one time. This approach results in FPGA resources being left

unused for a large part of the operation.

Fortunately, with the indexing format of SCD [21], the gates are accessed sequentially.

Therefore, the gate index is always incremented by 1. We design a wrapper around the BRAM,

that always reads one address ahead of the given address (gate index) and stores the data into a

register. Whenever the address is incremented, the data already stored in the register is provided

at the output and the next data is requested from the BRAM. From the perspective of the control

logic, this is equivalent to reading from a register file or a distributed RAM, that provides the

read data immediately.

Key Register and Input Keys. The Input Keys is a dual-port BRAM to store the keys

associated with the netlist inputs 0 and 1. If the input of the current gate is connected to either of

these, a new ^ bit key is generated and stored in the memory, if not already generated. Otherwise,

the key is read from the memory. To keep track of whether or not the key is already generated, a

58

register file of 1-bit flag registers with the same depth as the BRAM is maintained. To avoid the

possibility of collisions through the read and write ports of the BRAM, the most recent pair of

keys are stored in the Key Register, a register file with two ^-bit registers. There is a write to

the Input Keys memory only if a new key is generated, and in that case, the keys to the garbling

engine are supplied from the Key Register, eliminating the possibility of collision.

Output Keys. The keys associated with gate outputs generated by the garbling engine

or XOR are stored in a dual port BRAM. These keys are also read later for subsequent gates

that depend on the current gate. Unlike the Input Keys, flag registers are not required for the

Output Keys since the readiness of the required keys at a certain cycle is pre-computed offline for

each netlist, and encoded in the HSCD file. In [15], four cycles are required per gate for BRAM

access. Reducing this time to two cycles is straight forward- using a dual port, instead of single

port BRAM. However, for each gate, two keys are read from the memory and one key is written

back. Therefore, theoretically, it is possible to process each gate in 1.5 cycles. To reduce the total

memory access time we design a wrapper, as shown in Figure 4.3, around the BRAM.

rd_data_0

rd_data_1

addr_0

addr_1

wr_data_0

wr_data_1

BRAM

wr_{req, data, addr}_0

Memory
Rules

wr_{req, data, addr}_1

rd_{req, data, addr}_0

rd_{req, data, addr}_1

wr_{req, data, addr}_q

stall_rd

Figure 4.3. Wrapper module around the BRAM of Output Keys.

In addition to the external read and write request, address and data for the two ports 0

and 1, it has an additional output stall_rd that directs the control logic to stall the operation.

Moreover, it has an internal queue that can hold one write command. The read and write ports of

the BRAM are controlled according to the following rules.

59

• If there is no queued request,

– if the number of write requests is more than or equal to the number of read requests, the

write requests are performed and the read requests are stalled.

– if the number of write requests is less than the number of read requests, the read requests

are performed and the write request is queued.

• If there is a write command in the queue,

– the read commands are stalled irrespective of the number of read requests.

– if the number of write requests is 2, the write command at port 1 is queued and the

queued write command is performed through that port.

– if the number of write requests is 1, the queued write command is performed through

the free port.

A write request is never queued for more than one cycle. Queuing of a write command is invisible

to the control logic.

In addition to these, the garbled tables are stored in a dual port BRAM. The 1-bit output

masks are stored in a register file so that all the mask bits can be transferred to the host CPU in

one or two cycles.

4.3.5 Collector

The collector performs the communication with the host CPU. Four types of data are sent

from FASE to the host: (i) the ' and AES keys, (ii) keys for the netlist inputs, (iii) garbled tables

for the non-XOR gates, and (iv) output masks for the netlist outputs. At each cycle, the collector

sends the following three pieces of information to the host:

1. A tag indicating the type of the data being sent.

2. The index of the respective data.

3. The data.

60

The keys for the netlist inputs are assigned the highest priority since only the most recent

pair of keys are stored in the Key Registers. The garbled tables are stored in a dual port BRAM.

One of the port is used to write the garbled tables. The collector uses the other port to read

them. Since the gates are accessed sequentially, the garbled tables are also written sequentially.

Therefore, the read address being smaller than the write address indicates that there are new

garbled tables that need to be transferred. After all the garbled tables are sent, all the output

masks are sent together in one or two cycles depending on the bit length of the netlist output 2.

Communication Bandwidth. Let us define the following netlist parameters. The total

input bit-width is " , the output bit-width is # , the total number of gates is �, the total number of

XOR gates is - , and the netlist takes � cycles to compute the operation Then the data transferred

from the FPGA to the host CPU to garble one netlist is 4^ + ((" + 2(� − -))^ + #)� bits.

This is significantly less compared to the accelerator presented in [15], which needs to transfer

(3� +3(� − -))^ bits per netlist, the difference being (3� + (� − -) −")^−# . Note that [15]

only supports combinational circuit, therefore the number of netlist cycles � is always 1, but

the number of gates and the number of input bits will be larger. Eventually, the product � ×�

will be of the same order for both combinational and sequential netlists of the same function.

Moreover, [15] does not support half-gate optimization, therefore the garbled table has three rows

instead of two.

4.4 Scheduling the Gates

As explained in Section 4.3.2, the garbling engine is able to accept one new gate per cycle.

However, since each gate takes 10 cycles to process, the gates sent to the garbling engine at cycles

=+1 to =+9 should be independent of the gate 6= sent at cycle =. If not properly scheduled,

there may be a large number of idle cycles, when the control logic waits for the input keys of the

current gate being computed. We treat this problem as offline scheduling of a Directed Acyclic

Graph (DAG) to a Bounded Number of Processors (BNP) with the number of processors set to

61

g1

g2
g3

Figure 4.4. Different types of gate dependencies.

the number of pipelined stages [68, 69, 70, 71, 72]. The scheduling is performed in two steps:

1. The gates are ordered according to their priority.

2. From the ordered list, the gates are assigned one by one to one of the free processors.

4.4.1 Setting the priority

In the majority of the work on DAG scheduling, one of the three parameters are used as

the measure of priority:

• C-level: length of the longest path (excluding the gate) from the netlist input to the gate.

• 1-level: length of the longest path (including the gate) from the gate to netlist output.

• ALAP: length of the critical path – 1-level.

The key difference between assigning tasks to parallel processors and to a single pipelined

processor is that in the latter case the bottleneck is not the availability of the processors rather

the readiness of the inputs. Therefore, the last two parameters are better than the C-level in this

case since they both prioritize gates with a higher number of dependent gates. However, they

still do not result in optimal ordering of gates. This is illustrated by a small example netlist in

Figure 4.4. According to both 1-level and ALAP, gates 61 and 62 have higher priority than 63,

while scheduling 63 first will free up more gates. In this work, we employ the weighted fanout

of a gate as a measure of its priority. The fanout of a gate is the number of gates dependent on

it. In computing weighted fanout, the weight of XOR gates are set to 1, and the weights of the

non-XOR gates are set to 10, the number of cycles it takes to compute their output keys.

62

4.4.2 Adding Gates to the Queue

To add gates to the queue from the ordered list we follow Algorithm 1. This is a simulator

of the hardware architecture presented in Section 4.3. It includes all the constraints of the

hardware (e.g., number of pipeline stages, processing one gate per cycle, memory conflict) except

one. That is at every cycle, instead of reading only one gate, it reads all the gates that have not

been queued yet from the ordered list and queue the first ready gate. A gate is ready when the

keys assigned to its inputs have been computed. If none of the gates are ready, it inserts a BC0;;.

The input to the algorithm is the ordered list of gates �0C4!8BC of size �. Every element

of �0C4!8BC is a gate 6(80, 81, ;), where 80, 81 ∈,8A4!8BC are the indices of the two input wires

and ; is the Boolean logic of 6. ,8A4!8BC is the list of wires that are ordered according to the

following rules (introduced in SCD format [21]): (i) the first " indices belong to the " input

wires of the netlist, and (ii) the index of the output wire of a gate is the sum of the gate’s index in

the �0C4!8BC and " . The task <4<_AD;4B at line 12 of Algorithm 1 decides if there is a stall in

the read operation according to the rules outlined in Section 4.3.4.

Note that scheduling instructions in a pipelined processor is an active area of research [73,

74, 75]. However, these schemes target real-time scheduling. Therefore, they primarily

optimize the speed of scheduling and deal within a limited view of different sets of operations

running in parallel. In the case of GC, the gates are scheduled offline, only once per netlist, and

the scheduler has the complete view of the entire netlist. Therefore, these schemes do not benefit

this specific task.

4.5 Evaluation

4.5.1 Benchmark Functions

Table 4.2 shows the benchmark functions along with the number of gates and XOR

gates and the number of netlist cycles to complete each function used to evaluate FASE. These

benchmarks, except the MACs, are the largest sequential netlists provided in the TinyGarble [6]

63

Algorithm 1: Algorithm to assign gates to the queue
input :Ordered list of gates �0C4!8BC
output :The queue of gates &
parameters :number of input wires "

number of gates �
number of pipeline stages %

1 create arrays,0,,1, '0, '1 of 0s
2 create an array '403H of 0s
3 for : = 1 to " do
4 set '403H[:] to %
5 2 = 0
6 while size of & <� do
7 increment 2
8 for : = 1 to " +� do
9 if '403H[:] is not 0 then
10 increment '403H[:]
11 BC0;;_A3 =
12 <4<_AD;4B(,0 [2−1],,1 [2−1], '0 [2−1], '1 [2−1])
13 if BC0;;_A3 is true then
14 push BC0;; into &
15 continue
16 for : = 1 to � do
17 read 6(80, 81, ;) from �0C4!8BC [:]
18 if '403H[80] >% and '403H[81] >% then
19 push 6 into &
20 set '0 [2] to 1, set '1 [2] to 1
21 if ; is XOR then
22 set,0 [2+1] to 1
23 set '403H[:] to %
24 else
25 set,1 [2+%+1] to 1
26 set '403H[:] to 1
27 break
28 push BC0;; into &

64

repository, one of the most recent and efficient netlist synthesis tools for GC. The netlists for

multiplication performs the same functions as those in [6], but we use different implementations

that favor parallelism. The MAC netlists perform the same function as the custom GC accelerator

of MAXelerator [58].

Table 4.2. Benchmark Functions

Benchmark Function Input
bits

Netlist
csycles # Gates # XORs

Mill_8_8 Millionaire’s 8 8 4 3
Add_8_1 Addition 8 1 37 30
Add_8_8 Addition 8 8 5 2
Hamm_32_1 Hamming dist. 32 1 188 157
Hamm_32_32 Hamming dist. 32 32 13 8
Hamm_512_512 Hamming dist. 512 512 21 12
Mult_256_512 Multiplication 256 512 1699 1186
Mult_1024_2048 Multiplication 1024 2048 6782 4735
MAC_8_1 MAC 8 1 397 231
MAC_16_1 MAC 16 1 1678 1077
MAC_32_1 MAC 32 1 7036 4805
CORDIC_32_31 Trigonometric 32 31 2464 1544
AES_128_11 AES 128 11 4662 3225

4.5.2 Resource Utilization

FASE is implemented on a Xilinx Virtex UltraScale VCU108 (XCVU095) FPGA. The

resource utilization on this platform is shown in Table 4.3. In this implementation, the number of

gates � = 213, the number of input bits " = 210, and the number of output bits # = 28. These

parameters are selected such that FASE supports the largest of the benchmark functions presented

in Table 4.2. The memory requirement will increase with the increase in the values of �, " , or

. However, the resource utilization by the garbling engine and the key generator is independent

of these parameters. Therefore, we report the independent utilization by the latter components

separately in Table 4.3. The maximum supported clock frequency on this platform is 200MHz.

We do not compare the resource utilization with previous GC accelerators. MAXel-

erator [58] supports only one specific function. The accelerator in [15] employs SHA1 for

65

Table 4.3. Resource Utilization of FASE

Resource Total Garbling Engine Key generator

Num % Num % Num %
LUT 50035 9.31 31330 5.83 18202 3.39
FF 11416 1.06 5612 0.52 3917 0.36
LUTRAM 569 0.74 553 0.72 0 0.00
BRAM 68.5 3.96 0 0.00 0 0.00

encryption, which is not considered secure anymore, and 80-bit keys instead 128 bits used by the

recent GC realizations. Therefore, it is not possible to make a fair comparison.

4.5.3 Evaluation of Scheduling and Memory Management

The goal of these optimizations is to reduce the number of cycles per gate. According

to our evaluation, using weighed fanout instead of ALAP results in 0 to 9% reduction in the

percentage of idle cycles. We choose to compare to ALAP as it has been shown to be superior

over other methods of offline scheduling in a bounded number of processors [71].

To evaluate the performance improvement provided by the memory management tech-

niques presented in Section 4.3.4, we compare the average number of cycles per gate for different

benchmark functions over one netlist cycle without and with the memory management in Table 4.4.

The table shows that memory management reduces the average number of cycles per gate by up

to 0.5. To put these values into context, the theoretical minimum value of cycles per gate is 1.5.

4.5.4 Comparison with Previous Work

We now compare the performance of FASE with the two most recent GC accelerators

implemented on FPGA [58, 15]. Both these works employ multiple cores while FASE employs

a single core with a pipelined architecture. Similar to [58], we compare the performances

on a per core basis. Table 4.5 compares the throughput of these works with FASE for the

reported benchmark functions. Throughput is computed as the number of garbled netlist per

core per cycle. FASE shows 110× to 310× improvement in throughput compared to the generic

66

Table 4.4. Evaluation of the Effect of the Memory Optimization

Benchmark Without optimization With optimization

Cycles Cycle/gate # Cycles Cycle/gate Improv.
Mill_8_8 19 4.75 17 4.25 0.50
Add_8_1 120 3.24 120 3.24 0.00
Add_8_8 17 3.40 17 3.40 0.00
Hamm_32_1 342 1.82 320 1.70 0.12
Hamm_32_32 65 5.00 65 5.00 0.00
Hamm_512_512 113 5.38 113 5.38 0.00
Mult_256_512 3123 1.84 2686 1.58 0.26
Mult_1024_2048 12492 1.84 10744 1.58 0.26
MAC_8_1 769 1.94 675 1.70 0.24
MAC_16_1 3160 1.88 2770 1.65 0.23
MAC_32_1 12746 1.81 11414 1.62 0.19
CORDIC_32_31 4554 1.85 4047 1.64 0.21
AES_128_11 9004 1.93 7697 1.65 0.28

accelerator [15]. Table 4.5 also shows that the throughput of FASE is 3.65× to 4.98× smaller

compared to MAXelerator [58] (presented in next chapter) for MAC operation. We would like to

emphasize that [58] is a customized architecture that can only perform this one specific function

while FASE is a generic GC accelerator capable of executing any given netlist.

4.5.5 Improvement in Throughput over Software Approach

Finally, we evaluate the performance of FASE against the software realization of GC

presented in TinyGarble [59]. TinyGarble is built on the JustGarble [21] framework. With the

fixed key block cipher optimization, this is the fastest software realization of GC at present. We

run it on an Intel Xeon E5-2600 processor @ 2.9GHz with 128 GB memory. Since there is a

large difference in the clock frequency of the FPGA and the CPU, we compare the performance

in terms of absolute time in Ds, instead of the number of cycles. As shown in Table 4.6, FASE is

up to 19× faster than the fastest software realization of GC.

Asmentioned earlier, the customizedGC accelerator forMACpresented in [58] accelerates

the privacy-preserving recommendation system in [60] by only 1.5× even though it accelerates

the MAC operation, which is 2/3rd of all the computations, by ∼50×. In that particular work,

67

Table 4.5. Comparison of FASE with previous GC accelerators

Benchmark Previous
Work # cores # cycles # cycles

of FASE Improv.†

Millionaire (2) [15] 43 1.90E+02 6.70E+01 121.94
Addition (6) [15] 43 5.60E+02 9.90E+01 243.23
Hamming (10) [15] 43 1.20E+03 1.66E+02 310.84
Hamming (30) [15] 43 2.20E+03 3.38E+02 279.88
Hamming (50) [15] 43 2.80E+03 6.69E+02 179.97
A * B (8) [15] 43 4.40E+03 6.19E+02 305.65
A * B (32) [15] 43 3.60E+04 1.05E+04 147.78
A * B (64) [15] 43 1.10E+05 4.28E+04 110.51
MAC_8_1 [58] 8 2.40E+01 7.01E+02 1/3.65
MAC_16_1 [58] 14 4.80E+01 2.80E+03 1/4.17
MAC_32_1 [58] 24 9.60E+01 1.15E+04 1/4.98
†In terms of (number of netlists garbled per cycle per core)

most of the remaining operations involved trigonometric functions which can be executed by the

CORDIC function. FASE accelerates MAC by ∼13× and CORDIC by ∼10×. Therefore, it is

able to accelerate the system in [60] by ∼12×.

Table 4.6. Comparison of FASE on FPGA with TinyGarble [6] on CPU

Benchmark Garbling Time(cc) Garbling Time (`s)

FASE TG [6] FASE Improv.
Mill_8_8 2.59E+02 1.04E+01 1.30E+00 8.05
Add_8_1 1.75E+02 8.92E+00 8.75E-01 10.19
Add_8_8 1.38E+02 1.34E+01 6.90E-01 19.37
Hamm_32_1 3.38E+02 2.98E+01 1.69E+00 17.64
Hamm_32_32 2.72E+03 1.09E+02 1.36E+01 8.00
Hamm_512_512 7.01E+04 1.98E+03 3.51E+02 5.65
Mult_256_512 1.64E+06 8.27E+04 8.19E+03 10.10
Mult_1024_2048 5.61E+07 1.25E+06 2.81E+05 4.46
MAC_8_1 7.01E+02 3.82E+01 3.51E+00 10.90
MAC_16_1 2.80E+03 1.63E+02 1.40E+01 11.62
MAC_32_1 1.15E+04 7.38E+02 5.73E+01 12.87
CORDIC_32_31 1.29E+05 6.82E+03 6.44E+02 10.60
AES_128_11 8.77E+04 5.07E+03 4.38E+02 11.57

68

4.6 Summary

In this chapter, we presented FASE, an FPGA accelerator for Secure Function Evaluation

(SFE) by employing the Yao’s GC protocol. FASE employs a pipelined garbling engine, efficient

assignment of gates to the engine to reduce idle cycles, and optimized memory management

to increase the number of gates garbled per cycle. As a result, it achieves at least 2 orders

of magnitude improvement in throughput per core compared to the most recent generic GC

accelerator on FPGA. FASE also outperforms the customized GC accelerators when applied to

problems requiring diverse computations.

Acknowledgement. This chapter, in full, is a reprint of the material as it appeared at

2019 IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) and

appeared as: Siam U Hussain and Farinaz Koushanfar, “FASE: FPGA Acceleration of Secure

Function Evaluation”. The dissertation author was the primary investigator of the paper.

69

Chapter 5

Custom Co-design and Optimization of
Privacy-Preserving Computation and
Hardware

5.1 Overview

In the previous chapter, we presented a general purpose hardware platform designed

to accelerate GC computation. In this chapter, we show that further speed up is possible

by customizing the accelerator for specific operations. Considering the demand of efficient

privacy-preserving matrix multiplication in various data-sensitive applications including Machine

Learning (ML) inference, we customized our accelerator for this application.

ML models are increasingly integrated into the cloud services in order to improve the

functionality of the underlying application [76, 77, 78]. The use of ML models as a cloud

service has raised serious questions regarding the information privacy of clients who wants to

take advantage of such services. On the one hand, clients do not want to reveal their potentially

private input data (e.g., medical records, financial data, or location) to cloud servers. On the

other hand, cloud servers should keep their model confidential to preserve the competitive

advantage and ensure receiving continuous query requests. As such, it is highly required to

devise privacy-preserving frameworks in which, ML models can be executed without disclosing

the inputs of each party to one another.

70

In recent years, with the emergence of optimized solutions to the GC protocol, there

has been increasing interest in employing GC to ensure the privacy of both the cloud and users

in large-scale machine learning and data mining applications [79, 60, 80]. While significant

algorithmic progress towards efficient privacy-preserving ML has been made, their usage in

practical scenarios is still limited by the overhead of SFE operations. Modern ML algorithms

including kernel-based data analytics [81, 82] as well as deep learning models [83] rely on

iterative matrix multiplication for their execution. Matrix-based ML algorithms are key enablers

for devising various contemporary data-driven applications. For instance, the well-known work by

Nikolaenko et al. [60] presents a movie recommendation system with private reviews based on GC.

Their system takes few hours to operate on a matrix with 10K reviews on a hardware platform with

16 cores. In this paper, we demonstrate how we can effectively reduce this computational time by

around 65%. Similar to the work in [60], the bottleneck of the privacy-sensitive computation in

the majority of ML applications is matrix multiplication. Real-world applications can be found

in various domains such as personal finance (e.g., portfolio analysis [84]), and medical research

(e.g., genome analysis [85]). For example, in portfolio analysis [84] the stock correlation data

obtained by the financial institution is represented as a matrix and the stock portfolio of the client

is represented as a vector and the risk to return ratio is the result of a multistage multiplication

between these two inputs.

In this chapter, we present MAXelerator [58] – an FPGA accelerator to perform GC-based

Multiply-Accumulate (MAC), which is the building block of the matrix multiplication operation.

Our approach enables novel and significantly more practicable privacy preserving ML. Prior to

MAXelerator, a number of works [59, 15] have presented GC implementation on FPGA. However,

similar to FASE described in the previous chapter, their primary focus is on the versatility of the

framework rather than computational efficiency. As explained above, in the majority of the ML

computations the privacy-sensitive segment of the operation boils down to a MAC. Therefore we

design a concise customized architecture on FPGA to accelerate its GC computation.

The GC architecture of MAXelerator embraces two approaches: (i) the TinyGarble [6]

71

framework (presented in Chapter 3) introduces sequential GC where the same netlist is garbled

for multiple rounds with updated encryption keys, (ii) the work in [79] perform static analysis

on the function (given the control path is independent of the data path) to determine the most

optimized netlist to garble in every round. In our design, there are an outer loop and inner

loops. The outer loop garbles the netlist of a MAC in every round similar to [6]. The inner loop

breaks the operation of the MAC into components such that in every clock cycle we can ensure

full utilization of the implemented encryption units. Unlike the conventional GC approach,

the underlying netlist is embedded in a finite state machine (FSM) that controls the transfer of

the keys between gates. This allows us to employ a parallel architecture for the multiplication

operation as we can precisely control the garbling operation in every clock cycle and ensure

accurate synchronization among the gates that are garbled in parallel. Unlike a parallelization

in software, our approach does not incur any synchronization overhead. Thus we can ensure

the minimal idle cycle of the encryption units. As a result, we are able to achieve respectively

57 times and 985 times improvement in throughput per core compared to [6], which is the

fastest software implementation, and the FPGA implementation of [15]. Compared to FASE,

MAXelerator shows ∼ 4× improvement in throughput per core.

5.1.1 Summary of Contributions

The explicit contributions presented in this chapter are the following.

• Designing MAXelerator, the first hardware accelerator for privacy-preserving ML on

cloud servers. The accelerator is a standalone unit that enables automated integration into

reconfigurable cloud architectures.

• Presenting the first GC architecture with precise gate level control per clock cycle. Instead

of conventional netlist based GC execution, we design our custom hardware accelerator as

an FSM that controls the operation and communication among parallel GC cores, ensuring

minimal (highest 2) idle cycles.

• Providing up to 57 times improvement in garbling operation compared to the state-of-the-art

72

software GC framework. This translates to the capability of the cloud to support 57 times

more clients simultaneously.

• Corroborating the effectiveness of the proposed accelerator with real-world case studies in

privacy-sensitive scenarios.

5.2 Global Flow

5.2.1 Security Model

Similar to FASE, MAXelerator is designed for the honest-but-curious security model,

where the participating parties follow the agreed upon protocol, but may want to deduce more

from the information at hand. Our hardware realization does not alter the protocol execution and

thus is as secure as any software realization.

5.2.2 System Setup

We adopt a cloud server architecture with multiple channels to communicate with the

clients as displayed in Figure 5.1. Along with the Central Processing Unit (CPU), the server

includes MAXelerator, our FPGA-based accelerator to perform the garbling operation. The

MAXelerator creates the garbled tables and sends them to the host CPU that later performs

the communication with the client including OT. This setup is similar to FASE, the primary

difference being the multi-core architecture as opposed the single core in FASE.

MAXelerator consists of the following components (detail description in Section 5.4):

• Parallel garbling cores to generate the garbled tables. Each core incorporates a GC engine

along with a memory block to store the garbled tables.

• Label generator to create the labels necessary for the garbling operation. It includes a

hardware Random Number Generator (RNG) to generate the random bit stream.

• An FSM to sync among the garbling cores. The FSM replaces the netlist in the conventional

GC. This approach allows us to precisely control the garbling operation customized for

73

Garbled Tables

Garbler Labels

Evaluator Input

Garbler Labels

Cloud Server

Garbled Tables

Evaluator Labels

Clienti

Garbler Input

OT Evaluator Labels

Host CPUFPGA

GC

Core 0

Core 1

Core W

F
S

M

R
N

G

P
C

Ie
B

u
s

DL Model

Pre-processing

Figure 5.1. System configuration of MAXelerator framework.

the matrix-vector multiplication. Note that the netlist is embedded in the FSM. Therefore,

the hardware acceleration is transparent to the evaluator (client) except for the speedup in

service.

• A PCIe Bus to transfer the generated garbled tables.

5.2.3 Client-Server Model

Similar to FASE, the cloud server acts as the garbler and the client acts as the evaluator.

Besides the reasoning mentioned in the previous chapter, there are few added benefits of this

setting for MAXelerator. In general, the server possesses the ML model parameters (stored in the

form of a set of matrices) and the client holds the input data (in the form of a single vector). Since

the evaluator receives his inputs through OT, it is more efficient to have the client, who has less

private data, as the evaluator. It is possible to send all the inputs at once through OT extension[23],

however, the evaluator may not have enough memory to store all the labels together. With the

recent development of sequential GC [6], it is feasible to perform OT every round and store only

the labels required for that round; making our approach amenable to memory-constrained clients.

74

5.3 Architecture of MAXelerator

The control flow of the MAXelerator architecture comprises two nested loops. The

product .#×% of two matrices �#×" -"×% is

. [8, 9] =
"−1∑
;=0

�[8, ;]- [;, 9] =
"−1∑
;=0

0[8]G [9], (5.1)

where 0 and G are ;-th row of � and ;-th column of - , respectively. As such, the smallest unit of

the matrix multiplication operation consists of a multiplier followed by an accumulator, i.e., a

MAC. Following the methodology presented in [6], we design the MAC unit and garble (and

evaluate) this unit sequentially for " rounds to compute one element of . . This forms the outer

loop of the control flow. Multiple parallel garbling cores are employed to generate the garbled

tables. The number of cores depends on the input bit-width and available resources on the FPGA

platform. In the inner loop, we breakdown the operation of the MAC unit such that (1) there is

only one non-XOR operation per core per clock cycle, (2) at each cycle, no core is idle due to

dependency issues. Note that the cores also contain 1 to 4 XOR gates at every cycle. However,

due to the free XOR optimization they do not need costly encryption operations.

We utilize the GC optimized implementation of addition operation with the minimum

number of non-XOR gates (one AND gate per input bit) provided in [6]. However, the

implementation of the multiplication operation in [6] follows a serial nature that does not allow

parallelism. We leverage a tree-based structure for multiplication to maximize parallelism.

Figure 5.2 shows the multiplication operation of two unsigned numbers with bit-width 1 = 8.

The operation for signed numbers is discussed later in this section. The bits of G (as well as their

corresponding labels in GC operation) are constant over time for one multiplication, and the

bits of 0 (as well as their corresponding labels) are input to the system serially. The addition

operations represents one bit full adder where the carry is transferred internally for the next

cycle. In the following, we describe the operations of the two segments marked in Figure 5.2:

75

W[7] W[6] W[5] W[4] W[3] W[2] W[1] W[0]

time

W

x[0]

x[1]

+

x[2]

x[3]

+

+

x[4]

x[5]

+

x[6]

x[7]

+

+

+

>>

>>

>>

s03

s02

s01

s00

>>

>>2

>>2

>>4
s10

s11

p

Seg: 1 Seg: 2

Figure 5.2. Schematic of the tree-base multiplication.

MUX_ADD and TREE.

5.3.1 Segment 1: MUX_ADD

The configuration of the parallel GC cores in segment 1 is displayed in Figure 5.3. One

row in the figure represents a GC core on the FPGA, while one column represents the logic

operations performed by that core in every three clock cycles. Henceforth, we refer to every three

clock cycles as one stage. Each GC core in this segment handles two AND gates and one adder.

The adder itself contains one AND and four XOR gates. The logic operations performed in one

core per stage is displayed in the inset of Figure 5.3. The garbling engine of MAXelerator, as

described later in Section 5.4.1, can generate one garbled table per clock cycle. Thus generating

the three garbled tables requires three clock cycles, i.e., one stage.

Each core is suppliedwith a core id<. Core< receives the labels for the two corresponding

bits of G: G [<] and G [< +1]. These labels remain unchanged for the entire operation. All the

cores then receive the labels of two bits of 0: 0[=] and 0[=+1] at each stage =. However, since

76

cb/2-1[b]

stage 0 stage 1 stage b

c0[2]

x[1]

x[0]

C
o

re
 0

c0[0] c0[1] c0[b]

cb/2-1[2]

x[b-1]

x[b-2]

cb/2-1[0] cb/2-1[1]

C
o

re
(b

/2
-1

)

0 2

1 3

4
6

5

cm/2[n]
x[m]

x[m+1]

a[n+1]

a[n]

cm/2[n+1]

sm/2[n]

Logic operations performed in one GC
core per stage

Figure 5.3. The high-level configuration and functionality of the parallel GC cores in segment 1:
MUX_ADD

the garbled table for one gate is generated every clock cycle, each core needs to import only one

label per cycle, thus one :-bit input port is sufficient. The label for one bit of 0 is required for

two consecutive stages; thereby at each stage after the first, one label is ported and the other one

is shifted internally.

5.3.2 Segment 2: TREE

At each stage =, a single GC core in segment 1 generates the labels for one bit of the

sums: B0 [=], .. B1/2−1 [=]. At the next stage, these sums are added up in segment 2 according to

the tree structure. Since all the cores in segment 1 perform in parallel, the shift operations in

Figure 5.2 translate to delay operations. A 3 stage delay is realized via 3 stage :-bit shift register.

The number of additions performed in this segment per stage is 1/2+1. For synchronization

with segment 1, the GC cores in this segment is designed to perform three additions per core

(three garbled tables, one per each addition). Thus it consists of d((1/2−1)/3)e GC cores.

5.3.3 Accumulator and Support for Signed Inputs

The final step of the MAC is the accumulator which requires one addition per stage. To

support signed inputs, two multiplexer-2’s complement pairs are placed at both input and output

of the multiplier. Each pair incorporates two AND gates. MAXelerator operates in a pipelined

77

fashion, allowing integration of these nine AND operations into segment 2. This approach

results in an increased number of the shift registers. However, it ensures the minimum number of

idle cycles for the GC cores. Since, the bottleneck of the resources is the number or LUTs or

LUTRAMs, not the number of registers, our approach results in the most optimized design.

Performance Analysis. For bit-width 1, MAXelerator requires 1/2+ d(1/2+8)/3e cores. Thus

the maximum number of idle cores is 2. The complete operation takes 1 + ;>6(1) +2 stages.

However, since the operations are pipelined, the throughput is 1 MAC per 1 stages. The final

throughput for the multiplication of an " ×# matrix and an # ×% matrix is 1 product per

"#%1 stages or 1 product per 3"#%1 cycles.

5.4 Hardware Setting and Results

We implement the prototype of MAXelerator on a Virtex UltraSCALE VCU108

(XCVU095) FPGA. A system with Ubuntu 16.04, 128 GB memory, and Intel Xeon E5-

2600 CPU @ 2.2GHz is employed as the general purpose processor hosting the FPGA. The

software realization for comparison purposes is executed on the same CPU. We leverage PCIe

library provided by [86] to interconnect the host and FPGA platforms. Vivado 2017.3 is used to

synthesize our GC units.

In our evaluation, we focus on comparison of MAXelerator with FPGA GC accelerators

that appeared in literature before publication of MAXelerator. For comparison with our generic

accelerator FASE, please see Section 4.5.4.

5.4.1 GC Engine

Each GC core incorporates one GC engine that generates one garbled table per clock cycle.

The GC engine adopts all the optimizations described in Section 2.4.1. Our implementation

involves only two logic gates: AND and XOR. The GC engine takes as its input the labels

for the two input wires of the AND gate and outputs the output label and the two rows of the

corresponding garbled tables. According to the methodology presented in [21], the encryption is

78

performed by fixed-key block cipher instantiated with AES. We employ four instantiations of a

single stage AES implementation to perform the four required AES encryption in parallel. The

s-boxes [87] inside the AES algorithm are implemented efficiently by utilizing the LUTRAMs

onthe Virtex UltraSCALE FPGA. The unique gate identifier) is generated by concatenating

= (see Eq. 5.1), core id, stage index and and gate id (see Figure 5.3). Due to the free XOR

optimization, XOR gates just require XORing the two input labels and are handle outside while

the GC engine is designed to generate garbled tables only for the AND gates. This approach

ensures that there is no mismatch in the timing for executing different gates as in [59] and

therefore no stalling caused by dependency issues.

The labels and garbled tables are stored in the on-chip memory of the FPGA. The memory

is divided into blocks with one input port per block and one output port for the entire memory.

The output port is used by the PCIe Bus to transfer the generated input labels and garbled tables

to the general purpose processor hosting the FPGA. Since each core has its own block in the

memory with an individual input port, logically it can be visualized as each core having its

own memory block.

5.4.2 Label Generator

To generate the wire labels for GC we implement on-chip hardware Random Number

Generators (RNG). We adopt the Ring Oscillator (RO) based RNG suggested in [67]. Each

RO contains 3 inverters and a single RNG XORs the output of 16 ROs. The entropy of the

implemented RNG on our evaluation platform is thoroughly evaluated by National Institute of

Standards and Technology (NIST) battery of randomness tests [88]. In the worst-case scenario,

the GC accelerator requires : × (1/2) random bits/cycle. However, for a large portion of the

operation, it requires only : bits/cycle on average. The label generator incorporates : × (1/2)

RNGs such that it can support the worst-case setting. The FSM that synchronizes the garbling

operation fully or partially turns off the operation of the RNGs to conserve energy, when possible.

79

5.4.3 Resource Utilization

The FPGA resource utilization of one MAC unit is shown in Table 5.1 for different

bit-widths 1. It can be seen from the table that the underlying resource utilization of our design

increases linearly with 1. We do not compare the resource utilization with the prior-art GC

implementation on FPGA [15] for two reasons: (i) [15] being a generic GC implementation, it is

difficult to estimate the resource it would require only to perform the MAC operation in similar

number of clock cycles as this work, (ii) it employs SHA-1 for encryption (the most resource

consuming part of the implementation), while we employ AES. SHA-1 is not considered secure

anymore and all the current GC realizations in both software and hardware employ AES.

Table 5.1. Resource usage of one MAC unit

Bit-width (1) 8 16 32
LUT 2.95E+04 5.91E+04 1.11E+05
LUTRAM 1.28E+02 3.84E+02 6.40E+02
Flip-Flop 2.44E+04 4.88E+04 8.40E+04

We plot the percentage of resources utilized per bit-width for one MAC unit in Figure 5.4.

It can be seen from the plot that the bottleneck of the design on this platform is the number of

LUTs, which reaches a peak of around 10% for 1 = 32. The maximum clock frequency supported

by this implementation is 200MHz on the Virtex UltraSCALE.

8 16 32

Input bit width (b)

0

1

2

3

4

5

6

7

8

9

10

P
er

ce
nt

ag
e

of
 r

es
ou

rc
es

 u
til

iz
ed

% of LUTs

% of LUTRAMs

% of FFs

Figure 5.4. Percentage resource utilization per MAC for different bit-widths.

80

5.4.4 Performance Comparison with the Prior-art GC Implementation

To the best of our knowledge, MAXelerator is the first FPGA implementation of privacy-

preserving deep learning. Table 5.2 compares the throughput of MAXelerator against the

fastest available software GC framework TinyGarble [6] and the FPGA GC solution presented

in [15]. Both MAXelerator and [15] employ parallel GC cores to accelerate the operation. In

MAXelerator, the maximum number of parallel cores depends on the available resources in

the FPGA while in [15] it depends on the latency of garbling one AND gate and available

BRAMs on FPGA. Considering all these, we believe that reporting the overall throughput would

be ambiguous and somewhat unfair to the software framework [6]. Therefore, we report the

throughput of all the frameworks per core.

Table 5.2. Throughput Comparison of MAXelerator with state-of-the-art GC frameworks.
Throughput is computed in number of MACs per sec

TinyGarble [6] on CPU FPGA Overlay Arch. [15] MAXelerator on FPGA

Bit-width 8 16 32 8 16† 32 8 16 32
CC per MAC 1.4E5 5.5E5 2.2E6 4.4E3 1.2E4 3.6E4 24 48 96
Time per MAC (`s) 42.29 160.35 657.65 22.00 60.00 180.00 0.12 0.24 0.48
Throughput 2.4E4 6.2E3 1.5E3 4.6E4 1.7E4 5.6E3 8.3E6 4.2E6 2.1E6
No. of cores 1 1 1 43 43 43 8 14 24
Throughput / core 2.4E4 6.2E3 1.5E3 1.1E3 3.9E2 1.3E2 1.1E6 2.9E5 8.7E4
× Throughput improve. 1/44 1/48 1/57 1/985 1/768 1/672 - - -
†Interpolated from the results provided in [15] for 8, 32 and 64 bits.

As shown Table 5.2, MAXelerator accelerates the garbling operation by up to 57 times

compared to [6] and at least 985 times compared to [15]. Another recent GC realization on

FPGA, GarbledCPU [59] do not report timing results for multiplication and addition. However,

they report 2× improvement in throughput compared to JustGarbled [21] (which is the back-end

of [6]) on an Intel Core i7-2600 CPU @ 3.4GHz. We estimate at least 37 times improvement

over [59] in throughput per core (this work does not attempt parallelization). Due to pipeline

stalls caused by dependency issues, the throughput of [6] is likely to go down further while

garbling a complete netlist.

To be fair, we should state that a major factor behind the lower throughput of [15, 6] is

81

their focus on general purpose GC computing while MAXelerator is custom made for performing

DL inference only. However, the large enhancement in throughput establishes the practicality of

the custom solution.

5.5 Practical Design Experiments

In this section, we evaluate MAXelerator framework for realization of both deep learning

(Section 7.1) and generic matrix-based machine learning applications (Section 7.2).

5.5.1 Deep Learning Benchmarks

We evaluateMAXelerator performance for the realization of four different DL benchmarks.

Our benchmarks include both DNN and CNN models for analyzing visual, audio, and smart-

sensing datasets. Table 5.3 details the computation on the server side and the transferred Bytes

for each client in each benchmark. The topology of our benchmarks is outlined in the following.

Table 5.3. Number of XOR and non-XOR gates, amount of communication and computation
time for each benchmark.

#non-XOR #XOR Comm. (GB) Comp. (ms)

Id DL Architecture b = 8 b = 16 b = 8 b = 16 b = 8 b = 16 b = 8 b = 16
1 28×28-5C2-ReLu-100FC-ReLu-10FC-Softmax 2.0E7 6.9E7 5.5E7 1.6E8 0.68 2.25 13.04 26.07
2 28×28-300FC-ReLu-100FC-ReLu-10FC-Softmax 5.1E7 1.7E8 1.3E8 4.0E8 1.67 5.52 31.94 63.89
3 617-50FC-ReLu-26FC-Softmax 6.1E6 2.0E7 1.6E7 4.9E7 0.20 0.67 3.86 7.72
4 5625-2000FC-ReLu-500FC-ReLu-19FC-Softmax 2.3E9 7.8E9 6.2E9 1.8E0 76.90 254.22 1471.14 2942.28

Benchmark 1. Detecting objects in an image is a key enabler in devising various

artificial intelligence and learning tasks. We evaluate MAXelerator practicability in analyzing

MNIST dataset [89] using two different DL architectures. This data contains hand-written digits

represented as 28× 28 pixel grids, where each pixel is denoted by a gray level value in the

range of 0-255. In this experiment, we train and use a 5-layer convolutional neural network for

document classification as suggested in [90]. The five layers include: (i) a convolutional layer

with a kernel of size 5×5, a stride of (2, 2), and a map-count of 5. This layer outputs a matrix of

size 5×13×13. (ii) A ReLu layer as the non-linearity activation function. (iii) A fully-connected

82

layer that maps the (5×13×13 = 865) units computed in the previous layers to a 100-dimensional

vector. (iv) Another ReLu non-linearity layer, followed by (v) a final fully-connected layer of size

10 to compute the probability of each inference class.

Benchmark 2.. We train and use LeNet-300-100 as described in [36] for the MNIST

dataset [89]. LeNet-300-100 is a classical feed-forward neural network consisting of three

fully-connected layers interleaved with two non-linearity layers (ReLu) with total 267 DL

parameters.

Benchmark 3. Processing audio data is an important step in devising different voice

activated learning tasks that appear in mobile sensing, robotics, and autonomous applications.

Our audio data collection consists of approximately 1.25 hours of speech collected by 150

speakers [91]. In this experiment, we train and use a 3-layer fully-connected DNN of size

(617× 50× 26) with ReLu as the non-linear activation function to analyze data within 5%

inference error.

Benchmark 4. Analyzing smart-sensing data collected by embedded sensors such as

accelerometers and gyroscopes is a common step in the realization of various learning tasks.

In our smart-sensing data analysis, we train and use a 4-layer fully-connected DNN of size

(5625×2000×500×19) with ReLu as the non-linear activation function to classify 19 different

activities [92] within 5% inference error.

5.5.2 Generic ML Applications

Even though MAXelerator is designed to accelerate deep learning inference, it can greatly

enhance the performance of many other ML applications. In this section, we analyze a number of

well-known ML applications to assess the speedup provided by the custom FPGA realization of a

GC based MAC operation. We assume a 32 bit fixed point system with 24 cores on MAXelerator.

Note that the throughput can be increased linearly by adding more GC cores to the FPGA. For

example, about 25 times more GC cores can fit in our current implementation platform.

83

Table 5.4. Ridge Regression Runtime Improvement

Name = 3
Time (s)
([80])

Time (s)
(Ours)

Runtime
Impr.

communities11.IV 2215 20 314 7.8 39.8 ×
automobile.I 205 14 100 3.5 28.4 ×
forestFires 517 12 46 1.8 24.5 ×
winequality-red 1599 11 39 1.7 22.6 ×
autompg 398 9 21 1.1 18.7 ×
concreteStrength 1030 8 17 1.0 16.8 ×

Recommendation System. The movie recommendation system in [60] presents an

efficient implementation of privacy-preserving matrix factorization which has been widely

adopted by many other works such as [93, 94]. More than 2/3rd of the execution time in [60] is

spent on matrix-vector multiplication for gradient computations. The complexity of the proposed

matrix factorization is $ (";>62") where " is the total number of ratings while the complexity

of the pertinent MAC operations in each operation is $ ((3) where (is summation of total

number of ratings and total number of movies, and 3 is the dimension of user/item profile. On

the MovieLens dataset, each iteration of [60] takes 2.9hr. Incorporating our hardware accelerated

MAC into the approach of [60] significantly reduces the gradient computation time, decreasing

the total runtime per iteration from 2.9hr to 1hr (69% improvement)

Ridge Regression. This method is used to find the best-fit curve through a set of data

points. The work in [80] combines both homomorphic encryption and Yao garbled circuits to

efficiently perform privacy-preserving ridge regression. Their approach has $ (33) MACs, $ (3)

square roots, and $ (32) divisions in the first phase and $ (32) MAC operations in the second

phase. As such, accelerating the MAC operations would significantly improve the runtime as

shown in Table 5.4 for selected datasets used in [80]. = and 3 are number of samples and feature

size respectively.

Portfolio Analysis. To calculate the risk to return ratio based on the stock portfolio of

the investor, the client stock weight vector F (which contains relative weight of stocks in the

84

investor’s portfolio) and the financial institution stock covariance matrix 2>E (which is the result

of financial institution’s research on the market) are required. The risk to return ratio is then

obtained by performing F× 2>E×F′ where F′ is the transpose of F [84]. In [95], the authors

reported 20`s to perform 252 rounds of risk to return analysis for a portfolio of size 2 on an

Nvidia-k80 GPU. According to our evaluation, the same computation with privacy-preserving

would take 1.33 seconds using TinyGarble and 15.23ms using MAXelerator.

In the above analysis, we assumed that the cloud server has sufficient number of

communication channels and bandwidth. However, after a certain threshold, communication

capability of the server may become the bottleneck of the operation. Note that MAXelerator

does not affect the pertinent accuracy of the model in any of the benchmarks described above.

5.6 Summary

In this chapter, we presented MAXelerator – an efficient FPGA implementation of GC

based MAC to accelerate privacy-preserving machine learning on cloud servers. MAXelerator

achieves up to 57 times improvement in throughput per core compared to the fastest GC framework.

Our acceleration focus is on matrix multiplication which is the most costly component in several

key ML applications. Acceleration of this process can bring down the operational time in the

privacy-sensitive scenario to practical limits, as verified by our case studies.

Acknowledgement. This chapter, in part, has been published at (i) 2018 ACM/IEEE

Design Automation Conference (DAC) and appeared as: Siam U Hussain, Bita D Rouhani,

Mohammad Ghasemzadeh, and Farinaz Koushanfar, “MAXelerator: FPGA Accelerator for

Privacy Preserving Multiply-Accumulate (MAC) on Cloud Servers”, and (ii) 2018 ACM

Transactions on Reconfigurable Technology and Systems (TRETS) and appeared as: Bita D

Rouhani, Siam U Hussain, Kristin Lauter, and Farinaz Koushanfar, “ReDCrypt: Real-Time

Privacy-Preserving Deep Learning Inference in Clouds Using FPGAs”. The dissertation author

was the primary investigator of the first paper.

85

Chapter 6

Real-World Applications

6.1 Overview

Development of a framework and applications are inter dependent, especially at the initial

stages of the framework development. On one hand, a framework provides abstraction from the

details of the protocol execution to the application developer. On the other hand, development of

large-scale practical applications helps understanding the properties required from a framework.

The demands of a real-world application provides a deeper insight into the framework design,

which is not available from small scale benchmark functions. In this chapter, we present four

real-world privacy-preserving applications developed based on the frameworks described in

Chapter 3. Table 6.1 shows the applications along with the frameworks used to develop them.

Table 6.1. Privacy-preserving applications presented in this chapter.

Applications Frameworks
Secure localization [16, 17] TinyGarble, MPCircuits
Authentication with noisy keys [18] TinyGarble2
:-NNS on private data [20] TinyGarble, MPCircuits
Private set intersection [9] MPCircuits

While all these applications are notable in their own merit, they also played important

roles in the maturing of our frameworks for privacy-preserving computation. For instance,

the first publication [16] on the secure localization included a GC-based protocol, which was

implemented using the TinyGarble framework. The triangulation process for localization requires

86

collaboration of four parties. The proposed technique based on GC (which supports two parties)

was vulnerable to collusion. This prompted us to extend the capability of the synthesis libraries

of TinyGarble to support BMR (which supports more than two parties), which eventually led

us to develop the MPCircuits framework. The subsequent triangulation protocol [17] based

on BMR have increased resiliency against collusion. As another example, authentication [18]

demands the protocol to be secure in the malicious security model, whereas the GC back-end of

the TinyGarble framework supports only honest-but-curious security model. For this work, we

started incorporating the authenticated garbling [22] protocol which provides malicious security.

This was the first seed of the TinyGarble2 framework with support for both security models.

Furthermore, we enhanced the synthesis library of TinyGarble (Section 3.2.1) with new functions

at different stages of development of these applications.

In the following, we present the details of the four applications with discussion on prior

art, contributions to the respective fields, and evaluation results.

6.2 Secure Localization for Smart Cars

Contemporary automobiles are increasingly being equipped with advanced technologies

that make significant enhancements to both functionality and safety of the vehicles. Two of

the most significant improvement in this field are smart navigation system and inter-vehicle

communication facilitating sharing of important information like traffic update, environmental

hazards, accidents or road work. A large class of modern vehicle also includes an intra-network

of processors connected to a central CPU providing Ethernet, USB, Bluetooth, and IEEE

802.11 interfaces [96]. Besides enhancing performance, these technologies also create new

dimensions for attack. Thus, in addition to classic vehicular reliability requirement, security and

privacy of the user should be taken into careful consideration while implanting these advanced

features [96, 97, 98]. Moreover, due to the increasing reliance on these smart features, backup

plans to cope with the failure of one or more components is also crucial for reliability.

87

We present the first privacy-preserving localization method for smart cars based on

provably secure primitives. With this method, a car lost due to unavailability of GPS can send

requests to three nearby cars to get assistance in finding its location. The three assisting cars then

engage in a privacy-preserving triangle localization protocol to estimate the location of the lost

car. The locations of all the cars including the lost car remain private.

To date, the most widely explored method to ensure user privacy in Location Based

Services (LBS) is location cloaking [99, 100, 101]. In this method, instead of sending the

exact location and time instant of the user, a range of area covered in a period of time is sent.

To make sure that the user’s location cannot be inferred from this data, the range and period

are chosen such that there are at least : −1 other users in that area during that period, which

ensures “:-anonymity" of the user. :-anonymity requires the existence of a trusted third party

called anonymizer that combines the user location with locations of other users subscribed to the

service. This anonymizer presents a single point to attack the system. Moreover, cloaking is also

vulnerable to context-based attack and trajectory-tracing. More importantly, the approximate

location results in noisy and stochastic response to the query. While this approximate response

may be acceptable in some LBS scenario, for localization and navigation applications the accuracy

of the method is crucial.

The work in [102, 103, 104] explored performing the location-based query (e.g., nearest

neighbor) in a transformed space. These methods increase the accuracy over the cloaking

approaches. However, they still have few drawbacks. For example, [102] propose three methods

that either requires a semi-trusted third party or has to sacrifice accuracy or privacy for simplified

operation. The authors in [102, 104] consider the privacy of only one party (client), while the

data of the other party (server) is assumed to be public.

To compute accurate results while maintaining complete privacy of all the participating

parties, we design two protocols employing two Secure Function Evaluation (MPC) techniques:

Yao’s Garbled Circuit (GC) [7] and Beaver-Micali-Rogaway (BMR) [8]. Unlike the previous

methods, neither of GC or BMR protocols involve trade-off between accuracy and privacy. To

88

date application of MPC in LBS has been limited. The work in [105] presents application-specific

solutions to some simple problems like point-inclusion, intersection, and closest pair based

on GC. The work in [106] presents an implementation of the nearest neighbor query with GC.

These methods require sharing encryption keys with another party, which poses a security threat.

Our work is the first practical privacy-preserving location-based application that employs MPC

techniques effectively and securely.

We devise two protocols where three cars assist in estimating the location of the lost car.

The protocols are based on the secure computation of the triangle localization algorithm presented

in [107]. In the first protocol, the three assisting cars participate in a total six invocations of the

two-party GC operation such that the locations of all cars including the lost car remain private.

To cope with the time constraint due to car movement, the protocol is designed such that each car

can simultaneously participate in two GC operations with each of the two other cars (assuming

a multi-core architecture of the processors, which is widely available at present). With this

protocol, the location of the lost car is secure as long as at least one of the assisting cars does not

collude with the other cars. The second protocol involves only one invocation of the multi-party

BMR operation. This protocol is secure against collusion among any number of cars. However,

the BMR protocol requires more computation than the GC and thus the second protocol is more

time consuming than the first one.

As explained in Section 2.4, in both GC and BMR, the pertinent function is represented

as a circuit consisting of Boolean logic gates (AND, OR, XOR etc). This circuits is called a

netlist. We generate the netlists required for the localization protocol by using conventional

logic synthesis tools with free-XOR optimized custom libraries following the methodologies

presented in Section 3.2.1. While developing this application, we augmented the synthesis library

of TinyGarble (subsequently MPCircuits) with division and square root functions, required

for triangulation. We also added enhanced implementations of addition, subtraction, and

multiplication to support signed inputs and overflow.

One major use case for our privacy-preserving localization is in military applications

89

when a lost military vehicle requires help in locating itself. It is crucial that the location of each

participating vehicle remain private so that an adversarial vehicle cannot learn their location by

pretending to be an ally or by tapping into the common channel. This application can also be

beneficial in verifying a suspected vehicle claimed location via distance bounding with assist

from three nearby cars. Generally, three verifying base stations perform distance bounding on

the suspect vehicle confining it to a triangular region. However, this requires costly infrastructure

which may not be available in all places. In this scenario, three other cars can act as the verifying

base stations while their locations remain private and the location of the suspect vehicle is

revealed only to the verifier.

6.2.1 Summary of Contributions

In brief, our contributions are as follow.

• We present the first privacy-preserving triangle localization for smart automotive systems

based on provably secure primitives. We design two protocols utilizing MPC techniques

such that a lost car along with three nearby cars can jointly compute the location of the lost

car while the locations of all the participating cars remain private.

• We analyze the security and performance of the localization protocols in detail and

demonstrate the trade-off between performance and collusion deterrence.

• We augment the circuit synthesis library of TinyGarble with functions required to generate

free-XOR optimized netlists for triangle localization algorithm (square-root and division).

• Proof-of-concept implementation of our protocol demonstrates practicality of the design.

The complete protocol is performed within only 355 ms.

6.2.2 Triangle Localization Algorithm

Before presenting the secure localization protocols, we review the triangle localization

algorithm. Fig. 6.1 shows the setup of the algorithm provided in [107]. The car & is lost. It

requests three other cars �, �, and � to help locate itself.

90

Q

rA

rB

rC
A

B

C

D

E

F

D´

E´

F´

Figure 6.1. Triangle Localization Algorithm. The lost car is & and the assisting cars are �, �,
and �. The calculated location of & is the centroid of the triangle ���.

First, distances A�, A�, and A� of & from �, �, and � respectively, are estimated. In the

ideal case where the estimated distance is exactly equal to the actual distance, the three circles

centered at �, �, and � with radii A�, A�, and A� , respectively, would have a common intersection

at &. However, in practice distance cannot be estimated so precisely. An underestimation may

result in no intersection. Therefore, the distance is generally overestimated. In this way, a triangle

��� is formed by the points of intersections. The estimated location of & is the median of the

triangle.

In general, two circles intersect at two points (for example, circles with centers at � and

� intersect at � and �′). The one that falls inside the third circle forms one vertex of the triangle

(� falls inside the circle centered at �). The equations for calculating the coordinates of � and

�′ is provided here. The other intersections can be calculated in similar fashion. We denote the

Euclidean coordinates of a point % as (G%, H%).

91

√
(G� − G�)2 + (H� − H�)2 = A� (6.1)√
(G� − G�)2 + (H� − H�)2 = A� (6.2)√
(G� − G�)2 + (H� − H�)2 6 A� (6.3)

G� =
1
2?
(H�@ + C) (6.4)

H� =
1

?2 + @2
(?@G� + H�?2−

1
2
@C ± 1

2

√
(@C −2H�?2−2?@G�)2− B(?2 + @2)) (6.5)

Fℎ4A4, ? = G� − G�, @ = H� − H�

C = A2�− A
2
� + G2� − G2� + H

2
� − H2�

B = (4?2H2� + C
2−4?CG� +4?2G2�−4?

2A2�)

Eq. (6.1) and (6.2) have two solutions as given by Eq.(6.4) and (6.5). The one that lies

inside the range of �, decided through inequality (6.3), forms one vertex of the triangle. Note

that, the vertex of the triangle is shown as � in the figure just for simplicity, it could be either of

� or �′.

6.2.3 Related Work

Till present localization algorithms have been mainly used in Wireless Sensor Networks

(WSN). In centroid localization, the unknown nodes location is set to the centroid of a polygon

formed by the anchor nodes within a certain range. In weighted centroid localization, the centroid

is calculated as the weighted mean of the coordinates of the anchor nodes [108, 109]. In triangle

localization, three circles are drawn centered at three anchor nodes with the radius equal to the

92

estimated distances from the unknown node [110, 111, 107]. The centroid of the triangle formed

by the intersection is the estimated location. In this work, we employ triangle localization as it

requires only three anchor nodes while for the other techniques more anchor nodes are required

for accuracy.

There are a number of works that designed privacy preserving Location Based Services

(LBS) based on cryptographic primitives. Methods for privacy-preserving nearest neighbor

search are presented in [102, 104]. The work in [102] employs one-way Hilbert transformation

to map the space of all elements to another space and resolve the query in that transformed

space. It requires a trusted third party to perform the transformation in an offline phase. The

method presented in [104] confines each point of interest (POI) to a cell, named a Voronoi cell,

such that the POI is the nearest neighbor to any point that falls within that cell. Then a regular

rectangular grid is superimposed over this Voronoi diagram. A user retrieves all the Voronoi cells

intersecting the region she belongs to on the grid through private information retrieval method

and locally computes the nearest neighbor. Both these methods consider the privacy of the query

only, the database of the POIs is assumed to be public. Three methods based on homomorphic

encryption to find if two friends are nearby without revealing their locations is presented in [103].

There are different trade-offs involved in these methods: they either require a semi-trusted third

party or sacrifice accuracy or privacy for simplified operation.

The work in [105] presents application specific solutions based on GC to several problems

in location-based services. They solve basic problems like point-inclusion (whether or not one

party’s point is included in other party’s polygon), intersection (whether or not two polygons

from two users intersect), closest pair (form a pair closest to points taking one point from each

set provided by two users). A GC based method to compute the nearest neighbor of a group of

people is presented in [106]. In this method, two users participate in GC protocol to compute

the nearest neighbor of the group. The other members of that group receive their input keys

through OT from the garbler and share them with the evaluator. This creates a security threat

as the collusion between only two users will reveal the location of all other members of the

93

group. A scalable privacy preserving :-nearest neighbor search is presented in [20] which utilize

sequential description of GC [6].

6.2.4 Global Flow

The overview of the localization process is displayed in Figure 6.2. The lost car & sends

requests to three nearby cars �, �, and � to assist in computing its location. The first step is

to estimate the distance A- of & from each assisting car - (= �, �, or �). Depending on the

protocol used, either the assisting car or the lost car learns this distance, but not both of them.

The location !- of each car - is known only to itself throughout the protocol. Then �, �, �,

and & (only in the second protocol) participate in a privacy-preserving localization protocol to

compute the location of &.

rA

rB

rC

LQ

LA

LB

LC

A

B

C
Q

Figure 6.2. Overview of the Localization Algorithm

Ideally, the location of & would be a common intersection of three circles centered at �,

�, and �. However, due to inaccuracy in distance estimation, the location of & is computed as

the median of a triangle formed by the intersections of pairs of circles. In the first protocol, each

pair of cars (say � and �) participates in a GC operation to compute two possible candidates for

one vertex of the triangle. Then one of them (say �) participates in another GC operation with

the third car (�) to select the candidate closer to � as the vertex. Thus, six GC operations are

94

required to determine all three vertices of the triangle. One car can learn zero to at most two

vertices. Therefore, a single car cannot compute the median on its own. The median !& , i.e., the

location of &, is computed through secure sum [112] protocol where all four cars participate and

revealed only to &. The second protocol employs BMR, which supports more than two (in this

case four) participants. In this one, the complete operation, including the computation of the

median, is performed with only one invocation of the MPC protocol. Therefore, the intermediate

values (intersecting points) are not revealed to any participant, making it secure against collusion.

Security Model. Consistent with the earlier relevant literature [102, 104, 103, 105, 106,

20] we adopt the honest-but-curious security model [29, 21]. Moreover, for privacy-preserving

protocols involving more than two parties, there is the notion of honest majority, where the

number of honest parties is higher than the number of dishonest parties. Of the two localization

protocols presented in this paper, the first one requires an honest majority. However, honest

majority is not a requirement for the second localization protocol.

We designed two protocols to securely compute the location of the lost car. The first one

is based on the two-party MPC protocol, Yao’s GC. We break down the localization function

into six invocations of the GC protocol between the three assisting cars. With this protocol, the

location of the lost car is secure as long as at least one of the assisting cars does not collude.

The second protocol is based on the multi-party MPC protocol, BMR. This protocol is simpler

and more secure than the first one as all four cars participate in one invocation of the BMR

protocol. The computed location remains secure even if all three lost cars collude with one

another. However, this protocol takes four times longer to compute the location as compared to

the first one.

6.2.5 Protocol with Yao’s GC

There are two phases in this protocol. In the first phase, the coordinates of the triangle

��� are computed through the GC protocol. For the location verification scenario, the

coordinates are provided to the verifying authority after this phase. For other localization

95

scenarios, the median of the triangle is computed through the Secure Sum[112] protocol in the

second phase.

Phase 1: Computing triangle ���. For this phase, we need to evaluate the netlists of

following two functions through GC. Similar to the previous section, the computation of the

vertex � is used as an example here.

[G� , H� , G′� , H′�] = �=C4AB42C8>=(G�, H�, A�, G�, H�, A�),

that implements Eq. (6.4) and (6.5).

8=� = '0=64(G� , H� , G� , H� , A�),

that implements inequality (6.3).

The steps of this phase are as follows.

i & sends lock_location request to �.

ii Upon receiving the request, � locks its current coordinates (G�, H�) and immediately start

the estimation of the distance A� with &.

iii Steps i and ii are repeated with � and � where they lock their respective coordinates

(G�, H�) and (G� , H�) immediately prior to the start of distance estimation. The estimated

distances with � and � are denoted as A� and A� respectively.

iv � and � compute the coordinates � (G� , H�) and �′(G′� , H′�) of the intersections of their

circles by evaluating the �=C4AB42C8>= netlist through Yao’s GC protocol. The output map

is configured such that � learns � (G� , H�) and � learns �′(G′
�
, H′
�
).

v � and � jointly decide whether �′ lies inside the range of � by evaluating the '0=64

netlist through Yao’s GC protocol. The output 8=� is 1 if �′ lies inside the range of �, and

0 otherwise, in which case the intersection � lies inside the range of �. � learns 8=� and

shares it with �. � learns nothing in this step.

vi � and � perform the Step iv. � learns � (G� , H�) and � learns �′(G′
�
, H′
�
).

96

vii � and � perform the Step v to compute 8=� which is 1 if �′ lies inside the range of � or 0

if � lies inside the range of �. � learns 8=� and shares it with �. � learns nothing in this

step.

viii � and � perform the Step iv. � learns � (G� , H�) and � learns �′(G′
�
, H′
�
).

ix � and � perform the Step v to compute 8=� which is 1 if �′ lies inside the range of � or 0

if � lies inside the range of �. � learns 8=� and shares it with �. � learns nothing in this

step.

Phase 2: Computing the median of triangle ���. After phase 1, each assisting car

possesses the coordinates of two intersections and two Boolean variables indicating whether or

not these intersections are vertices of the triangle ���. In this phase, the assisting cars along

with the lost car & compute the median of the triangle through the following steps.

i & sends a random coordinate (G, H) to �.

ii � computes the sums -� = (G + 8=� .G� + 8=� .G′�) and .� = (H+ 8=� .H� + 8=� .H′�) and sends

to �.

iii � computes the sums -� = (-� + 8=� .G� + 8=� .G′�) and .� = (.� + 8=� .H� + 8=� .H′�) and

sends to �.

iv � computes the sums -� = (-� + 8=� .G� + 8=� .G′�) and .� = (.� + 8=� .H� + 8=� .H′�) and

sends to &.

v & now subtracts the initial random numbers from the sums and compute the medians as

((-� − G)/3, (.� − H)/3) which are the coordinates of its estimated location.

97

Security Analysis

We now analyze what information each car can learn regarding the locations of other cars.

Lost Car. In this protocol, the lost car learns nothing but its own location. However,

there is a maximum range within which the cars will be able to communicate with each other. If

that range is ', the lost car can assume that the three assisting cars are within a circular area

around it with a radius of '. Therefore the uncertainty over the location of the assisting cars is

1/c'2.

Assisting Cars. An assisting car can be interested in two types of information: the

locations of the other two assisting cars and the location of the lost car. Each assisting car knows

the coordinates of only one of the intersections with the circle of the other two assisting cars.

Without the coordinates of the other intersection, it is not possible to deduce the center of the

other circle. Therefore, uncertainty for one assisting cars over the location of other two assisting

cars is 1/c'2.

Regarding the location of the lost car, an assisting car knows the distance between the lost

car and itself with some uncertainty created by the lost car by modifying the propagation time as

described later in Section 6.2.8. Therefore, an assisting car - (= � or � or �) can confine the

location of the lost car within a circular region with radius A- . It is possible for one assisting car

to know the coordinates of two of the vertices of the triangle ���. Those two vertices form

one chord of that circle. In a strict sense, it is not possible to learn which side of that chord

the other vertex resides. However, if the two partitions on either side of the chord have largely

different areas, it is more likely that the other vertex is on the larger partition. Even though it

is not straightforward to calculate the uncertainty here, the minimum uncertainty, in this case,

would be 2/cA2
-
.

The regions of uncertainty for car � in locating the other cars is shown in Fig. 6.3. The

uncertainty region of the lost car & is marked with stripes and the uncertainty region of the other

two assisting cars � and � is marked with dots. It is assumed that � knows the vertices � and �

98

Q

rA

A

B

C

E

F

R

Figure 6.3. The regions of uncertainty for car � in locating the other cars. The uncertainty
region of the lost car& is marked with stripes and the uncertainty region of the other two assisting
cars � and � is marked with dots.

of ���.

Collusion Among Cars. In this protocol, the lost car & does not participate in any

invocation of the MPC protocol. Intuitively, if all three assisting cars collude with one another

the location of the lost car will not remain secure. Indeed after step iii of the first phase, the cars

�, �, and � collectively know all the inputs to the equations (6.3), (6.4), and (6.5). Therefore,

together they can compute the location of the lost car. Another point to note here is that based

on the relative location of &, there is a possibility that one of the three assisting cars learns two

vertices of the triangle while one other car knows none of them. In that case, it would be enough

for two cars to collude to compute the location of the lost car. However, it is not possible to

predict this scenario before the start of phase 2.

99

6.2.6 Protocol with BMR

The possible security breach in the previous protocol arises due to two fact that the lost

car holds no inputs to the secure function. Since Yao’s GC allows only two inputs, to involve

the lost car in the secure computation we would have to break down both the �=C4AB42C8>= and

'0=64 functions into two parts each and perform twelve GC operations instead of six. However,

we present another protocol based on BMR that supports inputs from more than two parties.

Intersection Range

Vertex D

Vertex E

Vertex F

+

rA

A

B

C

Q

xB
, yB

Q

Q

rB

rC

xC
, yC

xA
, yA

3(xQ
, yQ)

Figure 6.4. The)A8!>2 netlist to compute the location of the lost car & with help from three
assisting cars �, �, and � through the BMR protocol. Only the netlist for computing the vertex
� is shown in detail.

This protocol involves only one invocation of the BMR operation where all four parties

participate. It requires only one netlist which includes three instances each of the �=C4AB42C8>=

and '0=64 netlists. The netlist, named)A8!>2, is outlined in Figure 6.4. Only the netlist for

computing vertex � is shown in detail. Unlike the first three steps of Phase 1 in the previous

protocol, the distances A�, A�, A� of & respectively with �, �, and � are estimated by & (the

coordinates of �, �, and � are still locked by the respective cars). Therefore, & now holds three

inputs to the equations (6.3), (6.4), and (6.5). All of �, �, �, and & performs garbling operation,

100

while only & evaluates the netlist and thus learns the output. In location verification scenario, the

output is revealed to the verifier instead of &.

Security Analysis

The analysis on the regions of uncertainty for this protocol is similar to the first one.

Since the lost car is the one estimating the distances instead of the assisting cars, their respective

regions of uncertainty also switch. The lost car now can confine the three assisting cars �, �,

and � within circular regions with radii A�, A�, A� respectively and the assisting cars can confine

the lost cars within circular regions with radius '. The regions of uncertainty of the assisting

cars with respect to one another remains the same.

Collusion Among Cars. As explained above, the location of the lost car is secure with

this protocol even if all three of the assisting cars collude. However, unlike the previous protocol,

there is a possibility of collusion between the lost car and one or more of the assisting cars. If say

� colludes with &, then together they hold the information regarding the distances of � and �

from &: A� and A� , respectively. The maximum distance between � and � is A� + A� . If this

distance is shorter than the maximum communication distance ', � can confine the location of �

within a distance of A� + A� < ', which will result in shrinking the region of uncertainty. Since,

in this protocol, the intersections between the circles are internal variables of the secure function,

as shown in Figure. 6.4, the location of � cannot be predicted with an accuracy more than this.

6.2.7 Effect of the Motion of Cars

The inputs to the two functions �=C4AB42C8>= and '0=64 are locked in the first three steps

of phase 1 of the protocol. The rest of the protocol execution proceeds with these locked values.

Therefore, the final output of the protocol revealed to &, is the location of & at the end of these

three steps. There are two timing constraints that affect the accuracy of the estimated location:

1. The time to lock the coordinates of �, �, and � and estimating the distances should

be negligibly small such that all the cars can be considered stationary during that time

101

period. As shown in [113, 114] the distance estimation can be done as fast as in a

few nanoseconds. Therefore the time in the first three steps primarily consists of the

times to send the lock_location request, which is only a few bits. According to our

experimentation sending a 32-bit integer takes around 1500 clock cycles which translates

to around 1.5`s. Therefore the total time for these steps is around 3`s (note that the time

for the lock_location request to the first car � does not need to be considered since the

process starts only after � receives that request). Assuming the cars are moving at 100kph,

they move about 83`m in this period, which is indeed negligibly small.

2. The total time of the protocol execution should be small enough so that the estimated

location is close to the current location of &. Another possibility is that & remains

stationary during the protocol execution. Note that the assisting cars do not need to be

stationary since their locations are locked at the beginning. As we show in Section 6.2.13,

the time to complete the protocol is 330ms. Assuming the lost car is moving at 100 kph, it

will move about 9.3m during this period. Note that the current minimum accuracy of GPS

coordinating systems is 8m [115].

6.2.8 Distance Compensation

According to the first protocol described in the previous section, one assisting car may

know two vertices of the triangle ���. The estimated location of & is the median of ��� and

is calculated through the secure sum protocol such that only & learns the final result. However,

if the area of the triangle is too small, the location of & may be estimated by a car with good

accuracy from just two vertices of ���. To prevent this, & should be allowed to manipulate the

area of ��� by controlling the estimated distances from the three assisting cars. On the other

hand, the estimated distance should only be known to the respective assisting car.

Among several methods available for distance estimation like RSSI (Received Signal

Strength Indicator)[109, 110, 116], TOA (Time of Arrival)[117, 116, 118] , AOA (Angle of

102

Arrival) [119, 120] the one most suitable for this purpose is the two-way Time of Arrival method

[118].

In this method, the assisting car sends a synchronization message to the lost car and

the lost car sends it back after some delay. Then, the assisting car measures the time shift (CB)

between the transmitted and received messages and subtract the estimated delay C3 to get the

propagation time C? = CB − C3 . In a typical application, the delay accounts for the time to receive

the complete the message, and the time for the transceivers of both the cars to change their mode

(transmitter↔ receiver). In this application, the lost car can wait an arbitrary time before sending

back the message so that the actual delay is larger than the estimated delay C3 . This increases the

estimated distance and eventually results in a larger area of ���.

Note that since the final location is the median of the triangle, the larger area does not

result in a significant error in the estimated location as we will show in Section 6.2.11.

6.2.9 Netlist Generation

We follow the TinyGarble methodology [6] to generate the netlists for GC and BMR

operations. Even though TinyGarble supports both sequential and combinational circuits, the

latter approach is more suited for the localization application as it does not involve repeated

operation for most of the parts. The TinyGarble framework provides free-XOR optimized

synthesis library that contains implementations of arithmetic functions like unsigned addition,

subtraction, and multiplication. For implementations of equations (6.3) - (6.5) we extend the

library by including signed versions of these functions along with support for variable bit-length

and overflow, which are essential for generating the netlist for any arbitrary practical function.

In addition to this, we implemented free-XOR optimized division and square-root functions as

required by equations (6.4) and (6.5).

As shown in Figure 6.4, the netlist for)A8!>2, required by the BMR based protocol, is

composed of the netlists for 8=C4AB42C8>= and A0=64 functions, along with three MUXs and one

three input adder. In the following, we discuss the generation of GC/BMR optimized netlists for

103

these functions. The netlists for each function need to be generated only once. It is generated

offline and saved in each car’s memory.

Intersection. The �=C4AB42C8>= netlist computes Eq. (6.4) and (6.5) that require, along

with other arithmetic functions, division and square-root. In our implementation, the complexity

of the number of non-XOR gates in a F-bit division operation is O(F2) which is similar to the

complexity of the multiplication operation provided in [6]. The number of non-XOR gates for a

64-bit division operation is 12 546. The square root operation follows an iterative procedure. The

complexity of the number of non-XOR gates in a F-bit square root operation with E iterations is

O(F2E). Again, the number of required iterations can be assumed to be linearly proportional to

the bit width, which simplifies the term to O(F3). Therefore, the of the number of non-XOR gates

in the �=C4AB42C8>= netlist with,-bit location coordinates is O(,3). The number of non-XOR

gates for a 64-bit square root operation with 32 iterations is 12 733.

If we start with,-bit Euclidean coordinates, the number of bits in the internal variables

keeps increasing due to overflow. The outputs of a F-bit addition/subtraction, multiplication, and

division operations need F +1, 2F, and F bits respectively. Going this way, inputs to the two

division operations of Equation 6.5 is 3, +7-bit (note the “±” in the equation, hence two division

operations). However, the output of this equation is the Euclidean coordinates of an intersection

and at the boundary condition, these coordinates can be at most four times the highest possible

coordinate of an assisting car. Therefore, the outputs of these division operations will be confined

to the lowest, +2 bits, and we can discard the rest. A similar situation occurs for the division

operations for Equation 6.4. Besides reducing the number of non-XOR gates in the �=C4AB42C8>=

netlist, this also reduces the number of non-XOR gates in the '0=64 netlist as these coordinates

are its inputs.

Range. Even though inequality (6.3) involves square-root operation, both sides of this

inequality are positive quantities as both of them are measured distances. Therefore, we can avoid

the costly square-root operation by squaring both sides. As a result, the '0=64 netlist is much

104

smaller than the �=C4AB42C8>= netlist, the most complex operation being squaring (multiplication)

with a complexity of O(F2).

A

B

C
Intersection : E

Range: D

Figure 6.5. Illustration of parallel invocations of GC protocol.

6.2.10 Invocation of the MPC Protocols

GC Operation. Each of the assisting cars participates in two GC operations on the

�=C4AB42C8>= netlist with the other two cars in the first protocol. These two GC operations are

independent of each other and performed in parallel in two cores of the processor. To ensure

symmetry, each car performs as the garbler for one pair and the evaluator for the other. Similarly,

each assisting car participates in two parallel GC operations on the '0=64 netlist with the other

two cars. Figure 6.5 illustrates these operations. The outer arrows depict GC on �=C4AB42C8>= and

the inner arrows depict GC on '0=64. The vertex of the triangle ��� that is being computed

in each GC operation is also indicated beside the arrows. A solid arrow emanating from a car

indicates that the car acts as the garbler in that operation, and a dashed arrow indicates the

evaluator.

The operation of the car � is described here as an example. � acts as the garbler while �

acts as the evaluator to determine the coordinates of � and �′ through the �=C4AB42C8>= netlist

and only learns the coordinate of �. In parallel to this, � participates in another GC operation as

the evaluator, with � as the garbler to compute the coordinates of � and �′ and learns only the

coordinate of �′. � then performs as the garbler, while � performs as the evaluator to decide

105

whether �′ forms one vertex of the triangle through the '0=64 netlist and shares the result with

�. At the same time, it acts as the evaluator in another GC operation where � is the garbler to

decide whether �′ forms one vertex of the triangle without learning the result.

BMR Operation. With BMR the complete operation is performed in one invocation of

the protocol on the)A8!>2 netlist. Even though the computation of each vertex is independent

of each other as can be seen from Figure 6.4, BMR computes the circuit serially gate by

gate. Therefore, the BMR based protocol cannot benefit from the parallelism of the operations.

Moreover, as explained in Section 2.4.1, The BMR protocol incurs computation cost of O(=2)

and communication cost of O(=), as opposed to O(1) in GC. The total number of computed

gates also increases slightly since the median computation is performed through MPC instead

of the secure sum as in the GC based protocol. As a result, while this protocol shows better

resilience against collusion, it is slower than the first one. All of �, �, �, and & act as garblers

while only & acts as the evaluator and learns the final output which is its location. Unlike the GC

based protocol, the intermediate results, i.e., the coordinates of the intersections are not revealed

to any car.

6.2.11 Evaluation: Error Analysis

We first analyze the error in the location estimated by triangle localization algorithm.

Note that this error is solely due to the localization method, and distance estimation error. The

MPC protocols do not introduce any additional error. To estimate the error, we run simulation by

placing the assisting cars at random positions inside a square area with dimension) and place

the lost car at the center of that square. The error is quantified as the Euclidean distance between

the estimated and actual location of the lost car, normalized to) . The estimation error depends

on two factors: (a) the relative positions of the assisting cars with respect to the lost car, (b) the

area of the triangle formed by the three assisting cars.

In Figure 6.6a the error is plotted against the distance (normalized to)) between the

actual location of the lost car and the median of the triangle formed by cars �, �, and �. For each

106

N
or

m
al

iz
ed

 m
ea

n
 e

rr
or

(a) Normalized mean error in the estimated location of the lost car as a function of the normalized distance
between the actual location of the lost car and the median of the triangle ��� with different degrees of
distance compensation.

N
or

m
al

iz
ed

 m
ea

n
er

ro
r

(b) Normalized mean error in the estimated location of the lost car as a function of the normalized area of
the triangle ��� with different degrees of distance compensation.

Figure 6.6. Error Analysis.

107

point on the curves, the simulation is run for 5.7� +03 times. The plot shows that the estimation

error increases linearly with the relative distance between the location of the lost car and the

triangle ���. To analyze the effect of distance compensation, we simulate three cases where

the actual distance is increased by 50%, 70%, and 90%, respectively. The plot shows that the

estimation errors are fairly close for all three cases.

In Figure 6.6b the error is plotted against the area (normalized to)2) of the triangle

formed by cars �, �, and �. For each point on the curves, the simulation is run for 2� + 4

times. The plot shows that the estimation error is high when the area is small, i.e, when the three

assisting cars lie close to a straight line. The error decreases sharply with increase in the area.

Similar to the previous case, distance compensation does not have a significant effect on the

estimation error.

In cases where there are more than three assisting cars are available, it would be beneficial

to choose the set of three cars that will result in the highest accuracy. Choosing the set according

to the relative location of the assisting cars with respect to the lost car is not feasible since it

requires the knowledge about the location of the lost car. However, it is possible to compute the

area formed by three cars and compare it against a predetermined threshold. To ensure privacy

this computation is performed by the BMR protocol.

6.2.12 Evaluation: Circuit Synthesis

As explained in Section 2.4.1, to compute a function securely through the Yao’s GC or

the BMR protocol, the function needs to be represented as a netlist of Boolean logic gates. Three

netlists are required for the MPC operations- Intersection and Range for GC and TriLoc for BMR.

The equations for the first two netlists (Eqs.(6.4), (6.5), and(6.3)) are described using Verilog

HDL and compiled with the Synopsys Design Compiler [121] with our custom libraries. The

TriLoc netlist is constructed from the first two. Due to the free-XOR optimization, the XOR gates

can be computed locally without costly cryptographic encryption or communication. Therefore,

the total time to compute the function is determined solely by the number of non-XOR gates in

108

the netlist. The number of non-XOR and XOR gates in the three netlists are presented in Table 6.2.

It shows that the number of non-XOR gates are around only one-quarter of the total number of

gates. This demonstrates the effectiveness of our customized synthesis library in generating the

MPC-optimized netlist.

Table 6.2. Number of XOR and non-XOR gates in the netlists

Netlist No. of non-XOR gates No. of XOR gates Total no. of gates
Intersection 2.40E+04 6.71E+04 9.11E+04
Range 4.51E+02 7.54E+02 1.21E+03
TriLoc 7.38E+04 2.06E+05 2.80E+05

6.2.13 Evaluation: Timing

To assess the timing performance, we run the two localization protocols on a system with

Ubuntu 14.10 Desktop, 12.0 GB of memory, and Intel Core i7-2600 CPU@ 3.4GHz. We employ

the TinyGarble framework [6] to perform the GC operations. The number of clock cycles in

every phase of the GC operation to garble/evaluate the Intersection and Range netlists once is

presented in Table 6.3. In the first localization protocol, each of these netlists is garbled/evaluated

three times by the three assisting cars in parallel. The total number of clock cycles from the lost

car initiating the operation to the final computation of its location is 1.20� +09 which translates

to only 355 ms. However, as described in Section 2.4.1, the input values to the functions are

not required during the garbling operation. They are only required at the start of the oblivious

transfer phase. Thereof ore, one way to reduce the accuracy loss due to the movement of the lost

car is to lock the coordinates of the assisting cars after the garbling is done.

To run the BMR based protocol, we employ the framework provided at [122, 46]. Unlike

GC, each car acts as garbler and only the lost car & acts as the evaluator. The average number of

clock cycles at different stages of the BMR protocol with the)A8!>2 netlist is presented in Table

6.3. The complete protocol execution takes 8.97� +09 clock cycles which translates to 2646

ms. As expected, the BMR based protocol have a longer run time than the GC based protocol.

109

Similar to the previous case, the assisting cars may wait till the end of the garbling phase before

locking their coordinates. Note that in both cases the protocol execution will have to wait till all

three assisting cars join. That wait time is not included in this evaluation.

Table 6.3. Timing results

Function Garbling
Oblivious Transfer Communication

Evaluation
Garbler Evaluator Garbler Evaluator

Intersection 2.97E+07 3.18E+08 2.94E+08 6.06E+05 3.16E+07 2.34E+07
Range 3.65E+05 3.06E+08 2.83E+08 5.40E+04 3.55E+05 2.96E+05
TrilLoc 8.90E+08 6.53E+09 7.31E+09 7.25E+09 7.25E+09 1.36E+08

Even though the evaluation is performed on a desktop PC, this protocol is practical with

processors available in smart cars today. For example, Intel Atom Processor E3845, designed

for in-vehicle solutions, has four cores operating at 1.91GHz and an L2 cache of 2MB [123].

The protocol requires transmission of about 1MB of data. With transmission speed in MHz

range [124], the transmission time is within practical limits. The memory footprint of this

operation is about 1.8MB, which can fit in the L2 cache of an Atom processor.

6.3 Authentication with Noisy Keys

With the recent rapid surge of the Internet of Things (IoT) paradigm, remote authentication

of devices holding sensitive information has become one of the primary security concerns.

Traditional methods of authentication using secret keys stored in a non-volatile memory have

been shown to be vulnerable to physical attacks [125, 126]. Therefore, Physical Unclonable

Functions (PUF) [19] has become a key element in remote authentication of resource-constrained

devices. PUFs offer a secure and lightweight alternative where the secret is not stored rather

extracted from the unique physical properties of the authenticating device. Since PUFs extract the

key from hardware imperfection, it is not possible to exactly reproduce these keys. Therefore, in

contrast to conventional authentication, in the PUF-based methods a user/device is authenticated

if the submitted key is within a certain pre-specified distance from the stored key. This requires

110

authentication schemes designed for noisy keys.

A number of PUF based authentication schemes have been presented in literature [127,

128, 129, 130, 131, 132]. However, all these schemes involve key updates and therefore require

strong PUFs, which have an exponential number of challenge-response pairs (CRP) as opposed

to weak PUFs, which have a limited number of CRPs. Strong PUFs, in general, require dedicated

hardware and may not be suitable for resource-constrained devices which constitute the majority

of the connected devices in IoT. Moreover, in IoT, the task of authentication is being distributed

among nodes at different levels of the network to scalably manage the massive web of various

entities. In such scenarios, holding a large CRP database at the verifier end may become

impractical.

Intrinsic PUFs [133] are more suitable of IoT since they can be instantiated in off-the-shelf

devices with little or no modification to the underlying hardware. All variants of intrinsic PUFs

are weak as they offer a limited number of CRPs. The current schemes involving weak PUFs

allow a limited number of authentications [134, 135]. To the best of our knowledge, there

have been only two weak PUF authentication schemes [136, 137] that allow unlimited mutual

authentication sessions. Both schemes employ Fuzzy Extractor to limit the exposure of the PUF

response. The scheme in [136] still leaks some information and thus, to ensure security, requires

a minimum number of bits (1785 bits to ensure 128-bit security) that may not be available from

many intrinsic PUFs. A common limitation of both of these methods is that their proof of

correctness must assume certain properties of the distribution of the PUF response, and requires

empirical verification. The work in [137] verifies the assumptions by experimental evaluation

of the Ring Oscillator (RO) based PUF. However, there is no guarantee that these assumptions

will hold for all different PUF designs (or even for RO based PUFs on a different hardware

platform). Another drawback of these schemes as well as most other PUF based authentication

schemes is that they assume the response to be in binary form. A number of recent intrinsic PUF

designs, e.g., the DRAM PUF proposed in [135], generates the PUF response as a set of integers.

Authentication of these PUFs requires secure set operations and thus is not compatible with the

111

schemes presented in [136, 137].

In this paper, we propose an authentication scheme where the prover and the verifier do

not reveal a single bit of the PUF response to each other. Thus this scheme supports unlimited

mutual authentication sessions even with weak PUFs. Unlike [136] it requires only 237 bits to

ensure 128-bit security in an equivalent setting. More importantly, our scheme does not require

any assumption on the distribution of the PUF response. In addition, it supports PUF response

both in binary form and as a set of integers. Another feature of this protocol is that it allows

successful authentication even with the presence of noise in responses at different interrogations

of the PUF. Therefore, it does not require any error correction scheme as most of the PUF based

protocols [131, 132, 136, 137]. Since one of our primary goals is authentication with intrinsic

PUFs we design the scheme such that it can be implemented without any additional hardware.

Our scheme is based on the secure (privacy-preserving) computation of the Hamming

distance between the PUF and reference responses from the prover and the verifier, respectively.

Interestingly, secure Hamming distance has been employed in the field of biometric authentication.

This field faces similar challenges since the biometric keys tend to be noisy and limited in supply,

just like the responses of weak PUFs. A number of these works [40, 41] presents protocols for

secure computation of Hamming distance in the malicious security model, where any party can

deviate from the accepted behavior to learn more information about the other party’s data or

to produce incorrect results. These protocols are proven to be secure in the sense that they do

not leak any information to any party other than the protocol output. However, we show that

the security of the biometric keys can still be breached just from the information held by an

individual party.

In our scheme, we first construct an authentication function such that its secure computation

does not allow any malicious party to produce a false result or deduce the inputs of the honest

party in polynomial (in terms of the number of bits in the response) number of attempts. We

then utilize the Yao’s Garbled Circuit (GC) [7] to securely compute the authentication function.

The original GC protocol was secure in honest-but-curious security model, which assumes

112

that both parties follow the protocol honestly yet may try to learn additional information from

the information at hand. However, subsequent enhancements [138, 139, 140, 22] have made it

secure in the malicious security model. To add support for the PUFs with integer responses we

employ Locality Sensitive Hashing (LSH) [141, 142]. It translates the authentication involving

set operations to our Hamming distance based authentication function.

6.3.1 Summary of Contributions

In brief, our contributions of this work are the following.

• We present a mutual authentication scheme for weak intrinsic PUFs based on the secure

computation of Hamming distance between the PUF response from the prover and the

reference response held at the verifier.

• We prove that our authentication scheme does not allow any malicious party to produce a

false result or deduce the inputs of the honest party in polynomial (in terms of the number

of bits in the response) number of attempts.

• Our authentication scheme supports PUF response in the classic binary form as well as a

set of integers as produced by a number recent intrinsic PUF implementations.

• The authentication scheme supports mutual authentication even with the presence of noise

in the PUF response and thus eliminates the need for error correction methods.

• Implementation of the scheme demonstrates the practicality of the design. With maximum

allowed fraction of mismatched bits between an authentic pair of responses from the same

PUF set to 10%, the protocol execution takes 81 ms on a desktop processor and 487 ms on

an embedded processor.

6.3.2 Physical Unclonable Function (PUF)

A Physical Unclonable Function (PUF) is a function whose output (response) depends on

both the applied input (challenge) and the unique physical properties of the hardware where it

resides. It utilizes the inherent natural physical disorder, e.g., silicon manufacturing variations, of

113

the device to create a unique signature (fingerprint), of that device. The challenge and response

together form one challenge-response pair (CRP). In the exact sense, for a PUF to be used in

authentication it must always generate the same response when interrogated multiple times by

the same challenge. However, in practice, this criteria is difficult to meet precisely since the

response bits are not perfectly reproducible. Transistor noise, as well as various environmental

variations (supply voltage, temperature, etc.), introduces noise in the generated response. To

ensure usability, the major portion of the response should be stable over multiple interrogations.

Some authentication schemes employ error correction methods that can regenerate the reference

PUF response given that the number of noisy bits is within a certain limit [143]. In this work, for

binary PUF response, we compute the Hamming distance between generated and reference PUF

response and compare it against a certain threshold for authentication decision.

There are two broad variants of PUFs: strong PUF and weak PUF [144]. Strong PUF

supports a large number (usually exponential in term of a number of challenge bit) of CRPs.

This ensures that even if an adversary gains access to a large subset of CRPs, it cannot predict

the ones not already known. On the other hand, weak PUFs provide only a limited space of

CRPs. In applications involving weak PUFs, it is assumed that its responses are not accessible by

adversaries.

In this paper, we are particularly interested in intrinsic PUFs which can be instantiated in

off-the-shelf devices without any modification to the hardware. They have limited CRP space and

thus are considered weak PUFs. The most widely examined intrinsic PUFs are the one based on

Static Random-Access Memory (SRAM) [145, 146, 147]. In SRAM PUFs, the start-up values

of the bi-stable SRAM cell constitutes the PUF response which is a binary string. Even though

SRAM PUFs have been shown to possess good PUF characteristics, their one major drawback is

that since the response is based on start-up values, the authentication can only be performed at

boot time or stored in a memory, which subverts the main motivation behind using a PUF.

Recently Dynamic Random Access Memory (DRAM) has been introduced as a PUF

construct [148, 149, 135]. The primary advantage of a DRAM PUF is that it can be interrogated

114

at run-time of the operating system. If the periodic refresh of DRAM cells is turned off or

delayed, the charges of the cells decay in a manner unique to each cell resulting in the flipping of

the stored value. At a certain delay, the indices of the flipped bits constitute the PUF response.

Thus the response of a DRAM PUF is a set of integers rather than a bit stream in generic PUFs. If

the DRAM PUF is used for authentication, the similarity of the PUF response with the reference

response stored at the verifier is measured using the Jaccard similarity. If the response generated

by the PUF is '%*� and the reference response saved at the verifier is 'A4 5 the Jaccard similarity,

J between these two sets of integers is given by,

J =
|'%*� ∩'A4 5 |
|'%*� ∪'A4 5 |

(6.6)

In Section 6.3.8, we will show how the problem of computation of J can be translated to

the computation of the Hamming distance of two binary strings.

6.3.3 Related Work

Most of the work on PUF based remote authentication involve strong PUFs [127, 128, 129,

130, 131, 132] These works require regular updates of the key and therefore the PUF is required

to have a large CRP database. The authors in [150] surveyed the state-of-the-art authentication

schemes based on strong PUFs and show that most of them lack formal security analysis and

adequate security against various attacks.

There are a few works that deal with remote authentication using weak PUFs. The work

in [135] propose a lightweight authentication scheme based on the DRAM PUF construction.

In their scheme, the verifier chooses a certain decay time, which acts as the challenge in this

case, and sends it to the prover. The prover generates the corresponding response and sends

it back to the verifier. The verifier then computes the Jaccard similarity between the received

response and the response saved in it CRP database. If the Jaccard index is larger than a certain

threshold, the verifier accepts the prover. The drawback of this scheme is that the decay times

115

have to be monotonically increasing for subsequent authentication sessions. Since there is only

limited number of possible decay times, after a certain number of authentication sessions all the

PUF responses will be exposed and the PUF will not be useful for further secure authentication

sessions.

To the best of our knowledge, there have been two weak PUF based authentication

schemes that limit the exposure of the response and thus allow unlimited mutual authentication

sessions: the Reverse Fuzzy Extractor presented in [136] and the Trapdoor Computational Fuzzy

Extractors presented in [137].

Fuzzy Extractor [143] is used to correct noisy PUF data with the help of a helper data

that is generated during the enrollment phase. The main idea in [136] is moving the task

of reconstruction of the PUF response from the prover to the verifier. In their reverse fuzzy

extractor, the helper data is generated at the prover every time the PUF is interrogated as opposed

to generating it only once during enrollment phase in a regular fuzzy constructor. Since the

reconstruction of the response requires more computational power than a generation of helper

data, this setting improves the overall efficiency of a system with resource-constrained prover and

a strong verifier. During authentication, only the helper data is transferred from the prover to

the verifier. A legitimate verifier would have the reference PUF response and would be able to

regenerate the noisy PUF response generated at that session. Thus authentication is performed

without communicating the PUF response. This allows unlimited use of the same response in

different authentication sessions. One drawback of this scheme is that it requires a large number

of bits to ensure security (1785 bits to ensure 128-bit security) that may not be available from

many intrinsic PUFs. Moreover, the helper data inevitably reveals some information about the

PUF response [150]. In a regular fuzzy extractor, it is generated only once, while in the reverse

fuzzy extractor it is generated in every authentication session resulting in more probability of

information leak.

The work in [137] presents a computational fuzzy extractor that can correct O(<) errors

in polynomial time. Unlike [136] the confidence information is not exposed in this work. As

116

a result, it does not require a large number of response bits and can ensure 128-bit security

with 128-but PUF response. A limitation common to both [136] and [137] is that their proof

of correctness must assume certain properties of the distribution of the PUF response (e.g., it

can provide confidence information) that requires empirical verification. The work in [137]

demonstrated by experimental results that these assumptions hold for Ring Oscillator (RO) based

PUF. However, there is no guarantee that these assumptions will hold for any generic PUF design

(or even for a different realization of the RO based PUF). Especially, the intrinsic PUFs has

the possibility of having a skewed distribution. Lastly, neither of these two schemes support

authentication with PUFs providing integer responses, like the DRAM PUF.

Similar to the PUF responses, biometric keys tend to be noisy. Thus, Hamming distance

based authentication has been popular in the field of biometric authentication [41, 40, 151, 152,

153, 154]. While the majority of these work adopt the honest-but-curious security model there

have been a number of works that are claimed to be secure in the malicious setting [41, 40].

However, these protocol outputs the Hamming distance in plain text. The security proof of the

protocols is based on the premise that a protocol is secure if it does not leak any information to

one party other than what can be deduced from her input and the protocol output. However, as

we have shown in this paper, revealing the Hamming distance allows an adversary to learn the

input of the honest party in a linear number of attempts.

One interesting work in this field is the binHDOT protocol presented in [155]. At the

end of this protocol, one party holds a set of variables: {/;};=1...! and the other party holds only

one of them /� where � is the Hamming distance between their inputs. Thus the final result is

shared between them. The paper suggests that this can be turned to a secure Hamming distance

threshold comparison (similar to the one presented in this paper) by setting {/;} = 1 for 8 <)

and 0 otherwise. However, while the binHDOT protocol is proven to be secure in the malicious

setting, this threshold comparison protocol is only secure in the honest-but-curious model. The

authors in [155] outline some possible strategies to achieve security in the malicious setting.

However, no complete protocol has been developed. This is an example of the fact that while

117

Authentication
Function

Hamming Distance

< T

1

N

M

M

M

N

M

M

Rref RPUF

q

Sv0

Sv1

Sp0

Sp1

Svq Spq

Verifier Prover

Extended Authentication Function

Accept Svq== Sv1

Svq!= Sv1Reject

AcceptSpq== Sp1

Spq!= Sp1 Reject

C

PUF

log(N+1)+1

M

Figure 6.7. Authentication protocol.

designing custom secure protocols may seem efficient, ensuring the security of these protocols

is a daunting task. In our design, we first developed a secure authentication function and then

executed it with a standard SFE protocol to prevent the possibility of security breach.

6.3.4 Threat Model

Our model consists of three parties, the prover P, the verifierV and the adversary A.

We assume no shared secret between P andV other than the CRP (a single CRP will suffice). P

is equipped with a weak PUF. Our scheme allows some noise in the PUF response generated each

time by P and therefore does not require P to be equipped with any error correction scheme.

Further, P has no secret stored in its non-volatile memory and erases its volatile memory upon

exiting the protocol. A can access the non-volatile memory of P but not the volatile memory

during the time of protocol execution. Consistent with the state of the art schemes, we assume

A to be able to eavesdrop on the communication channel between P andV. However, unlike

previous schemes, we do not assumeV to be trusted. The only distinction we make betweenV

and A is the possession of the CRP.

118

6.3.5 Authentication Function

Figure 6.7 outlines the authentication protocol betweenV and P. The steps enclosed

within the solid (blue) box constitute the authentication function,

@ = F0DCℎ ('A4 5 , '%*� ,)) =

1, �� ('A4 5 , '%*�) <)

0, >Cℎ4AF8B4

(6.7)

where, �� (., .) denotes the Hamming Distance. The input to the authentication function fromV

is the reference PUF response 'A4 5 , an #-bit binary string stored in its database. The input from

P is the PUF response '%*� , an #-bit binary string extracted from the PUF. The first step of the

function is computing the Hamming distance between 'A4 5 and '%*� . If PUF responses were

free from noise or in presence of error correcting code, the Hamming distance would be zero

for a genuine PUF response. However, to allow a generic PUF without any error correction, we

compare the resultant Hamming distance with a threshold value,) . Here,) is a publicly known

parameter agreed upon by V and P before the start of the protocol (during the initialization

phase, Section 6.3.6). The choice of) will depend on the characteristics of the PUF and the

acceptable error margin. The 1-bit output @ of the comparator indicates whether or not the PUF

response is close enough to the reference response saved at the verifier.

We employ the Authenticated Garbling protocol [22] to ensure the privacy of the inputs

of V and P. We now take a closer look into the security of this protocol. As discussed in

Section 2.4, the final output is XOR-shared between the two participating parties, and they have

to authenticate their respective shares to prevent alteration in the middle of the protocol execution.

The parameters of the authentication function F0DCℎ are set such that the probability of success of

an adversary A with an incorrect PUF response is infinitesimally small (2−128, see Section 6.3.9

for details). Therefore, if the authentication function F0DCℎ is evaluated through the Authenticated

Garbling protocol, the adversary would already know the value of the output @ (0, in this case)

with success rate close to unity. Therefore,A could flip her share of the bit @, which would result

119

in flipping the final value of @ from 0 to 1 and making the honest party accept her as a legitimate

V or P. The Authenticated Garbling protocol is able to prevent alteration of the shares in the

middle of the protocol execution. In this specific case, the final output is independent of the input

of the honest party and is known to the adversary even before the execution starts.

To prevent the above scenario, instead of directly using @ as the output, it is used as the

selector bit of two multiplexers to select from two pairs of random " bit strings. This constitutes

the extended authentication function,

{(E@, (?@} = F4GC_0DCℎ ('A4 5 , (E0, (E1, '%*� , (?0, (?1,)) (6.8)

The steps involved in this function is enclosed within the dotted (red) box in Figure 6.7. This

extended authentication function is computed through the Authenticated Garbling protocol.

Along with 'A4 5 and '%*� , the inputs to the extended authentication function fromV is a pair

of "-bit random nonces, (E0 and (E1. Similarly, the inputs from P is a pair of "-bit random

nonces, (?0 and (?1. The 1-bit output @ of the comparator is used as the selector bit of the two

multiplexers with inputs {(E0, (E1} and {(?0, (?1}. The outputs of the multiplexers (E@ and (?@

are revealed toV and P, respectively. The final decision is made through the local comparison.

Each party accepts the other party if and only if the received outputs entirely matches the (E1

(Verifier side) or (?1 (Prover side). Unlike the authentication function in Equation 6.7, the outputs

of this extended authentication function depend on the inputs from both parties even with an

incorrect PUF response. A will now have to correctly guess (E1 or (?1 which has a success rate

of 2−" .

6.3.6 Protocol Initialization

Similar to all PUF based authentication protocols, we assume that the initialization is

performed in a secure environment. V sends a set of challenges (at least one) to P and stores the

responses sent back by P in her database. Note that the stored responses are considered secret

120

owned byV, while the challenges are public. P stores no secret data in its memory. P andV

agree on the threshold value) which is publicly known and is stored on the non-volatile memory

of both parties. In addition to these, the netlist of the authentication function required by the GC

protocol is also stored on the non-volatile memory. The netlist can be generated byV, P, or an

independent issuer. As explained in Section 2.4, the netlist is publicly known, independent of

eitherV or P and only has to be generated once during the initialization phase.

6.3.7 Protocol for Binary Response

We now describe our protocol for PUFs that generate a binary string response. The

protocol is denoted as c0DCℎ. In the next section, we describe how this protocol can be extended

to be compatible with the PUF response as a set of integer indices. In c0DCℎ, the extended

authentication function F4GC_0DCℎ is computed through Authenticated Garbling [22]. This ensures

that the inputs and outputs of this function remain private to the respective parties and is not

revealed to the other party (or an eavesdropper). It also ensures the correctness of the output

even if one of the parties are corrupted.

Authentication protocol c0DCℎ between the verifierV and the prover P:

Input: V inputs the #-bit reference response 'A4 5 , and two "-bit random nonces (E0, (E1. V

inputs the #-bit PUF response '%*� , and two "-bit random nonces (?0, (?1. The challenge �

and the threshold) is public and known by both parties.

Output: Both parties receive a one-bit output accept/reject indicating whether or not the other

party is authenticated.

The protocol:

i V sends the challenge � to P. If there is only one CRP then � can be stored in a

non-volatile memory of P and this step can be omitted.

ii P applies the challenge � to the PUF and generates the response '%*� . In addition, P

generates two random "-bit strings (?0 and (?1.

121

iii V generates two random "-bit strings (E0 and (E1.

iv V and P perform the Authenticated Garbling protocol on the extended authentication

function F4GC_0DCℎ (Figure 6.7) withV as the garbler and P as the evaluator. The inputs to

the authentication function from V are the #-bit reference PUF response 'A4 5 and the

two "-bit random nonces (E0 and (E1. Similarly, the inputs from P are the #-bit PUF

response '%*� and two "-bit random nonces (?0 and (?1.

v P sends his share of (E@ toV so thatV can XOR it with her share and learn the actual

value.

vi Similarly,V sends her share of (?@ to P so that P can XOR it with his share and learn the

actual value.

vii V locally compares (E@ with (E0 and (E1. If (E@ = (E1,V accepts P. Otherwise,V rejects

P and aborts.

viii P locally compares (?@ with (?0 and (?1. If (?@ = (?1, P accepts V. Otherwise, P

rejectsV and aborts.

6.3.8 Extension for Integer Response

As we discussed in Section 2.4, for the DRAM PUFwe need to translate the authentication

based on Jaccard similarity to the authentication based on Hamming Distance. For this purpose,

we utilize Locality Sensitive Hashing (LSH) [141, 142].

LSH is a family of functions that map the input domain to the output domain (hash) with

the following condition: the probability that hashes of two inputs are equal (collision) is higher

for similar inputs than non-similar ones. The similarity between inputs can be quantified using

different similarity metrics such as Jaccard or Cosine. More formally, if the collision probability

%AH (ℎ(G) = ℎ(H)) for a hash familyH is a monotonically increasing function of the similarity,

122

(8<(G, H), the hash familyH is a valid LSH family

%AH (ℎ(G) = ℎ(H)) = 5 ((8<(G, H)), (6.9)

where 5 (.) is a monotonically increasing function. To be consistent with [135] which presents

the most efficient DRAM PUF to date, we use the Jaccard similarity index J [156] in the

authentication method presented in this paper. The Jaccard similarity between two given sets G,

H ⊆ Ω = {1,2, ..., |Ω|} is defined as

J = |G∩ H ||G∪ H | (6.10)

Minwise hashing (MinHash) [157] is the LSH that preserves the Jaccard similarity and is defined

as follows

ℎ<8=c (G) =min(c(G)), (6.11)

where c :Ω→Ω is a random permutation applied to the given set G. The hash is the minimum

value of the permuted set. For example, given the set G = {1,2,5} ⊂ Ω = {1,2,3,4,5} and the

random permutation

c : 1→ 5,2→ 3,3→ 1,4→ 2,5→ 4,

set G is mapped to c(G) = {5,3,4} = {3,4,5}, hence, ℎ<8=c (G) = 3. For any two sets G and H, by an

elementary probability argument (see [158]) it can be shown that

%A{ℎ<8=c (G) = ℎ<8=c (H)} =
|G∩ H |
|G∪ H | = J . (6.12)

MinHash is a valid LSH since the function 5 (.) in Equation 6.9 is equal to 5 (U) = U which is a

monotonically increasing function. Please note that MinHash maps an input set to an integer value

ℎ<8=c (G) : (⊆ Ω ↦→ 8 ∈ {1,2, ..., |Ω|}. However, from the computation and storage consumption

perspective, it is preferable to map the output integer to only a 1-bit output. This can be realized

by the universal hash functions ℎD=8E : N ↦→ {0,1}. One of the popular approaches is to take

123

only the least significant bit of MinHash [159]. Therefore, 1-bit MinHash can be realized as

ℎ
<8=,118C
c (G) = ℎD=8E (ℎ<8=c (G)) = ℎ<8=c (G) mod 2. In order to identify whether ℎ<8=,118Cc (G) is a valid

LSH or not, we need to compute the collision probability. The probability that two sets G and

H have equal MinHash values is J (Equation 6.12) in which case ℎ<8=,118Cc (G) = ℎ<8=,118Cc (H). If

ℎ<8=c (G) ≠ ℎ<8=c (H) (with probability 1−J), there is a 50% chance that 1-bit hashes would collide

(symmetry between outcome events). As a result

%A{ℎ<8=,118Cc (G) = ℎ<8=,118Cc (H)} = J ×1+ (1−J) × 1
2
=
J +1
2

. (6.13)

Consequently, 1-bit MinHash is also a valid LSH. One can repeat the computation ℓ times

with ℓ different random permutations to create an ℓ-bit LSH embedding. We denote the

ℓ-bit LSH embedding of a set G as !(�ℓ
<8=
(G). Given two sets G and H with similarity of

(8<(G, H) = J0, the number of bit-matches between !(�ℓ
<8=
(G) and !(�ℓ

<8=
(H) is J0+12 × ℓ on

average. The uncertainty comes from the fact that LSH is a probabilistic embedding. More

precisely, � [#D<�8C"0C2ℎ(!(�ℓ
<8=
(G), !(�ℓ

<8=
(H))] = J0+12 × ℓ, where � [.] is the expected

value of a random variable. One can express this formula using Hamming Distance (HD)

�ℓ�� (G, H) = � [�� (!(�
ℓ
<8= (G), !(�ℓ<8= (H))] =

1−J0
2
× ℓ. (6.14)

For instance, if J0 = 0.9, the Hamming distance between the 64-bit LSH embeddings of G and H

(�64
��
(G, H)) is 3.2. Therefore, if the Jaccard similarity of 0.9 or higher is accepted as the verified

response, one can similarly verify the hash of a response if it passes the HD threshold of 3.

6.3.9 Security of the Authentication Function

The security of the Hamming distance based schemes relies on the fact that the Hamming

distance sums up the difference between the bits of the two input binary strings and thus holds

no information about individual bits. While this is true for a single execution, in the case of

124

multiple executions, it is possible to deduce information about individual bits of one input by

adaptively varying the other input and observing the changes in the resulting Hamming distance.

Any authentication scheme based on the Hamming distance should ensure that the authentication

keys cannot be learned in a polynomial (in terms of the number of bits in the keys) number of

executions.

We start with a more generic version of the authentication function,

& = F `

64=_0DCℎ ('A4 5 , '%*� ,)) (6.15)

where, Q is the left most ` bits (1 ≤ ` ≤ ;>6(#) +1) 1 of�� ('A4 5 , '%*�) −) . The authentication

function F0DCℎ provided in Equation 6.7 is a special case of F64=_0DCℎ with ` = 1, since the output

of the comparator is essentially the carry bit of the subtraction result.

Hamming distance has been employed in biometric authentication protocols [40, 41]

which deals with noisy signatures similar to the PUF responses. However, these protocols

generally output the Hamming distance itself and the comparison with the threshold is performed

locally. The authentication function employed in these protocols is another special case of the

one provided in Equation 6.15 with ` = ;>6(#) +1 and) = 0. The security analysis of these

protocols prove that a malicious adversary cannot obtain more information than what can be

generated from the information she has (i.e., her input and received function output). However,

even if the protocol is assumed to be secure by definition, we show in this section that it is

possible for the adversary to deduce the input of the honest party in O(#) attempts. This is why

we start with the generic authentication function given in Equation 6.15 and show that it is secure

in the special case of

F0DCℎ ('A4 5 , '%*� ,)) ≡ F `=1
64=_0DCℎ ('A4 5 , '%*� ,)) (6.16)

1For fractional values of ;>6(.), we take the nearest integer smaller than ;>6(.), i.e., b;>6(.)c. For simplicity, we
denote b;>6(.)c as ;>6(.) throughout the paper.

125

Let us define another variable,

a = ;>6(#) +1− ` (6.17)

Thus, a is the number of bits hidden from the subtraction result of �� ('A4 5 , '%*�) −) .

In the following analysis, we examine the effect of a on the security of the authentication

function. We assume that the adversary A with input '′
%*�

is posing as the prover P and

interacts with an ideal simulator Σ that computes the function F `

64=_0DCℎ ('A4 5 , '
′
%*�

,)). Σ holds

'A4 5 and is secure by definition, i.e., it does not leak any information regarding 'A4 5 , except the

output of the function. A tries to deduce 'A4 5 by adaptively updating her input '′%*� .

• Initially, we set a = 0 and) = 0. To deduce 'A4 5 in the minimum number of attempts, A

should update her input with the finest resolution. Therefore, initially, she flips a single

bit of her input '′
%*�

at index = in 2 consecutive attempts. If the values of the output &

provided by Σ increases, then the =-th bit of '′
%*�

at the first attempt was equal to the

=-th bit of 'A4 5 , since flipping that bit resulted in an increased Hamming distance. In

this setting, A will require 2# attempts to deduce all # bits of 'A4 5 (Thus, the protocols

of [40, 41] are not secure since they can be broken in O(#) attempts).

• If a is set to 1, i.e., the least significant bit of the Hamming distance is hidden from A,

flipping only 1 bit will not produce any difference in the values of &. Therefore, A is

forced to flip 2 bits of '′
%*�

. Since there are 4 possible combinations, she will need 4

attempts to learn 2 bits of 'A4 5 , and a total of 4×#/2 attempts to learn all # bits.

• We now consider an arbitrary value of a. The Hamming distance between two,-bit binary

strings is ;>6(,) +1 bits. However, if we keep the first string fixed, for only one of the 2,

possible instances of the second string the most significant bit (bit index ;>6(,) +1) of

the Hamming distance will be set to 1 when the second string is bit-by-bit inverse of the

first one. Similarly, to observe a change in the (a +1)-st bit of the Hamming distance, A

will require to alter groups of 2a bits together, and thus will need 22a attempts. In total, she

126

will need 22a ×#/2a attempts to learn all the bits of 'A4 5 .

• Finally, for a = ;>6(#), thus ` = 1 as employed in the authentication function of Equation 6.7,

A will need 22;>6 (#) × #/2;>6(#) = 2# attempts to learn all the bits of 'A4 5 . Thus the

number of attempts is exponential in # .

Effect of the Threshold) . So far we have assumed the threshold) = 0, which is ideal but not

practical due to the noise present in the PUF response. For) > 0, it will suffice forA to learn any

−) out of # bits correctly, irrespective of the bit indices that are correct. Since the distribution

of the bits of the PUF responses is unknown to A, the process of forming these # bit binary

strings follows a binomial distribution [160] which is used to model the number of successes

when sampling with replacement. Let F be the number of bits guessed correctly. Assuming each

bit of 'A4 5 has equal probability (= 1/2) of being 0 or 1,

%A (F ≥ # −)) = 1
2#

#∑
==#−)

(
#

=

)
(6.18)

Note that the nominator in Equation 6.18 is a polynomial in # and the denominator is an

exponential in # . Therefore, the number of attempts required by A to authenticate with a high

probability is still exponential in # . To ensure 128 bit security, we need

%A (F ≥ # −)) ≤ 2−128 (6.19)

We set) as a fraction C of # , i.e.,) = dC#e; 0 < C < 1. Solving inequality 6.19 for C = 0.05,0.1,0.15

yields # = 181,237,320, respectively. The threshold fraction C, which denotes the maximum

fraction of mismatched bits between an authentic pair of '%*� and 'A4 5 , is the only parameter

that controls the total execution time of the protocol.

Minimum Set Size for PUFs with Integer Responses. For the case of PUFs with integer

responses, along with the minimum bit-length for LSH encoding, we need to set a minimum

size of the sets so that the probability of an adversary successfully guessing the response set is

127

sufficiently low. Let (be the set guessed by A, D be the number of elements guessed correctly,

and E be the number of elements guessed incorrectly. The Jaccard similarity, J can be computed

as

J = |(| − E|(| + E , (6.20)

If the maximum number of incorrect guess is E" , then the minimum value of Jaccard similarity,

J<8= is given by

J<8= =
|(| − E"
|(| + E"

, (6.21)

For a given J<8=, we have

E" =
1−J<8=
1+J<8=

× |(|, (6.22)

The process of choosing integers to form the sets of responses follows the multivariate hypergeo-

metric distribution [161] that models sampling without replacement. Since each element (the

integer indices) is represented only once in the urn,

%A (J ≥ J<8=) = %A (E ≤ E") = %A (D ≥ |(| − E")

=

|(|∑
==|(|−E"

(|Ω|−|(|
|(|−=

)
×

(|(|
=

)(|Ω|
|(|

) (6.23)

To ensure 128 bit security we need

%A (J ≥ J<8=) ≤ 2−128 (6.24)

In the DRAM PUF construction of [135] each logical PUF has the size of 32KB, which gives

|Ω| = 32×8×210. Solving inequality 6.24 for J<8= = 0.9 yields |(| ≥ 10.

6.3.10 Security of the Authentication Protocol

We now analyze the security of the authentication protocol, c0DCℎ. We again assume that

the adversary A with input '′
%*�

is posing as the prover P. A interacts with an ideal simulator

128

Σ. Unlike the previous section, in this case, Σ does not communicate with the verifierV, and

therefore have no knowledge about the reference response 'A4 5 . We prove the security of c0DCℎ by

showing that Σ is able to generate a view that is indistinguishable from the view of the adversary

in a real execution of the protocol, c0DCℎ withV. This would imply thatA learns no information

about the input ofV from the real protocol [162]. In this analysis, we utilize the hybrid model

presented in [163]. According to this model, if a protocol is proven to be secure in the right

setting, it suffices to assume that the parties have access to a trusted party that computes that

functionality. Since the Authenticated Garbling protocol of [22] is proven to be secure in the

malicious model, we assume that the parties have access to a trusted party that computes this

functionality.

The ideal simulator Σ works as follow:

i Σ sends the challenge,� toA. Since� is considered public,Σ does not need communication

withV to learn it.

ii Σ receives the the response '′
%*�

, two random "-bit strings (?0 and (?1 from A

iii Σ generates a #-bit random string '′
A4 5

and two random "-bit strings (E0 and (E1.

iv Σ performs the Authenticated Garbling protocol on the extended authentication function

F4GC_0DCℎ through a trusted party. The inputs to the extended authentication function from

Σ is the #-bit random string '′
A4 5

and two the "-bit random nonces, (E0 and (E1.

v Σ receives A’s share of (E@.

vi Σ sends its share of (?@ to A

Since none of '′
A4 5

from Σ and '′
%*�

from A are authentic, A observes with a high probability

that the authentication has failed, according to the analysis in Section 6.3.9. Since her own input

'′
%*�

is not authentic, this is the expected result from her side. Therefore, she is not able to

distinguish between a real execution of the protocol c0DCℎ withV and an ideal execution by the

129

simulator Σ, which does not communicate withV. This proves that the c0DCℎ does not leak any

information about the inputs ofV.

Note that the security proof could be stronger if we assumed A “corrupts” P as opposed

to “posing as” P, in which case she would posses the actual PUF response '%*� . However,

'%*� is just a noisy version of 'A4 5 . Therefore,A would learn nothing new from the protocol in

that case.

6.3.11 Generating GC Netlist

To execute securely through the Authenticated Garbling [22] protocol (or any garbled

circuit based protocol), the extended authentication function shown in Figure 6.7 needs to be

represented as a netlist of Boolean logic gates. Due to free-XOR [26] described in Section 2.4,

optimizing the netlist for GC requires minimizing the number of non-XOR gates. We design the

function inVerilogHDL and compile byYosysOpen Synthesis Suite [164] with the TinyGarble [6]

circuit synthesis library for GC to generate the netlist. Even though TinyGarble is the most

efficient tool to generate the GC netlist, the GC execution protocol supported by this framework

is only secure in the semi-honest setting. Therefore we garble/evaluate the generated netlist

through the realization of the Authenticated Garbling protocol provided in the EMP-toolkit [35].

This protocol is secure in the malicious setting as demanded by our authentication scheme.

Table 6.4 shows the number of non-XOR gates required by the different components of the

extended authentication function for different values of threshold fraction C. The number of bits

in the PUF response # and the threshold) are set according to the computations in Section 6.3.9.

" is set to 128, the value of the security parameter : employed in recent works [21, 22] in

Secure Function Evaluation (SFE). Note that the total number of non-XOR gates in the netlist

generated by Yosys is smaller than the sum of the number of non-XOR gates in all components.

This is because the synthesis tools preform optimizations on the entire circuit to minimize the

cost function, which in this case is the number of non-XOR gates.

We have created a parser to automatically convert the netlist from TinyGarble in the

130

format supported by the EMP-toolkit. The size of the netlist files for different settings is shown

in Table 6.4. The netlist needs to be generated only once and stored on the non-volatile memory

of both parties.

Table 6.4. The numbers of non-XOR gates in the generated netlist for different values of threshold
fraction C

Number of non-XOR gates
C #) " Hamming Comparator MUX Total Total† Size(KB)

−1 ;>6(#) +1 2" # + ;>6(#) +2" Gen. by Yosys
0.05 181 10 128 180 8 256 444 439 42
0.10 237 24 128 236 8 256 500 494 51
0.15 320 48 128 319 9 256 584 582 64
† The synthesis tool perform optimization on the entire circuit to reduce the number of gates.

6.3.12 Implementing LSH

As we discussed in Section 6.3.8, in order to create a 1-bit LSH from a set, we need to

perform a random permutation on the input set. Computing an ;-bit LSH, in fact, requires ℓ

random permutations which accounts for the costliest part of computing the LSH embedding.

However, recent advances in Minwise hashing [165, 166, 167] make it possible to extract more

than one bit from a single permuted set. The general idea behind these methods is that one can

partition the universal set (Ω) into #? different pieces and perform Minwise hashing for each

partition separately. In other words, once we have permuted the input set, we output the minimum

value in each section as the MinHash value and <>3 2 as its 1-bit LSH. Figure 6.8 illustrates

this idea for a sample set of (= {0,3,7, ..., |Ω| −2}. This technique enables us to extract #?

1-bit LSH from single permutation which in turn, reduces the computation and memory usage

by almost a factor of #?. As a result, the overall number of random permutations required to

generate a ℓ-bit LSH is d ℓ
#?
e.

We present two different approaches to compute the permuted version of a set. The first

approach is to pre-compute all d ℓ
#?
e permutations and store them in memory. In order to permute

a set (, one needs to perform only |(| memory accesses. This approach is very fast (O(|(|) read

131

S = {0, 3, 7, …, |Ω|-2}

…0 1 2 3 4 5 6 7 |Ω|-1|Ω|-2

Permutation π
…

0 1 2 3 0 1 2 3

|Ω|-3|Ω|-4

0 1 2 3

1 2 1MinHashes

Permuted Set

Input Set

1-bit MinHashes 1 0 1

Np-bit MinHash = 10…1

…
…

Figure 6.8. Extracting multiple LSH bits from single random permutation c.

operations) but it needs to compute and store all random permutations which take O(|Ω|) of

memory. The second approach only requires O(|(|) of memory but the computation is slower

which we describe next.

Utilizing HW-Based Pseudo-Random Permutation (PRP). .We propose to employ

PRP such as Advanced Encryption Standard (AES) to efficiently perform the permutation. Since

almost all modern processors have AES-NI in their instruction set (ISA), the fast HW-based

permutation can be implemented using AES. More precisely, one of the parties randomly

generates a 128-bit key () and announce it publicly. Each time a party wants to permute a

set, he computes AES (((8)) for 8 = 1,2, ..., |(| where ((8) denotes the 8Cℎ member of (. This

approach does not support scenarios where |Ω| > 2128 but this limit is far beyond our requirements.

Please note that AES only operates on 128-bit input blocks, whereas, the members of set (

are represented with log2(|Ω|) number of bits. However, this is not an issue since instead of

partitioning the universal set Ω, we partition the output range of AES. This results in same hash

results since AES is a uniform random permutation (each input has equal chance to take any

output value).

Overall Cost and Complexity. We summarize the complexity of computational time

132

and memory utilization for both aforementioned approaches in Table 6.5.

Table 6.5. Computational time and memory utilization complexity for two different implementa-
tions of LSH.

Time Memory
Pre-computing Permutations O(|(| ℓ

#?
) Read Ops O(|Ω| ℓ

#?
)

HW-based PRP O(|(| ℓ
#?
) AES Ops O(|(|)

6.3.13 Evaluation Settings

We employ two platforms to evaluate the authentication protocol. Platform 1 is an Intel

Core i7-2600 CPU @3.4GHz with 12 GB of memory running Ubuntu 14.04. Platform 2 is an

Intel Atom E3815 @1.46 GHz with 2GB of memory running Lubuntu 16.04.1. The protocol is

evaluated in the following two settings:

• Setting �: To assess the best case capability, we run the protocols for both V and P on

Platform 1.

• Setting �: To emulate the practical scenario of a verifier with high computational power and a

resource-constrained prover, we run the protocol forV on Platform 1 and the protocol for P

on Platform 2.

6.3.14 Evaluation of the Authentication Protocol

The GC protocol is run through the realization of the Authenticated Garbling [22] in

the EMP-toolkit [22]. We first evaluate the timing of the protocol involving only the extended

authentication function, without LSH. The Authenticated Garbling protocol consists of three

phases: (1) Set up: generate correlated randomness betweenV and P that are used during the

last (online) phase for information-theoretic authentication of different values. (2) Function-

independent pre-processing: independent of the inputs fromV orP or the extended authentication

function. (3) Function-dependent pre-processing: dependent of the authentication function, but

not the inputs. (4) Online phase: dependent on both the extended authentication function and the

133

inputs fromV and P. Tables 6.6a and 6.6b show the the number of clock cycles and time on

bothV and P at each stage of the protocol in the two settings for different values of the threshold

fraction C. Each timing measurement is averaged over 10 instances. The total time on the prover

side for C = 0.1 is 399 ms in Setting B, which emulates the real life scenarios. To put this time into

context, the interrogation time of the DRAM PUF [135] is in the range of minutes. Therefore,

the protocol execution time is negligible compared to the response generation time of the PUF.

Table 6.6. Timing evaluation of the authentication protocol in the two settings for different
values of the threshold fraction C.

(a) Setting �: BothV and P on powerful platform.

C = 0.05 C = 0.10 C = 0.15

Stage Verifier Prover Verifier Prover Verifier Prover

cc ms cc ms cc ms cc ms cc ms cc ms
Set up 1.7E8 77.25 1.6E8 74.37 1.6E8 76.01 1.6E8 73.01 1.6E8 76.37 1.5E8 72.24
Func. Indep. 9.9E6 4.52 1.7E7 7.71 9.9E6 4.53 1.7E7 7.81 1.1E7 5.08 2.0E7 9.48
Func. Dep. 2.4E6 1.10 1.7E6 0.79 2.1E6 0.96 1.5E6 0.71 2.4E6 1.11 2.0E6 0.92
Online 2.4E5 0.11 2.9E6 1.33 3.1E5 0.14 2.8E6 1.30 3.6E5 0.17 3.4E6 1.57
Total 1.8E8 82.99 1.8E8 84.19 1.8E8 81.66 1.8E8 82.83 1.8E8 82.72 1.8E8 84.20

(b) Setting �: V on powerful platform and P on resource-constrained platform.
C = 0.05 C = 0.10 C = 0.15

Stage Verifier Prover Verifier Prover Verifier Prover

cc `s cc `s cc `s cc `s cc `s cc `s
Set up 6.8E8 309.88 4.3E8 295.99 6.8E8 311.18 4.3E8 296.17 6.8E8 313.25 4.3E8 296.30
Func. Indep. 1.3E8 61.78 1.0E8 69.33 1.9E8 90.66 1.4E8 98.19 2.0E8 93.24 1.4E8 100.99
Func. Dep. 1.8E7 8.35 4.5E6 3.06 1.9E7 8.70 4.8E6 3.33 2.0E7 9.40 5.7E6 3.89
Online 5.3E6 2.45 3.7E6 2.58 5.4E6 2.47 3.2E6 2.23 5.5E6 2.53 3.8E6 2.63
Total 8.4E8 382.46 5.4E8 370.97 9.0E8 413.01 5.8E8 399.93 9.2E8 418.42 5.9E8 403.81

6.3.15 Evaluation of Protocol for Integer Response

To evaluate the timing of our protocol while authenticating the DRAM PUF with integer

responses we need to add the time that LSH computation takes. The time and memory utilization

of two different approaches for hash computation is illustrated in Table 6.5. For the actual timing

results, we use the HW-based PRP method. As we discussed, we partition the output space of

AES into #? different pieces. As can be seen from Table 6.5, by increasing #?, one can reduce

the overall computation time. However, there is an upper bound limit on #? [165] that depends

134

on |Ω| and |(|. In our setting, the limit is 300 hashes. Therefore, having ℓ < 300 means that

we can create ℓ-bit LSH embedding using a single permutation (d ℓ
#?
e = 1). The overall hash

computation time is therefore bounded by the number of AES invocations which is |(|.

The DRAM PUF presented in [135] employed logical PUF constructions on 32KB

segments of the DRAM. To simulate this construct, we take Ω as the set of integers from 0 to

(32×8×210−1). We consider the PUF response and the reference response stored at the verifier

to be sets of 300 integers which are the subset of Ω. The total number of clock cycles for LSH

are 3.13E+05 on Platform 1 and 1.04E+06 on Platform 2. These translate to 92`s and 867`s

respectively.

6.4 Privacy Preserving k-Nearest Neighbor Search

Recently ride sharing apps like Uber, Lyft have become popular both as cheap rides and a

source of income by providing rides. With the emerge of these services concern over the privacy

of both the riders and the drivers have gained attention. To ensure location privacy of both the

parties, we need to design a system that allows the rider to search for the nearest car without

revealing her location to the service provider while ensuring that the rider only knows about the

few nearby drivers.

Prior to the publication of this work [20], the only available implementation of the

privacy-preserving similarity search using the GC protocol was for the 1-NN search, where the

circuit size was linearly increasing with the dataset size [168]. This increase is due to the fact

that conventional combinational logic representation that was employed in that implementation

is not scalable.

We present the first efficient, practicable, and scalable methodology for privacy-preserving

:-NNS based on the Yao’s GC protocol. It utilizes the sequential circuit description for GC,

which was first introduced by our GC framework TinyGarble [6], instead of the conventional

combinational representation. It also benefits from the custom libraries presented in TinyGar-

135

ble [6]. As a result, we can store the GC and perform the privacy preserving :-NNS with an

unprecedented efficiency.

In our implementation, the rider, Alice has a query @, which is her location and the service

provider, Bob has a dataset (containing the location of the available drivers in that area. They

want to jointly compute the : nearest neighbors of @ in (such that Bob does not learn anything

about @ and Alice does not learn anything about (except the nearest drivers.

Our work reduces the size of the required memory for GC from O
(
=F

)
to O

(
F
)
compared

with the best known GC implementation of 1-NN [168]. Our scalable implementation requires a

memory in the order of O
(
:F

)
for :-NNS search. Note that :-NNS was impracticable earlier

(for : > 1) due to the linear growth of the combinational representation. Proof-of-concept

implementation of privacy preserving :-NNS on an Intel processor with F = 31, : = 8 requires

only 80KB of memory.

6.4.1 Summary of Contributions

In brief, our contributions are as follows.

• Introducing the first efficient, practicable, and scalable methodology for privacy-preserving

:-NNS assuming that the dataset and query are each privately held.

• Proposing a sequential circuit description for privacy-preserving :-NNS using Yao’s

Garbled Circuit protocol (instead of the known combinational representation). New

transformations are created such that the sequential :-NNS implementation are securely

evaluated by interfacing with the available (combinational) cryptographic garbling schemes.

• Reduction in the size of the required memory for GC from O
(
=F

)
to O

(
F
)
compared with

the best known GC implementation of 1-NN [168]. Our scalable implementation requires

a memory in the order of O
(
:F

)
for :-NNS. Note that :-NNS was impracticable earlier

(for large =) due to the linear growth of the combinational representation.

• Proof-of-concept implementation of privacy preserving :-NNS utilizing the on an Intel

processor. For example, the circuit size for :-NNS with F = 31, : = 8 is only 80KB.

136

6.4.2 Related Work

The related literature in realizing privacy-preserving :-NNS has mainly focused on using

homomorphic encryption as the enabling cryptographic primitive [169, 170]. In their protocol,

two parties perform :-NNS locally on their respective private dataset for a public query and then

privately combine their results to form the :-NNS. In contrast with these works, we adopt a more

general setting in which one party holds a private dataset and the other one provides a private

query. The use of GC for privacy preserving data mining has been suggested, but the existing

literature focused on theoretical/protocol aspects and not implementation [171]. Leveraging our

sequential description, this paper proposes the first scalable implementation and a low-overhead

realization of secure :-NNS on a conventional processor.

6.4.3 Distance Function

For k-NNS in 2D space, the default distance function would be Euclidean distance, which

computes the length of the straight line path between the two points. However, in practice there is

almost never a straight line path between two cars on the road as demonstrated with an example

in Figure 6.9. We employ a more practical and computationally efficient taxicab distance. The

taxicab distance, 3C between two points with rectangular coordinates (x1, y1) and (x2, y2) is

given as 3C = (|G1− G2| + |H1− H2|) As evident from the example in Figure 6.9, this distance

function closely resembles the actual distance the driver has to cover to reach the rider. Note that,

the :-NNS presented here is compatible with any distance function. For example, in the generic

:-NNS presented in [20], the distance function was Hamming distance.

6.4.4 Generation of Netlist

As already mentioned, all the circuits are synthesized using the methodology presented in

Section 3.2 To realize the :-NNS, a set of basic arithmetic and conditional operations consisting

of comparator, multiplexer, and distance function are required. We create a custom synthesis

library that includes the minimum non-XOR implementations of these operations. A F-bit

137

Taxicab distance
= | x1 - x2 | + | y1 - y2 |

Euclidean distance
=

(x1, y1)

(x2, y2)

(x1 x2)
�+(y1 y2)

��

Actual Path

Figure 6.9. Illustration of the actual path, Euclidean distance and taxicab distance

comparator (COMPF) is implemented using only F non-XOR gates [168]. A F-bit multiplexer

(MUXF) is realized using F non-XOR gates [26]. A F-bit taxicab distance (TDF) is devised

using 7F +1 non-XOR gates. In all these modules, the total number of gates is O
(
F
)
.

6.4.5 Combinational Garbled Circuit

Prior tow our work on :-NNS, all previous implementations of use a combinational

description. To start our implementation for the special case of 1-NNS, we look for the closest

point (>) to the query point (@) in the dataset ((). In the privacy-preserving setting, there is a

need to compare the query point to all the points in the dataset. This is because the (private)

intermediate search values cannot be utilized to bound the search, e.g., binary search.

Figure 6.10 shows the combinational circuit for 1-NNS. The implementation uses =

taxicab distance modules, and (=−1) min modules (consisting of 1 COMP and 2 MUXs) to

find the nearest point. One MUX selects the smaller distance for later comparison while the

other one finds the point corresponding to that distance. The total number of gates in the 1-NNS

138

S[0]

S[1]

S[n-1]

S[2]

q

o

mindistance

distance

mindistance

min

distance

Figure 6.10. Combinational circuit for 1-NN. It consists of = taxicab distance and (=−1) min
modules.

combinational circuit is as follows.

of gates = =×TDF + (=−1) × (COMPF+1 +2MUXF+1)

⇒ # of gates ∈ O
(
=F

)
.

The circuit should be garbled/evaluated only once. Thus, the time complexities of garbling/evalu-

ation is O
(
=F

)
.

6.4.6 Sequential Garbled Circuit

Sequential circuits can be used as a very compact circuit description for both real hardware

and GC protocol. A sequential circuit is composed of a combinational circuit and a set of registers

that stores the intermediate values. We modify the garbling scheme such that for each sequential

cycle, it garbles/evaluates the combinational part and stores the garbling keys for the registers.

The stored keys are used as inputs in the next cycle. To ensure security, each gate should have a

unique identifier for each time that it is garbled/evaluated. Since in the sequential circuit each

gate is garbled/evaluated multiple times, we use the combination of gate index and cycle index as

139

o

reg

min
distance

q
S[c]

Figure 6.11. Sequential circuit for 1-NNS. It consists of 1 taxicab distance and 1 min module.
For a dataset of size =, the circuit is required to be garbled/evaluated = times.

a unique identifier for each gate invocation. Thereby, the proof of security provided in [172, 21]

also applies to our garbling scheme. We now describe the sequential 1-NNS implementation

followed by :-NNSimplementation.

Sequential 1-NNS. Our 1-NNS sequential circuit is implemented with only 1 taxicab

distance and 1 min module. Figure 6.11 illustrates the sequential circuit for 1-NNS. In each cycle

2, the circuit computes the distance between @ and ([2]. Next, it compares the resulting distance

with the stored minimum distance in the register (reg). It then stores the minimum distance along

with the nearest point until cycle 2. The total number of cycles required to compute 1-NNS is =.

The total number of gates in the 1-NNS sequential circuit is as follows:

of gates = TDF +COMPF+1 +2MUXF+1

⇒ # of gates ∈ O
(
F
)
.

The circuit should be garbled/evaluated = times. Thus, the time complexities of

garbling/evaluation are the same as the combinational circuit and equal to O
(
=F

)
.

Sequential :-NNS. In :-NNS, the goal is to find the : nearest points to the query in the

dataset. We expand the sequential circuit for the 1-NNS to store the : nearest points. For this

purpose, we implement a priority queue with depth of : which receives one point at each cycle.

The priority of each point is equal to its distance to the query. Figure 6.12 shows the sequential

circuit for the :-NNS. The circuit has 1 taxicab distance, : min, and : −1 max modules. The

140

max module, like min, consists of 1 COMP and 2 MUXs.

reg[k-1]min

reg[0]

max

reg[k-2]

distanceq
S[c]

reg[k-1]

min

reg[0]

reg[1]min max

reg[0]reg[1]

o[0]

o[1]

o[k-1]

Figure 6.12. Sequential circuit for :-NNS. It consists of 1 taxicab distance, : min, and : −1
max modules. It requires to be evaluated = times where = is the size of the dataset (.

The total number of gates in the 1-NNS sequential circuit is as follows:

of nonXORs = TDF + (2: −1) ×COMPF+1 +2(2: −1) ×MUXF+1

⇒ # of nonXORs ∈ O
(
:F

)
.

The circuit should be garbled/evaluated = times. Thus, the time complexity of garbling/e-

valuation is equal to O
(
=:F

)
. Note that due to the unscalability of combinational :-NNS, we

did not include its implementation.

6.4.7 1-NNS in Multi-Party Setting

In our first implementation of :-NNS, we adopted a two-party setting and employed the

GC protocol. In our subsequent work MPCircuits [9], we extended this work to the multi-party

setting. In this setting, there is now centralized server holding the location of all the available

drivers. Instead, each driver participate in the computation with his location as the input. Note that

141

the MPCircuits framework supports efficient netlist generation but does not provide scalability.

As a result, we were only able to implement 1-NNS due to the issues presented in Section 6.4.5.

128

256

0

5

10

15

16 32

D
at

as
et

 S
iz

e
(n

)

T
ot

al
 N

u
m

b
er

 o
f

G
at

es

x
 1

00

Word Length (w)

128

256

0

10

20

30

40

16 32

D
at

as
et

 S
iz

e
(n

)

T
ot

al
 N

u
m

b
er

 o
f

G
at

es x
 1

00
00

Word Length (w)

Figure 6.13. Comparison of memory footprints of 1NNS with combinational and sequential
approach

6.4.8 Evaluation: Memory Footprint of 1-NNS

We compare our approach with previous ones for the special case of : = 1 since higher

values of : were prohibitive with the previous approach. The memory footprint (circuit size)

depends on the total number of gates in the circuit. Figure 6.13 shows the total number of

gates as a function of the input word length, F and library size, =. We observe that while the

memory footprint increases linearly with = for combinational approach, it is independent of = for

sequential approach. Moreover, the circuit size is orders of magnitude smaller with our approach.

6.4.9 Evaluation: Timing of 1-NNS

The garbling/evaluation time is proportional to the total number of non-XOR gates that

needs to be garbled. Theoretically, garbling time for both combinational and sequential approach

should be similar. However, as shown in Figure 6.14 the computation time is reduced with

sequential approach. This has two reasons. First, with reduction in circuit size, optimization

by the logic synthesis tools is more effective resulting in reduction in the number of non-XOR

gates. Second, with lower memory footprint for sequential circuit, there are fewer cache misses

142

resulting in faster operation.

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

0 1 2 3 4 5

C
o
m

pu
ta

ti
o
n
 T

im
e

(c
c)

w x n

Sequential Combinational

16 x 128 16 x 256 32 x 128 32 x 256

Figure 6.14. Comparison of garbling times of 1NNS with combinational and sequential approach

6.4.10 Evaluation: Memory Footprint of :-NNS

Figure 6.15 shows the total number of gates in sequential :-NNS circuit as a function of

the input word length,, and : . As expected, it increases linearly with both, and : . As already

explained, the total number of gates is independent of the library size, # .

4

8

0

1

2

3

4

5

6

7

16 32

k

T
ot

al
 N

u
m

b
er

 o
f

G
a

te
s x

10
00

Word Length (w)

Figure 6.15. Memory footprint of :-NNS with sequential approach

The actual memory footprint for the largest circuit in this work (F = 31, : = 8) is 80KB

which will fit easily in an embedded systems.

143

6.5 Private Set Intersection

Private Set Intersection (PSI) allows two or multiple parties to obtain the elements at

the intersection of their sets without revealing the other elements that are not in common. For

example, multiple people can identify their mutual contact profiles/friends by inputting their

contact list to the PSI protocol without revealing the rest of their contact lists. At the end of the

protocol, only the mutual list of all parties is revealed.

In E-commerce, an online advertisement agency and a company can participate in the PSI

protocol where the advertisement agency inputs its list of all the people who have been shown

the ads of the company. The second set of inputs to the protocol is the list of the people who have

bought the products provided by the company. At the end of the PSI protocol, both entities know

how many people have bought the product as a result of seeing the advertisement. This provides

a way to understand the effectiveness of the advertisement for the company. Note that the same

process could not be realized in plaintext due to various privacy/security reasons. Revealing

such information is privacy invasive and can damage the reputation of both the companies. In

addition, disclosing customer’s data might be against the law in some situations.

In our setting, party %8 holds a set (8 ⊂ Ω where Ω is the universal set. Together the

parties compute the intersection set (= ∩=
8=1(8. The size of the universal set Ω or equivalently

the number of bits required to describe an element in the universal set is 1 = lg |Ω|. Maximum

number of elements in each party’s set is <.

6.5.1 Circuit Design

We designed the circuits required for PSI using the MPCircuits framework. Two different

implementations are provided for PSI: a Bitwise-AND based circuit and a Sort-Merge-Compare-

Shuffle (SMCS) based circuit. The first one is more efficient for scenarios in which Ω is small

whereas the second approach is more suitable when < is small and Ω can be very large. Note

that sets are represented differently in the two implementations as we explain in each section.

144

Bitwise-AND. In this implementation, each set is equivalent to a binary vector. The

binary value at index 9 denotes the presence of the 9-th element in a given set. Therefore, each

set is represented as a |Ω|-bit binary vector. The intersection set (is computed as bit-wise

AND between all of the sets provided by all parties. As a result, the complexity of the circuit is

O
(
= |Ω|

)
, linear in both the number of parties and the size of the universal set; but independent

from the number of elements in each parties’ set <.

Bitonic Merge

CMP3 CMP3 CMP3 CMP

...

Bitonic Sort

Bitonic Merge

reverse order

CMP3 CMP3 CMP3 CMP

...
Bitonic Sort

...

... reverse order...

Party1 Set (S1)

Bitonic Merge

reverse order

CMP3 CMP3 CMP3 CMP

...
Bitonic Sort

Set Intersection

S
ta

g
e

lo
g

2n
 -

 1

S
ta

g
e

0

Party2 Set (S2) Partyn-1 Set (Sn-1) Partyn Set (Sn)...

Figure 6.16. High-level circuit description of the Sort-Merge-Compare-Shuffle for Private Set
Intersection. Three operations are performed at each stage: merge, compare, and sort.

145

Sort-Merge-Compare-Shuffle (SMCS). In scenarios where < << |Ω|, more efficient

solutions than Bitwise-AND can be devised. Here, we present one of the most complicated

circuits in our benchmarks which is the generalization of the approach presented in [173] from

two-party setting to any =-party case. As the input to this circuit, each set is represented as a

vector of < integers where each integer is 1-bit. We will first explain the solution for two sets

only. The intersection of two sets can efficiently be computed using three operations: sort, merge,

and compare. First, each of these two sets should be sorted. Then by merging the two sorted sets,

all elements in common will be brought together. Finally, by comparing adjacent elements, one

can find the common elements in both sets. Since the set intersection is an associative operation,

one can express the set intersection of = sets as a consecutive set intersection of two sets until

reaching the final result. Therefore, the SMCS circuit has a binary tree structure where at each

node, the intersection of two sets are computed. The final node computes the final intersection

of all sets. Note that the first sort operation can locally be computed by each participant since

it is independent of the other parties’ private data. A final shuffle operation is needed in order

to eliminate the information leakage which we describe later in this section. Without loosing

any generality, assume that the number of sets (participants) is a power of two. If this is not the

case, dummy nodes can be avoided in the tree structure. Please see Figure 6.16 for a high-level

description of the SMCS circuit.

We now elaborate on each part of the SMCS circuit. The challenge is that the merger and

sorter circuits should have a fixed structure and non-random access to the intermediate values

since random access is a very costly operation in the MPC protocols. We rely on the bitonic

merger and sorter circuits that satisfy this condition. Bitonic sort is one of the sorting networks

that is an efficient circuit-based realization of a sorting algorithm. Input numbers are given to the

circuit and after series of conditional swap operations, a sorted list is given as the output of the

circuit. The only operation used in the circuit is conditional swap: given two input numbers,

swap them if they are not sorted and do not swap them otherwise. The bitonic sort has a recursive

structure. It first sorts each half of the input and then merges the two sorted lists. The base case

146

is a circuit that sorts only two numbers which is equivalent to a conditional swap module. Our

implementation of the bitonic sort circuit is also a recursive hardware description code.

The second half of the bitonic sorter represents the bitonic merger circuit. The input to

the bitonic merger must be a bitonic sequence. A sequence G8 of numbers is called bitonic if for

some : (0 ≤ : < <):

G0 ≤ G1 ≤ ... ≤ G: ≥ ... ≥ G<−1 ≥ G<

or a circular shift of such sequence. Therefore, before merging the two sorted lists, one needs to

reverse order the second list such that the concatenation of two lists be a bitonic sequence. This

reverse-ordering should take place for input sets as well as for intermediate sets. Note that the

reversing the order of a set does not incur any computation or communication cost and is realized

as changing the order of wires in the circuit.

The second layer in the SMCS circuit is the comparison layer. After the merger layer, all

identical elements in both sets are now beside each other. An intuitive solution is to have a series

of comparison blocks that compare every two adjacent elements. However, it has been shown

that having a 3-input comparison block as follows is more efficient [173]:

CMP3 (G1, G2, G3) =

G2 8 5 G1 = G2 | G2 = G3

01 >Cℎ4AF8B4

Given an array of 2< elements, we only need <−1 CMP3 blocks and one CMP block

(compared to 2< CMP blocks).

The output of the comparison layer is an array of < numbers consisting of 01 and the

elements in the intersection of two sets. Before proceeding to the next stage (and similar to the

first stage), the array has to be sorted. Note that the intermediate sets should not be revealed to

any party since some information about the private input sets will be learned by other parties.

Therefore, in contrast to the first stage, the sets should be sorted inside the MPC protocol.

At the end of all stages, the final set should be shuffled prior to be revealed in plaintext to

147

all parties. This step is necessary because the final set potentially has a sequence of 01 between

two common elements. The position of zeros (01) reveal the distribution of elements that were

not in the intersection and belong to one (or multiple parties) only.

The shuffling layer can be realized using Waksman permutation network [174] which

takes as input an array and shuffles them based on the control bits. One of the parties is required

to provide these control bits as well. However, this task gives one of the parties more control

in the secure computation. For example, a dishonest party that is selected to provide the control

bits can simply put all of them as zero which makes the shuffle layer ineffective and he can learn

some information. As a result, we devise another solution that is secure but does not require more

input from any party. The solution is to simply sort the final list before revealing it in plaintext.

This approach is secure since all of the 01 elements are brought together. More precisely,

in all of the scenarios that the common elements are fixed, the final sorted set remains the same

and an adversary cannot distinguish different scenarios. Overall complexity of SMCS circuit

is O
(
=< lg2<1

)
= O

(
=< lg2< lg |Ω|

)
(compare with Bitwise-AND circuit with complexity

O
(
= |Ω|

)
).

Modular Structure. One of the advantages of using a generic secure multi-party

computation protocols such as BMR is its modular nature and flexibility. Unlike customized

protocols, additional functionalities and computations can be augmented to the circuit seamlessly.

For example, and auditing step can be added before releasing the final result: the intersection

set is revealed if and only if the number of elements in common is less than a threshold. Such

auditing steps are favorable especially when Ω is small and an adversary can easily put his input

set as the universal set in which case, he clearly learns the intersection of all other sets. As

another example, it is very straightforward to build other variants of PSI such as PSI-Cardinality

which only outputs the size of the intersection and not the elements.

148

6.5.2 Evaluation

Table 6.7 shows the experimental results of Bitwise-AND circuit for different sizes of

the universal set and different numbers of parties. For all PSI experiments, parameter < is set

to 16. The corresponding results for the SMCS circuit are shown in Table 6.8. As can be seen,

the optimized Boolean circuits using MPCircuits technology libraries reduce the number of

AND gates by 4.2×.

There has been extensive research focused on PSI for a two-party situation [175, 176, 173].

In [173], authors propose a method for two-party PSI based on garbled-circuit approach. To

the best of our knowledge, the only solution that is proposed for secure multi-party private set

intersection is a recent work by Kolesnikov et al. [177]. Their present a customized solution

optimized only to perform PSI in an identical security model as this work. Their computation

platform is comparable but more powerful than ours. In the LAN setting, for a set size of 216

and 10 parties, their total running time is 12 seconds with 23MB of communication. Whereas,

for a universal set of size 105 (∼ 217) and 8 number of parties, our running time is 24 seconds

with 314MB of communication. Although our solution is less optimized, we want to emphasize

that we have proposed a generic solution to create any functionality, whereas, their solution is

specially optimized for PSI. In addition, our solution has a very modular structure and can easily

be modified to support other variants of PSI, e.g., PSI cardinality in which only number of mutual

elements is revealed. Moreover, in Bitwise-AND circuit, actual size of each party’s set is not

revealed since the inputs are fixed-length binary vectors.

Table 6.7. Private set intersection (Bitwise-AND variant).

Non-optimized Optimized

|Ω| = #XOR #AND #XOR #AND $)

(s)
)��
(s)

)

(s)
�><<

(MB)
"4<

(MB)

104
4 0 3.00E+04 0 3.00E+04 0.94 0.69 3.89 12.36 65.24
8 0 7.00E+04 0 7.00E+04 2.73 1.99 9.46 67.29 403.94
16 0 1.50E+05 0 1.50E+05 12.61 4.74 30.46 308.99 2835.59

105 4 0 3.00E+05 0 3.00E+05 1.99 0.88 6.80 123.60 584.44
8 0 7.00E+05 0 7.00E+05 11.82 2.89 24.05 672.91 3892.61

149

Table 6.8. Private set intersection (SMCS variant).

Non-optimized Optimized

1 = #XOR #AND #XOR #AND $)

(s)
)��
(s)

)

(s)
�><<

(MB)
"4<

(MB)

16
4 1.05E+04 7.77E+04 5.02E+04 1.86E+04 0.82 0.56 3.52 7.66 52.57
8 2.42E+04 1.81E+05 1.16E+05 4.30E+04 2.42 1.76 6.59 41.37 280.42
16 5.15E+04 3.88E+05 2.48E+05 9.19E+04 9.65 4.40 41.50 189.34 1843.72

6.6 Summary

In this section, we presented a number of real-world applications pertaining to privacy-

sensitive data. These applications were developed based on the MPC frameworks presented in

Chapter 3. The solutions presented in this chapter represents the state-of-the-art for the respective

problems.

Acknowledgement. This chapter, in part, has been published at (i) 2019 IEEE Interna-

tional Symposium on Hardware Oriented Security and Trust (HOST) and appeared as: Sadegh

M Riazi, Mojan Javaheripi, Siam U Hussain, and Farinaz Koushanfar, “MPCircuits: Optimized

Circuit Generation for Secure Multi-Party Computation”, and (ii) 2018 ACM Transactions

on Design Automation of Electronic Systems (TODAES) and appeared as: Siam U Hussain,

Sadegh M Riazi, and Farinaz Koushanfar, “SHAIP: Secure Hamming Distance for Authentication

of Intrinsic PUFs”, and (iii) 2018 ACM Transactions on Design Automation of Electronic

Systems (TODAES) and appeared as: Siam U Hussain, and Farinaz Koushanfar, “P3: Privacy

Preserving Positioning for Smart Automotive Systems”, and (iv) 2016 ACM/IEEE Design

Automation Conference (DAC) and appeared as: Siam U Hussain, and Farinaz Koushanfar,

“Privacy Preserving Localization for Smart Automotive Systems”, and (v) 2015 ACM/IEEE

Design Automation Conference (DAC) and appeared as: Ebrahim M Songhori, Siam U Hussain,

Ahmad-Reza Sadeghi, and Farinaz Koushanfar, “Compacting Privacy-Preserving k-Nearest

Neighbor Search Using Logic Synthesis”. The dissertation author was the primary investigator

of (ii), (iii), and (iv).

150

Chapter 7

Co-optimization of Crypto Primitives and
ML Inference

7.1 Overview

Recent algorithmic and technological breakthroughs in Machine Learning (ML) have led

to a surge in cloud-based inference using Deep Neural Networks (DNNs). In this scenario, a server

trains and holds the DNN model. Clients then send their data to the server to perform inference

using the server’s trained DNN. Cloud-based inference, a.k.a. Machine Learning as a Service

(MLaaS), is integrated in a wide range of real-world applications such as personal assistants [178],

face authentication [179], medical diagnosis [180, 181, 182, 183], and health monitoring [184].

However, plaintext DNN inference either violate the users’ privacy by revealing their private data

to the server or infringe the server’s intellectual property by exposing its proprietary model/data

to the client. This paper focuses on the critical subject of oblivious inference, where the server

and the client participate in two-party secure computation to run inference without revealing

either the model parameters or client’s data.

We present COINN, a provably secure cryptographic framework that surpasses the

efficiency of all known methods for oblivious inference to date. Our work addresses the tension

between three critical requirements for privacy-preserving DNN inference, namely, security,

efficiency, and accuracy. Although several prior works have attempted to solve this tri-objective,

there still remains a large gap in the accuracy and/or runtime of oblivious inference and plaintext

151

DNN execution. To deliver a balanced tradeoff between the above three criteria, we co-design the

DNN and the secure execution protocol and holistically optimize both aspects via our automated

design configuration tool. Our key design goals are as follows:

1 Compact Communication and Computation: We optimize the computation bitwidth

to reduce the secure execution cost of both linear and nonlinear operations. In doing this

optimization, we adapt techniques from Genetic Algorithms [185] to the constraints of secure

computation. Moreover, we design efficient cryptographic protocols that reduce the commu-

nication cost of secure matrix-multiplication by 5×–9×, and achieve an end-to-end runtime

speedup of 4.7×–14.4× over best prior work, namely CrypTFow2 [5], in the LAN setting.

2 Inference Accuracy: COINN improves the accuracy of prior ML-security co-optimization

methods, namely [3, 1, 2], by 0.6%–4.7% while achieving 23.1×–36.8× lower secure execution

runtime in the LAN setting.

3 Scalability: Our framework scales to DNNs with over 100 layers. COINN achieves 6.1×–

7.8× lower runtime in the LAN setting for the largest ever studied image classification task [5]

with over 4 billion arithmetic operations.

In what follows, we review the design challenges, survey the prior work, and specify our

contributions in detail.

Security-aware Quantization. To reduce the high cost of ciphertext execution, con-

temporary methods modify the neural network architecture by removing/replacing non-linear

operations such as ReLU [1, 186], or binarizing model parameters and activations [3]. While

these methods increase the secure execution efficiency, they come at the cost of reduced inference

accuracy. Our work approaches the problem from a different perspective. Since the computation

and communication overheads of cryptographic protocols are highly dependent on the computa-

tion bitwidth, we focus on developing quantization methods that take into account the constraints

of ciphertext computation.

Our low-bit quantization reduces the communication and computation cost for not

152

only linear but also nonlinear layers which are the main efficiency bottleneck reported in

prior works [90, 187, 188, 1]. A critical design challenge is that off-the-shelf quantization

methods used in the ML community comprise operations such as full-precision accumulation,

rounding, and scaling; these operations are efficient in plaintext inference but require expensive

cryptographic operations in ciphertext. To address this challenge, we devise a novel ciphertext-

aware quantization scheme that replaces the costly operations with counterparts that are low-cost

in the secure domain while minimally affecting the DNN accuracy.

Amajor concern in computation on quantized data is the linear growth of the computational

bitwidth with increased multiplicative depth. To mitigate this growth, prior work [1] locally

truncates the bits which sacrifices the correctness of ciphertext computation by introducing

random noise as shown in followup work [5]. Developing cryptographic tools for truncation, as

suggested in [189, 5], incurs additional secure execution cost. We address this issue at zero cost

by simulating the effect of overflow in our ML quantization library. We further provide training

methods compatible with our overflow simulation to fine-tune model weights and minimize the

effect of overflow on model accuracy in the low-bit regime. This, in turn, eliminates the need for

truncation altogether.

Efficient and Secure Linear Arithmetic. Matrix-multiplication comprises the core

operation performed in linear layers of contemporary ML models. State-of-the-art oblivious

inference frameworks employ either Arithmetic Sharing (AS) [187, 186] or Homomorphic

Encryption (HE) [188, 1] for secure matrix-multiplication and Garbled Circuit (GC) for the

nonlinear operations. In this work, we choose AS for efficient realization of secure linear layers

since the secure conversion cost between AS and GC is ∼ 2.5× smaller than the conversion

cost between HE and GC1. Moreover, prior work [3] demonstrates that current HE-based

methods [188, 1] would incur additional overhead to provide circuit privacy.

Our secure AS-based matrix-multiplication is optimized for the amortized setting, where
1The ∼ 2.5× scale directly compares methods in Gazelle [188] (HE-GC) and ABY [32] (AS-GC). Further

explanation is included in Section 7.5.3.

153

Figure 7.1. Accuracy and secure inference runtime of a 7-layer DNN on CIFAR-10 dataset using
prior work: Delphi [1], SafeNet [2], XONN [3], AutoPrivacy [4], and CrypTFlow2 [5]. The★
symbol represents COINN.

one client-server pair runs multiple inferences on the same trained model. In this setting, which

is the common scenario in real-world applications, the matrix-multiplication in each linear layer

is computed in a single round, thus reducing the effect of network latency on runtime.

Factored matrix-multiplication. We further optimize the linear layers and introduce

repetition into the weight matrices. Our optimization ensures that only a limited set of unique

values appear in each layer’s weight matrix with minimal loss of inference accuracy. The

unique values can then be leveraged to replace individual multiplications with factored ones.

This, in turn, allows us to substitute the bulk of costly multiplications with cheaper conditional

summations. Consider a dot product between two #-dimensional vectors, which requires #

multiplications and additions. By ensuring that one vector contains + unique values, only #

additions followed by + multiplications and additions are required. To accompany factored

multiplication in cipher domain, we introduce an efficient custom protocol based on Oblivious

Transfer (OT) that multiplies the factored weights with the activations without revealing either

the unique values or their locations.

Automated Parameter Configuration. To fully exploit the efficiency gains from

quantization and factored multiplication while minimally affecting the inference accuracy, COINN

154

automatically determines the best parameters for quantization and factorization across all DNN

layers. By this cross-layer heterogeneous parameter selection, our system achieves a prominent

advantage over previous work that use homogeneous and superfluous bitwidths [187, 190],

as shown in Figure 7.1. The first challenge in finding the best set of per-layer parameters is

simultaneous optimization of two of our objectives that are conflicting – accuracy and efficiency.

To account for this tradeoff, we leverage a score function that captures both model accuracy and

secure execution cost and assigns a quantitative measure of quality to each design configuration.

The second challenge is the excessively large number of possible parameter configurations (search-

space) that grows exponentially with model layers. We develop a highly scalable parameter

optimizer based on genetic algorithms [185] to effectively traverse the large search-space. The

score function is then used to guide our genetic algorithm to find the most optimal DNN for

secure inference.

Binarized Neural Network (BNN). At one extreme, the factored matrix multiplication

becomes equivalent to the Binarized Neural Network (BNN) [191] where the weights and

activations are restricted to binary (i.e, ±1) values. The benefits of employing BNNs for oblivious

inference were first noted by XONN [3]. Despite achieving significant runtime improvement

compared to the then state-of-the-art non-binary DNN inference, there are opportunities provided

by BNNs that have not been leveraged by XONN. Part of the inefficiency of XONN is due to

the usage of a single secure computation protocol (GC) as a blackbox for all neural network

layers after the input layer. The bulk of the cost in XONN involved matrix multiplication through

GC, which is significantly less efficient than AS for arithmetic operations. In this work, we

customize our OT-based matrix multiplication protocol for efficient oblivious inference with

BNNs. Moreover, we address the challenge of finding BNN architectures with both accuracy

and oblivious inference efficiency by training a single BNN that can operate under different

computational budgets. Our adaptive BNN offers a tradeoff between accuracy and inference time,

without requiring to train separate models. With the combined power of our custom protocols

155

and adaptive BNN training schemes, our method outperforms prior art both in terms of accuracy

and runtime. Our evaluation shows that we achieve 2× to 12× lower runtime compared to XONN.

COINN API. Our framework includes a high-level API that facilitates end-to-end

deployment of user-defined DNNs for secure execution. Our API ensures that a user can employ

COINN as a black box without knowing the details of underlying cryptographic protocols and

DNN optimizations. The user provides the desired DNN model described in the well-known

deep learning library PyTorch along with the trained model parameters. The custom-designed

libraries of COINN for quantization and factored multiplication are then invoked through our

automated design configurator to deliver the optimized DNN. Our framework also provides a

seamless PyTorch interface to the secure inference engine developed in C++.

7.2 Related Work

In this section we present a brief overview of the related works on oblivious inference. We

focus on the works that adopt the same scenario as ours, i.e., cryptographically secure two-party

protocols in honest-but-curious setup where the server owns the model and the client owns the

input. These works differ in the cryptographic primitives employed and their composition as well

as their optimization domains. We divide the optimization approaches into two broad categories:

(i) optimization of the cryptographic primitives to reduce the oblivious inference cost and (ii)

optimization of the ML model to be better suited to the underlying cryptographic primitives.

COINN is a bit unique in the sense that it optimizes the ML model and present new secure

protocols to benefit from the new optimization. In the following we discuss different works in

these two categories.

7.2.1 Cryptographic Optimization

There are two classes of techniques: Homomorphic Encryption (HE) [192], which

is heavy on computation and Multi-Party Computation (MPC) techniques such as Garbled

156

Circuits (GC) [7] and Arithmetic Sharing (AS) [14], which are heavy on communication.

Earlier works on oblivious inference, e.g., CryptoNets [90] followed by a number of subsequent

works [193, 194, 195, 196] employed HE as the cryptographic primitive. HE has the advantage

of outsourcing majority of the computation to the server, which usually have better computational

resource. However, frameworks that are entirely based on HE replace the nonlinear activations

with HE-friendly polynomial approximations, resulting in reduced inference accuracy. GC-based

oblivious inference has been proposed by DeepSecure [197], and the work in [198]. These works

provide better accuracy compared to HE based methods but usually suffers from long runtime

due to high communication cost of GC.

Following the work in MiniONN [187], current oblivious inference frameworks employ a

hybrid approach where the most efficient cryptographic primitive is employed for a particular task.

MiniONN employed AS for the linear layers and GC for the non-linear layers. Later Gazelle [188]

presented a hybrid framework with HE-based linear layers. Recently, CrypTFlow2 [5] proposed

a hybrid framework with custom protocols for the non-linear layers. Their protocol resembles

GMW which incur less communication at the cost of higher number of communication rounds

compared to GC.

7.2.2 ML Optimization

The works in this category focuses on applying optimizations to reduce the secure

execution cost of previously proposed security protocols described above. There are two different

directions – adjusting the parameters for the secure protocol and adjusting the DNN architecture.

Examples of works in the first direction include [199, 4] that adjust the HE parameters for hybrid

HE-GC protocols. In the second direction, XONN [3] presents a GC-based method based on

Binarized Neural Networks (BNN) where all multiplications are replaced with cost-free XNOR

operations. Delphi [1] and CryptoNAS [186] present optimization methods where part of the

non-linear activations are replaced with HE-friendly approximations with without hurting the

accuracy much. Nevertheless, both binarization and approximate non-linear layers result in

157

Weights

Plaintext Model Customization

Optimized
Network

Secure Ciphertext Execution

Mat-Mult

Factored
Mat-Mult

Protocol
Conversion

Max-Pool

ReLU

Quantization

Clustering

Automated
Parameter

Configuration

AS GC

Pre-trained
DNN

Target
Accuracy

Model Owner
(Server)

Data Owner
(Client)

Figure 7.2. Overview of COINN. The plaintext model customization is only performed once per
DNN and provides the optimized network for COINN secure inference.

reduced inference accuracy.

7.3 Global Flow and Threat Model

The COINN framework is composed of two interlinked components as depicted in

Figure 7.2: (i) model customization on plaintext training data and (ii) secure execution on client’s

private input. We use the PyTorch library to describe the DNNs and develop our secure execution

protocols in C++. In the following, we briefly introduce the incorporated design units.

Plaintext Model Customization. This is a one-time pre-processing performed on pre-

trained full-precision DNNs prior to oblivious inference. Plaintext model customization is an

important contributor to COINN efficiency and scalability as it enables customization of any

given DNN for minimized secure execution cost under an accuracy constraint. Section 7.4

encloses the details of our plaintext model customization and its core components, i.e., cipher-text

aware quantization, factored matrix-multiplication, and automated parameter configuration.

Secure Ciphertext Execution. We perform the linear operations such as CONV, FC

through AS, and the nonlinear operations such as ReLU, MP through GC. Wherever necessary, we

securely convert betweenAS andGC.We devise efficient cryptographic protocols that complement

our optimized DNN models in the ciphertext domain. Our cryptographic components benefit

from low-bit quantization performed by our model customization step. We also develop efficient

AS-based protocols for both regular and factored matrix-multiplications. A thorough explanation

of our end-to-end oblivious inference and cryptographic protocols is provided in Section 7.5.

158

7.3.1 Threat Model

COINN presents privacy-preserving protocols involving two parties: Alice – the server,

and Bob – the client. The private inputs of Alice and Bob are trained weight parameters of

the DNN and input to the DNN, respectively. At the end of the protocol execution, Bob learns

the inference results without revealing any information to Alice. Following previous works

on privacy-preserving neural network inference [188, 187, 5], we adopt an honest-but-curious

security model where the two parties follow the agreed upon protocol, yet may try to learn more

from the information at hand.

Consistent with prior work, we assume the information related to model architecture

is public to the client and the server. This information includes number of layers, layer types,

layer dimensions, number of bits required to represent the output of nonlinear layers, and AS

computation ring size Z21 . In our factored matrix multiplication (Section 7.4.2), the client

additionally knows the per-layer number of unique weight values + but he is not aware of the

distribution of the unique values inside the weight matrices.

Most prior works assume a large bitwidth 1 across all DNN layers (e.g., 32-bit ring

size and activations in [5]). In contrast, COINN uses smaller bitwidths, e.g., it may use 1 = 16

for the ring size and 1 = 10 for the output of nonlinear layers. Exposing the customized 1 at

each layer might reveal some information about the context and/or distribution of the training

dataset. It is unclear whether this information can give additional advantage to an attacker. In

addition, having lower bitwidths may reduce the computational complexity for extracting the

neural network weights. Let us consider an attacker who launches a brute-force attack without

any prior knowledge. The computation complexity for such an attack is O(21=), where = is in

the order of millions. Therefore, even with the minimum bitwidth (1 = 1 as in XONN [3]) the

attack complexity, i.e., O(2=), is still exponential in =. Similarly, by knowing the unique size +

for factored matrix multiplication, the attack complexity is O(+=).

159

A more knowledgeable adversary might try to employ more sophisticated attacks such

as model extraction [200], model inversion [201], and membership inference [202]. Similar

to related work in oblivious inference [187, 188, 3, 5, 1, 186], COINN does not address these

query-based attack algorithms. Mitigating such attacks is also an active area of research and

in most cases is orthogonal to our work [203, 204, 205, 206, 3]. Example mitigation strategies

include differential privacy, rounding the prediction vector, or returning only the argmax of the

prediction to the client. We refer the curious reader to [3]-Appendix B and [1]-Section 8.2 for

more discussions.

7.4 COINN Model Customization

In the proposed system, the training is performed locally by the server in plain-text. We

customize the model during training process to reduce the cost of secure inference. In this section

we present the details of the model customization.

7.4.1 Ciphertext-aware Quantization

One crucial early step in secure inference is quantization of the weights and activations to

integers. Even though ML libraries generally represent data with 32-bit floating-point format

(FP32), the extremely high computational cost and complex circuits make FP32 unsuitable for

secure computation. In what follows, we discuss the challenges of such quantization with regards

to secure computation and how we tackle them.

Optimizing Scaling. FP32 values are converted to fixed-point by multiplying them with

appropriate scale B, the value of which depends on the range of the all the values in a particular

ML model. On one hand, such multiplication during the AS-based matrix-multiplication would

result in increased multiplicative depth. This would in turn increase AS computation bitwidth

thereby sacrificing the overall efficiency. On the other hand, if scaling is performed in the GC

domain at the end of the matrix multiplication, for a 1-bit number with a scale containing 1′

160

nonzero bits, the communication cost would be 21(1′−1) × ^. In COINN, to reduce the cost, we

enforce the scale values to be powers of 2 (1′ = 1), which allows us to implement the previously

costly scale operation with almost zero cost logical shifts in GC.

RoundingWorkaround. Rounding a fixed-point value requires adding the first fractional

bit to the integer. The GC cost of this operation is 21× ^, which is quite significant considering it

has to be repeated for all output elements across all DNN layers. In COINN, we replace A>D=3 (·)

with the floor operation b·c and fine-tune the model weights to adjust to this modification.

Flooring is equivalent to removing all fractional bits and therefore incurs no GC cost.

OverflowManagement. An imminent challenge when performing matrix-multiplication

on quantized values is managing overflow in the accumulator. Existing plain-text methods handle

overflows with the 2;0<?(·) operation which maps overflown values to the maximum/minimum

valid range. Secure implementation of 2;0<?(·) through GC incurs a communication cost of

2(31 +1) × ^ for each multiplication and addition, Moreover, it requires repetitive conversion

between AS and GC resulting in a significantly high cumulative cost. COINN presents the first

ML library that simulates overflow for quantized operations and supports overflow-aware training.

It thus allows us to adjust the weights and quantization bitwidths such that the adverse effect of

overflow on inference accuracy is minimized.

7.4.2 Factored Matrix-Multiplication

Factored Matrix-Multiplication replaces the majority of costly multiplications with

cheaper conditional addition. Consider a matrix-multiplication of the form . =, · - , where

. ∈ R"×! ,, ∈ R"×# , and - ∈ R#×! . This operation requires " × ! VDPs on vectors of length

, w ∈ R# and x ∈ R# , corresponding to a row of, and a column of - , respectively. Each VDP

therefore requires # multiplications and # additions. We introduce the factored VDP which

forms the core of factored matrix-multiplication. We start with the definitions of the unique

space and the coded representation of vectors involved in VDP.

161

Definition 1. The unique space ofw ∈ R# is the set c = {21, . . . , 2+ } such thatw[8] ∈ c (∀ 8 ∈ [#]).

We refer to + as the unique size of w.

Definition 2. Given a vector w ∈ R# and its unique space c = {21, . . . , 2+ }, the coded represen-

tation of w is a vector of integer indices w̃ ∈ [+]# such that w[8] = c[w̃[8]].

Knowing the unique space c and the coded representation w̃, the VDP is computed as

follows. We first compute # conditional additions, each of which adds an input vector element to

one of + accumulators based on its code:

s[E] =
∑
G∈SE

G, SE = {x[8] | w̃[8] = E} (7.1)

Next, a VDP is computed between the accumulated values and the unique space of w. Factored

VDP requires + multiplications and # ++ additions. Its benefits are most substantial when

+ << #2. In general, + can be as large as 21, where 1 is the quantization bitwidth of w. Even

with lower bitwidths of w, + can be quite large, e.g., + = 64 for 6-bit weights. We perform

clustering [207] on the weight matrices with several representative elements to decrease + .

Clustering is performed by the server over plaintext weight matrices to obtain c and w̃ which are

then used in ciphertext execution (Section 7.5.1).

Figure 7.3. Example 4× 4 weight matrix approximated via clustering with + = 4. The
approximated matrix, can be represented as a tuple (�, ,̃).

2# is in the order of 100-10000

162

Table 7.1. TytaNN secure execution cost for core operations in a DNN. Here, ^ is the security
parameter that is set to 128.

inputdim
operation
−−−−−−−→ outputdim Ciphertext Cost Parameters

Mat-Mult -#×!
,"×#−−−−−→ ."×!

regular O
(
" ·# · ! · 1022 (1022 +1)

)
1022: accumulator bitwidth
 : unique size of,factored O

(
" · · ! · 1022 (=+ 1022 +1)

)
MaxPool -�×�1×�1

:×:−−−→ .�×�2×�2 O
(
4^ ·� ·�2 ·�2(:2−1)18=?

) 18=?: next layer input bitwidth
:: window size

ReLU -�×�1×�1
>0−−→ .�×�1×�1 O

(
2^ ·� ·�1 ·�1 · 18=?

)
18=?: next layer input bitwidth

AS→ GC -�×�1×�1
1022→18=?−−−−−−−−→ .�×�1×�1 O

(
5^ ·� ·�1 ·�1 · 1022

)
1022: accumulator bitwidth

GC→ AS -�×�1×�1
18=?→1022−−−−−−−−→ .�×�1×�1 O

(
3^ ·� ·�1 ·�1 · 18=?

) 18=?: next layer input bitwidth
1022: accumulator bitwidth

7.4.3 Automated Parameter Configuration

Clustering, as described in the previous section, is a form of lossy data compression, which

if not carefully employed, may reduce the DNN inference accuracy [208]. Balancing trade-off

between large unique space size + (thus low error) and low execution cost is a challenging task.

+ as well as the quantization bitwidths 1 across different layers are dependent on each other and

they collectively control the tradeoff between model accuracy and secure execution cost. COINN

is equipped with an automated parameter configurator that finds the minimum values of 1 and +

across DNN layers such that the secure execution cost is minimized while accuracy is above a

certain user-defined threshold.

Table 7.1 summarizes the communication cost associated with different ciphertext

operations as part of oblivious inference by COINN. These cost are incorporated into our

automated design customization tool. Note that for the linear layers, we report the amortized

costs (see Section 7.5.2). For details of the configurator refer to [209].

7.5 Cryptographic Protocols

Figure 7.4 illustrates operations in plaintext DNNs and their corresponding secure

computation in COINN framework. The linear layers – CONV and FC are executed through

secure matrix-multiplication protocols in the AS domain. We provide protocols for both

regular and factored matrix-multiplication for these two linear layers. We exploit the data

163

Figure 7.4. Plaintext operations and their equivalent ciphertext realization in COINN oblivious
inference framework.

repetition inherent in the computation of matrix products to achieve a significant reduction in

the communication cost. The outputs of the linear operations in the AS domain are securely

converted to the GC domain for computation of the non-linear layers – MP and ReLU. The scaling

operation is also embedded into the AS to GC (and vice versa) conversion. The design of these

layers is optimized for the amortized setting where the same server-client pair runs multiple

inferences without retraining the model, which is the common scenario in real-world applications.

Besides the aforementioned layers, COINN also supports BN and AP. These layers are

fused into their preceding CONV/FC layers. Using this trick, heavy cryptographic operations

such as the division protocol of CrypTFlow2 [5] can be avoided, allowing us to evaluate AP and

BN at zero cost.

7.5.1 Matrix-Multiplication

As explained in Section 7.3, the weight matrix, is only known by Alice, i.e., J,K = J,K�

and J,K� = 0 while the activation matrix J-K is shared between Alice and Bob. We need to

compute the matrix product J.K = J,K ·J-K = J,K� ·J-K�+J,K� ·J-K�. Since Alice can locally

compute J,K� · J-K�, we focus on secure computation of J/K = J,K� · J-K�.

RegularMatrix-Multiplication. The product J/K ∈ Z"×!21 of J,K� ∈ Z"×#21 and J-K� ∈

164

Z#×!21 can be computed with "#! scalar multiplications. This approach requires "#!1

invocation of COT2
1
[32], thus incurring a communication cost of "#!1(^ + 1) bits. The

communication cost of one instance of COT2_ is ^ +_, where the first term (the cost of one ROT2_)

is independent of the message bitwidth _. Since the computation of the matrix product involves

dot product of each row of J,K� with ! columns of J-K�, we compute the matrix product with

"#1 invocations of COT2
!1
. This approach reduces the number of COTs by increasing the

message length, thereby reducing the total communication cost to "#1(^ + !1). Compared to

the protocols with independent multiplications [187, 32], the cost is reduced by a factor of ! (^+1)
^+!1 .

This cost can be further reduced in the amortized setting as will be explained in Section 7.5.2.

Factored Matrix-Multiplication. We now present our protocol for securely computing

the factored matrix-multiplication explained in Section 7.4.2. We first define the one-hot encoded

representation of a vector.

Definition 3. Given a vector w ∈ R# and its coded representation w̃ ∈ [+]# w.r.t. its unique

space c = {21, . . . , 2+ }, the one-hot encoded representation of w̃ is a matrix ,̃ ∈ {0,1}+×# such

that ,̃ [E,=] = 1 if F̃ [=] = E and 0 otherwise (∀E ∈ [+], = ∈ [#]).

We will be using the following notations to explain our secure factored matrix-multiplication:

• Collection of unique spaces for all rows of J,K�:
{
JcK(<)

�
∈ Z+21

}
<∈["]

• Collection of one hot encodings of all rows of J,K� w.r.t. JcK(<)
�

:
{
J,̃K(<)

�
∈ {0,1}+×#

}
<∈["]

• Partial sum:
{
J(K(<)

�
∈ Z+×!21

}
<∈["]

Using the above notations, the product J/K = J,K� · J-K� is computed as:

J(K(<)
�
[E, ;] =

#∑
==1

J,̃K(<)
�
[E,=] · J-K� [=, ;];∀< ∈ ["], E ∈ [+], ; ∈ [!] (7.2)

J/K[<, ;] =
+∑
E=1

JcK(<)
�
[E] · J(K(<) [E, ;];∀< ∈ ["], ; ∈ [!] (7.3)

165

Algorithm 2: Protocol for Computing Conditional Accumulation
Input : From Alice, one-hot encoding of weight matrix J,K�:{

J,̃K(<)
�
∈ {0,1}+×#

}
<∈["]

Input : From Bob, share of the activation J-K: J-K� ∈ Z#×!21 :

Output : Partial sum
{
J(K(<) ∈ Z+×!21

}
<∈["]

OT message received by Alice,
{
`′(;) ∈ Z"×+×#21

}
;∈[!]

OT message received by Bob,
{
`(;) ∈ Z"×+×#21

}
;∈[!]

1 Bob chooses a set of correlation functions i(;)<,E,= (·) as
{
i
(;)
<,E,= (`(;) [<,E,=])

}
;∈[!]

={
`(;) [<,E,=] + J-K� [=, ;]

}
;∈[!]
;∀< ∈ ["], E ∈ [+], = ∈ [#]

2 foreach < ∈ ["], E ∈ [+], = ∈ [#] do
3 Alice and Bob run COT2

!1
where

4 Bob acts as sender with correlation functions
{
i
(;)
<,E,= (·)

}
;∈[!]

and receives{
`(;) [<,E,=]

}
;∈[!]

5 Alice acts as receiver with choice bits J,̃K(<)
�
[E,=] and receives{

`′(;) [<,E,=]
}
;∈[!]

=

{
`(;) [<,E,=] + J,̃K(<)

�
[E,=] · J-K� [=, ;]

}
;∈[!]

6 Alice sets J(K(<)
�
[E, ;] =∑#

==1

(
`′(;) [<,E,=]

)
;∀< ∈ ["], E ∈ [+], ; ∈ [!]

7 Bob sets J(K(<)
�
[E, ;] =∑#

==1

(
`(;) [<,E,=]

)
;∀< ∈ ["], E ∈ [+], ; ∈ [!]

Eq. 7.2 represents conditional accumulation and Eq. 7.3 represents dot product of length +

vectors of 1-bit integers. Note that the number of integer multiplications is reduced from "#! in

regular matrix-multiplication to "+! in the factored version (+ � #). The majority of the cost

is now incurred by the conditional accumulation, which is computed through COT. We leverage

our optimization presented for the regular matrix-multiplication, i.e., merging the COT messages

involving the same selector bit, for both Eq. 7.2 and 7.3 to reduce the communication cost.

Algorithm 2 presents the protocol for computing the partial sums through conditional

accumulation. Since the protocol requires "+# COT2
!1
, the communication cost of computing

the partial sums is "+# (^+ !1). The dot product of Eq. 7.3 can then be computed following the

technique presented in MiniONN [187] with a communication cost of "+1(^ + !1). Thus the

166

total cost of computing factored matrix-multiplication is "+ (# + 1) (^ + !1). Since in practice,

1� # , we set the cost to "+# (^ + !1) in the remaining discussion.

Proof Sketch. The security proof of Algorithm 2 directly follows from the security

guarantee of OT. Observe that all the communication between Alice and Bob is performed

through OT which ensures the privacy of both the selection bits and messages. Moreover, the

correlation function chosen by Bob ensures that Alice never receives an unmasked version of any

element of J-K�. Furthermore, every instance of OT involves freshly generated unique masks

that ensures the security of the one-time pad.

7.5.2 Linear Layers in the Amortized Setting

The mean communication cost of both regular and factored matrix-multiplication is

further reduced in the amortized setting where one server-client pair runs a large number of

inferences with the same trained model but different inputs, i.e, , remains constant while -

changes in each inference. In case of regular matrix-multiplication, since,, does not change, the

number of COTs remains the same while message length increases to �!1, where � is the number

of inferences. The mean cost per matrix-multiplication is therefore "#1(^ + �!1)/� ≈ "#!12

for large �. Similarly, for factored matrix-multiplication, the mean amortized cost is "+#!1.

More importantly, in this setting, the number of communication rounds remains constant (= 2),

irrespective of the number of inferences �. Our protocol execution is split into setup, offline and

online phases as described below.

Setup Phase. This is performed once per server-client pair irrespective of the number

of inferences �. In this phase, for regular matrix-multiplication, Alice and Bob perform

the "#1 ROT2
�!1

as part of the "#1 COT2
�!1

for matrix-multiplication computation. In

practice, following the state-of-the-art OT libraries [35, 210], Alice receives "#1 ^-bit seeds

W@;∀@ ∈ ["#1] and Bob receives ^-bit seeds W0@ and W1@;∀@ ∈ ["#1] which are later expanded

to 1-bit messages ∀ 9 ∈ [�], ; ∈ [!] through Cryptographically Secure Pseudo Random Number

167

Generator (CS-PRNG). This makes sure that the memory requirement is independent of the

number of inferences �. The communication cost of the setup phase is "#1^. Similarly, the

communication cost of the setup phase for factored matrix-multiplication is "+ (# + 1)^.

Offline and Online Phases. These two phases are performed once per inference 9 . The

offline and online phases involve computation before and after the input - is available, respectively.

We employ the technique proposed by Slalom [211], to ensure that most of the cost corresponds

to the offline phase. In this technique, in the offline phase, Alice and Bob securely compute the

matrix product J/′K = J,K� · J*K�, where J*K� ∈ Z#×!21 is a random matrix generated and known

by Bob. They locally expand the seeds obtained in the setup phase for the particular inference

index 9 and for each column ; ∈ [!] of - and completes the COT2
!1
. The communication cost

of this phase for each 9 ∈ [�] for regular and factored matrix-multiplications are "#!12 and

"+#!1 respectively. In the online phase, Bob directly sends � = J-K� − J*K� to Alice who

locally computes J/K� = J/K� + J,K�J�K�. Bob sets J/K� = J/′K�. The communication cost in

this phase negligible compared to that of the offline phase.

Number of Communication Rounds. In the proposed setting, the only communication

fromAlice to Bob occurs in the setup phase. The offline and online phases involve communication

from Bob to Alice, only. Thus the number of communication rounds is 2, irrespective of the

number of inferences �. This reduces adverse effect of increased network latency in WAN setting.

Switching betweenRegular andFactoredMultiplication. Based on the optimal unique

size allocated to each layer’s weights by the model configurator, our protocol automatically

switches between regular and factored multiplication to maximize efficiency. Switching is done

when the costs of both multiplications are equal, i.e., "#!12 ="+#!1 in the amortized setting,

which renders the switching point 1 =+ , i.e., when the number of unique values in each row of

the weight matrix is equal to the bitwidth of the AS shares.

168

7.5.3 Non-linear Layers

COINN GC domain incorporates the following four stages:

(i) AS to GC Conversion. A variable JGK ∈ Z21 shared between Alice and Bob through

AS is securely converted to its share in the GC domain by securely computing the addition

function through GC with inputs from Alice, the garbler and Bob, the evaluator as JGK� and

JGK�, respectively. Before the addition, Bob obtains the Yao share for his input JGK� through

COT, which requires two rounds of communication. In this particular scenario, Bob’s share is

generated through multiplication in the AS domain. According to the multiplication technique

described in Section 2.6.1, his shares are independent of his input. Therefore, we perform the

COTs for all the layers in parallel during the offline phase. This approach reduces one round of

communication for each layer in the online phase.

(ii) Scaling. As a result of the optimizations presented in Section 7.4.1, scaling is

performed through bit shift, which can be evaluated in GC with no additional communication

cost. Scaling converts the bitwidth of the shared variables from 1 to 18=?, where, 18=? is the input

bitwidth of the next CONV/FC layer. This allows us to significantly reduce the secure execution

cost of nonlinear layers in GC.

(iii) MaxPool and ReLU. An MP operation with a window size of : × : requires :2−1

comparison and multiplexing operations, each of which incurs a communication cost of 2 · ^ · 18=?

bits. Note that MP (ReLU (x))=ReLU (MP (x)), thus we perform MP before ReLU as it shrinks

the size of the activation tensor by a factor of :2, thereby reducing the ReLU cost. Each ReLU

operation includes 18=? AND operations each of which requires communication of 2 · ^ · 18=? bits.

(iv) GC to AS Conversion. For this operation, Alice generates a random 1-bit integer

which is added to the ReLU output and the sum is revealed to Bob. This operation does not

require COT since there is no input from Bob. During conversion, the values are sign-extended

to 1 bits to match the AS ring size. It is worth noting that HE-GC conversion requires 3× more

169

computation/communication compared to AS-GC conversion. Our computations in the AS

domain are performed modulo 21 and the GC circuit for 1-bit addition automatically takes care

of the modulo operation. On the contrary, to benefit from SIMD operations in HE, the modulus

is chosen as a prime number. Therefore, the circuit for modular addition requires 1-bit addition,

subtraction, and multiplexing, thereby increasing the cost of HE-GC conversion [188].

Table 7.2. Cost of different phases of linear layers in COINN and previous works. #B;>C is
number of slots in vectorized HE operations. �>BC"D;C (@) is cost of one scalar multiplication
inZ@ in HE. @ is cipher-text modulus which is ∼ 3× larger than plain-text modulus ? ≈ 21022 .

Work
Per-layer Complexity

One time setup Per-inference

Gazelle/Delphi/CTF2 (HE) - O
(
"#!
#B;>C

)
.�>BC"D;C (@)

MiniONN/CTF2 (OT) - O
(
"#1022 (^ + !1022)

)
XONN (GC) - O

(
"#!12022^

)
COINN – regular (OT) O

(
"#1022^

)
O

(
"#!12022

)
COINN – factored (OT) O

(
"+1022^

)
O

(
"+!1022 (# + 1022)

)
7.5.4 Cost Breakdown and Comparison with Previous Works

To explain the source of run-time improvement in the proposed method, we summarize

the cost complexity of different phases of execution of the linear layers in COINN and compare

them with previous works in Table 7.2. For HE-based works, the complexity refers only to

the computation cost. For OT-based works, the complexity refers to both communication and

computation cost, even though the communication is usually the dominant factor. The number of

communication rounds for all works is equal to the number of layers, except for XONN which

has constant number of rounds.

The performance gains of COINN over prior work stem from two main reasons:

• Separating setup time. We move a large part of the computation/communication of the

(OT-based) linear layers of COINN to a one-time setup phase without affecting security.

170

In contrast, previous OT-based methods (MiniONN [187], CrypTFlow2 [212]) repeat these

operations for every inference 3. Moreover, separation of setup and per-inference phases is not

readily applicable in the HE-based methods (Gazelle [188], Delphi [1], CrypTFlow2 [212]) or

GC-based methods (XONN [3]).

• Optimizing parameters. Prior works use a large but fixed bitwidth 1022 for all linear layers.

COINN customization finds smaller values of 1022 that vary from one layer to another,

significantly reducing the secure execution cost while preserving the accuracy. Additionally,

our factored matrix multiplication can further reduce the execution cost of linear layers when

+ < 1022. Note that by reducing the computational bitwidth, COINN also reduces the cost of

protocol conversion and nonlinear layers as formalized in Table 7.1.

7.6 Oblivious BNN Inference

BNNswere originally introduced tominimizememory footprint and computation overhead

of plaintext inference. As an added benefit, they also enable fast oblivious inference. While

some convenient properties of BNN have been exploited by earlier work on oblivious inference

– XONN [3], it still did not exploit the full potential. The primary limitation of XONN was

employing a single protocol – GC, which is significantly less efficient than AS for the arithmetic

computation in the linear layers. In this work, we improve the performance of oblivious BNN

inference by customizing our mixed protocol system presented in the previous section for BNN.

In BNN, the weights are forced to be +1 or -1. This property ensures that the vector dot product

can be computed through only conditional additions, which in turn is computed through OT in

oblivious inference. In the non-linear layers, we show how the Binary Activation (BA) operation

in BNNs can be performed free of cost by absorbing its computation in the AS-GC conversion.
3The preprocessing phase of Delphi [1] is equivalent to our offline phase and needs to be repeated per inference

to ensure security.

171

Algorithm 3: Protocol for secure binary matrix multiplication
Input : From Alice, weight matrix J,K� ∈ {−1,+1}"×#
Input : From Bob, share of the activation J-K: J-K� ∈ Z#×!21
Output : Matrix Product J/K = J,K�J-K� ∈ Z"×!21

OT message received by Alice,
{
`′(;) ∈ Z"×#21

}
;∈[!]

OT messages chosen by Bob,
{
`0
(;) ∈ Z"×#21

}
;∈[!]

,
{
`1
(;) ∈ Z"×#21

}
;∈[!]

1 Bob randomly generates JRK� ∈ Z"×#×!21
2 foreach < ∈ ["], = ∈ [#] do
3 Alice and Bob run OT2

!1
where

4 Bob acts as sender with messages{
`0 [<,=] (;) , `1 [<,=] (;)

}
;∈[!]

= JRK� [<,=, ;] ± J-K� [=, ;]

5 Alice acts as receiver with choice bits , [<,=]+12 and receives{
`′(;) [<,=]

}
;∈[!]

=

{
JRK� [<,=, ;] +, [<,=] · J-K� [=, ;]

}
;∈[!]

6 Alice sets J/K� [<, ;] =
∑#
==1

(
`′(;) [<,=]

)
;∀< ∈ ["], ; ∈ [!]

7 Bob sets J/K� [<, ;] = −
∑#
==1

(
JRK� [<,=, ;]

)
;∀< ∈ ["], ; ∈ [!]

7.6.1 Binary Matrix Multiplication

Algorithm 3 presents the secure matrix multiplication protocol for the class of binary

weights. There are three differences compared to Algorithm 2 for factored matrix multiplication.

(i) the unique space of the weight matrix, is simply {−1,+1}. (ii) we do not need to explicitly

maintain a one-hot encoding of, since it can be computed with the simple equation at line 5

of Algorithm 3. (iii) we do not need the two step process of computing partial sums first, and

then multiplying them with the unique space later. Instead, Alice and Bob engage in regular OT

(as opposed to COT in Algorithm 2), where BOB chooses his messages in accordance with the

constant unique space {−1,+1} at line 4 of Algorithm 3. Note that both weight and activation

are ±1 in BNNs. However, to ensure the correctness of the accumulation operation during

computation of the vector dot product, we need to store the activations J-K in 1(= d!>6(#) +1e)

bit variables in Algorithm 3.

172

7.6.2 Nonlinear Layers

Similar to generic DNNs, upon completion of the linear layers, the result is securely

converted from AS to GC for computation of the non-linear layers. In case of BNN, the matrix

product . in Z21 also needs to be converted back to the {+1,−1} domain. This conversion is

performed as the cascade of BN and BA: B86=(U. + V) = B86=(. + V
U
), where U and V are BN

parameters. Since both U and V is known to Alice (the server), she can locally compute the

private variable J[K� =
V

U
. Then Alice and Bob can perform AS-GC conversion, BN, and BA

together by computing B86=(J.K+ J[K�) = B86=(J.K� + J.K� + J[K�) through GC, where Alice

inputs J.K� + J[K� and Bob inputs J.K�. The cost of this computation is exactly the same as the

cost of BA performed in the previous work XONN [3] on oblivious BNN inference based entirely

on the GC protocol. Therefore, in our mixed protocol solution, we do not pay additional cost for

the AS-GC conversion.

7.6.3 Training Adaptive BNN

One major challenge in BNN is ensuring inference accuracy compared too the non-

binarized model. In this work, we improve the accuracy of the base BNN by multiplying its

width, e.g., by training an architecture with twice as many neurons at each layer. In this realm, we

find Slimmable Networks [213], a method of training dynamic DNN [214], quite compatible to

our problem setting and adapt them to BNNs. We train a single network with a certain maximum

width, say 4× the base network, in a way that the model can still deliver acceptable accuracy at

lower widths, e.g., 1× or 2× the base network. After training, we can run oblivious inference

with any of the selected widths, thus, providing a tradeoff between accuracy and runtime.

7.7 Evaluation of COINN: Generic DNN Inference

In this section, we empirically evaluate the performance of COINN in various settings.

We perform a detailed study of the efficiency gains achieved by each of COINN optimizations,

173

Table 7.3. COINN benchmarks.

Model Layers Acc MACs Params
MiniONN [187] 6 CONV, 1 FC, 2 MP, 6 ReLU 88.3 6.1e7 1.6e5
ResNet32 31 CONV, 1 FC, 1 AP, 31 ReLU 68.7 6.9e7 4.7e5
ResNet110 109 CONV, 1 FC, 1 AP, 109 ReLU 94.1 2.5e8 1.7e6
ResNet50 49 CONV, 1 FC, 1, MP, 1 AP, 49 ReLU 76.1 4.1e9 2.5e6

namely, quantization, clustering, and end-to-end parameter configuration, in Section 7.7.1. Next,

we provide a side-by-side comparison of COINN with recent works in Section 7.7.2, in terms of

the ciphertext execution time, showing 4.7×–36.8× faster inference on contemporary DNNs in

LAN setting. We further show that COINN achieves better performance compared to prior work

in the high-latency setting.

Evaluation Setup. We use the PyTorch library for training the FP32 DNNs and develop

our security-aware quantization, clustering, and automated parameter configuration with PyTorch

backend for easy utilization by the community. Our ciphertext execution uses OT, and CS-PRNG

implementations from EMP-toolkit [35] and GC implementation from TinyGarble2 [10]. For

fast matrix-multiplication, we utilize the Intel intrinsic instructions and represent matrices with

the Eigen library [215].

We run our ciphertext evaluations using 4 threads on machines with 2.2 GHz Intel Xeon

CPU and 16 GB RAM. For runtime measurements, we consider two real-world network settings,

namely LAN with a throughput of 1.25 GBps, round trip time of 0.25ms, and WAN with a

throughput of 125 MBps, round trip time of 100ms. We simulate the network settings via Linux

Traffic Control4.

Benchmarks. We perform evaluations on the CIFAR-10, CIFAR-100, and ImageNet

classification benchmarks. The number of classes in these datasets are 10, 100, and 1000,

respectively. Table 7.3 presents details of our benchmark DNNs and their FP32 accuracies. We

evaluate the 7-layer network from MiniONN [187] and ResNet110 on CIFAR-10, ResNet32
4https://man7.org/linux/man-pages/man8/tc.8.html

174

https://man7.org/linux/man-pages/man8/tc.8.html

on CIFAR-100, and ResNet50 on ImageNet dataset. Our benchmarks cover a wide range of

parameter sizes (0.5M to 23M) and number of MAC operations (60M to 4B) commonly observed

in real-world models.

Accuracy Measurement. Throughout the evaluations, we report the secure model accuracy,

which is measured efficiently (and correctly) by simulating ciphertext operations in PyTorch. The

correctness is validated by matching all DNN layers’ activations in secure inference with those

from PyTorch on randomly selected inputs.

7.7.1 Evaluation of COINN Optimizations

In this section, we provide a breakdown of the savings in secure execution cost as a result

of COINN’s model adjustment methods and protocol optimization.

Low-Bit Heterogeneous Quantization. We illustrate the benefits of our quantization

scheme in reducing the secure communication cost, while maintaining accuracy, for a large scale

real-world DNN – ResNet32. Figure 7.5 presents the communication cost and accuracy of secure

execution as a function of the bitwidth. The numerical labels on the horizontal axis represent

homogeneous quantization (equal bitwidths across all layers), where each label is 18=? = 1F with

1022 set to 218=? +1. The label 16 represents the configuration implemented in prior works [1, 5]

which we use as a baseline. Figure 7.5 shows that while reducing bitwidth in homogeneous

setting results in a linear reduction of ciphertext communication, it also results in a significant

drop in accuracy.

To mitigate the undesireable accuracy drop of homogeneous quantization, our automated

parameter configurator finds a heterogeneous allocation of per-layer bitwidths that simultaneously

ensures high accuracy and low communication cost. The rightmost label, Q in Figure 7.5,

represents the COINN optimized model with heterogeneous quantization bitwidths across layers.

This optimal set of bitwidths results in a communication cost equivalent to the 6-bit homogeneous

model and achieves an accuracy comparable to the 16-bit baseline. Such optimization of per-layer

bitwidths is made possible via our secure computation-aware quantization which accurately

175

Figure 7.5. Effect of quantization bitwidth on communication cost (bars) and accuracy (curve).
The numbers on the horizontal axis show the bitwidth for homogeneous quantization of
weights/inputs across all layers. Q represents the heterogeneous bitwidths found by COINN.

simulates the effect of low-bit quantization in ciphertext. This allows us to explore the trade-off

between communication cost and model accuracy. We present the heterogeneous bitwidths found

by COINN configurator for ResNet32 in Figure 7.6-a.

FactoredMatrix-Multiplication. Figure 7.5 shows that the bulk of total communication

cost in a quantized model corresponds to linear operations. We now showcase how COINN further

reduces this cost via factored matrix-multiplication. Figure 7.7 presents the communication cost

and accuracy as a function of the number of unique elements in each layer’s weight matrices + .

The label Q represents our model with heterogeneous quantization bitwidths from Figure 7.5.

The numeric labels to its left represent models with a uniform selection of + across all layers.

Such naïve selection results in accuracy degradation, particularly for small + . Our automated

parameter configurator finds a heterogeneous allocation of + across DNN layers that balances

the tradeoff between inference accuracy and ciphertext communication. The result is an optimal

DNN represented with the label Q+C that reduces the secure communication cost of the quantized

model by 1.4× while maintaining the original model accuracy. We present the heterogeneous

number of per-layer clusters found by our configurator for this benchmark in Figure 7.6-b.

Holistic Optimization. Figure 7.8 presents the reduction in communication cost achieved

176

Figure 7.6. Heterogeneous parameters across ResNet-32 layers found by COINN configurator.
(a) Quantization bitwidths. (b) Number of clusters + .

by applying COINN automated quantization and clustering on all benchmarks. As our baseline

design, we adopt the bitwidths from prior work [1], i.e., 16-bit inputs/weights and 32-bit

activations, and perform regular matrix-multiplication. For COINN results, we first find

heterogeneous quantization configurations using our genetic algorithm and fine-tune the model

to regain accuracy. We show the optimized quantized model via Q on Figure 7.8. Next, we use

our automated parameter configurator to find the weight clusters for each layer and fine-tune the

resulting model once more to obtain the DNN labeled Q+C. The linear operations in the Q and

Q+C settings are performed via regular and factored Matrix-Multiplication, respectively. As

seen, by finding the best set of heterogeneous bitwidths across DNN layers, COINN successfully

reduces the secure communication for linear and nonlinear layers by 3.9×–4.3× and 1.9×–2.2×,

respectively. By optimizing the weight clusters, we further push the efficiency gains on linear

layers to 4.8×–8.1×.

Table 7.4 provides the total runtime and communication cost of our baseline, Q, and

Q+C configurations in both LAN and WAN settings. The evaluation verifies the effect of our

177

Figure 7.7. Effect of factored multiplication on inference accuracy and communication cost
of linear operations. Q represents the baseline quantized DNN. Numbers to its left represent
homogeneous + for all layer weights. Q+C represents heterogeneous + configuration found by
COINN.

Figure 7.8. Communication for baseline and COINN optimized models, where Q represents
quantized model and Q+C further applies clustering to enable factored multiplication.

optimization on the runtime: applying Q+C reduces the baseline runtime by 2.6×–3.9× and

2.3×–4.2× in LAN and WAN settings, respectively. The effect of COINN optimizations on

standalone micro-benchmarks of the CONV and ReLU is presented in Appendix 7.7.4.

Setup Time Separation. Finally, we evaluate the effect of introducing the one-time setup

phase to reduce the amortized per-inference cost. The setup phase is only performed the first time

a connection is established between the client and server and is independent of the number of

inferences. In the previous section (Table 7.2), we showed the complexity of linear layers in the

setup and per inference phases. We now show the effect of this optimization through experimental

evaluation. Figure 7.9 presents the breakdown of setup time and amortized inference time for

178

Table 7.4. Evaluation of COINN in LAN and WAN settings. Q and C denote quantization and
clustering, respectively.

Model Comm. (GB) LAN Time (s) WAN Time (s)
Base Q Q+C Base Q Q+C Base Q Q+C

MiniONN 8.7 2.3 1.0 4.85 1.9 1.45 74.6 26.5 18.5
Res32 10.4 2.4 1.9 9.8 3.8 3.68 143.9 67.1 62.9
Res110 37.6 9.7 6.8 36.0 14.2 14.0 518.1 242.8 226.0
Res50 583.1 148.0 122.0 571.46 165.3 145.7 4994 1420.4 1189.7

each of the four benchmarks under LAN and WAN settings. As expected, separating the setup

time from oblivious inference significantly reduces the runtime.

Figure 7.9. Breakdown of setup and amortized times for the under LAN and WAN settings.

7.7.2 Comparison with Prior Work

In this section, we compare COINN amortized runtime with the prior art in oblivious

inference. In Table 7.5, we report the performance of COINN along with four contemporary

works, namely, XONN [3] with extremely low-bit (binary) weights/activations, Delphi [1] with a

hybrid HE-GC protocol, SafeNet [2] which performML optimization for Delphi’s secure protocol,

and CrypTFlow2 [5] which is the current state-of-the-art in oblivious inference. For a fair and

accurate comparison, we re-run the open-source codes provided by Delphi5 and CrypTFlow26 to
5https://github.com/mc2-project/delphi
6https://github.com/mpc-msri/EzPC/tree/master/SCI

179

https://github.com/mc2-project/delphi
https://github.com/mpc-msri/EzPC/tree/master/SCI

Table 7.5. Performance comparison of COINN with best prior work. “Improv.” shows the
improvement in total runtime. CTF2 refers to CrypTFlow2 [5].

LAN WAN Acc.
Runtime (s) Improv. Runtime (s) Improv. (%)

M
in
iO

N
N

XONN 33.5 23.1× - - 83.0
Delphi 49.9 34.4× 59.8 3.2× 82.9
SafeNet 53.4 36.8× - - 85.1
CTF2 (HE) 20.8 14.4× 55.4 3.0× 86.0
CTF2 (OT) 11.9 8.2× 108.2 5.8× 86.0
COINN 1.45 1× 18.5 1× 87.6

Re
s3
2

Delphi 88.8 24.0× 145.9 2.3× 65.7
SafeNet 128.0 34.6× - - 67.5
CTF2 (HE) 32.6 8.8× 136.9 2.2× 68.0
CTF2 (OT) 18.7 5.1× 176.7 2.8× 68.0
COINN 3.7 1× 62.9 1× 68.1

Re
s1
10 CTF2 (HE) 110.3 7.8× 448.2 2.0× 94.1

CTF2 (OT) 65.4 4.7× 579.3 2.6× 94.1
COINN 14.0 1× 226.0 1× 93.4

Re
s5
0 CTF2 (HE) 893.2 6.1× 1463.3 1.2× 76.1

CTF2 (OT) 1139.8 7.8× 4241.8 3.6× 76.1
COINN 145.7 1× 1189.7 1× 73.9

obtain runtime/communication measurements on our machines. For the remaining works [3, 2],

we directly report the numbers from the original papers since no public code was available.

Table 7.5 shows COINN achieves 4.7×–36.8× faster ciphertext execution in the LAN

setting compared to prior work. Even though in the high latency setting the benefit margins

are smaller, COINN still outperforms the best methods to date. This is achieved by optimizing

both non-linear and linear computations/communications through quantization and factored

multiplication. Furthermore, COINN achieves 0.6%– 4.7% higher accuracy with 23.1×–36.8×

faster secure runtime compared to prior crypto/ML co-optimization work, namely [3, 1, 2].

Evaluation on Large-scale Benchmarks. To fully demonstrate the efficacy and scala-

bility of COINN model adjustment techniques and custom secure protocols, we evaluate two

exceptionally complex DNNs, namely, ResNet110 on CIFAR-10 and ResNet50 on ImageNet

datasets. The first benchmark, i.e., ResNet110, is challenging due to the extremely high di-

180

mensionality of the parameter configuration space: there are 330 bitwidths and 110 clustering

parameters that require per-layer adjustment. The second benchmark, i.e., ResNet50, is the largest

DNN ever studied in the secure computation domain with over 4 Billion scalar multiplications

and additions.

In Table 7.5, we present the runtime for the large scale networks and compare our

results with the state-of-the-art CrypTFlow2. In the LAN setting, COINN achieves 4.7×–7.8×

and 6.1×–7.8× runtime improvement compared to CrypTFlow2’s OT-based and HE-based

implementations, respectively. In the WAN setting, COINN achieves 2.6×–3.6× and 1.2×–2×

runtime improvement compared to CrypTFlow2’s OT-based and HE-based implementations,

respectively. It is worth noting that the relatively lower improvement margin achieved by COINN

in one specific setting (1.2× for ResNet50, WAN, HE) is due to the heavy imbalance of the cost

towards linear layers in this particular benchmark.

7.7.3 Model Customization Runtime

COINN plaintext model customization (Section 7.4) is a one-time process performed

on the pre-trained model by the server irrespective of the number of inference or the number of

clients. Table 7.6 outlines the runtime of each customization step on one GPU, across various

benchmarks. For better comparison, we normalize the customization and fine-tuning runtimes by

the time required for training the baseline DNN on the same hardware. For fine-tuning, the number

of fine-tuning epochs for each model is determined such that the validation accuracy reaches

a convergence plateau. Regarding model customization, we terminate the genetic algorithm

when the best obtained score does not improve for more than 5 iterations. Note that COINN

customization step enjoys a linear speedup as the number of GPU cores increases. This is due to

the independence of score evaluations inside a population [216].

181

Table 7.6. Runtime of COINN model customization and fine-tuning, normalized by the target
DNN’s training time on one NVIDIA Titan XP GPU. Here, Q and C denote the quantization and
clustering stages, respectively.

Model Training COINN Customization Fine-tuning
(minutes) Steps # iter Runtime # iter Runtime

MinioNN 11.6 Q 30 2.29× 20 0.50×
C 20 2.12× 5 0.14×

Res32 34.2 Q 20 1.48× 20 0.56×
C 30 1.94× 20 0.65×

Res110 107.6 Q 30 1.89× 5 0.14×
C 30 1.43× 20 0.59×

Res50 14,040.0 Q 20 0.05× 5 0.14×
C 30 0.16× 2 0.07×

7.7.4 Evaluation on Microbenchmarks

We present the evaluation results on standalone linear and nonlinear layers of COINN

in tables 7.7, 7.8, and 7.9. Observe that the run-time for the convolution layers with regular

matrix-multiplication increases quadratically with the bitwidth 1. The quantization and automated

parameter configurator of COINN thus greatly enhance the performance by minimizing the

bitwidths. The run-time of convolution layers with factored multiplication increases linearly with

the number of unique elements, +m and becomes equal to that of regular matrix-multiplication

when + = 1. This is consistent with the analysis in Section 7.5.2. Table 7.9 shows the run-time of

combined AS to GC, ReLU, and GC-AS operations. As expected, the run-time increases linearly

with 1.

Table 7.7. Evaluation on convolution layers of TytaNN with regular matrix multiplication

Input Kernal LAN WAN

� ×� ×, # ×� ×� 1 = 8 1 = 16 1 = 32 1 = 8 1 = 16 1 = 32
16×32×32 16×3×3 0.021 0.073 0.317 0.703 1.217 3.557
32×16×16 32×3×3 0.021 0.071 0.284 0.711 1.202 3.350
64×8×8 64×3×3 0.027 0.070 0.268 0.703 1.220 3.139

182

Table 7.8. Evaluation on convolution layers of TytaNN with factored matrix multiplication,
1 = 16

Input Kernal LAN WAN

� ×� ×, # ×� ×� + = 8 + = 12 + = 16 + = 8 + = 12 + = 16
16×32×32 16×3×3 0.039 0.056 0.073 0.902 1.107 1.217
32×16×16 32×3×3 0.037 0.054 0.073 0.810 1.011 1.203
64×8×8 64×3×3 0.038 0.053 0.071 0.812 1.013 1.227

Table 7.9. Evaluation on ReLU of TytaNN (including AS-GC conversions)

Input LAN WAN

� ×� ×, 1 = 8 1 = 16 1 = 32 1 = 8 1 = 16 1 = 32
16×32×32 0.083 0.182 0.307 1.125 1.569 2.583
32×16×16 0.062 0.085 0.16 0.820 1.061 1.565
64×8×8 0.026 0.043 0.066 0.708 0.913 1.124

7.8 Evaluations of BNN Inference

Standard Benchmarks. We perform our evaluation on several networks trained on

the CIFAR-10 dataset, shown in Table 7.10. These benchmarks provide us with a rich set of

comparison baselines as they are commonly used in prior work. Specifically, the BC1 network

has been evaluated by the majority oblivious inference papers [187, 217, 218, 188, 3, 1, 5, 2, 4].

Other models are evaluated by XONN [3], the state-of-the-art for oblivious inference of binary

networks. For brevity, we omit details about layer-wise configurations and refer curious readers

to [3] for further information.

Table 7.10. Summary of the trained binary network architectures evaluated on the CIFAR-10
dataset

Arch Previous Papers Description

BC1 [187], [217], [218], [188], [3],
[1], [5], [2], [4] 7 CONV, 2 MP, 1 FC

BC2 [3] 9 CONV, 3 MP, 1 FC
BC3 [3] 9 CONV, 3 MP, 1 FC
BC4 [3] 11 CONV, 3 MP, 1 FC

Training. For all benchmarks, we use standard backpropagation algorithm proposed

183

width

A
cc

ur
ac

y
(%

)

70

75

80

85

90

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN

(a) BC1
width

A
cc

ur
ac

y
(%

)

60

70

80

90

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN

(b) BC2
width

A
cc

ur
ac

y
(%

)

70

75

80

85

90

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN

(c) BC3
width

A
cc

ur
ac

y
(%

)

80

85

90

95

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN

(d) BC4

Figure 7.10. CIFAR-10 test accuracy of each architecture at different widths. Our Adaptive
BNN trains a single network that can operate at all widths, whereas previous work (XONN) trains
a separate BNN per width

width

R
un

tim
e

(s
)

C
om

m
. (

G
B

)

0

20

40

60

0

5

10

15

20

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(a) BC1
width

R
un

tim
e

(s
)

C
om

m
. (

G
B

)

0

5

10

15

20

0

2

4

6

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(b) BC2
width

R
un

tim
e

(s
)

C
om

m
. (

G
B

)

0

20

40

60

0

4

8

12

16

20

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(c) BC3
width

R
un

tim
e

(s
)

C
om

m
. (

G
B

)

0

50

100

150

200

0
10
20
30
40
50
60
70

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(d) BC4

Figure 7.11. Runtime and communication cost of each architecture at different widths

by [191] to train our binary networks. We split the CIFAR10 dataset to 45k training examples,

5k validation examples, and 10k testing examples, and train each architecture for 300 epochs.

We use Adam optimizer with initial learning rate of 0.001, and the learning rate is multiplied

by 0.1 after 101, 142, 184 and 220 epochs. The batch size is set to 128 across all CIFAR10

training experiments. The training data is augmented by zero padding the images to 40×40, and

randomly cropping a 32×32 window from each zero-padded image.

Evaluation Setup. Same as the previous section.

7.8.1 Evaluating Flexible BNNs

Let us start by evaluating our adaptive BNN training. We train slimmable networks

with maximum 4× width of the base models presented in Table 7.10. During training, we

re-iterate through subsets of widths {1×,1.5×, . . . ,4×} and perform gradient updates as explained

in Section 7.6.3.

184

Figure 7.10 presents the test accuracy of each network at different widths. We also

report the accuracy of independently trained networks reported by XONN. The test accuracy

of a particular base BNN architecture can be improved by increasing its width. Our adaptive

networks obtain better accuracy than independently trained BNNs at each width. Once the

adaptive network is trained, the server can provide oblivious inference service to clients, which

we discuss in the following section.

7.8.2 Oblivious Inference

width

Im
pr

ov
em

en
t (

x)

1
3
5
7
9

11
13

1.0 1.5 2.0 2.5 3.0 3.5 4.0

BC1 BC2 BC3 BC4

(a) Runtime

width

Im
pr

ov
em

en
t (

x)

4

6

8

10

12

1.0 1.5 2.0 2.5 3.0 3.5 4.0

BC1 BC2 BC3 BC4

(b) Communication

Figure 7.12. Improvements in LAN runtime and communication compared to XONN. Our
protocols achieve 2× to 12× in runtime and 5× to 12× communication reduction

Recall that the runtime of oblivious inference is dominated by data exchange between

C
om

m
. (

G
B

)

0.0
0.5
1.0
1.5
2.0
2.5

Linear Nonlinear

XONN Ours

Figure 7.13. Breakdown of communication cost at linear and nonlinear layers for BC2 network.
Our protocol significantly reduces XONN’s GC-based linear layer cost, with a slight increase in
nonlinear layer cost

185

client and server. We compare the communication cost and runtime of our custom protocol with

XONN’s GC implementation in Figure 7.11. The horizontal axis in each figure presents the

network width. The left and right vertical axes respectively show the runtime (in seconds) and

communication (in Giga-Bytes). The figure shows that for all the benchmarks, the runtime and

communication of our method are significantly smaller than XONN. As seen, increasing the

network width results in higher communication and runtime, which is the cost we pay for higher

inference accuracy.

Figure 7.12 summarizes the performance boost achieved by our protocols, i.e., 2× to 12×

lower runtime and 5× to 12× lower communication compared to XONN. The enhancement is

more significant at higher widths, which shows the scalability for our method. To illustrate the

reason behind our protocol’s better performance, we focus our attention to the BC2 network at

width 2.5, and show the breakdown of its communication cost in Figure 7.13. For the XONN

protocol, most of the cost is from linear operations, which we reduce from 2.16GB to 0.15GB.

In nonlinear layers, our cost is slightly more that XONN’s, i.e., 0.16GB versus 0.09GB, which

is due to the extra cost of conversion between AS and GC. Overall, the total communication is

reduced from 2.25GB to 0.31GB compared to XONN.

Runtime

A
cc

ur
ac

y
(%

)

70

75

80

85

90

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ours XONN CryptFlow2 Delphi SafeNet AutoPrivacy

Figure 7.14. Accuracy and runtime of our oblivious BNN inference, comparedwith contemporary
research with same server-client scenario (two-party HbC). XONN [3] evaluates BNNs, whereas
Cryptflow2 [5], Delphi [1], SafeNet [2], and AutoPrivacy [4] evaluate non-binary models.

Comparison to Non-binary Models. Among the architectures presented in Table 7.10,

186

width

R
un

tim
e

(s
)

1

5

50

500

1.0 1.5 2.0 2.5 3.0 3.5 4.0

BC1 BC2 BC3 BC4

Figure 7.15. Runtime in WAN setting with ∼ 20MBps bandwidth and ∼ 50 ms network delay

BC1 has been commonly evaluated in contemporary oblivious inference research. In Figure 7.14

we compare the performance of our method to the best-performing earlier work on this benchmark.

The vertical and horizontal axes in the figure represent test accuracy and runtime, hence, points

to the top-left corner are more desirable. Our method achieves a better accuracy/runtime tradeoff

than all contemporary work while providing flexibility. Compared to Cryptflow2 (the most recent

oblivious inference framework at the time of this paper), our method achieves 3× faster inference

at the same accuracy.

Evaluation in Wide Area Network (WAN). So far we reported our runtimes for the

setting where client and server are connected via LAN, which is the most common assumption

among prior work. We now extend our evaluation to the WAN setting, where the bandwidth

is ∼ 20MBps and the delay is ∼ 50ms. The aforesaid bandwidth and delay correspond to the

connection speed between two AWS instances located in “US-West-LA-1a” and “US-East-

2a”. Runtimes are reported in Figure 7.15, showing varying inference time from 13 to 367

seconds depending on architecture and width. The results show the great potential of BNNs for

commercial use. Indeed, the delay introduced by oblivious inference might not be tolerable in

many applications that require real-time response, e.g., Amazon Alexa. However, there exist

many applications where guaranteeing privacy is much more crucial than runtime, and several

seconds or even minutes of delay can be tolerated. We evaluate two such applications in the

187

following section.

7.9 Summary

In this chapter, we presented oblivious DNN and BNN inference frameworks that

outperform state-of-the-art both in accuracy and efficiency. Through a unique combination of

complimentary optimizations in ML and crypto domains, this effort brings us one step closer

to real life deployment of AI in the privacy-preserving setting. The enhanced performance of

this work roots in three innovations, namely, ciphertext-aware quantization, enhanced data reuse,

and automated parameter configuration. Our contributions in the plaintext are accompanied by

efficient custom cryptographic protocols. We performed rigorous empirical analysis on every step

of our optimization process to demonstrate their effect on reducing the secure communication

and oblivious inference runtime. Our evaluations on practical DNN benchmarks showed an

end-to-end runtime speedup of 3×– 7× over the best prior work. Furthermore, our evaluations

on practical BNN benchmarks showed an end-to-end runtime speedup of 2× to 12× over the

state-of-the-art in oblivious BNN inference.

Acknowledgement. This chapter, in part, has been accepted to (i) ACM Conference on

Computer and Communications Security as: Siam U Hussain, Mojan Javaheripi, Mohammad

Samragh, and Farinaz Koushanfar. “COINN: Crypto/ML Codesign for Oblivious Inference

via Neural Networks”, and (ii) 2021 Conference on Computer Vision and Pattern Recognition

(CVPR) as: Mohammad Samragh, Siam U Hussain, Xinqiao Zhang, and Farinaz Koushanfar,

“On the Application of Binary Neural Networks in Oblivious Inference”. The dissertation author

was the primary investigator of both papers.

188

Chapter 8

Conclusion and Open Challenges

This dissertation takes us one step closer to practical adoption of provable privacy

primitives through algorithmic enhancement, abstraction, acceleration through specialized

hardware platforms, and application-specific custom protocols. The highlights of this dissertation

include the first and currently the only framework supporting scalable execution of Yao’s

GC protocol in both honest-but-curious and malicious security models, the fastest hardware

accelerator for the GC protocol, and the fastest oblivious DNN inference engine. We conclude

this dissertation by outlining a couple of possible future directions.

Automated Mixed Protocol Compilation. Over the last two decades, diligent efforts by

the researchers have resulted in a diverse set of privacy-preserving primitives. These primitives

differ in capabilities, performance, and applicability in different scenarios. There is no single

primitive that provide the best performance in all possible scenarios and operations. This

dissertation contributes to the effort of improving scalability and efficiency of Multi-Party

Computation (MPC) protocols, especially GC and Arithmetic Sharing (AS) protocols. In parallel

to these, the field of Homomorphic Encryption (HE) has seen tremendous growth in speed and

capabilities. At present, researchers overwhelmingly adopt a mixed protocol system where the

most suitable primitives are employed for different parts of the computation. However, in these

works, the combinations of these protocols are chosen manually, which requires a thorough

understanding of all the available primitives. Even then, there remains the possibility that there

189

exists a better combination. An exciting research problem in this domain is to devise an algorithm

that will accept a function as input and automatically compile it to an optimized mixed protocol

system. An added complexity to this problem is that the optimal combination of the primitives

also depends on the computation platform and communication channel held by the relevant parties

besides the given function. Finally, since privacy-preserving computation is a fast-evolving field,

one crucial property of the algorithm is flexibility and modularity to allow adaptation to the

advancements in the field.

Privacy-Preserving Machine Learning (ML) Training. While our work presented in

Chapter 7 provides the fastest oblivious ML inference, efficiently training large models while

maintaining privacy of the training data still remains a challenge. Current efforts of running the

entire training through MPC protocols require several hundred hours to train small to moderate

models [190]. Methods based on Federated Learning (FL) have been proposed where the

training data is protected through cryptographic methods while the trained weight parameters are

protected through Differential Privacy (DP) [219, 220]. The FL methods have presented the best

combination of accuracy and efficiency till now, albeit on small-scale models. Moving forward

the challenge is to improve upon the scalability of these methods to be able to train and update

large models with acceptable speed.

Hybrid Accelerator for Privacy-Preserving Computation. In this dissertation, we

presented the fastest hardware accelerator for the GC protocol. In parallel, there has been a

substantial research effort in accelerating HE through custom hardware platforms. One missing

piece in this domain is perhaps specialized hardware for Oblivious Transfer (OT) which forms

the basis of a large variety of MPC protocols. An exciting candidate for hardware acceleration

is the Silent OT [221, 222] protocol introduced recently. The primary bottleneck of Silent

OT is computation as opposed to communication in the previous variants of OT extension.

Furthermore, to enable fast execution of mixed protocol systems, we need to combine these

individual accelerators into a unified hybrid one. There are two major motivations of a hybrid

190

accelerator. First, in a mixed protocol system with accelerators located in different hardware,

switching between protocols will incur additional overhead which can be avoided with a unified

accelerator. Second, combining different security primitives opens the possibility of shared

resources thereby optimizing the overall resource usage. Besides obvious candidates for resource

sharing like BRAMs or DSPs, there are possibly certain computations that are common among

the different primitives.

191

Appendix A

Command Line Options and Available
Functions in TinyGarble2

Listing 2 shows the command line options to access the TinyGarble2 GC back-end and

Listing 3 shows the available functions in the TinyGarble2 program interface.

Listing 2. Command line options to access TinyGarble2 GC back-end

./SYGC
-h [--help] produce help message
-k [--party] arg (=1) party id: 1: Alice, 2: Bob
-n [--netlist] arg (=sum_8bit.bin) netlist file address
-p [--port] arg (=1234) socket port
-s [--server_ip] arg (=127.0.0.1) server's IP
-i [--input] arg (=0) hexadecimal input (little endian)
-j [--init] arg (=0) hexadecimal init (little endian)
-c [--cycles] arg (=1) number of cycles to run
-r [--repeat] arg (=1) number of times to repeat the run
-m [--output_mode] arg (=0) 0: reveal output at every cycle,

1: reveal output at last cycle
2: transfer output at every cycle,
3: transfer output last cycle

-f [--file] arg netlist, input, init, cycles, repeat,
output_mode are read from this file

--sh honest-but-curious model

Listing 3. Available functions in the TinyGarble2 program interface

/* '_x' suffix indicates secret variable*/

gc_int(uint8_t owner, uint8_t bit_width, int64_t a)

/*create secret variable. owner = ALICE/BOB/NONE.*/

192

gc_int_array(uint8_t owner, uint8_t bit_width, auto A, uint8_t len0, ...)

/*create secret array (up to 4D). owner = ALICE/BOB/NONE.*/

reveal(gc_int a_x, uint8_t bit_width, bool is_signed = true)

/*reveal the secret value of an integer*/

reveal_array(auto& A, auto A_x, uint8_t bit_width, , ...)

/*reveal the secret value of an integer array (up to 4D).*/

sign_extend(gc_int& y_x, gc_int a_x, uint8_t bit_width_target,

uint8_t bit_width)

/*sign extend a_x and store in y_x*/

assign(gc_int& y_x, int64_t a, uint8_t bit_width)

/*y_x = a, a is known to both parties*/

assign(gc_int& y_x, gc_int a_x, uint8_t bit_width)

/*y_x = a_x*/

assign_array(auto& Y_x, auto A, uint8_t bit_width, uint8_t len0,...)

/*assign array (upto 4D), A can be both secret or public.*/

add(gc_int& y_x, gc_int a_x, gc_int b_x, uint8_t bit_width_a,

uint8_t bit_width_b)

/*y_x = a_x + b_x*/

sub(gc_int& y_x, gc_int a_x, gc_int b_x, uint8_t bit_width_a,

uint8_t bit_width_b)

/*y_x = a_x - b_x*/

neg(gc_int& y_x, gc_int a_x, uint8_t bit_width)

/*y_x = -a_x*/

mult(gc_int& y_x, gc_int a_x, gc_int b_x, uint8_t bit_width_y,

uint8_t bit_width_a, uint8_t bit_width_b)

/*y_x = a_x * b_x*/

mat_mult(uint8_t row_A, uint8_t inner, uint8_t col_B, auto &C_x, auto &A_x,

auto &B_x, uint8_t bit_width_A, uint8_t bit_width_B,

uint8_t bit_width_C, uint8_t bit_width_MAC)

/*C_x = A_x * B_x*/

lt(gc_int& y_x, gc_int a_x, gc_int b_x, uint8_t bit_width_a,

uint8_t bit_width_b)

193

/*y_x = a_x < b_x*/

ifelse(gc_int& y_x, gc_int c_x, gc_int a_x, gc_int b_x,

uint8_t bit_width_a, uint8_t bit_width_b)

/*y_x = c_x? a_x : b_x*/

max(gc_int& y_x, gc_int a_x, gc_int b_x, uint8_t bit_width_a,

uint8_t bit_width_b)

/*y_x = max(a_x, b_x)*/

min(gc_int& y_x, gc_int a_x, gc_int b_x, uint8_t bit_width_a,

uint8_t bit_width_b)

/*y_x = min(a_x, b_x)*/

left_shift(gc_int& a_x, uint8_t shift, uint8_t bit_width)

/*a_x << shift*/

right_shift(gc_int& a_x, uint8_t shift, uint8_t bit_width)

/*a_x >> shift*/

194

Appendix B

Architecture of FASE

Figure B.1 shows an enlarged architecture of FASE (previously shown in Figure 4.2 at Section 4.3).

195

ga
rb

le
d

ta
bl

es

ad
dr

es
s

K
ey

 G
en

er
at

or

In
pu

t K
ey

s

K
ey

 R
eg

si
te

r

G
ar

bl
ed

 T
ab

le
s

O
ut

pu
t K

ey
s

Distributor

wr_en

address

gate id

gate info

select

ke
ys

in
pu

t
ke

ys

in
pu

t
ke

ys

ga
rb

le
d

ta
bl

es

ou
tp

ut

ke
ys

address

wr_en

select

status

wr_en

address

status

state

ta
g

in
de

x

da
ta

N
et

lis
t

M
as

ks

Collector

G
ar

bl
in

g
En

gi
ne

Ke
y

Ex
pa

ns
io

n

AE
S

AE
S

AE
S

AE
S

FI
FO

FI
FO

ou
tp

ut

ke
ys

To the host CPU

FS
M

XO
R

Fi
gu

re
B.
1.

En
la
rg
ed

A
rc
hi
te
ct
ur
e
of

FA
SE

196

Bibliography

[1] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “DELPHI: A
cryptographic inference service for neural networks,” in 29th ${$USENIX$}$ Security
Symposium (${$USENIX$}$ Security 20), 2020.

[2] Q. Lou, Y. Shen, H. Jin, and L. Jiang, “SAFENet: A Secure, Accurate and Fast Neural
Network Inference,” in International Conference on Learning Representations, 2021.

[3] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and F. Koushanfar, “XONN:
XNOR-based Oblivious Deep Neural Network Inference.” in USENIX Security, 2019.

[4] Q. Lou, B. Song, and L. Jiang, “AutoPrivacy: Automated Layer-wise Parameter Selection
for Secure Neural Network Inference,” in Advances in Neural Information Processing
Systems, 2020.

[5] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma,
“CrypTFlow2: Practical 2-party secure inference,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020, pp. 325–342.

[6] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar, “Tiny-
Garble: Highly compressed and scalable sequential garbled circuits,” in IEEE S&P,
2015.

[7] A. Yao, “How to generate and exchange secrets,” in Foundations of Computer Science,
1986., 27th Annual Symposium on, 1986.

[8] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure protocols,” in
Symposium on Theory of computing. ACM, 1990.

[9] S. M. Riazi, M. Javaheripi, S. U. Hussain, and F. Koushanfar, “MPCircuits: Optimized
Circuit Generation for Secure Multi-Party Computation,” in Hardware Oriented Security
and Trust (HOST). IEEE, 2019.

[10] SiamUHussain, B. Li, F. Koushanfar, and R. Cammarota, “TinyGarble2: Smart, Efficient,
and Scalable Yao’s Garble Circuit,” in ACM Workshop on Privacy-Preserving Machine
Learning in Practice(PPMLP), 2020.

197

[11] S. U. Hussain and F. Koushanfar, “FASE: FPGA Acceleration of Secure Function
Evaluation,” in Field-Programmable Custom Computing Machines (FCCM). IEEE,
2019.

[12] S. U. Hussain, B. D. Rouhani, M. Ghasemzadeh, and F. Koushanfar, “MAXelerator:
FPGA accelerator for privacy preserving multiply-accumulate (MAC) on cloud servers,”
in Design Automation Conference (DAC). IEEE/ACM, 2018.

[13] M. Naor and B. Pinkas, “Computationally secure oblivious transfer,” Journal of Cryptology,
vol. 18, no. 1, pp. 1–35, 2005.

[14] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara, “Private collaborative
forecasting and benchmarking,” in Proceedings of the 2004 ACM workshop on Privacy in
the electronic society, 2004, pp. 103–114.

[15] X. Fang, S. Ioannidis, and M. Leeser, “Secure Function Evaluation Using an FPGA
Overlay Architecture.” in FPGA, 2017.

[16] S. U. Hussain and F. Koushanfar, “Privacy preserving localization for smart automotive
systems,” in Proceedings of the 53rd Annual Design Automation Conference, 2016, pp.
1–6.

[17] ——, “P3: Privacy preserving positioning for smart automotive systems,” ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), vol. 23, no. 6, pp. 1–19,
2018.

[18] S. U. Hussain, M. S. Riazi, and F. Koushanfar, “SHAIP: Secure Hamming Distance for
Authentication of Intrinsic PUFs,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 23, no. 6, pp. 1–20, 2018.

[19] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware Security: Threat Models,
Metrics, and Remedies,” Proceedings of the IEEE, 2014, to appear.

[20] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and F. Koushanfar, “Compacting Privacy-
Preserving k-Nearest Neighbor Search using Logic Synthesis,” in DAC. IEEE, 2015.

[21] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient garbling from a
fixed-key blockcipher,” in S&P. IEEE, 2013.

[22] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and efficient maliciously
secure two-party computation,” in CCS. ACM, 2017.

[23] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending Oblivious Transfers Efficiently.”
in Crypto, vol. 2729. Springer, 2003.

[24] D. Beaver, “Precomputing oblivious transfer,” in Annual International Cryptology Confer-
ence. Springer, 1995, pp. 97–109.

198

[25] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient oblivious transfer
and extensions for faster secure computation,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, 2013, pp. 535–548.

[26] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR gates and applica-
tions,” in International Colloquium on Automata, Languages, and Programming, Springer.
Springer, 2008.

[27] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and mechanism design,”
in Conference on Electronic Commerce, 1999.

[28] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,” in Theory and
Applications of Cryptographic Techniques. Springer, 2015, pp. 220–250.

[29] B. Kreuter, A. Shelat, B. Mood, and K. Butler, “PCF: A Portable Circuit Format for
Scalable Two-Party Secure Computation.” in USENIX Security, 2013.

[30] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang, “Optimizing authenticated garbling for
faster secure two-party computation,” in Annual International Cryptology Conference.
Springer, 2018, pp. 365–391.

[31] A. Ben-Efraim, Y. Lindell, and E. Omri, “Optimizing semi-honest secure multiparty
computation for the Internet,” in CCS. ACM, 2016.

[32] D. Demmler, T. Schneider, and M. Zohner, “ABY-A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation.” in NDSS. The Internet Society, 2015.

[33] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor, “Frigate: A validated, extensible,
and efficient compiler and interpreter for secure computation,” in EuroS&P). IEEE,
2016, pp. 112–127.

[34] N. Büscher, M. Franz, A. Holzer, H. Veith, and S. Katzenbeisser, “On compiling Boolean
circuits optimized for secure multi-party computation,” Formal Methods in System Design,
vol. 51, no. 2, pp. 308–331, 2017.

[35] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient MultiParty computation
toolkit,” https://github.com/emp-toolkit, 2016.

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, 1998.

[37] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, 2017.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[39] S. Zahur andD. Evans, “Obliv-C: ALanguage for Extensible Data-Oblivious Computation.”
IACR Cryptology ePrint Archive, vol. 2015, p. 1153, 2015.

199

https://github.com/emp-toolkit

[40] J. Bringer, H. Chabanne, and A. Patey, “Shade: Secure hamming distance computation
from oblivious transfer,” in International Conference on Financial Cryptography and
Data Security. Springer, 2013.

[41] M. S. Kiraz, Z. A. Genç, and S. Kardas, “Security and efficiency analysis of the Hamming
distance computation protocol based on oblivious transfer,” Security and Communication
Networks, vol. 8, no. 18, 2015.

[42] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit database,” AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist, vol. 2, p. 18, 2010.

[43] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay – A Secure Two-Party Computation
System,” in USENIX Security. ACM, 2004.

[44] A. Rastogi, M. A. Hammer, and M. Hicks, “WYSTERIA: A programming language for
generic, mixed-mode multiparty computations,” in S&P. IEEE, 2014.

[45] J. Boyar and R. Peralta, “Concrete Multiplicative Complexity of Symmetric Functions,” in
MFCS. Springer, 2006, pp. 179–189.

[46] B. I. C. R. Group, “Semi-Honest-BMR,” https://github.com/cryptobiu/Semi-Honest-BMR,
2016.

[47] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, and S. Zeitouni,
“Automated synthesis of optimized circuits for secure computation,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 1504–1517.

[48] G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni, and M. Zohner,
“Pushing the communication barrier in secure computation using lookup tables,” in NDSS,
2017.

[49] P. Plonski, “keras2cpp,” https://github.com/pplonski/keras2cpp, 2020.

[50] N. Mariella, “From Keras to C,” https://github.com/aljabr0/from-keras-to-c, 2019.

[51] P. Bogetoft, I. Damgård, T. P. Jakobsen, K. Nielsen, J. Pagter, and T. Toft, “A practical
implementation of secure auctions based on multiparty integer computation,” in Financial
Cryptography. Springer, 2006.

[52] Z. Huang, “Privacy Preserving Auction.” 2016.

[53] M. Larson, C. Hu, R. Li, W. Li, and X. Cheng, “Secure auctions without an auctioneer via
verifiable secret sharing,” in Proceedings of the 2015 Workshop on Privacy-Aware Mobile
Computing. ACM, 2015, pp. 1–6.

[54] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward a secure voting system,” in
Security and Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 2008, pp. 354–368.

200

https://github.com/cryptobiu/Semi-Honest-BMR
https://github.com/pplonski/keras2cpp
https://github.com/aljabr0/from-keras-to-c

[55] A. Fujioka, T. Okamoto, and K. Ohta, “A practical secret voting scheme for large scale
elections,” in International Workshop on the Theory and Application of Cryptographic
Techniques. Springer, 1992, pp. 244–251.

[56] M. Franz, A. Holzer, S. Katzenbeisser, C. Schallhart, and H. Veith, “CBMC-GC: An ANSI-
C Compiler for Secure Two-Party Computations,” in Compiler Construction. Springer,
2014.

[57] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A programming framework
for secure computation,” in S&P. IEEE, 2015.

[58] S. U. Hussain, B. D. Rouhani, M. Ghasemzadeh, and F. Koushanfar, “MAXelerator: FPGA
Accelerator for Privacy Preserving Multiply-Accumulate (MAC) on Cloud Servers,” in
DAC. ACM, 2018.

[59] E. M. Songhori, S. Zeitouni, G. Dessouky, T. Schneider, A.-R. Sadeghi, and F. Koushanfar,
“GarbledCPU: a MIPS processor for secure computation in hardware,” in DAC. ACM,
2016.

[60] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh, “Privacy-
preserving matrix factorization,” in Conference on Computer & communications security.
ACM, 2013.

[61] S. Manuel, “Classification and generation of disturbance vectors for collision attacks
against SHA-1,” Designs, Codes and Cryptography, vol. 59, no. 1-3, pp. 247–263, 2011.

[62] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full SHA-1,” in Annual
international cryptology conference. Springer, 2005, pp. 17–36.

[63] A. Satoh, “Hardware architecture and cost estimates for breaking SHA-1,” in International
Conference on Information Security. Springer, 2005, pp. 259–273.

[64] N. F. Pub, “197: Advanced encryption standard (AES),” Federal information processing
standards publication, vol. 197, no. 441, 2001.

[65] S. Pu, P. Duan, and J.-C. Liu, “Fastplay-A Parallelization Model and Implementation of
SMC on CUDA based GPU Cluster Architecture.” IACR Cryptology ePrint Archive, 2011.

[66] N. Husted, S. Myers, A. Shelat, and P. Grubbs, “GPU and CPU parallelization of honest-
but-curious secure two-party computation,” in Computer Security Applications Conference.
ACM, 2013.

[67] K. Wold and C. H. Tan, “Analysis and enhancement of random number generator in FPGA
based on oscillator rings,” International Journal of Reconfigurable Computing, vol. 2009,
2009.

[68] M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer, 2016.

201

[69] K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Scheduling parallel real-time tasks on
multi-core processors,” in 2010 31st IEEE Real-Time Systems Symposium. IEEE, 2010,
pp. 259–268.

[70] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algorithms
and applications. Springer Science & Business Media, 2011, vol. 24.

[71] Y.-K. Kwok and I. Ahmad, “Benchmarking and comparison of the task graph scheduling
algorithms,” Journal of Parallel and Distributed Computing, vol. 59, no. 3, pp. 381–422,
1999.

[72] W. Bożejko, A new class of parallel scheduling algorithms. Oficyna wydawn. Politechniki
Wrosłwskiej, 2010.

[73] J. R. Goodman and W.-C. Hsu, “Code scheduling and register allocation in large basic
blocks,” in ACM International Conference on Supercomputing 25th Anniversary Volume.
ACM, 2014, pp. 88–98.

[74] A. Benoit, Ü. V. Çatalyürek, Y. Robert, and E. Saule, “A survey of pipelined workflow
scheduling: Models and algorithms,” ACM Computing Surveys (CSUR), vol. 45, no. 4,
p. 50, 2013.

[75] J. P. Shen and M. H. Lipasti, Modern processor design: fundamentals of superscalar
processors. Waveland Press, 2013.

[76] N. Jones et al., “The learning machines,” Nature, vol. 505, no. 7482, 2014.

[77] J. Kirk, “IBM join forces to build a brain-like computer,” http://www.pcworld.com/article/
2051501/universities-join-ibm-in-cognitive-computing-researchproject.html, 2016.

[78] B. D. Rouhani, A. Mirhoseini, and F. Koushanfar, “Deep3: Leveraging three levels of
parallelism for efficient deep learning,” in DAC. ACM, 2017.

[79] X. Wang, S. D. Gordon, A. McIntosh, and J. Katz, “Secure computation of MIPS machine
code,” in ESORICS. Springer, 2016.

[80] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft, “Privacy-
preserving ridge regression on hundreds of millions of records,” in Symposium on S & P.
IEEE, 2013.

[81] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, “Generalized power method for
sparse principal component analysis,” Journal of Machine Learning Research, vol. 11, no.
Feb, 2010.

[82] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the Nystrom
method,” Trans. on pattern analysis and machine intelligence, 2004.

[83] L. Deng and D. Yu, “Deep learning: methods and applications,” Foundations and Trends
in Signal Processing, vol. 7, no. 3–4, 2014.

202

http://www.pcworld.com/article/2051501/universities-join-ibm-in-cognitive-computing-researchproject.html
http://www.pcworld.com/article/2051501/universities-join-ibm-in-cognitive-computing-researchproject.html

[84] G. Connor, L. R. Goldberg, and R. A. Korajczyk, Portfolio risk analysis. Princeton
University Press, 2010.

[85] H. Krcmar, R. Reussner, and B. Rumpe, Trusted cloud computing. Springer, 2014.

[86] XILLYBUS, “http://xillybus.com/,” 2017.

[87] J. Daemen and V. Rĳmen, “The Rĳndael Block Cipher,” 2013.

[88] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical test suite for
random and pseudorandom number generators for cryptographic applications,” NIST,
Tech. Rep. 800-22, 2001.

[89] Y. LeCun, C. Cortes, and C. Burges, “MNIST dataset,” http://yann.lecun.com/exdb/mnist/,
2017.

[90] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,
“CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and
Accuracy,” in International Conference on Machine Learning, 2016.

[91] “UCI Machine Learning Repository: ISOLET Data Set,” https://archive.ics.uci.edu/ml/
datasets/isolet, 2017.

[92] “UCI Machine Learning Repository: Daily and Sports Activities Data Set,” https:
//archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities, 2017.

[93] F. Kerschbaum, T. Schneider, and A. Schröpfer, “Automatic protocol selection in secure
two-party computations,” in International Conference on Applied Cryptography and
Network Security. Springer, 2014.

[94] X. S. Wang, Y. Huang, T. H. Chan, A. Shelat, and E. Shi, “SCORAM: oblivious RAM for
secure computation,” in CCS. ACM, 2014.

[95] J. A. Varela and N. Wehn, “Near Real-Time Risk Simulation of Complex Portfolios on
Heterogeneous Computing Systems with OpenCL,” in International Workshop on OpenCL.
ACM, 2017.

[96] J. Hubaux, S. Capkun, and J. Luo, “The security and privacy of smart vehicles,” in IEEE
S & P, 2004.

[97] “Automotive Security Best Practices - Intel,” 2015.

[98] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J. Freudiger, M. Raya, Z. Ma,
F. Kargl, A. Kung, and J. Hubaux, “Secure vehicular communication systems: design and
architecture,” in IEEE CM, 2008.

[99] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar, “Preserving user location privacy in
mobile data management infrastructures,” in Privacy Enhancing Technologies. Springer,
2006.

203

http://xillybus.com/
http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/datasets/isolet
https://archive.ics.uci.edu/ml/datasets/isolet
https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities

[100] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Preventing location-based identity
inference in anonymous spatial queries,” in IEEE ITKDE, 2007.

[101] M. Gruteser and D. Grunwald, “Anonymous usage of location-based services through
spatial and temporal cloaking,” in ICMSAS. ACM, 2003.

[102] A. Khoshgozaran and C. Shahabi, “Blind evaluation of nearest neighbor queries using
space transformation to preserve location privacy,” in ASTD. Springer, 2007.

[103] G. Zhong, I. Goldberg, and U. Hengartner, “Louis, lester and pierre: Three protocols for
location privacy,” in Privacy Enhancing Technologies. Springer, 2007.

[104] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K. Tan, “Private queries in
location based services: anonymizers are not necessary,” in SIGMOD ICMD. ACM,
2008.

[105] M. Atallah and W. Du, “Secure multi-party computational geometry,” in Algorithms and
Data Structures. Springer, 2001.

[106] Y. Huang and R. Vishwanathan, “Privacy preserving group nearest neighbour queries in
location-based services using cryptographic techniques,” in IEEE GLOBECOM, 2010.

[107] Y. Shang, Z. Liu, J. Wang, and X. Xiao, “Triangle and centroid localization algorithm
based on distance compensation,” in ICISCE. IET, 2012.

[108] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann, “Weighted centroid
localization in zigbee-based sensor networks,” in IEEE WISP, 2007.

[109] J. Zhao, Q. Zhao, Z. Li, and Y. Liu, “An improved Weighted Centroid Localization
algorithm based on difference of estimated distances for Wireless Sensor Networks,” in
Telecommunication Systems. Springer, 2013.

[110] J. Zheng, C. Wu, H. Chu, and P. Ji, “Localization algorithm based on RSSI and distance
geometry constrain for wireless sensor network,” in IEEE ICECE, 2010.

[111] P. Bahl and V. Padmanabhan, “RADAR: An in-building RF-based user location and
tracking system,” in IEEE INFOCOM, 2000.

[112] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu, “Tools for privacy preserving
distributed data mining,” in SIGKDD Explorations Newsletter, 2002.

[113] A. Ranganathan, N. O. Tippenhauer, B. Škorić, D. Singelée, and S. Čapkun, “Design
and implementation of a terrorist fraud resilient distance bounding system,” in European
Symposium on Research in Computer Security. Springer, 2012, pp. 415–432.

[114] K. B. Rasmussen and S. Capkun, “Realization of RF Distance Bounding.” in USENIX
Security Symposium, 2010, pp. 389–402.

204

[115] U. D. of Defense, “Global positioning system standard positioning service performance
standard,” https://www.gps.gov/technical/ps/2008-SPS-performance-standard.pdf, 2008.

[116] L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin, “Locating tiny sensors in time and
space: A case study,” in DAC. IEEE, 2002.

[117] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy of a context-
aware application,” in Wireless Networks. Springer-, 2002.

[118] A. Bensky,Wireless positioning technologies and applications. Artech House, 2007.

[119] P. Rong and M. L. Sichitiu, “Angle of arrival localization for wireless sensor networks,”
in IEEE Communications Society on Sensor and Ad Hoc Communications and Networks
(SECON), vol. 1. IEEE, 2006, pp. 374–382.

[120] P. Kułakowski, J. Vales-Alonso, E. Egea-López, W. Ludwin, and J. García-Haro, “Angle-
of-arrival localization based on antenna arrays for wireless sensor networks,” in Computers
& Electrical Engineering, vol. 36, no. 6. Elsevier, 2010, pp. 1181–1186.

[121] “Design Compiler,” http://www.synopsys.com/Tools/Implementation/RTLSynthesis/
DesignCompiler.

[122] B. I. C. R. Group, “libscapi,” https://github.com/cryptobiu/libscapi, 2017.

[123] “Intel Atom Processor E3845,” ark.intel.com/products/78475, 2015.

[124] “IEEE 1609 - Family of Standards forWireless Access inVehicular Environments (WAVE),”
standards.its.dot.gov/factsheets/factsheet/80, 2009.

[125] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, and P. Tuyls, “Memory leakage-resilient
encryption based on physically unclonable functions,” in Towards Hardware-Intrinsic
Security. Springer, 2010.

[126] S. P. Skorobogatov, “Semi-invasive attacks: a new approach to hardware security analysis,”
University of Cambridge, Tech. Rep., 2005.

[127] L. Kulseng, Z. Yu, Y.Wei, and Y. Guan, “Lightweight mutual authentication and ownership
transfer for RFID systems,” in INFOCOM. IEEE, 2010.

[128] S. Katzenbeisser, Ü. Kocabaş, V. Van Der Leest, A.-R. Sadeghi, G.-J. Schrĳen, and
C. Wachsmann, “Recyclable PUFs: logically reconfigurable PUFs,” Journal of Crypto-
graphic Engineering, vol. 1, no. 3, p. 177, 2011.

[129] A.-R. Sadeghi, I. Visconti, and C. Wachsmann, “Enhancing RFID security and privacy
by physically unclonable functions,” in Towards Hardware-Intrinsic Security. Springer,
2010.

205

https://www.gps.gov/technical/ps/2008-SPS-performance-standard.pdf
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
https://github.com/cryptobiu/libscapi
ark.intel.com/products/78475
standards.its.dot.gov/factsheets/factsheet/80

[130] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas, “Slender PUF
protocol: A lightweight, robust, and secure authentication by substring matching,” in
Symposium on Security and Privacy Workshops. IEEE, 2012.

[131] D. Moriyama, S. Matsuo, and M. Yung, “PUF-Based RFID Authentication Secure and
Private under Complete Memory Leakage.” IACR Cryptology ePrint Archive, 2013.

[132] A. Aysu, E. Gulcan, D. Moriyama, P. Schaumont, and M. Yung, “End-to-end design of a
PUF-based privacy preserving authentication protocol,” in CHES. Springer, 2015.

[133] J. Guajardo, S. S. Kumar, G.-J. Schrĳen, and P. Tuyls, “FPGA intrinsic PUFs and their use
for IP protection,” in CHES. Springer, 2007.

[134] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable Functions and
applications: A tutorial,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1126–1141, 2014.

[135] W. Xiong, A. Schaller, N. A. Anagnostopoulos, M. U. Saleem, S. Gabmeyer, S. Katzen-
beisser, and J. Szefer, “Run-time Accessible DRAM PUFs in Commodity Devices,” in
CHES. Springer, 2016.

[136] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R. Sadeghi, I. Verbauwhede,
and C. Wachsmann, “Reverse fuzzy extractors: Enabling lightweight mutual authentication
for PUF-enabled RFIDs,” in International Conference on Financial Cryptography and
Data Security. Springer, 2012.

[137] C. Herder, L. Ren, M. van Dĳk, M.-D. Yu, and S. Devadas, “Trapdoor computational
fuzzy extractors and stateless cryptographically-secure physical unclonable functions,”
IEEE Transactions on Dependable and Secure Computing, vol. 14, no. 1, 2017.

[138] A. Afshar, P. Mohassel, B. Pinkas, and B. Riva, “Non-interactive secure computation based
on cut-and-choose,” in Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2014.

[139] L. T. Brandão, “Secure two-party computation with reusable bit-commitments, via a
cut-and-choose with forge-and-lose technique,” in International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 2013.

[140] X.Wang, A. J. Malozemoff, and J. Katz, “Faster secure two-party computation in the single-
execution setting,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2017.

[141] P. Indyk and R. Motwani, “Approximate Nearest Neighbors: Towards Removing the Curse
of Dimensionality,” in STOC, Dallas, TX, 1998.

[142] P. Indyk and D.Woodruff, “Polylogarithmic private approximations and efficient matching,”
in Theory of Cryptography. Springer, 2006.

206

[143] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data,” in EUROCRYPT. Springer, 2004.

[144] U. Ruhrmair, S. Devadas, and F. Koushanfar, “Security based on Physical Unclonability
and Disorder,” Introduction to Hardware Security and Trust, 2011.

[145] R. Maes, V. Rozic, I. Verbauwhede, P. Koeberl, E. Van der Sluis, and V. van der Leest,
“Experimental evaluation of Physically Unclonable Functions in 65 nm CMOS,” in
ESSCIRC. IEEE, 2012.

[146] F. Kohnhäuser, A. Schaller, and S. Katzenbeisser, “PUF-based software protection for
low-end embedded devices,” in ICTTC. Springer, 2015.

[147] G.-J. Schrĳen and V. van der Leest, “Comparative analysis of SRAM memories used as
PUF primitives,” in DATE. EDA Consortium, 2012.

[148] C. Keller, F. Gurkaynak, H. Kaeslin, and N. Felber, “Dynamic memory-based physically
unclonable function for the generation of unique identifiers and true random numbers,” in
ISCAS. IEEE, 2014.

[149] S. Rosenblatt, S. Chellappa, A. Cestero, N. Robson, T. Kirihata, and S. S. Iyer, “A
self-authenticating chip architecture using an intrinsic fingerprint of embedded DRAM,”
Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2934–2943, 2013.

[150] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A survey on lightweight entity
authentication with strong PUFs,” Computing Surveys, 2015.

[151] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich, “Scifi-a system for secure face
identification,” in Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010.

[152] J. Bringer, H. Chabanne, and B. Kindarji, “Identification with encrypted biometric data,”
Security and Communication Networks, vol. 4, no. 5, 2011.

[153] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendĳk, and T. Toft, “Privacy-
preserving face recognition,” in International Symposium on Privacy Enhancing Tech-
nologies Symposium. Springer, 2009.

[154] M. S. Riazi, N. K. Dantu, L. V. Gattu, and F. Koushanfar, “GenMatch: Secure DNA
compatibility testing,” in 2016 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2016, pp. 248–253.

[155] A. Jarrous and B. Pinkas, “Secure hamming distance based computation and its appli-
cations,” in International Conference on Applied Cryptography and Network Security.
Springer, 2009.

[156] A. Z. Broder, “On the Resemblance and Containment of Documents,” in the Compression
and Complexity of Sequences, Positano, Italy, 1997.

207

[157] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-Wise Independent
Permutations,” in STOC, Dallas, TX, 1998.

[158] ——, “Min-wise independent permutations,” Journal of Computer and System Sciences,
vol. 60, no. 3, pp. 630–659, 2000.

[159] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” in STOC, 1977.

[160] G. P. G. P. Wadsworth and J. G. Bryan, Introduction to probability and random variables.
McGraw-Hill, New York, 1960.

[161] S. J. Haberman, “Discrete Multivariate Analysis: Theory and Practice,” 1976.

[162] O. Goldreich, Foundations of cryptography: volume 2, basic applications. Cambridge
university press, 2009.

[163] R. Canetti, “Security and composition of multiparty cryptographic protocols,” Journal of
Cryptology, vol. 13, no. 1, 2000.

[164] C. Wolf, “Yosys Open SYnthesis Suite,” http://www.clifford.at/yosys/.

[165] A. Shrivastava, “Optimal Densification for Fast and Accurate Minwise Hashing,” arXiv
preprint arXiv:1703.04664, 2017.

[166] A. Shrivastava and P. Li, “Densifying One Permutation Hashing via Rotation for Fast Near
Neighbor Search.” in ICML, 2014.

[167] M. S. Riazi, B. Chen, A. Shrivastava, D. Wallach, and F. Koushanfar, “Sub-linear
Privacy-preserving Search with Untrusted Server and Semi-honest Parties,” arXiv preprint
arXiv:1612.01835, 2016.

[168] V. Kolesnikov, A. Sadeghi, and T. Schneider, “Improved Garbled Circuit Building Blocks
and Applications to Auctions and Computing Minima,” in CANS. Springer, 2009.

[169] M. Shaneck, Y. Kim, and V. Kumar, “Privacy Preserving Nearest Neighbor Search,” in
ICDMW. Springer, 2006.

[170] Y. Qi and M. J. Atallah, “Efficient Privacy-Preserving k-Nearest Neighbor Search,” in
ICDCS. IEEE, 2008, pp. 311–319.

[171] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” Journal of cryptology, vol. 15,
no. 3, 2002.

[172] ——, “A Proof of Yao’s Protocol for Secure Two-Party Computation,” Journal of
Cryptology, 2009.

[173] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled circuits better than
custom protocols?” in NDSS, 2012.

208

http://www.clifford.at/yosys/

[174] A. Waksman, “A permutation network,” Journal of the ACM (JACM), vol. 15, no. 1, pp.
159–163, 1968.

[175] E. De Cristofaro and G. Tsudik, “Practical Private Set Intersection Protocols with Linear
Complexity.” in Financial Cryptography, vol. 10. Springer, 2010, pp. 143–159.

[176] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private Set Intersection
Using Permutation-based Hashing.” in USENIX Security Symposium, 2015, pp. 515–530.

[177] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu, “Practical Multi-party
Private Set Intersection from Symmetric-Key Techniques,” in CCS. ACM, 2017.

[178] V. Kepuska and G. Bohouta, “Next-generation of virtual personal assistants (microsoft
cortana, apple siri, amazon alexa and google home),” in 2018 IEEE 8th Annual Computing
and Communication Workshop and Conference (CCWC). IEEE, 2018, pp. 99–103.

[179] I. Masi, Y. Wu, T. Hassner, and P. Natarajan, “Deep face recognition: A survey,” in 2018
31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI). IEEE, 2018,
pp. 471–478.

[180] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,
G. Corrado, S. Thrun, and J. Dean, “A guide to deep learning in healthcare,” Nature
medicine, vol. 25, no. 1, p. 24, 2019.

[181] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,
“Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol.
542, no. 7639, p. 115, 2017.

[182] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the sequence
specificities of DNA-and RNA-binding proteins by deep learning,” Nature biotechnology,
vol. 33, no. 8, p. 831, 2015.

[183] A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. Liu, X. Liu, J. Marcus,
M. Sun et al., “Scalable and accurate deep learning with electronic health records,” npj
Digital Medicine, vol. 1, no. 1, p. 18, 2018.

[184] A. Alameen and A. Gupta, “Optimization driven deep learning approach for health
monitoring and risk assessment in wireless body sensor networks,” International Journal
of Business Data Communications and Networking (ĲBDCN), vol. 16, no. 1, pp. 70–93,
2020.

[185] L. Xie and A. Yuille, “Genetic cnn,” arXiv preprint arXiv:1703.01513, 2017.

[186] Z. Ghodsi, A. Veldanda, B. Reagen, and S. Garg, “Cryptonas: Private inference on a relu
budget,” in Advances in Neural Information Processing Systems, 2020.

[187] J. Liu, M. Juuti, Y. Lu, andN. Asokan, “Oblivious neural network predictions viaMiniONN
transformations,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 619–631.

209

[188] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low latency frame-
work for secure neural network inference,” in 27th ${$USENIX$}$ Security Symposium
(${$USENIX$}$ Security 18), 2018, pp. 1651–1669.

[189] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Improved primitives for MPC
over mixed arithmetic-binary circuits,” in Annual International Cryptology Conference.
Springer, 2020, pp. 823–852.

[190] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón, “QUOTIENT: two-party
secure neural network training and prediction,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp. 1231–1247.

[191] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks: Training deep neural networks with weights and activations constrained to+ 1
or-1,” arXiv preprint arXiv:1602.02830, 2016.

[192] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the
forty-first annual ACM symposium on Theory of computing, 2009, pp. 169–178.

[193] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural networks over
encrypted data,” arXiv preprint arXiv:1711.05189, 2017.

[194] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic evaluation of deep
discretized neural networks,” in Annual International Cryptology Conference. Springer,
2018, pp. 483–512.

[195] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster cryptonets:
Leveraging sparsity for real-world encrypted inference,” arXiv preprint arXiv:1811.09953,
2018.

[196] A. Sanyal, M. Kusner, A. Gascon, and V. Kanade, “TAPAS: Tricks to accelerate (encrypted)
prediction as a service,” in International Conference on Machine Learning. PMLR,
2018, pp. 4490–4499.

[197] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scalable Provably-Secure
Deep Learning,” arXiv preprint arXiv:1705.08963, 2017.

[198] M. Ball, B. Carmer, T. Malkin, M. Rosulek, and N. Schimanski, “Garbled Neural Networks
are Practical.” IACR Cryptol. ePrint Arch., vol. 2019, p. 338, 2019.

[199] S. Bian, M. Hiromoto, and T. Sato, “DArL: Dynamic parameter adjustment for LWE-based
secure inference,” in 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2019, pp. 1739–1744.

[200] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine learning
models via prediction apis,” in 25th ${$USENIX$}$ Security Symposium (${$USENIX$}$
Security 16), 2016, pp. 601–618.

210

[201] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence
information and basic countermeasures,” in ACM CCS, 2015.

[202] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against
machine learning models,” in 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
2017, pp. 3–18.

[203] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in SIGSAC Conference
on Computer and Communications Security. ACM, 2015.

[204] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang,
“Deep Learning with Differential Privacy,” arXiv preprint arXiv:1607.00133, 2016.

[205] Z. Yang, B. Shao, B. Xuan, E.-C. Chang, and F. Zhang, “Defending model inver-
sion and membership inference attacks via prediction purification,” arXiv preprint
arXiv:2005.03915, 2020.

[206] Q. Chen, C. Xiang, M. Xue, B. Li, N. Borisov, D. Kaarfar, and H. Zhu, “Differentially
private data generative models,” arXiv preprint arXiv:1812.02274, 2018.

[207] M. Samragh, M. Ghasemzadeh, and F. Koushanfar, “Customizing neural networks for
efficient fpga implementation,” in 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 2017, pp. 85–92.

[208] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “Looknn: Neural network with
no multiplication,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE, 2017, pp. 1775–1780.

[209] S. U. Hussain, M. Javaheripi, M. Samragh, and F. Koushanfar, “COINN: Crypto/ML
Codesign for Oblivious Inference via Neural Networks,” in ACM Conference on Computer
and Communications Security (CCS), 2021.

[210] P. Rindal, “libOTe: an efficient, portable, and easy to use Oblivious Transfer Library,”
https://github.com/osu-crypto/libOTe.

[211] F. Tramer and D. Boneh, “Slalom: Fast, Verifiable and Private Execution of Neural
Networks in Trusted Hardware,” in International Conference on Learning Representations,
2019.

[212] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma, “Cryptflow:
Secure tensorflow inference,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 336–353.

[213] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks,” arXiv preprint
arXiv:1812.08928, 2018.

[214] L. Liu and J. Deng, “Dynamic deep neural networks: Optimizing accuracy-efficiency
trade-offs by selective execution,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

211

https://github.com/osu-crypto/libOTe

[215] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

[216] M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar, “GeneCAI: gene tic evolution for
acquiring c ompact AI,” in Proceedings of the 2020 Genetic and Evolutionary Computation
Conference, 2020, pp. 350–358.

[217] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar,
“Chameleon: A hybrid secure computation framework for machine learning applications,”
in Proceedings of the 2018 on Asia Conference on Computer and Communications Security,
2018, pp. 707–721.

[218] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi, “EzPC: programmable,
efficient, and scalable secure two-party computation for machine learning,” ePrint Report,
vol. 1109, 2017.

[219] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou, “A
hybrid approach to privacy-preserving federated learning,” in Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, 2019, pp. 1–11.

[220] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig, “Hybridalpha: An efficient
approach for privacy-preserving federated learning,” in Proceedings of the 12th ACM
Workshop on Artificial Intelligence and Security, 2019, pp. 13–23.

[221] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl, “Efficient
two-round OT extension and silent non-interactive secure computation,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019,
pp. 291–308.

[222] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl, “Efficient pseudorandom
correlation generators: Silent OT extension and more,” in Annual International Cryptology
Conference. Springer, 2019, pp. 489–518.

212

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Efficient and Scalable MPC Frameworks
	General Purpose Hardware Platform for Privacy-Preserving Computation
	Co-design and Optimization of Privacy-Preserving Computation and Hardware
	Real-World Applications
	Co-optimization of Crypto Primitives and ML Inference

	Background
	Notations
	Secure Multi-Party Computation (MPC)
	Oblivious Transfer
	Yao's Garbled Circuit
	Garbled Circuit Optimizations
	Extension of GC for the Malicious Security Model

	Beaver-Micali-Rogaway
	Arithmetic Sharing
	Addition and Multiplication in AS

	Machine Learning Layers

	Efficient and Scalable MPC Frameworks
	Overview
	Automatic Generation of Optimized Boolean Logic
	Rich Programming Paradigm
	Scalability in Terms of Memory Footprint
	Reliability
	Evaluation Results
	Summary of Contributions

	Netlist Generation through HDL Synthesis
	Synthesis Flow
	Offline Circuit Synthesis
	Adaptation to BMR and GMW protocols

	Execution Flow of the GC Back-end
	Function Composition Formats
	Scalability Analysis

	Program Interface
	Protocol Instantiation
	Variables
	Functional Building Blocks
	Neural Network Building Blocks
	Cautions

	Evaluation of GC Frameworks
	Synthesis
	Runtime and Memory Footprint of Matrix-multiplication
	Runtime and Memory Footprint of CNN Inference with LeNet-5
	Benchmarking the Program Interface

	Evaluation of BMR Framework
	Auction
	Voting

	Brief Overview of Existing GC Frameworks
	Summary

	General Purpose Hardware Platform for Privacy-Preserving Computation
	Overview
	FPGA vs GPU as Acceleration Platform
	Summary of Contributions

	Global Flow
	Security Model and Terminology
	System Setup
	Client-Server Model
	Netlist Format
	Execution Steps of FASE

	Architecture of FASE
	Key Generator
	Garbling Engine
	Control Logic
	Memory Management
	Collector

	Scheduling the Gates
	Setting the priority
	Adding Gates to the Queue

	Evaluation
	Benchmark Functions
	Resource Utilization
	Evaluation of Scheduling and Memory Management
	Comparison with Previous Work
	Improvement in Throughput over Software Approach

	Summary

	Custom Co-design and Optimization of Privacy-Preserving Computation and Hardware
	Overview
	Summary of Contributions

	Global Flow
	Security Model
	System Setup
	Client-Server Model

	Architecture of MAXelerator
	Segment 1: MUX_ADD
	Segment 2: TREE
	Accumulator and Support for Signed Inputs

	Hardware Setting and Results
	GC Engine
	Label Generator
	Resource Utilization
	Performance Comparison with the Prior-art GC Implementation

	Practical Design Experiments
	Deep Learning Benchmarks
	Generic ML Applications

	Summary

	Real-World Applications
	Overview
	Secure Localization for Smart Cars
	Summary of Contributions
	Triangle Localization Algorithm
	Related Work
	Global Flow
	Protocol with Yao's GC
	Protocol with BMR
	Effect of the Motion of Cars
	Distance Compensation
	Netlist Generation
	Invocation of the MPC Protocols
	Evaluation: Error Analysis
	Evaluation: Circuit Synthesis
	Evaluation: Timing

	Authentication with Noisy Keys
	Summary of Contributions
	Physical Unclonable Function (PUF)
	Related Work
	Threat Model
	Authentication Function
	Protocol Initialization
	Protocol for Binary Response
	Extension for Integer Response
	Security of the Authentication Function
	Security of the Authentication Protocol
	Generating GC Netlist
	Implementing LSH
	Evaluation Settings
	Evaluation of the Authentication Protocol
	Evaluation of Protocol for Integer Response

	Privacy Preserving k-Nearest Neighbor Search
	Summary of Contributions
	Related Work
	Distance Function
	Generation of Netlist
	Combinational Garbled Circuit
	Sequential Garbled Circuit
	1-NNS in Multi-Party Setting
	Evaluation: Memory Footprint of 1-NNS
	Evaluation: Timing of 1-NNS
	Evaluation: Memory Footprint of k-NNS

	Private Set Intersection
	Circuit Design
	Evaluation

	Summary

	Co-optimization of Crypto Primitives and ML Inference
	Overview
	Related Work
	Cryptographic Optimization
	ML Optimization

	Global Flow and Threat Model
	Threat Model

	COINN Model Customization
	Ciphertext-aware Quantization
	Factored Matrix-Multiplication
	Automated Parameter Configuration

	Cryptographic Protocols
	Matrix-Multiplication
	Linear Layers in the Amortized Setting
	Non-linear Layers
	Cost Breakdown and Comparison with Previous Works

	Oblivious BNN Inference
	Binary Matrix Multiplication
	Nonlinear Layers
	Training Adaptive BNN

	Evaluation of COINN: Generic DNN Inference
	Evaluation of COINN Optimizations
	Comparison with Prior Work
	Model Customization Runtime
	Evaluation on Microbenchmarks

	Evaluations of BNN Inference
	Evaluating Flexible BNNs
	Oblivious Inference

	Summary

	Conclusion and Open Challenges
	Command Line Options and Available Functions in TinyGarble2
	Architecture of FASE
	Bibliography

