
Lawrence Berkeley National Laboratory
Recent Work

Title
ACCELERATING THE LOOP EXPANSION

Permalink
https://escholarship.org/uc/item/9zr901d5

Author
Ingermanson, R.

Publication Date
1986-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9zr901d5
https://escholarship.org
http://www.cdlib.org/


~·~ 
I 

_," ..... _ 

.l. 
li' 

LBL-21916 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 

ACCELERATING THE LOOP EXPANSION 

R. Ingermanson 
(Ph.D. Thesis) 

July 1986 

Prepared for the U.S. Department of Energy ur.der Contract DE-AC03-76SF00098 

' \}J 
r 
I 

sJ -



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



July 29, 1986 

Accelerating the Loop Expansion 1 

Randall Ingermanson 

Department of Physics 

and 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 94720, U.S.A. 

Ph.D. Thesis 

LBL-21916 

1 This work was supported in part by the Director, Office of Energy Research, Office of 

High Energy Physics and Nuclear Physics, Division of High Energy Physics of the e.s. 
Department of Energy under Contract DE-AC03-76SF00098, and in part by the National 

Science Foundation, under Research Grant No. PHY-81-18547. 



1 

ABSTRACT 

This thesis introduces a new non-perturbative technique into quantum 

field theory. To illustrate the method, I analyze the much-studied ¢ 4 theory 

in two dimensions. As a prelude, I first show that the Hartree approximation 

is easy to obtain from the calculation of the one-loop effective potential by a 

simple modification of the propagator that does not affect the perturbative 

renormalization procedure. A further modification then suggests itself, which 

has the same nice property, and which automatically yields a convex effective 

potential. I then show that both of these modifications extend naturally to 

higher orders in the derivative expansion of the effective action and to higher 

orders in the loop-expansion. The net effect is to re-sum the perturbation 

series for the effective action as a systematic "accelerated" non-perturbative 

expansion. Each term in the accelerated expansion corresponds to an infinite 

number of terms in the original series. Each term can be computed explicitly, 

albeit numerically. Many numerical graphs of the various approximations 

to the first two terms in the derivative expansion are given. I discuss the 

reliability of the results and the problem of spontaneous symmetry-breaking. 

as well as some potential applications to more interesting field theories. 
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I Introduction 

1 The Effective Action 

The classical action has played a crucial role in theoretical physics for over 

a century; In field theory, the dynamics of classical fields can be described 

by a local action functional 

(For simplicity, I consider a theory of one scalar field. Spacetime depen-

dence is shown by a subscript: ¢z means ¢(:r). It is easy to generalize to 

spinors and vector particles as well as internal degrees of freedom.) f. is 

a Lorentz-invariant function of ¢z and of a finite number of its derivatives. 

The equations of motion are then determined by the variational principle 

os 
--0 o¢z- . 

In quantum field theory, the classical· action is supplanted by the "effective 

action~, via the following somewhat circuitous route. Define 

It is extremely convenient to define the partition functional Z[J] by the 

path integral formula 
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{Hereafter, I will set 1i = 1.) 

In terms of Z we then have a simple formula for the correlation functions 

in the presence of the source J: 

(¢z<I>'J ... <l>z)J = zfJ] j[d¢] <l>z¢11. 0 0 <t>ll eiu[J] 

"fields (1.1) 

If we have some means of calculating W[J], then (1.1) allows us to com-

pute the vacuum correlation functions by taking J ._ 0. 

Instead of following this approach, it is sometimes convenient to perform 

a Legendre transformation on ~ViJ]. Denote the mean field by 

(1.2) 

Then the effective action r is defined by 

Note that 

(1.3) 
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Furthermore, 

0~: o2W 
(1.4) -- -

oJII oJ= oJ11 

'" 6J: o2r -- =-
6~11 0~: 6~11 

'" 
So 

(1.5) 

Jona-Lasinio [ 1 ] showed long ago that f[~] gives the truncated one-

particle-irreducible Feynman diagrams. 

. ·~ 

In contrast to the classical action, the effective action f[ ~] is non-local. 

One can expand it as 

where 

r (n) - [ 6" r [if.ll · =···II = r if. r if. ..,. J 
O'S'z • '' O'S'II ~=0 

This is useful when computing scattering amplitudes, but there is another 

expansion which is better for studying the low-energy content of the theory. 

The derivative expansion is given by 

( l.G) 

where V and Z are ordinary functions. Since r is non-local, there are an infi-

nite number of terms in this expansion. V(~) is called the effecth·e potential. 

Z(~) should not be confused with the partition functional Z[J]. 
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2 On the Effective Potential 

Consider the case where the source is translationally invariant: 

Jz = j = constant. 

Then ~ [ J] must also be translationally invariant and we can define ~ ( i) = 

~[i], which is also a constant. So all the derivative terms in the expansion 

{1.6) of r vanish and 

r[i] = -v(i). (/J, 
where U,J = volume of spacetime. Similarly, !V[i] = -E(i) · U:), where 

E ( i) is the energy of the system. One can easily show [ 2 ] that V ( i) is the 

work/(Jz) required to move from the vacuum state ( J = 0 ) to the state 

determined by Jz = i. V and E are related l;>Y 

V(i) = E(i) + i~. (1. 7) 

Also, we have the relations, which follow from (1.2) and (1.3), 

i(i) 
dE 

=--A 
dJ 

i(~) 
dV 

( 1.8) =-AO 
dq, 

Two important features of the effective potential are that 1) V is real. 

and 2) Vis convex [ 3 ]. The fact that Vis real follows from (1.7). A simple 

proof that V is convex is given by Calloway and Maloof [ 4 ], where it is 

..) 

u 

,.; 

\) 
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shown that 

I will return to these important points after discussing briefly the common 
-... 

methods for computing V ( ~). 

First, let me point out what is the main "industrial" use for V ( ~). Since 

the vacuum is the lowest energy state, the vacuum value of ~ minimizes 

V(~): 

dvl 
-A =0. 
d~ i=iooc 

Thus, we compute V ( ~) as a test for spontaneous symmetry breaking. 

This test was introduced by Coleman and \Vein berg [ 5 J, using a some-

what cumbersome version of the loop-expansion. Jackiv~· [ 6 ] then showed 

how to simplify the computations of the loop-expansion, in an elegant paper 

which tamed the combinatorial jungle inherent in the Coleman- \\'einberg 

approach. 

Jackiw's paper is still the standard reference for practical calculations. 

In principle, however, one could do much better. Cornwall, Jackiw and 

Tomboulis [ 7 ] (CJT) showed how to extend this method to composite op-

erators. As a bonus, this extension allows one to formally rewrite Jackiw's 

loop-expansion much more compactly. Each diagram in this formal expan-

sion corresponds to an infinite number of diagrams in Jackiw's expansion~ 

Unfortunately, this beautiful development is difficult or impossible to use in 
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practical calculations, except to lowest order in the coupling constant. In 

this case, one finds the same results as can be obtained by the Hartree ap

proximation, which for scalar theories gives the same results as a variational 

calculation using a Gaussian wavefunctional [ 8 ]. See Jackiw's lectures [ 9 ] 

for a review of all of these approximations. 

The Hartree approximation (hereafter called simply the Gaussian ap

proximation) is non-perturbative, since it basically sums up all the "easy"' 

diagrams in Jackiw's loop-expansion to all orders in perturbation theory. 

Unfortunately, procedures for systematically improving the Gaussian ap

proximation are hard to come by. CJT's method is impractical; a suggestion 

due to Stevenson [ 10 ] has not yet been carried out; another approximation 

using the "coupled cluster approximation" [ 11, 12, 13 ] looks interesting, 

but involves complicated and unfamiliar techniques. In quantum mechanics, 

the Gaussian approximation works very well [ 10 ]. However, it is not clear 

how good the approximation is for field theory. In scalar theories, it includes 

all one-loop diagrams, but not all two-loop diagrams. (Furthermore, there is 

a technical complication called "examining the end-points" [ 14 ], which can 

muddy the waters. If this complication is ignored, then one may find the 

wrong vacuum (as pointed out in [ 14 ]), or no vacuum at all [15 ], or may 

be forced to restrict the range of definition of the effective potential [ 12, 

16 ].) 

Despite these disadvantages, the Gaussian approximation has some very 
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nice features. It can be extended to soliton systems rather straightforwardly 

[ 17, 18 J. Recently, it has also been used to compute higher-order terms in 

the derivative expansion of the effective action [ 12 ]. 

One test of the validity of the loop-expansion (and also of the Gaussian 

approximation) is the following pair of questions. Is the resulting effective 

potential real? Is it convex? The answers are somewhat disappointing. 

The loop-expansion yields a real effective potential if and only if the 

classical potential U(<P) is convex: U" (<I>) ~ 0. For all values of <Pat which U 

is not convex, the perturbative effective potential is complex to every finite 

order in the loop-expansion. (Yet, the sum of the series is real. For a very 

nice discussion of the reality and convexity of the effective potential from the 

functional viewpoint, see [ 19 ].) Furthermore, the perturbative expansion 

does not necessarily yield a convex effective potential. 

The Gaussian effective potential performs somewhat better. It is always 

real; however, it is not necessarily convex. 

It has been argued that the convexity property is "silly" [ 10 ]. I disagree; 

it is no more silly than the reality property. Convexity is an important non

perturbative property that powerfully constrains the effective potential. Any 

computation that yields a non-convex effective potential is wrong. (Though 

not necessarily wrong everywhere. It may be wrong over only a small domain, 

as we shall see later.) 
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. If convexity is not silly, it is nonetheless annoying. Naively, it appears 

to rule out the double-well type of potential, so familiar in spontaneous 

symmetry-breaking. Much of modern particle physics relies on symmetry

breaking: pion physics~ electre>-weak breaking via the still-unseen Higgs bo

son, GUT breaking to the standard SU(3) x SU(2) x U(l) and the resulting 

inflationary universe. Yet symmetry-breaking apparently depends on the 

fragile concept of a non-convex potential. How can convexity be harmonized 

with symmetry-breaking? The answer is that the double--well vanishes (in a 

sense), but the symmetry-breaking remains [ 20 ]. But more of this in due 

time. 

I can now explain the purpose of this thesis. I have found two new system

atic approximations for computing the effective potential (as well as higher

derivative terms in the effective action). Both approximations improve on 

the loop-expansion (and also on the Gaussian approximation). Both can 

be regarded as being intermediate between Jackiw's loop-expansion and the 

much improved formal expansion of CJT. 

The first approximation I will describe is simply a combination of the 

loop-expansion and the Gaussian approximation. It enables one to do an 

infinite number of diagrams at each stage of the loop-expansion, by a simple 

modification of the propagator. I call this approximation the n-loop Gaus

sian approximation. The one-loop version of this approximation is just the 

recently revived Gaussian approximation [ 10, 14, 21, 22 ]. Unfortunately. 

'-' 
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the resulting effective potential is not necessarily convex. 

The second approximation is an improvement on the n-loop Gaussian 

approximation and automatically yields a convex effective potential. Again, 

the method requires only a slight modification of the propagator. Despite 

this, the effect on the resulting effective potential can be dramatic. For rea

sons to be explained later, I call this approximation the n-loop self-consistent 

approximation. 

An important property of both of these approximations is that the famil

iar perturbative techniques (Feynman diagrams, loop integrals, renormaliza

tion) can be imported wholesale. 

3 A Preview 

This thesis is organized as follows. 

For the sake of concr~teness, I will analyze in some detail the ¢• model 

in two dimensions. Although this model actually describes some physical 

systems rather well, (e.g., polyacetylene [ 23 ]) , I will ignore any real-world 

applications. I choose to study </>~ because the model is simple enough to 

make calculations easy, (especially renormalization), but rich enough to ex

hibit the nice features of the self-consistent approximation. In addition, there 

are a number of rigorous facts known about the model, which enable me to 

check qualitatively my approximations. 
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In Section 2, I will review some of these facts, and show how previous cal

culations measure up against these rigorous results. I will anticipate points 

where the self-consistent approximation improves on previous calculations. 

Last, I will discuss briefly the fate of the classical double-well potential. 

An important technical tool which I will use extensively in this thesis is 

the Schwinger-Dyson equation. In Section 3, to establish my notation, I will 

derive this equation for <P~ and give the standard graphical interpretation. 

This leads naturally to the loop-expansion. I will then exhibit a. special 

case of the SchwingercDyson equation which describes the effective potential 

non-perturbatively. 

The first real calculation comes in Section 4. I calculate the well-known 

one-loop effective potential in a way that makes it natural to generalize to 

both the Gaussian approximation and the self-consistent approximation. t:s

ing the Schwinger-Dyson equation, I then motivate and carry out these gen

eralizations. Finally, I compare the results, exhibiting a number of computer

generated graphs. 

In Section 5, I show how similar calculations can be done straightfor

wardly for higher-derivative terms in the effective action, again using the 

Schwinger-Dyson equation. Results are plotted for the first term in the 

derivative expansion. 

The problem of generalizing the Gaussian approximation and the self-
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consistent approximation to n loops is straightforward, and requires only the 

standard techniques of Feynman diagram calculation. I demonstrate this in 

Section 6 by doing an explicit computation for two loops. Continuation to 

higher loops is then obvious, though increasingly tedious. I also consider 

the question of the reliability of our results, and propose a tentative answer. 

Finally, I show that a further improvement is possible at two loops and 

beyond; more graphs are displayed, showing the effects of this improvement. 

In Section 7, I consider the problem of spontaneous symmetry-breaking. 

The computations of Section 4 are modified to the broken-symmetry phase 

and the various approximations to the effective potential are compared. 

I summarize the basic ideas in Section 8, and state conclusions. Also, I 

suggest some obvious (and some speculative) ideas for continuing the line of 

research for which this thesis is the first step. 
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II · A Review of </>~ 

1 The Classical Model 

The model we will investigate is described by the Lagrangian 

where U is the classical potential 

If m 2 > 0, then U(<P) has a unique minimum at 4> = 0. I will call this 

situation the symmetric phase. 

If m 2 < 0, then U(¢) has degenerate minima at ¢ = ±F, where 

F
2 =-6m2 

- A (2.1) 

It is then preferable to expand U about one of the minima, say +F. 'Gp to 

a constant, U is given by 

AF2 2 AF 3 A ( 4 
U ( ¢) = - ( ¢ - F) + - ( ¢ - F) + - ¢ - F) 

. 6 6 24 
JJ 

AP )2 g ( ) 3 A ( )4 =-(¢-F +-¢-F +-¢-F 
2 6 24 ' 



13 

where 

g = >.F = u"' (F) 

>.. = u"" (F). 
· .. 

I have chosen to eliminate m 2 in favor of M 2 above, with an eye to-

ward future renormalization. We will see that M 2 requires a log-divergent 

counterterm, while g and >.. are only finitely renormalized. 

The case m 2 < 0 is called the broken-symmetry phase, or more simply, 

the broken phase. 

Note that we go from one phase to the other by sending m 2 through zero. 

For simplicity of notation, I will denote the physical mass by mR, defined as: 

if m 2 > O· 
- I 

if m 2 < 0. 

So classically, the phase transition is attained only by sending m~ down 

to zero and then bringing it up again. This trivial fact has important con-

sequences. Observe that the dimensions of mh, g and >.. are all [mass:~. 

Also 
(symmetric phase) 

(broken phase) 

so only mk and >.. are independent quantities. Either one of these can be 
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used to set the scale. The only truly independent quantity is the ratio 

Now, perturbation theory will be unreliable in the limit >. -+ oo, (at fixed 
..t 

mR), or equivalently, >. -+ oo. Clearly, this means that perturbation theory is 

also unreliable for >. fixed and mR -+ 0. (This fact is well-known [ 24 ]. ) This 

apparently means that perturbative methods are completely untrustworthy 

near the phase transition. This argument has a possible flaw, however. The 

conclusion depends on the (classical) premise that the phase transition occurs 

at mR = 0. It can be rigorously shown that this premise is correct at the 

quantum level. (See [ 25 ] for a synopsis.) We conclude that a perturbative 

analysis of the phase transition is risky business. 

2 Rigorous Results 

In axiomatic field theory, Simon and Griffiths [ 26 ] showed that our 

model cannot have a first-order phase transition. This means that, if there 

is a phase transition, then the vacuum expectation value of ¢ must vary 

continuously through the transition. For example, in the classical model, 

the phase transition satisfies this criterion. From (2.1), we see that ¢m.,, is 

continuous, where 
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is the value of the field at which the potential is minimized. 

On a slightly less rigorous level, Chang [ 25 ] showed that there is a phase 

transition by means of the following trick. Above, we defined X = ).jm~, 

a dimensionless constant, which uniquely specifies the model. (Actually, 
... 

one must also specify the phase of the model, either broken or symmetric.) 

For our purposes, however, ~ is not quite appropriate. Define .\ = >..j J.L 2 , 

where p, is some parameter with dimensions of [mass]. Start with a classical 

Hamiltonian, in either the broken or the symmetric phase, and normal-order 

it with respect to JJ.. Up to scale, the resulting quantum Hamiltonian is 

specified completely by the phase and by .\. Now consider two Hamiltonians, 

one of which is classically in the symmetric phase, specified by .\5 , the other 

which is classically in the broken phase, specified by .\s. A priori, there is 

no relation whatsoever between the two Hamiltonians, not even if .\5 = .\8 . 

Chang showed that it is possible that the two Hamiltonians are identical. 

after normal-ordering, if .i.s and .\5 satisfy a particular relation. The method 

of proof was to use Coleman's re-normal-ordering formulae [ 15 ]. Equality 

holds if and only if .i.s and .\s satisfy 

A (-87f') • (47:') >.. 5 exp .\s = >..s exp .\s · (2.2) 

(I have altered the form of Chang's equation (2.14) slightly.) 

(2.2) can be solved numerically. I have plotted >. 5 versus .\ 8 m Fig. 

(2.1). Not surprisingly, large .\s corresponds to large .\ 5 . As .\s decrease~. 
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Xs. decreases down to the point where Xs = 41T', Xs ::::! 54.270. Decreasing Xs 

further is equivalent to increasing X5 . (Thus, we need only consider Xs ~ 41f". 

For Xs > 41T', the model is equivalent to some other model with .\s < 41f", and 
.J 

both are equivalent to a third model with Xs determined by Fig. (2.1).) As 

.\s - 0, .\s - oo. For .\s sufficiently small, the model will be in the broken 

phase. Hence, for some .\s,c,.it > 54.270, corresponding to some .\B,crit ~ 471", 

the model undergoes a phase transition from the symmetric to the broken 

phase. 
0 

0 
0 

0 

0 
en 

0 

c 
Cl:l 

"' •--t 
c: 
c .... 

~ 
c 
<.0 

c: 
c 
In 

3.: e.: 

Figure (2.1): Plot of Xs versus Xs given by equation (2.2). 

3 Perturbative Results 

I will rev1ew the calculation of the perturbati\·e effective potential m 

Section 4. \Vhat we will find is the following: 
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1. In the symmetric phase, the model undergoes a first-order phase transi

tion as ~ increases, in both the one-loop and two-loop approximations. 

The effective potential is real, but not necessarily convex. 

2. In the broken phase, a first-order phase transition is inferred from 

the fact that there is a minimum possible value for F. The effective 

potential is complex for ~2 < ~ F 2 , and is not convex. 

4 Variational Results 

The Gaussian approximation is basically a variational method, in which 

trial wave-functionals are Gaussian [ 8 J. Chang [ 27 J computed the Gaus

sian effective potential; it is real, but not necessarily convex. The effective 

potential always has a local minimum at i = 0. There is a first-order phase 

transition. (Stevenson [ 10 ] found similar results for the models in one, 

two and three dimensions, as well as a new "precarious" field theory in four 

dimensions.) 

Drell, Weinstein and Yankielowicz [ 28 ] duplicated some of Chang's re

sults. They also performed a different variational calculation, on the lattice, 

in which they showed that a relatively simple family of ground state wa\·e

functionals lead to a second-order phase transition. In the broken phase, for 

small F2, (i.e., near the phase transition), they showed that solitons are light 

and play an important role. 
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5 Lattice Results 

Calloway and Maloof [ 4 ] analyzed q)4-theory using Monte Carlo meth

ods on a 44 lattice. They first presented a qualitative dimension-independent 

analysis of the continuum q)4 model, which concluded that the effective po

tential should be a fiat-bottomed well. (I will give a quick demonstration of 

this fact in the next subsection, using a different method.) 

Calloway and Maloof then computed i(j) numerically, on the lattice. 

Inverting this to find j(i), they integrated our equation (1.8) to obtain 

V(i): 

(2.5) 

For a finite lattice, the result of this calculation is necessarily analytic. 

Thus, it is impossible to obtain a true flat-bottomed well. However, their 

numerical results for large coupling constant show a distinctly flattened out 

single-well potential. 

6 On the Fate of the Double-well 

Suppose that the classical potential is a double-well, as shown in Fig. 

(2.2). ii, 
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Figure (2.2): Typical double-well potential. 

The question is: what happens to the effective potential? The perturba

tive and Gaussian results suggest that the potential will have at least two 

isolated minima. We can dispense with this idea, thanks to the convexity 

requirement. The potential must be a single'well. \Vhat form will it take? 

After taking account of quantum effects, the symmetry will either remain 

broken or be restored. 

If the symmetry is restored, then there is a single minimum at ~ = 0. 

If the symmetry is broken, then there are two orthogonal vacuum states 

IO±) satisfying 

Adding a constant to the Hamiltonian such that 
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we define the one-parameter family of states 

where -1 ::; t ::; 1. Then we have 

So qualitatively, the effective potential looks as shown in Fig. (2.3). 

v 

Figure (2.3): Qualitative form of effective potential when symmetry is 

broken. 

The above line of reasoning is fairly well-known [ 20 ]. Different arguments 

which lead to the same conclusio'n are given in [ 2, 19 ]. 

As we already noted, the flat-bottomed potential well is non-analytic 

at ~ = ±F. The perturbative and Gaussian approximations for the region 
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1~1 :5 F should be regarded as analytic continuations of V (~)from the region 

1~1 ?: F. These are useful in the sense that they give the potential energy 

density of metastable field configurations [ 29 ]. Furthermore, they give an 

approximation to the zero-momentum scattering amplitudes, information 

which is already available from the non-flat part of V ( ~) . 

We can now see how symmetry-breaking can be harmonized with the con

vexity of V. Symmetry breaking requires only that the vacuum expectation 

value of the field be non-zero, which is clearly consistent with the convex, 

flat-bottomed pote~tial sketched in Fig. (2.3). 
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III Schwinger-Dyson Equations 

1 The Main Equation 

In this section, I will review the derivation of the quantum equation of 

motion, the Schwinger-Dyson equation [ 30 ]. For ¢~, the only divergence 

we need worry about is the mass term. Both the coupling constant and the 

wave-function renormalization are finite. I will not renormalize the coupling 

constant but I will compute the wave-function renormalization. 

The Lag·rangian. will be rewritten as 

Here, ¢ is the renormalized quantum field, m is the bare mass, .X the bare 

coupling and K (usually denoted F.) is the bare wave-function renormal-

ization. 

As before, S = fz t. ( ¢z) and one finds 

_ 6S = K2(a2 2)¢ ~ >..Kf> ¢3 
6¢z z + m z , 6 z. 

The classical equation of motion states that this quantity vanishes. The 

quantum equation of motion follows from the fact that the integral of a 



derivative is trivial: 

One then finds that 

= j[d¢] (Jz+ ::z) eia[J] 

- [Jz + :s I . l I [d¢]eia[Jj . 
¢z ~a=-•1'1; -..

e•WIJI 
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(3.1) 

_ 2 2 2 6"' 'AK
4 [(6lV) 3 

_ • (62H') on'_ 63H-'] 
- K (az + m ) SJ + 6 SJ 3' 6J2 SJ 6J3 . 

z z .z: z .z: 

This is the Schwinger-Dyson equation, expressed in terms of J and H'[J]. 

As in Section 1, we perform a Legendre transform 

where 

It is convenient to simplify the functional deri\'ati\'e notation: 

and similarly for the functional derivatives of n: [ J]. 
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·In this notation, we can rewrite equations (1.3), (1.4) and (1.5) a.s 

J.. 

Differentiating the last of these, we find 

The Schwinger-Dyson equation (3.1) becomes 

(3.2) 

>..K4 ( ·r-t)..... >..K4 r r-1 r-1 r-1 r + -- I :u '*'z + -- jtJ a:o. zb zc abc· 2 6 o,,b,c: 

(3.2) contains the full content of the quantum theory. Ideally, one would 

1) solve this functional differential equation for r z' and then 2) reconstruct 

f[~] by the formula 

(3.3) 

(This formula. follows by noting that 
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Note the similarity of (3.3) to Wess and Zumino's low-energy effective action, 

derived by integrating the anomaly [ 31 ].) 

Unfortunately, reality usually falls far short of the ideal. It is ordinarily 

impossible to carry out step (1) above; (3.2) is too hard to solve. The 

standard procedure is to solve it perturbatively, by iteration and truncation. 

This generates the loop-expansion, which I will now discuss more formally. 

2 The Loop Expansion 

First, let us see what is involved in the iterative solution of the Schwinger-

Dyson equation (3.2). Functionally differentiating, we have 

(3.4) 

).K" ( ·r-1) c ).K".... (. r r-1 r-1 r ) + - 2- l zz 0 :11- - 2-..,z l Ja,b za zb ab11 

).K"1 -1 -1 -1 + - 6- r zo r zb r zc r abc11 
a,b,c: 

).K"1 -1 -1 -1 -1 - -.,- r zc rae r dell r zb r zc r abll 
,f, o.,b,c,d,e 

Clearly, it is tiresome just to write out even the first few terms of the 

infinite family of equations that can be generated in this way. The loop-

expansion organizes this mess by giving a graphical interpretation to the 

equations and by providing a systematic procedure for truncating them. 
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The graphical interpretation is as follows: 

the "blob" - means r[q,]; 

the "dot" • means s[q,]. 

Each line attached to either a blob or a dot indicates a functional deriva

tive. Also, we define a special blob for the propagator: 

means r;;[q,]. 

I will not bother to indicate numerical coefficients, The Schwinger-Dyson 

equation and its functional derivatives, (3.2) and (3.4), can then be com

pactly written: 
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+ 

... 

+ + 

--< + ••. 
Sketch (3.1). 

There is one additional fact we need, the identity 

r -1 r r-1 r r-1 
: 11 = j a za ab bv , 

o,b 

which can be written graphically: 

-8-- -
Sketch (3.2). 

This equation allows us to systematically improve a given approximation 

for the propagator. 

The simplest approximation of the propagator is 



~--.v- -
Sketch (3.3). 
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With this approximation, it is simple to expand r z to an arbitrary number 

of loops. For example, to two loops 

+ 

+ 

Sketch (3.4). 

3 A Special Case 

It is now trivial to find a Schwinger~Dyson equation for the effective 

potential. V\'e simply replace ~z by ~-=constant in equation (3.2). I will 

use t %1/ to denote r Zl/ ( ~), etc. Then we haYe 

, •. 2,.::·.>.K"·3 >.K"(··-1)· >.K
4

[ ·-1·-1·-1· v ( ~) = m 1\ ~ -r --~ + -- l r u ~ + -- 1 ~ r ZQ r zb r zc r abc • 
6 2 6 a,b,c 

This equation 1s exact. As in the general case, it generates a loop-



.. 

29 

expansion which must be truncated at some order. I will do some sample 

calculations in the following sections . 
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IV The One-loop Effective Potential and Beyond 

1 A One-loop Calculation 

At the one-loop level, our Schwinger-Dyson equation is very simple: 

-----+--() 
Sketch (4.1). 

Algebraically, this works out to be 

(4.1) 

Let me comment on the notation. I must renormalize m 2 ; I choose to 

renormalize K 2 , but not .A. Thus, m 2 and K 2 are unknown constants that 

will be fixed by my renormalization conventions. Expanding in n: 

The leading terms are the classical values; higher order terms represent 

corrections from the loop-expansion. Indeed, the n" correction comes from 

the n-loop diagrams. In my notation, m! and K~ represent a truncation of 

the above series to order n". 



Now consider the Schwinger-Dyson equation (3.4) for fz11 (~): 

Graphically, this is 

·- + 
~ 
~+ 

Sketch ( 4.2). 

• • • 
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The propagator r;; is obtained by inverting this. At tree-level, we have 

(4.2a) 

( 4.2b) 

So the "tree-level" propagator is 

( 4.2c) 

Performing the \Vick rotation, 

where E denotes Euclidean space. The above integral is log-divergent. It is 

convenient to define a whole family of integrals 
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For n > 2, these are finite and satisfy the property 

(4.3) 

I will take this property to hold for J1 also. (If one regulates all the J" in 

some way, then (4.3) is true for all n in the limit in which the regulator is 

removed.) It is easy to compute 

where n ~ 2. 

Thus we have 

. {4.4) 

So we can rewrite (4.1) as 

I A .. .. .. >..K" A .. v (~) = m• x-~ + _1 ~3 + l).J (JJ.'l)~ 
1 1 6 2 1 

(4.5) 

I would now like to renormalize the mass. This can be done for both the 

symmetric and broken phases simultaneously. 

Let F be the non-negative value of 4? for which V takes a minimum. I.e., 

v'(F) = o defines F. 
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The renormalization prescription is 

m~ = V"(F) 

where we define 

Solving form~ and substituting into {4.5), we have 

This result is actually more general than I have indicated in the deriva-

tion. In the following subsections, I will analyze this equation and expose 

its broader setting. 

2 The One-loop Symmetric Case 

In the symmetric phase, F = 0, and {4.7) reduces to 

(4.8) 

Differentiating this, 

( ·L9) 

I will now show that Kf = 1. To one-loop, f z 11 is given by 
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·- + 

Sketch (4.3). 

To compute Kf, we need to evaluate this at i = 0, which means that 

the third diagram on the right vanishes. \Ve then have 

= (K;a; +constant) 8: 11 • 

Kl is to be chosen so that the coefficient of a; is 1. Hence, K£ = 1. 

Now recall that J.'2 (i) = m~ + ~>.i 2 • Hence J.'} = m~. So 

which is easily integrated: 

This is the standard one-loop result in two dimensions. 

3 The Gaussian Approximation 

Recall that the perturbative expansion follows from the truncation of the 

Schwinger-Dyson equation for the inverse propagator: 
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•= 
Sketch (4.4). 

This provides a powerful temptation to improve this radical truncation, 

since any improvement will yield non-perturbative results. The simplest 

improvement is to write 

·- + 

Sketch (4.5). 

This yields the equation 

where 

This is very similar to the perturbative case, ( 4.2), except that J.L 2 
( 4>) is 

now a different function of ~. The renormalization runs exactly as before. 

The results of Subsection 4.1 are still valid, and using (4.4), (4.6) and (4.i), 
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we have 

.. ( 2) I A A ~A ~~ J.L . 
V (~) = m~~ + -~3 - -log - 2 , 

6 8rr . iJ.F 
(4.10) 

where 

(4.11) 

It follows that p,} = p,2 (0) = mk. One can show graphically that the tran~ 

scendental equation (4.11) has a unique solution p,2 for each value of~~ when 

The above procedure is not really new. It reproduces the results of the 

Gaussian approximation. Only the derivation above is new; I have given this 

derivation to help motivate further improvements and to show how little work 

needs to be done to implement them. 

It is possible to integrate v' ( ~) in ( 4.lp) analytically. However I let 

me point out that the numerical solution is somewhat easier (and remains 

tractable for the improved approximations I intend to develop throughout 

the rest of this thesis). There are three steps: 

1. Compute p, 2 (~) numerically, using (4.11). 

2. Substitute p.2 into V'(~). in (4.10). 

3. Integrate v' ( ~) numerically. 

Computer plots are given at the end of this section. But first, I will 

generalize the above procedure to find a new and improved result. 
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4 The Self-consistent Approximation 

In the previous subsection, I motivated the Gaussian approximation by 

appealing to the truncated Schwinger-Dyson equation for r Zllt described by 

Sketch {4.5). Suppose that I could solve the full equation, given in Sketch 

{3.1). The answer would certainly not be of the form (B! + J.L 2)6::v· Instead, 

it would have an infinite number of derivative terms 

-t zv = [v" (i) + Z(i)a! + ... ] 6z 11 • 

This equation is. exact, but unusable; I will therefore severely truncate it: 

(4.12) 

This is again of the same form as the perturbative inverse propagator ( 4.2). 

Writing 

(4.13a) 

( 4.13b) 

we can take over all the perturbative results of Subsection 4.1 immediately. 

Note that J.L} = J.L 2 (0) = V" (0) = m~. So ( 4.8) and ( 4.9) become 

(4.14a) 

[ ( 
2 ) A 2] 2 A .. 1 A 2 ~ J.L <P dJ.L 

J.L (~) = m· + -~<P -- log -.. ----A 
R 2 811" mR J.L2 a<P 

(4.1-tb) 
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There is no hope of an analytical solution to (4.14), but a numerical 

solution is not difficult. (4.14b) is a first-order differential equation for J.£ 2 (~). 

It can be solved and substituted into (4.14a), which can then be numerically 

integrated to yield V' ( ~). 

The boundary condition for (4.14b) is just the symmetry requirement 

a(':
2

) (o) = v"' (o) = o. 
a41 

It is necessary to use a fairly good numerical routine for solving the dif-

ferential equation. I used a sixth-order predictor-corrector Adams-~foulton 

algorithm. Results are plotted at the end of this section and discussed in the 

next subsection. 

A few comments are necessary here. From now on, I will call (4.13) the 

self-consistent approximation. This approximation to the propagator is the 

only non-perturbative element in the scheme. r z11~ and higher functional 

derivatives are still to be computed perturbatively. The close resemblance 

of (4.13) to (4.2) enables the usual renormalization procedure to go through 

unhindered. 

5 A Comparison 

I have plotted the results of four approximations (tree, one-loop, Gaus-

sian, and self-consistent) in Figures ( 4.1) through ( 4.12) . .i. ranges from 6 to 

600. (This range is unreasonably broad; I will discuss the reliability of our re-
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suits in Section 6.) Note that the perturbative and Gaussian approximations 

show a phase transition (which can be shown analytically to be first-order) 

at Xc:,.it ~ 40 - 60. (The precise value is unimportant. A first-order phase 

transition is forbidden, and anyway these approximations yield non-convex 

potentials, so they are wrong on two counts.) 

The self-consistent results are interesting, for two reasons. First, they 

are convex. Second, for large X, they show a very fiat well, reminiscent of 

the lattice results of Calloway and Maloof [ 4 ]. The well is not completely 

fiat, as we see on magnification of Fig. (4.11) to Fig. (4.12). The reason 

is quite simple. Our renormalization conditions put the minimum of V at 

~ = 0, with V" (0) = m~. Convexity then keeps V from flattening out. 

This is similar to the analyticity constraint on the lattice calculation, which 

prevented a true fiat well from emerging. 

Nearly identical reasoning shows that we are unable to see a phase transi

tion in the self-consistent approximation. By convexity, V has only one min

imum. Our renormalization prescription locates that minimum at ~ = 0. 

Nevertheless, for large X, the self-consistent ~r ( ~) looks rather suspicious, 

as though it were struggling to· exhibit a phase-transition under impossible 

circumstances. \Ve know that the phase transition occurs at >. -+ oc. Our 

results (if we can oelieve them) are entirely consistent with this fact. I will 

discuss the trustworthiness of all of our approximations in Section 6. 
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V On Higher-Derivative Terms 

1 A Sample Calculation: Z(~) 

In this section, I will consider the one-loop effective action. It is sufficient 

to discuss Z ( ~), the second term in the derivative expansion of r. Higher~ 

order terms can be calculated with an increase in tedium. Z will be useful 

to us later, in the two-loop calculation. 

To one loop, the Schwinger~Dyson equation for the inverse propagator is 

+ 

Sketch (5.1). 

Algebraically, this is 

where 

I will use the same general-purpose propagator used in Section 4: 
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Using standard methods of Feynman integral evaluation, we find 

where 

(5.1) 

2 Discussion of Results 

The main points to note are the following: 

1. Physically, we require Z(F) = 1, which implies that 

(5.2) 

(Kf must be positive. Higher order t~rms in the perturbative series 

would ensure positivity. I have approximated the perturbative result in 

(5.2) with a manifestly positive function which agrees with it to second 

order in A.) 

2. \Ve have really computed three different approximations to Z ( ~), cor-

responding to the three choices of ,u2 (<P) in Section 4. Thus, we ha\"C 

extended both the Gaussian approximation and the self-consistent ap-

proximation to the whole effective action, in the derivative expansion. 

3. Z(<P) gets large (and therefore important) when ,u2 j(A<P) gets small. 

In the self-consistent approximation, this happens when the well gets 
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flat, which happens when X gets large. 

I have plotted Z(i) in Figures (5.1) through (5.10). Note that the self

consistent curve is higher than the Gaussian, which is higher than the per

turbative, which is higher than the classical. This effect is enhanced as X 

increases. 
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Figure (5.1): Plot of one-loop approximation to Z(~) for X= 6. 
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VI Improving the Two-loop Effective Potential 

1 A Two-loop Calculation 

In Section 4, I showed how to obtain the Gaussian and self-consistent 

approximations by making simple changes in the one-loop calculation. The 

same procedure works at n loops. In this section, I will work out the details 

for two loops (restricted to the symmetric phase for simplicity). 

The two-loop Schwinger-Dyson equation for the effective potential is 

+ 

Sketch (6.1). 

The algebraic expression for this, with appropriate counterterms, (and 

recalling Ko = K 1 = 1) is 

V'(~) = m:z K2~ + >.K: ~3 + !>.~ [-i { f'-1 (a~+ .M2)f'-l] 
2 2 6 2 j a za a az 
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where 

(6.1) 

is a familiar object from Section 4. Using our general-purpose propagator 

(4.2c), a lengthy, but standard, calculation yields 

(6.2) 

where 

is a divergent Euclidean-space integral and Q ::::: -1.484 x 10-2 is a numerical 

constant which arises as follows. Define 

2 _ 8Io 
11(14 ) = 8(142) 

- Q 
= (~2)2 . 

We already know from Section 4 that 142 (0) = mh, so therefore (6.1) tells 

us that .M 2 (0) = mh. Mass renormalization is again simple: 
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So we can rewrite (6.2) in terms of finite parameters as 

It is easy to differentiate this to find v" ( ~) ," but the result is messy and 

unenlightening. 

The final preliminary step is to compute Ki. At ~ = 0, the two-loop 

"' 
inverse propagator is 

+ + 

Sketch {6.2). 

or algebraicaliy, 

Expanding, one eventually finds 

where I define the dimensionless constant 
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and 

- [
1 r /J(l- /J)a(l -a) -

I= lo da lo d/J [/J + a(l- a)(l- /J)]2 - ·11462 

is an integral arising from the last diagram in Sketch (6.2). 

We therefore find that 

K 2- 1- 292] 
2- . 

3 
(6.4) 

Higher-order corrections would ensure positivity for K 2 • I achieve this arti-

ficially, by the approximation 

[ 
2921]-l Ki ~ 1 + -3- ' 

which agrees with the perturbative result (6.4) to second order in >.. 

2 A Systematic Approach 

It is not really necessary to consider the perturbative, Gaussian and self-

consistent approximations for V ( ~) and Z ( ~) in the piecemeal fashion of . 

Section.s 4 and 5. It is easier to work systematically as follows: 

1. Compute J-& 2 (~) in one of the three approximations: 

a) Perturbative: J.L 2 (~) = m~ + !>.i2, 

b) Gaussian: J.L2
( i) = m~ + !>.~ 2 

- 5>." log ( ~), 

c) Self-consistent: J.L 2 (~) = V"(~). 

(Note that (b) is an algebraic consistency condition, whereas (c) is a 

differential consistency condition.) 
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2. For (a), (b) and (c), substitute J.£ 2 (~) into V'(~) and integrate numer

ically to get V ( ~ ). 

3. For (a), (b) and (c), substitute J.£ 2 (~) into the expression (5.1) for Z(~). 

The results are plotted in Figures (6.1) through (6.16). I will refer to 

these as the two-loop approximations, although this is not strictly accurate 

nomenclature for the results for Z(~). I discuss these plots in the next 

subsection. 

3 Can We Trust Our Results? 

So far, I have consciously ignored the nagging question of the reliability 

of the various approximations. It has traditionally been difficult to handle 

this issue with precision. 

The usual answer to the question in perturbation theory is that the results 

are 1) reliable, if X ~ 24, 2) questionable for ~ ~ 24, and 3) unreliable for 

A» 24. This answer is somewhat vague; what do~'~, and» really mean? 

I believe that a better criterion is possible, based on visual comparison 

of the various approximations of V. This criterion is subjective, but less so 

than the « I ~ I >> trichotomy given above. Let us see how this criterion 

works out in practice, by examining our oneeloop and two-loop results. 

Consider, for example the oneeloop and two-loop plots of V at >. = 12, 

Figures (4.2) and (6.3). The one-loop results agree among themselves very 
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well, as well as agreeing with the two-loop curves. Clearly, any one of these 

curves could be labelled "reliable". 

Making similar comparisons, one observes a gradual decline in the relia

bility as X increases up to about 21. At X = 22, the two-loop self-consistent 

curve charts its own course, and the other two-loop curves are substantially 

different from their one-loop cousins. For X;;;:24, the two-loop self-consistent 

curve cannot be computed (for reasons to be explained in a moment). Ob

serve that the one-loop perturbative and Gaussian predictions of a first-order 

phase transition at .X - 50 now look far less likely, as we know they should. 

If we must stop at two loops, we should probably label all graphs with X;;;:22 

at least questionable, if not totally unreliable. 

\Vhy has the two-loop self-consistent approximation failed so abruptly 

for X;;;:22? I have already anticipated the answer in Section 5. Consider the 

graphs of Z(~) from the previous section, Figures (5.1) through (5.10), and 

the plots of Z(~) in the first ten figures at the end of this section. Note how 

the self-consistent curve rises high above the other two approximations when 

). gets large. Z becomes important here! In the next subsection, I will show 

how to take this effect into account. 
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4 Further Improvements 

Recall the exact equation 

In the self-consistent approximation, we set the dots to zero and Z to 

one. This second approximation was not really necessary. \Vithout it, 

(6.5) 

Note that this is a very dangerous propagator! It can introduce field-

dependent divergences. For example, 

if- 1 = ~J (V"jZ) 
:u Z(4>) 1 

is a divergent quantity multiplied by a function of 4?. Presumably, an exact 

calculation of f;
11
1 would evade this problem, but that is little consolation. 

For the moment, we are stuck with the approximate propagator above, so 

we will have to restrict its use to finite diagrams (or su bdiagrams). In the 

two-loop calculation, the only such diagram is 

Sketch (6.3). 
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The net effect of using the improved propagator, (6.5), here is to multiply 

this diagram by a factor 1/ Z 2 • This affects only one term in our previous 

computation of V'(~). In (6.3) one finds the following replacement: 

[A technical note: The calculation of Z(~) in Section 5 was also finite. 

What happens if we recompute Z(~) using our new, improved propagator, 

(6.5)? The answer is that nothing happens. All diagrams get multiplied by 

1, and we again get equation (5.1).] 

One can again perform the numerical calculations outlined in Subsection 

6.2 to obtain improved estimates of J.L 2 (~), V(~) and Z(~). I will refer to the 

newly computed t-"(~) and Z(~) as the improYed two-loop approximations. 

I have plotted V(~) and Z(~) in Figures (6.11) through {6.24). ~ varies 

from 6 to 5i; above 57, the self-consistent approximation again fails to exist. 

The changes are most striking for the self-consistent approximation. The 

Gaussian and self-consistent curves for V ( ~) are now quite close together 

over the full range of .A for which the selfaconsistent approximation exists, 

and I think we can reasonably label them "reliable". 1IoreoYer, the improYE:d 

two-loop perturbative curve looks fairly reliable. Comparing these cun·cs 

.. 
to the previous results in Section 4, it seems that even the one-loop self-

consistent curve can be re-assessed as being somewhat reliable at least up to 

~ ::::::57, while the other one-loop results become increasingly poor. 
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Figure {6.11): Plot of two-loop approximation to V ( ~) at A = 24. {The 

self-consistent approximation does not exist.) 
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Figure (6.15): Plot of two-loop approximation to V(~) at ~ = 90. (The 

self-consistent approximation does not exist.) 
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Figure ( 6.17): Plot of improved two-loop approximation to V ( ~) at 

IJ") 

.A= 6. 0 
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Figure (6.18): Plot ofimproved two-loop approximation to Z(4') a.t ~ = 6. 
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Figure (6.19): Plot of improved two-loop approximation to V(~) at 

,\ = 12. 0 

N 

c::; 
c 

t..O 
0 

..,.. 
0 • r-

······ ····· 
.· 

... --··. , ... ,' 

legend 

Tree- level 
Perturbat1ve 
Gauss1an 
Self- consistent 

· . ~ , ... 
.. ~·>/·- -----..... .. .. 

V
.. ~- ...... 

("".J . • ""'"'-- .. - -

0 •I ·----

0 r ;· 

0 /. ' 

O.C 0.1 0.2 0.3 0.4 0.5 O.E 0.7 O.E 0.9 l.C 
¢ 

Figure (6.20): Plot of improved two-loop approximation to Z(~) at 

,\ = 12. 
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Figure (6.21): Plot of improved two-loop approximation to V(<P) at 

0 
A ~ 18. t"\l 

(\j 

N 
co 
0 . 

'I:"' 
0 

0 
0 

r- . , . , 
: , 

: , 

~ . . . . . 

4P--- ... 
•. 

Legend 

Tree- level 
Perturbat1ve 
Gaussian 
Self- consistent 

:, .... ... . . ./""',' ·-·--- ...... ·. ·· .. 
·"' ·--- ............. ··. ·· .. j. . ---.--.:: ".:.::_ 

/, 
0.0 0.1 0.2 0.3 O.'i 0.5 0.6 8.7 0.8 0.9 1.0 

¢ 

Figure (6.22): Plot of improved two-loop approximation to Z(<P) at 

A = 18. 
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Figure (6.23): Plot of improved two-loop approximation to V(~) at 

>. = 24. t.n 

N 

0 

.······ 

Legend 

Tree- level 
Perturbat1ve 
Gaussian 
Self- consistent 

0 , - ~··. 

/;;,'.-·----. .... :.·:::.::.:::.: .. · ....... . 
7 ----- ...... :_· ..... 

1' . ---.---=...:..--
./ . ' ' ·-

o.o 0.1 0.2 o.3 0.4 0.5 0.6 o.7 c.a o.9 1.0 

~ 
Figure (6.24): Plot of improved two-loop approximation to Z(<P) at 

>. = 24. 
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Figure (6.25): Plot of improved two-loop approximation to 'V ( <f!) at 

A= 36. 
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Figure (6.26): Plot of improved two-loop approximation to Z(~) at 

A= 36. 
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Figure (6.27): Plot of improved two-loop approximation to V(it>) at 

,\ = 48. 
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Figure (6.28): Plot of improved two-loop approximation to Z(it>) at 

,\ = 48. 
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Figure (6.29): Plot of improved two-loop approximation to V(4>) at 

). =57. 0 
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VII The Broken-Symmetry Case 

1 Some Preliminaries 

The analysis of the broken phase is somewhat more complicated than the 

symmetric phase. For this reason, I will only consider the one-loop case. 

In Section 4, I showed that the one-loop, all-purpose expression for V 
1 

( ~) 

is ( 4. 7), which I rewrite here for convenience: 

v' (~) = m~~ + >..Kt (~ 2 - 3F2) i + J..Fg~ - >..~log ( J.J.
2

) • (7.1) 
6 s~J.J.} s~ J.J.} 

The condition that V ( ~) assumes a minimum at F implies 

(One must be wary of spurious solutions to this equation, which make t·(~) 

a local maximum at F.) For the broken-symmetry case, F =f:. 0 and this 

implies the relation 

(i.2) 

(This is analogous to the tree-level result m~ = ~>..F2 .) \Vithout loss of gen-

erality, we can assume that F > 0. (7.2) allows us to simplify the expression 

of VI(~) in (7.1): 

I • >..K~ ( • ., 2) • >..i ( J,J.
2) V ( 4>) = - 4>· - F 4> - -log -., 

6 s~ JJ.'F 
(7 .3) 
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We have already calculated Kf for the broken phase, (5.2): 

(7.4) 

Clearly, Kf ~ 1 if >..F / J.l.~ is small compared to 4811'. We will see retrospec-

tively that this condition holds for the perturbative and Gaussian approxi-

mations, so for the next two subsections, I will set Ki = 1. This makes the 

algebra somewhat simpler. 

In the next three subsections, I derive equations for J.L2 (~), to supplement 

(7.3) and (7.4). I also check whether Ki :::: 1 is a valid approximation. Actual 

calculations will be deferred to Subsection 7.5. 

2 The Perturbative Approximation 

The classical potential U(~) can be written in the form 

The loop-expansion is specified by 

\Ve then have 

8J.L 2 
g = -A (F) = >..F. 

a<P 

(7.5) 
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Inserting these into our equation form~, (7.2), we have 

,. Note that m~ # J.l~, unlike the symmetric case. Clearly m~ is positive only 

for F > J9/(87r) ~ .599. This is a consequence of the spurious first-order 

phase-transition, which we already saw in the symmetric phase calculations 

in Section 4. 

Y...7e also compute 

which is certainly much smaller than 487r in the allowed region for F. So 

Ki ~ 1 is a good approximation. 

Note that J.L 2 (~) > 0 only for ~ 2 > ~F2 • This implies that V(~) will 

be complex for ~2 < ~F2 , a fact which remains true to every finite order in 

perturbation theory. 

3 The Gaussian Approximation 

For the Gaussian approximation in the broken phase, we cannot use the 

simple expression (4.11) for J.L 2 (~). It is easy to derive the correct expression, 

using the Schwinger-Dyson equation 
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·- + 

Sketch (7.1). 

Algebraically, this is 

Setting Kf = 1, and copying our previous result (4.6) for mi, we find that 

2 A 2 1 (A 2 2) A ( f.J.
2

) AgF J.L ( ~) = m R + -A ~ - F - - log - + --.. . 
2 81T' JJ.} 81ij.J£ 

Again, we find m1 :f:. JJ.}. \Ve can simplify JJ.}, using (i.2), to obtain 

(7.6) 

from which we find 

This is just like the perturbative case. So, again 

and Ki = 1 will be a valid approximation ifF should happen to be restricted 

to be fairly large ( i.e., F2 » l/(16r.) ). Such a condition does hold, due 
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to the spurious first-order phase-transition in the Gaussian approximation. 

I will sketch the derivation here. From (7.6), one can compute 

aJJ.2 >..F 
g =-A (F)= 3 • 

a~ 1 + 81rFl 

Inserting this into (7.2), one finds 

>..F
2 

[ 9 ] m~ = -3- 1 - -8--,.-F-2---. -3 ' 

which is positive only when F2 ~ 3/(4r.), (i.e., IFI > .489). So clearly, 

F 2 ~ 1/(16r.), and hence, Ki::::::: 1 is valid. 

4 The Self-consistent Approximation 

As usual in the self-consistent approximation, we require JJ. 2( ~) = v" ( ~). 

This fixes JJ.} = JJ. 2(F) = m~. We have to-solve the differential equation 

obtained by differentiating (7 .3): 

[ ( 
2 ) A 2] 1 • A 2 2 >.. JJ. ~ af.J. 

= ->..K (3~ - F ) - - lou -., +---A . 
s 1 8r: o mR JJ.2 a~ 

(i.7) 

,., But, in order to solve this, we need to use the boundary condition 

In the previous two subsections, we specified the function J.l. 2 ( ~), from 

which we computed the constants JJ.} and g. Here the situation is reversed: 
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we. must specify g so that the function ~2 (i) and the constant J.l.~ can be 

computed. What physical principle will enable us to specify g? After a 

fair amount of trial and error, I have concluded that the best procedure is 

to choose g so that ~~ comes out the same as it did in the previous two 
• .:J 

subsections, namely 

Since we also have~~ = mk, this means that 

(7.8) 

Note that this is the classical result. Also, in the limit F -+ 0, we have 

>. - oo, as it must, according to the rigorous field theory results. Our 

equations (7 .2) and (7 .4) can be rewritten 

. 
K 2 1 ( 

3 ) -1 
1 :::: + 16r. F 2 

g = 81rF(K" _ ) 
3 1 1 ' (7.9) 

where g is the rescaled quantity 

Regarding F as the independent variable, (7.8) and (7.9) determine all the .. 

unknown quantities. We are now free to integrate (7. 7), the differential 

equation for J.J. 2 (~), insert the solution into (7.3) and integrate to find the 
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self-consistent effective potential. I will do this in the next subsection, but 

first, I would like to make some observations. 

1. Our equations (7.8) and (7.9) are physically sensible for all values of 

F > 0. Hence the phase transition is not first order. 

2. As F-+ 0, the expression for Ki in (7.9) approaches zero. It is certain 

that this approximation becomes increasingly unreliable for small F. 

We could establish a reliability rating of some sort, if we took the 

trouble to do a two-loop calculation. Lacking this, I will make the 

rough guess that our approximation for Kt is bad when F2 ~3/{16r.), 

(Le., F~.25). This corresponds to a value of X~so. We already saw 

in Section 6 that such large values of .X can yield reasonably accurate 

results in the one-loop self-consistent approximation for the symmetric 

phase of the model. 

5 A Comparison 

As before, it is an easy numerical problem to compute J.L 2 ( <i>), substitute 

into V' ( <i>) and integrate to obtain the effective potential in each of our three 

approximations. I have plotted the results for various values of F in Figures 

(7.1) through (7.6). The graphs show the properties I reported in Section 2 

for the perturbative and Gaussian approximations. The perturbative results 

are non-convex and have a domain where they are complex. The Gaussian 
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results are real, but not convex. Both show a first-order phase-transition 

near F - .5. (For F smaller than the respective critical values, the graphs 

show a local maximum at ~ = F, corresponding to the unphysical situation 

mk < 0.) 

The self-consistent results show the following features: 

1. V is convex and real. 

2. There is a phase-transition of order greater than 1, as ~ - oc. 

3. V exhibits a :P,ard wall on the "inner side19
, while it agrees well with 

the perturbative and Gaussian results (when these exist) on the "outer 

side". 

Finally, we must make some judgement on the reliability of the three 

approximations. From the graphs, it seems clear that one should distinguish 

two regions, i 2 > F 2 and i 2 < F 2• \Vhen the perturbative approxima

tion exists, (i.e., for IFI > .599), and when the Gaussian approximation 

exists, (i.e., for IFI > .489), the various approximations agree fairly well for 

i 2 > F 2 • The agreement improves strongly as F 2 increases. Clearly, all 

of these approximations should be judged somewhere between fairly reliable 

and very reliable, on this domain of ~. On the other hand, the three ap

proximations disagree badly for ~ 2 < F2 • As we know from the discussion 

in Section 2, these are all "wrong"; the true potential is flat here. Our com

putations analytically continue V from the non-trivial domain into the flat 

•I 
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region, giving the potential of metastable field configurations. These analytic 

continuations are all very different; lacking two-loop results, we can not label 

any of them reliable. (However, the perturbative and Gaussian approxima

tions are very unlikely to be better than the self-consistent approximation.) 
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Figure (7.1): Plot of one-loop approximation to V(~), in the broken 
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phase, at F = .8. 
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VIII Conclusion 

1 A Look Backward 

... In this subsection, I will briefly review this thesis. 

. ;:· 

Sections. 1, 2 and 3 were devoted to reviewing, respectively, the effective 

action, ¢>~ theory, and the Schwinger-Dyson equations. 

In Section 4, I began by computing the well-known one-loop effective 

potential for ¢~ using an intentionally methodical procedure. I then showed 

that this procedure could be used to obtain almost instantly the Gaussi·an 

approximation, a well-known non-perturbative tool. 

The fact that a perturbative procedure could be souped-up to yield non

perturbative information motivated me to look for improvements. I found 

several. These improvements fall into three categories: 

1. Development of a better propagator, the self-consistent propagator, 

(which filled out Section 4). 

2. Extension to higher-order terms in the derivative expansion, with Z ( ~) 

as the prototype, (which occupied all of Section 5) . 

3. Extension to higher orders in the loop-expansion, exemplified by a tv.-o

loop calculation, (which took up the first two subsections of Section 6). 

It is important to note that these improvements can be mixed. One could, for 
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example, use the self-consistent propagator to compute Z(~) to two loops. 

A large number of numerical results are plotted at the ends of Sections 4, 

5 and 6. 1-fy purpose in displaying these graphs was to test the reliability of 

the various approximations. Comparison of the plots suggested an improved, 

self-consistent, two-loop procedure for the effective potential which appears 

to be reliable up to around >. - 50. Surprisingly, even the one-loop self

consistent effective potential turned out to be fairly accurate for this range 

of X. This analysis rounded out Section 6. 

In Section 7, I examined the broken-symmetry phase of the model using 

the perturbative, Gaussian and self-consistent propagators in the one-loop 

approximation. Again, the self-consistent propagator came out the clear 

winner. It correctly yielded a convex effective potential and a second-order 

phase transition, contrary to the perturbative and Gaussian propagators. 

Some general comments are in order here. We have learned nothing new 

about ¢~. But we have learned some interesting facts about field theory 

in general. \Ve have learned how to make systematic improvements in the 

Gaussian approximation. More importantly, (in my opinion), we have found 

a new non-perturbative technique, the self-consistent approximation, which 

seems to work very well even at the one-loop level. It has the important 

property that the self-consistent effective potential is automatically convex 

(when it exists). In the symmetric phase, it correctly approaches a flat-
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bottomed well, while in the broken phase, it correctly shows a second-order 

phase transition. (However, in neither phase can accurate calculations be 

made at the critical point, X - oo.) 

I conclude that the self-consistent approximation is visibly superior to 

the Gaussian approximation, which in turn is unquestionably better than 

the perturbative approximation. Moreover, both approximations can be sys

tematically improved to stay ahead of the perturbative approximation to all 

orders in the loop-expansion. 

2 A Look Forward 

In this subsection, I will discuss some possible future applications of the 

techniques I have developed here. I will consider in turn applications to the 

effective potential, and applications to higher-order terms in the derivative 

expansion of the effective action. 

First, it should be clear that the techniques of this paper apply imme

diately to any massive scalar theory. In particular, ¢~ theory, the Liouville 

model and the sine-Gordon model would be straightforward. (A partial step 

has already been made for the sine-Gordon model, with surprisingly clean 

results [ 16, 12 ].) It would also be interesting to examine¢!, to see whether 

Stevenson's (one-loop) Gaussian results can be improved. I believe that non

linear u-models could also be studied, by introducing Lagrange multipliers 
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into the action to eliminate the constraints. Also, it would not be too difficult 

to check the conclusions of Coleman and Weinberg [ 5 ] for scalar electrody

namics. This has already been done using the Gaussian approximation [ 32}, 

so it would only be necessary to work out the details for the self-consistent 

approximation. 

\Ve have seen that one can improve the loop-expansion by modifying the 

propagator. Is it possible to get further improvements by also modifying the 

vertices? For example, one might try 

This does not seem to work very well. There are two reasons for this. For 

one thing, it introduces field-dependent divergences, just as we saw when we 

used JJ.2 = V" / Z in Section 6. Thus, one can really only use this improved 

vertex in finite subdiagrams. A more compelling difficulty is that the dif

ferential equation for V" becomes second-order and highly non-linear. The 

headaches involved in solving this equation seem to outweigh the (as yet 

unseen) advantages it might have. 

An ambitious task would be to extend my techniques to gauge theories. 

This is non-trivial. In QCD, for example, it would be ill-advised to compute 

the effective potential in terms of the mean quark and gluon fields. Instead 

of these, one should use as variables the quark and gluon condensates ( t/;¢) 

and (TrF2), which have proven so useful in the QCD sum-rule approach [ 33, 
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34 ]. Furthermore, the momentum dependence of the propagator is certain 

to be far more complicated than that in the simple model considered in this 

thesis. 

Turning now to higher-order terms in the derivative expansion of the 

effective action, we note that the standard method of computation [ 35 ] 

is somewhat clumsy. Recent work has made the calculation easier ( see, 

e.g., [ 36] and the many references contained therein), but the results are 

restricted to one-loop. The procedure I have outlined in Section 5 is more 

convenient than that of Ref. [ 35 ], but I am unsure how it compares to the 

more recent methods. In any event, my method can be easily modified to 

yield non-perturbative results, as we have seen repeatedly throughout this 

thesis. 

Ultimately, one would like to work out a'Iow-energy effective action for 

QCD, describing mesons and (via the Skyrme model [ 37, 38 ]) baryons. 

One can easily write down the most general form of such an effective action. 

One can even decide which terms are the most important, via the Iarge

N expansion [ 39, 40 ]. However, the. coefficients of these terms cannot 

yet be computed theoretically; they are determined phenomenologicapy, by 

comparison to the scattering data. Lattice methods may well be the only way 

of calculating these coefficients. However, it would be better if there were a 

less numerically intensive technique available. Some form of the accelerated 

loop-expansion might prove useful in approaching this problem. 
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