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ABSTRACT OF THE DISSERTATION 

 
 

Study of Heterogeneity in Multi-Site Functional Connectivity Analysis of Psychiatric 

Disorders 

 

by 
 

 

Alexandra Reardon 

 

Doctor of Philosophy, Graduate Program in Bioengineering 

University of California, Riverside, June 2021 

Dr. Xiaoping Hu, Chairperson 

 

 

Autism Spectrum Disorder (ASD) is a highly heterogeneous developmental 

disorder with diverse clinical manifestations.  Neuroimaging studies have explored 

functional connectivity (FC) of ASD through resting-state functional MRI (fMRI) studies, 

however findings have remained inconsistent, thus reflecting the possibility of multiple 

subtypes.  The Autism Brain Imaging Data Exchange (ABIDE) contains neuroimaging data 

from more than 17 international scanning sites and has become a useful tool in studying 

the brain-behavior relationships of ASD.  However multi-site databases impose site effects 

that confound FC due to the use of different scanning hardware, models, and parameters.   

Although there are established methods to mitigate site effects, these strategies often result 

in reduced effect size in FC features known to be affected in diseased populations.   

In this work, we propose a site-wise de-meaning (SWD) strategy in multi-site FC 

analysis of fMRI and evaluate the performance against two common site effect mitigation 

methods (Generalized Linear Model and ComBat Harmonization).  These methods were 

tested on two multi-site psychiatric consortium: ABIDE and Bipolar and Schizophrenia 

Network on Intermediate Phenotypes.  Preservation of consistent FC alterations in patients 
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were evaluated for each method through the calculation of effect size (Hedge’s g) between 

patients and controls.   The SWD method demonstrated superior performance in preserving 

the effect size in FC features associated with neurodevelopmental and psychiatric disorders 

compared to the original data and commonly used methods.  We then aim to identify the 

relationships between clinical symptoms and FC measures to help clarify the 

inconsistencies in earlier findings and advance our understanding of ASD subtypes.  

Canonical correlation analysis was performed on two-hundred and ten ASD subjects from 

ABIDE to identify significant linear combinations of resting-state connectomic and clinical 

profiles of ASD.  Then, hierarchical clustering defined three ASD subtypes based on 

distinct brain-behavior relationships.   

Overall, we reduce heterogeneity in multi-site fMRI databases and elucidate the 

heterogeneity of ASD clinical manifestations and connectomic profiles.  The reduction of 

site effects and preservation of FC associated with disorders can lead to a better 

understanding of brain connectivity in diseased populations, and identification of distinct 

ASD subtypes may lead to better targeted therapies for individuals.  
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Chapter 1 

 

Background and Significance 

1.1  Overview 

Functional Magnetic Resonance Imaging (fMRI) is a prominent tool used to study the 

brain non-invasively.    FMRI measures the blood oxygen level dependent (BOLD) signal, 

which is an indirect measure of neural activity in the brain (Logothetis et al., 2004).  

Resting-state fMRI, which measures the functional architecture of the brain at rest, has 

been used to increase understanding of neural changes in many disease states, predict 

clinical symptoms, detect neuromarkers in various patient populations, predict control 

versus patient groups, and predict treatment response (Van Horn et al., 2009; Yang et al., 

2020).  

Resting-state fMRI has been used extensively to study both neurodevelopmental 

disorders and psychiatric disorders, such as Autism Spectrum Disorder (ASD), and 

Schizophrenia (SZ).  ASD and SZ affect about 1.85% and 1% of the population 
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respectively (Kahn et al., 2015; Maenner et al., 2020).   These disorders are clinically 

heterogeneous and can manifest themselves in many different ways in individuals.  Large-

scale resting-state fMRI consortiums, such as the Autism Brain Imaging Data Exchange 

(ABIDE), and the Bipolar and Schizophrenia Network on Intermediate Phenotypes (B-

SNIP), have been created to study the brain in patients with these disorders (Di Martino et 

al., 2014; Tamminga et al., 2013).  These databases have elucidated how the functional 

connectivity (FC), or BOLD signal correlation in spatially distinct regions of the brain, is 

associated with clinical symptoms; however inconsistent results have been found across 

studies (see Hull et al., 2016).  While there is heterogeneity associated with the FC findings 

and clinical manifestations of these disorders, there is also heterogeneity imposed by multi-

site databases which are known to introduce site-effects due to the use of different scan 

parameters, protocols, and MRI models (An et al., 2017; Birn et al., 2013; Newton et al., 

2012).  In this dissertation we (1) propose a site-wise de-meaning algorithm to reduce site-

effects in multi-site FC analysis and evaluate it alongside current methods (2) correlate 

symptoms of ASD with FC findings to define three subtypes of ASD, thus proposing 

distinct connectomic profiles that are associated with different clinical manifestations of 

the disorder.  

 

1.2  ASD:  Background 

ASD is a common neurodevelopmental disorder characterized by social and 

communication deficits and restricted and repetitive behaviors (RRBs) (American 

Psychiatric, 2013).  ASD affects approximately 1 in 59 individuals and has increased in 
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prevalence by 15% since 2014 (Baio et al., 2018).  ASD is diagnosed according to the 

Diagnostic and Statistical Manual for Mental Health Disorders, 5th edition;  Persistent 

social interaction and communication deficits and RRBs must be present for an ASD 

diagnosis (American Psychiatric, 2013).  Social communication impairment include 

deficits in nonverbal communication behaviors such as abnormalities in eye contact and 

body language, misunderstanding gestures or facial expressions, and a lack or minimal use 

of facial expressions.  ASD patients often have difficulty understanding social-emotional 

reciprocity, difficulty holding a conversation, and failure to initiate or respond to social 

interactions.  Individuals with ASD often have minimal social relationships and difficulties 

working with peers in a school or work environment.  RRBs include but are not limited to 

repetitive motor movements, insistence on sameness, and highly restricted interests.  This 

can include difficulty deviating from routine, wanting to wear the same clothes every day, 

and fixation on certain topics of interest.  Common examples of repetitive movements are 

body rocking, teeth grinding, and hand flapping (Lewis et al., 2009).  These are often a 

form of self-soothing behavior, however can sometimes range to self-injurious behaviors 

such as head banging or self-biting.   

Another common symptom of ASD is hypersensitivity to sensory input such as 

sound, textures, or visual stimuli (American Psychiatric, 2013).  This can cause extreme 

discomfort and sensitivity to stimuli such as loud noises, bright lights, and certain fabrics.  

There are also a wide range of cognitive abilities exhibited in ASD; While intellectual 

disabilities (generally considered to be an IQ score of below 70) affect approximately 1% 

of the general population, 38% of individuals with ASD also have an intellectual disability, 
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24% of individuals were considered to be on the borderline range in terms of intellectual 

ability, and 38% were considered to be average or above average (Baio, 2012).  

Neuropsychological tests used to test cognitive processes in ASD as compared to healthy 

controls (HCs) have reported deficits in planning, selective inhibitory impairment, the 

inability to generate ideas and behaviors spontaneously, and impairments with cognitive 

flexibility (Poljac et al., 2012)  

There are multiple symptoms associated with ASD and the severity of any of these 

symptoms can vary from requiring support to requiring substantial support.  In order to 

receive an ASD diagnosis the symptoms exhibited must not be better explained by an 

intellectual disability.  ASD is generally considered to vary on a spectrum of symptom 

severity, however it is highly heterogeneous in its clinical symptoms and can manifest itself 

in various different ways in different in people. 

ASD is often comorbid with a number of other psychiatric disorders such as 

epilepsy, depression, anxiety, attention deficit/hyperactivity disorder (ADHD), bipolar 

disorder, intellectual disabilities, and gastrointestinal disorders (Mohammadi et al., 2019).  

ASD co-occurs with one or more other developmental disorder in more than 70% of people 

according to diagnostic interviews (Stadnick et al., 2017).  The most common 

comorbidities are intellectual disabilities, ADHD, and epilepsy (Supekar et al., 2017).  The 

extreme biological and clinical heterogeneity, as well as the common comorbidities that 

have the potential to mask ASD makes it a very difficult disorder to diagnose.  There is no 

definitive laboratory test or objective diagnostic biomarker to diagnose ASD, but rather a 

medical professional looks at the patient’s developmental history and conducts a structured 
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assessment to look for signs and symptoms of ASD.   The Autism Diagnostic Observation 

Schedule (ADOS), and Autism Diagnostic Interview-Revised (ADI-R) are considered to 

be the gold standard ASD assessment measures due to their highest sensitivity and 

specificity (Falkmer et al., 2013).  In the ADOS assessment, a trained clinician observes 

the participant during a series of semi-structured or structured tasks to assess symptoms 

relevant to ASD (Reaven et al., 2008).  In the ADI-R assessment, the individual in question 

is not involved, but rather a trained clinician interviews the individual’s parents or 

caregivers to assess developmental history and clinical signs of ASD (Reaven et al., 2008).  

A combination of both ADOS and ADI-R resulted in a diagnostic accuracy of 80.8% for 

ASD (Falkmer et al., 2013).   

 

1.3  Theories of ASD 

While the cause of ASD is unknown, there are several theoretical risk factors.   Boys 

are four times more likely to be diagnosed with ASD than girls (Maenner et al., 2020).  

There is evidence that ASD is genetic; twin studies estimate the heritability of ASD to be 

between 64% and 91% (Tick et al., 2016).  Advanced maternal and paternal age have also 

been known to increase the risk of ASD diagnosis by 38% and 22% respectively 

(Ratajczak, 2011).  Certain medications used during pregnancy, especially Valproic acid 

which is used to treat epilepsy, has resulted in an increase in the child’s risk of ASD 

(Ratajczak, 2011).   Environmental and diet factors have also been shown to increase the 

risk of ASD; exposure to high levels of mercury increases the rate of ASD by 61%, and 

nutritional deficiencies can lead to changes in neuronal function that can have detrimental 
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effects on learning and behavior (Ratajczak, 2011).  While there is no known cure for ASD, 

certain medications and therapies can reduce the severity of symptoms.  The most effective 

biological therapies with proven benefits are Risperidone, an antipsychotic for treating 

disruptive behaviors, and Aripiprazole, an antipsychotic with benefits for improving the 

irritability associated with symptoms of ASD (Medavarapu et al., 2019).  Studies have 

found that these medications significantly reduce symptoms of hyperactivity, disruptive 

behaviors, stereotyped behavior, and irritability in those with ASD.  However, there are 

potential adverse effects of these medications which include but are not limited to weight 

gain, fatigue, and vomiting.  Behavioral therapies such as Applied Behavioral Analysis, 

Discrete Trail Training, and Verbal Behavioral Intervention, have been shown to have 

proven benefits in reducing the severity of symptoms in ASD (Medavarapu et al., 2019).  

These therapies teach appropriate behaviors, adaptive behaviors, and verbal and 

communication skills.   

There are several other theories of ASD such as the dopamine hypothesis, the 

empathizing-systemizing theory, and the theory of mind hypothesis.  The dopamine 

hypothesis suggests that ASD traits arise from aberrant midbrain dopaminergic signaling 

(Pavăl, 2017).  The midbrain dopaminergic system includes the mesocorticolimbic (MCL) 

circuit and the nigrostriatal (NS) circuit.  The MCL is implicated in behaviors related to 

reward and motivation, while the NS is involved in goal-directed behavior (Chevallier et 

al., 2012; Haber, 2014).  It is therefore believed that MCL dysfunction in ASD results in 

reduced social interactions and experiences, as social interactions are not perceived as 

rewarding.  Therefore, ASD individuals are less likely to seek out social interactions, which 
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can lead to underdeveloped social skills and abilities.  It is also believed that the dopamine 

hypothesis results in RRBs of ASD because the NS circuit regulates stereotyped behaviors, 

and a dysfunction in this circuit could lead to cycles of repeated behaviors (Lewis et al., 

2009).  The empathizing-systemizing theory of ASD hypothesizes that features of ASD lie 

on a dimension of empathizing and systemizing (Baron-Cohen, 2002).  It is believed that 

the social and communication impairments of ASD can be explained by a lower ability to 

empathize (Baron-Cohen et al., 1999; Baron-Cohen et al., 2001a), while RRBs of ASD can 

be explained by a high ability to systemize (Baron-Cohen et al., 2001b; Jolliffe et al., 1997).   

The theory of mind hypothesis posits that individuals with ASD are unable to infer 

the emotions or intentions of others, therefore affecting the ability to interact in 

conventional ways in social settings (Brewer et al., 2017).  Theory of mind is often studied 

using the false-belief task, which is a test that determines if a child is able to differentiate 

between thoughts that they have, with those others might have (Brewer et al., 2017).  Social 

understanding and theory of mind is also investigated using cartoon animation mental 

states test, and inferences of mental states using photographs.  In all of these assessments, 

those with ASD have been shown to perform significantly worse than controls (Baron-

Cohen et al., 1997; Castelli et al., 2002).  While there are clear clinical differences between 

those HCs and those with ASD, the exact mechanism underlying these symptoms remains 

unknown.  
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1.4  Neuroimaging of ASD:  Structural MRI and Diffusion Tensor Imaging 

 Neuroimaging studies have allowed new insights into neuroanatomy and 

physiology in ASD in recent decades.  MRI is beneficial to allow for the underlying brain 

structure and function to be studied non-invasively, in-vivo, with high contrast sensitivity, 

high spatial resolution, and without radiation exposure (Chen et al., 2011).  Structural MRI 

studies have investigated the differences in brain morphology between ASD and HC 

individuals for the past 20 years (Chen et al., 2011).  It has been found that children with 

ASD demonstrate 5-10% abnormal enlargement in grey-matter and white-matter brain 

volumes compared to HCs (Amaral et al., 2008; Courchesne et al., 2001; Sparks et al., 

2002).  Egaas et al., found that juveniles with ASD tend to have significantly smaller 

average size of the corpus callosum than HCs (Egaas et al., 1995), while increased 

amygdala volumes in children with ASD have been reported (Schumann et al., 2004; 

Sparks et al., 2002).  Longitudinal MRI studies have discovered abnormal brain growth 

trajectory in ASD as compared to HCs (Schumann et al., 2010).  More specifically, the 

cerebrum in children with ASD has been found to be enlarged by 2.5 years of age, while 

significant decreases have been observed over time in gray matter volume and cortical 

thickness over time compared to HCs (Hardan et al., 2009). 

 Diffusion Tensor Imaging (DTI) is another neuroimaging technique that assesses 

white matter tract integrity by quantifying water diffusion in voxels (Feldman et al., 2010).  

Water diffusion is typically measured through fractional anisotropy (FA), which measures 

the degree of diffusion through white matter tracts (Feldman et al., 2010).  Studies have 

reported decreased FA in ASD compared to HCs in the corpus callosum (Alexander et al., 
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2007), frontal lobe short range fibers, and brain regions implicated in theory of mind tasks 

(Barnea-Goraly et al., 2004).  This reduced FA in ASD compared to HCs suggests 

abnormalities in the microstructure of these regions, such as aberrant myelination, axonal 

number, diameter, and orientation (Beaulieu, 2002). 

 

1.5  Neuroimaging of ASD:  Task-fMRI 

 Task-fMRI examines the regions that are functionally involved during certain tasks.  

The functional activation of ASD vs HCs in task-fMRI has been explored through theory 

of mind tasks, false-belief tasks, and semantic processing (Harris et al., 2006; Just et al., 

2004; Kana et al., 2015; Knaus et al., 2008; Nijhof et al., 2018).  A theory of mind task-

fMRI in which participants watched a video of two “interacting” shapes identified 

hypoconnectivity in ASD in frontal and posterior regions of interest (ROIs) compared to 

HCs (Kana et al., 2015).  A false-belief task in which participants watched a video of 

various instances of false-beliefs, observed less activation in ASD in the right anterior 

middle temporal pole, which is a region that has been implicated in social cognition, 

emotion recognition, and mentalizing (Nijhof et al., 2018).  Semantic processing tasks have 

reported mixed results, with some studies finding reduced activation in Broca’s area (Harris 

et al., 2006; Just et al., 2004; Kana et al., 2015), an area involved in semantic encoding and 

retrieval (Blumenfeld et al., 2006), and Knaus et al. reporting increased activation in 

Broca’s area during a semantic processing task (Knaus et al., 2008).  The mixed results 

reported in this area could be due to studies involving different ages of participants; the 

studies that reported reduced activation involved adults, while the study that reported 
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increased activation involved adolescents (Knaus et al., 2008).  The aberrant activation 

during these theory of mind, false-belief, and semantic processing tasks could underlie the 

social cognition, mentalizing, and communication difficulties experienced by those with 

ASD.   

The cortical underconnectivity hypothesis of ASD theorizes that impairments in 

communication, language, attention and social interactions may arise from decreased 

connectivity in functionally distinct brain regions (Belmonte et al., 2004; Just et al., 2004; 

Just et al., 2012).  This lower synchronization was reported in frontal and posterior brain 

regions in ASD in a language comprehension task (Just et al., 2004), visuospatial cognition 

task (Damarla et al., 2010), theory of mind (Kana et al., 2015; Mason et al., 2008; Mizuno 

et al., 2011), deictic shifting (Mizuno et al., 2011), inhibition control (Kana et al., 2007), 

and sentence comprehension (Kana et al., 2006).  It is believed that the decreased activation 

observed in ASD between these long-range cortical areas during tasks involved in 

language, cognition, and theory of mind, result in the communication, social, and cognitive 

deficits commonly observed in ASD (Just et al., 2012).     

    

1.6  Neuroimaging of ASD:  Resting-State fMRI 

 Resting-state fMRI measures the modulations in BOLD signal over time while the 

participant is “at rest”, meaning they are instructed to either close their eyes or stare at a 

fixation cross and not think about anything in particular (O'Connor et al., 2019).  This 

allows the spatial and temporal activity of neural systems in the brain to be monitored 

across multiple resting state networks rapidly and non-invasively (O'Connor et al., 2019).  
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Resting-state fMRI is advantageous over task-fMRI in that data acquisition is less complex, 

and can be performed on those unable to participate in a task-fMRI, such as in 

infants/toddlers, sedated, paralyzed, or cognitively impaired patients (O'Connor et al., 

2019).  Several studies have investigated resting-state FC in participants with ASD as 

compared with HCs, however inconsistent and mixed results are frequently reported 

(Doyle-Thomas et al., 2015; Hull et al., 2016; Monk et al., 2009; Washington et al., 2014).   

 Many resting-state fMRI studies support the hypoconnectivity theory of ASD (see 

Hull et al., 2016).  The Default Mode Network (DMN) is the most commonly implicated 

resting state network in ASD, and is the network that is active while a person is awake and 

alert, however it is not active during goal-oriented behavior (Broyd et al., 2009).  The DMN 

consists of both frontal and posterior brain regions including the posterior cingulate cortex, 

precuneus, medial prefrontal cortex, and parietal cortex (Broyd et al., 2009).  

Hypoconnectivity in the DMN has been widely reported in ASD, particularly between 

frontal regions and posterior parietal regions of the DMN (Assaf et al., 2010; Cherkassky 

et al., 2006; Jung et al., 2014; Kennedy et al., 2008; Kennedy et al., 2006; Starck et al., 

2013; Weng et al., 2010; Wiggins et al., 2011).  Multiple studies have also reported that 

the degree of this DMN hypoconnectivity is correlated with the severity of social 

impairments (Assaf et al., 2010; Weng et al., 2010).  Hypoconnectivity has also been 

reported in other networks in ASD such as between the salience network (insula), and the 

medial temporal lobe network (von dem Hagen et al., 2013; Ypma et al., 2016), and also 

in limbic-related regions (Gotts et al., 2012).    
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 While hypoconnectivity has been widely reported in ASD, a number of resting-

state fMRI studies also report hyperconnectivity in ASD (see Hull et al., 2016).  

Hyperconnectivity has been reported between the striatum and the right superior temporal 

gyrus, insular cortex, and pons, as well as between the pons and insular cortex in ASD (Di 

Martino et al., 2011).  Increased connectivity has also been reported in frontostriatal 

connections (Delmonte et al., 2013), in the primary motor cortex (Nebel et al., 2014), and 

between the right posterior temporoparietal junction and the right ventral occipital-

temporal cortex (Chien et al., 2015).  Hyperconnectivity between primary sensory and 

subcortical networks has been associated with overall ASD symptom severity (Cerliani et 

al., 2015).  Increased connectivity within the DMN has also been reported (Anderson, 

2014; Redcay et al., 2013).   

 Some studies have also reported both increased and decreased connectivity of the 

DMN in ASD (Doyle-Thomas et al., 2015; Monk et al., 2009; Washington et al., 2014).  

For example, Monk et al. found hyperconnectivity between the posterior cingulate cortex 

and temporal lobes and right parahippocampal gyrus, and hypoconnectivity between the 

posterior cingulate cortex and superior frontal gyrus in ASD (Monk et al., 2009).  The 

hypoconnectivity of posterior cingulate cortex and temporal lobe was associated with 

social impairments, while the hyperconnectivity of the posterior cingulate cortex and right 

parahippocampal gyrus was correlated with more severe RRBs (Monk et al., 2009).  

Washington et al. reported global hypoconnectivity and local hyperconnectivity within the 

DMN (Washington et al., 2014), while Doyle-Thomas et al. reported both 

hyperconnectivity and hypoconnectivity of the posterior cingulate cortex and other regions 
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of the DMN (Doyle-Thomas et al., 2015).  The inconsistencies in the literature in fMRI 

findings could be a result of the variability of clinical and functional manifestations in 

ASD.   

 

1.7  Subtypes of ASD 

 The heterogeneous nature of ASD, in terms of clinical symptoms, severity and 

inconsistent FC findings points to the possibility of multiple subtypes of ASD.  Multiple 

studies have investigated the possibility of subtypes in ASD, however they defined 

subtypes based on different facets of ASD and have led to inconsistent numbers and 

definitions of subtypes (Easson et al., 2019; Feczko et al., 2018; Georgiades et al., 2013; 

Hong et al., 2018; Hrdlicka et al., 2005).  Georgiades et al. used factor analysis to define 

three subtypes of ASD based on social communication defects and RRBs (Georgiades et 

al., 2013).  Feczko et al. defined three ASD subtypes based on seven cognitive domains:  

spatial working memory, response inhibition, temporal discounting of reward, attentional 

vigilance, facial recognition, facial affect processing, and vocal affect processing (Feczko 

et al., 2018).  Hong et al. defined three subtypes of ASD based on neuroanatomical profiles 

and found that the subtypes differed in cortical thickness, intensity contrast, cortical surface 

area, and geodesic stances between two points (Hong et al., 2018).  Hrdlicka et al. also 

defined three subtypes of ASD based on structural MRI and found that subtypes differed 

in terms of size of substructures of the corpus callosum, amygdala, hippocampus, and 

caudate nucleus (Hrdlicka et al., 2005).  Easson et al. defined two ASD subtypes based on 

resting-state fMRI and found that one subtype was defined by increased within network 
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connectivity and decreased between network connectivity, while the other was defined by 

decreased within network connectivity and increased between network connectivity 

(Easson et al., 2019).  Furthermore, clinical symptom patterns were investigated between 

these two subtypes, however the subtypes did not differ in clinical symptoms or severity.  

The recent work that subtyped ASD based on resting state FC and their clinical profiles 

treated the two dimensions independently (Easson et al., 2019).  However, current literature 

has shown that FC profiles and ASD symptoms co-occur (Assaf et al., 2010; Cerliani et 

al., 2015; Lynch et al., 2013; Monk et al., 2009).  In order to subtype ASD, a large amount 

of ASD data must be utilized in order to capture the heterogeneity of the disorder.  Data 

sharing initiatives such as ABIDE allow for the study and subtyping of ASD by aggregating 

phenotypic, clinical and neuroimaging data. 

 

1.8  ABIDE 

Multi-site consortiums are becoming increasingly common for psychiatric and 

developmental disorders; they increase statistical power, allow for geographic variability, 

capture a wide scope of symptoms, behaviors and neuromarkers that are present in such 

disorders (Lombardo et al., 2019; Van Horn et al., 2009).  Pooled multi-site neuroimaging 

databases exist for ADHD (ADHD-200), SZ (SchizConnect, B-SNIP), Bipolar Disorder 

(B-SNIP), Major Depressive Disorder (SRPBS Multisite Disorder Database), and ASD 

(ABIDE).  The ABIDE I is a consortium of neuroimaging data acquired from 17 

international sites and contains structural MRI data, resting-state fMRI data, DTI data, 

clinical assessments, and phenotypic information of 539 ASD subjects and 573 age-
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matched healthy controls between the ages of 6 and 64 years old (Di Martino et al., 2014).  

Although these big databases are beneficial for studying large sample sizes of patients, 

there are also several limitations in using multi-site consortiums.   

ABIDE data are highly heterogeneous in terms of both clinical and imaging 

features.  On the clinical side, there are different trained professionals gathering clinical 

information at each site, different clinical assessments used (i.e. ADOS, ADI-R, Vineland 

Adaptive Behavioral Scale), and different cut-off Full-Scale IQ scores.  IQs were measured 

with various different classification scales and versions of each scale at each site.  

Additionally, different sample sizes were obtained at each site, and each site used 

individuals of different ages.   

 In terms of imaging heterogeneity, the data was acquired with different MRI 

scanner vendors, different scanner models, different imaging parameters (i.e. repetition 

time (TR), echo time (TE), voxel size, and acquisition time), and different sample sizes 

across sites.  Differing imaging parameters and scanner vendors have been known to have 

an effect on scan reliability and resting-state results (An et al., 2017; Badhwar et al., 2019; 

Birn et al., 2013; Jahanian et al., 2019; Newton et al., 2012; Noble et al., 2017).  This 

variability across sites could result in erroneous imaging markers and decrease the power 

to detect changes in the brain related to ASD (Yu et al., 2018).  

 

1.9  Effects of Parameters on Resting-State fMRI Data 

Acquisition time, voxel size, TR, and TE are all scanning parameters that are known 

to have an effect on resting-state fMRI (Birn et al., 2013; Huotari et al., 2019; Jahanian et 
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al., 2019; Noble et al., 2017; Rane et al., 2014; White et al., 2014).  Noble et al. reported 

that a five minute resting-state scan results in poor test-retest reliability of whole brain 

connectivity (Noble et al., 2017).  Birn et al. determined that increasing resting state fMRI 

scans from 5 to 13 minutes greatly improved the test-retest reliability (Birn et al., 2013).  

However, White et al. reported that at 5-and-a-half-minute scan lengths, component group 

maps of brain networks stabilized in school-aged children (White et al., 2014).  

Additionally, increasing TR led to drastic scan time reductions which enables more 

widespread use of fMRI studies in clinical practices (Jahanian et al., 2019).  Newton et al. 

reported that decreasing voxel size dimensions increased FC correlations in resting state 

scan (Newton et al., 2012), while Rane et al. determined that a short TE of 15ms correlated 

less with group level results than scans acquired at a higher TE of 35ms (Rane et al., 2014).   

Other factors such as preprocessing pipelines, technical imaging approaches, 

temporal SNR, scanner manufacturer, and head motion can also affect resting-state fMRI 

results (An et al., 2017; Aurich et al., 2015; Borchardt et al., 2016; Braun et al., 2012; 

DeDora et al., 2016; Gargouri et al., 2018; Huotari et al., 2019; Liang et al., 2012; 

Satterthwaite et al., 2012; Wu et al., 2011).  Different preprocessing strategies are known 

to significantly change graph theoretical measurements (Aurich et al., 2015), smoothing 

has been found to increase FC estimates (Wu et al., 2011), slice timing applied at a TR of 

2s has been found to significantly increase amplitude of low frequency fluctuations (Wu et 

al., 2011), and filtering has been shown to improve local information transfer among nodes 

(i.e. local efficiency) (Aurich et al., 2015; Borchardt et al., 2016; Braun et al., 2012; 

Gargouri et al., 2018; Liang et al., 2012).  Huotari et al. determined that different spin 
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acquisition approaches yield different connectivity results (Huotari et al., 2019).    

Temporal SNR, which is a measure of timeseries signal stability, was found to be inversely 

correlated with the degree to which an fMRI accurately captures true BOLD fluctuation 

(DeDora et al., 2016).  Studies have found that scanners manufactured by Siemens were 

associated with higher consistency than Philips (An et al., 2017; Badhwar et al., 2019).  In 

addition, individual subject in-scanner head motion has also been found to affect FC  

measures (Satterthwaite et al., 2012; Van Dijk et al., 2012);  Head motion was found to 

increase within-network connectivity in specific seed based brain networks, and increase 

correlation for nodes that are closer together but diminished connectivity of voxels that are 

farther apart (Satterthwaite et al., 2012; Van Dijk et al., 2012).  There are many 

confounding factors associated with multi-site pooling in neuroimaging data, however this 

limitation can be overcome by harmonizing multi-site consortiums to increase 

comparability when using multi-site data.   

 

1.10  Multi-Site Harmonization:  Previous Work 

Multi-site harmonization has been performed using three main methods:  (1) A 

travelling-subject dataset to remove measurement bias associated with different sites 

(Yamashita et al., 2019), (2) Generalized linear model (GLM) harmonization to adjust FC 

values for site differences (Rao et al., 2017), and (3) Combining Batches (ComBat) 

Harmonization.  ComBat was originally used to correct for batch effects in genomic studies 

but has been extended for structural MRI harmonization and resting-state fMRI 

harmonization (Fortin et al., 2018; Johnson et al., 2007; Yu et al., 2018).  In the travelling-
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subject study, they utilized a cohort of subjects that travelled to each site and received 

resting-state scans and quantified the sampling bias and engineering measurement bias 

(Yamashita et al., 2019).  This harmonization technique removed only the measurement 

bias from FC measures which improved signal-to-noise ratios by 40% and reduced 

measurement bias by 29% (Yamashita et al., 2019).  However, utilizing a travelling-cohort 

is costly, time consuming, and was not used at many established multi-site consortiums 

(i.e., ABIDE and B-SNIP), and therefore a post-collection harmonization technique is 

necessary.   

GLM and ComBat report the ability to harmonize multi-site neuroimaging data on 

resting state data post-acquisition (Rao et al., 2017; Yu et al., 2018).  GLM harmonization 

has been used to adjust FC values for site differences, however this method results in 

decreased effect size in FC features known to be affected in diseased populations  (Rao et 

al., 2017).  ComBat extends the GLM method by using site-specific scaling factors and an 

empirical Bayesian criteria to improve the estimation of site parameters (Yu et al., 2018).  

This was able to successfully remove site effects on a total of 240 subjects that were 

scanned on one of four different scanners with homogenized scanning parameters.  

However it is unclear if ComBat harmonized fMRI data preserves the functional brain 

networks associated with psychological disorders (Yu et al., 2018).  Also, it has yet to be 

determined if this method accurately accounts for FC effects imposed by inhomogeneous 

scanning parameters.  

ASD is heterogeneous in terms of clinical manifestations and neuroimaging 

findings.  While the ABIDE data are useful in studying large sample sizes of ASD, this 
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multi-site consortium further contributes to heterogeneity in studying ASD.  It is therefore 

crucial to explore the individual variability of ASD as well as the variability imposed by 

multi-site disorder databases in making this disorder, as well as many others, less elusive.  

 

1.11  Overview of Studies 

ASD is a heterogeneous disorder both in terms of clinical and FC variability.  This 

variability could arise from individual manifestation of ASD in different patients, along 

with different site and scanning factors.  We aim to address heterogeneity in multi-site 

databases by mitigating site-effects in multi-site imaging databases while preserving the 

functional networks associated with neurodevelopmental and psychiatric disorders.  We 

aim to address heterogeneity within ASD by subtyping ASD based on brain-behavior 

relationships.   

In the first study, we propose a site-wise demeaning (SWD) strategy and evaluate 

it along with two common site-effect mitigation methods (GLM, and ComBat) by 

comparing the effect size of consistent FC alterations in group analysis (ASD vs controls, 

and SZ vs controls) in literature.  We first establish the consistent FC differences between 

case groups and control groups in literature, then apply site-effect mitigation methods 

(GLM, ComBat, SWD) to multi-site FC data, and finally compare the effect size of 

established FC findings of the three site-effect mitigation methods. 

 In the second study, we used 210 ASD participants from ABIDE to define three 

ASD subtypes.  Canonical correlation analysis was used to correlate linear combinations 

of FC features with linear combinations of clinical features, which were used as the 
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dimensions for subtyping.  Hierarchical clustering was then used to identify three distinct 

subtypes of ASD.  The subtypes differed significantly in terms of clinical and FC features 

and an SVM classifier was used to verify subtype assignment. 
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Chapter 2 

 

Improved Between-Group Effect Size for Multi-Site 

Functional Connectivity Data via Site-Wise De-Meaning 

 

2.1  Abstract: 

 

Multi-site functional MRI (fMRI) databases are becoming increasingly prevalent 

in the study of neurodevelopmental and psychiatric disorders.  However, multi-site 

databases are known to introduce site-effects that may confound neurobiological measures 

such as functional connectivity (FC).  Although studies have been conducted to mitigate 

site-effects, these methods often result in reduced effect size in FC features known to be 

affected in diseased populations.  We present a site-wise de-meaning (SWD) strategy in 

multi-site FC analysis and compare its performance with two common site-effect 

mitigation methods, i.e., generalized linear model (GLM), and Combining Bathces 
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(ComBat) Harmonization.  For SWD, after FC was calculated and Fisher z-transformed, 

the site-wise FC mean was removed from each subject before group-level statistical 

analysis.  These methods were tested on two multi-site psychiatric consortiums (Autism 

Brain Imaging Data Exchange (ABIDE) and Bipolar and Schizophrenia Network on 

Intermediate Phenotypes (B-SNIP)).  Preservation of consistent FC alterations in patients 

were evaluated for each method through the effect sizes (Hedge’s g) of patients vs. controls.  

For the B-SNIP dataset, SWD improved the effect size between schizophrenic and control 

subjects by 4.5% - 7.9%, while GLM and ComBat decreased the effect size by 22.5% – 

42.6%.  For the ABIDE dataset, SWD improved the effect size between autistic and control 

subjects by 2.9% - 5.3%, while GLM and ComBat decreased the effect size by up to 11.4%.  

The SWD method demonstrated superior performance in preserving the effect size in FC 

features associated with neurodevelopmental and psychiatric disorders compared to the 

original data and commonly used methods.   
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2.2  Introduction 

Neuroimaging has become a powerful tool in studying psychiatric disorders (Peter 

et al., 2018).  Functional magnetic resonance imaging (fMRI) allows for the study of 

aberrant functional connectivity (FC), predictions of normal individuals versus patients, 

early identification of neurological diseases, neuromarkers, and responses to treatment 

(Van Horn et al., 2009).  Many traditional fMRI studies were limited by statistical power, 

since large-scale data is difficult to obtain at a single imaging site due to limited diseased 

population in one geographical location, limited time, and limited funds (Van Horn et al., 

2009).  Multi-site neuroimaging consortiums are becoming increasingly common in 

attempts to capture heterogeneity associated with various disorders, as well as to increase 

geographic variability, sample size, and statistical power (Van Horn et al., 2009).   

While there are many benefits to multi-site consortiums, there are significant 

challenges in combining the data for analysis.  FMRI data from different sites may contain 

scanner and site variability, leading to conflicting results and inferior reliability (An et al., 

2017; Badhwar et al., 2019; Birn et al., 2013; Newton et al., 2012; Rane et al., 2014; Van 

Horn et al., 2009).  Scanner variability can arise from different scanning vendors, scanner 

technology, and field inhomogeneities (Van Horn et al., 2009).  Sites using the same 

scanner vendors and models have been found to introduce different field inhomogeneities 

that have affected the way the data was interpreted (Van Horn et al., 2009).  Additionally, 

different scanner manufacturers are known to have different levels of test-retest reliability.  

It has been reported that Siemen’s scanners have improved consistency than Philips’s 

scanners (An et al., 2017; Badhwar et al., 2019).  In many multi-site consortiums, 
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individual imaging sites utilized different scanning parameters, including repetition time, 

echo time, acquisition time, voxel size, flip angle, field of view, and slice thickness in 

collecting fMRI data.   The use of different scanning parameters has been known to 

influence resting-state fMRI results (Birn et al., 2013; Newton et al., 2012; Rane et al., 

2014).  For example, increasing the acquisition time of scans from five minutes to thirteen 

minutes has been proven to greatly improve the reliability and similarity of functional 

correlations in resting state scans (Birn et al., 2013).  Newton et al., reported that decreasing 

voxel size dimensions increased FC correlations in resting state scans (Newton et al., 

2012), while Rane et al. demonstrated that a short TE (TE = 15ms) in scans led to results 

less correlated with group results than scans acquired at a higher TE (TE = 35ms and TE = 

55ms) (Rane et al., 2014).    

Efforts to reduce site variability have been made through homogenizing scanning 

protocols and/or through site-to-site quality assurance via standardized brain imaging 

phantoms (Yu et al., 2018).  While these methods mitigate some of the variability 

associated with site-effects, in existing multi-site consortiums where data were not 

originally purposed for aggregation, homogenized scanning protocols and imaging 

phantoms were not available.  One study quantified the sampling bias and engineering 

measurement bias of a travelling subject cohort who received resting-state scans at multiple 

imaging sites (Yamashita et al., 2019).  This method was able to remove only the 

measurement bias, therefore improving signal-to-noise ratio.  However, utilizing a 

travelling-cohort is costly, time consuming, and may be impractical with many established 
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multi-site consortiums, and therefore a post-acquisition method to mitigate site-effects is 

desirable.   

Attempts to reduce multi-site consortium variability after acquisition include 

generalized linear model (GLM) and Combining Batches (ComBat) harmonization (Rao et 

al., 2017; Yamashita et al., 2019; Yu et al., 2018).  GLM modifies FC values to account 

for site differences, but important FC features associated with patient groups may be 

compromised after this method (Rao et al., 2017; Yamashita et al., 2019).  ComBat utilizes 

site-specific scaling factors and an empirical Bayesian criterion to shift samples to the 

grand mean and pooled variance across sites (Yu et al., 2018).  It has demonstrated 

effectiveness in small samples of resting-state fMRI data using homogenized scanning 

parameters.  However, it is unclear if ComBat harmonized fMRI data preserves the 

functional networks associated with psychiatric disorders or can accurately account for FC 

effects imposed by heterogeneous scan parameters (Yu et al., 2018).  ComBat also centers 

the FC data of each site to the overall, grand mean of all sites, thus resulting in harmonized 

FC features that lose their original physical meaning (Da-Ano et al., 2020) 

Although some multi-site consortiums may use phantoms or homogenous scanning 

parameters, there is always the possibility that sites will decide to aggregate FC data after 

image acquisition.  There is a great need for a site-effect mitigation method that can be 

applied post-acquisition, on heterogeneous scanning parameters, and that preserves 

functional networks associated with psychiatric disorders.  Examples of such multi-site 

database are the Autism Brain Imaging Data Exchange (ABIDE) and the Bipolar and 

Schizophrenia Network on Intermediate Phenotypes (B-SNIP) (Di Martino et al., 2014; 
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Tamminga et al., 2013).  ABIDE is a consortium of neuroimaging data from Autism 

Spectrum Disorder (ASD) subjects and healthy controls (HC) from 17 international sites, 

while B-SNIP is a consortium of Schizophrenia (SZ), Schizoaffective disorder (SA), 

Bipolar disorder subjects  and HCs from 5 different imaging sites (Tamminga et al., 2013).  

Both databases include sites that utilize different resting-state scanning parameters, 

protocols, and scanner models.  

Here, we describe a site-wise de-meaning (SWD) strategy for multi-site FC analysis 

of fMRI data and compare its performance with two common site-effect mitigation 

methods (generalized linear model (GLM), and ComBat Harmonization).  We (1) establish 

the consistent FC differences between disease groups and control groups in literature, (2) 

apply site-effect mitigation methods (GLM, ComBat, SWD) to multi-site FC data, and (3) 

compare the effect size of established FC findings of the three site-effect mitigation 

methods. 

 

2.3  Materials and Methods 

2.3.1  Datasets 

i. B-SNIP 

Resting-state fMRI data of 317 subjects from 4 sites in B-SNIP with a Diagnostic and 

Statistical Manual, 4th Edition (DSM-IV) SZ diagnosis (n = 149) and the corresponding 

HCs (n = 168) from the same sites were included in this study (Tamminga et al., 2013).  

Demographic information including site, sample size, sex, and age is shown in Table 2.1.  
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Table 2.1.  Demographic information for the SZ and HC subjects from B-SNIP 

Site N % SZ % Male Age (yr) 

Mean ± std 

Baltimore 188 71.3 52.8 38.7 ± 12.7 

Boston 52 65.4 50.0 34.7 ± 11.5 

Dallas 143 59.4 44.1 39.6 ± 11.4 

Hartford 129 705 51.9 33.9 ± 11.3 

 

ii. ABIDE 

Resting-state fMRI data from 850 subjects in ABIDE I with an ASD DSM-IV-TR 

diagnosis (n = 355) and the corresponding HCs (n = 495) from the same sites were used in 

this study (Di Martino et al., 2014; First et al., 2004).  Demographic information including 

site, sample size, sex, age, and mean Full Scale IQ (FIQ) is shown in Table 2.2. 
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Table 2.2.  Demographic information for the ASD and HC subjects from ABIDE   

Site N % ASD % Male Age (yr) 

Mean ± std 

Caltech 23 47.8 78.3 27.1 ± 5.8 

CMU 32 40.6 78.1 26.8 ± 9.8 

KKI 44 25.0 77.3 10.1 ± 1.2 

Leuven 62 46.8 88.7 18.1 ± 5.0 

Ludwig 34 5.9 88.2 25.3 ± 10.3 

NYU 122 43.4 73.0 13.8 ± 5.8 

Olin 36 55.6 86.1 16.8 ± 3.5 

SBL 17 11.8 100 32.7 ± 7.0 

SDSU 24 12.5 70.8 14.1 ± 1.9 

Trinity 35 28.6 100 16.8 ± 3.5 

UCLA 102 54.9 88.2 13.1 ± 2.5 

UMich 129 41.1 81.4 14.2 ± 3.3 

UPitt 56 51.8 85.7 18.8 ± 6.9 

USM 100 57.0 100 22.1 ± 7.7 

Yale 34 17.7 70.6 13.1 ± 2.8 

Abbreviations:  California Institute of Technology (Caltech), Carnegie Mellon 

University (CMU), Full Scale IQ (FIQ), Kennedy Krieger Institute (KKI), Ludwig 

Maximilians University Munich (Ludwig), New York University Langone Medical 

Center (NYU), Olin, Institute of Living at Hartford Hospital (Olin), San Diego State 

University (SDSU), Social Brain Lab (SBL), Trinity Centre for Health Sciences (Trinity), 

University of California, Los Angeles (UCLA), University of Leuven (Leuven), 

University of Michigan (UMich), University of Pittsburgh School of Medicine (UPitt),  

University of Utah School of Medicine (USM), and Yale Child Study Center (Yale). 

 

2.3.2  Image Acquisition 

Imaging data used in this analysis were collected on 3T MRI scanners.  Scan parameters 

for the resting-state fMRI protocols from B-SNIP are summarized in Table 2.3 and scan 

parameters from ABIDE are summarized in Table 2.4.  For each subject, a T1-weighted 

structural image was collected and used for registration to the MNI152 space.  Full details 

for acquisition parameters, informed consent, and site-specific protocols can be found at 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html for ABIDE and http://b-

snip.org/  for B-SNIP (Di Martino et al., 2014; Tamminga et al., 2013). 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://b-snip.org/
http://b-snip.org/
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Table 2.3.  Resting-state fMRI scan parameters for subjects in B-SNIP 

Site Scanner TR 

(ms) 

TE 

(ms) 

Acq. 

Time 

Voxel 

Size  

Number 

of slices  

Flip 

Angle 

(degree) 

Baltimore Siemens Trio 

Tim 

2210 30 5 min 3.4x3.4x3 36 70 

Boston GE Signa 

HDX 

3000  27 5 min 3.4x3.4x4 30 60 

Dallas Philips 1500 27 5 min 3.4x3.4x4 29 60 

Hartford Siemens 

Allegra 

1500 27 5 min 3.4x3.4x5 29 70 

Abbreviations: Acquisition Time (Acq. Time), Echo Time (TE), Repetition Time (TR) 
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Table 2.4.  Resting-state fMRI scan parameters for subjects in ABIDE 

Site Scanner TR 

(ms) 

TE 

(ms) 

Acq. Time 

(min) 

Voxel Size 

(mm) 

Number of 

slices 

Flip 

Angle 

(deg) 

Caltech Siemens 

Trio 

2000 30 5:04 3.5 x 3.5 x 

3.5 

34 75 

CMU Siemens 

Verio 

2000 30 8:06 3 x 3 x 3  28 73 

KKI Philips 

Achieva 

2500 30 6:40 3.59 x 3.59 

x 4  

47 75 

Leuven Philips 

Intera 

1667 33 7:06 3 x 3x 4 32 90 

Ludwig Siemens 

Verio 

3000 30 6:06 3 x 3 x 4 28 80 

NYU Siemens 

Allegra 

2000 15 6:00 3.75 x 3.75 

x 3.8 

33 90 

Olin Siemens 

Allegra 

1500 27 5:15 2.75 x 2.75 

x 2.72 

29 60 

SBL Philips 

Intera 

2200 30 7:28 3.44 x 3.44 

x 3.4 

38 80 

SDSU GE 

MR750 

2000 30 6:10 3.13 x 3.13 

x 4.5 

34 90 

Trinity Philips 

Achieva 

2000 28 5:06 3 x 3 x 3.5 38 90 

UCLA Siemens 

Trio 

3000 28 6:06 3 x 3 x 4 34 90 

UMich GE 

Signa 

2000 30 10:00 3.44 x 3.44 

x 3 

40 90 

UPitt Siemens 

Allegra 

1500 25 5:06 3.1 x 3.1 x 4 29 70 

USM Siemens 

Trio 

2000 28 8:06 3.4 x 3.4 x 3 40 90 

Yale Siemens 

Trio 

2000 25 6:50 3.4 x 3.4 x 4 34 60 

Abbreviations:  Acquisition time (Acq. Time), California Institute of Technology 

(Caltech), Carnegie Mellon University (CMU), degree (deg), Echo time (TE), Field of 

view (FOV), Kennedy Krieger Institute (KKI), Ludwig Maximilians University Munich 

(Ludwig), New York University Langone Medical Center (NYU), Olin, Institute of 

Living at Hartford Hospital (Olin), Repetition time (TR),  San Diego State University 

(SDSU), Social Brain Lab (SBL), Trinity Centre for Health Sciences (Trinity), 

University of California, Los Angeles (UCLA), University of Leuven (Leuven), 

University of Michigan (UMich), University of Pittsburgh School of Medicine (UPitt),  

University of Utah School of Medicine (USM), Yale Child Study Center (Yale). 
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2.3.3  Preprocessing  

The resting-state fMRI data was preprocessed using the Connectome Computation 

System pipeline (Zuo et al., 2013). Steps included slice time correction, motion correction, 

skull stripping, global mean intensity normalization, nuisance signal regression, band pass 

filtering (0.01-0.1 Hz), and registration of the resting-state fMRI image to the T1-weighted 

image, followed by a transformation to standard space (Zuo et al., 2013).  The resting state 

fMRI data was then parcellated into 200 regions of interest (ROIs) (Craddock et al., 2012).   

 

2.3.4  Functional Connectivity Matrices and Parcellation 

Pearson’s correlation coefficient was used to ascertain the FC of each region of 

interest (ROI) pair, resulting in a 200×200 FC matrix for each subject.  Each correlation 

coefficient was Fisher z-transformed, then linear regression was used to regress out age, 

sex, and site covariates to ensure that these confounding variables did not affect results.   

 

2.3.5  Established FC Differences in Diagnostic Groups 

The most common resting-state FC findings between patient and control groups 

was determined by performing a literature review in PubMed to identify relevant studies 

published within the last 15 years for FC differences between SZ and HCs (keywords: SZ, 

FC, resting-state, functional MRI) and for FC differences between ASD and HCs 

(keywords:  ASD, FC, resting-state, functional MRI).  
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2.3.6  Comparison of Methods 

We compared the effect size of FC differences between patients and for the following 

methods: (1) GLM, (2) ComBat (Johnson et al., 2007), and (3) SWD. 

i. GLM 

After Fisher z-transforming the FC data, multiple linear regression with terms for age, 

sex, and site was performed in MATLAB.  The regression model can be written as 

yijv= αv+Xij
Tβv+𝜀𝑖𝑗𝑣 

where αv is the average connectivity value for a particular connectivity value (v), Xij
T is the 

design matrix for the covariates (age, sex, site) for every site (i), and subject (j), and βv is 

the vector of regression coefficients corresponding to Xij
T.   The removal of site-effects is 

done by subtracting the estimated site-effects  

yijv
GLM= yijv − αv − Xij

Tβv 

ii.  ComBat 

FC values were Fisher z-transformed and a multivariate linear mixed effects regression 

with terms for biological variables and scanner were used to model FC (Yu et al., 2018).  

The ComBat harmonization model can be written as:   

yijv= αv+Xij
Tβv+γiv+δivεijv 

where αv is the average connectivity value for a particular connectivity value (v), XT
ij is a 

design matrix for the covariates of interest (age, sex, and diagnostic group) for every 

subject (j), βv is a vector of regression coefficients corresponding to XT
ij, γiv and δiv are 

the additive (or location parameter) and multiplicative (or scale parameter), respectively, 
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of site-effects of site i for connectivity value v (Yu et al., 2018).  ComBat was performed 

in MATLAB and the adjusted FC values are given by:     

yijv
ComBat=

yijv−αv̂−Xij
Tβv̂−γiv

*

δiv
* +αv̂+Xij

Tβv̂                 

 

where γiv
*  and δiv

*  are the empirical Bayes estimate of the additive (or location parameter) 

and multiplicative (or scale parameter), respectively, of site-effects of site i for connectivity 

value v (Yu et al., 2018).   Age and sex effects were then regressed out of the ComBat 

harmonized FC data.   

 

iii.  SWD 

The Fisher z-transformed data with age and sex regressed out is referred to in the 

algorithm as FC.  A single overall mean value for each site was determined by averaging 

all FC values for every subject in each site.  The mean value was then subtracted from each 

FC feature for every subject. 

Algorithm 

Input:  Fisher z-transformed functional connectivity data (FC), 

number of subjects (N), number of FC values (n), site means (SM)  

Output:  SWD FC data (FCSWD) 

 

For:  i = 1:N 

     For:  j = 1:n 

          FCSWD(i, j) = FC(i, j) – SM(i) 

     End 

End 
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2.3.7  Effect Size 

To evaluate how each method affects FC measures, Hedge’s g was used to 

calculate the effect size of consistent FC alterations in group analysis (ASD vs HCs and 

SZ vs HCs) for (1) original data with sex and age regressed out, (2) GLM, (3) ComBat 

harmonized data, and (4) SWD.  It is suggested that 0.2 is considered to be a small effect 

size, 0.5 represents a medium effect size and 0.8 represents a large effect size (Hedges et 

al., 1985).  

 

2.4  Results 

2.4.1  Consistent FC Alterations 

i.  HC vs SZ Literature Review Findings 

Hypoconnectivity, specifically in the medial prefrontal cortex (MPFC), as well as 

between the MPFC and the anterior cingulate cortex (ACC) (Figure 2.1), was the most 

common resting state finding in SZ.  Further information regarding the literature findings 

on hypoconnectivity within MPFC and between MPFC and ACC can be found in Table 

2.5 and 2.6, respectively.   
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Table 2.5.  Resting state fMRI studies finding within MPFC hypoconnectivity in SZ 

participants.   

Author n 

(HC/SZ

) 

Age 

mean(std) 

(HC/SZ) 

N 

femal

e (HC 

/ SZ)  

Analysis 

Method 

B-

SNI

P 

SZ 

participant 

info 

Bluhm et 

al. (2007) 

17 / 17  30.94(12.60)

/ 

33.54(13.77) 

3 / 3 Seed No 15 paranoid SZ 

/ 2 

undifferentiate

d SZ 

Chen et al. 

(2017) 

20 / 20  41.6(13.6)/ 

40.3(13.8) 

13 / 

11 

Local FCD No SZ only 

Cole et al. 

(2011) 

22 / 23 37.18(7.59)/ 

36.54(9.36) 

6 / 5 Seed No SZ only  

Du et al. 

(2016) 
82 / 82 37.7(10.8)/ 

38.0(14.0) 
19 / 

17 

ROI  No  SZ only 

Fang et al. 

(2018) 

22 / 20 24.3(4.8)/ 

24.2(4.8) 

10 / 

13 

Seed/ROI 

(Effective 

Connectivity

) 

No FES 

Guo et al. 

(2014) 

50 / 49 23.48(2.49)/ 

22.69(4.62) 

27 / 

19 

Network 

Homogeneit

y  

No SZ only 

He et al. 

(2013) 

113 /115 26.61(8.9)/ 

25.36(8.2) 

56 / 

62 

fALFF No FES 

Huang et 

al. (2010) 

66 / 66 24.5(8.6)/ 

24.2(8.4) 

36 / 

36 

ALFF No FES 

(Treatment 

naïve) 

Su Lui et 

al. (2010) 

34 / 34 25.0(8.0)/ 

24.6(8.5) 

21 /21  ICA No FES 

(Treatment 

naïve) 

Meda et 

al. (2012) 

324 /296 35.2(13.4)/ 

34.9(12.2) 

144 / 

97 

ICA Yes SZ only 
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Abbreviations:  Amplitude of Low Frequency Fluctuations (ALFF), Blood Oxygenation 

Level Dependent (BOLD), First Episode Schizophrenia (FES), Fractional Amplitude of 

Low Frequency Fluctuations (fALFF), Functional Connectivity Density (FCD, 

Independent Component Analysis (ICA), Probabilistic ICA (pICA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mingoia et 

al. (2012) 

25 / 25 29.1(8.6)/ 

30(7.3) 

10 / 8  pICA No  SZ only 

Mwansisy

a et al. 

(2013) 

33 /41 24.52(6.33)/ 

23.88(5.85) 
17 / 16 Seed No FES 

Ongür et 

al. (2010)  

15 / 14 37.9(9.5)/ 

42.3(9.5) 

6 / 6 ICA No SZ and SA  

Su et al. 

(2013) 

25 / 25 42.5(9.9)/ 

42.5(9.9) 

13 /13 Seed No SZ only 
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Table 2.6.  Resting state fMRI studies finding MPFC to ACC hypoconnectivity in SZ 

participants.     

Author n 

(HC/SZ) 

Age 

mean(std) 

(HC/SZ) 

N 

Female 

(HC/AS

D) 

Analysis 

Method 

B-

SNI

P  

SZ 

participant 

info 

Alonso-Solís 

et al. (2015) 
20 / 19 37.75(7.4) 

/40.05(8.9

) 

7 / 6 Seed No Auditory 

hallucinatin

g SZ 

participants 

Anticevic et 

al. (2015) 
56 / 73 31.25 

(10.3) / 

32.99 

(10.9) 

32 / 24 Seed No SZ only 

Camchong et 

al. (2009) 

29 / 29 41.1(10.6) 

/ 

41.3(9.28) 

11 / 11 ICA/ ROI No SZ only 

Fang et al. 

(2018) 

22 / 20 24.3(4.8) / 

24.2(4.8) 

10 / 13 Seed/ROI 

(Effective 

Connectivit

y) 

No FES 

Holt et al. 

(2011) 
17 / 18 40(12.5) / 

35.9(13.7) 
6 / 6 Seed No SZ only 

Hoptman et 

al. (2014) 

31 / 33 38.6(9) / 

38.2 

(10.4) 

9 / 6  Seed No SZ and SA 

Jang et al. 

(2011) 
16 /16 22.06(1.6

5) / 

21.32(5.6

5) 

7 /7 Seed 

 

No Genetic 

high risk 

for SZ  

Kyriakopoul

os et al. 

(2012) 

20 / 25 16.3(2.1) / 

16.1(2.5) 
8 /11 Seed No EOS 

 

Li et al. 

(2019) 

2567/258

8 

31.17  /31 1168 / 

1092 

ICA No  SZ only 

Meta-

Analysis 

S. Lui et al. 

(2015) 
59 / 37 38(17) / 

36(14) 
33 / 15 ALFF Yes SZ only 

Meda et al. 

(2014) 

324 /296 35.2(13.4) 

/ 

34.9(12.2) 

144 / 97 ICA Yes SZ only 
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Abbreviations:  Amplitude Low Frequency Fluctuations (ALFF), Early onset 

Schizophrenia (EOS), First Episode Schizophrenia (FES), Independent Component 

Analysis (ICA), Schizoaffective Disorder (SA), Schizophrenia (SZ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Penner et al. 

(2016) 

24 / 24  23.8(4.3) / 

23.2(4.2) 

12 / 3 Seed No SZ only 

Zhou et al. 

(2015) 

10 / 91 33.3(10.5) 

/ 33.9(7.7) 

55 / 40 Seed No SZ only 
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Figure 2.1.  FC features associated with SZ.  Medial Prefrontal Cortex (MPFC), Anterior 

Cingulate Cortex (ACC). 

 

 

ii. ASD Findings  

The hypoconnectivity hypothesis of ASD posits that behavioral features of ASD arise 

from reduced neural connections in the brain (Just et al., 2012).  The most common resting 

state fMRI finding regarding ASD FC was anterior-posterior DMN hypoconnectivity (see 

Hull et al., 2016).  More specifically, our literature review resulted in eighteen studies 

reporting hypoconnectivity between the posterior cingulate cortex (PCC)/precuneus and 

the MPFC (Figure 2.2; Table 2.7).  Hypoconnectivity between the MPFC in the frontal 

lobe and MTG of the temporal lobe was the second most common finding in the ASD 

literature (Figure 2.2; Table 2.8).   
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Table 2.7.  Resting state fMRI studies of the primary FC feature of ASD finding MPFC 

to PCC hypoconnectivity compared to HCs.    

Author N 

(HC/ASD

) 

Age 

mean(std) 

(HC/ASD) 

N female 

(HC/ASD)  

Analysis 

Method 

ABID

E 

ASD 

participan

t info 

Abbott et 

al. (2016) 

38 / 37 13.0(2.6) / 

13.9(2.6) 

8 / 5 iFC  No ASD only 

Assaf et 

al. (2010) 

15 / 15  17.1(3.6) / 

15.7(3.0) 

2 /1 ICA No HFA 

Cherkassk

y et al. 

(2006) 

57 / 57 24(9.0) / 

24(10.6) 

5 / 4 ROI  No HFA 

Doyle-

Thomas et 

al. (2015) 

44 / 71 12.2(3.8) / 

12.3(3.1) 

0 / 0  Seed  No ASD  

Eilam-

Stock et 

al. (2014) 

15 / 17 27.1(8.2) / 

26.1(6.5) 

NA Seed No HFA(12), 

ASP(5) 

Falahpour 

et al. 

(2016) 

76 / 76 64(12) / 

62(14) 
12/9 iFC Yes ASD 

Falahpour 

et al. 

(2016) 

32 / 32 13.5(2.7) / 

14.3(2.4)  

5 / 4 SD-iFC  No ASD 

Joshi et al. 

(2017) 

16 / 15 21.9(3.5) / 

21.6(3.7) 

0 / 0  Seed No HFA 

Jung et al. 

(2014) 

21 / 19 24.8(4.3) / 

25.3(6.9) 

0 / 0  Seed No  HFA 

Jones et 

al. (2010) 

20 / 17 17.1(2.1) / 

16.1(2.6) 

0 / 0  Seed No HFA 

Lee et al. 

(2016) 

517 / 458 16.5(7.3) / 

16.2(7.4) 

90 / 54 FCD Yes ASD/ 

ASP/ 

PDD-NOS 

Liu et al. 

(2020) 

548 / 506 16.86(7.55) 

/ 

16.59(8.05) 

95 / 60 Seed Yes ASD/ 

ASP/ 

PDD-NOS 

Long et al. 

(2016) 

64 / 64 Child 

Cohort:  

9.3(1.5)/9.6

(1.0) 

10 / 10  Seed Yes ASD/ 

ASP/ 

PDD-NOS 
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Adolescent 

Cohort: 

14.5(1.9)/13

.7(1.8)  

Adult 

Cohort: 

25.5(4.2)/25

.4(5.9) 

Maximo 

et al. 

(2013) 

29 / 29 13.5(2.2) / 

13.8(2.4) 

7 / 4 ReHo No  HFA 

Monk et 

al. (2009) 

 

12 / 12 27(6.1) / 

26(5.9) 

2 / 1 

 

Seed  No ASD (7) / 

ASP(3) 

and PDD-

NOS(3) 

Murdaugh 

et al. 

(2012) 

14 / 13 22.6(4.2) / 

21.4(3.9) 
0 / 0  Seed No HFA 

Washingt

on et al. 

(2014) 

24 /24 10.08(3.17) 

/ 

10.88(2.27) 

3 / 3 ICA/ ROI No ASD only 

Weng et 

al. (2010) 

15 /16  16(1.44) / 

15(1.45) 

2 / 1 Seed  No ASP(2), 

PDD-

NOS(8), 

ASD(6) 

Yerys et 

al. (2015) 

22 /22 11.37(1.56) 

/ 

11.41(1.51) 

4 / 4 Seed  No ASD 

Abbreviations:  Asperger’s (ASP), Functional Connectivity Density (FCD), High 

Functioning Autism (HFA), Independent Component Analysis (ICA), Intrinsic 

Functional Connectivity (iFC), Pervasive Development Disorder-Not Otherwise 

Specified (PDD-NOS), Region of Interest (ROI), Regional Homogeneity (ReHo), 

Standard deviation of the sliding window correlation (SD-iFC) 
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Table 2.8.  Resting state fMRI studies for the secondary FC feature of ASD finding 

MPFC – MTG hypoconnectivity for ASD participants.  

 

Abbreviations:  Asperger’s (ASP), High Functioning Autism (HFA), Independent 

Component Analysis (ICA), Pervasive Development Disorder-Not Otherwise Specified 

(PDD-NOS), Region of Interest (ROI), Regional Homogeneity (ReHo) 

 

 

Author N 

(HC/ASD

) 

Age 

mean(std) 

(HC/ASD) 

N female 

(HC/ASD

)  

Analysis 

Method  

ABIDE ASD 

participan

t info 

Borràs-

Ferrís et 

al. (2019) 

74 / 74 Child 

Cohort 

10.63(0.86) 

Adolescent 

Cohort:  

14.35(1.77) 

0 / 0  ROI Yes  ASD only 

Cheng et 

al. (2015) 

509 / 418 16.4(7.08)/ 

17.17(7.97) 

85 / 51 ROI Yes ASD/ASP/

PDD-NOS 

von dem 

Hagen et 

al. (2013) 

24 / 15 25(6) / 

30(8) 

0 / 0 Seed/ 

ICA 

No HFA(2) / 

ASP(13) 

Hahamy 

et al. 

(2015) 

73 / 68 25.82(0.79) 

/ 26.6(0.77) 

14 / 6 Seed Yes HFA 

Iidaka 

(2015) 

328 / 312 12.9(3.0) / 

13.2(3.1) 
61/ 39 ROI Yes ASD 

Liu et al. 

(2020) 

548 / 506 16.86(7.55) 

/ 

16.59(8.05) 

95 / 60 Seed Yes ASD/ 

ASP/ 

PDD-NOS 

Murdaugh 

et al. 

(2012) 

14 / 13 22.6(4.2) / 

21.4(3.9) 
0 / 0  Seed No HFA 

Paakki et 

al. (2010) 

27 / 28 14.49(1.51)

/14.58(1.62

) 

9 / 8 ReHo No ASD 

(9)/ASP(19

) 
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Figure 2.2.  FC features associated with ASD.  Medial prefrontal cortex (MPFC), Posterior 

Cingulate Cortex (PCC), Medial Temporal Gyrus (MTG). 

 

2.4.2  Effect Size  

i.  SZ 

Hedge’s g was used to calculate the effect size of SZ vs HCs for the primary and 

secondary FCs depicted in Figure 2.1 for (1) the original data, (2) GLM, (3) ComBat, and 

(4) SWD.  For the primary FC feature, a seed region for the MPFC (center of mass MNI 

coordinates 1.4, 55.9, -7.2; volumes: 193), and a seed region for the ACC (center of mass 

MNI coordinates 1.6, 33.3, 24.3; volumes: 297) was used for the effect size calculation 

(Figure 2.1).  For the secondary FC feature (within MPFC FC), two seed regions in the 

prefrontal cortex were used, MPFC (center of mass MNI coordinates 1.4, 55.9, -7.2; 

volumes: 193) and MPFC (center of mass MNI coordinates -9.1, 46.4, 40.6; volumes: 206) 

to calculate the effect size (Figure 2.1).  For the primary FC feature, the effect size 
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decreased compared to the original data for GLM (42.6% decrease), and ComBat (22.5% 

decrease), and increased for SWD (4.5% increase) (Table 2.9).  For the secondary FC 

feature (within MPFC FC), the effect size decreased compared to the original data for GLM 

(40% decrease) and ComBat (23.9% decrease) and increased for SWD (7.9% increase) 

(Table 2.9). 

Table 2.9.  Effect size (Hedge’s g) comparison between SZ and HCs for the primary FC 

feature (within MPFC), and for the secondary FC feature (MPFC and ACC) for the original 

FC data, GLM, ComBat, and SWD.  

 Original  GLM %change ComBat %change  SWD  %change 

Within 

MPFC 

0.3069 0.1761 -42.6% 0.2379 -22.5% 0.3206 4.5% 

MPFC 

- ACC 

0.2046 0.1228 -40.0% 0.1557 -23.9% 0.2207 7.9% 

 

ii. ASD 

Hedge’s g was used to calculate the effect size of ASD vs HCs for the primary and 

secondary FC features depicted in Figure .22 for (1) the original data, (2) GLM, (3) 

ComBat, and (4) SWD.  For the primary FC feature, a seed region for the MPFC (center 

of mass MNI coordinates 10.7, 63.0, 10.0; volumes: 202) and PCC/precuneus (center of 

mass MNI coordinates: 1.5, -52.8, 14.8; volumes: 231) was used for effect size calculation 

(Figure 2.2).  The effect size decreased compared to the original data for GLM (7.5% 

decrease) and increased for ComBat (5.1% decrease) and SWD (5.3% increase) for the 

primary FC feature (Table 2.10).  For the secondary FC feature (frontal pole to temporal 

lobe FC), a seed region in the frontal pole (center of mass MNI coordinates 1.4, 55.9, -7.2; 

volumes: 193) and temporal lobe (center of mass MNI coordinates 55.1, -3.6, -25.4; 

volumes: 201) were used to calculate the effect size (Figure 2.2).  The effect size decreased 
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compared to the original data for GLM (11.4% decrease) and ComBat (1.3% decrease), 

and increased for SWD (2.9% increase) for the secondary FC feature (Table 2.10).   

Table 2.10.  Effect size (Hedge’s g) comparison between ASD and HCs for the primary 

FC feature (MPFC and PCC/precuneus), and for the secondary FC feature (MPFC and 

MTG) for the original FC data, GLM, ComBat, and the SWD method.  The percent change 

columns indicate the percent increase/decrease between each method and the original data.   

 Original GLM %change ComBat %change SWD %change 

MPFC– 

PCC 

0.2634 0.2436 -7.5% 0.2769 5.1% 0.2773 5.3% 

MPFC  – 

MTG 

0.4892 0.4334 -11.4% 0.4829 -1.3% 0.5034 2.9% 

 

2.5  Discussion 

Previously introduced methods to reduce fMRI site-effects associated with multi-site 

disorders result in the loss of effect size associated with psychiatric or neurodevelopmental 

disorders.  The SWD method reduced site-effects in large sample sizes in multi-site 

databases with heterogeneous scan parameters, while improving the effect size of FC 

features associated with ASD and SZ compared to previous site-effect mitigation methods.  

This simple method is computationally inexpensive, is applicable to multi-site consortiums 

post-acquisition, and can be applied to various other multi-site fMRI databases.   

 

2.5.1  Preservation of Functional Networks Associated with ASD and SZ 

ComBat has been proposed to mitigate site-effects in small sizes, when using 

homogeneous scanning parameters, however it is unknown if it can accurately account for 

site-effects imposed by heterogeneous scan parameters and whether it can preserve the 

functional networks associated with psychiatric disorders (Yu et al., 2018).  ComBat also 
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centers the FC data of each site to an overall grand mean, thus resulting in harmonized FC 

features that lose their meaning (Da-Ano et al., 2020; Yu et al., 2018).  In addition, GLM 

may diminish the measurable disease effects when applied to FC data (Yamashita et al., 

2019).  Therefore, a method is needed to reduce site-effects while maintaining the FC 

effects present in psychiatric and neurodevelopmental disorders.   

  Hypoconnectivity in SZ has been widely reported and is associated with symptoms of 

SZ (Cole et al., 2011; Du et al., 2016; Fang et al., 2018; Mwansisya et al., 2013), while 

DMN anterior-posterior connectivity in ASD has also been widely reported and has been 

found to be predictive of clinical symptoms of ASD (Assaf et al., 2010; Weng et al., 2010; 

Yerys et al., 2015).  GLM resulted in a reduction of the effect size of these features by up 

to 42.6% and ComBat resulted in a reduction of the effect size of these features up to 23.9% 

in patients vs. control subjects.  By de-meaning multi-site FC data, we removed site-effects 

and improved the effect size by 2.9% - 7.9% for patients vs. control subjects in the 

established FC features in both disorders compared to the original data. 

The superior performance of SWD compared to GLM may be due to better 

generalizability and removal of overall site-effects in site de-meaning.  In sites with 

unequal cohort sizes, GLM may introduce a diagnostic group bias.  In addition, while 

diagnostic group is a covariate used in ComBat, the FC values are shifted to an overall 

mean, which can result in the loss of important diagnostic group information.   

 

2.5.2  Limitations and Future Work 

 

While there are advantages with SWD, there are several limitations as well.  First, while 

there are many reports of hypoconnectivity in SZ and ASD, there is no conclusive ground 
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truth fMRI neuromarker for either disorder.  In addition, while we postulate that this 

method could be utilized on multiple multi-site databases with various other disorders, this 

has only been tested on two multi-site consortiums with two different disorders.  Therefore, 

more extensive testing is needed.   

 

2.6  Conclusion 

 We introduce a site-size demeaning method for reducing site effects in multi-site 

studies and compared it with two existing methods.  The SWD method improved the effect 

size across these features in two multi-site disorder databases as compared to the original 

data and previously used harmonization methods (ComBat and GLM).   
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Chapter 3 

 

Subtyping Autism Spectrum Disorder via Joint 

Modeling of Clinical and Connectomic Profiles 

3.1  Abstract 

Autism Spectrum Disorder (ASD) is a highly heterogeneous developmental 

disorder with diverse clinical manifestations.  Neuroimaging studies have explored 

functional connectivity (FC) of ASD through resting-state functional MRI studies, 

however the findings have remained inconsistent, thus reflecting the possibility of multiple 

subtypes.  Identification of the relationship between clinical symptoms and FC measures 

may help clarify the inconsistencies in earlier findings and advance our understanding of 

ASD subtypes.  Canonical correlation analysis was performed on two-hundred and ten 

ASD subjects from the Autism Brain Imaging Data Exchange to identify significant linear 

combinations of resting-state connectomic and clinical profiles of ASD.  Then, hierarchical 
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clustering defined ASD subtypes based on distinct brain-behavior relationships.  Finally, a 

support vector machine classifier was used to verify that subtypes were comprised of 

subjects with distinct clinical and connectivity features.  Three ASD subtypes were 

identified.  Subtype 1 exhibited increased intra-network FC, increased IQ scores and 

restricted and repetitive behaviors.  Subtype 2 was characterized by decreased whole-brain 

FC and more severe ADI-R and SRS symptoms.  Subtype 3 demonstrated mixed FC, low 

IQ scores, as well as social motivation and verbal deficits.  To verify subtype assignment, 

a multi-class support vector machine using connectomic and clinical profiles yielded an 

average accuracy of 71.3% and 65.2% respectively for subtype classification, which is 

significantly higher than chance (33.3%).  The present study demonstrates that combining 

connectomic and behavioral measures is a powerful approach for disease subtyping and 

suggests that there are ASD subtypes with distinct connectomic and clinical profiles.   
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3.2  Introduction 

Autism Spectrum Disorder (ASD) is a heterogeneous disorder characterized by 

deficits in social communication and social interaction, as well as restricted and repetitive 

behaviors (RRBs) (American Psychiatric, 2013).  The symptoms and severities of ASD 

vary widely; social communication deficits range from nonverbal ASD to difficulty 

interacting and relating to others, while RRBs range from self-stimming behaviors to 

intense and restricted focus (American Psychiatric, 2013).  In addition, there is variation in 

cognitive impairments implicated in the disorder; ASD is comorbid with intellectual 

disabilities 50-80% of the time (Simonoff et al., 2008), while approximately 44% of 

individuals with ASD have IQ scores in the average to above average range (Maenner et 

al., 2020).  The underlying brain connectivity associated with the deficits in ASD behavior 

and cognition is not fully understood.   

Resting-state functional connectivity (FC) patterns are predictive of clinical 

symptoms in ASD (Plitt et al., 2015).  The default mode network (DMN) is the most highly 

implicated network in ASD and plays a role in social functions, mentalizing, and theory of 

mind (Padmanabhan et al., 2017).  To date, no consistent pattern of aberrant FC in ASD 

has emerged in the literature (see Hull et al., 2016).  Studies reporting hyperconnectivity 

across brain networks, including the DMN, have suggested hyperconnectivity is associated 

with RRB severity (Dupong et al., 2020; McKinnon et al., 2019; Monk et al., 2009; Uddin 

et al., 2013a).  However, other studies have indicated that hypoconnectivity across brain 

regions is predictive of RRB severity (Assaf et al., 2010; Weng et al., 2010).  In addition, 

several studies have found anterior-posterior hypoconnectivity involving regions of the 
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DMN in ASD, and the degree of hypoconnectivity was predictive of severity of social 

impairments (Assaf et al., 2010; Weng et al., 2010; Yerys et al., 2015).  

The heterogeneity of FC patterns in ASD has led to the development of several 

competing neurodevelopmental models of ASD.  These theories include the 

hypoconnectivity hypothesis (Just et al., 2012), aberrant within- and between-network 

connectivity (Lynch et al., 2013; Monk et al., 2009; Yerys et al., 2015), abnormal local and 

long distance connections (Anderson et al., 2011; Belmonte et al., 2004), and age-related 

changes in connectivity (Uddin et al., 2013b).  The heterogeneity in clinical presentation 

and neurodevelopmental models of ASD may indicate that there are ASD subtypes with 

distinct clinical and FC patterns.  

A few studies have explored ASD subtypes based on 1) structural MRI (Hong et 

al., 2018; Hrdlicka et al., 2005), 2) cognitive lab tasks (Feczko et al., 2018), 3) common 

symptoms of ASD (Georgiades et al., 2013), and 4) resting-state functional MRI (fMRI) 

(Easson et al., 2019).  The recent work that subtyped ASD based on resting-state FC and 

their clinical profiles treated the two dimensions independently (Easson et al., 2019).  

However, current literature has shown that FC profiles and ASD symptoms co-occur (Assaf 

et al., 2010; Lynch et al., 2013; Monk et al., 2009).  Here, we present an alternative 

approach to subtype ASD using canonical correlation analysis (CCA) to examine 

dimensions of connectomic patterns and associated clinical profiles, aiming to elucidate 

the complex and heterogeneous nature of ASD.   

CCA is a multivariate statistical method to identify correlations between two sets 

of variables (Hotelling, 1992).  It has been used to identify linear combinations of 
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connectivity features that were correlated with a linear combination of clinical features in 

psychiatric disorders (Drysdale et al., 2017; Xia et al., 2018).  Xia et al. linked dimensions 

of psychopathology with specific FC profiles, and Drysdale et al. identified linear 

combinations of connectivity features with major depressive disorder symptoms using 

CCA (Drysdale et al., 2017; Xia et al., 2018).  Inspired by the above studies, we applied 

CCA to identify the association of brain-behavior profiles and then used hierarchical 

clustering to define subtypes with specific patterns of FC and clinical symptoms.  Finally, 

we use a multiclass support vector machine (SVM) classifier with 5-fold cross validation 

to verify subtype assignment by predicting which subtype each subject belongs to using 

their FC and clinical profiles.   

 

3.3  Materials and Methods 

3.3.1  Dataset 

Resting-state fMRI data and corresponding phenotypic information from the Autism 

Brain Imaging Data Exchange (ABIDE), an open-access consortium of neuroimaging data 

from more than 24 international scanning sites (Di Martino et al., 2014), were used in this 

analysis.  Two hundred and ten ASD subjects from seven sites (ETH Zurich, Georgetown 

University, Kennedy Krieger Institute, New York University Langone Medical Center 

Sample 1, New York University Langone Medical Center Sample 2, San Diego State 

University, and Trinity Center for Health Sciences) with resting-state fMRI data, T1-

weighted structural scans, and clinical assessments containing IQ scores, Autism 

Diagnostic Interview- Revised (ADI-R) assessments, and Social Responsiveness Scale 
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(SRS) scores were chosen for analysis.  Demographic information including scanning sites, 

age, sex, and mean values of IQ (full scale IQ (FIQ), verbal IQ (VIQ), performance IQ 

(PIQ), ADI-R (social, verbal, and RRB), and SRS (awareness, cognition, communication, 

motivation and mannerisms) are shown in Table 3.1.  Further information regarding subject 

medication status and comorbidities can be found in Table A1. 

Table 3.1.  Subject Demographic Information 

Site N Age (years) 

mean ± sd 

Male  

n (%) 

IQ 

mean ± sd 

ADI-R 

mean ± sd 

SRS 

mean ± sd 

ETH 10 20.5 ± 3.9 10 (100) 110.4 ± 13.2 11.8 ± 7.0 17.9 ± 11.5 

GU 32 10.9 ± 1.5 29 (90.6) 119.8 ± 15.0 13.3 ±7.3 16.6 ± 8.9 

KKI 49 10.3 ± 1.5 35 (71.4) 107.3 ± 15.5 13.5 ± 7.0 18.8 ± 9.3 

NYU 1 44 9.5 ± 5.3 39 (88.6) 102.0 ± 17.6 12.2 ± 7.2 17.3 ± 10.0 
NYU 2 23 6.7 ± 1.0 20 (87.0) 106.4 ± 15.7 13.1 ± 6.9 18.2 ± 9.3 

SDSU 31 12.9 ± 3.2 25 (80.7) 99.7 ± 16.4 12.8 ± 6.6 20.8 ± 9.8 

TCD 21 14.8 ± 3.3 21 (100) 107.7 ±15.4 12.0 ± 5.9 19.6 ± 9.3 

Abbreviations: ETH Zurich (ETH), Georgetown University (GU), Kennedy Krieger 

Institute (KKI), New York University Langone Medical Center Sample 1 (NYU 1), New 

York University Langone Medical Center Sample 2 (NYU 2), San Diego State 

University (SDSU), and Trinity Center for Health Sciences (TCD), Intelligence Quotient 

(IQ), Autism Diagnostic Interview- Revised (ADI-R), Social Responsiveness Scale 

(SRS).   
    

 

The ADI-R contains social, verbal, and RRB subscales.  Each subscale consists of 

individual questions that are rated on a scale of 0-3, where a score of 0 means the behavior 

is not present and a score of 3 means the behavior is severely present.  For each subscale, 

the numbers are summed and the participant is given a single score (Lord et al., 1994).  The 

SRS contains 65 questions measuring behavior in the following social domains:  

awareness, cognition, communication, motivation, and mannerism.  Each subscale consists 

of items that are scored from 1 to 4, where a score of 1 means the symptom is not present 

and a score of 4 means the symptom is severely present.  The scores for each of the social 
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subscales are summed, and a single score is given to each participant for each subscale 

(Booker et al., 2011).    

 

3.3.2  Image Acquisition 

Imaging data used in this analysis were collected on 3T MRI scanners.  Scan parameters 

for the resting-state fMRI protocols are summarized in Table 3.2. For each subject, a T1-

weighted structural image was collected and used for registration to MNI152 space. Full 

details for acquisition parameters, informed consent, and site-specific protocols can be 

found at http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html. 

 

Table 3.2.  Resting-state fMRI Scan Parameters  

 

3.3.3  Preprocessing 

The resting-state fMRI data was preprocessed using the Connectome Computation 

System (CCS) pipeline (Zuo et al., 2013), and was parcellated into 200 regions of interest 

Site Flip angle 

(deg) 

TE (ms) TR (ms) # TRs xy (mm) z 

(mm) 

FOV 

(mm2) 

ETH 90 25 2000 120 3 3 240 × 240 

GU 90 30 2000 154 3 2.5 192 × 192 

KKI 75 30 2500 151 3 3 256 × 256 

NYU 1 82 30 2000 180 3 3 240 × 240 

NYU 2 90 15 2000 180 3 4 240 × 240 

SDSU 90 30 2000 180 3.4 3.4 220 × 220 

TCD 90 27 2000 210 3 3.2 240 × 240 

Abbreviations:  ETH Zurich (ETH), Georgetown University (GU), Kennedy Krieger 

Institute (KKI), New York University Langone Medical Center Sample 1 (NYU 1), 

New York University Langone Medical Center Sample 2 (NYU 2), San Diego State 

University (SDSU), and Trinity Center for Health Sciences (TCD), degrees (deg), 

Echo Time (TE), Repetition Time (TR), Field of View (FOV). 

 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
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(ROIs) through a spectrally constrained clustering algorithm (Craddock et al., 2012).  The 

CCS preprocessing pipeline included slice time correction, motion correction, skull 

stripping, global mean intensity normalization, nuisance signal regression, band pass 

filtering (0.01-0.1 Hz), and registration of the resting-state fMRI image to the T1-weighted 

image, followed by a transformation to standard space (Zuo et al., 2013). 

 

3.3.4  Functional Connectivity Matrices and Parcellation 

Pearson’s correlation coefficient was used to ascertain the FC of each ROI pair, 

resulting in a 200×200 FC matrix for each subject (Figure 3.1b).  Each correlation 

coefficient was Fisher z-transformed, then linear regression was used to regress out age, 

sex, and site covariates to ensure that confounding variables did not affect CCA results.  

Cortical ROIs from the resultant residual matrices were then grouped into networks using 

a seven network liberal parcellation mask from Thomas Yeo (Yeo et al., 2011).   
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Figure 3.1.  Data analysis and CCA schematic.  (a) After preprocessing, blood oxygenation 

level dependent (BOLD) signal time series were extracted from the 200 ROIs.  (b) 

Pearson’s correlation coefficient was then used to correlate each ROI time series to 

construct a 200×200 FC matrix for each subject.  (c)  Feature selection was performed 

using Spearman’s rank correlation coefficient to isolate the FC features that are most highly 

correlated with clinical features and the resulting FC and clinical profiles are used in 

CCA.  (d)  CCA then identified linear combinations of FC and clinical features and 

maximized their correlation.  Network Assignment:  Cerebellum (CBL), Somatomotor 

Network (SMN), Dorsal Attention Network (DAN), Ventral Attention Network (VAN), 

Subcortical (SubC) ROIs, Frontoparietal Network (FPN), Default Mode Network (DMN), 

Canonical Variate (CV).  

 

3.3.5  Feature Selection  

The FC matrices contain 19,900 (200 × 199/2) unique connectivity features for every 

subject. To identify non-redundant and relevant connectivity features that will lead to 
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meaningful ASD subtypes based on correlated clinical and connectivity features, we 

selected a subset of connectivity features using Spearman’s rank correlation coefficients.  

The top 100 FC features that were most highly correlated with one or more of the 11 clinical 

features were selected using MATLAB’s corr function.  The variance inflation factor (VIF) 

was used to assess the degree of multicollinearity among the 11 clinical and 100 FC 

variables to ensure the absence of multicollinearity prior to CCA.  A VIF of less than 5-10 

is generally considered to be absent of multicollinearity (Gareth et al., 2013).   We removed 

highly correlated variables to ensure a VIF of less than 5, thus confirming that variables in 

each of the datasets are not collinear.  The neuroanatomical distribution of the nodes of the 

remaining FC features were depicted in Figure 3.2 using BrainNet Viewer (Xia et al., 

2013).    

 

3.3.6  Canonical Correlation Analysis (CCA) 

CCA is an unsupervised learning technique that assigns loadings to two sets of 

variables in order to maximize their correlation (Hotelling, 1992).  Here, we used CCA to 

identify linear combinations of FC and clinical features to define a low dimensional 

representation of the selected features in subjects with ASD.  The input data consisted of 

72 unique FC features and 10 clinical variables.  Each resulting linear combination 

(“canonical variate”) represents a weighted set of FC features that are related to a weighted 

set of clinical features (Figure 3.1c).  Bartlett’s chi square test was used to evaluate 

canonical correlations and the corresponding p-value (the right tail significance level for 

2) was used to test for the significance of canonical correlations (Sánchez, 1982).  The 
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connectivity patterns from the first two canonical variates (CV) were used as the 

dimensions for which subjects were projected onto for subtyping.    

 

3.3.7  Hierarchical Clustering 

We applied hierarchical clustering to define distinct subtypes of ASD with linked FC 

and clinical profiles along the first two CV dimensions.  The optimal number of clusters 

was determined using the Calinski-Harabsz method, which maximizes the between-

subtype to within-subtype variance while maintaining a sufficient number of subjects in 

each subtype to be able to sustain high statistical power to detect subtype differences.  To 

identify subtypes, a dissimilarity matrix describing the Euclidean distance between each 

pair of subjects was calculated using MATLAB’s pdist function, then the linkage function 

was used to iteratively link pairs of subjects in close proximity using the Ward’s minimum 

variance method.   

 

3.3.8  FC and Clinical Differences between Subtypes 

A Kruskal-Wallis one-way ANOVA with false-discovery rate (FDR) correction was 

used to identify FC differences between the three subtypes.  The assumptions were checked 

to ensure the distributions had the same shape prior to performing the Kruskal-Wallis 

ANOVA.  To determine the unique resting-state FC patterns associated with each ASD 

subtype, Wilcoxon rank-sum tests were used to test for differences between the resting-

state profiles of each subtype compared to the other two.  The z-value of the FC features 

that significantly differed (P < 0.05, FDR corrected) between subtypes indicate strength in 
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connectivity compared to the other subtypes.  To identify FC features that differed most 

between subtypes, Bonferroni correction was applied for the number of FC features tested 

(P < 0.0007).    

To determine whether subtypes of ASD defined by resting-state FC patterns were 

associated with specific clinical features, Kruskal-Wallis one-way ANOVAs and post-hoc 

multiple comparisons Tukey Analysis were used to investigate the clinical differences 

between the subtypes.  A Kruskal-Wallis one-way ANOVA was also used to ensure that 

there were no significant between-subtype differences in age, and a chi-square goodness 

of fit test was used to ensure there were no significant between-subtype differences in 

comorbidity status, medication status, sex, or scan site.    

 

3.3.9  Subtype Verification 

To ensure distinct FC biomarkers and clinical features were associated with each 

subtype, an SVM classifier was used on FC profiles and clinical profiles independently to 

determine if subjects could be accurately classified through each domain.  A one-versus-

all multiclass SVM classifier with a linear kernel function was used on the 72 FC and 10 

clinical features identified through feature selection.  Classifier training was performed 

using libsvm toolbox (a library for support vector machines) and the multisvm function in 

MATLAB (Chang et al., 2011; Cody, 2012).  Five-fold cross validation was used to 

validate the trained model.  The performance of classification was evaluated using 

sensitivity, specificity, f1-measure, and macro-average f1 measure.    
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3.4  Results 

3.4.1  Feature Selection  

Spearman’s rank correlation identified 100 FC features that were most highly 

correlated with ASD symptoms (P < 5.15  10-4).  Each of the 11 clinical features were 

highly correlated with at least one of the 100 FC features ensuring the use of all variables 

in CCA.  Multicollinear features were removed for both clinical and FC datasets to 

ensure the absence of multicollinearity prior to CCA; one clinical feature (PIQ) was 

removed from the clinical dataset and 28 FC features were removed from the FC dataset.  

The resulting 10 clinical and 72 FC features with a VIF of less than 5 were used in CCA.  

The majority of the FC features were from the DMN (25 FC features), followed by the 

visual network (18 FC features), frontoparietal network (FPN) (11 FC features), 

subcortical (SubC) regions (11 FC features), somatomotor network (SMN) (9 FC 

features), cerebellar (CBL) regions (9 FC features), ventral attention network (VAN) (9 

FC features), limbic network (5 FC features), and the dorsal attention network (DAN) (2 

FC features).   The neuroanatomical distribution of the nodes associated with the 72 FC 

features were viewed using BrainNetViewer (Xia et al., 2013) (Figure 3.2; Table A2). 
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Figure 3.2.   The neuroanatomical distributions of the FC features identified using 

Spearman’s rank correlation coefficient.  (a) Neuroanatomical distribution of all 200 ROIs 

prior to dimension reduction.  (b) Neuroanatomical distributions associated with the 72 FC 

features identified during Spearman’s rank correlation coefficients (P < 5.15  10-4) with the 

highest correlation to clinical features, followed by removal of variables (VIF < 5) to ensure 

the absence of multicollinearity.  See Table A2 for the full names and MNI coordinates of 

ROIs in b.  Network Assignment:  Cerebellum (CBL), Somatomotor Network (SMN), 

Dorsal Attention Network (DAN), Ventral Attention Network (VAN), Subcortical (SubC) 

ROIs, Frontoparietal Network (FPN), Default Mode Network (DMN). 

 

3.4.2  Linked Connectivity and Clinical Features  

CCA identified CVs that represented linear combinations of brain connectivity and 

clinical features.  The first CV (P < 0.001, R = 0.75) was defined by FCs predominantly 

involving the DMN (including within DMN FC) and SubC/limbic network (Figure 3.3a-c; 

Tables A3-4).   This combination of connectivity features was correlated with a 

combination of social cognition (standardized loading: 0.66) and verbal features 

(standardized loading: 0.35) of ASD.  The proportion of variance explained by the clinical 

and FC features for the first CV, indicated by the squared canonical correlation was 56.9% 

(R2
CV1 = 0.569).  The second CV (P < 0.001, R = 0.74) was defined by predominantly intra 
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network DMN FC, SubC/limbic network, and CBL FC (Figure 3.3d-f; Tables A5-6).  This 

combination of connectivity features was correlated with a combination of social 

motivation (standardized loading: -0.70), verbal (standardized loading: -0.56), social 

awareness (standardized loading: 0.48), and RRB (standardized loading: 0.47) symptoms 

of ASD.  The proportion of variance explained by the clinical and FC features for the 

second CV was 55.1% (R2
CV2 = 0.551).   
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Figure 3.3.  Significant Canonical Variates (CVs).  (a) Scatter plots depicting the linear 

combination of FC and clinical features for the first CV.  Standardized clinical loading 

scores of the clinical features with the highest loadings:  SRS-cognition (0.66) and ADI-R 

verbal scores (0.35).  (b) Circle plot depicting the top ten positive loading connections 

contributing to the first CV.  (c) Circle plot depicting the top ten negative connections 

contributing to the first CV.  ROI network membership is denoted by the colored 

legend.  See Tables A3-4 for MNI coordinates for ROIs in b and c.  (d) Scatter plots 

showing the linear combination of FC and clinical features for the second 

CV.  Standardized clinical loadings scores of the clinical features with the highest 

loadings:  SRS-motivation (-0.70), ADI-R verbal (-0.56), SRS-awareness (0.48), and ADI-

R RRB (0.47). (e) Circle plot depicting the top ten positive loading connections 

contributing to the second CV.  (f) Circle plot depicting the top ten negative connections 

contributing to the second CV.  See Tables A5-6 for MNI coordinates for ROIs in e and f. 

Abbreviations:  Left Inferior Temporal Gyrus (LITG), Right/Left Postcentral Gyrus (R/L 

PostCG), Right/Left Precentral Gyrus (R/L PreCG), Right/Left Superior Frontal Gyrus 

(R/L SFG), Right/Left Supramarginal Gyrus (R/L SMG), Right/Left Amygdala (R/L 

Amyg), Right/Left Subcallosal Gyrus (R/L Sub), Right Thalamus (RThal), Left Temporal 

Fusiform Cortex (LTFC), Right/Left Frontal Orbital Cortex (R/L FOC), Right Cingulate 

Gyrus (RCG), Left Angular Gyrus (LAG), Left Inferior Frontal Gyrus (LIFG), Right 

Superior Temporal Gyrus (RSTG), Right/Left Lateral Occipital Cortex (R/L LOC), 

Cerebellum (CBL),  Right/Left Insular Cortex (R/L IC), Right Superior Parietal Lobule 

(RSPL), Right Precuneus Cortex (RPcun), Right Caudate (RCaud), Right Middle 

Temporal Gyrus (RMTG), Left Middle Frontal Gyrus (LMFG), Left Central Opercular 

Cortex (LCOC), Left Frontal Pole (LFP). 
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3.4.3  Hierarchical Clustering 

The Calinski-Harabasz criterion resulted in three as the optimal number of subtypes.  

Hierarchical clustering with Euclidean distance identified three subtypes of ASD along the 

first two CV dimensions; there are 47 subjects in subtype 1 (22.4%), 55 subjects in subtype 

2 (26.2%) and 108 subjects in subtype 3 (51.4%) (Figure 3.4).  There were no significant 

between-subtype differences in age, site, sex, medication status, or comorbidities. 

 

Figure 3.4.  Hierarchical Clustering.  (a) Dendrogram of hierarchical clustering with 

Ward’s minimum variance showing the three-cluster solution.  The height of the links in 

the dendrogram represent the distance between the clusters.  (b) Hierarchical clustering 

identified three distinct clusters along the first two CVs.  

 

 

3.4.4  Clinical and FC Features Define Three ASD Subtypes 

 

Kruskal-Wallis one-way ANOVAs and post-hoc multiple comparisons Tukey Analysis 

were used to determine the clinical differences between subtypes.  This analysis identified 

that all ten of the clinical features significantly differed across subtypes: FIQ (P = 0.01, χ2 
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= 9.2), VIQ (P = 0.01, χ2 = 9.3), ADI-R social (P < 0.001, χ2 = 19.7), verbal (P < 0.001, χ2 

= 35.0), RRB (P < 0.001, χ2 = 29.8), SRS awareness (P < 0.001, χ2 = 26.2), cognition (P < 

0.001, χ2 = 52.8), communication (P < 0.001, χ2 = 35.4), mannerisms (P < 0.001, χ2 = 27.2), 

and motivation (P < 0.001, χ2 = 26.2) (Figure 3.5).   

Subtype 1 is characterized by significantly higher RRB (P = 0.02, χ2 = 28.2), FIQ (P = 

0.009, χ2 = 13.1) and VIQ scores (P = 0.007, χ2 = 32.3) compared to subtype 3.  Subtype 2 

is characterized by deficits in all clinical features across ADI-R and SRS scales, as 

indicated by significantly higher scores than subtype 1 across ADI-R social (P < 0.01, χ2 = 

-53.2), ADI-R verbal (P < 0.01, χ2 = -71.2), SRS awareness (P = 0.007, χ2 = -36.6), SRS 

cognition (P < 0.001, χ2 = -73.2), SRS communication (P < 0.001, χ2 = -62.5), SRS 

mannerisms (P < 0.001, χ2 = -49.4), and SRS motivation (P < 0.001, χ2 = -59.6) symptoms.  

Subtype 2 exhibited significantly higher scores compared to subtype 3 across ADI-R social 

(P = 0.013, χ2 = 28.3), ADI-R verbal (P = 0.004, χ2 = 32.4), ADI-R RRB (P = < 0.001, χ2 

= 53.4), SRS awareness (P < 0.001, χ2 = 51.3), SRS cognition (P < 0.001, χ2 = 67.1), SRS 

communication (P < 0.001, χ2 = 53.3), and SRS mannerism (P < 0.001 χ2 = 49.8) 

symptoms.  Subtype 3 is characterized by significantly lower FIQ (P = 0.009, χ2 = 31.1) 

and VIQ (P = 0.007, χ2 = 32.3) than subtype 1, as well as significant verbal deficits (P < 

0.001, χ2 = -38.8) and social motivation deficits (P < 0.001, χ2 = -43.2) compared to subtype 

1.   
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Figure 3.5.  Kruskal-Wallis one-way ANOVA boxplots depicting (a) the medians of IQ-

related clinical scores of each subtype, (b) the medians of ADI-R clinical scores of each 

subtype, and (c) the medians of SRS clinical scores of each subtype.  

(* = p < 0.05, ** = p < 0.01, Tukey-Kramer) 

 

 A Kruskal-Wallis one-way ANOVA with FDR correction identified the FCs in 

which the three subtypes differed (Figure 3.6a, Table A7).  Wilcoxon rank sum tests with 

FDR correction were used to identify FC differences between each subtype compared to 

the other two.  Subtype 1 was characterized by overall increased FC, predominantly 

including nodes in the DMN, CBL and SubC networks, and a single hypoconnected FC 

feature between the visual and SubC network (Figure 3.6b; Table A8).  Subtype 2 was 

characterized by widespread hypoconnectivity spanning across many networks and six 
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hyperconnected FC features (Figure 3.6c; Table A9).  Subtype 3 was defined by a mix of 

hyper- and hypoconnectivity, predominantly hypoconnectivity between SubC and DMN 

nodes and hyperconnectivity involving the DMN (Figure 3.6d; Table A10).   
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Figure 3.6.  FC differences between subtypes.  FCs that differ between at least two of three 

subtypes as determined from a Kruskal-Wallis one-way ANOVA with post-hoc multiple 

comparisons and FDR correction (P < 0.05, FDR corrected) (a).  Wilcoxon rank sum tests 

were used to determine FC values that significantly differed (P < 0.05, FDR corrected) 

between each subtype.  The corresponding test statistics (z-value) that significantly differ 

between one subtype and the other two are depicted for (b) subtype 1, (c) subtype 2, (d) 

and subtype 3.  A positive z-value (light/yellow color) represents an increase in FC 

compared to the other subtypes, while a negative z-value (dark/red color) represents a 

decrease in FC compared to the other subtypes.  Node size corresponds to the number of 

significant connections.  Edge thickness corresponds to the absolute value of the z-

value.   ROI network membership is denoted by the colored legend.  See Tables A7-10 for 

full names, acronym labels, and MNI coordinates for ROIs in Figure 3.6a-d.   

Abbreviations:  Right/Left Lateral Occipital Cortex (R/L LOC), Right/Left Putamen (R/L 

Put), Cerebellum (CBL),  Right/Left Middle Temporal Gyrus (R/L MTG), Right/Left 

Paracingulate Gyrus (R/L PCG), Right/Left Insular Cortex (R/L IC), Right/Left Postcentral 

Gyrus (R/L PostCG), Right/Left Cingulate Gyrus (R/L CG), Left Temporal Fusiform 

Cortex (LTFC), Right/Left Thalamus (R/L Thal), Right/Left Middle Frontal Gyrus (R/L 

MFG), Right/Left Precentral Gyrus (R/L PreCG), Left Cuneal Cortex (LCun), Left 

Angular Gyrus (LAG), Right/Left Frontal Orbital Cortex (R/L FOC), Right/Left Inferior 

Temporal Gyrus (R/L ITG), Right/Left Temporal Pole (R/L TP), Right/Left Superior 

Frontal Gyrus (R/L SFG), Left Amygdala (LAmyg), Right Caudate (RCaud), Left 

Subcallosal Gyrus (LSub), Left Inferior Frontal Gyrus (LIFG), Right/Left Central 

Opercular Cortex (R/L COC), Right Superior Temporal Gyrus (RSTG), Right Temporal 

Occipital Fusiform Cortex (RTOFC), Right Precuneus Cortex (RPCun), Right Occipital 

Fusiform Gyrus (ROFG), Left Lingual Gyrus (LLG), Right Superior Parietal Lobule 

(RSPL).  
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Bonferroni correction revealed significantly different FC features (P < 0.0007) in 

each subtype (Figure 3.7; Tables A11-12).  Further information regarding the Bonferroni 

corrected Kruskal-Wallis ANOVA and corresponding effect size (η2) can be found in Table 

A11.  An η2 value of less than 0.01 indicates a small effect, 0.06 is considered to be 

moderate, and 0.14 is considered to be a large effect (Cohen, 1988).    Subtype 1 was 

defined by eight hyperconnected features involving mainly the DMN, SubC, CBL and 

visual network (Figure 3.7b; Table A13-14).  Subtype 2 was characterized nineteen 

hypoconnected features (predominantly involving DMN, CBL and FPN) and one 

hyperconnected feature (Figure 3.7c; Table A15-16).  Subtype 3 exhibited four 

hypoconnected features involving the SubC network and frontal nodes (Figure 3.7d; Table 

A17-18).  In addition, further information regarding the Bonferroni corrected Wilcoxon 

rank sum tests and corresponding effect size (r) can be found in Tables A13-18.  An r value 

of less than 0.3 is considered to be a small effect, between 0.3 and 0.5 is considered to be 

moderate, and greater than 0.5 is considered to be a large effect (Cohen, 1988). 
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Figure 3.7.  Bonferroni corrected (P < 0.0007) FC differences between subtypes.  (a) FCs 

that differ between at least two of the three subtypes as determined from a Kruskal-Wallis 

one-way ANOVA with Bonferroni post-hoc multiple comparisons.  (b) Wilcoxon rank 

sum tests and post-hoc Bonferroni correction were used to determine FC features that 

significantly differed (P < 0.0007) between each subtype.  Figure 3.7b depicts the 

corresponding test statistics (z-value) for FC features that significantly differ between 

subtype 1 versus subtypes 2 and 3.  A positive z-value (light/yellow color) represents an 

increase in FC compared to the other subtypes, while a negative z-value (dark/red color) 

represents a decrease in FC compared to the other subtypes.  Node size corresponds to the 

number of significant connections.  Edge thickness corresponds to the absolute value of 

the z-value.  ROI network membership is denoted by the colored legend.  (c). The test 

statistics (z-values) for FC features that significantly differ between subtype 2 versus 

subtypes 1 and 3. (d) The test statistics (z-values) for FC features that significantly differ 

between subtype 3 versus subtypes 1 and 2.   

Abbreviations:  Right/Left Middle Temporal Gyrus (R/L MTG), Left Inferior Temporal 

Gyrus (LITG), Right/Left Thalamus (R/L Thal), Cerebellum (CBL), Right/Left Postcentral 

Gyrus (R/L PostCG), Right/Left Cingulate Gyrus (R/L CG), Right/Left Lateral Occipital 

Cortex (R/L LOC), Right/Left Superior Frontal Gyrus (R/L SFG), Left Subcallosal Gyrus 

(LSub), Right/Left Amygdala (R/L Amyg), Right Occipital Fusiform Gyrus (ROFG), Left 

Temporal Fusiform Cortex (LTFC), Left Putamen (LPut), Left Angular Gyrus (LAG), 

Right/Left Precentral Gyrus (R/L PreCG), Right Paracingulate Gyrus (RPG), Right/Left 

Frontal Pole (R/L FP), Right/Left Insular Cortex (R/L IC), Right/Left Middle Frontal 

Gyrus (L/R MFG), Right/Left Frontal Orbital Cortex (R/L FOC), Right Caudate (RCaud), 

Left Inferior Frontal Gyrus (LIFG), Right Temporal Fusiform Occipital Cortex (RTFOC), 

Right Superior Temporal Gyrus (RSTG). 
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3.4.5  Subtype Verification  

In order to verify subtype assignment, a multiclass SVM classifier with 5-fold cross 

validation was used to determine if the FC and clinical features used in CCA could predict 

subtype.  The macro-average F1 measure was 71.3% for FC features and 65.2% for clinical 

features. The sensitivity, specificity, f1-measure, and macro-average f1-measure for the 

classification system used on FC features and clinical features can be found in Table 3.3.    

 

Table 3.3.  Results for SVM classification of subtypes based on FC and clinical features. 

 FC Features  Clinical Features 

 Subtype 

1 

Subtype 

2 

Subtype 

3 

 Subtype 

1 

Subtype 

2 

Subtype 

3 

Sensitivity 0.656 0.746 0.750  0.771 0.655 0.610 

Specificity 0.908 0.877 0.774  0.790 0.859 0.843 

F1-measure 0.662 0.712 0.763  0.626 0.636 0.692 

Macro-

average F1-

measure 

 

0.713    0.6517  

 

 

3.5  Discussion 

The aim of the current study was to define subtypes of ASD using both FC and clinical 

profiles.  ASD is characterized by a wide range of symptoms that vary on a spectrum of 

severity; however, the underlying connectomic patterns associated with this clinical 

variation is not clearly understood.  By linking FC profiles and clinical symptoms, three 

distinct subtypes with disparate patterns of connectivity and clinical symptoms were 

identified:  Subtype 1 exhibited high IQ, high RRB scores, and widespread intra-network 

hyperconnectivity, subtype 2 exhibited increased ADI-R and SRS symptoms and 

predominantly hypoconnectivity, and subtype 3 was characterized by low IQ, social 
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motivation deficits, verbal deficits, and mixed connectivity.   The resulting subtypes may 

provide insights into the inconsistencies of previous studies and allow future therapies to 

be better targeted for specific ASD subtypes.   

While studies have shown that ASD is multifaceted in terms of clinical and FC 

presentation (see Hull et al., 2016), previous work subtyping were based on either clinical 

(Georgiades et al., 2013) or FC (Easson et al., 2019) domains treated independently.  

Easson et al. defined two subtypes of ASD based on differences in resting-state fMRI 

profiles, however, there were no significant differences in terms of clinical scores (IQ, SRS, 

or ADOS) between subtypes (Easson et al., 2019).  FC profiles may not adequately capture 

all facets of ASD and may explain the lack of correspondence between subtypes derived 

from FC and clinical features.  Therefore, CCA is advantageous to capture the brain-

behavior relationships in ASD.  To the best of our knowledge, no previous work has been 

done to subtype ASD based on linked dimensions of FC and clinical features.   

 

3.5.1  Clinical and FC Features Define Three ASD Subtypes 

Subtypes differ in terms of associated FC and clinical features.  Defining features 

of subtype 1 include high IQ, more severe RRB symptoms, and intra-network 

hyperconnectivity (predominantly involving DMN, SubC, CBL, and SMN).   Individuals 

with RRBs may engage in stereotyped and repetitive movements or speech and have an 

insistence on sameness and routine (American Psychiatric, 2013).   While the majority of 

findings tend to support the hypoconnectivity theory of ASD, several studies report 

hyperconnectivity in ASD as well (see Hull et al., 2016).  Subtype 1 is also consistent with 
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the findings of previous work showing hyperconnectivity in ASD across brain regions 

including the DMN, SubC nodes, frontal/occipital regions and the salience network are 

correlated with RRB severity (Dupong et al., 2020; McKinnon et al., 2019; Monk et al., 

2009; Uddin et al., 2013a).   

The hypoconnectivity theory of ASD posits that this reduction in connectivity is 

associated with cognitive deficits (Just et al., 2012).  The mechanism underlying the 

hypoconnectivity theory is that there is reduced function of neural circuitry which is 

believed to affect cognitive processing, switching tasks, perceptual abilities, and 

abstraction (Just et al., 2012).  This is in accordance with the findings in subtype 1, which 

is the only subtype that was not characterized by hypoconnectivity and had the highest IQ 

in comparison to the other two subtypes.     

 The hypoconnectivity theory also suggests that behavioral features of ASD arise 

from reduced brain connectivity (Just et al., 2012).  This is in accordance with subtype 2 

which was defined by decreased whole-brain FC, and more severe deficits across ADI-R 

and SRS scales.  Previous work found that intra-network hypoconnectivity as well as 

hypoconnectivity within the DMN have been associated with social deficits in ASD (Assaf 

et al., 2010; Weng et al., 2010; Yerys et al., 2015).  Additionally, Verly et al. reported 

hypoconnectivity between CBL and supratentorial regions and it is suggested that this 

hypoconnectivity may be responsible for communication deficits in ASD (Verly et al., 

2014).   

 Subtype 3 was defined by mixed connectivity, low FIQ, low VIQ, social motivation 

deficits, and verbal deficits.  Subtype 3 exhibited decreased FC within DMN nodes, 
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decreased FC between DMN and SubC regions, and increased FC between intra-network 

regions (predominantly including the DMN).  Hypoconnectivity has been associated with 

cognitive deficits (Just et al., 2012), and social deficits (Assaf et al., 2010; Weng et al., 

2010; Yerys et al., 2015).  Conversely, other studies have suggested that hyperconnectivity 

across long- and short-range connections, as well as DMN hyperconnectivity, predicted 

social deficits in children with ASD (Lynch et al., 2013; Supekar et al., 2013).  The findings 

of subtype 3 are in line with previous work that has found a combination of hyper- and 

hypoconnectivity in ASD between several DMN nodes and visual, SubC, SMN, salience, 

VAN and CBL regions (Olivito et al., 2017; Yerys et al., 2015).   

 It has been suggested that the inconsistencies in ASD literature may be due to age-

related differences in the participants included in these studies (Uddin et al., 2013b).  

Studies including children under the age of 12 have reported predominantly 

hyperconnectivity in ASD as compared to healthy controls,  while studies demonstrating 

hypoconnectivity have mostly included individuals over the age of 12 (Uddin et al., 2013b).  

In addition, comorbidities such as ADHD and depression, as well as medication status have 

been found to play a role in FC results (Reiser et al., 2012; Tomasi et al., 2012).  However, 

there were no significant effects of age, medication status, comorbidities, site, or sex in 

subtypes.  Nevertheless, additional work is needed to fully assess the role of age, 

comorbidity and medication in ASD subtypes.  

After Bonferroni correction (P < 0.0007), subtype 1 exhibited six significant 

hyperconnected FC features (Figure 3.7b; Table A13), subtype 2 exhibited nineteen 

significant hypoconnected FC features and a single hyperconnected FC feature (Figure 
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3.7c; Table A15), and subtype 3 was defined by four significant hypoconnected FC features 

(Figure 3.7d; Table A17).  Interestingly, only the hypoconnected FC features in subtype 3 

were significant after Bonferroni correction which suggests that subtype 3 is largely driven 

by the hypoconnected features.  The significant FC features across all three subtypes 

include regions in the SubC and DMN.  However, the nodes and direction of connectivity 

(increase or decrease) differ between subtypes.  The DMN is the most commonly 

implicated network in ASD and is involved in a wide range of cognitive and social tasks 

(Padmanabhan et al., 2017), however the FC literature involving the DMN has been widely 

inconsistent (see Hull et al., 2016).  In addition, the SubC network is implicated in reward 

processing, social motivation, social behaviors and RRBs (Abbott et al., 2018; Clements et 

al., 2018).  The social motivation hypothesis suggests that individuals with ASD have 

aberrant processing in subcortical regions involved in reward processing, resulting in 

unrewarding social interactions which can lead to abnormal social behaviors (Clements et 

al., 2018).   However, there are also mixed results regarding subcortical regions in literature 

(Maximo et al., 2014; Woodward et al., 2017).  It is possible that the mixed results in ASD 

in regard to these two networks may be explained by subtypes of ASD.   

 

3.5.2  Subtype Verification  

In our work, a multiclass SVM classifier was able to classify subjects with 71.3% 

accuracy for FC features, and 65.2% accuracy for clinical features. Both are significantly 

higher than chance (33.3%), indicating that there are distinct clinical and FC differences 

associated with each subtype. 
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3.5.3  Limitations and Future Work 

While this work increases our understanding of the associations between clinical 

profiles of ASD and aberrant FC, there are several limitations of this study that must be 

considered.  Although data from sites with similar scanning procedures and inclusion 

criteria were used in this study, and further age, sex and site related factors were regressed 

out of the data prior to analysis, replication of our findings in an independent, single-site 

dataset with small age discrepancies would be necessary to address the limitation of this 

multi-site sample.  Additionally, a more extensive and consistent ASD clinical assessment 

would be critical for further understanding how brain connectivity relates to ASD 

symptoms.  It would also be beneficial to use clinical and resting-state fMRI data from a 

much larger population to be able to further characterize the associations between brain 

connectivity and ASD symptoms.  This would be useful for a cluster discovery set of 

subjects, and for replication of this work.  Finally, while NYU sample 1, NYU sample 2, 

and SDSU did not exclude participants based on FIQ, criteria at ETH, GU, KKI, and TCD 

limited ASD participants to an FIQ of greater than 70 or 80.  Including subjects with low 

IQs would be important for determining if similar subtypes exist across a wider scope of 

cognitive deficits.     

 

3.6  Conclusion 

The present study identified three ASD subtypes with distinct FC patterns and clinical 

manifestations using associative analysis of connectomic and clinical profiles.  These 
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findings may provide a perspective for the inconsistent reports in ASD FC studies and 

suggest the importance of specific treatments and therapies for each ASD subtype.   
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Chapter 4 

 

4.1  Overview 

FMRI is a useful tool in studying neurodevelopmental and psychiatric disorders.   

Resting-state fMRI data can assess changes in the brain that allow for a better 

understanding of the relationships between brain connectivity and clinical symptoms 

associated with various disorders.  Large-scale fMRI databases are becoming increasingly 

common to increase the understanding of the resting brain in diseased populations, 

however site-effects introduce heterogeneity to fMRI data aggregated from different sites, 

in addition to the heterogeneity associated with individuals with neurodevelopmental and 

psychiatric disorders.  Elucidating the heterogeneity associated with these disorders, and 

reducing the heterogeneity introduced by multi-site databases is crucial to gain a better 

understanding of connectomic features in these populations.   

The first study reduced site-effects in ABIDE and B-SNIP multi-site consortiums, 

while improving the between-group effect size of brain features known to be affected in 
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ASD and SZ.  The second study aimed to identify novel subtypes of ASD based on linked 

connectomic and clinical profiles thus providing insights into the inconsistencies in resting-

state fMRI literature.  Together, these studies reduce site-effects in multi-site consortiums 

without a reduction of the effect size in consistent FC alterations in patients vs controls, 

and allow a greater understanding of the clinical-connectomic relationships of ASD. 

 

4.2  Summary of Research Contributions and Implications   

Multi-site databases introduce site bias due to the use of different hardware, 

parameters, and protocols.  Multi-site harmonization methods have been known to reduce 

site bias, however the effect of important FC information is often loss in the process.  Here, 

we reduced site bias associated with multi-site fMRI databases through the use of a site de-

meaning algorithm, and improve the effect size of brain features known to be affected in 

ASD and SZ.  This method resulted in 2.9-7.9% improvement in effect size compared to 

the original data, and up to 42.6% improvement compared to previous harmonization 

methods (ComBat and GLM).  This method can be applied to various other multi-site 

databases and preserve important FC features associated with neurodevelopmental and 

psychiatric disorders.   

Previous studies reported inconsistent and mixed results in terms of the 

connectomic profiles associated with ASD (see Hull et al., 2016).  Some studies posit that 

ASD is characterized by hypoconnectivity, others found hyperconnectivity to be associated 

with ASD, and combinations of hypo- and hyperconnectivity have also been found in ASD 

individuals (see Hull et al., 2016).  The three novel subtypes of ASD identified through 
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CCA and hierarchical clustering revealed that hyperconnectivity, hypoconnectivity and 

mixed connectivity are associated with distinct symptoms of ASD, thus advancing our 

understanding of previous reports of FC in ASD.  Previous work subtyping ASD has 

focused on unimodal (i.e. brain anatomy, clinical symptoms, resting-state fMRI) methods, 

and this work is the first to define subtypes of ASD based on linked brain and behavior 

relationships.  These methods are applicable to other heterogeneous neurodevelopmental 

and psychiatric disorders to identify distinct subtypes based on clinical and connectomic 

profiles.  The identification of subtypes based on linked brain-behavior relationships allows 

a better understanding of the inconsistencies in previous ASD FC literature, neural 

processes underlying this disorder, and can lead to more specified diagnosis and better 

targeted therapies for these individuals.   

 

 

4.3  Limitations and Future Directions 

 

There are also several limitations that should be noted in this work.  In terms of the 

SWD algorithm for improved effect size of case vs control subjects, a ground truth FC 

neuromarker does not exist.  Here, we used commonly reported features across multiple 

studies, utilizing multiple different case vs control cohorts, however these are not 

universally accepted neuromarkers of ASD or SZ.  In addition, while this method has been 

tested on two multi-site disorders, additional testing would be necessary on other diseased 

populations to ensure this method is useful across various other disorders.  Future work 

would also benefit from applying the SWD method prior to subtyping to reduce the site-
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effects associated with multi-site consortiums while preserving the meaningful FC 

information in the subjects. 

 

For subtyping ASD, the use of a greater number of subjects with a wide variety of 

consistent clinical measures should be used in future work.  In addition, many sites from 

ABIDE used cut-off FIQs which limit our understanding of lower-functioning ASD 

individuals and where they fit into this subtyping model.  It would also be beneficial to use 

a more homogeneous cohort in terms of age, medication status, and comorbidity to limit 

any confounding effects that these variables could have on results.   
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Appendix A 

Table A1.  Medication and comorbidity status of participants.   

 

Abbreviations:  ETH Zurich (ETH), Georgetown University (GU), Kennedy Krieger 

Institute (KKI), New York University Langone Medical Center Sample 1 (NYU 1), New 

York University Langone Medical Center Sample 2 (NYU 2), San Diego State University 

(SDSU), Trinity Center for Health Sciences (TCD), Attention Deficit/Hyperactive 

Disorder (ADHD), Generalized Anxiety Disorder (GAD), Obsessive Compulsive Disorder 

(OCD), Oppositional Defiance Disorder (ODD). 

Notes:  Unknown refers to information that was not present on the ABIDE phenotypic 

assessments. 

 

 

Site Medication Status  Off stimulants at 

time of scan  

Comorbidities 

ETH 100% unknown 100% unknown  100% unknown  

GU 37.5% on 

medication 

100% off stimulants 100% unknown  

KKI 40.8% on 

medication 

100% off stimulants 91.8% comorbid 

ADHD (65.3%), GAD 

(10.2%), OCD (12.2%), 

ODD (26.5%), simple 

phobia (30.6%) 

NYU 1 20.5% on 

medication 

100% off stimulants 54.6% comorbid 

ADHD (50.0%), GAD 

(6.8%), ODD (13.6%) 

NYU 2 13% on medication 100% off stimulants 60.9% comorbid 

ADHD (39.1%), GAD 

(13.0%), OCD (4.35%), 

ODD (4.4%), simple 

phobia (8.7%) 

SDSU 45.2% on 

medication 

74.2% off stimulants 100% unknown  

TCD 0% on medication 100% off stimulants 100% unknown 
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Table A2.  MNI coordinates (mm) of ROIs associated with the 72 FC features identified 

from Spearman’s rank correlation coefficient with the highest correlation to clinical 

variables and VIF < 5 in Figure 3.2b.  

  MNI Coordinates 

ROI Network x y z 

Left Lateral Occipital Cortex Visual -39.6 -85.4 1.4 

Left Angular Gyrus DMN -49.7 -60.8 23.2 

Left Putamen/ Insular Cortex VAN -36.6 -13.9 -2.3 

Left Paracingulate Gyrus DMN -6.8 45.7 7.8 

Cerebellum CBL -19.3 -62.1 -26.1 

Cerebellum CBL 43.3 -55.2 -32.2 

Left Middle Temporal Gyrus DMN -58.9 -30.2 -2.4 

Right Paracingulate Gyrus VAN 2.8 12.4 49.4 

Right Putamen SubC 13.5 12.3 -7 

Right Thalamus SubC 11.6 -20 9.5 

Left Insular Cortex VAN -32.7 19.7 2 

Left Postcentral Gyrus SMN -8.8 -38 69.3 

Right Cingulate Gyrus DMN 6.7 42.6 6.1 

Left Temporal Fusiform Cortex Limbic -30.5 -5.1 -32.6 

Right Postcentral Gyrus SMN 30.4 -33.7 63.4 

Right Cingulate Gyrus DMN 1.6 -16.5 34.8 

Cerebellum CBL 2.9 -28 -36 

Right Superior Parietal Lobule DAN 29.7 -54.6 59.7 

Left Supramarginal Gyrus VAN -56.5 -43.3 26.5 

Right Insular Cortex SMN 41 -4.7 10.8 

Left Thalamus SubC -13.4 -32.3 0.8 

Right Middle Frontal Gyrus FPN 42.4 23.8 37.6 

Right Middle Temporal Gyrus FPN 62.9 -43 -7.8 

Right Thalamus SubC 18.5 -34.6 -1.8 

Left Precentral Gyrus DAN -28.2 -6.3 58 

Left Cuneal Cortex Visual -5.4 -87.2 25 

Left Angular Gyrus DMN -51.9 -50.2 42.1 

Left Frontal Orbital Cortex Limbic -28.4 31.1 -15.3 

Right Insular Cortex VAN 36.7 17.2 3.6 

Right Postcentral Gyrus SMN 43.3 -19.9 53.7 

Left Middle Frontal Gyrus DMN -39.1 20.3 42.2 

Left Inferior Temporal Gyrus Visual -43.9 -52.7 -18.6 

Right Superior Frontal Gyrus DAN 28.8 -0.3 56.8 

Right Postcentral Gyrus SMN 12.3 -44.8 67.7 
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Right Thalamus SubC 1.6 -20.8 -7.6 

Right Frontal Orbital Cortex DMN 29.6 24.6 -15.1 

Left Precentral Gyrus DAN -43 0.8 47.6 

Left Frontal Orbital Cortex DMN -44 33 -8.1 

Right Frontal Pole FPN 31.7 54.8 14.9 

Left Cingulate Gyrus FPN -7.9 -33.1 45.5 

Cerebellum CBL 17.2 -80.1 -28.7 

Left Temporal Pole Limbic -40.6 12.9 -28.2 

Left Lateral Occipital Cortex DMN -42.9 -67 40.7 

Right Temporal Fusiform Cortex Limbic 37.8 -12.8 -26 

Right Superior Frontal Gyrus DMN 0.3 51.6 26.5 

Left Amygdala SubC -18.7 -7.4 -15.9 

Right Caudate SubC 14.2 -0.5 17.5 

Left Superior Frontal Gyrus FPN -26 11.7 56.2 

Left Postcentral Gyrus SMN -28.8 -35.9 62.4 

Right Precentral Gyrus SMN 60.1 -1.3 25 

Left Middle Temporal Gyrus FPN -58 -48.3 -8.1 

Right Inferior Temporal Gyrus Visual 48 -52.7 -16.7 

Cerebellum CBL -28.4 -40 -30.7 

Left Frontal Pole DMN -9.2 62 14.2 

Right Temporal Pole SubC 30.9 5.8 -19 

Right Precentral Gyrus SMN 2.1 -23.6 68.5 

Left Frontal Orbital Cortex DMN -28.9 12.1 -16.6 

Right Frontal Pole FPN 42.9 49.6 -4.4 

Right Precentral Gyrus FPN 44.4 0.9 50 

Right Central Opercular Cortex VAN 55.8 3.8 5.8 

Cerebellum CBL -17.3 -81.3 -30.9 

Left Temporal Fusiform Cortex DMN -27.6 -38 -11.4 

Right Precentral Gyrus SMN 0.4 -15.1 51.8 

Cerebellum CBL 35.7 -73 -30.6 

Right Supramarginal Gyrus VAN 61.2 -31.4 26.6 

Left Subcallosal Gyrus SubC 0.7 -3.4 -8.7 

Right Precentral Gyrus SMN 24.6 -13.5 67 

Right Caudate SubC 15.3 14.6 7 

Right Insular Cortex VAN 40.7 -11.3 -3.9 

Left Inferior Frontal Gyrus DMN -49.2 22.9 9.3 

Right Lateral Occipital Cortex DAN 53.5 -61.8 1 

Left Central Opercular Cortex SMN -56 -10.9 5.6 
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Right Thalamus SubC 1.7 -4.4 5.3 

Right Superior Frontal Gyrus FPN -0.2 31.1 45.5 

Left Lateral Occipital Cortex Visual -46.1 -72.1 12.1 

Left Middle Frontal Gyrus FPN -44 26.5 26.6 

Cerebellum CBL 1.7 -56.9 -12.7 

Right Superior Temporal Gyrus DMN 58.4 -7.8 -7.8 

Left Postcentral Gyrus SMN -51.2 -14.1 40.4 

Right Subcallosal Cortex Limbic 0.1 20.4 -8 

Right Precuneus Cortex DAN 10.3 -63.5 56.2 

Right Inferior Frontal Gyrus FPN 51.9 21 21.1 

Left Precentral Gyrus VAN -54.1 7.2 18.2 

Right Lateral Occipital Cortex DMN 44.9 -65.5 39.3 

Left Frontal Pole DMN -25.3 52 22.9 

Left Frontal Pole FPN -40.9 48.7 -3.4 

Right Temporal Occipital Fusiform 

Cortex Visual 

28.1 -49.1 -13 

Left Superior Frontal Gyrus DMN -8.6 19.9 60.4 

Right Precuneus Cortex DMN -0.7 -55.1 38.3 

Right Occipital Fusiform Gyrus Visual 30.8 -87.5 -10.9 

Right Putamen SubC 27.2 0.8 -0.1 

Left Lingual Gyrus Visual -13.3 -52.9 -0.7 

Right Temporal Pole DMN 45.7 13.3 -22.7 

Left Central Opercular Cortex SMN -46.7 5 2.8 

Right Superior Frontal Gyrus DMN 13.5 21.7 59.8 

Right Frontal Pole DMN 15 56.3 29.4 

Cerebellum CBL 1 -30.8 -17.5 

Right Temporal Fusiform Cortex Limbic 30.8 -1.4 -36.2 

Left Parahippocampal Gyrus CBL -15 -30.8 -18.3 
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Table A3.  MNI coordinates (mm) of ROIs associated with CV1 positive (Figure 3.3b).   

   MNI Coordinates 

ROI Label Full ROI Name Network  x y z 

LITG Left Inferior Temporal Gyrus Visual -43.9 -52.7 -18.6 

LPostCG Left Postcentral Gyrus SMN -8.8 -38 69.3 

RPreCG Right Precentral Gyrus SMN 60.1 -1.3 25 

RSFG Right Superior Frontal Gyrus DAN 28.8 -0.3 56.8 

LSMG Left Supramarginal Gyrus VAN -56.5 -43.3 26.5 

RSMG Right Supramarginal Gyrus VAN 61.2 -31.4 26.6 

LAmyg Left Amygdala SubC -18.7 -7.4 -15.9 

LSub Left Subcallosal Gyrus SubC 0.7 -3.4 -8.7 

RThal Right Thalamus SubC 1.7 -4.4 5.3 

LTFC Left Temporal Fusiform 

Cortex 

Limbic -30.5 -5.1 -32.6 

LFOC Left Frontal Orbital Cortex Limbic -28.4 31.1 -15.3 

RCG Right Cingulate Gyrus DMN 6.7 42.6 6.1 

LAG Left Angular Gyrus DMN -51.9 -50.2 42.1 

RFOC Right Frontal Orbital Cortex DMN 29.6 24.6 -15.1 

LIFG Left Inferior Frontal Gyrus DMN -49.2 22.9 9.3 

RSTG Right Superior Temporal 

Gyrus 

DMN 58.4 -7.8 -7.8 

RLOC Right Lateral Occipital 

Cortex 

DMN 44.9 -65.5 39.3 

LSFG Left Superior Frontal Gyrus DMN -8.6 19.9 60.4 
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Table A4.  MNI coordinates (mm) of ROIs associated with CV1 negative (Figure 3.3c).   

   MNI Coordinates 

ROI Label Full ROI Name Network x y z 

CBL Cerebellum CBL -28.4 -40 -30.7 

LLOC Left Lateral Occipital Cortex Visual -39.6 -85.4 1.4 

RIC Right Insular Cortex SMN 41 -4.7 10.8 

LPostCG Left Postcentral Gyrus SMN -51.2 -14.1 40.4 

RSPL 
Right Superior Parietal 

Lobule 
DAN 29.7 -54.6 59.7 

RPcun Right Precuneus Cortex DAN 10.3 -63.5 56.2 

LIC Left Insular Cortex VAN -32.7 19.7 2 

LPreCG Left Precentral Gyrus VAN -54.1 7.2 18.2 

RThal Right Thalamus SubC 11.6 -20 9.5 

RThal Right Thalamus SubC 18.5 -34.6 -1.8 

RThal Right Thalamus SubC 1.6 -20.8 -7.6 

LSubC Left Subcallosal Gryus SubC 0.7 -3.4 -8.7 

RCaud Right Caudate SubC 15.3 14.6 7 

LTFC 
Left Temporal Fusiform 

Cortex 
Limbic -30.5 -5.1 -32.6 

RMTG Right Middle Temporal Gyrus FPN 62.9 -43 -7.8 

LMFG Left Middle Frontal Gyrus FPN -44 26.5 26.6 

RSFG Right Superior Frontal Gyrus DMN 0.3 51.6 26.5 

LIFG Left Inferior Frontal Gyrus DMN -49.2 22.9 9.3 
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Table A5.  MNI coordinates (mm) of ROIs associated with CV2 positive (Figure 3.3e).   

   MNI Coordinates 

ROI 

Label Full ROI Name Network x y z 

CBL Cerebellum CBL 43.3 -55.2 -32.2 

CBL Cerebellum CBL 17.2 -80.1 -28.7 

LITG 

Left Inferior Temporal 

Gyrus Visual -43.9 -52.7 -18.6 

LPreCG Left Precentral Gyrus DAN -43 0.8 47.6 

LIC Left Insular Cortex VAN -32.7 19.7 2 

LSMG Left Supramarginal Gyrus VAN -56.5 -43.3 26.5 

RIC Right Insular Cortex VAN 36.7 17.2 3.6 

RAmyg 

Right Amygdala/Temporal 

Pole SubC 30.9 5.8 -19 

LSubC Left Subcallosal Gyrus SubC 0.7 -3.4 -8.7 

LTFC 

Left Temporal Fusiform 

Cortex Limbic -30.5 -5.1 -32.6 

LMFG Left Middle Frontal Gyrus FPN -44 26.5 26.6 

LMTG 

Left Middle Temporal 

Gyrus DMN -58.9 -30.2 -2.4 

LAG Left Angular Gyrus DMN -51.9 -50.2 42.1 

LMFG Left Middle Frontal Gyrus DMN -39.1 20.3 42.2 

LFOC Left Frontal Orbital Cortex DMN -44 33 -8.1 

LIFG Left Inferior Frontal Gyrus DMN -49.2 22.9 9.3 

LSFG Left Superior Frontal Gyrus DMN -8.6 19.9 60.4 

RSFG 

Right Superior Frontal 

Gyrus DMN 13.5 21.7 59.8 
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Table A6.  MNI coordinates (mm) of ROIs associated with CV2 negative (Figure 3.3f).   

   MNI Coordinates 

ROI Label Full ROI Name Network x y  z 

CBL Cerebellum CBL -19.3 -62.1 -26.1 

CBL Cerebellum CBL -28.4 -40 -30.7 

CBL Cerebellum CBL -17.3 -81.3 -30.9 

CBL Cerebellum CBL 35.7 -73 -30.6 

LLOC 

Left Lateral Occipital 

Cortex Visual -39.6 -85.4 1.4 

LPostCG Left Postcentral Gyrus SMN -8.8 -38 69.3 

RPostCG Right Postcentral Gyrus SMN 12.3 -44.8 67.7 

LCOC 

Left Central Opercular 

Cortex SMN -46.7 5 2.8 

RSMG Right Supramarginal Gyrus VAN 61.2 -31.4 26.6 

RThal Right Thalamus SubC 1.6 -20.8 -7.6 

LAmyg Left Amygdala SubC -18.7 -7.4 -15.9 

RCaud Right Caudate SubC 15.3 14.6 7 

RThal Right Thalamus SubC 1.7 -4.4 5.3 

LTFC 

Left Temporal Fusiform 

Cortex Limbic -30.5 -5.1 -32.6 

RSubC Right Subcallosal Cortex Limbic 0.1 20.4 -8 

RCG Right Cingulate Gyrus DMN 1.6 -16.5 34.8 

LFP Left Frontal Pole DMN -9.2 62 14.2 

RSTG 

Right Superior Temporal 

Gyrus DMN 58.4 -7.8 -7.8 
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Table A7.  MNI coordinates (mm) of the nodes associated with subtype differences in 

Figure 3.6a.      

   MNI Coordinates 

ROI Label Full ROI Name Network x y z 

LLOC 

Left Lateral Occipital 

Cortex Visual -39.6 -85.4 1.4 

LPut 

Left Putamen/ Insular 

Cortex VAN -36.6 -13.9 -2.3 

LPG Left Paracingulate Gyrus DMN -6.8 45.7 7.8 

CBL Cerebellum CBL -19.3 -62.1 -26.1 

CBL Cerebellum CBL 43.3 -55.2 -32.2 

LMTG 

Left Middle Temporal 

Gyrus DMN -58.9 -30.2 -2.4 

RPG Right Paracingulate Gyrus VAN 2.8 12.4 49.4 

RThal Right Thalamus SubC 11.6 -20 9.5 

LIC Left Insular Cortex VAN -32.7 19.7 2 

LPostCG Left Postcentral Gyrus SMN -8.8 -38 69.3 

RCG Right Cingulate Gyrus DMN 6.7 42.6 6.1 

LTFC 

Left Temporal Fusiform 

Cortex Limbic -30.5 -5.1 -32.6 

RPostCG Right Postcentral Gyrus SMN 30.4 -33.7 63.4 

RCG Right Cingulate Gyrus DMN 1.6 -16.5 34.8 

CBL Cerebellum CBL 2.9 -28 -36 

LThal Left Thalamus SubC -13.4 -32.3 0.8 

RMFG 

Right Middle Frontal 

Gyrus FPN 42.4 23.8 37.6 

RMTG 

Right Middle Temporal 

Gyrus FPN 62.9 -43 -7.8 

RThal Right Thalamus SubC 18.5 -34.6 -1.8 

LPrecCG Left Precentral Gyrus DAN -28.2 -6.3 58 

LCun Left Cuneal Cortex Visual -5.4 -87.2 25 

LAG Left Angular Gyrus DMN -51.9 -50.2 42.1 

LFOC 

Left Frontal Orbital 

Cortex Limbic -28.4 31.1 -15.3 

RIC Right Insular Cortex VAN 36.7 17.2 3.6 

RPostCG Right Postcentral Gyrus SMN 43.3 -19.9 53.7 

LMFG Left Middle Frontal Gyrus DMN -39.1 20.3 42.2 

LITG 

Left Inferior Temporal 

Gyrus Visual -43.9 -52.7 -18.6 

RPostCG Right Postcentral Gyrus SMN 12.3 -44.8 67.7 

RThal Right Thalamus SubC 1.6 -20.8 -7.6 
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RFOC 

Right Frontal Orbital 

Cortex DMN 29.6 24.6 -15.1 

LPreCG Left Precentral Gyrus DAN -43 0.8 47.6 

LFOC 

Left Frontal Orbital 

Cortex DMN -44 33 -8.1 

RFP Right Frontal Pole FPN 31.7 54.8 14.9 

LCG Left Cingulate Gyrus FPN -7.9 -33.1 45.5 

CBL Cerebellum CBL 17.2 -80.1 -28.7 

LTP Left Temporal Pole Limbic -40.6 12.9 -28.2 

RSFG 

Right Superior Frontal 

Gyrus DMN 0.3 51.6 26.5 

LAmyg Left Amygdala SubC -18.7 -7.4 -15.9 

RCaud Right Caudate SubC 14.2 -0.5 17.5 

LSFG 

Left Superior Frontal 

Gyrus FPN -26 11.7 56.2 

LPostCG Left Postcentral Gyrus SMN -28.8 -35.9 62.4 

RPreCG Right Precentral Gyrus SMN 60.1 -1.3 25 

LMTG 

Left Middle Temporal 

Gyrus FPN -58 -48.3 -8.1 

RITG 

Right Inferior Temporal 

Gyrus Visual 48 -52.7 -16.7 

CBL Cerebellum CBL -28.4 -40 -30.7 

LFP Left Frontal Pole DMN -9.2 62 14.2 

RAmyg 

Right Amygdala/Temporal 

Pole SubC 30.9 5.8 -19 

RPrecCG Right Precentral Gyrus SMN 2.1 -23.6 68.5 

RFP Right Frontal Pole FPN 42.9 49.6 -4.4 

RPreCG Right Precentral Gyrus FPN 44.4 0.9 50 

RPreCG Right Precentral Gyrus SMN 0.4 -15.1 51.8 

LSub Left Subcallosal Gyrus SubC 0.7 -3.4 -8.7 

RCaud Right Caudate SubC 15.3 14.6 7 

LIFG Left Inferior Frontal Gyrus DMN -49.2 22.9 9.3 

RLOC 

Right Lateral Occipital 

Cortex DAN 53.5 -61.8 1 

LCOC 

Left Central Opercular 

Cortex SMN -56 -10.9 5.6 

RThal Right Thalamus SubC 1.7 -4.4 5.3 

RSFG 

Right Superior Frontal 

Gyrus FPN -0.2 31.1 45.5 

LMFG Left Middle Frontal Gyrus FPN -44 26.5 26.6 

RSTG 

Right Superior Temporal 

Gyrus DMN 58.4 -7.8 -7.8 
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LPostCG Left Postcentral Gyrus SMN -51.2 -14.1 40.4 

LPreCG Left Precentral Gyrus VAN -54.1 7.2 18.2 

LFP Left Frontal Pole DMN -25.3 52 22.9 

LFP Left Frontal Pole FPN -40.9 48.7 -3.4 

RTOFC 

Right Temporal Occipital 

Fusiform Cortex Visual 28.1 -49.1 -13 

LSFG 

Left Superior Frontal 

Gyrus DMN -8.6 19.9 60.4 

RPcun Right Precuneus Cortex DMN -0.7 -55.1 38.3 

ROFG 

Right Occipital Fusiform 

Gyrus Visual 30.8 -87.5 -10.9 

RPut Right Putamen SubC 27.2 0.8 -0.1 

LLG Left Lingual Gyrus Visual -13.3 -52.9 -0.7 

RTP Right Temporal Pole DMN 45.7 13.3 -22.7 

LCOC 

Left Central Opercular 

Cortex SMN -46.7 5 2.8 

RSFG 

Right Superior Frontal 

Gyrus DMN 13.5 21.7 59.8 

RFP Right Frontal Pole DMN 15 56.3 29.4 

CBL Cerebellum CBL 1 -30.8 -17.5 

LPHG 

Left Parahippocampal 

Gyrus CBL -15 -30.8 -18.3 
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Table A8.  MNI coordinates (mm) of the nodes associated with subtype 1 in Figure 3.6b.      

   MNI Coordinates 

ROI Label Full ROI Name Network x y z 

LPG Left Paracingulate Gyrus DMN -6.8 45.7 7.8 

CBL Cerebellum CBL -19.3 -62.1 -26.1 

CBL Cerebellum CBL 43.3 -55.2 -32.2 

LMTG 

Left Middle Temporal 

Gyrus DMN -58.9 -30.2 -2.4 

LIC Left Insular Cortex VAN -32.7 19.7 2 

LPostCG Left Postcentral Gyrus SMN -8.8 -38 69.3 

CBL Cerebellum CBL 2.9 -28 -36 

RMFG Right Middle Frontal Gyrus FPN 42.4 23.8 37.6 

RMTG 

Right Middle Temporal 

Gyrus FPN 62.9 -43 -7.8 

RThal Right Thalamus SubC 18.5 -34.6 -1.8 

LCun Left Cuneal Cortex Visual -5.4 -87.2 25 

LAG Left Angular Gyrus DMN -51.9 -50.2 42.1 

LFOC Left Frontal Orbital Cortex Limbic -28.4 31.1 -15.3 

LITG 

Left Inferior Temporal 

Gyrus Visual -43.9 -52.7 -18.6 

RPostCG Right Postcentral Gyrus SMN 12.3 -44.8 67.7 

LCG Left Cingulate Gyrus FPN -7.9 -33.1 45.5 

RSFG 

Right Superior Frontal 

Gyrus DMN 0.3 51.6 26.5 

LAmyg Left Amygdala SubC -18.7 -7.4 -15.9 

RCaud Right Caudate SubC 14.2 -0.5 17.5 

RITG 

Right Inferior Temporal 

Gyrus Visual 48 -52.7 -16.7 

CBL Cerebellum CBL -28.4 -40 -30.7 

LFP Left Frontal Pole DMN -9.2 62 14.2 

RPrecCG Right Precentral Gyrus SMN 2.1 -23.6 68.5 

LSub Left Subcallosal Gyrus SubC 0.7 -3.4 -8.7 

LIFG Left Inferior Frontal Gyrus DMN -49.2 22.9 9.3 

RLOC 

Right Lateral Occipital 

Cortex DAN 53.5 -61.8 1 

LCOC 

Left Central Opercular 

Cortex SMN -56 -10.9 5.6 

LMFG Left Middle Frontal Gyrus FPN -44 26.5 26.6 

LFP Left Frontal Pole DMN -25.3 52 22.9 

LSFG Left Superior Frontal Gyrus DMN -8.6 19.9 60.4 
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RPcun Right Precuneus Cortex DMN -0.7 -55.1 38.3 

ROFG 

Right Occipital Fusiform 

Gyrus Visual 30.8 -87.5 -10.9 

RPut Right Putamen SubC 27.2 0.8 -0.1 

LLG Left Lingual Gyrus Visual -13.3 -52.9 -0.7 

RTP Right Temporal Pole DMN 45.7 13.3 -22.7 

LCOC 

Left Central Opercular 

Cortex SMN -46.7 5 2.8 

CBL Cerebellum CBL 1 -30.8 -17.5 

LPHG Left Parahippocampal Gyrus CBL -15 -30.8 -18.3 
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Table A9.  MNI coordinates (mm) of the nodes associated with subtype 2 in Figure 3.6c.      

   MNI Coordinates 

ROI Label Full ROI Name Network x y z 

LLOC Left Lateral Occipital Cortex Visual -39.6 -85.4 1.4 

LPut Left Putamen/Insular Cortex VAN -36.6 -13.9 -2.3 

LPG Left Paracingulate Gyrus DMN -6.8 45.7 7.8 

CBL Cerebellum CBL -19.3 -62.1 -26.1 

CBL Cerebellum CBL 43.3 -55.2 -32.2 

LMTG Left Middle Temporal Gyrus DMN -58.9 -30.2 -2.4 

RPG Right Paracingulate Gyrus VAN 2.8 12.4 49.4 

RThal Right Thalamus SubC 11.6 -20 9.5 

LIC Left Insular Cortex VAN -32.7 19.7 2 

LPostCG Left Postcentral Gyrus SMN -8.8 -38 69.3 

RCG Right Cingulate Gyrus DMN 6.7 42.6 6.1 

LTFC 

Left Temporal Fusiform 

Cortex Limbic -30.5 -5.1 -32.6 

RPostCG Right Postcentral Gyrus SMN 30.4 -33.7 63.4 

RCG Right Cingulate Gyrus DMN 1.6 -16.5 34.8 

CBL Cerebellum CBL 2.9 -28 -36 

RSPL Right Superior Parietal Lobule DAN 29.7 -54.6 59.7 

LThal Left Thalamus SubC -13.4 -32.3 0.8 

RMFG Right Middle Frontal Gyrus FPN 42.4 23.8 37.6 

RMTG Right Middle Temporal Gyrus FPN 62.9 -43 -7.8 

LPrecCG Left Precentral Gyrus DAN -28.2 -6.3 58 

LAG Left Angular Gyrus DMN -51.9 -50.2 42.1 

LFOC Left Frontal Orbital Cortex Limbic -28.4 31.1 -15.3 

RIC Right Insular Cortex VAN 36.7 17.2 3.6 

RPostCG Right Postcentral Gyrus SMN 43.3 -19.9 53.7 

LMFG Left Middle Frontal Gyrus DMN -39.1 20.3 42.2 

LITG Left Inferior Temporal Gyrus Visual -43.9 -52.7 -18.6 

RThal Right Thalamus SubC 1.6 -20.8 -7.6 

RFOC Right Frontal Orbital Cortex DMN 29.6 24.6 -15.1 

LPreCG Left Precentral Gyrus DAN -43 0.8 47.6 

LFOC Left Frontal Orbital Cortex DMN -44 33 -8.1 

RFP Right Frontal Pole FPN 31.7 54.8 14.9 

LCG Left Cingulate Gyrus FPN -7.9 -33.1 45.5 

CBL Cerebellum CBL 17.2 -80.1 -28.7 

LTP Left Temporal Pole Limbic -40.6 12.9 -28.2 

LAmyg Left Amygdala SubC -18.7 -7.4 -15.9 



 123 

LSFG Left Superior Frontal Gyrus FPN -26 11.7 56.2 

LPostCG Left Postcentral Gyrus SMN -28.8 -35.9 62.4 

RPreCG Right Precentral Gyrus SMN 60.1 -1.3 25 

LMTG Left Middle Temporal Gyrus FPN -58 -48.3 -8.1 

RITG Right Inferior Temporal Gyrus Visual 48 -52.7 -16.7 

LFP Left Frontal Pole DMN -9.2 62 14.2 

RAmyg 

Right Amygdala/Temporal 

Pole SubC 30.9 5.8 -19 

RPreCG Right Precentral Gyrus SMN 2.1 -23.6 68.5 

RFP Right Frontal Pole FPN 42.9 49.6 -4.4 

RPreCG Right Precentral Gyrus FPN 44.4 0.9 50 

RCOC 

Right Central Opercular 

Cortex VAN 55.8 3.8 5.8 

RPreCG Right Precentral Gyrus SMN 0.4 -15.1 51.8 

LSub Left Subcallosal Gyrus SubC 0.7 -3.4 -8.7 

RPreCG Right Precentral Gyrus SMN 24.6 -13.5 67 

RCaud Right Caudate SubC 15.3 14.6 7 

RIC Right Insular Cortex VAN 40.7 -11.3 -3.9 

LIFG Left Inferior Frontal Gyrus DMN -49.2 22.9 9.3 

RLOC Right Lateral Occipital Cortex DAN 53.5 -61.8 1 

LCOC Left Central Opercular Cortex SMN -56 -10.9 5.6 

RThal Right Thalamus SubC 1.7 -4.4 5.3 

RSFG Right Superior Frontal Gyrus FPN -0.2 31.1 45.5 

CBL Cerebellum CBL 1.7 -56.9 -12.7 

RSTG 

Right Superior Temporal 

Gyrus DMN 58.4 -7.8 -7.8 

LPostCG Left Postcentral Gyrus SMN -51.2 -14.1 40.4 

LPreCG Left Precentral Gyrus VAN -54.1 7.2 18.2 

LFP Left Frontal Pole DMN -25.3 52 22.9 

LFP Left Frontal Pole FPN -40.9 48.7 -3.4 

RTOFC 

Right Temporal Occipital 

Fusiform Cortex Visual 28.1 -49.1 -13 

ROFG 

Right Occipital Fusiform 

Gyrus Visual 30.8 -87.5 -10.9 

RPut Right Putamen SubC 27.2 0.8 -0.1 

LLG Left Lingual Gyrus Visual -13.3 -52.9 -0.7 

RTP Right Temporal Pole DMN 45.7 13.3 -22.7 

LCOC Left Central Opercular Cortex SMN -46.7 5 2.8 

RSFG Right Superior Frontal Gyrus DMN 13.5 21.7 59.8 

RFP Right Frontal Pole DMN 15 56.3 29.4 
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CBL Cerebellum CBL 1 -30.8 -17.5 

LPHG Left Parahippocampal Gyrus CBL -15 -30.8 -18.3 
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Table A10.  MNI coordinates (mm) of the nodes associated with subtype 3 in Figure 

3.6d.      

   MNI Coordinates 

ROI 

Label Full ROI Name Network x y z 

LLOC 

Left Lateral Occipital 

Cortex Visual -39.6 -85.4 1.4 

LPG Left Paracingulate Gyrus DMN -6.8 45.7 7.8 

RPG Right Paracingulate Gyrus VAN 2.8 12.4 49.4 

RCG Right Cingulate Gyrus DMN 6.7 42.6 6.1 

LTFC 

Left Temporal Fusiform 

Cortex Limbic -30.5 -5.1 -32.6 

RCG Right Cingulate Gyrus DMN 1.6 -16.5 34.8 

RFOC 

Right Frontal Orbital 

Cortex DMN 29.6 24.6 -15.1 

LPreCG Left Precentral Gyrus DAN -43 0.8 47.6 

LFOC Left Frontal Orbital Cortex DMN -44 33 -8.1 

RFP Right Frontal Pole FPN 31.7 54.8 14.9 

CBL Cerebellum CBL 17.2 -80.1 -28.7 

RSFG 

Right Superior Frontal 

Gyrus DMN 0.3 51.6 26.5 

RFP Right Frontal Pole FPN 42.9 49.6 -4.4 

LSub Left Subcallosal Gyrus SubC 0.7 -3.4 -8.7 

RCaud Right Caudate SubC 15.3 14.6 7 

LIFG Left Inferior Frontal Gyrus DMN -49.2 22.9 9.3 

RThal Right Thalamus SubC 1.7 -4.4 5.3 

RSFG 

Right Superior Frontal 

Gyrus FPN -0.2 31.1 45.5 

LMFG Left Middle Frontal Gyrus FPN -44 26.5 26.6 

RSTG 

Right Superior Temporal 

Gyrus DMN 58.4 -7.8 -7.8 

LPreCG Left Precentral Gyrus VAN -54.1 7.2 18.2 

LSFG 

Left Superior Frontal 

Gyrus DMN -8.6 19.9 60.4 

RFP Right Frontal Pole DMN 15 56.3 29.4 
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Table A11.  Kruskal-Wallis ANVOA, χ2, and effect sizes for ROI pairs that were 

significant after Bonferroni post-hoc test (P < 0.0007) (Figure 3.7a). 

 

ROI Pair Test Statistic (χ2) Effect Size (η2) Subtypes 

Implicated 

CBL - LAG 45.7 0.21 1-2 

LMTG - LITG 56.8 0.26 1-2 

RPG – RFP -38.7 -0.20 2-3 

LIC – RMFG -38.1 -0.19 2-3 

 50.2 0.23 1-2 

LIC – LMFG -39.9 -0.20 2-3 

LIC – RPreCG -42.3 -0.21 2-3 

 45.9 0.21 1-2 

RCG – RCaud 43.4 0.20 2-3 

RMTG – LIFG 45.4 0.21 1-2 

LFOC – LFP 52.3 0.24 1-2 

LCG – RLOC 48.0 0.22 1-2 

RSFG – LSub 43.7 0.20 1-3 

LAmyg – ROFG 52.0 0.24 1-2 

RSTG – RSTG 41.7 0.19 2-3 

LFP - CBL 53.8 0.25 1-2 

Abbreviations:  Cerebellum (CBL), Left Angular Gyrus (LAG), Right/Left Middle 

Temporal Gyrus (R/L MTG), Left Inferior Temporal Gyrus (LITG), Right Paracingulate 

Gyrus (LPG), Left Insular Cortex (LIC), Right/Left Middle Frontal Gyrus (R/L MFG), 

Right Precentral Gyrus (RPreCG), Right/Left Cingulate Gyrus (R/L CG), Right Caudate 

(RCaud), Left Inferior Frontal Gyrus (LIFG), Left Frontal Pole (LFP), Right Superior 

Frontal Gyrus (RSFG), Left Subcallosal Gyrus (LSub), Left Amygdala (LAmyg), Right 

Superior Temporal Gyrus (RSTG), Right Lateral Occipital Cortex (RLOC), Left Frontal 

Orbital Cortex (LFOC), Right Occipital Fusiform Gyrus (ROFG).  
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Table A12.  MNI coordinates (mm) of ROIs associated with the FC features in Figure 

3.7a and Table A11.   

  MNI Coordinates 

ROI Network x y z 

CBL CBL 43.3 -55.2 -32.2 

LMTG DMN -58.9 -30.2 -2.4 

RPG VAN 2.8 12.4 49.4 

LIC VAN -32.7 19.7 2.0 

RCG DMN 1.6 -16.5 34.8 

RMFG FPN 42.4 23.8 37.6 

RMTG FPN 62.9 -43 -7.8 

LAG DMN -51.9 -50.2 42.1 

LFOC Limbic -28.4 31.1 -15.3 

LMFG DMN -39.1 20.3 42.2 

LITG Visual -43.9 -52.7 -18.6 

LCG FPN -7.9 -33.1 45.5 

RSFG DMN 0.3 51.6 26.5 

LAmyg SubC -18.7 -7.4 -15.9 

LFP DMN -9.2 62 14.2 

RFP FPN 42.9 49.6 -4.4 

RPreCG FPN 44.4 0.9 50.0 

LSub SubC 0.7 -3.4 -8.7 

RCaud SubC 15.3 14.6 7.0 

LIFG DMN -49.2 22.9 9.3 

RLOC DAN 53.5 -61.8 1.0 

RThal SubC 1.7 -4.4 5.3 

RSTG DMN 58.4 -7.8 -7.8 

LFP DMN -25.3 52 22.9 

ROFG Visual 30.8 -87.5 -10.9 

CBL CBL 1.0 -30.8 -17.5 
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Table A13.  Wilcoxon rank sum test z-value and effect sizes for FC features that were 

significant after Bonferroni post-hoc test (P < 0.0007) for subtype 1 (Figure 3.7b). 

ROI Pair  z-value Effect size (r) 

LMTG – LITG 3.67 0.25 

RThal - CBL 3.47 0.24 

RPostCG - CBL 3.79 0.26 

LCG - RLOC  3.92 0.27 

RSFG - LSub 3.47 0.24 

LAmyg - ROFG 4.03 0.28 

Abbreviations:  Left Middle Temporal Gyrus (LMTG), Left Inferior Temporal Gyrus 

(LITG), Right Thalamus (RThal), Cerebellum (CBL), Right Postcentral Gyrus (RPostCG), 

Left Cingulate Gyrus (LCG), Right Lateral Occipital Cortex (RLOC), Right Superior 

Frontal Gyrus (RSFG), Left Subcallosal Gyrus (LSub), Left Amygdala (LAmyg), Right 

Occipital Fusiform Gyrus (ROFG). 

 

 

Table A14.  MNI coordinates (mm) of ROIs associated with the FC features in Figure 

3.7b and Table A13.   

  MNI Coordinates 

ROI Network x y z 

LMTG DMN -58.9 -30.2 -2.4 

RThal SubC 18.5 -34.6 -1.8 

LITG Visual -43.9 -52.7 -18.6 

RPostCG SMN 12.3 -44.8 67.7 

LCG FPN -7.9 -33.1 45.5 

RSFG DMN 0.3 51.6 26.5 

LAmyg SubC -18.7 -7.4 -15.9 

CBL CBL -28.4 -40 -30.7 

LSub SubC 0.7 -3.4 -8.7 

RLOC SMN 53.5 -61.8 1.0 

ROFG Visual 30.8 -87.5 -10.9 
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Table A15.  Wilcoxon rank sum test z-value and effect sizes for ROI pairs that were 

significant after Bonferroni post-hoc test (P < 0.0007) for subtype 2 (Figure 3.7c). 

ROI Pair  z-value Effect Size (r) 

LLOC – LTFC -3.54 -0.24 

LPut – RAmyg -3.77 -0.26 

CBL – LAG -3.42 -0.24 

LMTG – LPreCG -3.49 -0.24 

LMTG – LITG -3.99 -0.28 

RPG – RFP -3.58 -0.25 

LIC – RMFG -4.38 -0.30 

LIC – LMFG -4.29 -0.30 

LIC – PreCG -4.54 -0.31 

RCG – RFOC  -3.42 -0.24 

RCG – RCaud 4.40 0.30 

LFOC – LFP -3.78 -0.26 

LFOC – LIFG  -3.58 -0.25 

RIC – RAmyg  -3.57 -0.25 

LPreCG – LIFG -3.44 -0.24 

LFOC – CBL  -3.51 -0.24 

LSFG – LFP  -3.57 -0.25 

LPostCG – RTOFC -3.85 -0.25 

LFP – CBL -3.88 -0.27 

LFP - CBL -3.77 -0.26 

 

Abbreviations:  Left Lateral Occipital Cortex (LLOC), Left Temporal Fusiform Cortex 

(LTFC), Left Putamen (LPut), Right Amygdala (RAmyg), Cerebellum (CBL), Left 

Angular Gyrus (LAG), Left Middle Temporal Gyrus (LMTG), Left Precentral Gyrus 

(LPreCG), Left Inferior Temporal Gyrus (LITG), Right Paracingulate Gyrus (RPG), 

Right/Left Frontal Pole (R/L FP), Right/Left Insular Cortex (R/L IC), Right/Left Middle 

Frontal Gyrus (L/R MFG), Right Cingulate Gyrus (RCG), Right/Left Frontal Orbital 

Cortex (R/L FOC), Right Caudate (RCaud), Left Inferior Frontal Gyrus (LIFG), Left 

Superior Frontal Gyrus (LSFG),  Left Postcentral Gyrus (LPostCG), Right Temporal 

Fusiform Occipital Cortex (RTFOC). 
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Table A16.  MNI coordinates (mm) of ROIs associated with the FC features in Figure 

3.7c and Table A15.   

  MNI Coordinates 

ROI Network x y z 

LLOC Visual -39.6 -85.4 1.4 

LPut VAN -36.6 -13.9 -2.3 

CBL CBL 43.3 -55.2 -32.2 

LMTG DMN -58.9 -30.2 -2.4 

RPG VAN 2.8 12.4 49.4 

LIC VAN -32.7 19.7 2.0 

RCG DMN 6.7 42.6 6.1 

LTFC Limbic -30.5 -5.1 -32.6 

RCG DMN 1.6 -16.5 34.8 

RMFG FPN 42.4 23.8 37.6 

LPreCG DAN -28.2 -6.3 58.0 

LAG DMN -51.9 -50.2 42.1 

LFOC Limbic -28.4 31.1 -15.3 

RIC VAN 36.7 17.2 3.6 

LMFG DMN -39.1 20.3 42.2 

LITG Visual -43.9 -52.7 -18.6 

RFOC DMN 29.6 24.6 -15.1 

LPreCG DAN -43.0 0.8 47.6 

LFOC DMN -44.0 33 -8.1 

CBL CBL 17.2 -80.1 -28.7 

LSFG FPN -26.0 11.7 56.2 

LPostCG SMN -28.8 -35.9 62.4 

LFP DMN -9.2 62 14.2 

RAmyg SubC 30.9 5.8 -19.0 

RFP FPN 42.9 49.6 -4.4 

RPreCG FPN 44.4 0.9 50.0 

RCaud SubC 15.3 14.6 7.0 

LIFG DMN -49.2 22.9 9.3 

LFP DMN -25.3 52 22.9 

LFP FPN -40.9 48.7 -3.4 

RTOFC Visual 28.1 -49.1 -13.0 
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Table A17.  Wilcoxon rank sum test z-value and effect sizes for ROI pairs that were 

significant after Bonferroni post-hoc test (P < 0.0007) for subtype 3 (Figure 3.7d). 

ROI pair  z-value Effect size (r) 

RFP – RFP  -3.53 -0.24 

RSFG – LSub -4.06 -0.28 

LSub – LSFG -3.48 -0.24 

RThal - RSTG -4.58 -0.32 

Abbreviations: Right Frontal Pole (RFP), Right/Left Superior Frontal Gyrus (R/L SFG), 

Left Subcallosal Gyrus (LSub), Right Thalamus (RThal), Right Superior Temporal Gyrus 

(RSTG). 

 

 

Table A18.  MNI coordinates (mm) of ROIs associated with the FC features in Figure 3.7d 

and Table A17.   

  MNI Coordinates 

ROI Network x y z 

RFP FPN 31.7 54.8 14.9 

RSFG DMN 0.3 51.6 26.5 

LSub SubC 0.7 -3.4 -8.7 

RThal SubC 1.7 -4.4 5.3 

RSTG DMN 58.4 -7.8 -7.8 

LSFG DMN -8.6 19.9 60.4 

RFP DMN 15.0 56.3 29.4 

 

 

 

 

 

 

 

 

 

 




