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Abstract: Coronavirus disease 2019 (COVID-19), is an ongoing issue in certain populations, presenting
rapidly worsening pneumonia and persistent symptoms. This study aimed to test the predictability
of rapid progression using radiographic scores and laboratory markers and present longitudinal
changes. This retrospective study included 218 COVID-19 pneumonia patients admitted at the
Chungnam National University Hospital. Rapid progression was defined as respiratory failure
requiring mechanical ventilation within one week of hospitalization. Quantitative COVID (QCOVID)
scores were derived from high-resolution computed tomography (CT) analyses: (1) ground glass
opacity (QGGO), (2) mixed diseases (QMD), and (3) consolidation (QCON), and the sum, quantitative
total lung diseases (QTLD). Laboratory data, including inflammatory markers, were obtained from
electronic medical records. Rapid progression was observed in 9.6% of patients. All QCOVID scores
predicted rapid progression, with QMD showing the best predictability (AUC = 0.813). In multivariate
analyses, the QMD score and interleukin(IL)-6 level were important predictors for rapid progression
(AUC = 0.864). With >2 months follow-up CT, remained lung lesions were observed in 21 subjects,
even after several weeks of negative reverse transcription polymerase chain reaction test. AI-driven
quantitative CT scores in conjugation with laboratory markers can be useful in predicting the rapid
progression and monitoring of COVID-19.

Keywords: coronavirus disease 2019 (COVID-19); quantitative computed tomography (CT) score;
rapid progression; prediction

1. Introduction

The coronavirus disease 2019 (COVID-19) outbreak, caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread to become a global pandemic [1].
In May 2023, the World Health Organization (WHO) declared COVID-19 as an endemic
and announced the end of the global public health emergency. Despite this declaration,
some patients with COVID-19 still undergo rapid deterioration to severe disease with
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or without acute respiratory distress syndrome (ARDS) within 1–2 weeks from the onset
of symptoms [2,3]. Many patients with severe diseases require the intensive care unit
(ICU) care; therefore, predicting rapid progression in patients with confirmed COVID-19 is
important. In a situation with a limited number of beds and an increase in the number of
patients with COVID-19, it is necessary to recognize patients who are likely to progress
to severe disease early and hospitalize and monitor them rather than classify all patients
according to baseline characteristics, such as age and underlying disease.

In some papers published in 2020, the prevalence of severe COVID-19 was reported to
be 15.7–26.1% in hospitalized patients in China [4–6]. These patients exhibited abnormal
laboratory findings, including leukocytosis, neutrophilia, elevated d-dimer, and elevated
procalcitonin, as well as chest computed tomography (CT) findings showing bilateral
distribution of patchy shadows or ground glass opacity [5]. Respiratory failure due to
severe COVID-19 pneumonia is associated with hyperinflammation and increased levels of
cytokines, chemokines, and inflammatory mediators [7]. Since early identification of the
risk of progression to severe disease is crucial in preventing respiratory failure and lowering
mortality in patients with COVID-19 pneumonia, several studies have investigated whether
severity can be predicted using various inflammatory markers such as C-reactive protein
(CRP), D-dimer, interleukin-6 (IL-6), ferritin, Lactate dehydrogenase (LDH), neutrophil
count, and lymphocyte count [8–10], and a scoring system was proposed based on this [11].
Elevated D-dimer, CRP, LDH, and high-sensitivity cardiac troponin I levels have been
reported to be significantly associated with worse outcomes and alterations in white blood
cell (WBC) count, and liver enzyme changes have been reported to be associated with
severity [8]. However, the cut-off for each laboratory marker predicting severity has been
reported differently in each study because different methods were used to identify those
thresholds. Even for the widely used inflammatory marker, CRP, the cut-off ranged from
1.43 mg/dL to 80.5 mg/dL, indicating significant variability [5,9,10,12].

Since the COVID-19 pandemic, studies have been conducted to examine the rela-
tionship between various CT findings and clinical outcomes of patients, and there has
been an increased interest in the prognostic value of chest CT at the time of COVID-19
diagnosis. Various studies have shown that several CT findings (scattered bilateral distri-
bution of lesions, a higher number of involved lobes, the coexistence of diffuse GGO and
consolidations, absence of mixed and reticular patterns, crazy paving, bronchus distortion,
etc.) are associated with a poor prognosis in patients admitted to the ICU [13–16]. In
addition, studies on pathophysiology including radiological–pathological signatures, and
correlations between quantitative CT metrics and lung function in COVID-19 patients
have been reported [17–20]. However, it is challenging to standardize CT findings as a
predictor because each study’s description of the CT findings differs. Several other studies
have evaluated the prognostic value of baseline chest CT using semi-quantitative methods
(assigning specific scores according to the percentage of involved parenchyma) [21,22].
Recently, chest CT image analysis using multiple artificial intelligence (AI) models has
stratified patient risk [23]; however, it is necessary to investigate the clinical utility of chest
CT as a predictive tool for stratifying patients. Over the course of the prolonged COVID-19
pandemic, various studies have reported on the longitudinal changes in chest CT scans of
patients who have experienced COVID-19 infection [24,25]. However, a limited number of
studies have investigated these changes using serial clinical parameters and quantitative
CT scores.

The novelty of this study is to explore the prognostic value of quantitative CT (QCT)
lung COVID scores, along with laboratory inflammation markers including WBC, neu-
trophil count, lymphocyte count, CRP, procalcitonin, and IL-6, for predicting rapid pro-
gression within one week of hospitalization. Furthermore, we investigated the long-term
changes and COVID-19 pneumonia based on the pairing of longitudinal CT imaging and
laboratory data. This can infer the changes in CT with only the changes in accessible
laboratory data.
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2. Materials and Methods
2.1. Patients

This study included patients diagnosed with COVID-19 pneumonia and admitted to
Chungnam National University Hospital (Daejeon, Republic of Korea) between February
and September 2020, and their medical records were analyzed retrospectively. During
this period, there were no variants of COVID-19 in South Korea [26]. The diagnosis of
COVID-19 was established based on the positive results of the real-time reverse transcrip-
tion polymerase chain reaction (RT-PCR) assay for SARS-CoV-2 in nasal and pharyngeal
swab specimens.

This study was conducted in accordance with the Declaration of Helsinki and Good
Clinical Practice guidelines and was approved by the institutional review board of our
institution on 16 September 2020 (IRB No. 2020-09-041 at CNUH). Clinical and Digital
Imaging and Communications in Medicine (DICOM) radiological data were anonymized
according to the standards of care.

2.2. Clinical Data Collection

Patient demographic information (age, sex), body mass index (BMI), comorbidi-
ties, clinical symptoms and signs, and laboratory data (white blood cell count, platelet
count, neutrophil count, lymphocyte count, C-reactive protein (CRP), procalcitonin, and
interleukin-6 (IL-6) were obtained with data collection forms from electronic medical records.

Rapid progression was defined as a case in which the patient developed respiratory
failure requiring intubation and mechanical ventilation within one week of hospitaliza-
tion. Patients were classified into those with rapid progression and those without such
a complication.

2.3. Quantitative High-Resolution Computed Tomography Imaging Analyses

Standardized non-contrast volumetric chest high-resolution computed tomography
(HRCT) was performed with 3-mm slice thickness with equipment from 4 manufactur-
ers (Siemens from München, Germany, GE from Boston, USA, Philips from Amsterdam,
Netherlands, Toshiba from Tokyo, Japan). Baseline (the initial scan on hospitalization)
and longitudinal follow-up HRCT scans were obtained, where the median (±IQR) follow-
up duration from baseline was 8 (±5) days, 20 (±26) days, 51 (±21) days, and 60 (±36)
days for 44% (97/218), 24% (53/218), 13% (29/218), and 5% (10/218), respectively, of the
present study cohort. All scans were anonymized and digitally transferred for quantita-
tive analyses. Quantitative HRCT analyses were performed by the Center for Computer
Vision and Imaging Biomarkers (CVIB) at the Department of Radiological Science at the
University of California Los Angeles (UCLA) (Computer Aided Analyses for CT Images,
IRB No. 11-0000126 at UCLA). We developed the quantitative COVID scores from the
HRCT images (Figure 1) using semi-supervised learning from the previous interstitial lung
disease model. The adaption steps were to: (1) run the technique developed for interstitial
lung disease [27,28] to infectious diseases [29], (2) identify misclassified regions of interest
(ROI) in the infectious disease cohort, (3) explore the characteristics of misclassified ROIs,
(4) make a simple adjustment for a new class, and (5) adapt this model by adding a new
class of consolidation and expand GGO patterns. The final model to calculate the quan-
titative COVID scores was reviewed and confirmed the visualization of the classification
result using an independent COVID-19 cohort at UCLA by thoracic radiologists (Jonathan
G. Goldin and Fereidoun Abtin) [30]. High-throughput computation for COVID was per-
formed using the pipeline of automated imaging import, labeling of the inspirational scans,
and deep learning-based lobar segmentation [31]. Briefly, four steps of high-throughput are:
(1) HRCT images are segmented by convolutional neural networks (CNN) after automatic
labeling inspirational series using DICOM information [31]; (2) denoise HRCT images in
order to normalize the different inherent noise [32]; (3) run adapted classifier model for
COVID-19 using the denoised radiomic features and support vector machine [27]; (4) gen-
erate a score in ratio where the numerator is the number of classified voxels for a subtype
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and the denominator is the total number of voxels. For example, QGGO is a ratio where
the numerator is the count of voxels that were classified as GGO patterns. In HRCT images
from the COVID population, ground glass opacities usually represent acute inflammatory
processes; mixed diseases represent heterogeneous opacity with areas of reticulation, with
and without architectural distortion; and consolidation is frequently associated with pul-
monary infection [33]. Quantitative COVID-19 Image (QCOVID) scores were composed of
four distinct radiological patterns on HRCT: (1) quantitative ground-glass opacity (QGGO,
yellow and cyan dots), (2) mixed diseases (QMD, red and blue dots), (3) consolidation
(QCON, mint dots), and (4) normal lung (QNL). The sum of the three abnormal lung tissue
scores was named the quantitative total lung disease (QTLD).
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Figure 1. Automated quantitative COVID (QCOVID) score after model adaptation for a new class
using five steps: quantitative mixed diseases (QMD: red + blue dots), quantitative ground glass
opacity (QGGO: yellow + cyan dots), quantitative consolidation (QCON: mint). Before adaptation,
QMD and QGGO classes were available; QCON is a new class.

2.4. Statistical Analysis

Summary statistics were reported for the baseline characteristics. The mean and
standard deviation (SD) and the median and interquartile ranges (IQR) were reported for
the continuous dataset. T-tests were used for variables following the normal distribution,
and Wilcoxon signed rank-sum tests were used for the variables that did not follow the
normal distribution. Categorical variables were reported as numbers and percentages,
and Fisher’s exact test was used for comparisons between the rapidly progressive and
non-rapid progressor groups. Non-parametric Spearman rank correlations were used to
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associate QCOVID scores and laboratory markers. Logistic regression models were used to
identify the important baseline factors of rapidly and non-rapid progressive populations
using a forward variable selection with 0.15 as a cutoff threshold. ROC analyses were used
to evaluate the performance in predicting rapid progression, and the area under the curve
(AUC) was calculated. The optimal cut-off value of the QMD score was determined as the
point at which the Youden index was maximized by the ROC curve. The upper limit of
the normal range for inflammatory markers was set as the cut-off. Multivariable linear
regression was used to test the important factors of clinical outcomes, QCT, and laboratory
measurements. A mixed-effects linear model with a random intercept was applied for
longitudinal changes from baseline. Stata software (version 17.0, College Station, TX, USA)
was used to analyze the results.

3. Results
3.1. Patient Characteristics

A total of 225 patients with COVID-19 pneumonia were identified according to the
inclusion criteria, and seven were excluded for the following reasons: (1) CT scores were
not available due to slice thickness >3 mm due to the lack of robustness in radiomic
features in thick slice [34] or no available DICOM images (n = 5); (2) different baseline scan
date (n = 2). In total, 218 patients were included in our study (Supplementary Materials
Figure S1). Baseline clinical and CT characteristics are shown in Table 1. The average length
of hospital stay in all patients was 14.7 days; 34 patients (15.6%) required O2 demand, of
which 21 patients (9.63%) received mechanical ventilation, and extracorporeal membrane
oxygenation (ECMO) was applied to 5 patients (2.29%). The mortality rate was 1.83%
(4/218 patients).

Table 1. Baseline clinical and CT characteristics by stable, rapidly progressive, and overall groups.

Variables Total (n = 218) Non-Rapid Progressors (n = 197) Rapidly Progressive (n = 21) p-Value

Demographics, Mean (SD); median (IQR)

Age 53.33 (16.94)
57 (20)

52.16 (16.92)
55 (20)

64.29 (12.97)
64 (14) 0.0012 +

BMI (kg/m2) a 24.26 (3.80)
24.03 (4.18)

24.18 (3.82)
23.9 (4.05)

24.96 (3.56)
25.05 (4.76) 0.2143 +

Demographics, n (%)

Male 106 (48.62) 96 (48.73) 10 (47.62) 0.923 *

Comorbidity, n (%)

Hypertension 55 (25.23) 48 (24.27) 7 (33.33) 0.428 *

Diabetes Mellitus 40 (18.25) 34 (17.26) 6 (28.57) 0.234 *

Dyslipidemia 17 (7.80) 17 (8.63) 0 (0.00) 0.383 *

Bronchial asthma 3 (1.38) 3 (1.52) 0 (0.00) >0.999 *

Cancer 11 (5.05) 9 (4.57) 2 (9.52) 0.287 *

Cardiovascular disease 4 (1.83) 4 (2.03) 0 (0.00) >0.999 *

Cerebrovascular
disease 3 (1.38) 2 (1.02) 1 (4.76) 0.263 *

Chronic liver disease 2 (0.92) 2 (1.02) 0 (0.00) >0.999 *

Chronic kidney disease 2 (0.92) 1 (0.51) 1 (4.76) 0.184 *

Rheumatologic disease 3 (1.38) 2 (1.02) 1 (4.76) 0.263 *

Neurologic disorder 6 (2.75) 5 (2.54) 1 (4.76) 0.459 *
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Table 1. Cont.

Variables Total (n = 218) Non-Rapid Progressors (n = 197) Rapidly Progressive (n = 21) p-Value

Clinical Outcome, n (%)

O2 demand 34 (15.60) 13 (6.67) 21 (100) <0.001 *

Mechanical ventilation 21 (9.63) 0 (0) 21 (100) <0.001 *

ECMO usage 5 (2.29) 0 (0) 5 (23.81) <0.001 *

Death 4 (1.83) 0 (0) 4 (19.05) <0.001 *

Clinical Outcome, Mean (SD); median (IQR)

Duration of stay b

(days)
14.68 (10.92)

12 (11)
13.21 (8.61)

12 (9)
29.83 (18.70)

27.5 (24)
0.0001

++

WBC (/µL) 5420 (2124)
4960 (2380)

5302 (2057)
4900 (2250)

6534 (2454)
6560 (4500)

0.0151
++

PLT (/µL) 201,779 (61,794)
190,500 (95,000)

204,700 (60,780)
193,000 (82,000)

174,430 (66,010)
182,000 (95,000)

0.0517
++

Neutrophil (/µL) 3606 (1840)
3270 (2160)

3445.63 (1686.04)
3200 (1900)

5106.67(2502.19)
4600 (3200)

0.0015
++

Neutrophil, % 64.43 (12.06)
64.4 (16.4)

63.21 (11.45)
62.8 (15)

75.94 (11.74)
73.8 (16.3)

<0.0001
++

Lymphocyte (/µL) 1312.94 (692.4)
1200 (660)

1354.16 (695.5)
1290 (650)

926.19 (537.1)
850 (510)

0.0019
++

Lymphocyte, % 25.60 (10.10)
25.35 (13.7)

26.58 (9.71)
25.8 (12.2)

16.40 (9.13)
18.0 (11.8)

<0.0001
++

Ratio of Neutrophil to
Lymphocyte count

4.08 (8.38)
2.56 (2.16)

3.12 (2.56)
2.41 (1.55)

13.11 (24.57)
3.97 (5.55)

<0.0001
++

CRP (mg/dL) c 2.33 (3.48)
0.7 (2.50)

1.77 (2.60)
0.7 (1.80)

7.88 (5.67)
7.0 (7.75)

<0.0001
++

PCT (ng/mL) 0.07 (0.14)
0.05 (0.00)

0.06 (0.11)
0.05 (0.00)

0.17 (0.28)
0.05 (0.04)

<0.0001
++

IL-6 (pg/mL) d 42.13 (163.55)
5.80 (20.5)

37.61 (165.43)
5.45 (17.4)

93.75 (133.79)
43.8 (65.2)

<0.0001
++

Radiological Outcome, Mean (SD); median (IQR)

QGGO CAD, % 12.62 (9.43)
9.3 (14.1)

12.19 (9.34)
9.0 (12.7)

16.67 (9.51)
17.3 (15.6)

0.0321
++

QMD CAD, % 4.30 (6.93)
1.8 (3.7)

3.05 (3.20)
1.6 (2.6)

16.00 (16.16)
12.2 (15.4)

<0.0001
++

QCON CAD, % 0.40 (1.58)
0.10 (0.20)

0.19 (0.34)
0.10 (0.20)

2.33 (4.65)
0.40 (2.9)

0.0002
++

QTLD CAD, % 17.31 (14.05)
12.05 (20.9)

15.43 (11.70)
10.7 (16.1)

35.00 (20.87)
35.7 (21.8)

0.0001
++

a: n = 185 for non-rapid progressors, n = 20 for rapidly progressive; b: n = 183 for non-rapid progressors, n = 15
for rapidly progressive; c: n = 197 for non-rapid progressors, n = 20 for rapidly progressive; d: n = 194 for
non-rapid progressors, n = 17 for rapidly progressive. *: p-value by Fisher’s exact tests. +: p-value by two-sample
t-test. ++: p-value by Wilcoxon signed rank-sum test. BMI, body mass index. ECMO, Extracorporeal Membrane
Oxygenation. WBC, white blood cell. PLT, platelet. CRP, c-reactive protein. PCT, procalcitonin. IL-6, interleukin-6,
CAD, computer-aided design.

3.2. Rapid Progression Patients

Rapid progression was seen in 9.6% (21/218 patients); all patients received mechanical
ventilation, and five received ECMO support. The age, WBC count, neutrophil count, and
NLR were significantly higher in the rapidly progressive group, while the lymphocyte
count was lower than in the non-rapid progressor group. The levels of CRP, procalcitonin,
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and IL-6 were significantly higher in the rapidly progressive group than in the non-rapid
progressors, and QGGO, QMD, QCON, and QTLD scores were all significantly higher
(Table 1). There were no significant differences in comorbidities between the two groups.

3.3. Association between Quantitative CT Lung COVID Score and Laboratory Findings

The QGGO, QMD, QCON, and QTLD scores showed a positive correlation with neu-
trophil count, and QMD, QCON, and QTLD scores showed a negative correlation with
lymphocyte count. All four QCT COVID scores showed a significant positive correlation
with NLR, CRP, and IL-6 levels (Table 2). Among those, the correlation coefficients of QMD
score, CRP, and IL-6 were relatively higher (rho = 0.5669 and 0.4908, respectively) than the
correlation coefficients of other parameters. Figure 2 displays the associations between
QCT COVID scores (QMD and QTLD) and laboratory measurements of neutrophils, lym-
phocytes, NLR, CRP, IL-6, and PaO2 at baseline. Both the QMD score and QTLD score
showed positive correlations with neutrophil count, neutrophil percentage, NLR, CRP,
and IL-6. In contrast, both scores exhibited negative correlation with lymphocyte count,
lymphocyte percentage, and PaO2. There are a few outliers shown in Figure 2. These
outliers indicate that some patients with severe infections have extremely high levels of
CRP and neutrophil count.

Table 2. Associations between clinical, laboratory, and imaging quantitative COVID-19 scores.

QGGO, % QMD, % QCON, % QTLD, % QMD/QTLD, %
Rho (r)

(p-Value)

WBC
0.1553 * 0.1357 * 0.1366 * 0.1857 * 0.0082
(0.0218) (0.0453) (0.0439) (0.0060) (0.90)

PLT
−0.0292 −0.1718 * −0.0570 −0.0721 −0.2208 *

(0.67) (0.0110) (0.4025) (0.2892) (0.0010)

Neutrophil Count 0.1990 * 0.2385 * 0.2531 * 0.2533 * 0.0950
(0.0043) (0.0004) (0.0002) (0.0002) (0.16)

Neutrophil % 0.1926 * 0.3651 * 0.3728 * 0.2898 * 0.3070 *
(0.0043) (<0.0001) (<0.0001) (0.0001) (<0.0001)

Lymphocyte Count −0.1063 −0.2950 * −0.2326 * −0.1889 * −0.3210 *
(0.12) (<0.0001) (0.0005) (0.0051) (<0.0001)

Lymphocyte % −0.1844 * −0.3428 * −0.3209 * −0.2729 * −0.2931 *
(0.0063) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

NLR
0.1924 * 0.3545 * 0.3405 * 0.2835 * 0.2965 *
(0.0044) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

CRP a 0.3270 * 0.5669 * 0.3327 * 0.4298 * 0.4741 *
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

PCT b 0.1757 * 0.2587 0.2090 * 0.2185 * 0.1768 *
(0.0102) (0.2697) (0.0022) (0.0013) (0.0097)

IL6 c 0.2560 * 0.4908 * 0.2605 * 0.3389 * 0.4594 *
(0.0002) (<0.0001) (0.0001) (<0.0001) (<0.0001)

PaO2
d −0.0801 −0.2547 * −0.0896 −0.1751 * −0.3006 *

(0.2438) (0.0005) (0.23) (0.0184) (<0.0001)
a n = 217 for CRP; b n = 213; c n = 211; d n = 181; * p < 0.05.
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3.4. Prediction of Rapid Progression

In univariate analysis of quantitative CT score to predict rapid progression, all QCOVID
scores predicted rapid progression, with the QMD score having the best predictive power
(AUC 0.813, 95% confidence interval [CI] 0.679–0.947, p < 0.001) (Table 3). In the multi-
variate analysis, the QMD score and IL-6 level were important factors in predicting rapid
progression (AUC = 0.864, 95% CI 0.775–0.953). Patients with a high QMD score (≥10%)
were likely to experience rapid progression within seven days by >10 folds (OR = 15.72,
p < 0.001). A multivariable model showed three significant covariates of age, QMD score
(≥10%), and IL-6 level (>7 pg/mL) in predicting rapid progression with the best predictive
power (AUC = 0.886, 95% CI 0.795–0.974) (Table 4).

Table 3. Prediction of rapid progression using univariate quantitative imaging scores.

Quantitative COVID Score Odds Ratio (SD) 95% CI Odds Ratio p-Value AUC 95% CI AUC

QGGO, % 1.05 (0.023) [1.00, 1.09] 0.043 0.642 [0.513, 0.771]

QMD, % 1.30 (0.068) [1.18, 1.44] <0.001 0.813 [0.679, 0.947]

QCON, % 3.71 (1.30) [1.87, 7.38] <0.001 0.735 [0.590, 0.881]

QTLD, % 1.09 (0.19) [1.05, 1.13] <0.001 0.768 [0.625, 0.910]
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Table 4. Univariate and multivariate analysis of factors to predict rapid progression.

Univariate-Analysis Multivariate-Analysis

OR (SE) p-Value 95% CI
of OR

AUC
[95% CI] OR (SE) OR (SE) OR (SE) OR (SE) OR (SE) OR (SE)

Age 1.05 (0.02) 0.002 [1.02,
1.09]

0.716
[0.608,
0.824]

1.05
(0.02) **

1.04
(0.02) +

BMI 1.05 (0.06) 0.38 [0.93,
1.18]

0.585
[0.447,
0.722]

Male 0.96 (0.44) 0.92 [0.39,
2.35]

0.506
[0.389,
0.625]

QMD 1.30 (0.07) <0.001 [1.18,
1.44]

0.813
[0.679,
0.947]

QMD ≥
10%

28.31
(15.4) <0.001 [9.72,

82.3]

0.800
[0.696,
0.905]

15.72
(9.60) **

13.24
(7.50) **

10.21
(6.50) **

15.94
(9.85) **

10.80
(7.02) **

IL-6 1.00
(0.0009) 0.238 [0.992,

1.002]

0.830
[0.746,
0.915]

IL-6
>7 pg/mL

10.24
(7.85) 0.002 [2.28,

46.0]

0.730
[0.644,
0.816]

4.70 (3.86)
*

9.19
(10.35) *

6.57 (7.75)
+

3.36 (2.84)
+

4.55 (5.48)
+

CRP 1.40
(0.088) <0.001 [1.24,

1.58]

0.855
[0.746,
0.964]

CRP ≥ 1
mg/dL

14.96
(11.37) <0.001 [3.37,

66.3]

0.762
[0.687,
0.848]

6.09
(4.98) **

4.16
(3.49) **

2.09
(1.93) +

2.00
(1.85) +

AUC
[95% CI]

0.864
[0.775,
0.953]

0.856
[0.763,
0.949]

0.802
[0.718,
0.886]

0.868
[0.770,
0.966]

0.886
[0.795,
0.974]

0.882
[0.786,
0.979]

n = 205 for BMI, n = 211 for IL-6, n = 217 for CRP, otherwise n = 218; ** if p < 0.05, * if 0.05, + if p > 0.10. Bold
indicates the highest AUC.

3.5. Follow-Up Imaging

The mean (±SD) duration between two HRCT images was 9.5 days ± 5.7 (n = 82),
where the maximum duration was 32 days after the initial scan with available PCR results.
Changes in QMD scores were associated with age, the status of rapid progressors, CRP,
and QMD at baseline (R2 = 0.66, n = 82) (Table 5). The overall mean (±SD) reduction was
84% (±0.084) of the QMD score at baseline (p < 0.0001), although the rapidly progressing
subjects increased the QMD score by 4.9% (p = 0.019) compared with the QMD score of the
stable (non-rapid progressor) subjects. Older age groups are more likely to increase QMD
scores by 0.126, with one unit of increased age in years. At follow-up, CRP was associated
with changes in QMD with a mean (±SD) of 0.20 (0.13) (p = 0.003). There were 60 subjects
within ten days of follow-up CT imaging. These results were mostly consistent with those
of the overall subjects. A minor difference was observed in the rapidly progressing subjects,
with an increased mean QMD score of 4.6% (p = 0.071) compared with the QMD score of
the stable subjects. Figure 3 shows a representative longitudinal CT imaging in a rapidly
progressive subject and a stable subject.
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Changes in Different QMD within Ten Days, n = 60, R2 = 0.44 
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Rapid Progressors 4.598 2.492 0.071 [−0.401, 9.597] 
CRP 0.390 0.164 0.021 [0.062, 0.718] 
Constant −3.576 5.429 0.513 [−14.466, 7.313] 
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gressed subject: Male, 65 years old, with a BMI of 27. Each column indicates the values at baseline, 
nine days, and four weeks after HRCT images. Quantitative mixed diseases (QMD) scores are dis-
played in the second row, with the scores 11.4%, 19.8%, and 12.5% at baseline, nine days, and four 
weeks in the whole lung. Quantitative total lung diseases (QTLD) are displayed in the third row, 
with the scores 41.9%, 53.9%, and 43.8% in the whole lung. C-reactive protein scores were 6.3, 5, and 
2 at baseline, nine days, and four weeks. The available IL-6 score was 26.8 at week 4. Nasal PCR 
results were positive at baseline and negative at nine days and four weeks. PCR results by sputum 
were positive at baseline and equivocal at nine days and four weeks. (b) Stable subject: Female, 63 
years, with a BMI of 22. Each column indicates the values at baseline, nine days, and eight weeks 
after HRCT images. Quantitative mixed diseases (QMD) scores are displayed in the second row, 
with the scores 6.2%, 3.7%, and 0.4% at baseline, nine days, and eight weeks in the whole lung. 
Quantitative total lung diseases (QTLD) are displayed in the third row, with the scores 19.2%, 11.4%, 
and 1.6% in the whole lung. C-reactive protein scores were 3.2 and 2.8 at baseline and nine days. IL-
6 scores were 18.8 at baseline and 7.9 at nine days. Nasal PCR results were positive at baseline and 
negative at nine days. PCR results by sputum were positive at baseline and equivocal. Blue and red 
dots represent the voxels classified as QMD scores (three lungs, last two visits of iDose), yellow dots 
represent the voxels classified as QGGO scores, and mint dots represent the voxels classified as 
QCON scores. 

3.6. Longitudinal Changes in Chest CT over Two Months or Longer 
Twenty-one patients had longitudinal CT images taken more than two months after 

the initial diagnosis and hospitalization. CT scans were performed at least twice and up 
to six times per patient. The final CT scan was performed after discharge. In all patients, 
lung lesions were still observed with a QTLD of 1.4–29.3% on CT after two months or 
more. Figure 4a shows the CT image changes in a 58-year-old man. After the COVID-19 
diagnosis, a chest CT was performed five times serially from baseline, and the last CT scan 
was performed 113 days after diagnosis. Chest CT performed at the first hospitalization 
showed QMD of 12.5%, QGGO of 27%, and QTLD of 39.8%. On the second CT taken after 
16 days, the QMD was 22.8%, QGGO was 23.2%, and QTLD was 47%. On the third CT 

Figure 3. Follow-up CT imaging of rapidly progressed subject and stable subject. (a) Rapidly
progressed subject: Male, 65 years old, with a BMI of 27. Each column indicates the values at baseline,
nine days, and four weeks after HRCT images. Quantitative mixed diseases (QMD) scores are
displayed in the second row, with the scores 11.4%, 19.8%, and 12.5% at baseline, nine days, and four
weeks in the whole lung. Quantitative total lung diseases (QTLD) are displayed in the third row, with
the scores 41.9%, 53.9%, and 43.8% in the whole lung. C-reactive protein scores were 6.3, 5, and 2 at
baseline, nine days, and four weeks. The available IL-6 score was 26.8 at week 4. Nasal PCR results
were positive at baseline and negative at nine days and four weeks. PCR results by sputum were
positive at baseline and equivocal at nine days and four weeks. (b) Stable subject: Female, 63 years,
with a BMI of 22. Each column indicates the values at baseline, nine days, and eight weeks after
HRCT images. Quantitative mixed diseases (QMD) scores are displayed in the second row, with the
scores 6.2%, 3.7%, and 0.4% at baseline, nine days, and eight weeks in the whole lung. Quantitative
total lung diseases (QTLD) are displayed in the third row, with the scores 19.2%, 11.4%, and 1.6% in
the whole lung. C-reactive protein scores were 3.2 and 2.8 at baseline and nine days. IL-6 scores were
18.8 at baseline and 7.9 at nine days. Nasal PCR results were positive at baseline and negative at nine
days. PCR results by sputum were positive at baseline and equivocal. Blue and red dots represent
the voxels classified as QMD scores (three lungs, last two visits of iDose), yellow dots represent the
voxels classified as QGGO scores, and mint dots represent the voxels classified as QCON scores.

Table 5. Changes in QMD scores in follow-up CT imaging.

Changes in Different QMD Scores, n = 82, R2 = 0.66

Coefficient SE p-Value [95% CI]

PCR Septum positive result 1.437 1.430 0.318 [−1.412, 4.286]

Duration 0.144 0.129 0.266 [−0.112, 0.400]

QMD at baseline −0.841 0.084 <0.001 [−1.009, −0.673]

Age 0.126 0.050 0.013 [0.027, 0.224]

Rapid Progressors 4.913 2.045 0.019 [0.838, 8.988]

CRP 0.403 0.131 0.003 [0.142, 0.664]

Constant −4.803 3.245 0.143 [−11.268, 1.662]
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Table 5. Cont.

Changes in Different QMD within Ten Days, n = 60, R2 = 0.44

Coefficient SE p-Value [95% CI]

PCR Septum positive result −0.178 1.761 0.920 [−3.710, 3.354]

Duration 0.022 0.468 0.963 [−0.917, 0.960]

QMD at baseline −0.688 0.204 0.001 [−1.097, −0.279]

Age 0.133 0.061 0.034 [0.011, 0.256]

Rapid Progressors 4.598 2.492 0.071 [−0.401, 9.597]

CRP 0.390 0.164 0.021 [0.062, 0.718]

Constant −3.576 5.429 0.513 [−14.466, 7.313]

3.6. Longitudinal Changes in Chest CT over Two Months or Longer

Twenty-one patients had longitudinal CT images taken more than two months after
the initial diagnosis and hospitalization. CT scans were performed at least twice and up
to six times per patient. The final CT scan was performed after discharge. In all patients,
lung lesions were still observed with a QTLD of 1.4–29.3% on CT after two months or more.
Figure 4a shows the CT image changes in a 58-year-old man. After the COVID-19 diagnosis,
a chest CT was performed five times serially from baseline, and the last CT scan was
performed 113 days after diagnosis. Chest CT performed at the first hospitalization showed
QMD of 12.5%, QGGO of 27%, and QTLD of 39.8%. On the second CT taken after 16 days,
the QMD was 22.8%, QGGO was 23.2%, and QTLD was 47%. On the third CT taken after
26 days, the QMD was 14.5%, QGGO was 23.1%, and QTLD was 37.7%. When the patient
was discharged, nasal RT-PCR showed an equivocal state, undergoing negative conversion.
The fourth CT, after 64 days, showed a QMD score of 1.1% and QGGO of 7.5%. On the fifth
CT taken after 113 days, the QMD was 1.4%, QGGO 8.1%, and QTLD 9.7%, mainly GGO
lesions remained. The QMD score, CRP level, NLR changes, and RT-PCR results of the
other five patients who had longitudinal CT images are shown in Figure 4b. On follow-up
CT at three months, the QMD score remained high at 0.5–9.1%, and QGGO remained at
2–19%. In particular, lung lesions remained on CT for several weeks after negative results
on real-time RT-PCR assay of SARS-CoV-2 for nasal and pharyngeal swab specimens.
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Figure 4. Longitudinal changes in imaging, lab, and PCR measurements of COVID-19 subjects.
(a) Representative longitudinal CT imaging and CRP, NLR, and PCR results. Blue and red dots
represent the voxels classified as QMD score (three lungs, last two visits of iDose), yellow dots
represent the voxels classified as QGGO score, and mint dots represent the voxels classified as QCON
score. PCR nasal results were positive and equivocal on days 0, 16, and 26. Pharyngeal PCR test
results were positive on days 0, 16, and 26. (b) Longitudinal changes in quantitative scores by HRCT
and laboratory measurements in 5 patients.

4. Discussion

Our results indicated that QCT COVID scores on admission were an independent
prognostic factor in predicting rapid progression to severe COVID-19 pneumonia. The
quantitative score with the mixed disease pattern (QMD) score was highly predictive,
and improve prediction in rapid progression together with other inflammatory markers.
Furthermore, as longitudinal trends in CT score were matched with changes in the ra-
tio of neutrophil to lymphocyte and CRP, simple laboratory measurements can be used
for monitoring.

Most patients with COVID-19 have mild to moderate symptoms, and their severity
has been reduced due to the omicron mutation [35,36]. However, in some patients, pneu-
monia rapidly progressed within 1–2 weeks after COVID-19 infection, and those patients’
condition worsened rapidly with respiratory failure [37]. Early detection of patients with
rapid progression in the early stages of COVID-19 diagnosis is very important for efficient
clinical care in a limited medical environment. In a situation where the number of patients
is rapidly increasing and the number of hospitalized beds is limited, clinicians can select
patients who are expected to progress rapidly, decide on hospitalization, and monitor them,
thereby lowering the mortality rate of COVID-19 [38]. The prevalence of severe COVID-19
is approximately 20% [4,5], and the number of patients with rapid progression in this study
was 9.6%, which was lower than previously reported. Patient registration in this study was
performed when all diagnosed patients were hospitalized without screening in the early
stages of the COVID-19 pandemic in South Korea.
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Lung CT can provide useful information for diagnosing COVID-19 pneumonia and
differentiating it from other diseases [39]. Radiologists interpreted the CT images; however,
due to differences in experience and subjective opinion, there was a large variation among
radiologists, making it difficult to quantify disease severity as it is both time-consuming and
labor-intensive. A previous study has reported the early prediction of disease progression
in patients with COVID-19 pneumonia using chest CT and clinical characteristics, wherein
various risk factors, including CT severity, CRP, and NLR were analyzed, similar to that
in the current study [6]. However, because CT images were reviewed by radiologists
and scored according to the degree of involvement, it was difficult to regard the CT
severity score as a quantitative indicator. Recently, various studies have reported that the
clinical outcome in COVID-19 patients can be predicted using QCT through AI software
or deep learning machines [23,40–42]. Our study showed that the QCT COVID scores at
admission could predict rapid progression in patients with COVID-19. The total lesion
volume showed the best performance in assessing COVID-19 pneumonia, which matches
the findings of a previous study [41]. The QCT COVID scores are based on radiomic
features after deep-learning-based lung and lobar segmentation. Ground glass opacities
usually represent acute inflammatory processes, mixed disease is commonly a radiological
presentation of interstitial lung disease (ILD), and consolidation is frequently associated
with pulmonary infection [33]. In this study, the QMD score had the best predictive
power for rapid progression, and the QGGO score remained high until later in long-term
follow-up patients.

This study investigated the longitudinal changes in chest CT findings in patients with
COVID-19 pneumonia. In approximately 20 patients, lung lesions remained on chest CT 1
month after discharge. It took several weeks or more for the lesions remaining in the lungs
to resolve after the RT-PCR assay of SARS-CoV-2 was negatively converted. The follow-up
images observed in our study support that symptoms such as cough, sputum, and dyspnea
may persist for a long time even after the infection has gone in patients with COVID-19.
Even if infectivity disappears after COVID-19 infection, lung lesions can persist for several
months, so exposure to other infections should be avoided. Furthermore, if respiratory
symptoms persist for a long time, obtaining follow-up images is necessary to check whether
the lesion persists or worsens. Conversely, the stable laboratory measurements can be
inferred as to stable or resolved COVID-19 disease, which may avoid the unnecessary
radiation exposure via CT.

This study had several limitations. First, it was a retrospective study performed on
single-center patients to test the utilities of CT imaging and inflammatory markers without
developing the prediction model. A larger cohort is needed to validate the utility of QCT
COVID scores in assessing the prognosis of patients with COVID-19. Second, this study
only included patients from the first half of 2020, so it cannot represent all COVID-19
patients with various coronavirus variants. Additionally, long-term changes could not be
observed as follow-up CT images beyond one year were not analyzed. Third, we did not
obtain cut-off levels for all variables. Our interest is based on the incremental improvement
of AUC as part of evaluation, instead of obtaining a cut-off and obtaining the sensitivity and
specificity. As part of the early stages of the work, the main goal of this study was to explore
the association and explore the ability of classifying the group of likely rapid progression
within a week. Fourth, quantitative scores were used to classify a set of radiomic features
which contain high variability in CT technical parameters, such as the kernels and slice
thickness. A sharper kernel with a low dose generates grainy noise, and slice thickness leads
to volume artifacts and blurs the texture of the images. This study included all CT images
with 3-mm slice thickness that reduced the sensitivity and fine characteristics of radiomics,
potentially leading to underestimated QCOVID scores [34]. Fifth, we only compared the
existing laboratory measurements, but did not compare the existing scoring systems or
methods for predicting rapid progression in COVID-19 patients. Lastly, quantitative CT
analysis has no internal validation and there may be a risk of overfitting.
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5. Conclusions

Quantitative CT COVID scores can provide support for a clinician to make informed
decisions, in conjugation with laboratory markers, about the rapid progression of COVID-
19. The laboratory and monitoring longitudinal changes can be inferred to the change in
patients with COVID-19 pneumonia.
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