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Abstract

Running-related injuries (RRI) may result from accumulated microtrauma caused by combinations 

of high load magnitudes (vertical ground reaction forces; vGRFs) and numbers (strides). Yet 

relationships between vGRF and RRI remain unclear – potentially because previous research has 

largely been constrained to collecting vGRFs in laboratory settings and ignoring relationships 

between RRI and stride number. In this preliminary proof-of-concept study, we addressed these 

constraints: Over a 60-day period, each time collegiate athletes (n = 9) ran they wore a hip-

mounted activity monitor that collected accelerations throughout the entire run. Accelerations 

were used to estimate peak vGRF, number of strides, and weighted cumulative loading (sum of 

peak vGRFs weighted to the 9th power) across the entirety of each run. Runners also reported 

their post-training pain/fatigue and any RRI that prevented training. Across 419 runs and >2.1 

million strides, injured (n = 3) and uninjured (n = 6) participants did not report significantly 

different pain/fatigue (p = 0.56) or mean number of strides per run (p = 0.91). Injured participants 

did, however, have significantly greater peak vGRFs (p = 0.01) and weighted cumulative loading 

per run (p < 0.01). Results from this small but extensively studied sample of elite runners 

demonstrate that loading profiles (load magnitude-number combinations) quantified with activity 

monitors can provide valuable information that may prove essential for: (1) testing hypotheses 

regarding overuse injury mechanisms, (2) developing injury-prediction models, and (3) designing 

and adjusting athlete- and loading-specific training programs and feedback.
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1. Introduction

Long distance runners experience high rates of running-related injury (RRI), 

musculoskeletal overuse injuries causing a restriction of running speed, distance, duration, 

or frequency (Hreljac, 2004). Depending on the population studied and the methods used to 

diagnose injury, incidences range from 6.9 to 92.4% per 1000 h of running (van Gent et al., 

2007; Lopes et al., 2012; Videbæk et al., 2015). In addition to negatively affecting 

performance, these RRIs lead to both direct (e.g., health care), and indirect (e.g., time lost) 

costs (Hespanhol Junior et al., 2016). With approximately 51.5 million Americans running 

(The Outdoor Foundation, 2016) these injuries constitute a large health and economic 

burden. Thus, developing means to predict and prevent RRI can have meaningful health and 

economic impacts.

Overuse injuries such as RRI result from bouts of cyclic loading that cause microtrauma 

accumulation over time. When micro-trauma from a given bout of loading is limited and 

biological structures are allowed adequate time for repair, they can positively remodel, 

becoming stronger and less susceptible to injury (e.g., Burr et al., 2002; Shepherd and 

Screen, 2013). In contrast, when successive bouts of cyclic loading occur before 

microtrauma can be repaired, microtrauma accumulation overwhelms repair processes, 

elicits negative remodeling, and increases injury risk (Fig. 1) (Rolf, 1995; Frost, 1998; 

Edwards et al., 2009; 2010). In single bouts of continuous cyclic loading, the relationship 

between load magnitude and the number of loading cycles to structure failure can be 

described by an inverse exponential relationship for soft tissue (Weightman et al., 1978; 

Wren et al., 2003) and an inverse power relationship for bone (Carter & Caler, 1985). In 

running, vertical ground reaction forces (vGRFs) are often used as surrogate measures for 

structure loading. As discussed by Miller and Hamill (2009), however, relationships between 

external and internal loading are complex and non-intuitive due to inter-individual variability 

in muscle forces and structure morphology. Despite this variability, vGRF is the primary 

external force acting on runners and it is reasonable to assume that increased external 

loading translates into increased structure loading. Thus, the mechanisms for RRI can be 

conceptualized as a combination of vGRFs (load magnitudes) and strides (load cycles) that 

cause microtrauma to a musculoskeletal structure, with insufficient time for recovery 

between runs (bouts of loading) (Johnson, 1983; Lysholm & Wiklander, 1987; Renstrom, 

1993; Hreljac, 2004; Nielsen et al., 2012).

In spite of this theoretical rationale and much high-quality research, findings relating vGRF 

and RRI are inconsistent (e.g., Zadpoor and Nikooyan, 2011; van der Worp et al., 2016). 

This inconsistency may be due in part to previous research largely focusing on relationships 

between RRI and load magnitudes determined from single representative stances or strides 

observed in laboratory settings (Miller et al., 2013; Firminger & Edwards, 2016). Such 

research is constrained in several ways: (1) loading data obtained in laboratories may not 

accurately represent loading in the field (Andriacchi and Alexander, 2000); (2) loading may 

change throughout a repetitive task; for example, fatigue can alter biomechanics across a 

long, exhausting run (Miller et al., 2007; Meardon et al., 2011); and (3) given the importance 

of repetitive loading in overuse injury, metrics based on a single representative stride tell an 

incomplete story and are likely insufficient to predict RRI (James et al., 1978; Burr, 1997; 
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Hreljac et al., 2000; Hreljac, 2004; Firminger & Edwards, 2016). Therefore, extrapolation of 

lab-based, single-stride results may not realistically represent the number or magnitude of 

loads actually experienced by runners.

Several approaches have been developed to expand on single-stride metrics. Edwards et al. 

(2010) proposed a ‘stressed-life’ method in which the probability of positive and negative 

remodelling, and consequent tibial stress fracture risk, were estimated as a function of bone 

strain, number of strides, and structure adaptation. Although extremely useful in elucidating 

the role that repeated loading plays in RRI, modeling demands and assumptions limit this 

approach. More easily applied ‘per-unit-distance’ and ‘cumulative loading’ metrics integrate 

waveform magnitudes within a stance to calculate load, then sum integrals across loading 

cycles (Miller et al., 2013, 2014; Petersen et al., 2015; Firminger and Edwards, 2016; 

Baggaley and Edwards, 2017; Miller, 2017). Findings from these studies have shown 

potentially non-intuitive results not predicted by single-stride metrics. For example, although 

reducing stride length decreased ankle joint loading during a single stance, across a 5 km run 

it increased cumulative loading (Firminger & Edwards, 2016). Thus, in agreement with 

theory, these novel approaches highlight the importance of broadening the focus from 

single-stride metrics to include repetitive loading in RRI research.

Wearable activity monitors provide the opportunity to broaden the focus from lab-based 

single-stride metrics. These devices may be capable of non-invasively capturing loading 

profiles (load magnitude-number combinations) throughout entire runs in the field. For 

instance, to obtain ecologically valid estimates of peak vGRFs outside the lab, Neugebauer 

et al. (2012, 2014) simultaneously collected accelerations from hip-mounted activity 

monitors and GRFs from force plates. With a hold back procedure, one group of participants 

was used to develop a multiple linear regression relating peak vertical acceleration, mass, 

and type of locomotion (walk/run) to log-transformed peak vGRF. A second group of 

participants was used to validate that this equation estimated peak vGRFs within 8.3 ± 3.7% 

of force plate-measured values (mean ± SD) (Fig. 2A). Other research groups have 

successfully used activity monitors to measure temporal parameters during running (e.g., 

Weyand et al., 2001; Auvinet et al., 2002; Wixted et al., 2010; Bergamini et al., 2012; 

Buchheit et al., 2015). For example, using a sacrum-mounted activity monitor, Lee et al. 

(2010) measured stride, step, and stance times during running with biases ≤1 ms (Fig. 2B).

Here, we combined accelerometer-based methods developed to estimate stride parameters 

(Lee et al., 2010) and peak vGRF (Neugebauer et al., 2014) and quantified loading profiles 

throughout entire runs of elite track athletes. We quantified both traditional metrics (number 

of strides, peak vGRF magnitudes) and a cumulative loading metric and evaluated their 

relationships to RRI. We hypothesized that runners exhibiting large cumulative loading 

based on combinations of high peak vGRF and/or high numbers of strides were more likely 

to develop RRI.
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2. Methods

2.1. Participants

Ten National Collegiate Athletic Association Division I runners competing in distance 

events were recruited from the University of California Davis Men’s Track Team. One 

participant was excluded from analyses due to non-compliance, resulting in a final sample of 

nine (Table 1). Participants were excluded if they suffered a major injury within the past 12 

months (physician diagnosed injury preventing training for ≥2 months) or a minor injury 

with a return-to-training less than six weeks before the study (trainer or self-diagnosed 

injury preventing training for ≥1 month). The University of California Davis Institutional 

Review Board approved all procedures and participants provided written informed consent.

2.2. Training prescriptions

Data were collected during training runs over a 60-day period during the Track and Field 

season. Coaches provided schedules prescribing daily training for individual participants. 

Running prescriptions for each training session were coded based on prescribed training 

time and optional training time (scale variables), whether the training was middle- or long-

distance, self-supervised, contained high intensity portions (e.g., sprints), included a pre-race 

routine, and/or included any otherwise undescribed training (categorical variables).

2.3. Training questionnaires

After each training session, participants rated their overall pain/fatigue (Table 2), reported 

whether they completed the prescribed training session, and, if they did not, described the 

reason. If failure to complete training was due to RRI, participants provided details on injury 

location and severity.

2.4. Accelerometer data

Each participant was assigned an activity monitor with a tri-axial linear accelerometer (Fig. 

3A) (ADXL345, Analog Devices, Norwood, MA; ±8 g; 48.4–52.4 Hz, twice the frequency 

observed in vGRFs during running; Kiernan et al., 2017). Participants were instructed on 

activity monitor use and wear. Before each training session, participants fixed the monitor to 

their lateral right iliac crest with a neoprene belt and turned it on (Fig. 3B and C). 

Participants wore the monitor throughout the entire training session, turning it off and 

automatically generating a time-stamped data file after the session was complete. Each 

week, researchers collected data and ensured monitor function.

Custom MATLAB scripts (R2016a, The MathWorks, Natick, MA) were used to extract 

unfiltered accelerometer data. The DC component was calculated during a 30 s static period 

and subtracted from the signal, and monitor-specific calibrations were applied, yielding 

output in “gs” relative to a reference frame aligned with the activity monitor housing and 

participant (Coolbaugh and Hawkins, 2014). The anterior-posterior axis was used to identify 

right and left foot strikes (Lee et al., 2010). Left stances (contralateral to the monitor) were 

discarded. Peak vertical accelerations during right stances were extracted and entered into a 

regression equation to estimate right stance peak vGRF (Neugebauer et al., 2014). Data were 

collected throughout an entire training session and could include warm up drills, stretching, 
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breaks in running to wait at traffic lights, etc. Thus, published stride times and peak vGRF 

magnitudes were used to eliminate data ±3 SD outside the ranges expected for running 

(Cavanagh and Lafortune, 1980; Munro et al., 1987; Cavanagh and Kram, 1989; Williams et 

al., 1991; De Wit et al., 2000; Weyand et al., 2000; Leskinen et al., 2009; Weyand et al., 

2010; Meardon et al., 2011). Periods evincing vGRF magnitudes and stride times within 

expected ranges but with <10 consecutive strides were also eliminated to ensure participants 

had achieved steady running speeds and that pattern recognition algorithms were not biased 

by aberrant waveforms. Periods of running with ≥10 strides were concatenated for analysis.

Mean peak vGRF and total number of strides were calculated for each training session. Data 

were grouped by training prescription and evaluated for outliers exceeding ±2 SD of 

prescription mean number of strides (e.g., Fig. 4A). High outliers were considered real and 

complete data but misrepresentative of the prescription (i.e., the participant violated the 

coach’s instructions and ran longer than prescribed); thus, prescription data were removed to 

avoid biasing imputation (see below; 1.67% of data). Low outliers were considered 

potentially incomplete data collections (i.e., the accelerometer turned off during data 

collection); thus, peak vGRF and number of strides were deleted and imputed (see below; 

2.15% of data).

2.5. Multiple imputation

A total of 419 training sessions were prescribed, however, item non-response (e.g., the 

participant forgot to turn on the accelerometer or fill out the questionnaire) or outlier 

deletion caused the loss of 22.4% of accelerometer and 43.4% of pain/fatigue data. 

Consistent with recommendations for the use of accelerometers in measuring physical 

activity (Catellier et al., 2005; Ward et al., 2005), missing data were multiply imputed using 

prescribed training, participant anthropometrics, and accelerometer variables, and assuming 

that data were missing at random. Multiple imputation uses associations with observed data 

to generate multiple plausible values for each missing data point. Each of these multiple 

plausible data sets is then separately analyzed and analyses are pooled. This procedure 

minimizes bias and results in valid statistical inferences that reflect the uncertainty due to 

missing values. Here, 50 imputed data sets were generated with SPSS (v24.0, IBM Corp., 

Armonk, NY) and pooled for analysis using Rubin’s rules (Rubin, 1987). To evaluate 

imputation accuracy, a second imputation was conducted where known data were deleted 

from two representative prescriptions. Imputed values for deleted data were not significantly 

different than original data (evaluated with uncorrected paired t-tests with significance set at 

p < 0.05) (Fig. 4).

2.6. Analyses

After imputation, mean estimated peak vGRF and number of strides per training session 

were calculated for each participant. Based on the S-N curve of tendon, an ‘effective’ load 

for soft-tissue injury was calculated by weighting the peak vGRF to the 9th power (Baggaley 

& Edwards, 2017). Weighted peak vGRFs were summed across each training session and a 

mean weighted cumulative load per training session was calculated. Participants were 

separated into injured (missed training due to self-reported RRI) and uninjured (no missed 

training due to RRI) groups. Injured and uninjured mean pain/fatigue, mean estimated peak 
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vGRF, mean strides per training session, and mean weighted cumulative loading per training 

session were entered into independent samples t-tests. Significance was set at p < 0.05 and 

corrected with a False Discovery Rate procedure (Benjamini & Hochberg, 1995).

3. Results

3.1. Injury

Across the 60-day study, three participants (33%) lost training time to self-reported foot, 

adductor, and hamstring soft-tissue RRIs with 7, 10, and 33 training days lost respectively. 

Injured participants were significantly older than uninjured participants (p =0.02) but did not 

significantly differ in height or weight (evaluated with uncorrected independent samples t-

tests with significance set at p < 0.05) (Table 1).

3.2. Pain vs. injury

Injured and uninjured participants did not report significantly different pain/fatigue (p = 

0.56). This result suggests that high subjective pain/fatigue may not predict impending RRI 

and highlights the need for additional objective metrics (Fig. 5A; Fig. 6A).

3.3. Biomechanics vs. injury

Mean number of strides per training session did not differ between injured and uninjured 

participants (p = 0.91) (Fig. 5B). Injured participants did, however, have significantly greater 

mean estimated peak vGRF (p = 0.01) (Fig. 5C) and mean weighted cumulative loading per 

training session (p < 0.01) (Fig. 5D). Injured runners also appeared as outliers when plotted 

on a mean estimated peak vGRF vs. mean strides per training session graph, suggesting 

greater injury risk at combinations of high loads and magnitudes (Fig. 6A). Participant’s 

chance of injury across two months was coded as 1 for injured and 0 for uninjured then 

interpolated across a generalizable range of peak vGRF and stride number combinations. 

This process resulted in a contour pattern similar to the curves of Davis’/Wolfe’s Laws 

(1867/1892) (Fig. 6B), illustrating that the risk of injury increases when high load 

magnitudes are repeatedly applied.

4. Discussion

In this study we used wearable activity monitors to prospectively measure runners’ loading 

profiles in the field. We found that injured runners had higher estimated peak vGRFs and 

weighted cumulative loads than uninjured runners. To our knowledge this is the first study to 

(1) apply accelerometer-based estimates of peak vGRF and stride number to RRI prediction 

in a prospective sample, and (2) empirically validate cumulative loading metrics in RRI 

prediction. These novel results suggest that the accelerometer-based models used here are 

capable of capturing inter-participant differences in loading profiles that may be predictive 

of RRI. These findings support both popular and emerging theories in RRI research: namely, 

that high vGRF magnitudes may be a contributing factor in RRI as speculated by Cavanagh 

and Lafortune (1980) and others, and that cumulative loading metrics may be a valid index 

of RRI risk (e.g., Petersen et al., 2015). Further, the methods used here show promise in 
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identifying safe limits of loading that could allow coaches and athletes to develop and adapt 

training prescriptions based on individual athlete loading profiles.

The development of objective metrics similar to those presented here appears critical given 

the high incidence of RRI (van Gent et al., 2007; Lopes et al., 2012; Videbæk et al., 2015) 

and apparent disconnect between subjective pain/fatigue and RRI. Although pain has been 

used to define RRI elsewhere, when RRI is instead defined as training time lost, these 

variables appear to represent separate constructs. Indeed, time lost appears to be a much 

more conservative definition of injury (Bahr, 2009; Buist et al., 2010; Clarsen et al., 2013; 

Clarsen and Bahr, 2014), does not appear related to pain across various RRIs (Hespanhol 

Junior et al., 2013), and does not evince the same statistical relationships with other 

variables as pain (Kiernan et al., 2015, 2016). Similarly, the present finding that injured 

runners did not report higher pain/fatigue, suggests that runners may be insensitive to 

impending injury. Indeed, it should be noted that injured runners actually tended to report 

lower pain than uninjured runners (mean 3.4 uninjured vs. 3.1 injured). Given the limited 

power in the present analysis and the risk of Type II error, however, we cannot rule out that 

sensitivity to pain may be protective, allowing runners to adapt motor patterns and avoid 

injury. In any case, subjective pain alone appears insufficient to predict time-loss injuries, 

highlighting both the important role that providing biomechanics-based feedback about RRI 

risk could play and the importance of discretely reporting injury as operationalized by 

medical, time-loss, and pain definitions to facilitate comparison across studies (Fuller et al., 

2006).

The activity monitor-derived objective metrics used here address several constraints in 

current biomechanics research. In the past, biomechanics research has largely been restricted 

to lab and clinical settings. This restriction has undermined the ecological validity of 

findings given lab-based observations may not be generalizable to real world behavior 

(Andriacchi and Alexander, 2000). Further, the constraints of the lab have prevented 

accurate measurement of the number of loads actually experienced by runners – a variable 

theorized to play a critical role in RRI causation (Nielsen et al., 2012; Bertelsen et al., 2017). 

The current results join an emerging body of literature (e.g., Coolbaugh et al., 2015; Cain et 

al., 2016; Willy et al., 2016; Gruber et al., 2017; Ruder et al., 2017) that demonstrates the 

role activity monitor-based methods may play in overcoming previous constraints and 

collecting large ecologically valid data sets.

The results presented here were largely consistent with our hypotheses; however, the number 

of strides per training session did not significantly differ between injured and uninjured 

participants. Participants in the present study were elite athletes with training regimes highly 

constrained by coach’s prescriptions. Thus, all participants ran for similar amounts of time 

and there was relatively little inter-participant variability in the number of strides. It seems 

likely that in an unconstrained population, such as recreational runners, the number of 

strides completed in each training session would vary greatly; in which case, the number of 

strides might play a larger role in RRI. Further research with more heterogeneous samples is 

required to more fully investigate the role of stride number and cumulative loading in RRI.
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The homogeneity of the present sample was, however, beneficial in constraining the time 

between training sessions. As outlined in the introduction, repeated bouts of loading play a 

key role in RRI causation, since adequate time is required between bouts for positive 

remodelling of injury-prone structures (Fig. 1). In spite of this key role, the present analyses 

focus on metrics across a mean training session, largely ignoring the role of repeated bouts 

of loading. We feel this decision is justified given the highly constrained training 

prescriptions in our sample: injured and uninjured participants trained 85.8% and 85.6% of 

potential days respectively, and times between training sessions were extremely similar. 

Thus, variability in the number of, and time between, bouts likely has little impact on the 

present results, and taking means across training sessions captures critical differences. In a 

more variable sample, however, it seems likely that the time between bouts could play a 

large role in RRI. This role could be captured either by identifying critical time periods over 

which load accumulates to cause RRI (e.g., the ratio of workload across one week relative to 

workload across four weeks predicts non-contact injury; Blanch and Gabbett, 2016; though 

this method is controversial; cf. Lolli et al., 2017), by calculating a daily probability of 

injury in a given structure based on the probability of positive and negative remodeling as a 

function of estimated structure loading, number of strides, and structure adaptation (e.g., 

Edwards et al., 2010), or by applying Miner’s Rule to calculate cumulative damage (e.g., 

Miller, 2017). Enacting these potential methods requires further research to determine 

mathematical associations between external loading conditions, internal structure loading, 

microtrauma accumulation, the temporal healing response, and RRI.

The present investigation represents a preliminary proof-of-concept application of novel 

methods. Although we observed promising results, there are a number of methodological 

refinements that could improve the techniques used here. For example, some evidence 

suggests the magnitude and/or rate of loading associated with the first peak of the vGRF 

waveform is more predictive of RRI relative to the magnitude of the second peak (e.g., 

Zadpoor & Nikooyan, 2011; van der Worp et al., 2016; cf. Grimston et al., 1991; Messier et 

al., 1991; Ferber et al., 2002). The method used here is unable to discriminate between the 

two peaks; rather, absolute peak acceleration is used to estimate absolute peak vGRF. 

Further, previous studies quantifying cumulative loading have summed waveforms 

integrated across stance (Miller et al., 2013, 2014; Petersen et al., 2015; Firminger and 

Edwards, 2016; Baggaley and Edwards, 2017; Miller, 2017). Methodological limitations 

prevented the use of an integral in the current study; instead, we summed peak vGRFs. 

Though this method captures information about the number and maximum magnitude of 

loads, potentially important information about loading throughout the entire gait cycle 

and/or the load duration is lost. Finally, given the preponderance of unilateral RRIs (Lopes et 

al., 2012) and the potential role bilateral asymmetries play in RRI (e.g., Zifchok et al., 

2006), methods to calculate loading and RRI separately for each limb should be developed. 

These, and other, methodological improvements should be considered as the field of activity 

monitor-based biomechanics develops.

In sum, we observed significantly different loading profiles between injured and uninjured 

track runners across a 60-day prospective period. These promising preliminary results 

provide evidence that further work in this area is warranted. Follow up studies should build 

on the current methods and collect data from larger, more heterogeneous, samples. 
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Calculating critical time periods over which load accumulates to cause injury and/or 

calculating rolling probabilities of injury based on loading may lead to the development of 

thresholds for RRI based on athlete-specific loading histories. Such results would help refine 

injury prediction models and provide the evidence necessary to develop adaptive feedback 

and training prescriptions that account for the mechanics and loading profiles of individual 

runners.
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Fig. 1. 
Conceptual representation of changes in a musculoskeletal structure’s strength elicited by 

the interaction between the number of cycles in a bout of activity, the magnitude of loading 

in the bout, and the time between bouts. During the first three bouts of loading, the number 

and magnitude of loading cycles are low and adequate time is allowed for positive 

remodelling; thus, the structure’s strength increases and the likelihood of injury decreases. 

In contrast, during the last three bouts, the number and magnitude of loading cycles 

increases and insufficient time between bouts is allowed for positive remodelling; thus, the 

structure’s strength decreases and injury risk increases.
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Fig. 2. 
Illustration of the difference between actual values and those predicted with accelerometer-

based estimations. (A) Peak vGRF was estimated using multiple linear regression with 

factors of peak vertical acceleration, mass, and type of locomotion (walk/run). The 

regression equation estimated peak vGRFs within 8.3 ± 3.7% of force plate-measured values 

(mean ± SD) (Neugebauer et al., 2014). (B) Sacrum accelerations were used to estimate 

stride times with biases <1 ms when compared to motion capture (adapted with permission, 

Lee et al., 2010, adapted with permission).
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Fig. 3. 
Illustration of the approach used to quantify hip acceleration. The activity monitor including 

accelerometer, battery, microcontroller, and memory card (A) was placed in a neoprene belt 

(B) and secured to the runner’s lateral right iliac crest (C).
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Fig. 4. 
Comparison of known and imputed data for number of strides and peak vGRF. Mean (black 

line) and 95% CI (colored bar) of (A) number of strides, and (B) estimated peak vGRF for 

known and imputed data from two representative training prescriptions: a 95-min training 

session and a 45-min training session with high intensity portions. Note that consistent with 

expectations there are (1) no significant differences between known and imputed data, (2) 

significantly more strides for the longer prescribed training session, and (3) a trend to higher 

vGRF for the shorter prescribed training session with high intensity portions. Gray dots 

represent individual data points (training sessions). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)

Kiernan et al. Page 16

J Biomech. Author manuscript; available in PMC 2019 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Outcome metrics for injured and uninjured runners. Mean (black line) and 95% CI (colored 

bar) of (A) pain, (B) mean number of strides per training session, (C) mean estimated peak 

vGRF, and (D) mean weighted cumulative load (sum of estimated peak vGRF weighted to 

the ninth power) per training session. Gray dots represent individual data points (participant 

means).
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Fig. 6. 
Relationships between loading profiles, pain, and injury. (A) Each participant’s mean 

estimated peak vGRF vs. strides per training session. Color represents mean reported pain/

fatigue. Thickness of encircling red line represents time lost due to injury (if any). (B) 

Empirical data coded as 0 for uninjured and 1 for injured and interpolated to conceptualize 

injury risk across a generalizable range of peak vGRF and strides/training session. Color 

represents chance of injury over two-months on a scale from 0 (not predicted to incur injury) 

to 1 (predicted to incur injury).
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Table 2

Pain/fatigue scale. After each training session, participants rated overall musculoskeletal pain/fatigue on a 

scale of integers from 1 to 9.

Quantitative rating Qualitative description

1 No pain or fatigue. Your muscles/bones feel as though they are at optimal training levels

3 Minimal pain or fatigue. You feel slightly less than optimal, but you still feel as though you can complete a rigorous 
work out

5 Moderate pain or fatigue. You have noticeable pain/fatigue in your muscles/bones, but feel as though you could 
complete an average workout

7 High pain or fatigue. You have a significant level of pain/fatigue and feel as though you would have difficulty 
completing an average workout

9 Extreme pain or fatigue. You have extreme pain/fatigue in your muscles/bones and do not feel as though you could 
complete a workout
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