
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
The Foundation Model Path to Open-World Robots

Permalink
https://escholarship.org/uc/item/9zv1969q

Author
Shah, Dhruv

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9zv1969q
https://escholarship.org
http://www.cdlib.org/

The Foundation Model Path to Open-World Robots

By

Dhruv Shah

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering — Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sergey Levine, Chair
Professor Jitendra Malik

Professor Alexandre Bayen
Professor Dieter Fox

Summer 2024

The Foundation Model Path to Open-World Robots

Copyright © 2024

by

Dhruv Shah

Abstract

The Foundation Model Path to Open-World Robots

by

Dhruv Shah
Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Sergey Levine, Chair

Data-driven robotics has been a very effective paradigm in the last decade. Today, we
can can autonomously perform dexterous tasks like folding cloths, navigate tight hallways
while avoiding collisions, and control complex dynamical systems like a quadrupedal
robot walking across challenging terrains using onboard observations. But they often
pose fundamental limitations that prevent them from being deployed in open-world
environments, either because they make strong assumptions about the structure of their
environment, require large amounts of on-robot data collection, or fail to account for
semantic understanding of their surroundings. Due to these limitations, data-driven
robotics approaches are still limited to simple restricted settings and not accessible to a
majority of practitioners and potential applications. They still need to be hand-engineered
for each separate robot, in a specific environment, to solve a specific task.

This dissertation proposes an alternate vision for intelligent robots of the future, where
we can have general machine learning models that can control any robot out of the box
to perform reasonable behaviors in challenging open-world environments. Inspired by
the onset of foundation models of language and vision, we present a recipe for training
Robot Foundation Models (RFMs) from large amounts of data, collected across different
environments and embodiments, that can control a wide variety of different mobile robots
by only relying on egocentric vision. We also demonstrate how such an RFM can serve as
a backbone for building very capable robotic systems, that can explore dense forests, or
interact with humans in their environments, or utilize sources of side information such
as satellite imagery or natural language.

Finally, we propose a recipe for combining RFMs, with their knowledge of the physical
world, with internet foundation models of language and vision, with their image-level
semantic understanding and text-based reasoning, using a novel planning framework.
This enables robotic systems to leverage the strength of internet foundation models, while
also being grounded in real-world affordances and act in the real-world. We hope that
this is a step towards such general-purpose robotic systems that can be deployed on a
wide range of robots, leverage internet-scale knowledge from pre-trained models, and
serve as a foundation for diverse mobile robotic applications.

1

C O N T E N T S

Contents i

List of Figures iv

List of Tables xiii

Acknowledgments xvii

1. Introduction 1

I. Learning Long-Range Navigation from Data

2. Learning Open-World Navigation with Visual Goals 6
2.1 Introduction . 6

2.2 Related Work . 8

2.3 Problem Statement and System Overview . 10

2.4 Visual Navigation with Goals . 11

2.5 Experiments . 14

2.6 Discussion . 21

3. Open-World Exploration with Latent Goal Models 24
3.1 Introduction . 24

3.2 Related Work . 25

3.3 Problem Statement and System Overview . 27

3.4 RECON : A Method for Goal-Directed Exploration 28

3.5 Experimental Evaluation . 31

3.6 Discussion . 36

4. Kilometer-Scale Exploration with Geographic Hints 37
4.1 Introduction . 37

4.2 Related Work . 39

4.3 Visual Navigation with Geographic Hints . 40

4.4 ViKiNG in the Real World . 46

4.5 The Role of Geographic Hints . 52

4.6 Discussion . 56

5. Offline Reinforcement Learning for Visual Navigation 58
5.1 Introduction . 58

5.2 Related Work . 60

5.3 Offline Reinforcement Learning for Long-Horizon Navigation 61

5.4 System Evaluation . 64

5.5 Discussion . 68

i

II. Cross-Embodiment Robot Foundation Models

6. A General Navigation Model to Drive Any Robot 70
6.1 Introduction . 70

6.2 Related Work . 72

6.3 Multi-Robot Training Dataset . 73

6.4 Training a General Navigation Model . 74

6.5 Deploying the GNM Across Robots . 77

6.6 Discussion . 82

7. A Foundation Model for Visual Navigation 85
7.1 Introduction . 86

7.2 Related Work . 87

7.3 The ViNT Model . 88

7.4 Long-Horizon Navigation with ViNT . 89

7.5 ViNT: A Foundation Model For Downstream Tasks 91

7.6 Real-world Evaluation . 92

7.7 Discussion . 99

8. Goal Masked Diffusion Policies for Unified Navigation and Exploration 101
8.1 Introduction . 101

8.2 Related Work . 103

8.3 Preliminaries . 103

8.4 Method . 105

8.5 Evaluation . 108

8.6 Discussion . 112

III.Combining Robot and Internet Foundation Models

9. Navigation with Foundation Models of Language, Vision, and Action 115
9.1 Introduction . 115

9.2 Related Work . 117

9.3 LM-Nav: Instruction Following with Pre-Trained Models 119

9.4 Preliminaries . 121

9.5 System Evaluation . 123

9.6 Discussion . 127

10. Semantic Guesswork as a Heuristic for Planning 129
10.1 Introduction . 129

10.2 Related Work . 131

10.3 Problem Formulation and Overview . 132

10.4 LFG: Scoring Subgoals by Polling LLMs . 133

10.5 LLM Heuristics for Goal-Directed Exploration 135

10.6 System Evaluation . 136

10.7 Discussion . 140

ii

11. Conclusion 142

Bibliography 145

IV. Appendices

Appendix A: Open-World Exploration with Latent Goal Models 166
a.1 Dataset . 166

a.2 Reproducibility . 167

Appendix B: Kilometer-Scale Exploration with Geographic Hints 173
b.1 Implementation Details . 173

b.2 Offline Trajectory Dataset . 174

Appendix C: Offline Reinforcement Learning for Visual Navigation 177
c.1 Formal Analysis of Proposition 3.1 . 177

c.2 Reward Labeling . 177

c.3 Building the Topological Graph . 179

c.4 Extended Experiments/Baselines . 180

c.5 Miscellaneous Implementation Details . 181

c.6 Environments . 181

Appendix D: A Foundation Model for Visual Navigation 184
d.1 ViNT Model Architecture . 184

d.2 Implementation Details . 186

d.3 Training Dataset . 189

d.4 Robotic Platforms for Evaluating ViNT . 190

d.5 Evaluation Setup and Details . 190

Appendix E: Navigation with Foundation Models of Language, Vision, and Action197
e.1 Prompt Engineering . 197

e.2 Building the Topological Graph with VNM 198

e.3 Mobile Robot Platform . 199

e.4 Miscellaneous Ablation Experiments . 199

Appendix F: Semantic Guesswork as a Heuristic for Planning 203
f.1 Implementation Details . 203

f.2 Prompts . 208

iii

L I S T O F F I G U R E S

Figure 1 ViNG builds and plans over a learned topological graph consisting
of previously seen egocentric images, and uses a learned controller
to execute the path to a visually indicated goal. Unlike prior work,
our method uses purely offline experience and does not require a
simulator or online data collection. Note that the graph constructed
by our algorithm is not geometric and nodes are not associated
with coordinates in the world, but only with image observations –
the top-down satellite image is provided only for visualization and
is not available to our method. 7

Figure 2 Challenges with Real-World Navigation: (Top) Three observa-
tions taken from exactly the same position at different times of day
exhibit large differences. (Bottom) While tall grass and inclined
rocks are traversable, a hole filled with dry leaves is not. These
examples highlight the challenges with geometric reasoning about
traversability. 9

Figure 3 Real-World Navigation: While all non-random methods success-
fully reach nearby goals, only ViNG reaches goals over 40 meters
away. Here, success rate is defined as the average over portion of
the expert trajectory to goal that each run successfully completes. . 15

Figure 4 Qualitative Results in the urban Environment: Each approach was
directed to a visual goal ∼ 50m away (marked by checkerboard
circle) – with 3 runs per approach. ViNG is the only approach that
is consistently able to reach the goal while avoiding collisions or
getting stuck. 16

Figure 5 Generalization Experiments: We evaluate ViNG in four new out-
door environments. For each, we collect a few dozen minutes of
experience to adapt the distance function and relative pose predic-
tor. Then, given a goal image (last column, checkerboard location
in aerial view), the robot attempts to navigate to the goal. Columns
4− 7 indicate that the robot succeeds in reaching the goal image.
Cyan lines indicate the actions taken by ViNG. 18

iv

Figure 6 Fast Adaptation to a New Environment: After training ViNG in
one environment, we deploy the system in a novel environment,
shown above. By practicing to reach self-proposed goals and us-
ing that experience to finetune the controller, ViNG is able to
quickly gain competence at reaching distance goals in this new
environment, using just 60 minutes of experience. Example roll-
outs towards a goal 35m away (marked by checkerboard circle)
demonstrate ViNG self-improving from interactions in the barracks
environment. 19

Figure 7 Results from Simulated Navigation: ViNG is substantially more
successful at reaching distance goals than all offline baselines, while
performing competitively with SoRB, a popular online baseline
combining Q-learning and topological graphs. We emphasize that
SoRB and PPO require 5× online data collection, making them
prohibitively expensive to apply in the real-world. 20

Figure 8 Contactless Last-Mile Delivery Demo: Given a set of visually-
indicated goals (a), ViNG can perform contactless delivery in the
urban neighborhood successfully, as shown in the filmstrip (c).
An overhead view (b) with starting position marked in yellow
and respective goals marked in orange and magenta shows the
trajectory of the robot (cyan). Note: The satellite view (b) is solely for
visualization and is not available to the robot. 22

Figure 9 Autonomous Inspection Demo: Given a set of visual landmarks
(a–d) in a university campus, ViNG can perform autonomous
inspection by navigating to these goals periodically. An overhead
view (b) shows color-coded goals and the trajectory taken by robot
(cyan) in one cycle. Note: The satellite view (e) is solely for visualization
and is not available to the robot. 23

Figure 10 System overview: Given a goal image (a), RECON explores the en-
vironment (b) by sampling prospective latent goals and constructing
a topological map of images (white dots), operating only on visual
observations. After finding the goal (c), RECON can reuse the
map to reach arbitrary goals in the environment (red path in (b)).
RECON uses data collected from diverse training environments (d)
to learn navigational priors that enable it to quickly explore and
learn to reach visual goals a variety of unseen environments (e). . 26

Figure 11 Visualizing goal-reaching behavior of the system: (left) Example
trajectories to goals discovered by RECON in previously unseen
environments. (right) Policies learned by the different methods
in one such environment. Only RECON and ECR reach the goal
successfully, and RECON takes the shorter route. 32

v

Figure 12 Exploring non-stationary environments: The learned representa-
tion and topological graph is robust to visual distractors, enabling
reliable navigation to the goal under novel obstacles (c–e) and
appearance changes (f–h). 34

Figure 13 Exploration via sampling from our context-conditioned prior
(right) allows the robot to explore 5 times faster than using random
actions, e.g. in ECR [226] (left). 35

Figure 14 Kilometer-scale autonomous navigation with ViKiNG: Our learning-
based navigation system takes as input the current egocentric image
(c), a photograph of the desired destination (b), and an overhead
map (which may be a schematic or satellite image) (a) that pro-
vides a hint about the surrounding layout. The robot (d) uses
learned models trained in other environments to infer a path to
the goal (e), combining local traversability estimates with global
heuristics derived from the map. This enables ViKiNG to navigate
previously unseen environments (e), where a single traversal might
involve following roads (f), off-road driving under a canopy (g),
and backtracking from dead ends (h). 38

Figure 15 An overview of our method. ViKiNG uses latent subgoals z
proposed by a learned low-level controller, which operates on raw
image observations ot, for global planning on a topological graph
T to reach a distant goal oG, indicates by a photograph and an
approximate GPS location. A learned heuristic parses the overhead
image ct to bias this search towards the goal. 40

Figure 16 The learned models used by ViKiNG. The latent goal model
(left) takes in the current image ot. It also takes in either a true
waypoint image ow, or samples a latent waypoint zw

t ∼ r(zw
t) from

a prior distribution, and then predicts, its temporal distance from
ot (dw

t), the action to reach it (aw
t), and its approximate GPS offset

(xw
t). The heuristic model (right) takes in an overhead image ct,

the approximate GPS coordinates of the current location (xt) and
destination (xG), and the coordinates of the waypoint inferred by
the latent goal model (xw), and predicts an approximate heuristic
value of the waypoint w for reaching the final destination. 42

Figure 17 Examples of kilometer-scale goal-seeking in previously unseen en-
vironments using only egocentric images (right) and a schematic
roadmap or satellite image as hints (left). ViKiNG can navigate in
complex environments composed of roads, meadows, trees and
buildings. 47

Figure 18 ViKiNG can follow a sequence of goal checkpoints to perform
search in complex environments, such as this 2.73km hiking trail. . 49

vi

Figure 19 ViKiNG can utilize a satellite image to follow a sequence of visual
landmarks (top) in complex suburban environments, such as this
2.65km loop stretching across buildings, meadows and roads. . . . 50

Figure 20 Trajectories taken by the methods in a previously unseen environ-
ment. Only ViKiNG is able to effectively use the overhead images
to reach the goal (270m away) successfully, following a smooth
path around the building. RECON-H and GCG get stuck, while
PPO and BC result in collisions. 52

Figure 21 ViKiNG can use geographic hints in the form of a schematic
roadmap or a satellite image. Providing roadmap hints encourages
ViKiNG to follow marked roads (left); with satellite images, it is
able to find a more direct path by cutting across a meadow (right). 53

Figure 22 On navigating with outdated hints, like the truck (top right) that
is absent in the satellite image, ViKiNG uses its learned local
controller to propose feasible subgoals that avoid obstacles and
finds a new path (blue) to the goal that avoids the truck. 54

Figure 23 On navigation with invalid hints, like the map at a different loca-
tion, ViKiNG deviates from its original path (magenta) and reaches
the goal by following the learned heuristic (blue). 55

Figure 24 Ablations of ViKiNG by withholding geographic hints. ViKiNG
without overhead images (magenta) acts greedily, driving close to
buildings, gets caught into a cul-de-sac and eventually reaches the
goal 2.6× slower that ViKiNG with access to satellite images (blue),
which avoids the building cluster by following a smoother dirt
path. Search without GPS (cyan) performs uninformed exploration
and is unable to reach the goal in over 30 minutes. 56

Figure 25 Long-range RL with ReViND: We use Implicit Q-learning to learn
a goal-conditioned policy π and it’s corresponding value function
Vπ from an offline dataset of interactions and user preferences,
encoded as rewards. We then create a topological graph using −Vπ

as the pairwise “distance function”. The minimum-cost path to
the goal in this graph is the desired reward-maximizing path to
the goal, resulting in varied behaviors such as goal-reaching while
driving on the grass, or following a bike lane. 60

Figure 26 Comparison of policies for different reward functions learned
by ReViND. Left: an overhead map (not available to the method),
with grassy areas indicated with green shading. Note that the
policy for the “sunny” reward chooses a significantly different path
through a concrete parking lot without tree cover, while the policy
for the “grassy” reward takes frequent detours to drive on lawns.
Right: first person images during each traversal, with the chosen
path indicated with colored lines. 66

vii

Figure 27 Qualitatively, only ReViND reaches the goal while prioritizing
grassy terrain (shaded green). 67

Figure 28 ReViND takes different paths through the environment for different
reward functions. 67

Figure 29 A general navigation model to drive any robot. By training on
diverse, heterogeneous datasets, a single “omnipolicy” can control
a variety of robots in challenging environments, including new
robots, without any robot-specific data collection. 71

Figure 30 GNM architecture. We modify a typical goal-conditioned archi-
tecture (purple) by conditioning it on additional context from the
target robot (pink) and making predictions in a shared, normalized
action space (yellow). 74

Figure 31 Depoying the GNM omnipolicy. We evaluate on 4 different robots
in challenging indoor and outdoor environments. 76

Figure 32 Qualitative comparison. Policies trained with increasingly diverse
data demonstrated on a LoCoBot (top) and Jackal (bottom). Both
robots were controlled by the same policy. 79

Figure 33 Policies trained with GNM are more robust to degradation in
parameters such as (a) actuation, (b) perturbed viewpoint, and (c)
physical damage, than single-domain policies (d). 84

Figure 34 ViNT Model Architecture. ViNT uses two EfficientNet encoders
ψ, ϕ to generate input tokens to a Transformer decoder. The result-
ing sequence is concatenated and passed through a fully-connected
network to predict (temporal) distance to the goal as well as a
sequence of H = 5 future actions. 87

Figure 35 Long-horizon navigation in unseen environments with ViNT.
We use physical search with a topological graph-based planner
to explore the environment. An image-to-image diffusion model
proposes diverse exploration targets which are spatially grounded
using ViNT (yellow), and scored using a goal-directed heuristic
h. Subgoals are added to the topological graphM and executed
using the ViNT policy. 90

Figure 36 Adapting ViNT to different goals using a new tunable goal token. . 92

Figure 37 ViNT accomplishes long-horizon navigation with a variety of ob-
jectives in indoor and outdoor environments; example trajectories
between start (orange) and goal (green) visualized here. Goal-
reaching behavior can be achieved with a goal-directed heuris-
tic (optionally guided by satellite imagery), while removing this
heuristic allows for undirected exploration to maximally cover a
workspace. 93

viii

Figure 38 Visualizing ViNT exploration rollouts in challenging indoor en-
vironments using the Vizbot (top) and LoCoBot (bottom) robotic
platforms. Future action samples â obtained by spatially grounding
the subgoal candidates are shown in yellow, with the best actions
corresponding to the best candidate marked in blue. 94

Figure 39 Satellite-guided physical search with ViNT. We visualize a 765m
rollout of ViNT with a satellite image-based heuristic from start
(orange) to goal (green). The future action samples â obtained
by spatially grounding the subgoal candidates for five instances in
the trajectory are shown in yellow. An A∗-like planner uses the
heuristic to pick the best subgoal (corresponding â marked in blue),
guiding the robot to the goal. 95

Figure 40 The CARLA test environment (top), and a bird’s eye view showing
high-level routing commands for the routing task. 96

Figure 41 Samples from the diffusion model may be invalid subgoals, but
ViNT is robust to such proposals. 98

Figure 42 ViNT exhibits an implicit preference for following paved roads (left)
and hallways (right). 98

Figure 43 Robustness to dynamic pedestrians. ViNT can successfully navi-
gate around a crowd of dynamic pedestrians and reach the goal
behind them, despite its simple self-supervised training objective. . 99

Figure 44 NoMaD is the first flexibly conditioned diffusion model of robot
actions that can perform both goal-conditioned navigation and
undirected exploration in previously unseen environments. It
uses goal masking to condition on an optional goal image, and a
diffusion policy to model complex, multimodal action distributions
in challenging real-world environments. 102

Figure 45 Model Architecture. NoMaD uses two EfficientNet encoders ψ, ϕ
to generate input tokens to a Transformer decoder. We use goal
masking to jointly reason about task-agnostic and task-oriented be-
haviors through the observation context ct. We use action diffusion
conditioned on the context ct to obtain a highly expressive policy
that can be used in both a goal-conditioned and undirected manner.104

Figure 46 Visualizing the task-agnostic (yellow) and goal-directed pathways
for two goal images (green, blue) learned by NoMaD. NoMaD pre-
dicts a bimodal distribution of collision-free actions in the absence
of a goal, and snaps to a narrower distribution after conditioning
on two different goal images. 107

ix

Figure 47 Visualizing rollouts of NoMaD deployed in challenging indoor
(top) and outdoor (bottom) environments on the LoCoBot plat-
form, showcasing successful exploration trajectories. Future action
samples from the undirected mode are shown in yellow, and the
action selected by the high-level planner is shown in blue. The
predicted actions follow implicit navigational affordances, such as
following hallways, and become multimodal at decision points,
such as intersections in the hallway. 108

Figure 48 Examples of action predictions from NoMaD and baselines in undi-
rected mode (yellow) and goal-directed mode with two different
goal images (blue towards left, green towards right). Only No-
MaD can consistently represent multimodal undirected predictions
while avoiding collisions with pillars or walls, as well as correctly
predicting the goal-conditioned action predictions for the two goals.
†Note that Subgoal Diffusion and Random Subgoals baselines only
represent point estimates when conditioned on a goal image. . . . 111

Figure 49 Embodied instruction following with LM-Nav: Our system takes
as input a set of raw observations from the target environment
and free-form textual instructions (left), deriving an actionable
plan using three pre-trained models: a large language model (LLM)
for extracting landmarks, a vision-and-language model (VLM) for
grounding, and a visual navigation model (VNM) for execution.
This enables LM-Nav to follow textual instructions in complex
environments purely from visual observations (right) without any
fine-tuning. 116

Figure 50 System overview: (a) VNM uses a goal-conditioned distance func-
tion to infer connectivity between the set of raw observations and
constructs a topological graph. (b) LLM translates natural language
instructions into a sequence of textual landmarks. (c) VLM infers
a joint probability distribution over the landmark descriptions and
nodes in the graph, which is used by (d) a graph search algorithm
to derive the optimal walk through the graph. (e) The robot drives
following the walk in the real world using the VNM policy. 118

Figure 51 LM-Nav uses CLIP to infer a joint distribution over textual land-
marks and image observations. VNM infers a goal-conditioned
distance function and policy that can control the robot. 122

Figure 52 Qualitative examples of LM-Nav in real-world environments exe-
cuting textual instructions (left). The landmarks extracted by LLM
(highlighted in text) are grounded into visual observations by VLM
(center; overhead image not available to the robot). The resulting
walk of the graph is executed by VNM (right). 123

x

Figure 53 LM-Nav can successfully disambiguate instructions with same
start-goal locations that differ slightly. The landmarks are under-
scored in text and their locations are marked with pins. 124

Figure 54 GPS-Nav (red) fails due to its inability to reason about traversability
through obstacles, while LM-Nav (blue) succeeds. 127

Figure 55 In constrast to methods that use LLM plans directly, Language
Frontier Guide (LFG) uses a language model to score subgoal can-
didates, and uses these scores to guide a heuristic-based planner. . 130

Figure 56 LFG scores subgoals with an empirical estimate of the likelihoods
by sampling an LLM ns times with both positive and negative
prompts, and uses chain-of-thought to obtain reliable scores. These
scores are used by a high-level planner as heuristics to guide search.
For full prompts, see Appendix F.2. 133

Figure 57 Overview of LFG for language-guided exploration. Based on the
pose and observations, LFG builds an episodic memory (topolog-
ical or metric), which is used by the heuristic-based exploration
policy to rank adjacent clusters, or subgoal frontiers. Navigation to
the subgoal frontier is completed by a low-level policy. 135

Figure 58 Qualitative example of a negative score influencing the agent’s
decision. LFG discourages the agent from exploring the bedroom
and living room, leading to fast convergence toward the goal,
whereas FBE fails. The CoT reasoning given by the LLM is shown
in purple, justifying its score. 137

Figure 59 Qualitative example of LFG in real. LFG reasons about floor plans
in the environment it is searching. In this apartment experiment,
LFG believes that a bathroom is more likely to be found near a
bedroom rather than a kitchen, and guides the robot towards the
bedroom, successfully reaching the goal. 138

Figure 60 We collect data in 9 diverse environments. Example trajectories are
shown in cyan. 171

Figure 61 Exploring and learning to reach goals: (left) Amount of time
needed for each method to search for the goals in a new environ-
ment (↓ is better; hashed out bars represent failure). (right) Amount
of time needed to reach the goal a second time, after reaching the
goal once and constructing the map, in seconds (↓ is better). 172

Figure 62 Rough geographical locations of data collection by human teleop-
eration and testing (Section 4.4) . 176

Figure 63 ReViND can support a wide range of reward functions and per-
forms as expected for varying levels of trade-offs between the
goal-reaching and utility maximization objectives. 179

Figure 64 Example egocentric observations from the training dataset [238]
(top) and the deployment environments (bottom), including the
predicted labels for the “sunny” reward. 183

xi

Figure 65 Different goal-conditioning architectures considered for ViNT. . . . 185

Figure 66 Subgoal diffusion model U-Net architecture. Each ResNet consists
of 2 residual blocks. Downsampling and upsampling is done with
strided convolutions. 187

Figure 67 Adaptation architectures for ViNT. Left: GPS-adaptation architec-
ture. The local coordinates of the goal are concatenated to the fixed
latent z. Right: command-adaptation architecture, using latent zi
selected by command label index i. 189

Figure 68 Examples of path planned by LM-Nav (left) and maximum like-
lihood planning (right). The start nodes and detected nodes are
indicated with black arrows. In order to represent overlapping
paths, we use colors interchangeably (start → L1: blue, L1 → L2:
orange, L2 → L3: blue). The path taken by LM-Nav is significantly
shorter, resulting in a 5× more efficient plan. 200

Figure 69 An example of failure to pick the correct image by maximum
likelihood planning. Both images were selected for a prompt A
photo of a blue dumpster. The left one was selected as a part of the
LM-Nav’s graph search and the right was selected by maximum
likelihood planning. In the latter case, the selected image contains
a blue semi-truck and an orange trailer, but no blue dumpsters.
This might be an example of an issue with the variable binding.
The left image was edited to maintain anonymity. 201

Figure 70 Tolerance to LLM failures. An example rollout of LFG compen-
sating for LLM failure. FBE takes over in this case and eventually
succeeds, whereas the Greedy agent fails. 208

Figure 71 LFG in an unseen apartment. The robot starts in the same starting
location and environment as 59, and is tasked with finding an oven.
LFG guides the robot towards the kitchen appliances, rather than
the bedroom door, and successfully leads to the oven. 209

Figure 72 LFG in an unseen office building. The agent looks for a sink in
an open-plan office building. Despite erroneous detections, the
robot continues exploring the environment, with LFG guiding it
towards frontiers containing appliances found in a cafe. The robot
successfully finds the sink despite imperfect detections. 210

xii

L I S T O F TA B L E S

Table 1 Generalization Results: Our approach to generalization (“ViNG -
Finetune”) successfully navigates learns to navigate in four new
environments (shown in Fig. 5) using just 60 minutes of experi-
ence in the new environment. Baselines that use only experience
from the source or target domains are substantially less successful.
Applying our finetuning approach on top of SPTM shows some
generalization, but is outperformed by ViNG-Finetune. 19

Table 2 Ablation Experiments: We investigate design choices for the
parametrization of the controller. Using waypoints as a mid-level
action space is key to the performance of ViNG, which is partic-
ularly emphasized for distant goals. While training the models,
we show that ViNG can be trained with either supervised or TD
learning and report similar performance. We also show that the
two key ideas presented – graph pruning and negative sampling –
are indeed essential for the performance of ViNG in the real-world. 21

Table 3 Exploration and goal reaching performance: Exploring 8 real-
world environments, RECON reaches the goal 50% faster than the
best baseline (ECR). ANS takes up to 2x longer to find the goal
and NTS [250] fails to find the goal in every environment. On
subsequent traversals, RECON navigates to the goal 20–85% faster
than other baselines, and exhibits >30% higher weighted success. . 31

Table 4 Ablation experiments confirm the importance of using an infor-
mation bottleneck and a non-parametric memory. 35

Table 5 Comparison of goal-seeking performance against baselines. ViKiNG
successfully reaches all goals. RECON-H and GCG succeed in sim-
pler cases but are unable to utilize the hints effectively for distant
goals. PPO and BC fail in all but the simplest cases. 51

Table 6 Average robot displacement and velocity before disengagement.
ViKiNG successfully reaches all goals without requiring any dis-
engagements. RECON-H also reaches some distant goals, but the
low avg. velocity suggests that it takes an efficient path. 51

Table 7 ReViND learns diverse behaviors that maximize the desired utility. 66

Table 8 Success rates and utility maximization for the task of navigation in
grassy regions (Rgrass). 67

Table 9 The GNM training dataset contains 70 hours of navigation data in
diverse environments across 6 different robots. 73

xiii

Table 10 Summary of navigation across robots. A single policy trained on
GNM-Mid outperforms the best single-robot policy for each robot
used in our experiments, mean success rate reported. 80

Table 11 Navigation success rates on a LoCoBot. GNM omnipolicies (green)
result in increasingly capable navigation, in both indoor and out-
door enviroments, on an unseen robot. 80

Table 12 Navigation success rates on a Jackal. By leveraging heteroge-
neous datasets, GNM omnipolicies (green) can drive a Jackal better
than a policy trained on a Jackal-specific dataset (RECON), also
generalizing to novel indoor environments. 80

Table 13 A systematic analysis of the design choices in Sec. 6.5.3 reveals that
choosing the right action representation (left), goal-conditioned
architecture (center), and conditioning on embodiment context
(right) are really important to facilitate multi-robot learning. 81

Table 14 ViNT paired with our physical search algorithm consistently out-
performs baselines for the task of undirected goal-reaching in
indoor and outdoor environments (left). By effectively planning
over diffusion subgoal proposals, ViNT is able to find an efficient
path to the goal. Other baselines struggle to explore large indoor
environments, shown by trajectories overlaid on an indoor floor
plan (right). 93

Table 15 ViNT can effectively utilize goal-directed heuristics, such as 2D
goal positions and satellite images, to explore novel kilometer-scale
environments successfully and without interventions. 94

Table 16 In coverage tasks, ViNT drives different robots for 100s of meters
(reported maximum displacement without intervention), beating
lower-capacity models (GNM) and specialist models trained on a
single robot dataset. 95

Table 3 Left: ViNT can be fine-tuned end-to-end (Images) or adapted to
downstream tasks (Positions and Routing), and outperforms train-
ing from scratch and other pre-training methods. Right: ViNT
can transfer navigational affordances to novel tasks (40% success
without fine-tuning), and efficiently masters the task (80% success)
with less than 1 hour of fine-tuning data. ViNT fine-tuning (green)
outperforms a single-domain model trained with 5× data (orange). 97

Table 4 NoMaD paired with a topological graph consistently outperforms
all baselines for the task of exploration in previously unseen envi-
ronments, and navigation in known environments. Most notably,
NoMaD outperforms the state-of-the-art (Subgoal Diffusion) by
25%, while also avoiding collisions and requiring 15× fewer pa-
rameters. mThese baselines that use goal masking. 110

xiv

Table 5 Despite having comparable model capacities, NoMaD matches the
performance of the best individual behavior policies for undirected
exploration and goal-conditioned navigation. 110

Table 6 The performance of NoMaD depends on the choice of visual en-
coder and goal masking strategy. The ViNT encoder with attention-
based goal masking outperforms all alternatives. 112

Table 7 Quantifying navigational instruction following with LM-Nav over
20 experiments. LM-Nav can successfully plan a path to the goal,
and follow it efficiently, over 100s of meters. Ablating the VNM
(GPS-Nav) severely hurts performance due to frequent disengage-
ments inability to reason about collisions with obstacles. 125

Table 8 GPT-3 consistently outperforms alternatives in parsing free-form
instructions into landmarks. 125

Table 9 CLIP-ViT produces the most reliable landmark detections from
visual observations. 125

Table 10 Ablating the search algorithm (Sec. 9.3.4) gives a max likelihood
planner that ignores reachability information, resulting in ineffi-
cient plans that are up to 6× longer than LM-Nav for the same
instruction. 126

Table 11 LFG outperforms all LLM-based baselines on HM3D ObjectNav
benchmark, and can achieve close to SOTA performance without
any pre-training. 139

Table 12 We find that CoT prompting with positives and negatives, com-
bined with polling, are essential to achieve the best performance. . 139

Table 13 Hyperparameters used in our experiments. 169

Table 14 Architectural Details of RECON: The inputs to the model are RGB
images ot ∈ [0, 1]3×160×120 and og ∈ [0, 1]3×160×120, representing the
current and goal image. 170

Table 15 Architectural details of the latent goal model (Section 4.3.1) 173

Table 16 Hyperparameters used in our experiments. 174

Table 17 Trajectory statistics for offline training dataset and real-world de-
ployment. 175

Table 18 Approximate composition of various environment types in the
teleoperated dataset. 175

Table 19 Success rates and utility maximization for the task of navigation in
sunny regions (Rsun). 181

Table 20 Architectures of the various neural networks used by ReViND. . . . 182

Table 21 Hyperparameters used during training ReViND from offline data. . 182

Table 22 Architectural Details of ViNT The inputs to the model are RGB
images ot:t−P ∈ [0, 1]P×3×85×64 and os ∈ [0, 1]3×85×64, representing
the current, past, and goal images. We seek to predict a H future
actions â and the temporal distance d. 184

xv

Table 23 Comparing merits (✓) and demerits (✗) of different goal-conditioning
architectures. While “Early Fusion” works the best for the core
navigation task, it does not support downstream adaptation (Sec-
tion 7.5). “Late Fusion” is ideal for adaptation, but does not
perform well for our tasks. Our goal fusion architecture is able to
closely match the performance of early fusion, while also support-
ing adaptation. 186

Table 26 Evaluation of ViNT fine-tuning with and without a frozen encoder,
as compared to a general-purpose visual encoder. Even when
frozen, ViNT’s navigation-relevant features appear to transfer more
readily to out-of-distribution inputs than general-purpose features. 194

Table 24 Hyperparameters for training ViNT and the diffusion model. . . . 195

Table 25 The ViNT training dataset contains over 150 hours of navigation
data in challenging indoor, outdoor, and off-road environments
across 8 different robots of varying sizes, speeds, and capabilities. . 196

Table 27 Hyperparameters . 203

Table 28 Parameters and resources required to run one evaluation round of
LFG on the benchmark. 203

xvi

A C K N O W L E D G E M E N T S

This dissertation is the culmination of five enriching years at Berkeley and over a decade
of explorations in the world of robotics and machine learning. While I get to take credit
for the pages that follow, they would not exist without the village that nurtured and
supported me through all these years.

First and foremost, I want to express my sincerest gratitude to my advisor, Sergey
Levine, for his continued support and guidance throughout my PhD. Besides heavily
influencing a lot of the ideas in this dissertation, Sergey taught me the art of asking the
right questions, and the important skill of timely dissemination to the broader community.
Sergey’s most impressive quality was his ability to multitask and context-switch. Despite
directing a large research group, I will never understand how Sergey had the time to
think about every project, and do justice to every student. From Sergey, I learned the art
of orchestrating a long-term research vision that spans multiple projects and never losing
sight of the true goal, while also doing justice to each individual problem at hand. I am
most grateful to Sergey for magically walking the line between steering me away from
getting overly invested in the wrong questions, but also giving me the freedom to make
my own mistakes and learn from them. I will never have enough words of gratitude for
Sergey’s impact on my life and career.

This dissertation would be incomplete without the support and mentorship of many
brilliant researchers over the years. I want to thank Jitendra Malik, Alexandre Bayen,
and Dieter Fox, for serving on my dissertation committee and for providing invaluable
feedback at various points during my PhD. I am particularly grateful to Dieter, for many
fruitful discussions during my conference presentations, and to Jitendra, for his timeless
advice on picking the right problems to work on. I also want to thank Chelsea Finn,
Gaurav Sukhatme, Jie Tan, Liam Paull, and Nicholas Roy, for their support during my job
search and providing invaluable advice.

The seeds of this dissertation were sown during my formative years at IIT Bombay,
where I was fortunate to be advised by Ajit Rajwade, on topics in signal processing and
computational imaging, and Leena Vachhani, on topics in swarm robotics and stability
analysis. I am particularly grateful to Leena Vachhani for sponsoring me to attend my
first ever conference (ICRA 2019 at Montréal), which introduced me to the vibrant and
exciting progress in robotics across the world. I have been to many conferences since, but
the thrill, overwhelm, and giddy excitement of my first still remains with me. I am very
grateful for the constant support and mentorship of Alankar Kotwal, who encouraged me
to never give up on my explorations and inspired me to pursue a PhD. I am also grateful
to Shashwat Shukla and Chinmay Talegaonkar, with whom I shared many late evenings
and long nights (barely) balancing undergraduate research and coursework. Lastly, I

xvii

am indebted to Sebastian Scherer at Carnegie Mellon University, Stefan Leutenegger at
Imperial College London, and Donald Dansereau at University of Sydney, who generously
hosted me at their labs for summer internships during this period and gave me a glimpse
into life as a graduate student, eventually convinced me to pursue graduate research in
robotics.

I have had the great fortune of collaborating with and learning from a number of
faculty members, postdocs, students, and researchers, during the course of my PhD. I am
very grateful to Abhishek Gupta, who showed me the ropes when I began my PhD and
has been a great mentor and friend ever since; Greg Kahn, who taught me the importance
of reliable and future-proof robot infrastructure; Ben Eysenbach, who taught me the art of
crisp and fast writing; Nick Rhinehart, who introduced me to some very effective visual
aids for papers: tikz, ColorBrewer, and seaborn; and to Ilya Kostrikov, who tried his best
to teach me good JAX practices. Their mentorship and collaboration really set the tone in
the initial years of my PhD.

Since then, I am grateful for the collaborations with Blazej Osinski, Catherine Glossop,
Chelsea Finn, Dorsa Sadigh, Jonathan Yang, Kevin Black, Kyle Stachowicz, Laura Smith,
Noriaki Hirose, Oier Mees and Quan Vuong. In particular, I would like to thank Noriaki
Hirose and Kyle Stachowicz, with whom I explored several new research threads, only
some of which made it into this dissertation. I am especially grateful for the opportunity
to work with the most exceptional undergraduate students: Ajay Sridhar, Arjun Bhorkar,
Hrish Leen, Michael Equi and Nitish Dashora. I had some of my best ideas when working
with them, and it was an absolute honor to witness the early days of their research
journeys. I wish them the best for their research endeavours in grad school and industry,
and look forward to their future achievements.

During my PhD, I had the privilege of spending time at two of the leading industry
labs in robotics research at Google DeepMind (then, Brain) and Meta Fundamental AI
Research. At Brain, I am eternally grateful to the mentorship of Brian Ichter and Alex
Toshev, who gave me the freedom to explore ideas far beyond the scope of this dissertation.
This internship turned into a visiting student researcher engagement, which turned into a
BAIR Commons, and became one of the longest and most fun collaborations of my PhD.
Brian’s intuitions about motion planning neatly connected with the rise of reasoning and
planning capabilities of language models, and with him, I worked on one of the earliest
attempts at incorporating language models and robot policies, which became Part III of
this dissertation. I am also grateful to Jie Tan, for his mentorship during my engagements
at Brain, and finally, for collaborating on scaling up parts of this dissertation at DeepMind.
At FAIR, I am grateful for the mentorship of Devendra Chaplot, who taught me the
importance of good simulation, benchmarks, and the vision way of doing robotics. I am
also grateful to all the researchers and engineers at Brain and FAIR that supported me and
collabored with me during these internships: Andy Zeng, Chris Paxton, Danny Driess,
Dhruv Batra, Fei Xia, Igor Mordatch, Karol Hausman, Michael Chang, Mukul Khanna,

xviii

https://colorbrewer2.org

Peng Xu, Pete Florence, Roozbeh Mottaghi, Sriram Yenamandra, Ted Xiao, Theophile
Gervet, Tiffany Min, Tingnan Zhang, Wenlong Huang, Yao Lu and Zhuo Xu.

I had the opportunity to organize many workshops at ICRA, CoRL, RSS and NeurIPS,
and am grateful to my co-organizers across the world, who I am now fortunate to call
friends: Andrey, Claas, Ed, Georgia, Ishika, Kaiyu, Paula, Prayusha, Mohit, Oier, Sid,
Suraj, Ted, Victoria and Yuqing. I am particularly grateful to Ted, Suraj and Oier, for
their support in enabling three consecutive editions of the LangRob workshop at CoRL,
which has evolved into being my favorite day of my favorite conference every year. I also
grateful to friends and colleagues the broader robotics and machine learning communities,
too many to name, who I look forward to meet at upcoming conferences for many years
to follow.

I am very grateful to all the members of the RAIL lab and the broader BAIR and EECS
communities for creating an enriching and supportive atmosphere in Berkeley Way West.
COVID-19 hit us right as we moved into this beautiful building, and a lot of my PhD
social life was remote, but I am very thankful for all the people that made BWW8 an
engaging atmosphere. Between lazy Fridays playing ping pong or whiling away in the
kitchen, catching the most beautiful sunset every evening over the San Francisco skyline
in the distance, and the frequent deadline all-nighters marked by watching sunrise over
the Berkeley hills, BWW became my second home and I am grateful to all the members of
the BAIR community that made it fun. I had the privilege of sharing our lab space with
some great colleagues, that made life fun over the past five years: Abhishek, Amrith, Amy,
Anusha, Aurick, Avi, Aviral, Ashvin, Blazej, Catherine, Charlie, Coline, Colin, Dibya,
Dinesh, Frederik, Glen, Greg, Homer, Ilya, James, Jason, JD, Jianlan, Joey, Justin, Karl,
Kate, Katie, Kelvin, Kevin, Kevin, Kuan, Kyle, Laura, Manan, Marvin, Marwa, Michael C,
Michael J, Michal, Mitsuhiko, Natasha, Nick, Noriaki, Oier, Oleg, Paul, Philip, Pranav,
Roberto, Rowan, Seohong, Sid, Simon, Sudeep, Tim, Vikash, Vitchyr, William, Yifei, Young.
I am also grateful to Ashish, Antonio, Ilija, Ryan, Sasha, Shiry, and many others at BAIR
who were always around for bouncing ideas and for all the fruitful discussions over
the years. BWW would have burned down multiple times if not for the amazing Angie
Abbatecola, Roxana Infante, and Ami Katagiri, who made sure everything was in shape
and there was always food after the seminars. I am also very grateful to Jean Nguyen,
Shirley Salanio, and Judy Smithson, for their support during the various phases of my
PhD, and making sure I can actually graduate in time.

Outside of work, Berkeley became a truly special place thanks to my amazing set
of friends, at Berkeley and otherwise. I am very grateful to all the lovely people from
the 2019 cohort that made the transition into grad school smooth and enjoyable: Alok,
Ilija, Kartik, Kathy, Lucy, Medhini, Orr, Rudy, Suzie, Tim, Yahav and Yuqing. Whether it
was late night karaoke, hiking, Thanksgiving bar hopping, or just growing old together,
I am glad I met these amazing bunch of friends and colleagues. Berkeley life would
not have been half as fun without my partners in crime: Kathy and Yuqing. I am also
particularly grateful to the Efros-Malik group, for housing me in my first year and for

xix

organizing the best hiking and camping trips, and to AUTOLab, for incorporating me as a
pseudo-labmate at all the fun robotics conferences we’ve attended together. I am grateful
to Aagam and Tarini, for entertaining all my crazy camping ideas with the enthusiasm of
vultures, to my roommates Asish and Deepto, for making sure I was never homesick, and
to all other friends that made life in the Bay fun and homely: Arunabh, Bhabesh, Chinmay,
Devansh, Karan, Pallavi, Shankar, Shubham and Upadhi. I am also very grateful for my
closest friends in India and around the world, who made sure I always felt close and
always made time when I felt homesick: Devyani, Neeraj, Kanush, Anmol, Sanket and
Tanya.

This dissertation would not have existed without Medini, who kept me sane every
day, through thick and thin. She gave me a life outside of work to look forward to —
whether its learning how to drive, ski, climb boulders, ice skate, or buying a kayak, or
traveling around the world, or helping me as a subject for robot experiments. . . . I am also
very grateful for my wonderful family, who has always been there for me throughout
the years before and during my PhD: Sweety, Viral, Viha and Dhruvi in CA, Raj, Bhumi
and Rihaan in OH, Shlesha and Jalpen in NJ, and Het, Adit, Alisha and Riddhi in India.
Finally, I want to thank my parents Ilesh and Shital for their love and support throughout
my life. I can’t imagine the courage it takes to send your son away halfway across the
globe and only get to meet every other year, and I cherish the few minutes a day I get to
catch up with them and escape from my busy life. I would not be half the person I am
today without their sacrifices and nurturing since childhood, and I extremely fortunate
for their support.

xx

1

I N T R O D U C T I O N

When humans visit a new city, we have no trouble navigating the streets, asking for
directions to landmarks, and making a mental map of the neighborhood. We draw from
our previous experiences and common sense to recognize patterns and fill in the blanks,
such as ”city blocks are typically rectangular” and ”exit signs lead to doors”. However,
the majority of robotic systems today lack such awareness and reasoning capabilities
in unseen, unstructured in-the-wild environments — they either (i) model too much
(geometry) and have limitations in terms of scalability, and adaptability, or (ii) model
too little and try to learn everything, with constraints on efficiency, generalization, and
robustness. Recent advancements in artifical intelligence and large-scale deep learning
have shown that such reasoning is indeed present in neural networks that model text
and visual information. So, why are we yet to see autonomous robots that can efficiently
explore city-scale environments, use common-sense reasoning, and co-exist with humans
in-the-wild?

The key challenge in building such a general-purpose robot lies in the lack of algorithms
and systems that can model diverse robot behaviors in arbitrary homes, streets or forests.
These behaviors can be arbitrarily complex and impossible to reconstruct or simulate
procedurally. As a result, neither classical methods relying on dense mapping and
geometry, nor modern end-to-end learning methods trained in simulation will get us
towards this goal. We posit that the answer lies in building robotic systems that can learn
from shared real-world experiences, i.e. data collected from real-world deployment of
robots across the world, with different sensors and capabilities, and solving different
tasks. This dissertation focuses on harnessing the power of “cross-embodiment” robot
learning to address the aforementioned challenges, and connecting them to the rigorous
foundations of planning and search, with the ultimate goal of building robust systems
capable of real-world deployment in complex environments. This paradigm can enable
broad generalization that enables entirely new robots to be deployed in-the-wild, as well
as efficient adaptation to a variety of downstream tasks in a data-efficient manner, much
like the successes of large pre-trained models in computer vision and language modeling.
When developing robotic systems under this paradigm, it is important to consider two
fundamental questions:

1. How can we learn robust behavior from offline datasets of robots deployed in
challenging environments?

1

2. How can we make these behaviors generalize to challenging new environments,
tasks, and robotic embodiments, and build a robot foundation model?

3. How can combine such a model with internet foundation models to benefit from
internet-scale knowledge and high-level planning abilities?

This dissertation presents a recipe for building robot foundation models, that can
enable autonomous robots to learn from their experience as well as other sources of
information on the internet, and how these robot-specific models can be combined
with foundation models trained on internet-scale data. We study this primarily in
the context of autonomous navigation, a fundamental component of intelligent robotic
systems operating beyond the laboratory, and truly in-the-wild. Our key insight is that the
combination of large-scale robot learning from cross-embodiment data and planning can
enable deployable general-purpose robots. This dissertation is divided into three parts,
corresponding to setting up the visual navigation problem in a data-driven framework,
designing and training a robot foundation model for visual navigation, and finally, combining
this robot-specific model with internet foundation models of text and vision.

For the sake of completeness and disambiguation, we define a robot foundation model
in the context of this dissertation as follows.

Definition 1 (Robot Foundation Model) A machine learning model trained with minimal
external supervision, that can be:

• deployed zero-shot in completely different (useful) settings
e.g., different sensors, robots, environments etc.

• adapted to a downstream task of choice
e.g., different objectives, preferences/rewards, modality of goal specification, behaviors etc.

organization

This dissertation is organized in three parts, aimed at answering the questions posed
above. We make the following contributions:

I. Learning Long-Range Navigation from Data: We formulate the visual navigation
problem into a mapless data-driven paradigm. We posit that robust navigation
in challenging, real-world environments requires both the ability to learn skills
from past experience of the robot, as well as an explicit memory for planning
and search. We also evaluate the suitability of offline reinforcement learning and
behavior cloning for training robust, real-world skills.

• In Chapter 2, we lay the groundwork for a novel learning-based navigation sys-
tem that can learn entirely from offline data and perform long-range navigation
via planning. This work appeared previously as Shah et al. [241].

2

• In Chapter 3, we build upon our system by enabling it to perform autonomous
exploration by training an exploration prior using a learned latent variable
model. This work appeared previously as Shah et al. [238].

• In Chapter 4, we extend this system so it can utilize geographic side informa-
tion as a planning heuristic to achieve kilometer-scale navigation. This work
appeared previously as Shah et al. [232].

• In Chapter 5, we study the viability of offline reinforcement learning for
training robot skills from data, and demonstrate a capable navigation system
that can optimize a user-specific reward function in the real world. This work
appeared previously as Shah et al. [237].

II. Cross-Embodiment Robot Foundation Models: We propose cross-embodiment
learning as a means to train goal-reaching navigation policies across several environ-
ments and robots. We explore the design space for such a model, the pre-training
paradigm, as well as possible ways it can be adapted for downstream applications.

• In Chapter 6, we explore how the experiential learning paradigm can be
extended to learn navigation policies across different robotic embodiments by
careful data curation and architecture design. This work appeared previously
as Shah et al. [234].

• In Chapter 7, we design the first ever robot foundation model based on cross-
embodiment learning. The ViNT model aims to bring the success of pre-trained
models to robotics, serving as a powerful backbone for training downstream
policies via prompt-tuning and full-model finetuning. This work appeared
previously as Shah et al. [242].

• In Chapter 8, we propose an alternate architecture for cross-embodiment robot
learning at scale that uses a goal-conditioned diffusion policy to learn complex,
multimodal behaviors. This work appeared previously as Sridhar et al. [254].

III. Combining Robot and Internet Foundation Models: We propose a novel planning
framework to combine the text-based reasoning capabilities of large language
models, semantic understanding and visual grounding of vision models, and the
physical grounding of robot foundation models to solve real-world instruction
following tasks. We further combine this idea with the heuristic-based planning
framework from Chapter 4 to propose a novel way to incorporate language model
suggestions during planning.

• In Chapter 9, we design the first ever real-world instruction following robotic
system that was can be deployed zero-shot in novel environments without
any additional training. LM-Nav combines powerful robot foundation models

3

(ViNG, GNM) with internet foundation models (GPT-3, CLIP) to obtain a pow-
erful and versatile robotic navigation system. This work appeared previously
as Shah et al. [235].

• In Chapter 10, we study how we can use the inherent knowledge stored in
large language models as a planning heuristic for solving long-range reasoning
tasks. This work appeared previously as Shah et al. [236].

We conclude with a discussion of current approaches and promising future directions
in developing truly autonomous robots that can be deployed in open-world environments.

4

Part I

L E A R N I N G L O N G - R A N G E N AV I G AT I O N F R O M D ATA

5

2

L E A R N I N G O P E N - W O R L D N AV I G AT I O N W I T H V I S UA L G O A L S

Synopsis

We propose a learning-based navigation system for reaching visually indicated goals
in a previously seen environment, and demonstrate this system on a real mobile robot
platform. By combining a learned policy with a topological graph constructed out
of previously observed data, our system can determine how to reach this visually
indicated goal even in the presence of variable appearance and lighting. Three key
insights, waypoint proposal, graph pruning and negative mining, enable our method
to learn to navigate in real-world environments using only offline data, a setting where
prior methods struggle. We instantiate our method on a real outdoor ground robot and
show that our system, which we call ViNG, outperforms previously-proposed methods
for goal-conditioned reinforcement learning. We also study how ViNG generalizes
to unseen environments and evaluate its ability to adapt to such an environment
with growing experience. Finally, we demonstrate ViNG on a number of real-world
applications, such as last-mile delivery and warehouse inspection.

2.1 introduction

Visual navigation in complex environments poses several challenges: (i) difficulty in
faithfully modeling the complex dynamics and nuanced environmental interactions; (ii)
reacting to high-dimensional observations; (iii) cost and safety constraints on collecting
data, requiring learning from previously collected (i.e., “offline”) experience; and (iv)
generalizing effectively across different settings and environments. Planning algorithms
achieve many of these desiderata, but their efficacy depends on having the right rep-
resentation of the task; it remains unclear how to apply many planning algorithms to
tasks with image-based observations. On the other hand, humans seemingly have little
difficulty navigating complex environments from first-person observations, without GPS

Shah, Eysenbach, Kahn, Rhinehart, Levine, ”ViNG: Learning Open-World Navigation with Visual Goals”, in IEEE
International Conference on Robotics and Automation (ICRA) 2021
Project website: sites.google.com/view/ving-robot

6

https://sites.google.com/view/ving-robot

Figure 1: ViNG builds and plans over a learned topological graph consisting of previously seen
egocentric images, and uses a learned controller to execute the path to a visually indicated goal.
Unlike prior work, our method uses purely offline experience and does not require a simulator or
online data collection. Note that the graph constructed by our algorithm is not geometric and
nodes are not associated with coordinates in the world, but only with image observations – the
top-down satellite image is provided only for visualization and is not available to our method.

or maps, if they have seen the environment before. Humans and animals are known to
use “mental maps” that rely on landmarks and other cues [193, 83, 73], and rely heavily
on learning. Further, in the absence of spatial positional information (e.g., GPS or maps),
specification of a navigational goal itself becomes challenging, since locational goals
require the robot to be able to compare its location to the target.

In this chapter, we study learning-based methods for navigation that can similarly
utilize graph-structured “mental maps” that are non-geometric in nature, and can enable
a robot to navigate in the real-world. We use a natural and intuitive mechanism for
specifying goals – where the user provides the robot with a picture of the desired
destination. Inspired by humans navigating toward previously seen landmarks, our goal
is to enable the robot to navigate to a visually indicated goal. Crucially, such a goal
specification scheme does not presume any prior geometric knowledge of the scene, while
still providing enough information for the robot to perform the task. Fig. 1 shows an
example of such a task.

Towards satisfying these requirements, we present a fully autonomous, self-supervised
mobile robot platform for visual goal-reaching in outdoor, unstructured environments
which we call ViNG — Visual Navigation with Goals. Our approach combines the
strengths of dynamical distance learning and graph search. We first learn a function

7

that predicts the dynamical distance between pairs of observations, estimating how many
time steps are needed to transition between them. We then use this learned dynamical
distance to embed past observations into a topological graph, and plan over this graph.
This process makes no geometric assumptions about the environment: reachability is
determined entirely by learning from data. Unlike pure planning-based approaches, our
method scales to high-dimensional observations and hard-to-model dynamics, and does
not assume access to any ground-truth spatial information. Unlike pure learning-based
approaches, our method effectively learns from offline experience and reasons over long
horizons. Unlike prior methods that combine planning and learning, ViNG learns from
offline, real-world data, and does not require a simulator or online data collection.

The primary contribution of this work is a self-supervised robotic system, ViNG,
that can efficiently learn goal-directed navigation behaviors in open-world environments
without access to spatial maps from an offline pool of data, including randomly collected
trajectories. Three key ideas, waypoint proposal, graph pruning and negative mining,
differentiate our method from prior work and are critical to the success of our method
in this offline setting. ViNG can learn to navigate to an arbitrary user-specified visual
goal in a variety of open-world settings, including urban, grassy, and rocky terrain,
learning only from offline data. Our experiments show that ViNG learns goal-conditioned
behaviors that can effectively plan over long horizons. We show that ViNG outperforms
several competitive offline RL and geometric baselines. Further, we show that the learned
behaviors transfer to novel environments using as little as 20 minutes of data from the
environment and that ViNG can adapt in such novel environments as it gathers more
data, resulting in an autonomous, self-improving system. Lastly, we demonstrate two
real-world applications enabled by ViNG in dense, urban neighborhoods – last-mile
delivery of food or mail, and autonomous inspection of warehouses.

2.2 related work

Prior work has studied vision-based mobile robot navigation in many real-world settings,
including indoor and outdoor navigation [216, 265, 19], autonomous driving [267, 271],
and navigation in extra-terrestrial and underwater environments [141, 48]. The combina-
tion of mapping [266] and path planning [149] has been a cornerstone for a number of
effective systems [52, 246, 78] and underlies several state-of-the-art navigation systems [13,
2]. Many prior methods make restrictive assumptions, such as access to LIDAR or other
structured sensor information and accurate localization, which can limit their suitability
for deployment in unstructured environments [49]. Further, prior work often assumes
that geometric traversability is faithfully indicated through observations and not misled
by (say) non-obstacles such as tall grass [76]. Learning-based systems lift some of these
assumptions and can use learned models to perform perception [34, 277], planning [123,
146, 91], or both [154]. In practice, learning temporally extended long-horizon skills with
either reinforcement learning (RL) or imitation learning (IL) remains difficult [217, 63].

8

Figure 2: Challenges with Real-World Navigation: (Top) Three observations taken from exactly
the same position at different times of day exhibit large differences. (Bottom) While tall grass and
inclined rocks are traversable, a hole filled with dry leaves is not. These examples highlight the
challenges with geometric reasoning about traversability.

Recent methods address limitations of the above approaches by combining planning
and learning [65, 224, 28, 43, 69, 179]. These methods use learning (i.e., approximate
dynamic programming) to solve short-horizon tasks and plan (i.e., use exact dynamic
programming) over non-metric topological graphs [178, 177] to reason over longer hori-
zons. This general approach simultaneously avoids the need for (1) high-fidelity map
building and (2) learning temporally-extended behaviors from scratch. However, prior
instantiations of this recipe make assumptions that limit their applicability to real-world
settings: assuming access to an exact simulation replica of the environment [75], assuming
simplified action spaces [65, 224, 28], or requiring online data collection [65, 28]. Our
experiments in Section 2.5 demonstrate that prior methods fail when they are not allowed
to collect new experience in a simulator or the real-world.

Our method, ViNG, builds on these prior approaches by adding two key ideas:
graph pruning and negative sampling. These additional ingredients allow ViNG to lift
assumptions made by prior methods: it does not assume access to a simulator, and does
not require interactive access to an environment; it is trained using offline, real-world
data; and it operates directly on high-dimensional images and predicts continuous actions
for the robot. To the best of our knowledge, ViNG is the first system demonstrated on
a real-world ground robot that can learn from offline data to reach visually indicated
navigational goals over long time horizons without simulated training or hand-designed
localization and mapping systems.

9

2.3 problem statement and system overview

We consider the problem of goal-directed visual navigation: a robot is tasked with
navigating to a goal location G given an image observation oG taken at G. In addition
to navigating to the goal, the robot also needs to recognize when it has reached the goal,
signaling that the task has been completed. The robot does not have a spatial map of the
environment, but we assume that it has access to a small number of trajectories that it has
collected previously. This data will be used to construct a graph over the environment
using a learned distance and reachability function. We make no assumptions on the nature
of the trajectories: they may be obtained by human teleoperation, self-exploration, or a
result of a random walk. Each trajectory is a dense sequence of observations o1, o2, . . . , on
recorded by its on-board camera. Since the robot only observes the world from a single
on-board camera and does not run any state estimation, our system operates in a partially
observed setting. Our system commands continuous linear and angular velocities.

2.3.1 Mobile Robot Platform

We implement ViNG on a Clearpath Jackal UGV platform – a small, fast, weatherproof
outdoor ground robot ideal for navigating in both urban and off-road environments
(see Fig. 1 and 2). The default sensor suite consists of a 6-DoF IMU, a GPS unit for
approximate global position estimates, and wheel encoders to estimate local odometry. In
addition, we added a forward-facing 170◦ field-of-view camera and an RPLIDAR 2D laser
scanner. Inside the Jackal is an NVIDIA Jetson TX2 computer. While the robot carries a
GPS and laser scanner, we use these sensors solely as a safety mechanism during data
collection. Our method solely operates using images taken from the onboard camera.

2.3.2 Data Collection & Labeling

ViNG can learn navigational behaviors from previously-collected, off-policy data – a
desideratum of real-world robots. To demonstrate this capability, we run our core
experiments using data exclusively from prior work [124]; we also collect a limited
amount of additional data for our environment generalization experiments using the
same self-supervised data collection strategy. The prior data was collected more than 10

months prior to the experiments in this paper (see Fig. 2 (top)), and exhibits significant
differences in appearance, lighting, time of year, and time of day as compared to the
evaluation setting. This underscores the ability of ViNG to utilize offline data from diverse
sources.

10

Algorithm 1 Training ViNG

1: Input transitions {τ(k) = (o(k)1 , a(k)1 , o(k)2 , a(k)2 , · · ·)}k=1,···

2: D+ ← {(o(k)i , o(k)j , d = min(j− i, dmax))}i≤j,k=1,···

3: D− ← {(o(k)i , o(ℓ)j , d = dmax)}i,j,k ̸=ℓ

4: Initialize T (oi, oj) and P(oi, oj)
5: while not converged do
6: B+ ∼ D+,B− ∼ D− ▷ Sample batch.
7: T ← UpdateDistanceFn(T ;B+ ∪ B−)
8: get relative pose: D+ ← {((o(k)i , o(k)j , dij, pij}
9: P ← UpdateRelativePoseFn(P ;B+ ∪ B−)

10: end while
11: return traversability function T , relative pose function P

2.4 visual navigation with goals

We approach the problem of visual goal-conditioned navigation by combining non-metric
maps and learned, image-based, goal-conditioned policies. We describe our method
in two stages: (i) training two learned functions and (ii) deploying the system, which
entails using the learned functions together with past experience to execute goal-directed
behavior.

During training, we use previously collected experience to learn an environment-
independent traversability function T , as well as a relative pose predictor, P . During
deployment, the robot builds a topological graph of its environment: a directed graph
with vertices as observations and edges encoding traversability and proximity. At each
time step t, the robot localizes its current and goal observations (ot, oG) in the graph and
follows the best path to G, as determined by a graph search algorithm that outputs the
next waypoint for the controller. To close the loop, we need a goal-conditioned controller
that takes the current and goal observations, and outputs an action a. The controller
progressively follows the path directed by the planner until it reaches G.

While the general recipe of ViNG is similar to prior work [224, 179, 65], our experi-
ments demonstrate that two key technical insights contribute to significantly improved
performance in the real-world setting: graph pruning (Sec. 2.4.2) and negative mining
(Sec. 2.4.1). Our comparisons to prior methods in Section 2.5 and ablation studies in Sec-
tion 2.5.4 demonstrate these novel improvements enable ViNG to learn goal-conditioned
policies entirely from offline data, avoiding the need for simulators and online sampling,
while prior methods struggle to attain good performance, particularly for long-horizon
goals.

11

2.4.1 Learning Dynamical Distances

We aim to learn a traversability function T (oi, oj) ∈ R+ that reflects whether any controller
can successfully navigate between observations oi and oj. More precisely, we will learn to
predict the estimated number of time steps required by a controller to navigate from one
observation to another. This function must encapsulate knowledge of physics beyond
just geometry. For example, tall grass and bushes might appear visually similar, but
grass is compliant and traversable whereas bushes are not. We explored two methods for
learning this traversability function: (1) supervised learning and (2) temporal difference
learning [259, 122]. To learn the distance function via supervised learning, we create a
dataset D+ of observation pairs (oi, oj) taken from the same trajectory and regress to
the number of timesteps dij = j− i elapsed between these observations. The distance
predicted by this approach corresponds to the estimated number of time steps required
by the behavior policy (that which collected the experience) when navigating between
two observations. Thus, this approach is simple but may overestimate the true shortest
path distances.

The second approach to learning the distance function is via temporal difference
learning [122]. This approach uses the same experience as before. While this approach
adds additional complexity, in theory it converges to the shortest path distance. In our
experiments, we found little difference between these two approaches (see Table 2), but
expect that the temporal difference learning approach would be important when moving
to settings where the shortest path distance is much shorter than a random walk distance.

Negative Mining (Key Idea 1)

In our experiments, we found that training the distance function using only observation
pairs from the same trajectory performed poorly. We hypothesize that the root cause was
distribution shift: when building the topological graph we must evaluate the distance
function on observation pairs collected from different trajectories, possible from different
times of day. To mitigate this problem, we augment the dataset by adding a new dataset
D− obtained by sampling observations from different trajectories, labeled as dmax. We find
this augmentation, hereby referred to as negative sampling, to be critical in the successful
training and evaluation of T in our experiments, offering significant improvements over
prior methods.

2.4.2 The Topological Graph

We build a topological graph M using the learned distance function together with a
collection of previously-observed observations {ot}. Each node in the graph corresponds
to one of these observations. We add weighted edges between every node, using weights
predicted by the distance function T .

12

Algorithm 2 Deploying ViNG

1: Input current image ot, goal image oG, and topological graphM.
2: Add ot, oG to the mapM using distances from T .
3: ow1 , ow2 , · · · ← Dijkstra(start = ot, goal = oG,M)
4: Estimate relative pose of first waypoint: ∆p← P(ot, ow1)
5: ut ← PD-Controller(∆p)
6: return control ut

Graph Pruning (Key Idea 2)

As the robot gathers more experience, maintaining a dense graph of traversability across
all observation nodes becomes redundant and infeasible, as the graph size grows quadrat-
ically. For our experiments, we sparsify trajectories by thresholding the edges that get
added to the graph: edges that are easily traversable

(
T (oi, oj) < δsparsify

)
are not added

to the graph, since the controller can traverse those edges with high probability.

Planning with the Graph

We localize the current observation ot and goal observation oG in the graph, adding
direct edges (weighed by their traversability) to their corresponding “most-traversable”
neighbors. We use the weighted Dijkstra algorithm to compute the shortest path to goal,
and the immediate next node in the planned path is then handed over to the controller.

2.4.3 Designing the Controller

After the planner predicts a waypoint observation, the controller must output an action
that takes the agent towards that waypoint. The main challenge in navigating to this
waypoint is that both the current state and waypoint are represented as high-dimensional
observations (e.g., images). To address this challenge, we learn a relative position
predictor P that takes as input two observations and predicts the relative pose between
these observations. We learn this relative pose predictor via supervised learning: for pairs
of observations (oi, oj) that occur nearby within the collected trajectories, we estimate
the relative pose ∆pij using onboard odometry and use this relative pose as the label for
learning.

The complete controller works as follows. Given the current observation and waypoint
observation, we use the relative pose predictor to estimate the relative pose of the
waypoint relative to the robot’s current position. The robot then uses odometry and
a simple PD controller to steer toward this waypoint. We compare against alternative
controllers in Section 2.5.4.

13

2.4.4 Implementation Details

Inputs to the traversability function T and relative pose predictor P are pairs of observa-
tions of the environment, represented by a stack of two consecutive RGB images obtained
from the onboard camera at a resolution of 160× 120 pixels. T comprises a MobileNet
encoder [104] followed by three densely connected layers to project the 1024−dimensional
latents to 50 class labels. P has a similar architecture as T , comprising of a MobileNet
encoder followed by three densely connected layers projecting the 1024−dimensional
latents to 3 outputs for waypoints: {∆x, ∆y}. Both T and P use the same encoder.

We train the traversability function on D+∪ D−, discretizing the timesteps dij into bins
{1, · · · , dmax = 50} and minimizing the cross entropy loss. The relative pose predictor
P is trained on D+ to minimize the ℓ2 regression loss. We use a batch size of 128 and
perform gradient updates using the Adam optimizer [133] with learning rate λ = 10−4.
Algorithms 1 and 2 summarize our approach in the training and deployment stages,
respectively.

2.5 experiments

We designed our experiments to answer three questions:

Q1. How does ViNG compare to prior methods for the task of goal-conditioned
visual navigation from offline data?

Q2. Does ViNG generalize to novel environments? Can it adapt on the fly?

Q3. What are the alternate design choices for the controller and how do they compare
against our choice in Section 2.4.3?

2.5.1 Goal-Conditioned Visual Navigation from Offline Data

We perform our evaluation in a real-world outdoor environment consisting of urban and
off-road terrain. We train on 40 hours of data that was gathered in prior work [124] over
10 months prior to the experiments in this paper. The data shows significant variation in
appearance due to seasonal changes (see Fig. 2); learning navigational affordances and
traversability would require the algorithms to discard the irrelevant modes of variance
(e.g., appearance) and establish correspondence across seasons and times of day.

Since this evaluation takes place in the real world, we do not have the luxury of
training online RL policies or transfer from simulation. We evaluate ViNG against four
baselines:

SPTM: a dense topological graph combined with a controller that maps observation
pairs to motor commands, trained via supervised learning [224]

14

Figure 3: Real-World Navigation: While all non-random methods successfully reach nearby goals,
only ViNG reaches goals over 40 meters away. Here, success rate is defined as the average over
portion of the expert trajectory to goal that each run successfully completes.

off-SoRB: an offline variant of SoRB that uses a topological graph and offline RL to
learn a distributional Q-function [65]

State Estimator: a naı̈ve baseline that uses a state estimator network that regresses
observations to ground-truth state (x, y, θ), followed by a position controller; note
that this baseline has access to true position (from GPS), which is not available to
our method

Random: a random walk, as described in Section 2.4.3

While there have been other successful instantiations of methods combining planning
and learning, they make some limiting assumptions that make them difficult to apply to
our problem setting. LSTN [179] uses a photorealistic simulator to train its distance and
action models, using ∼ 1.5M samples, while PRM-RL [75] uses a 3D kinematic simulator
simulation replica to train a reactive controller, coupled with physical rollouts in the real
world to build a PRM. ViNG does not assume access to any simulator, and learns directly
from offline real data.

Towards answering Q1, we evaluate the goal-reaching performance of ViNG. We select
6 {start, goal} image pairs in the original urban environment and compare the goal
reaching performance of each method (avg. of 3 trials). We report the success metric
as the average over portion of the expert trajectory to goal that each run successfully
completes.

As shown in Fig. 3, ViNG performs well on all tasks, achieving a success rate of 86%
on even the most challenging tasks. As expected, the random baseline, which ignores

15

Figure 4: Qualitative Results in the urban Environment: Each approach was directed to a visual
goal ∼ 50m away (marked by checkerboard circle) – with 3 runs per approach. ViNG is the only
approach that is consistently able to reach the goal while avoiding collisions or getting stuck.

the goal, fails to reach most goals. The state estimator baseline performs a bit better, but
struggles to reach more distant goals because it is not reactive, and hence cannot take
actions to avoid collisions. Off-SoRB performs well on nearby goals, but as the goals get
increasingly difficult to reach, it is unable to follow the planned trajectory. Visualizing the
topological graph built by SoRB uncovers many disconnected components, resulting in no
path to goal. We hypothesize that this is attributed to the difficulty in training Q-functions
from offline data. SPTM, which uses supervised learning instead of Q-learning, is effective
at solving the task on shorter horizons and outperforms off-SoRB on longer horizons.
However, ViNG still performs substantially better on all goal distances, especially those
over 30 meters. We attribute these improvements to the additional negative sampling and
graph pruning techniques discussed in Section 2.4. We visualize trajectories in Fig. 4.

2.5.2 Generalization and Adaptation

The experiments in the previous section evaluate navigation to new goals in a previously
seen environment. In this section, we additionally evaluate how quickly ViNG can adapt

16

to an entirely new, unseen environment, by constructing a new graph and finetuning
the models. We use the four settings shown in Fig. 5, all of which are distinct from the
setting used in our main experiments (Sec. 2.5.1). In each new environment, a human
controlled the robot to provide initial exploration data. After this initial data collection,
the robot collected experience autonomously: it randomly sampled a previously-observed
image as thegoal and used ViNG to attempt to reach this goal. After each episode,
we used all experience from the new environment (both the expert trajectories and the
self-collected trajectories) to finetune T and P . We refer to this approach to generalization
as ViNG -Finetune.

In Fig. 5 we visualize trajectories after 60 min of data collection in the new environment
and observe that the robot successfully reaches the goal in most cases. We emphasize that
these environments are considerably different from those used in Sec. 2.5.1, on which our
models were initially trained. To illustrate the learning dynamics in this generalization
setting, we plot self-collected rollouts after 0 minutes, 20 minutes, and 60 minutes of
practice in the new environments. As shown in Fig. 6, the robot’s performance in the new
domain gets progressively better with more (autonomous) practice; after 60 minutes it
succeeds in reaching the goal in all three attempts.

Table 1 summarizes the success rate on the generalization task of our method and two
alternative versions of ViNG. ViNG-Source directly uses the traversability function and
relative pose function trained in the source domain (Sec. 2.5.1), without incorporating any
experience from the new environment. In contrast ViNG-Target learns these same models
using only experience from the new “target” domain, without leveraging any of the
previously-collected experience. ViNG-Finetune outperforms these baselines, highlighting
the importance of combining old and new experience. As an additional baseline, we take
the SPTM model from Sec. 2.5.1 and finetune it on experience from the new domain. We
observe that ViNG -Finetune also generalizes better than SPTM-Finetune, We hypothesize
that ViNG generalizes better than SPTM because of the additional hierarchical structure
of ViNG.

2.5.3 Comparisons to Online Methods

While Section 2.5.1 establishes that ViNG outperforms competitive offline methods for
the task of goal-conditioned navigation, here we also investigate the performance of our
method in comparison to popular online RL algorithms. Since the sample complexity of
online RL algorithms forbids us from testing this in the real world, we use a Unity-based
photorealistic outdoor navigation simulator. We include new additional baselines in the
simulated experiment:

PPO: a popular reactive controller for indoor visual navigation algorithms [228, 283]

SoRB: online version of the “off-SoRB” baseline [65]

17

Figure 5: Generalization Experiments: We evaluate ViNG in four new outdoor environments.
For each, we collect a few dozen minutes of experience to adapt the distance function and relative
pose predictor. Then, given a goal image (last column, checkerboard location in aerial view), the
robot attempts to navigate to the goal. Columns 4− 7 indicate that the robot succeeds in reaching
the goal image. Cyan lines indicate the actions taken by ViNG.

We show results in Fig. 7. PPO performs poorly and is outperformed by ViNG,
suggesting that a single image-based reactive policy is insufficient for solving long-
horizon goal-reaching tasks, even when given access to 200 hours of online experience.
SoRB outperforms other baselines and performs on par with ViNG. However, whereas
ViNG requires 40 hours of offline data, SoRB requires 200 hours of online data, and must
recollect this data for every experiment.

2.5.4 Ablation Experiments

A key design decision for ViNG that differentiates it from prior methods (e.g., [179,
65]) is how the controller generates actions to reach the next waypoint. We evaluate
variants of ViNG that use alternative controllers and present results in Table 2. Two
simple baselines, “direct actions” and “direct actions (discrete)”, use the goal-conditioned
behavior cloning method of [224, 57] to directly predict (discrete) actions from the current
and goal observations, without utilizing the topological map. Recall that our method uses
the planner to command waypoints and then uses the relative pose together with a PD
controller to reach each waypoint. We compared against a baseline that uses a different
low-level controllers to reach these same waypoints: “Waypoint, Discrete” takes actions

18

Environment ViNG ViNG ViNG SPTM
Source Target Finetune Finetune

barracks 0.27 0.42 0.96 0.74

industrial 0.13 0.44 0.84 0.68

park 0.04 0.32 0.82 0.71

tall grass 0 0.38 0.79 0.56

Table 1: Generalization Results: Our approach to generalization (“ViNG -Finetune”) successfully
navigates learns to navigate in four new environments (shown in Fig. 5) using just 60 minutes of
experience in the new environment. Baselines that use only experience from the source or target
domains are substantially less successful. Applying our finetuning approach on top of SPTM
shows some generalization, but is outperformed by ViNG-Finetune.

Figure 6: Fast Adaptation to a New Environment: After training ViNG in one environment, we
deploy the system in a novel environment, shown above. By practicing to reach self-proposed
goals and using that experience to finetune the controller, ViNG is able to quickly gain competence
at reaching distance goals in this new environment, using just 60 minutes of experience. Example
rollouts towards a goal 35m away (marked by checkerboard circle) demonstrate ViNG self-
improving from interactions in the barracks environment.

19

Figure 7: Results from Simulated Navigation: ViNG is substantially more successful at reaching
distance goals than all offline baselines, while performing competitively with SoRB, a popular
online baseline combining Q-learning and topological graphs. We emphasize that SoRB and PPO
require 5× online data collection, making them prohibitively expensive to apply in the real-world.

using the “direction actions (discrete)” controller described above. As an alternative
training scheme, “TD Waypoint” is a variant of our method that learns the traversability
function via TD learning instead of supervised learning. Finally, we compare to two
ablations of our method that skip the graph pruning and negative sampling stages of
ViNG.

2.5.5 Applications and Qualitative Results

ViNG’s ability to navigate using perception and landmarks, without access to maps or
localization, can enable a number of intuitive applications, which we illustrate through
qualitative results in this section. We constructed two demonstrations that reflect potential
applications of our system:

1. Contactless Last-Mile Delivery: We demonstrate last-mile delivery in a residential com-
plex by using ViNG to autonomously deliver mail and food to visually-indicated de-
livery locations. In this setting, users specify delivery destinations for the robot sim-
ply by taking a photograph of the desired destination, and the robot autonomously
navigates to this destination to deliver a package.

2. Autonomous Inspection: Densely constructed building complexes, like university
campuses, are often unmapped or lack accurate spatial localization. We reprogram
ViNG to periodically navigate to landmarks, specified as images, around the campus
to set up an autonomous patrolling system. Discrepancies can be identified by

20

Success Rate @ Distance d (m)
Controller d=10 d=20 d=30 d=40 d=50

Direct Actions (Discrete) 0.87 0.81 0.74 0.65 0.45

Direct Actions 0.98 0.89 0.74 0.73 0.4
Waypoint, Discrete 1.0 0.95 0.91 0.82 0.7
Waypoint 1.0 1.0 0.95 0.88 0.81

TD Waypoint 1.0 1.0 0.96 0.87 0.87
Waypoint, No Pruning 1.0 0.88 0.81 0.79 0.52

Waypoint, Only Positives 1.0 0.91 0.75 0.76 0.43

Table 2: Ablation Experiments: We investigate design choices for the parametrization of the
controller. Using waypoints as a mid-level action space is key to the performance of ViNG, which
is particularly emphasized for distant goals. While training the models, we show that ViNG can
be trained with either supervised or TD learning and report similar performance. We also show
that the two key ideas presented – graph pruning and negative sampling – are indeed essential
for the performance of ViNG in the real-world.

comparing the observations to previous observations (stored in the topological
graph).

Figures 8 and 9 show ViNG successfully performing these tasks in the urban envi-
ronment. Videos of the qualitative results, generalization experiments, and real-world
applications can be found at the project website (sites.google.com/view/ving-robot).

2.6 discussion

In this paper, we proposed ViNG: a system for goal-directed navigation using visual
observations and goals on an outdoor ground robot. While conceptually similar to
prior methods, we demonstrate that a few key design choices, such as pruning the
topological graph, parametrizing the controller in terms of a relative pose predictor and
sampling negatives while training to minimize distribution shift, allow ViNG to learn to
successfully navigate using only offline experience, a setting in which many prior methods
fail. Intriguingly, we also demonstrate that ViNG can be quickly adapted to navigate
in new environments. These generalization and self-improvement attributes highlight
that learning-based approaches are not only an effective mechanism for handling high-
dimensional observations, but are also amenable to fast adaptation to novel environments.
Further, we have demonstrated ViNG on a number of real-world applications in dense,
urban environments that may be unmapped or GPS-denied, and specifying visual goals
is convenient – contactless last-mile delivery and autonomous inspection.

21

https://sites.google.com/view/ving-robot

Figure 8: Contactless Last-Mile Delivery Demo: Given a set of visually-indicated goals (a),
ViNG can perform contactless delivery in the urban neighborhood successfully, as shown in the
filmstrip (c). An overhead view (b) with starting position marked in yellow and respective goals
marked in orange and magenta shows the trajectory of the robot (cyan). Note: The satellite view (b)
is solely for visualization and is not available to the robot.

Our method requires a static, offline dataset of observations over which we can
plan. Many real-world tasks are non-stationary, with the distribution of observations
shifting over time (e.g., lighting changes, dynamic objects, etc.). In future work, we
aim to incorporate representations of observations and goals that are robust to such
distributional shifts, which would expand the generalization capabilities of our method.

acknowledgments

This research was funded by the Office of Naval Research, DARPA Assured Autonomy,
and ARL DCIST CRA W911NF-17-2-0181, with computing support from Google and
Amazon Web Services. The authors would like to thank Jonathan Fink and Ethan Stump
for their help setting up the simulation environment used for developing this research.

22

Figure 9: Autonomous Inspection Demo: Given a set of visual landmarks (a–d) in a university
campus, ViNG can perform autonomous inspection by navigating to these goals periodically. An
overhead view (b) shows color-coded goals and the trajectory taken by robot (cyan) in one cycle.
Note: The satellite view (e) is solely for visualization and is not available to the robot.

23

3

O P E N - W O R L D E X P L O R AT I O N W I T H L AT E N T G O A L M O D E L S

Synopsis

In this chapter, we build upon our robotic learning system by enabling it to perform
autonomous exploration and navigation in diverse, open-world environments. Our
core idea is to use a learned latent variable model of distances and actions, along with
a non-parametric topological memory of images. We use an information bottleneck to
regularize the learned policy, giving us (i) a compact visual representation of goals,
(ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible
goals for exploration. Trained on a large offline dataset of prior experience, the model
acquires a representation of visual goals that is robust to task-irrelevant distractors.
We demonstrate our method on a mobile ground robot in open-world exploration
scenarios. Given an image of a goal that is up to 80 meters away, our method leverages
its representation to explore and discover the goal in under 20 minutes, even amidst
previously-unseen obstacles and weather conditions.

3.1 introduction

Robustness is a key challenge in learning to navigate diverse, real-world environments.
A robotic learning system must be robust to the difference between an offline training
dataset and the real world (i.e., it must generalize), be robust to non-stationary changes in
the real world (i.e., it must ignore visual distractors), and be equipped with mechanisms
to actively explore to gather information about traversability. Different environments may
exhibit similar physical structures, and these similarities can be used to accelerate explo-
ration of new environments. Learning-based methods provide an appealing approach for
learning a representation of this shared structure using prior experience.

In this work, we consider the problem of navigating to a user-specified goal in a
previously unseen environment. The robot has access to a large and diverse dataset

Shah, Eysenbach, Kahn, Rhinehart, Levine, ”Rapid Exploration for Open-World Navigation with Latent Goal Models”,
in Annual Conference on Robot Learning (CoRL) 2021
Project website: sites.google.com/view/recon-robot

24

https://sites.google.com/view/recon-robot

of experience from other environments, which it can use to learn general navigational
affordances. Our approach to this problem uses an information bottleneck architecture to
learn a compact representation of goals. Learned from prior data, this latent goal model
encodes prior knowledge about perception, navigational affordances, and short-horizon
control. We use a non-parametric memory to incorporate experience from the new
environment. Combined, these components enable our system to learn to navigate to
goals in a new environment after only a few minutes of exploration.

The primary contribution of this work is a method for exploring novel environments
to discover user-specified goals. Our method operates directly on a stream of image
observations, without relying on structured sensors or geometric maps. An important part
of our method is a compressed representation of goal images that simultaneously affords
robustness while providing a simple mechanism for exploration. Such a representation
allows us, for example, to specify a goal image at one time of day, and then navigate
to that same place at a different time of day: despite variation in appearance, the latent
goal representations must be sufficiently close that the model can produce the correct
actions. Robustness of this kind is critical in real-world settings, where the appearance of
landmarks can change significantly with times of day and seasons of the year.

We demonstrate our method, Rapid Exploration Controllers for Outcome-driven
Navigation (RECON), on a mobile ground robot and evaluate against 6 competitive
baselines spanning over 100 hours of real-world experiments in 8 distinct open-world
environments (Fig. 10). Our method can discover user-specified goals up to 80m away
after just 20 minutes of interaction in a new environment. We also demonstrate robustness
in the presence of visual distractors and novel obstacles. We make this dataset publicly
available as a source of real-world interaction data for future resesarch.

3.2 related work

Exploring a new environment is often framed as the problem of efficient mapping, posed
in terms of information maximization to guide the robot to uncertain regions of the
environment. Some prior exploration methods use local strategies for generating control
actions for the robots [143, 20, 135, 260], while others use use global strategies based on
the frontier method [291, 30, 101]. However, building high-fidelity geometric maps can
be hard without reliable depth information. Further, such maps do not encode semantic
aspects of traversability, e.g., tall grass is traversable but a wire fence is not.

Building on the system from Chapter 2, we construct a topological map by learning a
distance function and a low-level policy. We estimate distances via supervised regression
and learn a local control policy via goal-conditioned behavior cloning [82, 165]. However,
these prior methods do not describe how to learn to navigate in new, unseen environments.
We equip RECON with an explicit mechanism for exploring new environments and
transferring knowledge across environments.

25

(a) (b)

Start Goal Image
Map Node

Exploration Path
Discovered Path

(c) (e) Unseen Test Environments

(d) Training Environments

Figure 10: System overview: Given a goal image (a), RECON explores the environment (b) by
sampling prospective latent goals and constructing a topological map of images (white dots),
operating only on visual observations. After finding the goal (c), RECON can reuse the map
to reach arbitrary goals in the environment (red path in (b)). RECON uses data collected from
diverse training environments (d) to learn navigational priors that enable it to quickly explore and
learn to reach visual goals a variety of unseen environments (e).

Well-studied methods for exploration in reinforcement learning (RL) utilize a novelty-
based bonus, computed from a predictive model [256, 198, 12, 24, 223, 226, 28], information
gain [103, 181], or methods based on counts, densities, or distance from previously-visited
states [14, 92, 152]. However, these methods learn to reason about the novelty of a state
only after visiting it. Recent works [250, 29] improve upon this by predicting explorable
areas for interesting parts of the environment to accelerate visual exploration. While
these methods can yield state-of-the-art results in simulated domains [171, 136], they
come at the cost of high sample complexity (over 1M samples) and are infeasible to
train in open-world environments without a simulated counterpart. Instead, our method
enables the robot to explore an environment from scratch in just 20 minutes, using prior
experience from other environments.

The problem of reusing experience across tasks is studied in the context of meta-
learning [62, 219, 184] and transfer learning [262, 150, 197, 88, 79]. Our method uses an
information bottleneck [268], which serves a dual purpose: first, it provides a representa-
tion that can aid the generalization capabilities of RL algorithms [112, 84], and second,
it serves as a measure of task-relevant uncertainty [6], allowing us to incorporate prior
information for proposing goals that are functionally-relevant for learning control policies
in the new environment.

The problem of learning goal-directed behavior has been studied extensively using
RL [122, 227, 203, 67] and imitation learning (IL) [58, 82, 165, 257, 255, 213]. Our method
builds upon prior goal-conditioned IL methods to solve a slightly different problem: how
to reach goals in a new environment. Once placed in a new environment, our method
explores by carefully choosing which goals to visit, inspired by prior work [204, 46, 300,

26

201, 161]. Unlike these prior methods, however, our method makes use of previous
experience in different environments to accelerate learning in the current environment.

3.3 problem statement and system overview

We consider the problem of goal-directed exploration for visual navigation in novel
environments: a robot is tasked with navigating to a goal location G, given an image
observation og taken at G. Broadly, this consists of three separate stages: (1) learning
from offline data, (2) building a map in a new environment, and (3) navigating to goals
in the new environment. We model the task of navigation as a Markov decision process
with time-indexed states st ∈ S and actions at ∈ A. We do not assume the robot has access
to spatial localization or a map of the environment, or access to the system dynamics. We
use videos of robot trajectories in a variety of environments to learn general navigational
skills and build a compressed representation of the perceptual inputs, which can be used
to guide the exploration of novel environments. We make no assumption on the nature
of the trajectories: they may be obtained by human teleoperation, self-exploration, or as a
result of a preset policy. These trajectories need not exhibit intelligent behavior. Since the
robot only observes the world from a single on-board camera and does not run any state
estimation, our system operates in a partially observed setting. Our system commands
continuous linear and angular velocities.

3.3.1 Mobile Robot Platform

We implement RECON on a Clearpath Jackal UGV platform. The default sensor suite
consists of a 6-DoF IMU, a GPS unit for approximate global position estimates, and
wheel encoders to estimate local odometry. In addition, we added a forward-facing 170◦

field-of-view RGB camera and an RPLIDAR 2D laser scanner. Inside the Jackal is an
NVIDIA Jetson TX2 computer. The GPS and laser scanner can become unreliable in some
environments [124], so we use them solely as safety controllers during data collection.
Our method operates only using images taken from the onboard RGB camera, without
other sensors or ground-truth localization.

3.3.2 Self-Supervised Data Collection & Labeling

Our aim is to leverage data collected in a wide range of different environments to enable
the robot to discover and learn to navigate to novel goals in novel environments. We
curate a dataset of self-supervised trajectories collected by a time-correlated random walk
in diverse real-world environments (see Fig. 10 (d,e)). This data was collected over a
span of 18 months and exhibits significant variation in appearance due to seasonal and

27

lighting changes. We make this dataset publicly available1 and provide further details in
Appendix A.1.

3.4 recon : a method for goal-directed exploration

Our objective is to design a robotic system that uses visual observations to efficiently
discover and reliably reach a target image in a previously unseen environment. RE-
CON consists of two components that enable it to explore new environments. The first is
an uncertainty-aware, context-conditioned representation of goals that can quickly adapt
to novel scenes. The second component is a topological map, where nodes represent
egocentric observations and edges are the predicted distance between them, constructed
incrementally from frontier-based exploration, maintaining a compact memory of the
target environment.

3.4.1 Learning to Represent Goals

Our method learns a compact representation of goal images that is robust to task-irrelevant
factors of variation. We learn this representation using a variant of the information
bottleneck architecture [6, 1]. We use a context-conditioned representation of goals to
learn a control policy in the target environment. Letting I(·; ·) denote mutual information,
the objective in Eq. 1 encourages the model to compress the incoming goal image og into
a representation zg

t conditioned on the current observation ot that is predictive of the best
action ag

t and the temporal distance dg
t to the goal (upper-case denotes random variables):

I
(
(Ag

t , Dg
t); Zg

t | ot
)
− βI(Zg

t ; Og | ot) (1)

Following [6], we approximate the intractable objective in Eq. 1 with a variational
posterior and decoder (an upper bound), resulting in the maximization objective:

L =
1
|D| ∑

(ot,og,ag
t ,dg

t)∈D

Epϕ(z
g
t |og,ot)

[
log qθ

(
ag

t , dg
t | zg

t , ot
)]
− βKL

(
pϕ(· | og, ot)||r(·)

)
(2)

where we define the prior r(zg
t) ≜ N (0, I) and D is a dataset of trajectories character-

ized by (ot, og, ag
t , dg

t) quadruples. The first term measures the model’s ability to predict
actions and distances from the encoded representation, and the second term measures
the model’s compression of incoming goal images.

As the encoder pϕ and decoder qθ are conditioned on ot, the representation zg
t only

encodes information about relative location of the goal from the context – this allows
the model to represent feasible goals. If, instead, we had a typical VAE (in which the

1 Available for download at sites.google.com/view/recon-robot/dataset.
28

https://sites.google.com/view/recon-robot/dataset

Algorithm 3 RECON for Exploration: RECON takes as input an encoder pϕ, a decoder qθ,
prior r, the current observation ot and goal observation og. δ1, δ2, ϵ, β ∈ R+; H, γ ∈N are
hyperparameters.

1: function RECON (qθ, pϕ, r, ot, og; δ1, δ2, ϵ, β, γ, H)
2: G ← ∅,D ← ∅ ▷ Initialize graph and data
3: while not reached goal [d̄g

t < δ1] do ▷ Continue while not at goal
4: on ← LeastExploredNeighbor(G, ot; δ2)
5: zg

t ∼ pϕ(z | ot, og) ▷ Encode relative goal
6: if goal is feasible [r(zg

t) > ϵ] then
7: zw

t ← zg
t ▷ Will go to the goal

8: else if robot at frontier [d̄n
t < δ1] then

9: zw
t ∼ r(z) ▷ Will explore from frontier

10: else
11: zw

t ∼ pϕ(z | ot, on) ▷ Will go to frontier
12: end if
13: Dw, ot ← SubgoalNavigate(zw

t ; H)
14: D ← D ∪Dw
15: ExpandGraph(G, ot)
16: Step L(ϕ, θ;D, β) for γ epochs ▷ Eq. 2

17: end while
18: return networks pϕ, qθ and graph G
19: end function

input images are autoencoded), the samples from the prior over these representations
would not necessarily represent goals that are reachable from the current state. This
distinction is crucial when exploring new environments, where most states from the
training environments are not valid goals.

3.4.2 Goal-Directed Exploration with Topological Memory

The second component of our system is a topological memory constructed incrementally
as the robot explores a new environment. It provides an estimate of the exploration
frontier as well as a map that the robot can use to later navigate to arbitrary goals. To
build this memory, the robot uses the model from the previous section to propose subgoals
for data collection. Note that this is done in the exploration phase, where we have a latent
goal model pre-trained on the offline dataset. Given a subgoal, our algorithm (Alg. 3)
proceeds by executing actions towards the subgoal for a fixed number of timesteps (Alg. 3

L13). The data collected during subgoal navigation expands the topological memory
(Alg. 3 L15) and is used to fine-tune the model (Alg. 3 L16). Thus, the task of efficient
exploration is reduced to the task of choosing subgoals.

29

Algorithm 4 RECON for Goal-Reaching: Af-
ter exploration, RECON uses the topological
graph G to quickly navigate towards the goal
og.

1: procedure GoalNavigate(G, ot, og; H)
2: vt ← AssociateToVertex(G, ot)
3: vg ← AssociateToVertex(G, og)
4: (vt, . . . , vg)← ShortestPath(G, vt, vg)
5: for v ∈ (vt, . . . , vg) do
6: z← pϕ(z | ot, og = v.o)
7: Dw, ot ← SubgoalNavigate(z; H)
8: end for
9: end procedure

Subgoals are represented by latent vari-
ables in our model, which may either come
from the posterior pϕ(z|ot, og), or from the
prior r(z). Given a subgoal z and observa-
tion ot, the model decodes it into an action
and distance pair q(ag

t , dg
t |z, ot); the action

is used to control the robot towards the
goal, and the distance is used to construct
edges in the topological graph. The choice
of intermediate subgoal to navigate toward
at any step is based on the robot’s estimate
of the goal reachability and its proximity
to the frontier. To determine the frontier
of the graph, we track the number of times
each node in the graph was selected as the
navigation goal; nodes with low counts are
considered to be on the frontier. In the following, we use z̄g

t to denote the mean of
the encoder pϕ(z | ot, og), and d̄g

t to denote the distance component of the mean of the
decoder qθ(at, dt | z̄g

t , ot) (i.e., the predicted number of time steps from ot to z̄g
t). The

choice of subgoal at each step is made as follows:
(i) Feasible Goal: The robot believes it can reach the goal and adopts the representation
of the goal image as the subgoal (Alg. 3 L7). The robot’s confidence in reaching the goal
is based on the probability of the current goal embedding zg

t under the prior r(z). Large
r(zg

t) implies the relationship between the observation ot and the goal og is in-distribution,
suggesting that the model’s estimates of the distances is reliable – intuitively, this means
that the model is confident about the distance to og and can reach it.
(ii) Explore at Frontier: The robot is at the “least-explored node” (frontier) on and explores
by sampling a random conditional subgoal latent zw

t from the prior (Alg. 3 L9). The robot
determines whether it is at the frontier based on the distance (estimated by querying
the model) to its “least explored neighbor” d̄n

t – the node in the graph within a distance
threshold (δ2) of the current observation that has the lowest visitation count. If the
distance to this node d̄n

t is low (threshold δ1), then the robot is at the frontier.
(iii) Go to Frontier: The robot adopts its “least-explored neighbor” on as a subgoal (Alg. 3

L11).
The SubgoalNavigate function rolls out the learned policy for a fixed time horizon H

to navigate to the desired subgoal latent zw
t , by querying the decoder qθ(at, dt|zw

t , oτ) with
a fixed subgoal latent. The endpoint of such a rollout is used to update the visitation
counts in the graph G. At the end of each trajectory, the ExpandGraph subroutine is used
to update the edge and node sets {E ,V} of the graph G to update the representation of the
environment. We provide the pseudocode for these subroutines in Appendix A.2.1. We

30

Method Expl. Time (mm:ss) ↓ Nav. Time (mm:ss) ↓ SCT [294] ↑

PPO + RND [24] 21:18 00:47 0.22

InfoBot [84] 23:36 00:48 0.21

Active Neural SLAM (ANS) [28] 21:00 00:45 0.33

ViNG [241] 19:48 00:34 0.60

Ours + Episodic Curiosity (ECR) [226] 14:54 00:31 0.73

RECON (Ours) 09:54 00:26 0.92

Table 3: Exploration and goal reaching performance: Exploring 8 real-world environments,
RECON reaches the goal 50% faster than the best baseline (ECR). ANS takes up to 2x longer to
find the goal and NTS [250] fails to find the goal in every environment. On subsequent traversals,
RECON navigates to the goal 20–85% faster than other baselines, and exhibits > 30% higher
weighted success.

also share broader implementation details including choice of hyperparameters, model
architectures and training details in Appendix A.2.2.

3.4.3 System Summary

RECON uses the latent goal model and topological graph to quickly explore new en-
vironments and discovers user-specified goals. Our complete system consists of three
stages:

A) Prior Experience: The goal-conditioned distance and action model (Sec. 3.4.1) is trained
using experience from previously visited environments. Supervision for training our
model is obtained by using time steps as a proxy for distances and a relabeling scheme
(Appendix A.1).

B) Exploring a Novel Environment: When placed in a new environment, RECON uses a
combination of frontier-based exploration and latent goal-sampling with the learned
model. The learned model is also fine-tuned to this environment. These steps are
summarized in Alg. 3 and Sec. 3.4.2.

C) Navigating an Explored Environment: Given an explored environment (represented by a
topological graph G) and the model, RECON uses G to navigate to a goal image by
planning a path of subgoals through the graph. This process is summarized in Alg. 4.

3.5 experimental evaluation

We designed our experiments to answer four questions:

31

Q1. How does RECON compare to prior work for visual goal discovery in novel environ-
ments?

Q2. After exploration, can RECON leverage its experience to navigate to the goal effi-
ciently?

Q3. What is the range of perturbations and non-stationary elements to which RECON is
robust?

Q4. How important are the various components of RECON, such as sampling from an
information bottleneck and non-parametric memory, to its performance?

3.5.1 Goal-Directed Exploration in Novel Environments

Figure 11: Visualizing goal-reaching behavior of the system: (left) Example trajectories to goals
discovered by RECON in previously unseen environments. (right) Policies learned by the different
methods in one such environment. Only RECON and ECR reach the goal successfully, and
RECON takes the shorter route.

We perform our evaluation in a diverse variety of outdoor environments (examples in
Fig. 10), including parking lots, suburban housing, sidewalks, and cafeterias. We train our
self-supervised navigation model using an offline navigation dataset (Sec.3.3.2) collected
in a distinct set of training environments, and evaluate our system’s ability to discover
user-specified goals in previously unseen environments. We compare RECON to five
baselines, each trained on the same 20 hours of offline data as our method, and finetuned
in the target environment with online interaction.

1. PPO + RND: Random Network Distillation (RND) is a widely used prediction bonus-
based exploration strategy in RL [24], which we use with PPO [228, 283]. This

32

comparison is representative of a frequently used approach for exploration in RL
using a novelty-based bonus.

2. InfoBot: An offline variant of InfoBot [84], which uses goal-conditioned information
bottleneck, analogous to our method, but does not use the non-parametric memory.

3. Active Neural SLAM (ANS): A popular indoor navigation approach based on metric
spatial maps proposed for coverage-maximizing exploration [28]. We adapt it to the
goal-directed task by using the distance function from RECON to detect when the
goal is nearby.

4. Visual Navigation with Goals (ViNG): A method that uses random action sequences
to explore and incrementally build a topological graph without reasoning about
visitation counts [241].

5. Episodic Curiosity (ECR): A method that executes random action sequences at the
frontier of a topological graph for exploration [226]. We implement this as an ablation
of our method that samples random action sequences, rather than rollouts to sampled
goals (Alg. 3 Line 7).

We evaluate the ability of RECON to discover visually-indicated goals in 8 unseen
environments and navigate to them repeatedly. For each trial, we provide an RGB image
of the desired target (one per environment) to the robot and report the time taken by each
method to (i) discover the desired goal (Q1), and (ii) reliably navigate to the discovered
goal a second time using prior exploration (Q2). Additionally, we quantify navigation
performance using Success weighed by Completion Time (SCT), a success metric that
takes into account the agent’s dynamics [294]. We show quantitative results in Table 3,
and visualize sample trajectories of RECON and the baselines in Fig. 11.

RECON outperforms all the baselines, discovering goals that are up to 80m away
in under 20 minutes, including instances where no other baseline can reach the goal
successfully. RECON+ECR and ViNG discover the goal in only the easier environments,
and take up to 80% more time to discover the goal in those environments. RND, InfoBot
and ANS are able to discover goals that are up to 25m away but fails to discover more
distant goals, likely because using reinforcement learning for fine-tuning is data-inefficient.
We exclude reporting metrics on NTS, which fails to successfully explore any environment,
likely due to overfitting to the offline trajectories. Indeed, the simulation experiments
reported in each of these online algorithms require upwards of 1M timesteps to adapt to
new environments [84, 28, 250]. We attribute RECON’s success to the context-conditioned
sampling strategy (described in Sec. 3.4.1), which proposes goals that can accelerate the
exploration of new environments.

We then study RECON’s ability to quickly reach goals after initial discovery. Table 3

shows that RECON variants are able to quickly recall a feasible path to the goal. These
methods create a compact topological map from experience in the target environment, al-
lowing them to quickly reach previously-seen states. The other baselines are unsuccessful

33

at recalling previously seen goals for all but the simplest environments. Fig. 11 shows an
aerial view of the paths recalled by various methods in one of the environments. Only
the RECON variants are successfully able to navigate to the checkerboard goal; all other
baselines result in collisions in the environment. Further, RECON discovers a shorter
path to the goal and takes 30% less time to navigate to it than ECR ablation.

3.5.2 Exploring Non-Stationary Environments

Figure 12: Exploring non-stationary environ-
ments: The learned representation and topologi-
cal graph is robust to visual distractors, enabling
reliable navigation to the goal under novel obsta-
cles (c–e) and appearance changes (f–h).

Outdoor environments exhibit non-stationarity
due to dynamic obstacles, such as automo-
biles and people, as well as changes in ap-
pearance due to seasons and time of day.
Successful exploration and navigation in
such environments requires learning a rep-
resentation that is invariant to such distrac-
tors. This capability is of central interest
when using a non-parametric memory: for
the topological map to remain valid when
such distractors are presented, we must
ensure the invariance of the learned rep-
resentation to such factors (Q3). To test
the robustness of RECON to unseen ob-
stacles and appearance changes, we first
had RECON explore in a new “junkyard”
to learn to reach a goal image contain-
ing a blue dumpster (Fig. 12-a). Then,
without any more exploration, we evalu-
ated the learned goal-reaching policy when
presented with previously unseen obstacles
(trash cans, traffic cones, and a car) and
and weather conditions (sunny, overcast,
and twilight). Fig. 12 shows trajectories
taken by the robot as it successfully navigates to the goal in scenarios with varying
obstacles and lighting conditions. These results suggest that the learned representations
are invariant to visual distractors that do not affect robot’s decisions to reach a goal
(e.g., changes in lighting conditions do not affect the trajectory to goal, and hence, are
discarded by the bottleneck).

34

Figure 13: Exploration via sampling
from our context-conditioned prior
(right) allows the robot to explore 5

times faster than using random actions,
e.g. in ECR [226] (left).

Method Expl. Time ↓ Nav. Time ↓ SCT [294] ↑

Reactive 11:54 00:37.4 0.63

Rand. Actions 14:54 00:31.4 0.73

V. Sampling 14:06 00:28.7 0.83

Ours 09:56 00:25.8 0.92

Table 4: Ablation experiments confirm the importance
of using an information bottleneck and a non-parametric
memory.

3.5.3 Dissecting RECON

RECON explores by sampling goals from the prior distribution over state-goal representa-
tions. To quantify the importance of this exploration strategy (Q4), we deploy RECON to
perform undirected exploration in a novel target environment without building a graph of
the environment. We compare the coverage of trajectories of the robot over 5 minutes
of exploration when: (a) it executes random action sequences [226], and (b) it performs
rollouts towards sampled goals. We see that performing rollouts to sampled goals results
in 5x faster exploration in novel environments (see Fig. 13).

We also evaluate several variants of RECON that ablate its goal sampling and non-
parametric memory on the end-to-end task of visual goal discovery in novel environments:

- Reactive: our method deployed without the topological graph for memory.

- Random Actions: a variant of our method that executes random action sequences at the
frontier rather than rollouts to sampled goals. This is identical to the ECR baseline
described in Sec. 3.5.1.

- Vanilla Sampling: a variant of our method which learns a goal-conditioned policy and
distances without an information bottleneck to obtain compressed representations.

We deploy these variants in a subset of the unseen test environments and summarize
their performance in Table 4. These results corroborate the observations in Fig. 13:
learning a compressed goal representation is key to the performance of RECON. “Vanilla
Sampling”, despite sampling from a joint prior, performs poorly and is unable to discover
distant goals. We hypothesize that our method is more robust because the information
bottleneck helps learn a representation that ignores task-irrelevant information. We also
observe that “Reactive” experiences a smaller degradation in exploration performance,

35

suggesting that goal-sampling can help with the exploration problem even without
the graph. However, we find a massive degradation in its ability to recall previously
discovered goals, suggesting that the memory is key to the navigation performance of
RECON.

3.6 discussion

We proposed a system for efficiently learning goal-directed policies in new open-world
environments. The key idea behind our method is to use a learned goal-conditioned dis-
tance model with a latent variable model representing visual goals for rapid goal-directed
exploration. The problem setup studied in this paper, using past experience to accelerate
learning in a new environment, is reflective of real-world robotics scenarios: collecting
new experience at deployment time is costly, but experience from prior environments can
provide useful guidance to solve new tasks.

In future work, we aim to provide theoretical guarantees for when and where we can
expect stochastic policies and the information bottleneck to provide efficient exploration.
One limitation of the current method is that it does not explicitly account for the value of
information. Accounting for such states can generate a better goal-reaching policy.

acknowledgments

This research was supported by ARL DCIST CRA W911NF-17-2-0181, DARPA Assured
Autonomy, and the Office of Naval Research. The authors would like to thank Suraj Nair
and Brian Ichter for useful discussions, and Gregory Kahn for setting up the infrastructure
used for autonomous collection of real-world data.

36

4

K I L O M E T E R - S C A L E E X P L O R AT I O N W I T H G E O G R A P H I C H I N T S

Synopsis

In this chapter, we extend our robotic learning system so it can utilize side information
such as schematic roadmaps, satellite maps and GPS coordinates as a planning
heuristic, to achieve kilometer-scale robot navigation and exploration in previously
unseen environments. Our method, ViKiNG, incorporates a local traversability model,
which looks at the robot’s current camera observation and a potential subgoal to
infer how easily that subgoal can be reached, as well as a heuristic model, which
looks at overhead maps for hints and attempts to evaluate the appropriateness of
these subgoals in order to reach the goal. These models are used by a heuristic
planner to identify the best waypoint in order to reach the final destination. Our
method performs no explicit geometric reconstruction, utilizing only a topological
representation of the environment. Despite having never seen trajectories longer
than 80 meters in its training dataset, ViKiNG can leverage its image-based learned
controller and goal-directed heuristic to navigate to goals up to 3 kilometers away
in previously unseen environments, and exhibit complex behaviors such as probing
potential paths and backtracking when they are found to be non-viable. ViKiNG
is also robust to unreliable maps and GPS, since the low-level controller ultimately
makes decisions based on egocentric image observations, using maps only as planning
heuristics.

4.1 introduction

Robotic navigation has conventionally been approached as a geometric problem,
where the robot constructs a 3D model of the environment and then plans a path through
this model. End-to-end learning-based methods offer an alternative approach, where

Shah and Levine, ”ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints”, Robotics: Science and
Systems (RSS) 2022
Project website: sites.google.com/view/viking-release

37

https://sites.google.com/view/viking-release

(a)
(d)

z

(a)
h

(e)

(a)

(b)

(c)

(b)

(a)

100m(e)

(f) (g) (h)

Total Distance: 1.20km goal

start

Figure 14: Kilometer-scale autonomous navigation with ViKiNG: Our learning-based navigation
system takes as input the current egocentric image (c), a photograph of the desired destination
(b), and an overhead map (which may be a schematic or satellite image) (a) that provides a hint
about the surrounding layout. The robot (d) uses learned models trained in other environments to
infer a path to the goal (e), combining local traversability estimates with global heuristics derived
from the map. This enables ViKiNG to navigate previously unseen environments (e), where a single
traversal might involve following roads (f), off-road driving under a canopy (g), and backtracking
from dead ends (h).

the robot learns to correlate observations with traversability information directly from
experience, without full geometric reconstruction [302, 34, 123]. This can be advantageous
because, in many cases, geometry alone is neither necessary nor sufficient to traverse an
environment, and a learning-based method can acquire patterns that are more directly
indicative of traversability, for example by learning that tall grass is traversable [124] while
seemingly traversable muddy soil should be avoided. More generally, such methods
can learn about common patterns in their environment, such as that houses tend to be
rectangular, or that fences tend to be straight. These patterns can lead to common-sense
inferences about which path should be taken through an unknown environment even
before that environment has been fully mapped out [188].

However, dispensing with geometry entirely may also be undesirable: the spatial
organization of the world provides regularities that become important for a robot that
needs to traverse large distances to reach its goal. In fact, when humans navigate new
environments, they make use of both geographic knowledge, obtained from overhead
maps or other cues, and learned patterns [282]. But in contrast to SLAM, humans
don’t require maps or auxiliary signals to be very accurate: a person can navigate a
neighborhood using a schematic that roughly indicates streets and houses, and reach a
house marked on it. Humans do not try to accurately reconstruct geometric maps, but
use approximate “mental maps” that relate landmarks to each other topologically [74].
Our goal is to devise learning-enabled methods that similarly make use of geographic
hints, which could take the form of GPS, roadmaps, or satellite imagery, without requiring
these signals to be perfect.

38

We consider the problem of navigation from raw images in a novel environment,
where the robot is tasked with reaching a user-designated goal, specified as an egocentric
image, as shown in Figure 14. Note that the robot has no prior experience in the target
environment.The robot has access to geographic side information in the form of a
schematic roadmap or satellite imagery, which may be outdated, noisy, and unreliable,
and approximate GPS. This information, while not sufficient for navigation by itself,
contains useful cues that can be used by the robot. The robot also has access to a
large and diverse dataset of experience from other environments, which it can use to
learn general navigational affordances. We posit that an effective way to build such a
robotic system is to combine the strengths of machine learning with informed search, by
incorporating the geographic hints into a learned heuristic for search. The robot uses
approximate GPS coordinates and an overhead map as geographic side information to
help solve the navigation task, but does not assume that this information is particularly
accurate—resembling a person using a paper map, the robot uses the GPS localization
and an overhead map as hints to aid in visual navigation. Note that while we do assume
access to GPS, the measurements are only accurate up to 2-5 meters (4-10× the scale of
the robot), and cannot be used for local control.

The primary contribution of this work is ViKiNG, an algorithm that combines elements
of end-to-end learning-based control at the low level with a higher-level heuristic planning
method that uses this image-based controller in combination with the geographic hints.
The local image-based controller is trained on large amounts of prior data from other
environments, and reasons about navigational affordances directly from images without
any explicit geometric reconstruction. The planner selects candidate waypoints in order
to reach a faraway goal, incorporating the geographic side information as a planning
heuristic. Thus, when the hints are accurate, they help the robot navigate toward the
goal, and when they are inaccurate, the robot can still rely on its image observations to
search through the environment. We demonstrate ViKiNG on a mobile ground robot
and evaluate its performance in a variety of open-world environments not seen in the
training data, including suburban areas, nature parks, and a university campus. Our local
controller is trained on 42 hours of navigational data, and we test our complete system
in 10 different environments. Despite never seeing trajectories longer than 80 meters in
its training data, ViKiNG can effectively use geographic side information in the form
of overhead maps to reach user-specified goals in previously unseen environments over 2

kilometers away in under 25 minutes.

4.2 related work

Prior approaches have sought to incorporate learning into mapping and reconstruc-
tion [174, 116], which benefits from prior data, but aims at dense geometric reconstruction.
Instead, approach uses a model that is trained with data from prior environments to

39

Sample Waypoints
q𝜃 (. | ot , z)

Global Planning
ViKiNG-A*

Geographic Context ct

Topological Graph
𝒯t-1

Update 𝒯t

z ~

ot

oG

h

Goal G

Figure 15: An overview of our method. ViKiNG uses latent subgoals z proposed by a learned
low-level controller, which operates on raw image observations ot, for global planning on a
topological graph T to reach a distant goal oG, indicates by a photograph and an approximate
GPS location. A learned heuristic parses the overhead image ct to bias this search towards the
goal.

predict traversability rather than geometry, and this model is then used in combination
with geographic hints to plan a path to the goal.

Prior works have studied the exploration problem by predicting explorable areas for
semantically rich parts of the environment to accelerate visual exploration [250, 29]. While
these methods can yield promising results in a variety of domains, they come at the cost
of high sample complexity (over 10M samples) [171], making them difficult to use in the
real world—the most performant algorithms take 10-20 minutes to find goals up to 50m
away [238].

Following Chapter 3, our method trains a local model that predicts temporal distances
and actions for nearby subgoals, and then incorporates this model into a search procedure
that incrementally constructs a topological graph in a novel environment. Additionally,
ViKiNG incorporates geographic hints in the form of approximate GPS coordinates and
overhead maps. This enables ViKiNG to reach faraway goals, up to 25× further away
than the furthest goal reported by RECON, and to reach goals up to 15× faster than
RECON when exploring a novel environment.

4.3 visual navigation with geographic hints

Our aim is to design a robotic system that learns to use first-person visual observations
to reach user-specified landmarks, while also utilizing geographic hints in the form

40

of approximate GPS coordinates and overhead maps. At the core of our approach
is a deep neural network that takes in the robot’s current camera observation ot, as
well as an observation ow of a potential subgoal w (we use “subgoal” and “waypoint”
interchangeably), and predicts the time to reach w (or “temporal distance”), the best
current action to do so, and the resulting spatial offset in terms of GPS coordinates. This
model can also sample latent representations of potential reachable waypoints from the
current observation ot, which are used as candidate subgoals for planning. The model
is trained on large amounts of data from a variety of training environments and, when
the robot is placed in a new environment that it has not seen, it is used to incrementally
construct a topological (non-geometric) graph to navigate to a distant user-specified goal.
This goal is indicated by a photograph with an approximate GPS coordinate, and may
be several kilometers away. The learned model alone is insufficient to navigate to such a
distant goal in one shot, and therefore our planner uses a combination of the model’s
predictions and geographic information to plan a sequence of subgoals that search for a
path through the environment, incrementally constructing the graph.

This process corresponds to a kind of heuristic search, where the geographic side
information provides a heuristic to bias the robot to explore towards the goal as it
constructs the topological graph. The latent goal model is used to determine reachability
in this topological graph, and the geographic heuristic is used to steer the graph by
exploring the environment. In a novel environment, the robot must incrementally build
this graph using physical search, by visiting new nodes and expanding its frontier. The
decision about where to actually go is determined by the first-person images, and the
geographic information is used only as a heuristic, allowing ViKiNG to remain robust to
noisy or unreliable side information. We overview our method in Figure 15.

4.3.1 Low-level Control with a Latent Goal Model

Our low-level model maps the current image observation ot and a waypoint observation
ow to: (1) the temporal distance dw

t to reach w from ot; (2) the first action aw
t that the robot

must take now to reach w; (3) a prediction of the (approximate) offset in GPS readings
between ot and w, xw

t . (1) and (3) will be used by the higher-level planner, and (2) will be
used to drive to w, if needed. We would also like this model to be able to propose, in a
learned latent space, potential subgoals w that are reachable from ot, and predict their
corresponding values of dw

t , aw
t , and xw

t .
We present the model in Figure 16, with precise architecture details in the supplemen-

tary materials. The model is trained by sampling pairs of time steps in the trajectories
in the training set. For each pair, the earlier time step image becomes ot, and the later
image becomes ow. The number of time steps between them provides the supervision for
dw

t , the action taken at the earlier time step supervises aw
t , and the later GPS reading is

transformed into the coordinate frame of the earlier time step to provide supervision for
xw

t . The model is trained via maximum likelihood. Note that by training the model on

41

(a)

zt
w

(a)

(b)

ot

ow
at

w

dt
w

xt
w

pover

pɸ (zt
w | ot ,ow)

q𝜃 (. | ot , z)

xw xGxt

Figure 16: The learned models used by ViKiNG. The latent goal model (left) takes in the current
image ot. It also takes in either a true waypoint image ow, or samples a latent waypoint zw

t ∼ r(zw
t)

from a prior distribution, and then predicts, its temporal distance from ot (dw
t), the action to reach

it (aw
t), and its approximate GPS offset (xw

t). The heuristic model (right) takes in an overhead image
ct, the approximate GPS coordinates of the current location (xt) and destination (xG), and the
coordinates of the waypoint inferred by the latent goal model (xw), and predicts an approximate
heuristic value of the waypoint w for reaching the final destination.

data in this way, we not only enable it to evaluate reachability of prospective waypoints,
but also make it possible to inherit behaviors observed in the data. For example, in
our experiments, we will show that the model has a tendency to follow sidewalks and
forest trails, a behavior it inherits from the portion of the dataset that is collected via
teleoperation.

Besides predicting dw
t , aw

t , and xw
t , our planner requires this model to be able to

sample potential reachabale waypoints from ot (see Figure 15). We implement this via a
variational information bottleneck (VIB) inside of the model that bottlenecks information
from ow. Thus, the model can either take as input a real image ow of a prospective
waypoint, or it can sample a latent waypoint zw

t ∼ r(zw
t) from a prior distribution. We

train the model so that sampled latent waypoints correspond to feasible locations that the
robot can reach from ot without collision.
Training the latent goal model: The full model, illustrated in Figure 16, can be split into
three parts: a waypoint encoder pϕ(zw

t |ow, ot), a waypoint prior r(zw
t), and a predictor

qθ({a, d, x}w
t |zw

t , ot). The latent waypoint representation zw
t can either be sampled from

the prior (which is fixed to r(zw
t) ≜ N (0, I)), or from the encoder pϕ(zw

t |ow, ot) if a
waypoint image ow is provided. This latent waypoint is used together with ot to predict
all desired quantities according to qθ({a, d, x}w

t |zw
t , ot). The training set consists of tuples

(ot, ow, {a, d, x}w
t), but the model must be trained so that samples zw

t ∼ r(zw
t) also produce

valid predictions. We accomplish this by means of the VIB [6], which regularizes the
encoder pϕ(zw

t |ow, ot) to produce distributions that are close to the prior r(zw
t) in terms

42

of KL-divergence. We refer the reader to prior work for a derivation of the VIB [6], and
present our training objective for pϕ and qθ below:

LVIB(θ, ϕ) = ED[−Epϕ

[
log qθ

(
{a, d, x}w

t | zw
t , ot

)]
+ βKL

(
pϕ(zw

t | ow, ot)||r(zw
t)

)
] (3)

The outer expectation over all tuples (ot, ow, {a, d, x}w
t) ∈ D in the training distribution is

estimating using the training set. The first term causes the model to accurately predict the
desired information, while the second term forces the encoder to remain consistent with
the prior, which makes the model suitable for sampling latent waypoints according to
zw

t ∼ r(zw
t). As the encoder pϕ and decoder qθ are conditioned on ot, the representation

zw
t only encodes relative information about the subgoal from the context—this allows

the model to represent feasible subgoals in new environments, and provides a compact
representation that abstracts away irrelevant information, such as time of day or visual
appearance. An analogous representation has been proposed in prior work [238], but
did not predict spatial offsets and was used only for uninformed exploration without
geographic hints.

4.3.2 Informed Search on a Topological Graph

The model described above can effectively reach nearby subgoals, for example those
on which the robot has line of sight, but we wish to reach goals that are more than a
kilometer away. To reach distant goals, we combine the model with a search procedure
that incorporates geographic hints from satellite images or roadmaps. The system does
not require this information to be accurate, instead using it as a planning heuristic while
still relying on egocentric camera images for control. Our high-level planner plans over
a topological graph T that it constructs incrementally using the low-level model in
Section 4.3.1 as a local planner. We first describe a generic version of the algorithm for
any heuristic, and then describe the data-driven heuristic function that we extract from
the geographic hints via contrastive learning.
Challenges with physical search: Our “search” process involves the robot physically
searching through the environment, and is not purely a computational process. In
contrast to standard search algorithms (e.g., Dijkstra, A∗, IDA∗, D∗, etc.), each “step” of
our search involves the robot driving to a subgoal and updating the graph. Standard
graph search algorithms assume (i) the ability to visit any arbitrary node, and (ii) access
to a set of neighbors for every node and the corresponding “edge weight,” before visiting
each neighbor. Physical search with a robot violates these assumptions, since robots
cannot “teleport” and visiting a node incurs a driving cost. Furthermore, the real world
does not provide “edge weights” and the robot needs to estimate the cost to reach an
unvisited node before actually driving to it.
An algorithm for informed physical search: To solve these challenges, we design ViKiNG-
A∗, an A∗-like search algorithm that uses our latent goal model and a learned heuristic

43

Algorithm 5 ViKiNG-A∗ for Physical Search

1: function ViKiNG-A∗(start S, goal info oG, xG)
2: Ω← {S}
3: while Ω not empty do
4: wt ← min(Ω, f)
5: DriveTo(wt) ▷ update visitations v on the way
6: observe image ot
7: add wt to graph T ▷ use qθ,ϕ on ot to get distances
8: if close(ot, oG) finish ▷ use qθ,ϕ({a, d, x}w

t |ot, oG)

9: remove wt from Ω
10: sample waypoints w near wt (Section 4.3.1)
11: for each w sampled near wt do
12: if not contains(Ω, w) then add w
13: end for
14: for each waypoint w ∈ Ω do
15: f (w) = g(t, w) + dw

Pr[w] + h(w) + v(Pr[w])

16: end for
17: end while
18: return failure
19: end function

to perform physical search in real-world environments. While ViKiNG-A∗ does prefer
shorter paths, it does not aim to be optimal (in contrast to A∗), only to reach the goal
successfully. We will use a heuristic h(w), fully described in the next section, which
we assume provides a comparative evaluation of candidate waypoints in terms of their
anticipated temporal distance to the destination. Algorithm 5 outlines ViKiNG-A∗.

Like A∗, ViKiNG-A∗ maintains a priority queue “open set” Ω of unexplored fringe
nodes and a “current” node that represents the least-cost node in this set, which we refer
to as wt. It also maintains a graph with visited waypoints, T , where nodes correspond to
images seen at those nodes, and edges correspond to temporal distances estimated by the
model in Section 4.3.1. At every iteration, the robot drives to the least-cost node in the
open set (L5), using a procedure that we outline later. When it reaches wt, it observes the
image ot using its camera (L6). This allows it to add ot to the graph T (L7), connecting it
to other nodes by evaluating the distances using the model in Section 4.3.1. The graph
construction is analogous to prior work [241, 238]. If the robot is close to the final goal
image oG according to the model (L8), the search ends. ot also allows it to sample nearby
candidate waypoints using the model in Section 4.3.1 (L10): first sampling zw

t ∼ r(zw
t)

from the prior, and then decoding distances dw
t , aw

t , and xw
t , from which it can compute

absolute locations as xw = xt + xw
t . Each sampled waypoint is stored in the open set, and

annotated with the current image ot and dw
t . We refer to wt as the parent of w, and index

44

it as Pr[w]. Note that we do not have access to the image ow, as we have not visited the
sampled waypoint w yet, and therefore we must store the current image ot instead. This
also means that we cannot connect these waypoints to the graph T except through their
parent. Next, we re-estimate the cost of each waypoint in the open set, including the
newly added waypoints.

The cost for each waypoint w ∈ Ω from the current point wt consists of four terms
(L15): (1) g(t, w), the cost to navigate to the parent of w, which is part of the graph T ; this
can be computed as a shortest path on the graph T , and is zero for the current node. (2)
dw

Pr[w], the distance from the parent of w to w itself. (3) h(w), the heuristic cost estimate
of reaching the final goal from w (see Section 4.3.3). (4) v(Pr[w]), the visitation count of
Pr[w], computed as CN(Pr[w]), where C is a constant and N(Pr[w]) is a count of how
many times the robot drove to Pr[w] via the DriveTo subroutine; this acts as a novelty
bonus to encourage the robot to explore novel states, a strategy widely used in RL [147,
14]. Summing these terms expresses a preferences for nodes that are fast to reach from wt
(1 + 2), get us closer to the goal (3), and have not been heavily explored before (4). At the
next iteration (L4), the robot picks the lowest-cost waypoint and again drives to it.

To navigate to a selected waypoint w (DriveTo), the robot employs a procedure
analogous to prior work on learning-based navigation with topological graphs [241, 238],
planning the shortest path through T , and selecting the next waypoint on this path.
Once the waypoint w is selected, the model qθ,ϕ({a, d, x}w

t |ot, ow) is used to repeatedly
choose the action aw

t based on the current image ot, until the distance dw
t becomes small,

indicating that the waypoint is reached and the robot can navigate to the next waypoint
(in practice, it’s convenient to replan the path at this point, as is standard in MPC). Each
time the DriveTo subroutine reaches a node, it also increments its count N(w) which is
used for the novelty bonus v(w). The helper function close uses the model in Section 4.3.1
to check if the estimated temporal distance dw

t is less than ϵ for two observations, and the
contains operation on a set checks if a given node is close to any node inside the set. These
modifications allow A∗-like operations on the nodes of our graph, which are continuous
variables.

4.3.3 Learning a Goal-Directed Heuristic for Search

We now describe how we extract a heuristic h from geographic side information. As a
warmup, first consider the case where we only have the GPS coordinates for a waypoint
(xw) and final goal (xG). We can use ∥xg − xw∥ as a heuristic to bias the search to
waypoints in the direction of the goal, and this heuristic can be readily obtained from
the model in Section 4.3.1. However, we would like to compute the heuristic function
using some side information ct, such as a roadmap or satellite image, that does not lie in
a metric space. Thus, we need to learn the heuristic function from data. Since ViKiNG-A∗

does not aim to be optimal (only seeking a feasible path), we do not require the heuristic
to be admissible.

45

We train the heuristic hover(xw, xG, xt, ct) to score the favorability of a sampled candi-
date waypoint w for reaching the goal G from current location xt, given side information ct.
In our case, ct is an overhead image that is roughly centered at the current location of the
robot. Our heuristic is based on an estimator for the probability pover(w→ G|xw, xG, xt, ct)
that a given waypoint w lies on a valid path to the goal G. We use the same training set
as in Section 4.3.1 to learn a predictor for pover. Given pover, we can generate a heuristic
hover := λover(1− pover) to steer ViKiNG-A∗ towards the goal (Alg. 5 L14). Note that,
since we evaluate the heuristic for sampled candidate waypoints, we do not have access
to xw, but we can predict it by using the model in Section 4.3.1 to infer the offset xw

t using
ot and the sampled latent code, and then calculate xw from xt and xw

t . Thus, the heuristic
is technically a function of ct, ot, xt, and xG.

Our procedure for training pover(w → G|xw, xG, xt, ct) is based on InfoNCE [194], a
contrastive learning objective that can be seen as a binary classification problem between
a set of positives and negatives. At each training iteration, we sample a random batch B of
sub-trajectories k from our training set, where xS is the start of k and xE is the end, and cS
is an overhead image centered at xS. We sample a positive example by picking a random
time step in this subtrajectory, and using its position xw+ . The negatives xw− are locations
of other randomly sampled time steps from other trajectories, comprising the set W−.
In this way, we train a neural network model to represent pover(w→ G|xw, xG, xt, ct) (see
Figure 16, right) via the InfoNCE objective:

LNCE = −EB

[
log

pover(w+ → E|xw+ , xE, xS, cS)

∑w−∈W− pover(w− → E|xw− , xE, xS, cS)

]
(4)

This heuristic can only reason about waypoints and goals at the scale of individual
trajectories in the training set (up to 50m). For kilometer-scale navigation, the heuristic
needs to make predictions for goals that are much further away, so we take inspiration
from goal chaining in reinforcement learning [32] and combine overlapping trajectories
in the training set (according to GPS positions) into larger trajectory groups. For a batch
B of trajectories, we combine two trajectories if they intersect in 2D space. The resulting
macro-trajectories thus have multiple start and goal positions, and can extend for several
kilometers. We then sample the sub-trajectories for xS, xE, and xw+ from these much
longer macro-trajectories, giving us positive examples between very distant xS, xE pairs.
This allows pover to be trained on a vast pool of long-horizon goals and improves the
reliability of the heuristic. We provide more details about this procedure in Appendix B.1.

4.4 viking in the real world

We now describe our experiments deploying ViKiNG in a variety of real-world outdoor
environments for kilometer-scale navigation. Our experiments compare ViKiNG to other
learning-based methods, evaluate its performance at different ranges, and study how it
responds to degraded or erroneous geographic information.

46

Start Goal Robot Path
150m(a) Total Distance: 1.20km

100m(c) Total Distance: 1.05km

200m(b) Total Distance: 1.55km

Example Egocentric Observations Through Trajectory

Figure 17: Examples of kilometer-scale goal-seeking in previously unseen environments using only
egocentric images (right) and a schematic roadmap or satellite image as hints (left). ViKiNG can
navigate in complex environments composed of roads, meadows, trees and buildings.

4.4.1 Mobile Robot Platform

We implement ViKiNG on a Clearpath Jackal UGV platform (see Fig. 14). The default
sensor suite consists of a 6-DoF IMU, a GPS unit for approximate global position estimates,
and wheel encoders to estimate local odometry. Under open skies, the GPS unit is accurate
up to 2-5 meters, which is 4-10× the size of the robot. In addition, we added a forward-
facing 170◦ field-of-view RGB camera. Compute is provided by an NVIDIA Jetson TX2

computer, and a cellular hotspot connection provides for monitoring and (if necessary)
teleoperation. Our method uses only the monocular RGB images from the onboard
camera, unfiltered measurements from onboard GPS, and overhead images (roadmap or
satellite) queried at the current GPS location, without any other processing.

4.4.2 Offline Training Dataset

Our aim is to leverage data collected in a wide range of different environments to (i)
enable the robot to learn navigational affordances that generalize to novel environments,
and (ii) learn a global planning heuristic to steer physical search in novel environments.
To create a diverse dataset capturing a wide range of navigation behavior, we use 30 hours
of publicly available robot navigation data collected using an autonomous, randomized
data collection procedure in office park style environments [238]. We augmented this
dataset with another 12 hours of teleoperated data collected by driving on city sidewalks,
hiking trails, and parks. Notably, ViKiNG never sees trajectories longer than 80 meters,
but is able to leverage the learned heuristic (Section 4.3.3) to reach goals over a kilometer

47

away at over 80% of the average speed in the training set. The average trajectory length in
the dataset is 45m, whereas our experiments evaluate runs in excess of 1km. The average
velocity in the dataset is 1.68 m/s, and the average velocity the robot maintains in testing
is 1.36 m/s. We provide more details about the dataset in Appendix B.2.

4.4.3 Kilometer-Scale Testing

For evaluation, we deploy ViKiNG in a variety of previously unseen open-world environ-
ments to demonstrate kilometer-scale navigation. Figure 17 shows the path taken by the
robot in search for a user-specified goal image and location. ViKiNG is able to utilize
geographic hints, in the form of a roadmap or satellite image centered at its current
position, to steer its search of the goal. In a university campus (Fig. 17(a, c)), we observe
that the robot can identify large buildings along the way and plan around it, rather than
following a greedy strategy. Since the training data often contains examples of the robot
driving around buildings, ViKiNG is able to leverage this prior experience and generalize
to novel buildings and environments. On city roads (Fig. 17(b)), the learned heuristic
shows preference towards following the sidewalks, a characteristic of the training data in
city environments. It is important to note that while the robot has seen some prior data
on sidewalks and in suburban neighborhoods, it has never seen the specific areas (see
Appendix B.2 for further details). For videos of our experiments, please check out our
project page.

These long-range experiments also exhibit successful backtracking behavior—when
guided into a cul-de-sac by the planner, ViKiNG turns around and resumes its search
for the goal from another node in the “openSet”, reaching the goal successfully (see
Figure 14(h)). While the learned heuristic provides high-level guidance, the local control
is done solely from first person images. This is illustrated in Figure 14(g), where the
robot navigates through a forest, where the satellite image does not contain any useful
information about navigating under a dense canopy. ViKiNG is able to successfully
navigate through a patch of trees using the image-based model described in Section 4.3.1.
We can also provide ViKiNG with a set of goals to execute in a sequence to provide more
guidance about the path (e.g., an inspection task with landmarks), as demonstrated in
the next experiment.
A hiking ViKiNG: We deploy ViKiNG, with access to satellite images as hints, on a 2.7km
hiking trail with a 70m elevation gain by providing a sequence of six checkpoint images
and their corresponding GPS coordinates. Algorithmically, we run ViKiNG-A∗ on every
goal (one at a time) while reusing the topological graph T across goals. Figure 18 shows
a top-down view of the path taken by the robot—ViKiNG is able to successfully combine
the strengths of a learned controller for collision-free navigation with a learned heuristic
that utilizes the satellite images to encourage on-trail navigation between checkpoints.
Since the offline dataset contains examples of trail-following, the robot learns to stay
on trails when possible. This behavior is emergent from the data—there is no other

48

100m

1

2

3
4

5

Start Checkpoints

6

Total Distance: 2.73km
Robot Path

Figure 18: ViKiNG can follow a sequence of goal checkpoints to perform search in complex
environments, such as this 2.73km hiking trail.

mechanism that encourages staying on the trails, and in several cases, a straight-line
path between the goal waypoints would not stay on the trail (e.g., the first checkpoint in
Figure 18).
Autonomous visual inspection: We further deploy ViKiNG in a suburban environment
for the task of visual inspection specified by five images of interest. ViKiNG is able to
successfully navigate to the landmarks by using satellite imagery, traveling a distance of
2.65km without any interventions. Figure 19 shows the specified images and a top-down
view of the path taken by the robot on the trail.

4.4.4 Quantitative Evaluation and Comparisons

We compare ViKiNG to four prior approaches, each trained using the same offline data
as our method. All methods have access to the egocentric images, GPS location, and
satellite images, and control the robot via the same action space, corresponding to linear
and angular velocities.
Behavioral Cloning: A goal-conditioned behavioral cloning (BC) policy trained on the
offline dataset that maps the three inputs to control actions [44, 241].
PPO: A policy gradient algorithm that maps the three inputs to control actions. This
comparison is representative of state-of-the-art “PointGoal” navigation in simulation [283].
GCG: A model-based algorithm that uses a predictive model to plan a sequence of actions
that reach the goal without causing collision [123]. We use GCG in the goal-directed mode
with a GPS target, using the onboard camera and satellite images as input modalities.

49

150m

Total Distance: 2.65km

start

Figure 19: ViKiNG can utilize a satellite image to follow a sequence of visual landmarks (top) in
complex suburban environments, such as this 2.65km loop stretching across buildings, meadows
and roads.

RECON-H: A variant of RECON, which uses a latent goal model to represent reachable
goals and plans over sampled subgoals to explore a novel environment [238]. We modify
the algorithm to additionally accept the GPS and satellite images as additional inputs
alongside the onboard camera image.

We evaluate the ability of ViKiNG to discover visually-indicated goals in 10 unseen
environments of varying complexity. For each trial, we provide an RGB image of the
desired target and its rough GPS location (accurate up to 5 meters). A trial is marked
successful if the robot reaches the goal without requiring a human disengagement (due
to a collision or getting stuck). We report the success rates of all methods in these
environments in Table 5 and visualize overhead plots of the trajectories in one such
environment in Figure 20.

ViKiNG outperforms all the prior methods, successfully navigating to goals that are
over up to 500 meters away in our comparisons, including instances where no other
method succeeds. RECON-H is the most performant of the other methods, successfully

50

Method Easy Medium Hard
< 50m 50− 150m 150− 500m

Behavior Cloning 2/3 1/4 0/3

Offline PPO [228] 2/3 1/4 0/3

GCG [123] 3/3 2/4 0/3

RECON-H [238] 3/3 3/4 1/3

ViKiNG (Ours) 3/3 4/4 3/3

Table 5: Comparison of goal-seeking performance against baselines. ViKiNG successfully reaches
all goals. RECON-H and GCG succeed in simpler cases but are unable to utilize the hints
effectively for distant goals. PPO and BC fail in all but the simplest cases.

Method Avg. Displacement (m) Avg. Velocity (m/s)

Behavior Cloning 19.5 0.35

Offline PPO [228] 47.2 0.85

GCG [123] 78.3 1.40
RECON-H [238] 188.3 0.41

ViKiNG (Ours) 250.0+ 1.36

Table 6: Average robot displacement and velocity before disengagement. ViKiNG successfully
reaches all goals without requiring any disengagements. RECON-H also reaches some distant
goals, but the low avg. velocity suggests that it takes an efficient path.

reaching most goals in the easier environments. Visualizing the robot trajectories (Fig. 20)
reveals that RECON-H is unable to successfully utilize the geographic hints and explores
greedily on encountering an obstacle. It also gets stuck and is unable to backtrack in 2/10

instances. While GCG also performs well in simpler environments, it is limited by its
planning horizon (up to 5 seconds) and gets stuck. PPO and BC both are both unable to
learn from prior data and produce collisions with bushes and a parked car, respectively.
In contrast, ViKiNG is able to effectively use the local controller to avoid the obstacles
and reach the goal.

Analyzing the performance in the harder tasks with ranges of up to 500 meters
(Table 6), the average displacements and velocities before a user disengagement (due
to collision or getting stuck) during these runs further confirm that ViKiNG is able to
effectively use the geographic hints to steer the search without running into obstacles.
While RECON-H manages to reach some faraway goals, it takes a greedy path to do so
and is over 3× slower than ViKiNG (see Fig. 20).

51

ViKiNG (Ours)
BC

RECON-H [33][20]
PPO [45] [18] GCG [3][27]

40m

start

goal

Figure 20: Trajectories taken by the methods in a previously unseen environment. Only ViKiNG is
able to effectively use the overhead images to reach the goal (270m away) successfully, following a
smooth path around the building. RECON-H and GCG get stuck, while PPO and BC result in
collisions.

4.5 the role of geographic hints

In this section, we closely examine the role of geographic hints on the performance of
ViKiNG by studying how it deals with a low-fidelity roadmap (versus a satellite image),
and with incorrect hints and degraded geographic information. For the experiment in
Section 4.5.1, we use models trained on the same dataset, but using schematic roadmaps
as geographic hints. In Sections 4.5.2 and 4.5.3, we use the same satellite image model
from Section IV, with no additional retraining to accommodate missing or imperfect
geographic information.

4.5.1 Comparing Different Types of Hints

To understand the nature of hints learned by the heuristic for different sources of geo-
graphic side information, we compare two separate versions of ViKiNG: one trained with
schematic roadmaps as hints, and another trained with satellite images. Note that the
method is identical in both cases, only the hint image in the data changes. For identical
start-goal pairs, we observe that a model trained with roadmaps prefers following marked
roads, whereas one trained with satellite images often cuts across patches of traversable
terrain (e.g., grass meadows or trails) to take the quicker path, despite being trained on
the same data. We hypothesize that this is due to the ability of the learned models to
extract better correlations from the feature-rich satellite images, in contrast to the more

52

start

goal
Roadmap Hint Satellite Hint

Figure 21: ViKiNG can use geographic hints in the form of a schematic roadmap or a satellite
image. Providing roadmap hints encourages ViKiNG to follow marked roads (left); with satellite
images, it is able to find a more direct path by cutting across a meadow (right).

abstract roadmap. Figure 21 shows a top-down view of the paths taken by the robot in
the two cases in one such experiment.

4.5.2 Outdated Hints

To test the robustness of ViKiNG to outdated hints, we set up a goal-seeking experiment
in one of the earlier environments and added a new obstacle—a large truck—blocking
the path that ViKiNG took in the original trial. Since the satellite images are queried from
a pre-recorded dataset, they do not reflect the addition of the truck, and hence continue
to show a feasible path. We observe that the robot drives up to the truck and takes an
alternate path to the goal, without colliding with it (see Figure 22). The lower-level latent
goal model is robust to such obstacles and only proposes valid subgoal candidates that
do not lead to collision; since the learned heuristic only evaluates valid subgoals, ViKiNG
is robust to small discrepancies in the hints.

4.5.3 Incorrect Hints

Next, we set up a goal-seeking experiment in one of the easy environments with modified
GPS measurements, so that the satellite images available to ViKiNG are offset by a ∼5km
constant. As a result, this hints to the robot that there may be a road that it should
follow, where in fact there isn’t one (see Figure 23). We observe that the robot indeed
deviates from its earlier path (with a valid map, the robot drives straight to the goal);

53

Original Path New PathAdded Obstacle

Before After

goal
start

Figure 22: On navigating with outdated hints, like the truck (top right) that is absent in the
satellite image, ViKiNG uses its learned local controller to propose feasible subgoals that avoid
obstacles and finds a new path (blue) to the goal that avoids the truck.

54

Path with Valid Map Path with Invalid Map

Invalid Map Overlay

True Map (Not Available to Blue)

start goal

Figure 23: On navigation with invalid hints, like the map at a different location, ViKiNG deviates
from its original path (magenta) and reaches the goal by following the learned heuristic (blue).

upon overlaying this trajectory on the invalid map, we find that the learned heuristic
indeed encourages the robot to follow the curvature of the road, but this path is still
successful because it corresponds to open space.

4.5.4 A Disoriented ViKiNG

Finally, we analyze the effects of disabling the geographic hints and GPS localization
on the goal-seeking performance of ViKiNG. Towards this, we run two variants of our
algorithm:
No Overhead Image: We provide the robot with GPS, but no satellite images. To
accommodate this, we use a simple ℓ2 heuristic hGPS(xw, xg, xt) = ∥xg − xw∥.
No GPS: The robot does not have access to GPS or satellite images. To accommodate this,
we remove the heuristic h from ViKiNG-A∗, making it an uninformed search algorithm.

Figure 24 summarizes the path taken by the robot, distance traversed, and time taken.
When we disable the overhead hints and only use hGPS, ViKiNG-A∗ can still reach the
destination, but takes significantly longer to do so, initially exploring a dead-end path
that it then has to back out of. That said, this experiment also illustrates the ability of
ViKiNG-A∗ to handle less useful heuristics: while the path is significantly longer, the
method is still able to eventually reach the destination, and in some sense the mistakes
the method makes are to be expected of any system that has no prior map information. If

55

30m

ViKiNG (0.31km, 06:40) No GPS (N/A)No Overhead Map (0.73km, 17:20)

start

goal

Figure 24: Ablations of ViKiNG by withholding geographic hints. ViKiNG without overhead
images (magenta) acts greedily, driving close to buildings, gets caught into a cul-de-sac and
eventually reaches the goal 2.6× slower that ViKiNG with access to satellite images (blue), which
avoids the building cluster by following a smoother dirt path. Search without GPS (cyan) performs
uninformed exploration and is unable to reach the goal in over 30 minutes.

we remove GPS as well, ViKiNG-A∗ corresponds to a Dijkstra-like uninformed search
(resembling RECON [238]). In this case, the robot searches its environment without any
guidance and is unable to reach the goal in over 30 minutes.

4.6 discussion

We proposed a method for efficiently learning vision-based navigation in previously unseen
environments at a kilometer-scale. Our key insight is that effectively leveraging a small
amount of geographic knowledge in a learning-based framework can provide strong
regularities that enable robots to navigate to distant goals. We find that incorporating
geographic hints as goal-directed heuristics for planning enables emergent preferences
such as following roads or hiking trails. Additionally, ViKiNG only uses the hints for
biasing the high-level search; the learned control policy at the lower-level relies solely
on egocentric image observations, and is thus robust to imperfect hints. While we only
use overhead images in our experiments, an existing avenue for future work is to explore
how such a system could use other information sources, including paper maps or textual
instructions, which can be incorporated into our contrastive objective.

56

acknowledgments

This research was partially supported by DARPA Assured Autonomy, ARL DCIST CRA
W911NF-17-2-0181, DARPA RACER, and Toyota Research Institute. The authors would
like to thank Blazej Osinski, Dieter Fox, Tambet Matiisen, Brian Ichter, and Katie Kang
for useful discussions.

57

5

O F F L I N E R E I N F O R C E M E N T L E A R N I N G F O R V I S UA L N AV I G AT I O N

Synopsis

This chapter proposes ReViND, the first robotic navigation system that can leverage
previously collected data to optimize user-specified reward functions in the real-world
using offline reinforcement learning. In contrast with the behavior cloning-based
objectives proposed in ViNG, reinforcement learning can enable robots to navigate to
distant goals while optimizing user-specified reward functions, including preferences
for following lanes, staying on paved paths, or avoiding freshly mowed grass. However,
online learning from trial-and-error for real-world robots is logistically challenging,
and methods that instead can utilize existing datasets of robotic navigation data could
be significantly more scalable and enable broader generalization. We evaluate our
system for off-road navigation without any additional data collection or fine-tuning,
and show that it can navigate to distant goals using only offline training from this
dataset, and exhibit behaviors that qualitatively differ based on the user-specified
reward function.

5.1 introduction

Robotic navigation approaches aim to enable robots to navigate to user-specified goals
in known and unknown environments. The geometric approach to this problem involves
using a geometric map of the environment to plan a collision-free path towards the goal.
The learning-based approach to this problem involves training policies by associating new
inputs with prior navigational experience, typically through imitation learning (IL) or
reinforcement learning (RL). In many practical applications, the goal is not merely to
reach a particular destination, but to do so while maximizing some desired utility measure,
which could include obeying the rules of the road, staying in a bike lane, maintaining
safety, or even more esoteric goals such as remaining in direct sunlight for a solar-powered

Shah†, Bhorkar†, Leen, Kostrikov, Rhinehart, Levine, ”Offline Reinforcement Learning for Visual Navigation”, in
Annual Conference on Robot Learning (CoRL) 2022
Project website: sites.google.com/view/revind

58

https://sites.google.com/view/revind

vehicle. In these cases, neither IL nor geometric approaches alone would suffice without
accurate reconstructions of the environment or task-specific expert demonstrations, which
may be difficult to obtain. RL can address these challenges, but prior work on applying
RL to robotic navigation relies on infeasible amounts of online data collection, or requires
high-fidelity simulators for simulation to real world transfer [283, 121]. Is there a practical
RL paradigm that can solve this challenge directly from real-world data?

RL from offline datasets [155] can address this challenge by learning policies from a
prior dataset of trajectories and associated reward labels. Given a previously collected
diverse dataset of navigational trajectories, it is possible to relabel that dataset post-hoc
with reward labels as desired, train a policy that maximizes this reward function, and
deploy it in the real world. Since this approach can leverage large datasets, it may lead
to significantly better generalization [128] than methods that require much more tightly
curated data, such as imitation learning methods. However, end-to-end trained “flat” RL
policies tend to perform poorly for long-horizon tasks [10, 65, 241]. How can we design a
system for learning control policies from large datasets that can be immediately deployed
onto a mobile robot?

In this paper, we describe a robotic learning system that performs visual navigation
to distant goals (e.g. 100s meters away) while also incorporating user-specified reward
objectives. Our system consists of two parts: (i) an offline Q-learning algorithm [137]
that can incorporate the desired preferences in the learned Q-function and trains a policy
operating directly on raw visual observations, and (ii) a topological representation of the
environment for planning, where nodes are represented by the raw visual observations
and the connectivity between them is described by the learned value function (see system
overview in Fig. 25). While the Q-function alone may only be sufficient to learn accurate
navigational strategies over short horizons, composing it with planning allows scaling
to large environments by searching for a plan that maximizes the desired objective at a
coarse level. The low-level policy derived from the Q-function is subsequently used to
navigate between the nodes, maximizing the desired objective at both levels.

The primary contribution of this work is ReViND, a robotic system for Reinforcement
learning for Visual Navigation from prior Data that can act in real-world environments,
adopt behavior that maximizes the user-specified reward functions, and reach distant
goals, by combining planning and Q-learning. We demonstrate that ReViND can in-
corporate high-level rewards, such as staying on pavements or driving in sunlight and
reach goals in complex environments over hundreds of meters. ReViND is pre-trained
on 30 hours of publicly available data [238] and is deployed in a novel, visually similar
environment without any on-policy data collection or fine-tuning. To the best of our
knowledge, this is the first demonstration of offline RL for real-world navigation utiliz-
ing only publicly available datasets. Our experiments show that ReViND demonstrates
diverse qualitative behaviors by tweaking the reward objectives while outperforming
policies trained with IL and model-free RL.

59

(b)

User Preferences

Current Observation

Goal Heading
Planning

High-Level Plan

O
ffl

in
e Q

-Learn
in

g

goal start𝜋

Figure 25: Long-range RL with ReViND: We use Implicit Q-learning to learn a goal-conditioned
policy π and it’s corresponding value function Vπ from an offline dataset of interactions and
user preferences, encoded as rewards. We then create a topological graph using −Vπ as the
pairwise “distance function”. The minimum-cost path to the goal in this graph is the desired
reward-maximizing path to the goal, resulting in varied behaviors such as goal-reaching while
driving on the grass, or following a bike lane.

5.2 related work

Reinforcement learning (RL) approaches to navigation have shown great success in
learning from large-scale data [171, 283]. A challenge with such methods is that RL
algorithms can require a large amount of online experience (e.g., millions or even billions
of trials) [283]. A method that requires a million 1-minute episodes would take more
than 1.5 years of nonstop real-world collection, making it poorly suited for learning from
scratch directly in the real world. Therefore, such methods typically require simulation,
transfer, and other additional components [28, 136, 7]. An alternative for encoding
specific user preferences into a learning-based method is to employ imitation learning
(following Chapters 2–4). While imitation learning can enable a user to define their
desired behavior through the demonstrations, such demonstrations are time-consuming
to gather, and must be recollected for each new reward function. In contrast, our offline
RL method utilizes previously collected datasets, which we show is practical for real-
world robots, and relabels the same dataset with different reward functions, which means
no reward-specific data collection is needed.

Prior offline RL work has proposed a number of algorithms that can utilize previously
collected data [77, 148, 155, 77, 186, 145, 138, 137]. Our goal is not to develop a new
offline RL algorithm, but rather to explore their application to robotic navigation tasks.
Most prior robotics applications of such methods include multi-task learning for tabletop
manipulation [126, 248, 170, 151, 32]. In this chapter, specifically explore how a single
dataset can be reused to enable long-horizon navigation with different user preferences.
To that end, we combine our approach with graph-based search to reach distant goals,
which we show significantly improves over direct use of the learned policy, and utilize
the same exact data to optimize different reward functions. While prior work has also

60

explored the use of offline data with varying reward functions [123, 125], we address
significantly longer horizon tasks by incorporating model-free RL and graph search.

Our use of graph search in combination with RL parallels prior work that integrates
planning into supervised skill learning methods (Chapter 2) and goal-conditioned rein-
forcement learning [65, 69, 189]. However, our method differs from these works in two
ways. First, while these prior works use the value function to estimate the temporal dis-
tance between pairs of nodes in the graph, we specifically explore using divese objectives.
More importantly, we use offline RL, whereas prior work uses either supervised regres-
sion for distances, or online RL. Our goal is not to develop a new offline RL algorithm,
but to explore it’s application to robotic navigation tasks by building a learning-based
system for long-horizon planning. To our knowledge, our work is the first to combine
topological graphs with RL for arbitrary reward functions, and the first to combine them
with offline RL.

5.3 offline reinforcement learning for long-horizon navigation

Our system combines offline learning of reward-specific value functions with topological
planning over a graph constructed from prior experience in a given environment, so as
to enable a robot to navigate to distant goals while maximizing user-specified rewards.
The learned value function is used not only to supervise a local policy that chooses
reward-maximizing actions, but also to evaluate edge costs on a graph constructed from
past experience. The graph is then used to plan a path, and the policy is used to execute
the action to reach the first subgoal on that path. Structurally, this resembles SoRB [65],
but with two critical changes: learning “offline” value functions from prior data, and the
ability to handle diverse reward functions beyond simple goal-reaching.

5.3.1 Problem Statement and Assumptions

The robot’s task is defined in the context of a goal-conditioned Markov decision process,
with state observations s ∈ S , actions a ∈ A, and goals g ∈ G. The robot receives a
reward r(st) at each time step t, which depends on the degree to which it is satisfying user
preferences (e.g., staying on the graph). The objective can be expressed as maximizing
the total reward of the robot’s executed path, since the reward accounts for both the
desired utility and goal reaching. The state observations consist of RGB images from
the robot’s forward-facing camera and a 2D GPS coordinate, the actions are 2D steering
and throttle commands, the goal is a 2D GPS coordinate expressed in the robot’s frame
of reference. In this setting, reinforcement learning methods will learn policies of the
form π(at|st, gt), though our approach will not command the final task goal gt directly,
but instead will use a planning method to determine intermediate subgoals, which in
practice makes it significantly easier to reach distant goals. To enable this sort of planning,
we make an additional assumption that parallels prior work on combining RL with

61

graph search [65, 241]: we assume that the robot has access to prior experience from
the current environment that it can use to build a topological graph that describes its
connectivity. Intuitively, this corresponds to a kind of “mental map” that describes which
landmarks are reachable from which other landmarks. Importantly, we do not assume
that this graph is manually constructed or provided: the algorithm constructs the graph
automatically using an uncurated set of observations recorded from prior drive-throughs
of the environment. In our experiment, these traversals are done via teleoperation, though
they could also be performed via autonomous exploration, and our method could be
extended to handle unseen environments by integrating the exploration procedures
discussed in prior work [238].

5.3.2 Reinforcement Learning from Offline Data

Offline RL algorithms learn policies from static datasets. In our implementation we use
implicit Q-learning (IQL) [137], though our approach is compatible with any value-based
offline RL algorithm. We summarize offline RL in general and IQL specifically in this
section. Given a dataset D = {(si, ai, ri, s′i) | i = 1 . . . N}, the goal of offline RL is to learn
a policy that optimizes the sum of discounted future rewards without any additional
interactions with the environment. IQL involves fitting two neural networks, Qθ and Vψ,
where Qθ(s, a, g) approximates the Q-function of an implicit policy that maximizes the
previous Q-function, and Vψ represents the corresponding value function. The Q-function
is updated by minimizing squared error against the next time step value function, with
the objective

L(θ) = E(s,a,s′)∼D,g∼p(g|s)[(γVψ(s′, g) + r(s, a, g)−Qθ(s, a, g))2],

where p(g|s) is a goal distribution, which we will discuss later. The value function Vψ(s, g)
should be trained to correspond to Qϕ(s, a, g) for the optimal action a that maximizes
the value at s, but directly computing maxa Qϕ(s, a, g) is likely to select an “adversarial”
out-of-distribution action that leads to erroneously large values, since the static dataset
does not permit Qϕ(s, a, g) to be trained on all possible actions [137, 155, 145]. Therefore,
IQL employs an implicit expectile update, with a loss function given by

L(ψ) = E(s,a)∼D,g∼p(g|s)[L
τ
2(Qθ(s, a, g)−Vψ(s′, g))],

where Lτ
2(u) = |τ − 1(u < 0)|u2. This can be shown to approximate the maximum over

in-distribution actions [137], but does not require ever querying out-of-sample actions
during training. To instantiate this method, it remains only to select p(g|s).
Goal relabeling. The IQL algorithm is not goal-conditioned [137], and the dataset was not
collected with a goal-reaching policy, so the goals must be selected post-hoc with some
sort of relabeling strategy. While a variety of relabeling strategies have been proposed in
prior work [122, 10, 32, 65, 66], we follow prior work on offline RL for goal-reaching [32]

62

and simply set the goal to states that are observed in the dataset in the same trajectory at
time steps subsequent to a given sample si. In our implementation, we select this time
step at random between 10 and 70 time steps after si (the total trajectory lengths are
typically around 80 steps). Algorithm 6 outlines pseudocode for training the Q-function
with IQL.
Long-horizon control. Instead of directly using the policy learned with IQL, in this
paper we use the IQL value function to obtain edge costs for a graph used for topological
planing. The standard IQL method directly extracts a reactive policy from the Q-function.
However, we found that in the real world, this approach was unable to reach goals farther
than 20m, or 80 time steps. A deeper analysis of the system revealed that, while the policy
and values learned by the IQL agent are valid over shorter horizons, they degrade rapidly
as the horizon increases. This is not surprising, because like all value-based methods, IQL
assumes that s represents a Markovian state. But this assumption becomes increasingly
violated for long-horizon tasks with first-person images: while goals that are within line
of sight of the robot are relatively simple, goals that require navigating around obstacles
tend to fail if using the policy directly. In the next subsection, we will discuss how we
can use a topological graph as a sort of “nonparametric memory” of the environment to
alleviate this challenge, enabling our method to reach distant goals.

5.3.3 Long-Horizon Reward Maximization with a Topological Graph

To enable long-horizon navigation, we combine the value function learned via offline
RL with a topological graph built from prior observations in a given environment. As
discussed previously, we assume that the robot has a limited amount of prior experience
in the test environment that can be used to build a “mental map,” corresponding to
a graph where nodes are observations and edges represent the cumulative reward the
robot will accumulate as it travels from one node to another. Note that this graph is
topological rather than geometric: the nodes are image observations, and the connectivity
is determined by the learned value function. We do not use the data from the test
environment to finetune the value functions, only to construct the graph.

The graph G is constructed in the same way as prior work on graph-based navigation
(see 2 for the closest prior method): each state observation si in the test environment
corresponds to a node ni, and each edge eij receives a cost corresponding to C(eij) =
−Vψ(si, sj).1 We further filter these edges based on the GPS coordinates of the nodes to
eliminate wormholes arising due to optimistic value estimates. For more details on how
the graph is constructed, please see Appendix C.3. Given an overall task goal, we add it
to the graph as an additional node nG, along with a node representing the robot’s current
state, and then use Dijkstra’s algorithm to compute the shortest path with these edge

1 In our implementation, goals are defined only in terms of GPS coordinates, so technically, the second
argument is only the GPS coordinate of sj, which we found to be sufficient. Extending the method to use
the full image observation is a simple modification.

63

costs. We then use the policy learned via offline RL to navigate to the first node along
this path. Algorithm 7 outlines pseudocode for this procedure.

In our implementation, we use goal-conditioned reward functions of this form:

R(st, at, g) =

{
−kt(st) ∀st ̸= g
0 otherwise.

(5)

where kt(st) > 0 is always positive to ensure that the planner actually reaches the goal.
Proposition 3.1 If we recover the optimal value function V∗(s, s′) for short-horizon goals s′

(relative to s), and G = S (all states exist in the graph), and the MDP is deterministic with γ = 1,
then finding the minimum-cost path in the graph G with edge-weights −V∗(s, s′) recovers the
optimal path, that is, a policy π that maximizes V∗(s, g).

Proof (sketch): The Bellman equation can be used to write the cost of the minimal-cost
path in the graph with edge-weights −V(s, s′): J∗(s, g) = mins′ [−V(s, s′) + J∗(s′, g)] =
−maxs′ [V(s, s′)− J∗(s′, g)]. We can further expand V(s, s′) into a sum of rewards induced
by the policy π and then rearrange the terms to obtain a similar optimality equation
for V∗ that demonstrates that J∗(s, g) = −V∗(s, g). While the above proposition makes
strong assumptions, it provides some degree of confidence that our proposed method is
correct and consistent. We present further analysis of this proposition in Appendix C.1.

Algorithm 6 Training ReViND

1: Initialize parameters ψ, θ, θ̂, ϕ.
2: for each gradient step do
3: Sample a mini-batch {(si, ai, ri, s′i)}
4: for each sample do
5: T ← T ∈ D | si ∈ T
6: gi ← SampleGoal(T, si)
7: si, s′i ← Relabel(si, s′i, gi)
8: ri ← Reward(si, gi)
9: end for

10: ψ← ψ− λV∇ψLV(ψ)
11: θ ← θ − λQ∇θ LQ(θ)
12: θ̂ ← (1− α)θ̂ + αθ
13: end for

Algorithm 7 Deploying ReViND
1: Inputs: current observation obs := {img, x},

set of past observations N := {n1, . . . , nm}, IQL
agent {Q, V, π}, goal node nG ∈ N

2: G ← ConstructGraph(N , V)
3: while not IsClose(obs, nG) do
4: UpdateGraph(obs)
5: w1, . . . , wk ← DijkstraSearch(obs, nG)
6: for t = 1, . . . , H do
7: goal vector = GetRelative(x, w1)
8: RunPolicy(img, goal) ▷ runs on robot
9: obs← next observation

10: end for
11: end while

5.4 system evaluation

We now describe our system and experiments that we use to evaluate ReViND in
real-world environments with a variety of utility functions. Our experiments evalu-
ate ReViND’s ability to incorporate diverse objectives and learn customizable behavior for
long-horizon navigation, and compare it alternative methods for learning navigational
skills from offline datasets.

64

5.4.1 Mobile Robot Platform

We implement ReViND on a Clearpath Jackal UGV platform (see Fig. 25). The sensor
suite consists of a 6-DoF IMU, GPS for approximate localization, and wheel encoders to
estimate local odometry. The robot observes the environment using a forward-facing 170◦

field-of-view RGB camera. Compute is provided by an NVIDIA Jetson TX2 computer,
with the RL controller running on-board. Our method uses only the images from the
on-board camera and unfiltered GPS measurements.

5.4.2 Offline Trajectory Dataset and Reward Labeling

The ability to utilize offline datasets enables ReViND to learn navigation behavior di-
rectly from existing datasets — which may be expert tele-operated or collected via an
autonomous exploration policy — without collecting any new data. We demonstrate
that ReViND can learn behaviors from a small offline dataset and generalize to a variety
of previously unseen, visually similar environments including grasslands, forests and
suburban neighborhoods. To emphasize this, we train ReViND using 30 hours of publicly
available robot trajectories collected using a randomized data collection procedure in an
office park [238]. Expanding this training dataset to include more diverse scenes can help
extend these results to alternate applications (e.g. indoors).

To utilize this data with our method, we “relabel” it with several different reward
labels corresponding to diverse behaviors: simple shortest-path goal-reaching, driving
in the sun (to emulate a solar-powered vehicle that needs sunlight), driving on grass (to
stay off the road), and driving on the pavement (to stay off the grass). We generate these
labels by different mechanisms — either by manually labeling them, by using a learned
reward classifier network, or automatically, by exploiting pixel-level patterns (e.g., in the
color space). We implement these rewards via additive bonus to the negative rewards
which corresponds to reducing the penalty for traversing these areas. For more details,
see Appendix C.2. As discussed in Sec. 5.3.2, we use IQL to learn the value functions and
policies for each task.

5.4.3 Learning Varied Behaviors with ReViND

We now evaluate our method both in terms of its ability to tailor the navigational strategy
to the provided reward, and in terms of how it compares to prior approaches and baselines.
We test ReViND in five suburban environments for a large number of goal-reaching tasks
(see Appendix C.6). While these environments are visually similar to the offline training
data, they exhibit dynamic elements such as moving obstacles, automobiles, and changes
in the appearance of the environment across the seasons. In each evaluation environment,
we construct a topological graph by manually driving the robot and collecting visual
and GPS observations. The nodes of this graph are obtained by sub-sampling these

65

Figure 26: Comparison of policies for different reward functions learned by ReViND. Left: an
overhead map (not available to the method), with grassy areas indicated with green shading. Note
that the policy for the “sunny” reward chooses a significantly different path through a concrete
parking lot without tree cover, while the policy for the “grassy” reward takes frequent detours to
drive on lawns. Right: first person images during each traversal, with the chosen path indicated
with colored lines.

observations, such that they are 10–30m apart, and the edge connectivity is determined by
the corresponding value estimates. Note that the Q-function is not updated with this data,
it is only used to build the graph. Once the graph is constructed, the robot is tasked with
reaching a goal location, where it follows Alg. 7 to search for a path through the graph,
and then executes it via the learned policy. Fig. 26 shows the paths taken by different
policies for a specific start-goal pair. The overhead image is not available to ReViND and
is only provided for illustration.

Agent Utility SPL ERgrass ERsun

Rdist 0.87 0.16 0.61

Rdist + Rgrass 0.84 0.86 0.39

Rdist + Rsun 0.64 0.05 0.68

Table 7: ReViND learns diverse behaviors
that maximize the desired utility.

Our results show that utilizing value func-
tions for different rewards from ReViND leads
to significantly different paths through the en-
vironment. For example, the “sunny” reward
function causes a large detour through a park-
ing lot without tree cover, while the “grassy” re-
ward causes frequent detours to drive on lawns.
All of the policies successfully avoid obstacles
and collisions and successfully reach the goal.
In Table 7 we provide a quantitative summary
of the behavior of the method for each reward
function, showing success weighted by path length (SPL, which corresponds to an op-
timality measure that awards higher scores to successful runs with the shortest route
length), the average value of the grass reward, and the average value of sun reward for
trials corresponding to each reward function (note that these rewards are normalized to
maximum of 1). As expected, we see that the values of these metrics strongly covary with
the commanded reward.

Next, we compare ReViND to four baselines, each trained on the same offline dataset.
These approaches represent natural points of comparison for our method, and include

66

fBCBC IQL

ViNG Ours

Figure 27: Qualitatively, only ReViND reaches
the goal while prioritizing grassy terrain
(shaded green).

Start

Goal

Agent Paths
Min-Dist
Grassy

Pavement

Figure 28: ReViND takes different paths
through the environment for different reward
functions.

Method Uses Graph? Easy (<50m) Medium (50–150m) Hard (150–500m)
Success E1grass Success E1grass Success E1grass

Behavior Cloning No 1/5 0.08 0/5 0.04 0/5 0.12

Filtered BC No 3/5 0.29 0/5 0.08 0/5 0.12

IQL [137] No 3/5 0.37 1/5 0.29 0/5 0.16

ViNG [241] Yes 5/5 0.07 4/5 0.09 3/5 0.14

Filtered BC + Graph Yes 5/5 0.24 4/5 0.15 3/5 0.19

ReViND (Ours) Yes 5/5 0.47 4/5 0.84 4/5 0.78

Table 8: Success rates and utility maximization for the task of navigation in grassy regions (Rgrass).

prior imitation learning and RL methods, as well as a prior graph-based method that
does not use RL. Since our approach is (to our knowledge) the first to combine RL with
arbitrary rewards and topological graph search, no prior approach supports both graphs
and arbitrary rewards. All methods have access to egocentric images and GPS, and
command future waypoints to the robot.
Behavioral Cloning (BC): A goal-conditioned imitation policy that maps images and
goals to control actions [44]. This baseline does not incorporate reward information.
Filtered BC (fBC): A similar goal-conditioned BC policy that incorporates reward infor-
mation by filtering the training data, picking only trajectories with the top 50% aggregate
rewards [37].
ViNG: A graph-based navigation system that combines a goal-conditioned BC policy and
distance function with a topological graph [241]. This baseline does not incorporate reward
information.
IQL: A baseline that uses only the learned Q-function, without a topological graph [137].

Fig. 27 shows the qualitative behavior exhibited by the different systems for maxi-
mizing the “grassy” reward function. IQL and Filtered BC can incorporate the reward
function into the policy, but since they rely entirely on a reactive policy for navigation,

67

they are unable to determine how to navigate toward the goal, and exhibit meainingless
bee-lining behavior. Using a graph search to find a minimum distance path, ViNG can
reach the goal, but does not satisfy the reward function. Only ReViND is successful in
navigating to the goal while taking a short detour that maximizes the desired objective,
demonstrating affinity to grassy terrains.

We provide a quantitative evaluation of these methods in Table 8 and Appendix C.4,
showing the average distance traveled by each method over all test trials prior to dis-
engagement, as well as the average value of the utilities. We see that non-RL methods
are unable to take into account the task reward, and simply aim to reach the task goal,
which leads to suboptimal utility. We can take reward into account either using RL, or
by filtering BC to imitate only the high-reward trajectories. In easier environments, we
see that both fBC and IQL can learn reward-maximizing behavior. However, both the RL
and BC flat policies suffer sharp drops in performance as the distance to goal increases.
The addition of a graph greatly helps improve performance. Here again, we notice that
offline RL (ReViND), which uses Q-learning to optimize the reward, consistently outper-
forms filtering-based approaches (fBC-graph) — this confirms that reward information is
important for respecting the user’s preferences, and that offline RL is more effective at
this than filtering.

The biggest failure mode for current offline RL and IL methods in our task is their
inability to reach distant goals. BC, fBC and IQL consistently fail to reach goals beyond
15-20m away, due to challenges in learning a useful policy from offline data — these flat
baseline policies often demonstrate bee-lining behavior, driving straight to the goal, which
often leads to collisions.

5.5 discussion

We presented ReViND, a robotic navigation system that uses offline reinforcement learning
in combination with graph search to reach distant goals while optimizing user preferences.
We showed that ReViND can be trained on a navigational dataset collected in prior work,
in combination with reward labeling, to exhibit qualitatively distinct behaviors. Our
experiments show that ReViND can generalize to novel, visually similar environments,
and is responsive to the user preferences, significantly outperforming prior methods that
either do not utilize high-level planning, or utilize graphs without RL and therefore do
not support reward specification. We hope that our work will provide a step towards
robotic learning methods that routinely reuse existing data, while still accomplishing new
tasks and optimizing user preferences. Such methods can exhibit effective generalization
in the real world through their ability to incorporate existing diverse datasets, while also
flexibly solving new tasks, so long as the specified reward functions are valid in the novel
environments and tasks.

68

Part II

C R O S S - E M B O D I M E N T R O B O T F O U N D AT I O N M O D E L S

69

6

A G E N E R A L N AV I G AT I O N M O D E L T O D R I V E A N Y R O B O T

Synopsis

Learning provides a powerful tool for vision-based navigation, as showcased in Part I,
but the capabilities of learning-based policies are constrained by limited training
data. If we could combine data from all available sources, including multiple kinds of
robots, we could train more powerful navigation models. In this chapter, we study
how a general goal-conditioned model for vision-based navigation can be trained on
data obtained from many distinct but structurally similar robots, and enable broad
generalization across environments and embodiments. We analyze the necessary
design decisions for effective data sharing across robots, including the use of temporal
context and standardized action spaces, and demonstrate that an omnipolicy trained
from heterogeneous datasets outperforms policies trained on any single dataset. We
curate 60 hours of navigation trajectories from 6 distinct robots, and deploy the
trained GNM on a range of new robots, including an underactuated quadrotor. We
find that training on diverse data leads to robustness against degradation in sensing
and actuation.

6.1 introduction

Machine learning methods have enabled broad generalization with real-world appli-
cability in natural language processing [206], visual perception [53, 26, 85], and other
domains [209, 38] by leveraging Internet-scale data. Such generalization typically requires
learning general patterns from diverse datasets, which are usually collected once and
then reused for various purposes. Such large-scale models also support the ability to be
adapted for new tasks by reusing the representations learned from broader, larger, and
more general datasets, for example by or zero-shot transfer [39, 239, 280], or fine-tuning

Shah†, Sridhar†, Bhorkar, Hirose, Levine, ”GNM: A General Navigation Model to Drive Any Robot”, in IEEE
International Conference on Robotics and Automation (ICRA) 2023
Project website: general-navigation-models.github.io

70

https://general-navigation-models.github.io

𝜏
o
t

o
g

GNM
Training

Large Heterogeneous Datasets

Figure 29: A general navigation model to drive any robot. By training on diverse, heterogeneous
datasets, a single “omnipolicy” can control a variety of robots in challenging environments,
including new robots, without any robot-specific data collection.

on target-domain data. Although this paradigm has been very successful, it is difficult
to apply in robotics due to the sheer diversity of environments and platforms across
researchers. Control policies learned end-to-end usually require separate data collection
for each robotic platform, leading to “fragmentation” in progress, where every researcher
works with their own robot-specific dataset and policies, making it infeasible to accumu-
late large enough datasets. Can we overcome this challenge by training models on more
general and reusable cross-robot datasets?

We study this question in the context of visual navigation, where heterogeneity
between robots might include different camera hardware, viewpoints, dynamics, and
more broadly, embodiments, but where the over-arching navigation objective looks
similar irrespective of these differences. A wheeled robot, quadruped, or a drone all have
the same abstract objectives: to explore the environment, plan a path to the goal, and
avoid collisions. Leveraging this shared abstraction across robots and training a general
navigational omnipolicy from large-scale data could enable broad generalization to novel
environments, unseen sensor parameters (e.g., camera intrinsics and extrinsics), and new
robot configurations.

In this paper, we propose to take a step towards this kind of data sharing by training
an embodiment-agnostic general navigation model (GNM) from an aggregated multi-
robot dataset. The primary contribution of our work is a framework for training a general
omnipolicy from multi-robot datasets, with empirical evidence that such an omnipolicy
can effectively learn from heterogeneous datasets and generalize to novel robot platforms.
To facilitate this, we aggregate a large heterogeneous dataset of navigation trajectories
collected across 6 robots, spanning 60 hours of interactions in challenging indoor and
outdoor environments. We train the GNM on this dataset and deploy it on 4 distinct
robot platforms, including 2 new robots. We show that a single learned policy can be
used across multiple robots to perform goal-reaching in challenging indoor and outdoor
environments, outperforming policies trained with any single dataset. We also report
robustness to degradation in camera parameters, tire damage, and other gradual changes
that the robot may experience over its lifetime.

We have publicly released the trained GNM policy, code used to train and deploy
our models on various popular robot platforms, as well as the dataset used to train

71

these models at our project page. We hope that this represents a step towards both
general-purpose multi-robot datasets and general-purpose visual navigational models that
can be deployed on a wide range of robots — similar to how practitioners currently use
pre-trained models in vision and language, such models could constitute pre-trained
backbones for visual navigation.

6.2 related work

Learning from large, diverse robotic datasets has been studied for various robotic ap-
plications where data sharing across similar robots helps scale learning to challenging
environments [54, 50, 297]. However, for applications such as ground or aerial navigation,
with different sensors and robot dynamics, current approaches tend to rely on learning
from small datasets which are only representative of a single robotic platform. Our
paper proposes learning navigation behavior from heterogeneous robot datasets, collected
across multiple embodiments.

Our work is closely related to transfer learning, where the objective is to train policies
that transfer across domains, such as across dynamics [298, 200, 71], environments [144],
morphologies [88, 107, 127], viewpoints [218], and embodiments [97]. Our focus is not on
designing specific domain adaptation algorithms or hand-engineered augmentations [97]
for transfer, but rather studying how direct generalization of simple, high-capacity models
trained on real-world data can provide a path to broadly applicable navigational policies.
Towards this, our work is also closely related to DroNet [163], which imitates expert
on-road driving data to control a quadrotor. We take this paradigm one step further,
showing that we can train goal-conditioned policies on data from multiple robots and control
new ones, including a quadrotor.

Prior work has also explored learning of visual representations or end-to-end policies
from passive data, such as YouTube videos, which can be scaled up massively without real-
world data collection [27, 89, 187, 207]. We explore a complementary direction, studying
how readily available on-robot data (also passive) can lead to generalizable policies.
This is particularly relevant for navigation, where data is plentiful, and trajectories from
multiple robots can directly train a policy, as opposed to two-stage methods that use
Internet data for representation learning followed by in-domain adaptation.

Following the findings in Part I, we use a combination of topological graphs for high-
level planning and image-goal policies for low-level control, which gives us an efficient
way to scale reactive policies for long-range navigation [179, 65]. We show that that our
GNM can be coupled with such topological graphs to scale image-goal navigation to new
robots.

72

Dataset Platform Speed Hrs. Environment

1 GoStanford [96] TurtleBot2 0.5m/s 14h office
2 RECON [238] Jackal 1m/s 25h off-road
3 CoryHall [123] RC Car 1.2m/s 2h hallways
4 Berkeley [232] Jackal 2m/s 4h suburban
5 SCAND-S [129] Spot 1.5m/s 8h sidewalks
6 SCAND-J [129] Jackal 2m/s 1h sidewalks
7 Seattle [229] Warthog 5m/s 1h off-road
8 TartanDrive [269] ATV 10m/s 5h off-road
9 NeBula [3] ATV 10m/s 10h off-road

Ours 70h

Table 9: The GNM training dataset contains 70 hours of navigation data in diverse environments
across 6 different robots.

6.3 multi-robot training dataset

Our aim is to train a general visual navigation model that can learn broadly applicable
navigational affordances across a variety of distinct robotic systems. To facilitate such
large-scale policy learning, we aggregated a heterogeneous dataset of navigation trajec-
tories sourced from 8 datasets collected on robotic platforms with varying dynamics,
sensors, and behaviors. The datasets contain a variety of challenging indoor and off-road
environments (Table 9 and Fig. 29). We have publicly released this dataset on the project
page.

The GNM dataset contains over 60 hours of real-world navigation trajectories: a
combination of tele-operated and autonomous navigation behaviors collected across
6 distinct robotic platforms, including 4 commercially available platforms (TurtleBot,
Clearpath Jackal, Warthog and Spot) and 2 custom platforms (Yamaha Viking ATV, RC
Car). The trajectories contain widely varying robot dynamics and top speeds ranging
between 0.2 and 10m/s, operating in a diverse set of environments (e.g., office buildings,
hallways, suburban, off-road trails, university campus etc.).

To train navigation policies that can operate solely from egocentric visual observations,
the dataset contains forward-facing RGB images paired with the robot’s commanded
actions and local odometry measurements. Each robot has different camera parameters,
necessitating any successful policy to generalize across variations in camera pose and
intrinsic parameters, though all platforms use the same type of sensor (monocular RGB
camera). It is straightforward to further expand GNM by adding other datasets of
relevant navigation behaviors [16, 25], or mix-and-match subsets of the dataset based on
the desired application,

73

F
C

 Layers
(4

 layers)

CNN Encoder
(MobileNetv2)

CNN Encoder
(MobileNetv2)

Embodiment Context

Shared Abstraction

Current Observation

Goal Image

Figure 30: GNM architecture. We modify a typical goal-conditioned architecture (purple) by
conditioning it on additional context from the target robot (pink) and making predictions in a
shared, normalized action space (yellow).

6.4 training a general navigation model

To study a common navigation task across robots and environments, we consider the
problem of image-goal navigation [302], where a robot is tasked with navigating to a goal
location G specified as an image observation oG taken at G. Unlike PointGoal [7], GPS
navigation, or semantic objectives [279], image-goal navigation is a general framework
that does not rely on ground truth localization or semantic labels, and allows us to
formulate a very general navigation task that can be trained with any visual navigation
dataset. Our goal is to train a goal-reaching policy π(ot, oG) that can navigate solely from
egocentric visual observations. To provide a general task representation for this policy,
we condition it on the desired goal oG and integrate it into a navigational system based
on topological graphs [96, 241, 250, 179].

Such systems have shown great navigation results in a variety of indoor and outdoor
environments — what would it take to train such a policy across robots, with varying
controllers, dynamics and sensor placements? We highlight two key ingredients in
training multi-robot policies: (i) carefully choosing the right action representation that
facilitates transfer across robots, and (ii) conditioning the policies on a “summary” vector
that allows it to deduce the properties of the robot it is controlling, so different robots can
exhibit different, valid capabilities. Although we found the particular design decisions
described in this section to be important for good performance, as we discuss in our
experiments (Sec. 6.5.3), we emphasize that the primary contribution of our work is not
a novel learning algorithm, but an empirical demonstration that policies learned from
heterogeneous datasets can generalize broadly to new environments and new robots.

74

6.4.1 A Shared Abstraction Across Robots

While the general task of navigation from egocentric images is common across robots,
the specific inputs (camera observations) and outputs (actions, dynamics) can vary
substantially: a TurtleBot is differential-drive, expects low-level velocity commands, and
has a top speed of 0.5m/s, whereas an ATV uses Ackermann steering, expects throttle
and steering commands, and drives up to 20× faster. Learning a common control policy
that operates directly on these raw, unstructured outputs can be challenging due to these
inconsistencies and high-variance outputs (e.g., speed ∈ [0.2, 10]m/s). This is further
exacerbated when generalizing to new robots, where the policy might need to “guess”
how fast it should move.

To this end, we propose using a shared abstraction to allow the goal-reaching policies
to operate in a transformed action space that is consistent across robots, making the data
points look “similar” and easier to learn common patterns from. In our experiments,
we found this to be important to be able to learn from multiple datasets (see Sec. 6.5.3
for analysis). We use a combination of relative waypoints p(x, y) and yaw change ψ as a
mid-level action space. Labels for these actions can be obtained by using local odometry,
which are easily available across datasets. Additionally, the policy also predicts the
temporal distance to the goal d, as a measure of traversability, which is used by the
navigation system to estimate the connectivity of the topological graph.

While this gives a shared action space across robots, we found that the varying
dynamics (e.g., different top speeds) across robots can make it challenging for learning
algorithms to learn a joint policy. To alleviate this, we propose using a normalized action
space { p̃(x, y), ψ}, where p̃ := 1

α p is scaled by a robot-specific factor α corresponding to
the top speed of the robot. The temporal distance d̃ is also estimated in this normalized
scale. Given this abstract action space, a robot-specific controller can be used to (i)
unnormalize the waypoints, and (ii) track them (e.g., PID, MPPI) to extract low-level
commands (e.g., velocities or motor commands).

6.4.2 Embodiment Context

When deployed on an arbitrary robot, the policy must infer the capabilities of that
particular robot. For instance, a TurtleBot can spin in-place but not go over bumps on
the road, whereas an RC Car can easily traverse small bumps but has a limited turning
radius. A simple way to provide such awareness to the policy is to condition it on
hand-designed parameters that provide a concise “summary” of capabilities, such as its
size, turning radius etc. Defining these parameters by hand presents a barrier to fast and
easy deployment of the policy to new robots, and requires human intuition to identify
and define a relevant set of parameters. Instead, we propose a simple and automatic
approach: rather than manually defining parameters that fully identify the robot, we use
a sequence of consecutive past observations from the robot’s viewpoint to infer a learned

75

embodiment context Ct, and condition the learned policy on this context in addition to
the observations. This context contains information about the robot’s configuration and
dynamics, which can be used to condition the behavior of the policy.

While this context may not contain all information to fully identify the robot, we
hypothesize that it is sufficient to effectively control the robot. Our experiments show
that the embodiment context allows the same policy to be deployed on novel robot con-
figurations without designing any hand-engineered robot representation. We empirically
evaluate different ways of providing context in Sec. 6.5.3 and find that the most effective
representation is achieved by using a temporally consistent context Ct that conditions the
policy on k consecutive past observations {o(t−k):(t−1)}.

Figure 31: Depoying the GNM omnipolicy. We evaluate on 4 different robots in challenging
indoor and outdoor environments.

6.4.3 Implementation Details

A combination of conditioning the policies on embodiment context and transforming the
action space can allow a simple goal-reaching policy to be trained from heterogeneous
datasets. It is important to note that the proposed modifications are orthogonal to the
choice of downstream policy architecture and learning algorithm, and we could use
different encoders or train with reinforcement learning.

architecture : We use a goal-conditioned policy architecture that takes as input
the current observation ot and goal observation oG, and predicts normalized waypoints
and distances. Additionally, we condition on temporal context Ct, which is constructed
by stacking the past k = 5 consecutive observations. Visual inputs to the network are
provided as 85× 64 RGB images for all observations. Following prior work [238, 185],
we train context-conditioned representations by using separate MobileNetv2 encoders
for (i) the current observation {ot, Ct}, and (ii) conditional goal observation, as shown in
Fig. 30. The two embeddings are concatenated and passed through three fully-connected
layers to two prediction heads: normalized temporal distance d̃t and a sequence of τ = 5
normalized future waypoints { p̃i, ψi}τ

i=1.

76

training : Following the procedure of Shah et. al. [241], we use a combination of
image-goal pairs sampled from the same trajectory in the dataset as “positives”, and
“negatives” sampled from different trajectories, to obtain training data pairs. The distance
head is trained on both positives and negatives, whereas the action head is only trained on
positives. We train the two heads jointly with supervised learning using an ℓ2 regression
loss. We use multi-GPU training with batch sizes between 400–1200 and perform gradient
updates using the Adam optimizer [133] with a learning rate of 5× 10−4.

deployment : We combine this goal-reaching policy with a topological mapM, where
nodes are represented by the robot’s observations (augmented with the embodiment
context), and edges are computed using the temporal distance estimates d from the trained
policy, following the setup of ViNG [241]. At every time step, the robot associates its
current and goal observations inM, i.e., finds the node with smallest temporal distance
to it, and computes the optimal sequence of subgoals {si} using Dijkstra’s algorithm. The
policy π is queried with the current observation {ot, Ct} and immediate subgoal s1 to
obtain a sequence of waypoints { p̃i, ψi}τ

i=1, which are tracked by a robot-specific low-level
controller.

6.5 deploying the gnm across robots

We deploy our learned GNM omnipolicy in a variety of challenging indoor and outdoor
environments on four different robot platforms. We designed out experiments to answer
the following questions:

Q1. Can multi-robot training enable generalization to novel robots and environments?

Q2. Do GNM policies outperform policies trained solely on single-domain data?

Q3. How important are the design choices made in Sec. 6.4 for attaining good
performance with the GNM?

Q4. Are policies trained with multiple datasets more robust to degradation than
single-domain policies?

6.5.1 Meet the Robots

We deploy the GNM on four distinct robotic platforms, including a quadrotor and two
other novel robots with no corresponding training data, as shown in Fig 31.

vizbot : A custom-built robot platform inspired by the design of Niwa et. al. [192],
based on a Roomba. It is equipped with an off-the-shelf PCB-mounted fisheye camera.
There is no training data from a Vizbot or any other Roomba-like robot.

77

dji tello : A commercially available quadrotor equipped with a forward-facing cam-
era. There is no training data from any quadrotor for GNM. We restrict the drone to a
horizontal plane 1m off the ground, to mimic ground navigation.

clearpath jackal ugv : A commercially available off-road platform equipped with
an off-the-shelf PCB-mounted fisheye camera. This system resembles the data collection
platform used for the RECON, Berkeley, and SCAND-J datasets, but has a different camera
and mounting height.

locobot : A popular open-source platform based on a Kobuki, equipped with an off-
the-shelf PCB-mounted fisheye camera. There is no training data from a LoCoBot, although
GS was collected on a similar TurtleBot2, albeit with a different spherical camera at a
lower height.

6.5.2 Zero-Shot Deployment

Towards answering Q1, we deploy the same trained GNM on four distinct robotic plat-
forms without any fine-tuning per robot. Fig. 31 and Table 10 summarize our evaluation
in a variety of indoor and outdoor environments on 4 different robots, all using the
same model. Most notably, the GNM can control a Tello, despite never having seen any
trajectories from aerial robots in GNM. A GNM policy consistently outperforms single
robot policies across all tested robots, performing up to 5x better in some cases. We also
observe generalization to massively out-of-distribution (OOD) settings, like a LoCoBot
navigating outdoors on a sidewalk, or a Jackal navigating inside an office building, which
were not present in the training data. This suggests that training on heterogeneous
datasets can enable generalization to novel environment-robot pairs, as well as entirely
new robots.

To better understand how data sharing benefits performance (Q2), we quantitatively
evaluate the navigation performance of policies trained with heterogeneous datasets
in an assortment of 20 indoor and outdoor environments on the Jackal and LoCoBot
platforms (Tables 11, 12). To project the performance trends with varying amounts of
data, we train policies from increasingly diverse subsets the training data — “Small”,
“Mid”, and “Large”, corresponding to data from the first 2, 4, and 6 datasets listed in
Table 9. We quantify performance using success rates, measured as the mean progress
made towards the goal. For videos of our experiments and more information on the
testing environments, please check out the supplementary video and project page.

Deploying on a LoCoBot, which is an unseen robot with no corresponding data present
in the dataset, we find that policies trained on a single dataset (e.g., GoStanford (GS) [96]
or CoryHall [123]) fail to generalize to a new embodiment with different sensors. Fine-
tuning visual representations trained for task-agnostic datasets like ImageNet, which is a
popular strategy for pre-training in many vision-based applications [295, 210], improves

78

Figure 32: Qualitative comparison. Policies trained with increasingly diverse data demonstrated
on a LoCoBot (top) and Jackal (bottom). Both robots were controlled by the same policy.

a bit but still struggles in a majority of the environments. However, policies trained by
sharing task-relevant datasets across robots significantly outperform these single-domain
policies, as shown in Table 11. We also observe that adding more and diverse datasets
(GNM-Large) contributes towards improvements in performance, despite the additional
data coming from seemingly unrelated tasks (e.g., off-road driving). Fig. 32 shows an
example office environment where increasing the diversity of training data improves
performance.

We observe similar trends on a Jackal, which is deployed on a variety of previously
unseen outdoor and indoor environments (Table 12). Unsurprisingly, a single-domain
policy trained on off-road RECON data [238] performs well for many outdoor environ-
ments, but struggles with navigating indoors, which is OOD for the RECON dataset.
Similarly, a GS policy struggles in outdoor environments but succeeds in some easy
indoor environments. GNM omnipolicies are able to generalize better to a variety of
indoor and “Hard” outdoor environments, which can be over 100m long, significantly
outperforming the single-domain policies (Fig. 32).

79

Dataset(s) LoCoBot Tello Vizbot Jackal

GS 0.26 0.21 0.51 0.31

RECON 0.62 0.79 0.26 0.68

Ours 0.96 0.99 0.93 0.94

Table 10: Summary of navigation across robots. A single policy trained on GNM-Mid outper-
forms the best single-robot policy for each robot used in our experiments, mean success rate
reported.

Dataset(s) # Indoor Outdoor

Easy Mid

CoryHall 1 0.22 0.13 0.29

GS 1 0.25 0.16 0.44

–”– +ImageNet 1 0.35 0.35 0.57

GNM-Small 2 0.82 0.59 1.0
GNM-Mid 4 1.0 0.97 0.83

GNM-Large 6 1.0 1.0 0.83

Table 11: Navigation success rates on a LoCoBot. GNM omnipolicies (green) result in increasingly
capable navigation, in both indoor and outdoor enviroments, on an unseen robot.

Dataset(s) # Outdoor Indoor

Easy Hard

GS 1 0.25 0.05 0.40

RECON 1 0.67 0.48 0.36

–”– +ImageNet 1 0.72 0.52 0.31

GNM-Small 2 0.75 0.52 0.42

GNM-Mid 4 1.0 1.0 0.82
GNM-Large 6 1.0 1.0 0.88

Table 12: Navigation success rates on a Jackal. By leveraging heterogeneous datasets, GNM
omnipolicies (green) can drive a Jackal better than a policy trained on a Jackal-specific dataset
(RECON), also generalizing to novel indoor environments.

80

Action Space Easy Mid

Velocities 0.73 0.54

Waypoints 0.42 0.26

Norm. Waypt. 1.0 0.95

Architecture Easy Mid

Stacked 0.52 0.72

Siamese 0.73 0.26

Conditioned 1.0 0.95

Context Easy Mid Hard

None 1.0 0.79 0.36

Static 1.0 0.86 0.5
Temporal 1.0 0.92 0.7

Table 13: A systematic analysis of the design choices in Sec. 6.5.3 reveals that choosing the
right action representation (left), goal-conditioned architecture (center), and conditioning on
embodiment context (right) are really important to facilitate multi-robot learning.

6.5.3 A Systematic Analysis of the Design Space

Towards answering Q3, we perform a systematic analysis of the design choices presented
in Sec. 6.4. We evaluate each design choice on a LoCoBot, which is an unseen robot with no
corresponding training data, in indoor environments with varying levels of complexity,
where “Easy” environments have wide passages and smooth turns, “Mid” environments
have tight passages or sharp turns, and “Hard” environments are larger (up to 50m) with
a combination of tight passages and multiple turns.

Shared Action Space

We compare the three action spaces discussed in Sec. 6.4.1 by training three different
policies on GNM-Mid and evaluating them in 10 environments (Table 13). While using
velocities as an action space works well for most easy environments, often outperforming
the policy using waypoints, both these policies struggle in environments requiring dy-
namic maneuvers like sharp turns. A policy based on normalized waypoints, on the other
hand, significantly outperforms the others, including in the challenging environments.
This suggests that normalizing the action space indeed allows the policies to learn more
effectively and generalize to new robots.

Embodiment Context

We consider two ways to represent the embodiment context: (i) temporally consistent
context containing k consecutive past observations {o(t−k):(t−1)}, and (ii) static context,
containing a fixed set of k past observations from the robot in the target environment.
Comparing these choices in environments of varying complexities (Table 13), we find that
adding either form of context significantly boosts the navigation performance in harder
environments, which require the robot to navigate tight passages with multiple obstacles
and sharp turns. This suggests that the context helps the polices generalize better due to
the additional information about the embodiment (e.g., viewpoint, speed etc.). Between
the two, we found the temporal variant superior, suggesting that the temporal information

81

(e.g., speed) is relevant to enable this generalization. In all experiments in Sec. 6.5.2 and
Fig. 31, we use a temporally consistent context with k = 5.

Policy Architecture

We also compared different policy architectures to encode the goal information: (i)
single-encoder stacking, where the observation and goal images are stacked along the
channel dimension [250], (ii) a Siamese architecture, where the images are processed
with independent encoders and the resulting embeddings are combined [96, 241, 289],
and (iii) the conditional architecture in Fig. 30, with an additional pathway from the
observation to the policy outputs [238, 185]. We found that the choice of architecture
significantly affects the navigation performance, with the conditional model being the
most performant. We hypothesize that this is due to the additional pathway that allows
the learned embeddings to be conditioned on the current observations, leading to more
generalizable representations, as studied in prior work [238].

6.5.4 Robustness to Degradation

A key strength of training on heterogeneous datasets is that learning across varied
parameters encourages the policy to learn shared affordances across robots, thus being
robust to small variation in robot parameters, such as sensor placement and mechanical
properties. We show that the shared GNM can indeed offer such robustness by testing it
under some example degradation scenarios shown in Fig. 33.

When testing the trained policy with a steering degradation (Fig. 33a), where the
robot’s maximum angular velocity is clipped, we find that the GNM can compensate
for the degradation by taking a longer, smoother path towards the goal without any
localization failures. We also tested the GNM while perturbing the position of the camera
and physically affecting the dynamics by damaging the robot during navigation, and find
that it can successfully reach the goals despite the degradation (Fig. 33d). Please see the
supplemental video for these experiments.

6.6 discussion

In this paper, we demonstrated that a general goal-conditioned navigation policy trained
from navigation datasets collected by multiple distinct robots, ranging from RC cars to
ATVs, can control new robots in challenging environments. The design of our learning
framework is simple, and largely follows prior work: the novel observation is that a set
of relatively simple decisions, such as including a temporal context and standardizing
the action space, is sufficient to enable broad generalization from heterogeneous data.
Empirically, we show that our approach can enable real-world navigation for a range of
robots, including some not seen in training, and even an underactuated quadrotor.

82

Our specific instantiation of this principle does have some limitations. Most promi-
nently, our system does not explicitly account for differences in capabilities: we assume
all robots are ground robots (though we study generalization to a quadrotor) with a
forward-facing RGB camera. Handling diverse sensing, actuation (beyond variability in
speed and steering), and traversability, would be an exciting direction for future work.
Secondly, our dataset could be much larger: while we observe exciting generalization
from 60 hours of data, a much larger and broader dataset could enable even better
generalization in the future.

The promise of such a general navigation model trained on diverse data is that it may
provide a pre-trained base model for a variety of downstream navigation applications.
In the same way that computer vision researchers and practitioners typically start off by
downloading a pre-trained backbone to use for their task, we hope that future navigation
projects might use a pre-trained navigational omnipolicy that generalizes broadly enough
to offer a “universal” starting point.

acknowledgments

This research was supported by the DARPA RACER program, ARO W911NF-21-1-
0097, ARL DCIST CRA W911NF-17-2-0181, AFOSR FA9550-22-1-0273, Toyota Motor
North America, and Toyota Research Institute. The authors would like to thank Haresh
Karnan, Xuesu Xiao, Gregory Kahn, Xiangyun Meng, and Byron Boots, for their help in
aggregating the heterogeneous dataset used for training the GNM. The authors would
also like to thank Brian Ichter, Antonio Loquercio, Jie Tan, Devendra Singh Chaplot,
Tingnan Zhang, Laura Smith, Nick Rhinehart, Frederik Ebert, and Kelvin Xu, for useful
discussions and feedback on an earlier draft of the paper.

83

(d) Steering Viewpoint Physical

Single-Domain Policy 0.30 0.17 0.81

GNM Policy 0.89 0.81 1.0

Figure 33: Policies trained with GNM are more robust to degradation in parameters such as (a)
actuation, (b) perturbed viewpoint, and (c) physical damage, than single-domain policies (d).

84

7

A F O U N D AT I O N M O D E L F O R V I S UA L N AV I G AT I O N

Synopsis

General-purpose pre-trained models (“foundation models”) have enabled practition-
ers to produce generalizable solutions for individual machine learning problems
with datasets that are significantly smaller than those required for learning from
scratch. Such models are typically trained on large and diverse datasets with weak
supervision, consuming much more training data than is available for any individ-
ual downstream application. In this chapter, we describe the Visual Navigation
Transformer (ViNT), a robot foundation model that aims to bring the success of general-
purpose pre-trained models to vision-based robotic navigation. ViNT is trained with
a general goal-reaching objective that can be used with any navigation dataset, and
employs a flexible Transformer-based architecture to learn navigational affordances
and enable efficient adaptation to a variety of downstream navigational tasks. ViNT is
trained on a number of existing navigation datasets, comprising hundreds of hours of
robotic navigation from a variety of different robotic platforms, and exhibits positive
transfer, outperforming specialist models trained on narrower datasets. ViNT can
be augmented with diffusion-based goal proposals to explore novel environments,
and can solve kilometer-scale navigation problems when equipped with long-range
heuristics. ViNT can also be adapted to novel task specifications with a technique
inspired by prompt-tuning, where the goal encoder is replaced by an encoding of
another task modality (e.g., GPS waypoints or turn-by-turn directions) embedded into
the same space of goal tokens. This flexibility and ability to accommodate a variety of
downstream problem domains establish ViNT as an effective foundation model for
mobile robotics.

Shah†, Sridhar†, Dashora†, Stachowicz, Black, Hirose, Levine, ”ViNT: A Foundation Model for Visual Navigation”,
in Annual Conference on Robot Learning (CoRL) 2023
Project website: general-navigation-models.github.io/vint

85

https://general-navigation-models.github.io/vint

7.1 introduction

Recently, machine learning methods have achieved broad success in natural language
processing [206], visual perception [53, 26, 85], and other domains [209, 38] by leveraging
Internet-scale data to train general-purpose “foundation” models that can be adapted
to new tasks by zero-shot transfer, prompt-tuning, or fine-tuning on target data [39, 239,
162, 153]. Although this paradigm has been successful in many domains, it is difficult to
apply in robotics due to the sheer diversity of environments, platforms, and applications.
In this paper we ask the question: what is required of a foundation model for mobile robotics?

In this paper, we define a robot foundation model as a pre-trained model that can be (i)
deployed zero-shot in novel, useful settings (e.g., different sensors, robot embodiments, en-
vironments etc.), and (ii) adapted to a downstream task of choice (e.g., different objectives,
goal specification types, behaviors etc.). We specifically consider the problem of visual
navigation, where the robot must navigate its environment solely using egocentric visual
observations. A general pre-trained robot navigation model should enable a wide range
of navigation applications, readily allow fine-tuning to downstream tasks, and generalize
to a broad range of environments and robotic platforms. Such a model should provide
a broadly capable navigation policy on top of which applications to specific domains
can be constructed, giving a base level of generalization and capabilities to new robotic
platforms in zero shot that can be further improved after fine-tuning with a small amount
of data.

To this end, we propose the Visual Navigation Transformer, or ViNT: a cross-
embodiment foundation model for visual navigation with strong zero-shot generalization.
We train ViNT to reach goals specified by camera images, providing a very general
pre-training objective that can be applied to almost any mobile robot dataset. We propose
a novel exploration algorithm for the visual navigation paradigm using a diffusion model
to propose short-horizon goals, and demonstrate that it enables ViNT to navigate in novel
environments. ViNT can control new robots in zero-shot, explore previously unseen envi-
ronments, perform indoor mapping, and navigate kilometer-scale outdoor environments
without interventions. Furthermore, we show that ViNT can be fine-tuned on a small
amount of data to achieve high performance with new task specification modalities –
such as GPS waypoints or high-level routing commands – allowing ViNT to serve as a
foundation for a wide variety of navigation applications. Lastly, we qualitatively analyze
some emergent behaviors exhibited by ViNT, such as implicit preferences and navigation
around dynamic pedestrians.

We hope that ViNT represents a step towards such general-purpose robot foundation
models that can be deployed on a wide range of robots, and on a wide range of tasks, and
serve as a foundation for diverse mobile robotic applications. Model weights for ViNT as
well as training and deployment code are available on our project page.

86

EfficientNet-B0

EfficientNet-B0

Se
lf

-A
tt

en
ti

o
n

Se
lf

-A
tt

en
ti

o
nx6

Observations

Goal + Observation
Early Fusion

Temporal Distance

Normalized Actions
Transformer
4 Layers, 4 Heads7 Tokens

x512-D

Positional Encoding

5M Parameters

21M Parameters

512-D

512-D

1-D, Continuous

3x5-D, Continuous

Past 5 timesteps
85x64x3 RGB 5M Parameters

Actions

Figure 34: ViNT Model Architecture. ViNT uses two EfficientNet encoders ψ, ϕ to generate input
tokens to a Transformer decoder. The resulting sequence is concatenated and passed through a
fully-connected network to predict (temporal) distance to the goal as well as a sequence of H = 5
future actions.

7.2 related work

Our goal is to train an effective visual navigation policy that can solve a range of
downstream tasks, such as navigating to GPS goals [171], goal images [302], and skill-
conditioned driving [45].Following earlier chapters, we use a combination of topological
graphs for maintaining a spatial representation of the environment and learned policies
for low-level control (Chapters 2, 6), and use learned heuristics to guide the robot in novel
environments (Chapter 4). But unlike these works, our goal is to train a single generalist
model rather than specialist solutions to each of these problems, showing how a single
high-capacity model can be adapted for diverse tasks.

The closest related works to ViNT are RT-1, I2O, and GNM [270, 234, 21], which study
broad generalization across environments and embodiments for robots deployed in real-
world settings. While RT-1 demonstrates impressive performance in following diverse
instructions, our focus is on adapting a single model across many robots to solve different
tasks, by fine-tuning with small amounts of data. I2O and related efforts [270, 121] show
impressive transfer from simulation to real-world environments, but we emphasize that
our aim is orthogonal to the specific choice of algorithm: we focus on learning a capable
navigation policy that can be efficiently adapted to solve different downstream tasks.
GNM (Chapter 6) demonstrates policy learning from heterogeneous RGB datasets, but
focuses on the singular task of reaching image goals in the zero-shot setting. Instead, ViNT
trains a single generalist policy with an emphasis on adaptation to new embodiments
and tasks in downstream applications, though it can also be used zero-shot to great effect
(Sec. 7.6.1).

87

7.3 the vint model

Our model is trained for image-goal navigation, providing general navigational capa-
bilities that can then either be utilized directly, or serve as a pre-trained foundation for
downstream fine-tuning with other task specifications. In the image-goal navigation task,
the robot is tasked with navigating to a subgoal specified by an image observation s (i.e.,
the robot’s observation at the goal). Unlike alternative mechanisms for goal specification
such as PointGoal [7], GPS navigation, or semantic objectives [279], a model can be trained
for image-goal navigation with minimal assumptions, utilizing any data that contains
videos and actions, without requirements on ground-truth localization, semantic labels,
or other metadata. This makes it practical to train on a large and diverse dataset sourced
from many different robots, facilitating broad generalization.

ViNT takes as input current and past visual observations ot−P:t and a subgoal image
os, and predicts (i) the number of time steps needed to reach the subgoal (the dynamical
distance), and (ii) a sequence with length H of future actions leading towards the subgoal.
Our 31M-parameter model, ViNT, is built on the Transformer architecture [275] and is
optimized for: (i) fast and efficient inference on resource-constrained robots, and (ii)
the ability to prompt and fine-tune for downstream tasks. We initialize all networks
from scratch and train them end-to-end with the training objective in Eqn. 6. The model
architecture is summarized in Figure 34, and described in detail in Appendix D.1.

tokenization : The ViNT architecture (Fig. 34) first tokenizes its inputs into an
embedding of size dmodel = 512. ViNT independently tokenizes current and P = 5 past
visual observations by encoding them with an EfficientNet-B0 [261] model, which takes
85× 64× 3 images as input and outputs a flattened feature vector ψ(oi) from the final
convolutional layer [21].

goal fusion : We found that naı̈vely extracting features from the goal image ϕ(os)
using an EfficientNet encoder ϕ led to poor performance, often ignoring the goal entirely
(see Appendix D.1). We hypothesize that effective features for image-based goal-reaching
tasks are often relative, encoding the difference between the current observation and the
goal rather than an absolute representation of the goal itself. Hence, we use a separate goal
fusion encoder ϕ(ot, os) to jointly encode the current and goal observations. We stack the
two images along their channel dimensions, pass them through a second EfficientNet-B0

encoder, and flatten to obtain the goal token.

transformer : The P + 2 observation and goal tokens are combined with a positional
encoding and fed into a Transformer backbone f . We use a decoder-only Transformer
with nL = 4 multi-headed attention blocks, each with nH = 4 heads and dFF = 2048
hidden units.

88

training objective : During training, we first sample a minibatch of trajectories τ

from the dataset D. We then choose P consecutive observations to form the temporal
context ot:t−P and randomly select a future observation os := ot+d, with d sampled
uniformly from [lmin, lmax], to serve as the subgoal [91]. The corresponding H future
actions â := at:t+H and the distance d are used as labels and trained with a maximum
likelihood objective:

LViNT(ϕ, ψ, f) = EτEtEd [log p(â| f (ψ(o)t:t−P, ϕ(ot, os)) + λ log p(d| f (ψ(o)t:t−P, ϕ(ot, os))]
(6)

where ϕ, ψ, f are as defined above, and λ balances the two losses.

embodiment-agnostic action space : To effectively train a single model across
robots of varying sizes, speeds, and dynamics, we follow [234] and choose an embodiment-
agnostic action space for ViNT. To abstract away low-level control, ViNT uses relative
waypoints as its action space â; to account for the large variance in speeds and sizes of
the robots, we normalize these waypoints by scaling them according to the robot’s top
speed. During deployment, a robot-specifc controller is used to un-normalize and track
these waypoints using low-level control.

training data : We train ViNT using a large-scale dataset of heterogeneous naviga-
tion trajectories from a diverse set of environments and robotic platforms with varying
dynamics, camera parameters, and behaviors. The training dataset contains over 100

hours of real-world trajectories sourced entirely from existing datasets, spanning 8 distinct
robotic platforms with varying speeds and dynamics. For more details about the dataset,
see Appendix D.3.

deployment : ViNT can run on any robot equipped with an onboard camera and a
low-level velocity tracking controller. Given a subgoal image s at time t, we run the model
at 4Hz, and use a PD controller to track the predicted waypoints â in a receding-horizon
fashion.

7.4 long-horizon navigation with vint

While the goal-conditioned policy learned by ViNT captures a general understanding
of navigational affordances and obstacles, it has limited applicability on its own. Many
practical tasks are either not defined by goal images, or require a much longer horizon
than what ViNT directly supports. We apply ViNT to several downstream applications by
combining it with an episodic memory formed by a topological graph, which provides
short-horizon subgoals for reaching faraway locations. In previously unseen environ-
ments, we can further augment this graph-based planner with exploratory subgoal
proposals, which can drive ViNT to explore a new environment and discover a path
to the goal. We consider multiple such proposal mechanisms and find that maximum

89

V
iN
T

Goal

Figure 35: Long-horizon navigation in unseen environments with ViNT. We use physical search
with a topological graph-based planner to explore the environment. An image-to-image diffusion
model proposes diverse exploration targets which are spatially grounded using ViNT (yellow),
and scored using a goal-directed heuristic h. Subgoals are added to the topological graphM and
executed using the ViNT policy.

performance is attained by an image diffusion model that samples diverse future subgoal
candidates conditioned on the current observation.

These subgoals are scored with a goal-directed heuristic to identify the best subgoal
that makes progress towards the goal using a process akin to physical A∗ search [232].
Past observations in the environment and unexplored frontiers are stored as nodes in
a topological graph, with their connectivity determined by the distances predicted by
ViNT. During exploration, we build this topological graph on the fly as the robot explores
the environment. During later deployments it may be used for discovering shortcuts to
arbitrary goals in the environment. We first describe the high-level algorithm that plans
on top of subgoal candidates, and then discuss the process for obtaining these subgoal
candidates.

7.4.1 High-Level Planning and Exploration

Let’s assume that we have access to subgoal candidates osi ∈ S available to ViNT for
planning. We incorporate these subgoal candidates into an exploration framework for
goal-directed exploration in novel environments, where the user provides a high-level
goal G, which may be arbitrarily far away. We largely follow prior work [232], but swap
out the learned models with ViNT and the diffusion model. We summarize the system
here, and provide a more complete discussion in Appendix D.2.3.

We construct a topological graphM online to act as episodic memory, with each node
as an individual subgoal observation and edges representing paths between two subgoals,
added when the path is taken by the robot, or the model predicts a subgoal to be reachable
from another node. We frame goal-directed exploration as a search problem, where the
robot incrementally buildsM while searching for the goal. To guide search towards the
goal, the robot uses a goal-directed heuristic h(ot, osi , G,M, C) to score subgoal candidates
according to their likelihood of reaching the goal, given additional context C — for

90

example, a floor plan or satellite imagery [232, 270]. This heuristic may be geometric (e.g.,
Euclidean distance) or learned (see Appendix D.2.3).

During deployment in a new environment, the robot uses the diffusion model to
generate subgoal candidates S from ot, spatially grounds them using ViNT, and scores
them using the goal-directed heuristic h(.). The robot then selects the best subgoal os∗

according to this heuristic using an A∗-like planner, adds it toM, and drives towards it
using ViNT (Figure 35). During subsequent deployments in the same environment, the
robot can useM to discover shortcuts to arbitrary goals in the environment. Please see
Appendix D.2.3 for more details about the planner and heuristics. In our experiments,
we consider two candidate search heuristics: a geometric heuristic based on positions of
the robot and the goal, and a learned heuristic based on additional context in the form of
a satellite image.

7.4.2 Subgoal Generation with Diffusion

The physical search algorithm presented above relies on the ability to propose subgoal
candidates S that are both diverse and reachable from the current observation of the
robot ot. This amounts to sampling from a high-dimensional, multimodal distribution of
RGB images.1

To do so, we train a conditional generative model g(osi |ot) on the ViNT training data.
Specifically, we apply an image-to-image diffusion model [99, 220], a generative model
class that is well-suited for producing diverse samples over high-dimensional spaces
such as RGB images. We train the model using randomly-sampled future observations
from trajectories in the ViNT dataset (Appendix D.2.2), and sample K subgoal candidates
S = {s1, . . . , sK} from the model at inference time.

However, these subgoal generations are not spatially grounded: they do not include an
actionable relationship to ot. We ground these candidates by using ViNT to compute tem-
poral distances d(si, ot) and action rollouts a(si, ot), yielding a set of grounded subgoals
as in Fig. 38. While the samples generated by the diffusion model do not necessarily
match any real observation (see Figure 35), they preserve sufficient relative features from
ot to be plausible, and we find that ViNT generalizes well to generated subgoals. We
further study the behavior of this diffusion model in Section 7.6.5.

7.5 vint : a foundation model for downstream tasks

1 Prior work has also studied sampling subgoals in a latent space [238], which may require simpler density
models to learn the latent distribution. However, directly implementing this idea in our framework leads to
optimization challenges and poor performance (see Section 7.6.1). Learning a sampling distribution directly
in the latent space [214] is an exciting future direction, but orthogonal to the contributions of this work.

91

Figure 36: Adapting
ViNT to different goals
using a new tunable
goal token.

Beyond its core functionality as an image goal-conditioned model,
we show that the strong navigational priors learned by ViNT can
be adapted to a variety of downstream tasks, beyond navigating
to image goals, by fine-tuning part or all of the model in novel
environments or with new modalities of data.

full model fine-tuning : While ViNT demonstrates strong
zero-shot generalization to new environments and robots, we
can further improve on-task performance by fine-tuning the en-
tire model with the same objective but using on-task data. This
allows ViNT to quickly learn new skills, forming a continually
improving model. ViNT can master new environments and em-
bodiments with as little as 1 hour of navigation data, transferring
the capabilities of the original model to a new setting without
retraining from scratch.

adapting to new modalities : While specifying image
goals gives a general pre-training objective, ViNT can easily be
adapted to other common forms of goal-specification by learning
a “soft prompt” mapping from the desired goal modality to the
ViNT goal token [153]. We build on the Transformer architecture’s
ability to attend to multimodal inputs projected into a shared token space [61, 120]. Given
a subgoal σ in a new modality (such as 2D coordinates or high-level routing directions
[45]), we train a small neural network ϕ̃ that maps the subgoal to this shared token space
as shown in Figure 36, and replace ϕ(ot, os). We fine-tune ViNT with on-task data DF
using the modified objective:

Ladapt = Eτ∈DFEtEd [log p(â| f (ψ(o)t:t−P, ϕ̃(σ)) + λ log p(d| f (ψ(o)t:t−P, ϕ̃(σ)))] (7)

This allows adaptation to new tasks with minimal data, while still leveraging the perfor-
mance and generalization of ViNT. Appendix D.2.4 includes additional details.

7.6 real-world evaluation

We deployed our ViNT foundation model on five distinct robotic platforms, including
a drone, a quadruped, and two other novel robots which are not present in the training
data. We designed our experiments to answer the following questions:

Q1. Can ViNT efficiently explore previously unseen environments and incorporate heuris-
tics?

Q2. Does ViNT generalize to novel robots, environments, and obstacles?

92

Coverage
(384m)

Coverage
(142m)

Position-Guided
(100m)

Satellite-Guided
(1.24km)

Figure 37: ViNT accomplishes long-horizon navigation with a variety of objectives in indoor and
outdoor environments; example trajectories between start (orange) and goal (green) visualized
here. Goal-reaching behavior can be achieved with a goal-directed heuristic (optionally guided by
satellite imagery), while removing this heuristic allows for undirected exploration to maximally
cover a workspace.

Indoor Outdoor

Method Success Success

End-to-End BC 0.72 0.44

End-to-End GCG [123] — 0.61

RECON 0.19 0.23

ViNT-R (Random Subgoals) 0.81 —
ViNT 0.94 1.00

ViNT BC RECONViNT-R

Table 14: ViNT paired with our physical search algorithm consistently outperforms baselines for
the task of undirected goal-reaching in indoor and outdoor environments (left). By effectively
planning over diffusion subgoal proposals, ViNT is able to find an efficient path to the goal. Other
baselines struggle to explore large indoor environments, shown by trajectories overlaid on an
indoor floor plan (right).

Q3. Can ViNT be fine-tuned to improve performance in out-of-distribution environments?

Q4. Can the ViNT policy be adapted to handle new task specification and modalities?

Please see Appendix D.4 for more details on platforms used in the training data and
in evaluation. We did not perform any careful system identification or homogenization
of sensors across the robots and datasets; all datasets are used as obtained from their
original sources, and every robot platform has its own low-level controller and onboard
stack.

7.6.1 Navigation Performance

Towards understanding Q1, we deploy our full graph-based navigation pipeline (Sec-
tion 7.4.1) in a variety of challenging indoor and outdoor environments, previously
unseen in the training data. We evaluate the performance of ViNT on two challenging
tasks: (i) coverage exploration, where the objective is maximally explore an environment

93

Figure 38: Visualizing ViNT exploration rollouts in challenging indoor environments using the
Vizbot (top) and LoCoBot (bottom) robotic platforms. Future action samples â obtained by spatially
grounding the subgoal candidates are shown in yellow, with the best actions corresponding to the
best candidate marked in blue.

Indoor: Position Outdoor: GPS Outdoor: Satellite

Method Success Distance (m) Success SPL Distance (m) Success SPL Distance (m)

ViKiNG [232] 0.60 56 0.64 0.42 720 0.77 0.68 780

ViNT 0.90 91 0.95 0.84 1270 1.00 0.94 1040

Table 15: ViNT can effectively utilize goal-directed heuristics, such as 2D goal positions and satel-
lite images, to explore novel kilometer-scale environments successfully and without interventions.

in search of a goal whose location is unknown, and (ii) guided exploration, where the
objective is to reach a goal using contextual information such as GPS coordinates or
a satellite image (see Figure 37 for task examples). We compare ViNT to a variety of
baselines, including end-to-end policies trained with imitation or RL [123, 270], a prior
graph-based approach using a VIB for exploration [238], and an ablation of ViNT that
samples random images from the training set to use as goals rather than generating
subgoals with a diffusion model. See Appendix D.5.1 for details about the experimental
setup.

For the coverage exploration task, the agent is placed in an unknown environment
and tasked with exploring the environment maximally in search of the goal without
any additional cues. Table 14 summarizes the success rates for this task in indoor and
outdoor environments. We find that, while end-to-end baselines avoid collisions with
their surroundings, they fail to explore new areas and often get stuck in small areas of
the environment. Graph-based methods avoid this trap by explicitly reasoning about
coverage with the search objective, leading to a high success rate for ViNT. Qualitative
analysis (Table 14-right) shows that planning over the diverse subgoals proposed using
diffusion leads to more efficient paths, whereas other baselines take winding paths while
exploring. Figure 37 illustrates the egocentric rollouts of the coverage exploration task in

94

(a) (b) (c) (d) (e)
(a)

(b)

(c)

(d)
(e)

Figure 39: Satellite-guided physical search with ViNT. We visualize a 765m rollout of ViNT with
a satellite image-based heuristic from start (orange) to goal (green). The future action samples
â obtained by spatially grounding the subgoal candidates for five instances in the trajectory are
shown in yellow. An A∗-like planner uses the heuristic to pick the best subgoal (corresponding â
marked in blue), guiding the robot to the goal.

challenging indoor environments. ViNT-R performs respectably despite the lack of valid
subgoal proposals. See Section 7.6.5 for a discussion on this observation.

This observation extends to the position-guided navigation task (Table 15), where the
robots are tasked with reaching a 2D goal position in a previously unseen environment.
The robots have access to onboard wheel odometry (indoors), GPS coordinates (outdoors),
or passive satellite imagery (outdoors), to track their position and use as a goal-directed
heuristic. Compared to a baseline of the previous state of the art [232], we find that
the various sub-goal predictions from the diffusion model paired with the graph-based
scoring scheme lead to a higher success rate and a greater distance traveled without
collisions. ViNT is also more effective at avoiding collisions in crowded indoor spaces,
and more efficient at reaching goals in outdoor spaces (captured by the SPL metric),
owing to the implicit affordances and preferences learned by the large-scale pre-training
(see further analysis in Section 7.6.5. ViNT also requires fewer interventions, observed by
the larger distance before observed collisions. Figure 39 illustrates a rollout of physical
search in an outdoor environment with ViNT using satellite image as context (also see
Figure 37).

7.6.2 Zero-Shot Generalization: a Single Policy to Drive Any Robot

Towards answering Q2, we deploy the same pre-trained ViNT policy on four distinct
robotic platforms without any fine-tuning for the task of undirected exploration. We report
the maximum displacement of the robot (in meters) from its starting position, without
interventions, as a proxy for reaching arbitrarily distant goals in complex environments
in Table 16. Most notably, ViNT successfully generalizes zero-shot to control a Go 1

quadruped, which does not appear during training.

Model LoCoBot Go 1 Vizbot Jackal

Single-Robot 40 12 40 184

GNM [234] 60 8 20 427
ViNT 120 45 110 438

Table 16: In coverage tasks, ViNT drives dif-
ferent robots for 100s of meters (reported
maximum displacement without interven-
tion), beating lower-capacity models (GNM)
and specialist models trained on a single
robot dataset.

We compare ViNT trained across all the
combined datasets and robots to the best
single-robot baseline — a model trained using
data only from the target environment — as
well as the GNM model (Chapter 6) trained on

95

all datasets. We observe that policies trained
across robot embodiments can not only match,
but also outperform, single-robot models across
all the embodiments we studied. We also find
that the larger capacity of ViNT leads to im-
proved generalization compared to the smaller
GNM model, especially on robots that do not
appear in the training dataset (e.g., Go 1). Cru-
cially, we also find that ViNT demonstrates positive transfer for in-domain robots (Vizbot),
greatly outperforming a specialist model trained on only the target robot and setting,
an emergent phenomenon not present in smaller models. This indicates that the model
generalizes between tasks to improve performance, a key property of a foundation model.

7.6.3 Broader Generalization via Fine-Tuning

To answer Q3, we consider the problem of fine-tuning ViNT in the low data regime. In
this setting, the entire ViNT model is fine-tuned end-to-end with a reduced learning rate
of 1× 10−4 over nep = 5 epochs (Section 7.5). We assume access to a small amount of
on-task data (at most 5 hours, with successful results in 1-2 hours of data), and study the
the efficiency of learning from subsets of this data using ViNT. We study fine-tuning for
the task of autonomous driving in the CARLA simulator for two reasons: (i) the simulated
CARLA environment is perceptually distinct from the real-world data used to train ViNT
(Fig. 40), and (ii) the on-road driving task requires very specific semantic behavior, i.e.,
driving in a lane and making smooth turns, that is not present in our real-world training
data. We show that ViNT can be fine-tuned on a small amount of data (under 1 hour) to
achieve strong performance by effectively leveraging the navigational priors encoded in
the model.

Figure 40: The CARLA test environ-
ment (top), and a bird’s eye view show-
ing high-level routing commands for
the routing task.

We compare the ViNT backbone to several al-
ternatives, including visual representations trained
with supervised learning [53], unsupervised objec-
tives [39, 207, 167], and an embodiment-agnostic
navigation policy [234]. We use the same fine-tuning
data and procedure for all models (see Section 7.5);
please see Appendix D.5.3 for more details.

Table 3 summarizes our findings. We report
fractional progress towards the goal as “success”,
and the fraction of trajectories where the agent
drives within the driving lane as “in lane”. While
pre-trained visual representations significantly im-
prove task performance over a policy trained en-
tirely from scratch, we observe that the learned

96

Images Positions Routing

Method Success In Lane Success Success

Scratch 0.45 0.74 0.79 0.43

ImageNet 0.22 0.71 0.59 0.45

SimCLR [39] 0.21 0.63 0.70 0.64

VC-1 [167] 0.19 0.65 0.49 0.38

GNM [234] 0.49 0.66 0.45 0.49

ViNT 0.82 0.82 0.89 0.72

Table 3: Left: ViNT can be fine-tuned end-to-end (Images) or adapted to downstream tasks
(Positions and Routing), and outperforms training from scratch and other pre-training methods.
Right: ViNT can transfer navigational affordances to novel tasks (40% success without fine-tuning),
and efficiently masters the task (80% success) with less than 1 hour of fine-tuning data. ViNT
fine-tuning (green) outperforms a single-domain model trained with 5× data (orange).

policies suffer from frequent collisions and poor per-
formance. GNM [234] outperforms these baselines
due to its strong navigation prior, but the lower-
capacity model is unable to generalize fully to the
task. ViNT, on the other hand, is able to achieve
strong performance, achieving substantially higher
success rate than the next best baseline. Sweeping
over fine-tuning dataset size (Table 3-right) shows
that ViNT achieves strong performance with as little as 1 hour of fine-tuning data,
demonstrating its ability to generalize to new environments with very little data.

7.6.4 Adapting ViNT to Downstream Tasks

To evaluate Q4, we investigate whether ViNT can serve as a foundation model for a
broader range of downstream tasks by considering goal modalities beyond subgoal
images (see Section 7.6.4). We consider the same CARLA driving task but with two
different high-level planners: (i) a position-based planner that commands a sequence of
GPS waypoints, and (ii) a routing planner with similar functionality to Google Maps that
commands high-level navigation directions (left/right/straight) to the policy [45]. We
compare the pre-trained navigational priors learned by ViNT to the baselines discussed
earlier, corresponding to pre-trained visual representations and policies, each adapted to
the downstream task using the same on-task data (see Appendix D.5.3 for more details).

Table 3 summarizes our results for the two tasks. We again find that general pre-
trained visual representations, such as ImageNet or VC-1, are not sufficient to extract
navigational affordances for challenging downstream tasks, suggesting that effective
generalization requires more than general visual representations [196, 167]. We also find

97

that unlike fine-tuning, GNM [234] struggles with the adaptation task, suggesting that
the architecture and increased capacity of ViNT are essential for broad generalization and
adaptation. ViNT achieves strong performance on both tasks, demonstrating its ability to
serve as a foundation model for downstream tasks.

7.6.5 Emergent Behaviors

Figure 41: Samples from the diffusion model may be invalid
subgoals, but ViNT is robust to such proposals.

One of the most exciting
aspects of large-scale ma-
chine learning is the poten-
tial for emergent behavior
that arises from the training
of large models on diverse
datasets. Despite the simple
self-supervised training ob-
jective used by ViNT (Equa-
tion 6), it shows a number of
emergent behaviors, which we describe qualitatively in this section and present as demos
on the project page.

implicit navigation affordances : Ideally, we would like a robot foundation
model to exhibit some desirable “default” behavior, while providing a mechanism for
downstream applications to adapt this behavior as needed. We find that ViNT has
this property vis-a-vis collision-avoidance. One piece of evidence is its behavior when
provided with random subgoals from locations that are not reachable by the robot, studied
quantatively via the ViNT-R baseline in Table 14. In this case, despite the subgoals being
invalid and out-of-distribution (ViNT was only trained to reach subgoals), ViNT succeeds
at exploring the environment and reaches the goal 80% of the time, outperforming
all baselines. This suggests that ViNT takes collision-free actions when provided with
meaningless goals (i.e. the above “default”), while still attempting to follow reachable
subgoals.

Figure 42: ViNT exhibits an implicit preference
for following paved roads (left) and hallways
(right).

Indeed, although the “full” version of
our method augmented with the diffusion
model performs better, the subgoals gener-
ated by this model are often of low quality
with many artifacts, and sometimes do not
match any real reachable state (Figure 41).
Nonetheless, because of this “default” be-
havior, ViNT is able to successfully lever-
age the valid subgoals, while ignoring the
bad ones, and demonstrate collision-free

98

Figure 43: Robustness to dynamic pedestrians. ViNT can successfully navigate around a crowd
of dynamic pedestrians and reach the goal behind them, despite its simple self-supervised training
objective.

navigation in previously unseen environ-
ments.

implicit navigation preferences : Yet another interesting property exhibited by
ViNT is its implicit preference to follow paved roads (outdoors), and drive smoothly in
the middle of hallways (indoors), as demonstrated in Figure 42 and in the supplemental
video. This is particularly interesting since a large chunk of the pre-training dataset
contains suboptimal, weavy trajectories, and suggests that ViNT can learn “good” default
behavior from the diverse training behaviors. This preference helps ViNT efficiently
explore previously unseen environments, where other baselines tend to explore the
environment haphazardly (see Table 14 (right)).

robustness to dynamic pedestrians : While ViNT is trained only on offline
data with a simple, self-supervised training objective, we find that its collision avoidance
capabilities generalize to dynamic obstacles and pedestrians. Figure 43 exhibits an
instance where the robot is tasked with navigating to a goal behind two pedestrians. ViNT
selects actions that avoid the pedestrians and recovers to the original path, successfully
reaching the goal.

7.7 discussion

We presented ViNT, a robot foundation model that is trained for a generic image-goal
navigation task on diverse data from many different robots, and can then support a
variety of different navigation functionalities. ViNT can be deployed for long-horizon
navigation in combination with a topological graph planning method, explore new
environments with goals proposed by a diffusion model, be fine-tuned to new domains
(such as autonomous driving), and be adapted to new task specification methods, such
as GPS coordinates or turn-by-turn routing commands. Our results show that ViNT can
successfully generalize across robots and environments, outperforms prior navigational
models, can be efficiently fine-tuned to new domains and tasks, and shows promising
emergent behaviors such as navigating through dynamic pedestrians.

99

acknowledgments

This research was partly supported by ARL DCIST CRA W911NF-17-2-0181, ARO
W911NF-21-1-0097, IIS-2150826, and compute from Google TPU Research Cloud, NVIDIA,
NSF CloudBank, and the Berkeley Research Computing program. The authors would like
to thank Yunhao Cao, Seung-Hyun Kwon, Hrish Leen, Laura Smith, Medini Tolpadi, and
Christopher Yu, for help with setting up experiments; Ted Xiao, for help with reproduc-
ing RT-1; Chethan Bhateja, Devendra Singh Chaplot, Kuan Fang, Adrien Gaidon, Dibya
Ghosh, Saurabh Gupta, Haresh Karnan, Vijay Kumar, Hrish Leen, Fangchen Liu, Arjun
Majumdar, Carlos Nieto, Aravind Rajeswaran, Ethan Stump, Jie Tan, Joanne Truong,
and Tingnan Zhang, for useful discussions and feedback during various stages of this
research. The authors would also like to thank Byron Boots, Gregory Kahn, Haresh
Karnan, Xiangyun Meng, and Xuesu Xiao, for their help in aggregating the dataset used
for training ViNT.

100

8

G O A L M A S K E D D I F F U S I O N P O L I C I E S F O R U N I F I E D N AV I G AT I O N
A N D E X P L O R AT I O N

Synopsis

In this chapter, we propose a novel architecture for increasing the expressivity of robot
foundation models so they can represent complex, multimodal action distributions in
challenging environments. We describe how we can train a single unified diffusion
policy to handle both goal-directed navigation and goal-agnostic exploration, with the
latter providing the ability to search novel environments, and the former providing
the ability to reach a user-specified goal once it has been located. We show that
this unified policy results in better overall performance when navigating to visually
indicated goals in novel environments, as compared to approaches that use subgoal
proposals from generative models, or prior methods based on latent variable models.
We instantiate our method by extending the ViNT cross-embodiment policy with a
diffusion model decoder to flexibly handle both goal-conditioned and goal-agnostic
navigation. Our experiments, conducted on a real-world mobile robot platform, show
effective navigation in unseen environments in comparison with five alternative meth-
ods, and demonstrate significant improvements in performance and lower collision
rates, despite utilizing smaller models than state-of-the-art approaches.

8.1 introduction

Robotic learning provides us with a powerful tool for acquiring multi-task policies that,
when conditioned on a goal or another task specification, can perform a wide variety
of different behaviors. Such policies are appealing not only because of their flexibility,
but because they can leverage data from a variety of tasks and domains and, by sharing
knowledge across these settings, acquire policies that are more performant and more

Sridhar, Shah, Glossop, Levine, ”NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration”, in IEEE
International Conference on Robotics and Automation (ICRA) 2024
Project website: general-navigation-models.github.io/nomad

101

https://general-navigation-models.github.io/nomad

Tr
an

sf
o

rm
er

Goal Image
(Optional)

Goal Masking

Diffusion Policy

RGB Observations
in Unseen Environment

NoMaD Model

Candidate Actions
Undirected & Goal-Conditioned

Figure 44: NoMaD is the first flexibly conditioned diffusion model of robot actions that can
perform both goal-conditioned navigation and undirected exploration in previously unseen
environments. It uses goal masking to condition on an optional goal image, and a diffusion policy
to model complex, multimodal action distributions in challenging real-world environments.

generalizable. However, in practical settings, we might encounter situations where the
robot doesn’t know which task to perform because the environment is unfamiliar, the
task requires exploration, or the direction provided by the user is incomplete. In this
work, we study a particularly important instance of this problem in the domain of robotic
navigation, where the user might specify a destination visually (i.e., via a picture), and the
robot must locate this destination by searching its environment. In such settings, standard
multi-task policies trained to perform the user-specified task are not enough by themselves:
we also need some way for the robot to explore, potentially trying different tasks (e.g.,
different possible destinations for searching the environment), before figuring out how
to perform the desired task (i.e., locating the object of interest). Prior works have often
addressed this challenge by training a separate high-level policy or goal proposal system
that generates suitable exploratory tasks, for example using high-level planning [70],
hierarchical reinforcement learning [156], and generative models [242]. However, this
introduces additional complexity and often necessitates task-specific mechanisms. Can
we instead train a single highly expressive policy that can represent both task-specific and
task-agnostic behavior, utilizing the task-agnostic behavior for exploration and switching
to task-specific behavior as needed to solve the task?

In this paper, we present a design for such a policy by combining a Transformer
backbone for encoding the high-dimensional stream of visual observations with diffusion
models for modeling a sequence of future actions and instantiate it for the particular
problem of visual exploration and goal-seeking in novel environments. Our main insight
is that such an architecture is uniquely suited for modeling task-specific and task-agnostic
pathways since it provides high capacity (both for modeling perception and control) and
the ability to represent complex, multimodal distributions.

The main contribution of our work is Navigation with Goal Masked Diffusion, or
NoMaD, a novel architecture for robotic navigation in previously unseen environments
that uses a unified diffusion policy to jointly represent exploratory task-agnostic behavior
and goal-directed task-specific behavior in a framework that combines graph search,

102

frontier exploration, and highly expressive policies. We evaluate the performance of
NoMaD on both undirected and goal-conditioned experiments across challenging indoor
and outdoor environments, and report improvements over the state-of-the-art, while also
being 15× more computationally efficient. To the best of our knowledge, NoMaD is the
first successful instantiation of a goal-conditioned action diffusion model, as well as a
unified model for both task-agnostic and task-oriented behavior, deployed on a physical
robot.

8.2 related work

The closest related work to NoMaD is ViNT, which uses a goal-conditioned navigation
policy in conjunction with a separate high-capacity subgoal proposal model (Chapter 7).
The subgoal proposal model in ViNT is instantiated as a 300M parameter image diffusion
model [99], generating candidate subgoal images conditioned on the robot’s current
observation. NoMaD uses diffusion models differently: rather than generating subgoal
images with diffusion and conditioning on these generations, we directly model actions
conditioned on the robot’s observation with diffusion. Empirically, we find that NoMaD
outperforms the ViNT system by over 25% in undirected exploration. Furthermore,
since NoMaD does not generate high-dimensional images, it requires over 15× fewer
parameters, providing a more compact and efficient approach that can run directly on
the less powerful onboard computers (e.g., NVIDIA Jetson Orin).

A key challenge with predicting sequences of robot actions for exploration is the
difficulty in modeling multimodal action distributions. Prior work has addressed this by
exploring different action representations, such as autoregressive predictions of quantized
actions [180, 47, 230, 31], using latent variable models [238, 68], switching to an implicit
policy representation [72], and, most recently, using conditional diffusion models for
planning and control [115, 278, 42, 199, 212, 90]. State- or observation-conditioned
diffusion models of action [278, 42] are particularly powerful, since they enable modeling
complex action distributions without the cost and added complexity of inferring future
states/observations. NoMaD extends this formulation by additionally conditioning the
action distribution on both the robot’s observations and the optional goal information,
giving the first instantiation of a “diffusion policy” that can work in both goal-conditioned
and undirected modes.

8.3 preliminaries

Our objective is to design a control policy π for visual navigation that takes the robot’s
current and past RGB observations as input ot := ot−P:t and outputs a distribution over
future actions at := at:t+H. The policy may additionally have access to an RGB image of a
goal og, which can be used to specify the navigation task. When a goal og is provided,
π must take actions that make progress towards the goal, and eventually reach it. In

103

x6

Goal
Optional

Transformer
4 Layers, 4 Heads
5M Parameters

Observations
Past 5 timesteps

96x96x3 RGB

Context
Average Pooled

Temporal Distance

Goal Masking

7 Tokens
x 256-D

10 denoising steps

8 Future
Actions

Figure 45: Model Architecture. NoMaD uses two EfficientNet encoders ψ, ϕ to generate input
tokens to a Transformer decoder. We use goal masking to jointly reason about task-agnostic and
task-oriented behaviors through the observation context ct. We use action diffusion conditioned
on the context ct to obtain a highly expressive policy that can be used in both a goal-conditioned
and undirected manner.

an unseen environment, the goal image og may not be available, and π must explore the
environment by taking safe and reasonable navigation actions (e.g., avoiding obstacles,
following hallways etc.), while providing sufficient coverage of the valid behaviors in the
environment. To facilitate long-horizon exploration and goal-seeking, we follow the setup
of ViKiNG [232] and pair π(ot) with a topological memory of the environmentM, and a
high-level planner that encourages the robot to explore the environment by navigating to
unexplored regions.

visual goal-conditioned policies : To train goal-conditioned policies for visual
inputs, we follow a large body of prior work on training high-capacity policies based
on the Transformer architecture [275, 21, 190, 242]. Specifically, we use the Visual
Navigation Transformer (ViNT) [242] policy as the backbone for processing the robot’s
visual observations ot and goal og. ViNT uses an EfficientNet-B0 encoder [261] ψ(oi)
to process each observation image i ∈ {t − P, . . . , t} independently, as well as a goal
fusion encoder ϕ(ot, og) to tokenize the inputs. These tokens are processed using multi-
headed attention layers f (ψ(oi), ϕ(ot, og)) to obtain a sequence of context vectors that
are concatenated to obtain the final context vector ct. The context vector is then used to
predict future actions at = fa(ct) and temporal distance between the observation and the
goal d(ot, og) = fd(ct), where fa, fc are fully-connected layers. The policy is trained using
supervised learning using a maximum likelihood objective, corresponding to regression
to the ground-truth actions and temporal distance. While ViNT shows state-of-the-art
performance in goal-conditioned navigation, it cannot perform undirected exploration
and requires an external subgoal proposal mechanism. NoMaD extends ViNT to enable
both goal-conditioned and undirected navigation.

104

exploration with topological maps : While goal-conditioned policies can ex-
hibit useful affordances and collision-avoidance behavior, they may be insufficient for
navigation in large environments that require reasoning over long time horizons. To
facilitate long-horizon exploration and goal-seeking in large environments, we follow the
setup of ViKiNG [232] and integrate the policy with episodic memory M in the form
of a topological graph of the robot’s experience in the environment. M is represented
by a graph structure with nodes corresponding to the robot’s visual observations in
the environment, and edges corresponding to navigable paths between two nodes, as
determined by the policy’s goal-conditioned distance predictions. When navigating
large environments, the robot’s visual observations ot may not be sufficient to plan
long-horizon trajectories to the goal. Instead, the robot can use the topological mapM to
plan a sequence of subgoals that guide the robot to the goal. When exploring previously
unseen environments, we constructM online while the robot searches the environment
for a goal. Beyond undirected coverage exploration, this graph-based framework also
supports the ability to reach high-level goals G, which may be arbitrarily far away and
specified as GPS positions, locations on a map, language instructions, etc. In this work,
we focus on frontier-based exploration, which tests the ability of NoMaD to propose
diverse subgoals and search unseen environments. We largely follow the setup of prior
work [232], swapping the learned policy with NoMaD.

8.4 method

Unlike prior work that uses separate policies for goal-conditioned navigation and open-
ended exploration [242], we posit that learning a single model for both behaviors is
more efficient and generalizable. Training a shared policy across both behaviors allows
the model to learn a more expressive prior over actions at, which can be used for both
conditional and unconditional inference. In this section, we describe our proposed
NoMaD architecture, which is a goal-conditioned diffusion policy that can be used for
both goal-reaching and undirected exploration. The NoMaD architecture has two key
components: (i) attention-based goal-masking, which provides a flexible mechanism for
conditioning the policy on (or masking out) an optional goal image og; and (ii) a diffusion
policy, which provides an expressive prior over collision-free actions that the robot can
take. Figure 45 shows an overview of the NoMaD architecture, and we describe each
component in detail below.

8.4.1 Goal Masking

In order to train a shared policy for goal-reaching and undirected exploration, we modify
the ViNT architecture described in Section 8.3 by introducing a binary “goal mask” m,
such that ct = f (ψ(oi), ϕ(ot, og), m). m can be used to mask out the goal token ϕ(ot, og),
thus blocking the goal-conditioned pathway of the policy. We implement masked attention

105

by setting the goal mask m = 1, such that the downstream computation of ct does not
attend to the goal token. We implement unmasked attention by setting m = 0, such that
the goal token is used alongside observation tokens in the downstream computation
of ct. During training, the goal mask m is sampled from a Bernoulli distribution with
probability pm. We use a fixed pm = 0.5 during training, corresponding to equal number
of training samples corresponding to goal-reaching and undirected exploration. At test
time, we set m corresponding to the desired behavior: m = 1 for undirected exploration,
and m = 0 for reaching user-specified goal images. We find that this simple masking
strategy is very effective for training a single policy for both goal-reaching and undirected
exploration.

8.4.2 Diffusion Policy

While goal masking allows for a convenient way to condition the policy on a goal image,
the distribution over actions that results from this, particularly when a goal is not provided,
can be very complex. For example, at a junction, the policy might need to assign high
probabilities to left and right turns, but low probability to any action that might result
in a collision. Training a single policy to model such complex, multimodal distributions
over action sequences is challenging. To effectively model such complex distributions, we
use a diffusion model [99] to approximate the conditional distribution p(at|ct), where ct
is the observation context obtained after goal masking.

We sample a sequence of future actions aK
t from a Gaussian distribution and perform K

iterations of denoising to produce a series of intermediate action sequences with decreasing
levels of noise {aK

t , aK−1
t , . . . , a0

t }, until the desired noise-free output a0
t is formed. The

iterative denoising process follows the equation

ak−1
t = α · (ak

t − γϵθ(ct, ak
t , k) +N (0, σ2 I)) (8)

where k is the number of denoising steps, ϵθ is a noise prediction network parameterized
by θ, and α, γ and σ are functions of the noise schedule.

The noise prediction network εθ is conditioned on the observation context ct, which
may or may not include goal information, as determined by the mask m. Note that we
model the conditional (and not joint) action distribution, excluding ct from the output
of the denoising process, which enables real-time control and end-to-end training of
the diffusion process and visual encoder. During training, we train εθ by adding noise
to ground truth action sequences. The predicted noise is compared to the actual noise
through the mean squared error (MSE) loss.

8.4.3 Training Details

The NoMaD model architecture is illustrated in Figure 45. We train NoMaD on a
combination of GNM and SACSoN datasets, large heterogeneous datasets collected

106

Figure 46: Visualizing the task-agnostic (yellow) and goal-directed pathways for two goal images
(green, blue) learned by NoMaD. NoMaD predicts a bimodal distribution of collision-free actions
in the absence of a goal, and snaps to a narrower distribution after conditioning on two different
goal images.

across a diverse set of environments and robotic platforms, including pedestrian-rich
environments, spanning over 100 hours of real-world trajectories [234, 98]. NoMaD is
trained end-to-end with supervised learning using the following loss function:

LNoMaD(ϕ, ψ, f , θ, fd) = MSE(εk, εθ(ct, a0
t + εk, k))

+ λ ·MSE(d(ot, og), fd(ct))
(9)

where ψ, ϕ correspond to visual encoders for the observation and goal images, f corre-
sponds to the Transformer layers, θ corresponds to the parameters of the diffusion process,
and fd corresponds to the temporal distance predictor. λ = 10−4 is a hyperparameter that
controls the relative weight of the temporal distance loss. During training, we use a goal
masking probability pm = 0.5, corresponding to an equal number of goal-reaching and
undirected exploration samples. The diffusion policy is trained with the Square Cosine
Noise Scheduler [191] and K = 10 denoising steps. We uniformly sample a denoising
iteration k, and we also sample a corresponding noise ϵk with the variance defined at
iteration k. The noise prediction network, ϵθ, consists of a 1D conditional U-Net [115, 42]
with 15 convolutional layers.

We use the AdamW optimizer [164] with a learning rate of 10−4 and train NoMaD for
30 epochs with a batch size of 256. We use cosine scheduling and warmup to stabilize
the training process and follow other hyperparameters from ViNT [242]. For the ViNT
observation encoder, we use EfficientNet-B0 [261] to tokenize observations and goals into

107

256-dimensional embeddings, followed by a Transformer decoder with 4 layers and 4

heads.

8.5 evaluation

We evaluate NoMaD in 6 distinct indoor and outdoor environments, and formulate our
experiments to answer the following questions:

Q1. How does NoMaD compare to prior work for visual exploration and goal-reaching in
real-world environments?

Q2. How does a joint task-agnostic and task-specific policy compare to the individual
behavior policies?

Q3. How important is the choice of visual encoder and goal masking to the performance
of NoMaD?

8.5.1 Benchmarking Performance

Figure 47: Visualizing rollouts of NoMaD deployed in challenging indoor (top) and outdoor
(bottom) environments on the LoCoBot platform, showcasing successful exploration trajectories.
Future action samples from the undirected mode are shown in yellow, and the action selected
by the high-level planner is shown in blue. The predicted actions follow implicit navigational
affordances, such as following hallways, and become multimodal at decision points, such as
intersections in the hallway.

Towards understanding Q1, we compare NoMaD to six performant baselines for
exploration and navigation in 6 challenging real-world environments. We follow the
experimental setup of ViNT [242] and evaluate the methods on their ability to (i) explore
a novel environment effectively in search of a goal position, or (ii) reach a goal indicated
by an image in a previously explored environment, where the robot uses the policy to
create a topological graph as episodic memory. All baselines are trained on a combination

108

of GNM and SACSoN datasets for 20 epochs, and we perform minimal hyperparameter
tuning to ensure stable training for each baseline. We report the mean success rate for
each baseline, as well as the mean number of collisions per experiment.

vib : We use the authors’ implementation of a latent goal model for exploration [238],
which uses a variational information bottleneck (VIB) to model a distribution of actions
conditioned on observations.

masked vint : We integrate our goal masking with the ViNT policy [242] to flexibly
condition on the observation context ct. This baseline predicts point estimates of future
actions conditioned on ct, rather than modeling the distribution.

autoregressive : This baseline uses autoregressive predictions over a discretized
action space to better represent multimodal action distributions. Our implementation
uses a categorical representation of the action distribution, goal masking, and the same
visual encoder design.

subgoal diffusion : We use the authors’ implementation of the ViNT system [242]
that pairs a goal-conditioned policy with an image diffusion model for generating
candidate subgoal images, which are used by the policy to predict exploration actions.
This is the best published baseline we compare against, but uses a 15× larger model than
NoMaD.

random subgoals : A variation of the above ViNT system which replaces subgoal
diffusion with randomly sampling the training data for a candidate subgoal, which is
passed to the goal-conditioned policy to predict exploration actions. This baseline does
not use image diffusion, and has comparable parameter-count to NoMaD.

Table 4 summarizes the results of our experiments in 5 challenging indoor and
outdoor environments. VIB and Masked ViNT struggle in all the environments we
tested and frequently end in collisions, likely due to challenges with effectively modeling
multimodal action distributions. The Autoregressive baseline uses a more expressive
policy class and outperforms these baselines, but struggles in complex environments.
Furthermore, the deployed policy tends to be jerky and slow to respond to dynamic
obstacles in the environment, likely due to the discretized action space (see supplemental
video for experiments). NoMaD consistently outperforms all baselines and results in
smooth, reactive policies. For exploratory goal discovery, NoMaD outperforms the best
published baseline (Subgoal Diffusion) by over 25% in terms of both efficiency and
collision avoidance, and succeeds in all but the hardest environment. For navigation in
known environments, using a topological graph, NoMaD matches the performance of the
best published baseline, while also requiring a 15× smaller model and running entirely

109

Exploration Navigation

Method Params Success Coll. Success

Masked ViNTm
15M 50% 1.0 30%

VIB [238] 6M 30% 4.0 15%
Autoregressivem

19M 90% 2.0 60%
Random Subgoals [242] 30M 70% 2.7 90%
Subgoal Diffusion [242] 335M 77% 1.7 90%
NoMaD 19M 98% 0.2 90%

Table 4: NoMaD paired with a topological graph consistently outperforms all baselines for the
task of exploration in previously unseen environments, and navigation in known environments.
Most notably, NoMaD outperforms the state-of-the-art (Subgoal Diffusion) by 25%, while also
avoiding collisions and requiring 15× fewer parameters. mThese baselines that use goal masking.

Method Params Undirected Goal-Conditioned

Diffusion Policy 15M 98% ✗

BESO [212] 15M ✗ 94%
ViNT Policy 16M ✗ 92%
NoMaD 19M 98% 92%

Table 5: Despite having comparable model capacities, NoMaD matches the performance of the
best individual behavior policies for undirected exploration and goal-conditioned navigation.

on-the-edge. Figure 47 shows example rollouts of the NoMaD policy exploring unknown
indoor and outdoor environments in search for the goal.

Analyzing the policy predictions across baselines (see Figure 48), we find that while the
Autoregressive policy representation can (in principle) express multimodal distributions,
the predictions are largely unimodal, equivalent to the policy learning the average action
distribution. The Subgoal Diffusion baseline tends to represent the multiple modes well,
but is not very robust. NoMaD consistently captures the multimodal distribution, and
also makes accurate predictions when conditioned on a goal image.

8.5.2 Unified v/s Dedicated Policies

With the flexibility that a policy with task-specific and task-agnostic capabilities offers,
Q2 aims to understand the impact of goal masking on the individual behaviors learned
by the policy. Specifically, we compare the performance of the jointly trained NoMaD
model to the best-performing goal-conditioned and undirected models. We report the
mean success rate for each baseline.

110

NoMaD (Ours) Subgoal Diffusion† Random Subgoals† Autoregressive

Goal 1 (left) Goal 2 (right)

Figure 48: Examples of action predictions from NoMaD and baselines in undirected mode (yellow)
and goal-directed mode with two different goal images (blue towards left, green towards right).
Only NoMaD can consistently represent multimodal undirected predictions while avoiding colli-
sions with pillars or walls, as well as correctly predicting the goal-conditioned action predictions
for the two goals. †Note that Subgoal Diffusion and Random Subgoals baselines only represent
point estimates when conditioned on a goal image.

diffusion policy : We train a diffusion policy [42] with the same visual encoder as
NoMaD and m = 0. This is the best exploration baseline, outperforming both VIB and
IBC.

vint policy : We use the authors’ published checkpoint of the ViNT navigation
policy [242], which predicts point estimates of future actions conditioned on observations
and a goal. This is the best navigation baseline.

Comparing the unified NoMaD policy to the above, we find that despite having
comparable model capacities, the unified policy trained with goal masking matches
the performance of ViNT policy for goal-conditioned navigation and DP for undirected
exploration. This suggests that training for these two behaviors involves learning shared
representations and affordances, and a single policy can indeed excel at both task-agnostic
and task-oriented behaviors simultaneously.

8.5.3 Visual Encoder and Goal Masking

We explore variations of the visual encoder and goal masking architectures to understand
Q3. We consider two alternative visual encoder designs based on CNN and ViT backbones,
and implement goal masking in different ways. We report the mean success rate for each
baseline, as well as the mean number of collisions per experiment.

early/late fusion cnn : We use convolutional encoders followed by an MLP to
encode the observation and goal images, and use dropout on the goal embeddings

111

Visual Encoder Success # Collisions

Late Fusion CNN 52% 3.2
Early Fusion CNN 68% 1.5
ViT 32% 2.5
NoMaD 98% 0.2

Table 6: The performance of NoMaD depends on the choice of visual encoder and goal masking
strategy. The ViNT encoder with attention-based goal masking outperforms all alternatives.

followed by another MLP block to flexibly condition the observation context ct on the
goal. ct obtained after dropout is used for conditioning the diffusion model in the same
manner as NoMaD. We use a straight-through estimator [15] for propagating gradients to
the observation and goal encoders during training. The goal can be combined with the
observations either before or after the final MLP layers.

vit : We divide the observation and goal images into 6× 6 patches, and encode them
using a Vision Transformer [60] into observation context ct. We use attention masks to
block the goal patches from propagating information downstream.

We find the choice of visual encoder to be crucial for training diffusion policies, as
summarized in Table 6. NoMaD outperforms both the ViT- and CNN-based architectures,
successfully reaching the goal while avoiding collisions. CNN with early fusion outper-
forms late fusion, confirming similar analysis in prior work [190, 242], but struggles to
effectively condition on goal information. Despite it’s high capacity, the ViT encoder
struggled learn a good policy, likely due to optimization challenges in training end-to-end
with diffusion.

8.6 discussion

We presented NoMaD, the first instantiation of a goal-conditioned diffusion policy, that
can perform both task-agnostic exploration and task-oriented navigation. Our unified
navigation policy uses a high-capacity Transformer encoder with masked attention
approach to flexibly condition on the task, such as goal images for navigation, and
models the actions conditioned on observations using a diffusion model. We study
the performance of this unified model in the context of long-horizon exploration and
navigation in previously unseen indoor and outdoor environments, demonstrating over
25% improvements in performance over the state-of-the-art in previously unseen settings,
while also requiring 15× fewer computational resources.

While our experiments provide a proof of concept that unified policies can provide
more effective navigation in new environments, our system has a number of limitations
that could be addressed in future work. The navigation tasks are specified via goal

112

images which, though quite general, are sometimes not the most natural modalities for
users to employ. Extending our approach into a complete navigation system that can
accommodate a variety of goal modalities, including language and spatial coordinates,
would make our approach more broadly applicable. Additionally, our exploration method
uses a standard frontier-based exploration strategy for high-level planning, leveraging our
policy to explore at the frontier. Intelligently selecting which regions to explore, such as
strategies based on semantics and prior knowledge, could further improve performance.
We hope that these directions would lead to even more practical and capable systems,
enabled by our policy representation.

acknowledgments

This research was partly supported by ARL DCIST CRA W911NF-17-2-0181, ARO
W911NF-21-1-0097, IIS-2150826, and compute from Google TPU Research Cloud, NSF
CloudBank, and the Berkeley Research Computing program. The authors would like to
thank Kyle Stachowicz for useful discussions in early stages of the project, and Cheng
Chi for help with reproducing the diffusion policy. The authors would also like to thank
Michael Equi, Nathaniel Simon, and Anirudha Majumdar, for testing and providing
feedback on preliminary versions of the NoMaD model.

113

Part III

C O M B I N I N G R O B O T A N D I N T E R N E T F O U N D AT I O N
M O D E L S

114

9

N AV I G AT I O N W I T H F O U N D AT I O N M O D E L S O F L A N G UA G E ,
V I S I O N , A N D A C T I O N

Synopsis

Goal-conditioned policies for robotic navigation can be trained on large, unannotated
datasets, providing for good generalization to real-world settings (Parts I & II). How-
ever, particularly in vision-based settings where specifying goals requires an image,
this makes for an unnatural interface. Language provides a more convenient modality
for communication with robots, but contemporary methods typically require expen-
sive supervision, in the form of trajectories annotated with language descriptions. We
present a system, LM-Nav, for robotic navigation that enjoys the benefits of training on
unannotated large datasets of trajectories, while still providing a high-level interface
to the user. Instead of utilizing a labeled instruction following dataset, we show that
such a system can be constructed entirely out of pre-trained foundation models for
navigation (ViNG, GNM), image-language association (CLIP), and language modeling
(GPT-3), without requiring any fine-tuning or language-annotated robot data. LM-
Nav extracts landmarks names from an instruction, grounds them in the world via
the image-language model, and then reaches them via the (vision-only) navigation
model. We instantiate LM-Nav on a real-world mobile robot and demonstrate long-
horizon navigation through complex, outdoor environments from natural language
instructions.

9.1 introduction

One of the central challenges in robotic learning is to enable robots to perform a wide
variety of tasks on command, following high-level instructions from humans. This
requires robots that can understand human instructions, and are equipped with a large

Shah†, Osinski†, Ichter, Levine, ”LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language, Vision,
and Action”, in Annual Conference on Robot Learning (CoRL) 2022
Project website: sites.google.com/view/lmnav

115

https://sites.google.com/view/lmnav

Figure 49: Embodied instruction following with LM-Nav: Our system takes as input a set of
raw observations from the target environment and free-form textual instructions (left), deriving
an actionable plan using three pre-trained models: a large language model (LLM) for extracting
landmarks, a vision-and-language model (VLM) for grounding, and a visual navigation model
(VNM) for execution. This enables LM-Nav to follow textual instructions in complex environments
purely from visual observations (right) without any fine-tuning.

repertoire of diverse behaviors to execute such instructions in the real world. Prior work
on instruction following in navigation has largely focused on learning from trajectories
annotated with textual instructions [9, 86, 142, 113, 292]. This enables understanding
of textual instructions, but the cost of data annotation impedes wide adoption. On the
other hand, recent work has shown that learning robust navigation is possible through
goal-conditioned policies trained with self-supervision. These utilize large, unlabeled
datasets to train vision-based controllers via hindsight relabeling [169, 251, 80, 139, 123,
241]. They provide scalability, generalization, and robustness, but usually involve a
clunky mechanism for goal specification, using locations or images. In this work, we
aim to combine the strengths of both approaches, enabling a robotic navigation system
to execute natural language instructions by leveraging the capabilities of pre-trained
models without any user-annotated navigational data. Our method uses these models to
construct an “interface” that humans can use to communicate desired tasks to robots.
This system enjoys the impressive generalization capabilities of the pre-trained language
and vision-language models, enabling the robotic system to accept complex high-level
instructions.

Our main observation is that we can utilize off-the-shelf pre-trained models trained
on large corpora of visual and language datasets — that are widely available and
show great few-shot generalization capabilities — to create this interface for embodied
instruction following. To achieve this, we combine the strengths of two such robot-agnostic
pre-trained models with a pre-trained navigation model. We use a visual navigation
model (VNM: ViNG [241] or GNM [234]) to create a topological “mental map” of the
environment using the robot’s observations from a prior exploration of the environment.
Given free-form textual instructions, we use a pre-trained large language model (LLM:

116

GPT-3 [22]) to decode the instructions into a sequence of textual landmarks. We then
use a vision-language model (VLM: CLIP [205]) for grounding these textual landmarks
in the topological map, by inferring a joint likelihood over the landmarks and nodes. A
novel search algorithm is then used to plan a path for the robot, which is then executed
by VNM. While reducing the task of language following to a combination of grounding
and subgoal selection discards a lot of useful cues such as relations and verbs, we find
that it is still sufficient to follow a variety of natural language instructions.

Our primary contribution is Large Model Navigation, or LM-Nav, an embodied
instruction following system that combines three large independently pre-trained models
— a robotic control model that utilizes visual observations and physical actions (VNM), a
vision-language model that grounds images in text but has no context of embodiment
(VLM), and a large language model that can parse and translate text but has no sense of
visual grounding or embodiment (LLM) — to enable long-horizon instruction following
in complex, real-world environments. We present the first instantiation of a robotic system
that combines the confluence of pre-trained vision-and-language models with a goal-conditioned
controller, to derive actionable plans without any fine-tuning in the target environment. Notably,
all three models are trained on large-scale datasets, with self-supervised objectives, and
used off-the-shelf with no fine-tuning — no human annotations of the robot navigation
data are necessary to train LM-Nav. We show that LM-Nav is able to successfully follow
natural language instructions in pre-explored environments over the course of 100s of
meters of complex, suburban navigation, while disambiguating paths with fine-grained
commands.

9.2 related work

Early works in augmenting navigation policies with natural language commands use
statistical machine translation [134] to discover data-driven patterns to map free-form
commands to a formal language defined by a grammar [285, 172, 35, 263, 173]. However,
these approaches tend to operate on structured state spaces. Our work is closely inspired
by methods that instead reduce this task to a sequence prediction problem [243, 176, 9].
Notably, our goal is similar to the task of VLN — leveraging fine-grained instructions to
control a mobile robot solely from visual observations [9, 86].

However, most recent approaches to VLN use a large dataset of simulated trajectories
— over 1M demonstrations — annotated with fine-grained language labels in indoor [142,
113, 292, 9, 245] and driving scenarios [36, 95, 182, 274, 183, 18], and rely on sim-to-real
transfer for deployment in simple indoor environments [140, 8]. However, this necessitates
building a photo-realistic simulator resembling the target environment, which can be
challenging for unstructured environments, especially for the task of outdoor navigation.
Instead, LM-Nav leverages free-form textual instructions to navigate a robot in complex,
outdoor environments without access to any simulation or any trajectory-level annotations.

117

Figure 50: System overview: (a) VNM uses a goal-conditioned distance function to infer connec-
tivity between the set of raw observations and constructs a topological graph. (b) LLM translates
natural language instructions into a sequence of textual landmarks. (c) VLM infers a joint proba-
bility distribution over the landmark descriptions and nodes in the graph, which is used by (d)
a graph search algorithm to derive the optimal walk through the graph. (e) The robot drives
following the walk in the real world using the VNM policy.

Recent progress in using large-scale models of natural language and images trained
on diverse data has enabled applications in a wide variety of textual [284, 264, 38],
visual [205, 209, 221, 87, 118, 252], and embodied domains [244, 114, 109, 4, 299, 130].
In the latter category, approaches either fine-tune embeddings from pre-trained models
on robot data with language labels [244, 130, 114], assume that the low-level agent
can execute textual instructions (without addressing control) [109], or assume access
to a set of text-conditioned skills that can follow atomic textual commands [4]. All of
these approaches require access to low-level skills that can follow rudimentary textual
commands, necessitating language annotations for robotic experience and a strong
assumption on the robot’s capabilities. In contrast, we combine these pre-trained vision
and language models with pre-trained visual policies that do not use any language
annotations [241, 238] without fine-tuning these models for the task of VLN.

LM-Nav uses self-supervised policies trained in a large number of prior environments,
augmented with pre-trained vision and language models for parsing natural language
instructions, and deploys them in novel real-world environments without any fine-tuning.
We emphasize that while LM-Nav relies on a pre-built topological graph (Chapters 2,
6), this assumption may be relaxed by incorporating exploration heuristics in unseen
environments (Chapters 4, 7), and can be an interesting avenue for future work.

118

9.3 lm-nav : instruction following with pre-trained models

LM-Nav combines the components discussed earlier to follow natural language instruc-
tions in the real world. The LLM parses free-form instructions into a list of landmarks ℓ̄
(Sec. 9.3.2), the VLM associates these landmarks with nodes in the graph by estimating
the probability that each node v̄ corresponds to each ℓ̄, P(v̄|ℓ̄) (Sec. 9.3.3), and the VNM
is used to infer how effectively the robot can navigate between each pair of nodes in the
graph, denoted by a probability P(vi, vj). To find the optimal “walk” on the graph that
both (i) adheres to the provided instructions and (ii) minimizes traversal cost, we derive a
probabilistic objective (Sec. 9.3.1) and show how it can be optimized using a graph search
algorithm (Sec. 9.3.4). This walk is executed in the real world by the VNM model.

9.3.1 Problem Formulation

Given a sequence of landmark descriptions ℓ̄ = ℓ1, ℓ2, ..., ℓn extracted from the language
command, our method needs to determine a sequence of waypoints v̄ = v1, v2, ..., vk to
command to the robot. Typically, k ≥ n, since each landmark needs to be visited, but
the traversal might require other waypoints in between the landmarks. Finding v̄ can
formulated as a probabilistic inference problem. A key element in this formulation is
access to a distribution p(vi|ℓj) for each graph vertex vi and landmark description ℓj.
Recall that the graph vertices correspond to images observed by the robot, and thus,
p(vi|ℓi) represents a distribution over images given a language description. This can
be obtained from the VLM. Intuitively, the full likelihood that we need to optimize
to determine the robot’s plan will now depend on two terms: likelihoods of the form
p(vti |ℓi) that describe how likely vti is to correspond to ℓi for an assignment t1, t2, . . . , tn,
and traversability likelihoods p(vi, vi+1) that describe how likely is the robot to be able to
reach vi+1 from vi.

While we can use a variety of traversability likelihood functions, a simple choice is
to use a discounted Markovian model, where the discount γ models the probability of
exiting at each time step, leading to a termination probability of 1− γ at each step, and a
probability of reaching vi+1 given by γD(vi,vi+1), where D(vi, vi+1) is the estimated number
of time steps the robot needs to travel from vi to vi+1, which is predicted by the VNM.
While other traversability likelihoods could also be used, this choice is a convenient
consequence of goal-conditioned reinforcement learning formulations [122, 91], and thus,
the log-likelihood corresponds to D(vi, vi+1). We can use these likelihoods to derive
the probability that a given sequence v̄ can be traversed successfully, which we denote
with the auxiliary Bernoulli random variable cv̄ (i.e., cv̄ = 1 implies that v̄ was traversed
successfully):

P(cv̄ = 1|v̄) = ∏
1≤i<T

P(vi, vi+1) = ∏
1≤i<T

γD(vi,vi+1), (10)

119

The full likelihood used for planning is then given by:

P(success|v̄, ℓ̄) ∝ P(cv̄ = 1|v̄)P(v̄|ℓ̄) = ∏
1≤j<k

γD(vj,vj+1) max
1≤t1≤...≤tn≤k

∏
1≤i≤n

P(vti |ℓi). (11)

9.3.2 Parsing Free-Form Textual Instructions

The user specifies the route they want the robot to take using natural language, while
the objective above is defined in terms of a sequence of desired landmarks. To extract
this sequence from the user’s natural language instruction we employ a large language
model, which in our prototype is GPT-3 [22]. We used a prompt with 2 examples of
correct landmarks’ extractions, followed by the description to be translated by the LLM.
Examples of instructions and landmarks extracted by the model can be found in Fig. 52.
The prompt was selected to disambiguate nuanced cases, e.g. when order of landmarks
in the text is different than in the expected path (see example in Fig. 52 a). For details of
the “prompt engineering” please see Appendix E.1.

9.3.3 Visually Grounding Landmark Descriptions

Algorithm 8 Graph Search

1: Input: Landmarks (ℓ1, ℓ2, . . . , ℓn).
2: Input: Graph G(V, E).
3: Input: Starting node S.
4: ∀i=0,...,n

v∈V
Q[i, v] = −∞

5: Q[0, S] = 0
6: Dijkstra algorithm(G, Q[0, ∗])
7: for i in 1, 2, . . . , n do
8: ∀v ∈ V Q[i, v] = Q[i− 1, v] + CLIP(v, ℓi)
9: Dijkstra algorithm(G, Q[i, ∗])

10: end for
11: destination = arg max(Q[n, ∗])
12: return backtrack(destination, Q[n, ∗])

As discussed in Sec. 9.3.1, a crucial element of selecting the walk through the graph is
computing P(vi|ℓj), the probability that landmark description vi refers to node ℓj (see
Eqn. 11). With each node containing an image taken during initial data collection, the
probability can be computed using CLIP [205] in the way described in Sec. 9.4 as the
retrieval task. As presented in Fig. 51, we apply CLIP to the image at node vi and caption
prompt in the form of “This is a photo of a [ℓj]”. To go from CLIP model outputs, which

120

are logits, to probabilities we use P(vi|ℓj) =
exp CLIP(vi,ℓj)

∑v∈V exp CLIP(v,ℓj)
. The resulting probability

P(vi|ℓj), together with the inferred edges’ distances will be used to select the optimal
walk.

9.3.4 Graph Search for the Optimal Walk

As described in Sec. 9.3.1, LM-Nav aims at finding a walk v̄ = (v1, v2, . . . , vk) that
maximizes the probability of successful execution of v̄ that adheres to the given list of
landmarks ℓ̄. We can define a function R(v̄, t̄) for a monotonically increasing sequence of
indices t̄ = (t1, t2, . . . , tn):

R(v̄, t̄) :=
n

∑
i=1

CLIP(vti , ℓi)− α
T−1

∑
j=1

D(vj, vj+1), where α = − log γ. (12)

R has the property that (v̄) maximizes P(success|v̄, ℓ̄) defined in Eqn. 11, if and only if
there exists t̄ such that (v̄, t̄) maximizes R. In order to find such (v̄, t̄), we employ dynamic
programming. In particular we define a helper function Q(i, v) for i ∈ {0, 1, . . . , n}, v ∈ V:

Q(i, v) = max
v̄=(v1,v2,...,vj),vj=v

t̄=(t1,t2,...,ti)

R(v̄, t̄). (13)

Q(i, v) represents the maximal value of R for a walk ending in v that visited the landmarks
up to index i. The base case Q(0, v) visits none of the landmarks, and its value of R is
simply equal to minus the length of shortest path from the starting node S. For i > 0 we
have:

Q(i, v) = max
(

Q(i− 1, v) + CLIP(v, ℓi), max
w∈neighbors(v)

Q(i, w)− α · D(v, w)

)
. (14)

The base case for DP is to compute Q(0, V). Then, in each step of DP i = 1, 2, . . . , n
we compute Q(i, v). This computation resembles the Dijkstra algorithm ([55]). In each
iteration, we pick the node v with the largest value of Q(i, v) and update its neighbors
based on the Eqn. 14. Algorithm 8 summarizes this search process. The result of this
algorithm is a walk v̄ = (v1, v2, . . . , vk) that maximizes the probability of successfully
carrying out the instruction. Such a walk can be executed by VNM, using its action
estimates to sequentially navigate to these nodes.

9.4 preliminaries

LM-Nav consists of three large, pre-trained models for processing language, associating
images with language, and visual navigation.

121

a photo of a
stop sign

a photo of a
stop sign

a photo of a
stop sign

a photo of a
stop sign

ViT-L
Image

Encoder

T1 T2 T3 … TM

I1

I2

I3

IN

…

Text
Encoder

I1ᐧT1 I2ᐧT2 I1ᐧT3 … I1ᐧTM

I2ᐧT1 I2ᐧT2 I2ᐧT3 … I1ᐧTM

I3ᐧT1 I3ᐧT2 I3ᐧT3 … I1ᐧTM

INᐧT1 INᐧT2 INᐧT3 … INᐧT
M

… … … … … …

(a) CLIP VLM

…

actions

distance

(b) ViNG VNM
Commanded Subgoal

Current Observation

Figure 51: LM-Nav uses CLIP to infer a joint distribution over textual landmarks and image
observations. VNM infers a goal-conditioned distance function and policy that can control the
robot.

Large language models are generative models of text trained on large corpora of
internet text using self-supervised learning. LM-Nav uses the GPT-3 LLM [22] to parse
instructions into a sequence of landmarks.

Vision-and-language models refer to models that can associate images and text, e.g.
image captioning, visual question-answering, etc. [5, 157, 41]. We use the CLIP VLM [205],
a model that jointly encodes images and text into a shared embedding space, to jointly
encode a set of landmark descriptions t obtained from the LLM and a set of images ik
to obtain their VLM embeddings {T, Ik} (see Fig. 50). Computing the cosine similarity
between these embeddings, followed by a softmax operation results in probabilities
P(ik|t), corresponding to the likelihood that image ik corresponds to the string t. LM-Nav
uses this probability to align landmark descriptions with images.

Visual navigation models learn navigational affordances directly from visual obser-
vations [224, 28, 96, 283, 241], associating images and actions through time. We use the
ViNG VNM [241], a goal-conditioned model that predicts temporal distances between
pairs of images and the corresponding actions to execute (see Fig. 50). The VNM serves
two purposes: (i) given a set of observations in the target environment, the distance
predictions from the VNM can be used to construct a topological graph G(V, E) that
represents a “mental map” of the environment; (ii) given a “walk” (i.e., a sequence
of connected subgoals to the goal), VNM can control the robot along this plan. The
topological graph G is an important abstraction that allows a simple interface for planning
over past experience in the environment and has been successfully used in prior work to
perform long-horizon navigation [232, 179, 23]. To deduce connectivity in G, we use a
combination of learned distance estimates, temporal proximity (during data collection),
and spatial proximity (using GPS measurements). For more details on the construction of
this graph, see Appendix E.2.

122

Figure 52: Qualitative examples of LM-Nav in real-world environments executing textual in-
structions (left). The landmarks extracted by LLM (highlighted in text) are grounded into visual
observations by VLM (center; overhead image not available to the robot). The resulting walk of
the graph is executed by VNM (right).

9.5 system evaluation

We now describe our experiments deploying LM-Nav in a variety of outdoor settings
to follow high-level natural language instructions with a small ground robot (Clearpath
Jackal UGV platform — see Fig. 49(right) for image and Appendix E.3 for details). For
all experiments, the weights of LLM, VLM, and VNM are frozen — there is no fine-
tuning or annotation in the target environment. We evaluate the complete system, as well
as the individual components of LM-Nav, to understand its strengths and limitations.
Our experiments demonstrate the ability of LM-Nav to follow high-level instructions,
disambiguate paths, and reach goals that are up to 800m away.

9.5.1 Following Instructions with LM-Nav

In each evaluation environment, we first construct the graph by manually driving the
robot and collecting image and GPS observations. The graph is constructed automatically
using the VNM to predict relative distances between images in these trajectories. We
tested our system on 20 queries in 2 environments, corresponding to a combined length
of over 6km. The instructions include prominent landmarks that can be identified from
the robot’s observations, e.g., buildings and stop signs.

Fig. 52 shows qualitative examples of the path taken by the robot. In Fig. 52(a),
LM-Nav is able to successfully localize the simple landmarks from its prior traversal and
find a short path to the goal. While there are multiple stop signs in the environment,
the objective in Eqn. 11 causes the robot to pick the correct one, minimizing overall
trajectory length. Fig. 52(b) highlights LM-Nav’s ability to follow complex instructions

123

with multiple landmarks — despite the possibility of taking a shorter route directly to
the final landmark, the robot follows a path that correctly visits all of the landmarks.

Go straight toward the white

building. Continue straight

passing by a white truck until you

reach a stop sign.

After passing a white building,

take right next to a white truck.

Then take left and go towards a

square with a large tree. Go

further, until you find a stop sign.

Start Goal Landmarks

Figure 53: LM-Nav can successfully disam-
biguate instructions with same start-goal lo-
cations that differ slightly. The landmarks
are underscored in text and their locations
are marked with pins.

missing landmarks . While LM-Nav is
effective at finding a path through landmarks
extracted from instructions, it relies on the as-
sumption that the landmarks (i) exist in the
environment, and (ii) can be identified by the
VLM. Fig. 52(c) illustrates a case where the ex-
ecuted path fails to visit one of the landmarks
— a fire hydrant — and takes a path that goes
around the top of the building rather than
the bottom. This failure mode is attributed
to the the inability of the VLM to detect a
fire hydrant from the robot’s observations. On
independently evaluating the efficacy of the
VLM at retrieving landmarks (see Sec. 9.5.3),
we find that despite being the best off-the-shelf
model for our task, CLIP is unable to retrieve
a small number of “hard” landmarks, including fire hydrants and cement mixers. In
many practical cases, the robot is still successful in finding a path that visits the remaining
landmarks.

disambiguation with instructions . Since the objective of LM-Nav is to follow
instructions, and not merely to reach the final goal, different instructions may lead to
different traversals. Fig. 53 shows an example where modifying the instruction can
disambiguate multiple paths to the goal. Given the shorter prompt (blue), LM-Nav
prefers the more direct path. On specifying a more fine-grained route (magenta), LM-Nav
takes an alternate path that passes a different set of landmarks.

9.5.2 Quantitative Analysis

To quantify the performance of LM-Nav, we introduce the following metrics. A walk
found by the graph search is successful, if (1) it matches the path intended by the user
or (2) if the landmark images extracted by the search algorithm contain said landmarks
(i.e. if the path visits landmarks with the same description, even if not exactly the same).
Planning success is the fraction of successful walks found by the search algorithm. Efficiency
of a walk is defined as the ratio of the lengths of the described route and the executed
one; the value is clipped at a maximum of 1 to account for the cases when the LM-Nav
executes a path shorter than the user intended. For a set of queries, we report the average
efficiency over successful experiments. The planning efficiency is similarly defined as the

124

System Environment Net Success ↑ Efficiency ↑ # Diseng. ↓ Planning ↑

GPS-Nav (No VNM) EnvSmall-10 0.23 0.93 0.75 0.9

EnvSmall-10 0.8 0.96 0.1 0.9
LM-Nav (Ours)

EnvLarge-10 0.8 0.89 0 0.8

Table 7: Quantifying navigational instruction following with LM-Nav over 20 experiments. LM-
Nav can successfully plan a path to the goal, and follow it efficiently, over 100s of meters. Ablating
the VNM (GPS-Nav) severely hurts performance due to frequent disengagements inability to
reason about collisions with obstacles.

LLM Candidate Avg. Extraction Success

Noun Chunks 0.88

fairseq-1.3B [11] 0.52

fairseq-13B [11] 0.76

GPT-J-6B [276] 0.80

GPT-NeoX-20B [17] 0.72

GPT-3 [22] 1.0

Table 8: GPT-3 consistently outperforms alterna-
tives in parsing free-form instructions into land-
marks.

VLM Candidate Detection Rate

Faster-RCNN [211] 0.07

ViLD [87] 0.38

CLIP-ViT [205] 0.87

Table 9: CLIP-ViT produces the most reli-
able landmark detections from visual obser-
vations.

ratio of the length of the described and planned routes. Finally, number of disengagements is
the average number of human interventions per experiment due to unsafe maneuvers.

Table 7 summarizes the quantitative performance of the system over 20 instructions.
LM-Nav generates a successful walk for 85% of them, and causes disengagement only
once (an average of 1 intervention per 6.4km of traversals). Investigating the planning
failure modes suggests that the most critical component of our system is the ability
of VLM to detect certain landmarks, e.g. a fire hydrant, and in challenging lighting
conditions, e.g. underexposed images.

9.5.3 Dissecting LM-Nav

To understand the influence of each of the components of LM-Nav, we conduct experi-
ments to evaluate these components in isolation. For more details about these experiments,
see Appendix E.4.

To evaluate the performance of LLM candidates in parsing instructions into an ordered
list of landmarks, we compare GPT-3 (used by LM-Nav) to other state-of-the-art pre-

125

EnvSmall-10 EnvLarge-10

Planner Pl. Success ↑ Pl. Efficiency ↑ Pl. Success ↑ Pl. Efficiency ↑

Max Likelihood 0.6 0.69 0.2 0.17

LM-Nav (Ours) 0.9 0.80 0.8 0.99

Table 10: Ablating the search algorithm (Sec. 9.3.4) gives a max likelihood planner that ignores
reachability information, resulting in inefficient plans that are up to 6× longer than LM-Nav for
the same instruction.

trained language models — fairseq [11], GPT-J-6B [276], and GPT-NeoX-20B [17] — as
well as a simple baseline using spaCy NLP library [102] that extracts base noun phrases,
followed by filtering. In Table 8 we report the average extraction success for all the
methods on the 20 prompts used in Section 9.5.2. GPT-3 significantly outperforms other
models, owing to its superior representation capabilities and in-context learning [215]. The
noun chunking performs surprisingly reliably, correctly solving many simple prompts.
For further details on these experiments, see Appendix E.4.2.

To evaluate the VLM’s ability to ground these textual landmarks in visual observations,
we set up an object detection experiment. Given an unlabeled image from the robot’s on-
board camera and a set of textual landmarks, the task is to retrieve the corresponding label.
We run this experiment on a set of 100 images from the environments discussed earlier,
and a set of 30 commonly-occurring landmarks. These landmarks are a combination of
the landmarks retrieved by the LLM in our experiments from Sec. 9.5.1 and manually
curated ones. We report the detection successful if any of the top 3 predictions adhere
to the contents of the image. We compare the retrieval success of our VLM (CLIP) with
some object detection alternatives — Faster-RCNN-FPN [211, 159], a state-of-the-art
object detection model pre-trained on MS-COCO [160, 286], and ViLD [87], an open-
vocabulary object detector based on CLIP and Mask-RCNN [93]. To evaluate against
the closed-vocabulary baseline, we modify the setup by projecting the landmarks onto
the set of MS-COCO class labels. We find that CLIP outperforms baselines by a wide
margin, suggesting that its visual model transfers very well to robot observations (see
Table 9). Despite deriving from CLIP, ViLD struggles with detecting complex landmarks
like “manhole cover” and “glass building”. Faster-RCNN is unable to detect common
MS-COCO objects like “traffic light”, “person” and ”stop sign”, likely due to the on-board
images being out-of-distribution for the model.

To understand the importance of the VNM, we run an ablation experiment of LM-
Nav without the navigation model. Using GPS-based distance estimates and a naı̈ve
straight line controller between nodes of the topological graph. Table 7 summarizes these
results — without VNM’s ability to reason about obstacles and traversability, the system
frequently runs into small obstacles such as trees and curbs, resulting in failure. Fig. 54

126

illustrates such a case — while such a controller works well on open roads, it fails to
reason about connectivity around buildings or obstacles and results in collisions with
a curb, a tree, and a wall in 3 individual attempts. This illustrates that using a learned
policy and distance function from the VNM is critical for LM-Nav to successfully navigate
in complex environments.

Start Goal Collision

Figure 54: GPS-Nav (red) fails
due to its inability to reason
about traversability through obsta-
cles, while LM-Nav (blue) succeeds.

Lastly, to understand the importance of the two
components of the graph search objective (Eqn. 12),
we ran a set of ablations where the graph search only
depends on P(v̄|ℓ̄), i.e. Max Likelihood Planning, which
only picks the most likely landmark without reason-
ing about topological connectivity or traversability. Ta-
ble 10 shows that such a planner suffers greatly in
the form of efficiency, because it does not utilize the
spatial organization of nodes and their connectivity.
For more details on these experiments, and qualitative
examples, see Appendix E.4.

9.6 discussion

We presented Large Model Navigation, a robotic system that can execute textual in-
structions in the real-world without requiring any human annotations for navigation
trajectories. LM-Nav combines three pre-trained models: the LLM, which parses instruc-
tions into a list of landmarks; the VLM, which infers joint probabilities between these
landmarks and visual observations from the environment; and the VNM, which estimates
navigational affordances (distances between landmarks) and control actions. Each model
is pre-trained on its own dataset, and we show that the complete system can execute a
variety of user-specified instructions in real-world environments — choosing the correct
sequence of landmarks by leveraging language and spatial context — and handle mistakes
(such as missing landmarks). We also analyze the impact of each pre-trained model on
the full system.

limitations and future work The most prominent limitation of LM-Nav is its
reliance on landmarks: while the user can specify any instruction they want, LM-Nav
only focuses on the landmarks and disregards any verbs, propositions, adverbs, etc. (e.g.,
“go straight for three blocks” or “drive past the dog very slowly”), which can be lossy.
Grounding such nuances is an important direction for future work. Additionally, LM-Nav
uses a VNM that is specific to outdoor navigation with the Jackal robot, which limits
wider adoption for other robot embodiments and sensor suites. An exciting direction
for future work would be to swap in a “general navigation model” [234] that can be
utilized broadly across robots, analogous to how the LLM and VLM handle any text or
image. In its current form, LM-Nav provides a simple and attractive prototype for how

127

pre-trained models can be combined to solve complex robotic tasks, and illustrates that
these models can serve as an “interface” to robotic controllers that are trained without any
language annotations. One of the implications of this result is that further progress on self-
supervised robotic policies (e.g., goal-conditioned policies) can directly benefit instruction
following systems. More broadly, understanding how modern pre-trained models enable
effective decomposition of robotic control may enable broadly generalizable systems in
the future, and we hope that LM-Nav will serve as a step in this direction.

acknowledgments

This research was supported by DARPA Assured Autonomy, DARPA RACER, Toyota
Research Institute, ARL DCIST CRA W911NF-17-2-0181, and AFOSR. BO was supported
by the Fulbright Junior Research Award granted by the Polish-U.S. Fulbright Commission.
We would like to thank Alexander Toshev for pivotal discussions in early stages of the
project. We would also like to thank Kuan Fang, Siddharth Karamcheti, and Albertyna
Osińska for useful discussions and feedback.

128

10

S E M A N T I C G U E S S W O R K A S A H E U R I S T I C F O R P L A N N I N G

Synopsis

This chapter discusses another mechanism of using the inherent knowledge stored in
Large Language Models (LLMs) for solving long-range planning tasks. Navigation
in unfamiliar environments presents a major challenge for robots: while mapping
and planning techniques can be used to build up a representation of the world,
quickly discovering a path to a desired goal in unfamiliar settings with such methods
often requires lengthy mapping and exploration. Humans can rapidly navigate
new environments, particularly indoor environments that are laid out logically, by
leveraging semantics — e.g., a kitchen often adjoins a living room, an exit sign
indicates the way out, and so forth. Language models can provide robots with such
knowledge, but directly using language models to instruct a robot how to reach
some destination can also be impractical: while language models might produce a
narrative about how to reach some goal, because they are not grounded in real-world
observations, this narrative might be arbitrarily wrong. Therefore, in this paper we
study how the “semantic guesswork” produced by language models can be utilized
as a guiding heuristic for planning algorithms. Our method, Language Frontier Guide
(LFG), uses the language model to bias exploration of novel real-world environments
by incorporating the semantic knowledge stored in language models as a search
heuristic for planning with either topological or metric maps. We evaluate LFG
in challenging real-world environments and simulated benchmarks, outperforming
uninformed exploration and other ways of using language models.

10.1 introduction

Navigation in complex open-world environments is conventionally viewed as the largely
geometric problem of determining collision-free paths that traverse the environment from

Shah†, Equi†, Osinski, Xia, Ichter, Levine, ”Navigation with Large Language Models: Semantic Guesswork as a
Heuristic for Planning”, in Annual Conference on Robot Learning (CoRL) 2023
Project website: sites.google.com/view/lfg-nav

129

https://sites.google.com/view/lfg-nav

Query: Find the gas stove.
LLM as Planner LFG

“Look for the gas stove in
the kitchen.”

Go Straight

“I see a refrigerator and microwave in
front of me. These appliances are usually
in the kitchen, and gas stoves are in the
kitchen.
Let’s explore in this direction!”

“I see a door to my left that looks like a
bedroom. People don’t keep gas stoves
in the bedroom.
Let’s avoid this region.”

Figure 55: In constrast to methods that use LLM plans directly, Language Frontier Guide (LFG)
uses a language model to score subgoal candidates, and uses these scores to guide a heuristic-based
planner.

one location to another. However, real-world environments possess semantics. Imagine
navigating an airport to get to a terminal: your prior knowledge about the way such
buildings are constructed provides extensive guidance, even if this particular airport is
unfamiliar to you. Large language models (LLMs) and various language embedding
techniques have been studied extensively as ways to interpret the semantics in user-
specified instructions (e.g., parsing “go to the television in the living room” and grounding
it in a specific spatial location), but such models can provide much more assistance
in robotic navigation scenarios by capturing rich semantic knowledge about the world.
For instance, when looking for a spoon in an unseen house, the LLM can produce a
“narrative” explaining why going towards a dishwasher may eventually lead you to find
the spoon, and that the robot should prioritize that direction. This is similar to how a
person might imagine different ways that the available subgoals might lie on the path
to the goal, and start exploring the one for which this ”narrative” seems most realistic.
However, since language models are not grounded in the real world, such models do not
know the spatial layout of the robot’s surroundings (e.g., there is a couch that the robot
needs to circumnavigate). To utilize the semantic knowledge in language models to aid
in embodied tasks, we should not just blindly follow the language model suggestions, but
instead use them as proposals or navigational heuristics. In this paper, we study how
that might be accomplished.

We study this idea in the context of visual navigation, where a robot is tasked with
reaching a goal denoted by a natural language query q (see Fig. 55) in a novel environment
using visual observations. The robot has no prior experience in the target environment,
and must explore the environment to look for the goal. While narratives generated by
an LLM may not be sufficient for navigation by themselves, they contain useful cues
that can be used to inform or guide the behavior of the underlying navigation stack for
the language navigation task (e.g., by choosing between collision-free subgoal proposals
that avoid the couch and lead to the ice tray). We show that this idea can be combined
with frontier-based exploration, where the robot maintains a set of unvisited locations
at its frontier, grounds them in text using a vision-language model (VLM), and scores the
unvisited subgoals by using LLM reasoning.

130

We propose Language Frontier Guide, or LFG, a method for leveraging the reasoning
capabilities of LLMs to produce a search heuristic for guiding exploration of previously
unseen real-world environments, combining the strengths of search-based planning with
LLM reasoning. LFG is agnostic of the memory representation and planning framework,
and can be combined with both (i) a geometric navigation pipeline, building a metric
map of the environment for planning and using a hand-designed controller, as well as (ii)
a learning-based navigation pipeline, building a topological map for planning and using
a learned control policy, yielding a versatile system for navigating to open-vocabulary
natural language goals. Our experiments show that LFG can identify and predict simple
patterns in previously unseen environments to accelerate goal-directed exploration. We
show that LFG outperforms other LLM-based approaches for semantic goal-finding in
challenging real-world environments and on the Habitat ObjectNav benchmark.

10.2 related work

Learning-based approaches to navigation can exploit patterns in the training environ-
ments, particularly by learning vision-based navigation strategies through reinforcement
or imitation [9, 225, 96, 234, 242, 208]. Our work is related to PONI [208], which uses
a learned potential function to prioritize frontier points to explore; instead, we use a
language model to rank these points. Notably, these methods do not benefit from prior
semantic knowledge (e.g., from the web), and must rely entirely on patterns discovered
from offline or online navigational data. Our aim is specifically to bring semantic knowl-
edge into navigation, to enable robots to more effectively search for a goal in a new
environment.

Prior knowledge about the semantics of indoor environments can provide significantly
richer guidance. With the advent of effective open-vocabulary vision models [40, 205],
some works have recently explored incorporating their semantic knowledge into models
for navigation and other robotic tasks with the express aim of improving performance
at instruction following [166, 168, 33, 105, 235]. In general within robotics, such methods
have either utilized pre-trained vision-language representations [244, 231, 117], or used
language models directly to make decisions [59, 175, 249, 287, 56, 158]. Our aim is
somewhat different: while we also focus on language-specified goals, we are primarily
concerned with utilizing the semantics in pre-trained language models to help a robot
figure out how to actually reach the goal, rather than utilizing the language models to
more effectively interpret a language instruction. While language models can output
reasonable substeps for temporally extended tasks in some settings [110, 111], there is
contradictory evidence about their ability to actually plan [272], and because they are
unaware of the observations and layout in a particular environment, their “plans” depend
entirely on the context that is provided to them. In contrast to prior work, our approach
does not rely on the language model producing a good plan, but merely a heuristic that

131

can bias a dedicated planner to reach a goal more effectively. In this way, we use the
language models more to produce suggestions rather than actual plans.

Chapter 9 and similar works have sought to combine predictions from language
models with either planning or probabilistic inference [108, 235], so as to not rely entirely
on forward prediction from the language model to take actions. However, these methods
are more aimed at filtering out infeasible decisions, for example by disallowing actions that
a robot is incapable of performing, and still focus largely on being able to interpret and
process instructions, rather than using the language model as a source of semantic hints.
In contrast, by incorporating language model suggestions as heuristics into a heuristic
planner, our approach can completely override the language model predictions if they
are incorrect, while still making use of them if they point the way to the goal.

Another branch of recent research [119, 106, 61] has taken a different approach to
ground language models, by making it possible for them to read in image observations
directly. While this represents a promising alternative approach to make language models
more useful for embodied decision making, we believe it is largely orthogonal and com-
plementary to our work: although vision-language models can produce more grounded
inferences about the actions a robot should take, they are still limited only to guess-
ing when placed in unfamiliar environments. Therefore, although we use ungrounded
language-only models in our evaluation, we expect that our method could be combined
with vision-language models easily, and would provide complementary benefits.

10.3 problem formulation and overview

Our objective is to design a high-level planner that takes as input a natural language query
q (e.g., “find the bedside table”), explores the environment in search of the queried object,
and commands a low-level policy to control a robotic agent. To do this, we maintain
an episodic memory of the environment M in the form of either (i) a 2D map of the
environment, where grid cells contain information about occupancy and semantic labels,
or (ii) a topological map of the environment, where nodes contain images captured by
the robot and corresponding object labels. One way to solve this task is Frontier-Based
Exploration (FBE) [291], where a robot maintains a set of unexplored frontiers in it’s
memory, and explores randomly to reach the goal. Can we do better with access to LLMs?

We distill the language-guided exploration task to a heuristic-based search problem,
where the robot must propose unvisited subgoals or waypoints, score them, and then use
a search algorithm (e.g., A*) to plan a path to the goal. Thus, at the core of LFG is the
task of scoring subgoal proposals. Formally, let’s assume we have the task by query q, a
partially explored environment stored inM, and a set S of n textual subgoal proposals
s1, s2, . . . , sn (e.g., “a corner with a dishwasher and refrigerator”, “a hallway with a door”,
etc.). Our goal is to score these subgoal proposals with p(si, q,M), the probability that
the candidate si ∈ S will lead to the goal q given the current state of the environment,
described throughM.

132

I observe the following clusters of objects while exploring a

house:

1. couch 2. wooden chair 3. refrigerator

Where should I avoid spending time searching if I am looking

for a gas stove?

… You should always provide justification …

[... prompt …] [... prompt …]
I observe the following clusters of objects while exploring

a house:

1. couch 2. wooden chair 3. refrigerator

Where should I search next if I am looking for a gas stove?

… You should always provide justification …
1 2 3

Combined Scores

n s
sa

m
p

le
s

Figure 56: LFG scores subgoals with an empirical estimate of the likelihoods by sampling an LLM
ns times with both positive and negative prompts, and uses chain-of-thought to obtain reliable
scores. These scores are used by a high-level planner as heuristics to guide search. For full prompts,
see Appendix F.2.

We posit that we can leverage the semantic reasoning capabilities of LLMs by prompt-
ing them to construct narratives about which semantic regions of the environment are
most (and least) likely to lead to the goal. While the narrative itself might be ungrounded,
since the LLM knows very little about the environment, reasoning over objects and
semantic regions of the environment often generalizes very broadly. For example, even
without seeing a new apartment, a human would guess that the dining area is close to
the kitchen. Hence, rather than directly using LLM scores for planning [111, 158], we
incorporate them as a goal-directed heuristic to inform the search process. This has two
distinct advantages: (i) when the LLM is right, it nudges the search towards the goal,
and when it is wrong (or uncertain), we can still default to the underlying FBE algorithm,
allowing recovery from LLM failures, and (ii) it allows us to combine the signal from
LLMs with other scores that may be more grounded, e.g. distance to subgoals, making
the system more versatile.

10.4 lfg : scoring subgoals by polling llms

Our aim in this section is to derive a scoring function from LLMs that takes a textual
description of subgoal candidates si and the goal query q as inputs, and predicts task-
relevant probability p(si, q,M), conditioned on the episodic memory M. While we
may obtain this from next-token likelihoods (or “logprobs”), they do not represent the
desired task-relevant probability p(si, q,M), and fail to assign similar scores, say, to
different subgoals that are semantically similar but have different tokenizations (see our
experiments in Section 10.6 for a comparison). Furthermore, most capable LLMs of today
are available through APIs that do not expose the ability to query logprobs.1 And lastly,
even if reliable logprobs were available, they are incompatible with chain-of-thought
prompting [281], which we find to be crucial to success in spatial reasoning.

1 Most notably, OpenAI’s Chat API for GPT-3.5 and GPT-4, Google’s PaLM API, and Anthropic’s Claude
API all do not support logprobs.

133

To overcome these challenges, LFG uses a novel approach to extract task-relevant
likelihoods from LLMs. Given candidate subgoal images, LFG uses a VLM to obtain a
textual subgoal desriptor si, which must be scored with the LLM. LFG polls the LLMs
by sampling the most likely subgoal ns times, conditioned on a task-relevant prompt.
We then use these samples to empirically estimate the likelihood of each subgoal. To
get informative and robust likelihood estimates, we use a chain-of-thought prompting
(CoT) technique [281], to improve the quality and interpretability of the scores, and use a
combination of positive and negative prompts to gather unbiased likelihood estimates.
Figure 56 outlines our scoring technique, with the full prompt provided in Appendix F.2.
We now describe the details of our scoring technique.

structured query : We rely on in-context learning by providing an example of a
structured query-response pair to the LLM, and ask it to pick the most likely subgoal
that satisfies the query. To sample a subgoal from S using a language model, we prompt
it to generate a structured response, ending with “Answer: i”. This structure allows us
to always sample a valid subgoal, without having to ground LLM generations in the
environment [110].

positives and negatives : We find that only using positive prompts (e.g., “which
subgoal is most likely to reach the goal”) leads to likelihood estimates being uninformative
for cases where the LLM is not confident about any subgoal. To overcome this, we also use
negative prompts (e.g., “which subgoal is least likely to be relevant for the goal”), which
allows us to score subgoals by eliminating/downweighting subgoals that are clearly
irrelevant. We then use the difference between the positive and negative likelihoods to
rank subgoals.

Algorithm 9 Scoring Subgoals with LFG

1: Input: Subgoal descriptors {li∀si ∈ S}
2: pPrompt← PositivePrompt({li})
3: nPrompt← NegativePrompt({li})
4: pSamples← [sampleLLM(pPrompt) ∗ ns]
5: nSamples← [sampleLLM(nPrompt) ∗ ns]
6: pScores← sum(pSamples) / ns
7: nScores← sum(nSamples) / ns
8: return pScores, nScores

chain-of-thought prompting : A crucial component of getting interpretable and
reliable likelihood estimates is to encourage the LLM to justify its choice by chain-of-
thought prompting. As demonstrated in prior works, CoT elicits interpretability and
reasoning capabilities in LLMs, and while we don’t explicitly use the generated reasonings
in our approach (great future work direction), we find that CoT improves the quality and

134

Goal Category
Sink Language Model Scoring

Heuristic-based
Exploration Policy

“avoid the couch”

“explore near oven” 1 2 3

Observations
(RGBD + Pose)

Metric
Topological

Episodic Memory
(Topological or Metric)

Control Policy
(Learned or

Deterministic)

Figure 57: Overview of LFG for language-guided exploration. Based on the pose and observations,
LFG builds an episodic memory (topological or metric), which is used by the heuristic-based
exploration policy to rank adjacent clusters, or subgoal frontiers. Navigation to the subgoal
frontier is completed by a low-level policy.

consistency of the likelihood estimates. Additionally, it also helps maintain interpretability,
to better understand why the LFG-equipped agent takes certain decisions.

In summary, we score subgoals by sampling the LLM multiple times and empirically
estimating the likelihood of each subgoal. We use a combination of positive and negative
prompts to get unbiased likelihood estimates, and use chain-of-thought prompting to
improve the quality and interpretability of the scores (Figure 56). We will now discuss
how these scores can be incorporated into a navigation system as search heuristics.

10.5 llm heuristics for goal-directed exploration

Given the LLM scoring pipeline outlined in the previous section, our key insight is that
we can incorporate these scores in a search-based planning pipeline to heuristically guide
the search process. We instantiate LFG using frontier-based exploration (FBE) and LLM
scores generated via polling.

fbe : This method maintains a “map” of the seen parts of the environment, which may
be geometric [81] or topological [232], and a frontier separating it from the unexplored
parts. By navigating to the nearest point of the frontier, the robot explores new areas of
the environment until it finds the goal object or completes exploration without finding
it. A standard FBE implementation is presented in Algorithm 10 inblack text. The robot
maintains either a 2D metric map of its surroundings, or a topological map whose nodes
are comprised of the robot’s visual observations and edges represent paths taken in

135

the environment. Additionally, we also store semantic labels corresponding to objects
detected in the robot’s observations, which are used to ground the observations in text.

At a fixed re-planning rate, the high-level planner computes its frontier fi (Line 12),
and picks the frontier point that is closest to the current location, i.e., maximizing the
distance score (Line 18), and then navigates to this frontier (Line 26). At any point in
this process, if the agent’s semantic detector detects an object of the same category as the
query q, it navigates directly to this object and the trajectory ends.

incorporating llm scores : Our method, LFG, extends FBE by using an additional
search heuristic obtained by polling LLMs for semantic “scores”. The modifications to
FBE are marked in purple in Algorithm 10. After enumerating the frontiers, LFG uses the
semantic labels from a VLM [301] to ground subgoal images at each frontier fi (Line 13).
These images are converted into textual strings, and form the subgoal candidates si that
can be scored using Algorithm 9. We associate each frontier point fi with the nearest
object cluster ci (Line 19), and compute LLM scores for each point as follows:

h(fi, q) = wp · LLMpos(ci)− wn · LLMneg(ci)− dist(fi, p), (15)

where p is the current position of the agent, and wp, wn are hyperparameters (see Ap-
pendix F.1.1). We then choose the frontier with the highest score to be the next subgoal
(Line 26), navigate to it using a local controller, and repeat the planning process. Algo-
rithm 10 outlines the general recipe for integrating LLM scores as a planning heuristic.
Please see Appendix F.1 for specific instantiations of this system with geometric and
topological maps, and more details about the referenced subroutines.

10.6 system evaluation

We now evaluate the performance of LFG for the task of goal-directed exploration in real-
world environments, and benchmark its performance against baselines. We instantiate
two systems with LFG: a real-world system that uses a topological map and a learned
control policy, and a simulated agent that uses a geometric map and a deterministic
control policy. Our experiments show that both these systems outperform existing
LLM-based exploration algorithms by a wide margin, owing to the high quality scores
incorporated as search heuristics.

10.6.1 Benchmarking ObjectNav Performance

We benchmark the performance of LFG for the task of object-goal navigation on the
Habitat ObjectNav Challenge [288], where the agent is placed into a simulated environ-
ment with photo-realistic graphics, and is tasked with finding a query object from one
of 10 categories (e.g., “toilet”, “bed”, “couch” etc.). The simulated agent has access to
egocentric RGBD observations and accurate pose information. We run 10 evaluation

136

Query: Find the potted plant.

LLM: “plants are not typically

found in bedrooms or around

furniture, so we should avoid

cluster 1, 2, and 3”

Agent succeeds!

Figure 58: Qualitative example of a negative score influencing the agent’s decision. LFG
discourages the agent from exploring the bedroom and living room, leading to fast convergence
toward the goal, whereas FBE fails. The CoT reasoning given by the LLM is shown in purple,
justifying its score.

episodes per scene and report two metrics: the average success rate, and success weighted
by optimal path length (SPL), the default metrics for the benchmark. Since LFG requires
no training, we do not use the training scenes from HM3D.

We compare to three classes of published baselines: (i) learning-based baselines
that learn navigation behavior from demonstrations or online experience in the training
scenes [283] on up to 2.5B frames of experience, (ii) search-based baselines [29, 81], and
(iii) LLM-based baselines that do not use the training data directly, but leverage the
semantic knowledge inside foundation models to guide embodied tasks [296, 59].

Evaluating LFG on the HM3D benchmark, we find that it significantly outperforms
search and LLM-based baselines (Table 11). Greedy LLM struggles on the task due to
several LLM planning failures, causing the episodes to fail. LFG significantly outperforms
the vanilla FBE baseline by leveraging semantic priors from LLMs to score subgoals
intelligently. Comparing to learning-based baselines, we find that LFG outperforms most
of them and closely matches the state-of-the-art on the task, proving the competence
of our polling and heuristic approach. Figure 58 shows an example of the LFG agent
successfully reaching the goal by using chain-of-thought and negative prompting.

L3MVN [296], which uses a combination of LLMs and search, performs slightly better
than FBE, but is unable to fully leverage the semantics in LLMs. While being similar to
LFG, it suffers from two key limitations: (i) it uses a small language model (GPT-2), which
likely does not contain strong semantic priors for the agent to leverage, and (ii) it uses
a simple likelihood-based scoring scheme, which we show below is not very effective.
Another closely related work, LGX [59], uses a variant of greedy LLM scoring, and hence
fails to perform reliably on the benchmark.

Probing deeper into the strong performance of LFG, we ablated various components
of our scoring pipeline and studied the change in performance. Note that LGX (Greedy)
and L3MVN (No CoT, Logprobs) can be seen as ablations of LFG. Table 12 shows that
modifying both the prompting and scoring mechanisms used by LFG lead to large

137

Query: Find a Toilet

LLM: “toilets are not typically found in bedrooms

kitchens, but it is more likely that a bathroom is near

a bedroom so we should explore the bedroom first”

A
BC

D

A B C D

Figure 59: Qualitative example of LFG in real. LFG reasons about floor plans in the environment
it is searching. In this apartment experiment, LFG believes that a bathroom is more likely to
be found near a bedroom rather than a kitchen, and guides the robot towards the bedroom,
successfully reaching the goal.

drops in performance. Most notably, scoring via polling (+7.8%) and CoT (+6.6%) are
both essential to the strong performance of LFG. Furthermore, we find that using only
positive prompts also hurts performance (−4.7%). Popular approaches for using LLMs
for planning are significantly outperformed by LFG: Greedy (−14.5%) and Logprobs
(−8.5%). Figure 58 shows an example of the LFG agent successfully reaching the goal by
using CoT and negative prompting.

setup : For these experiments, we mimic the semantic mapping pipeline of the best-
performing baseline on the benchmark [29, 81], and integrate LFG with the geometric
map. The simulated agent builds a 2D semantic map of its environment, where grid cells
represent both occupancy and semantic labels corresponding to objects detected by the
agent. Prior work has shown that state-of-the-art vision models, such as DETIC, work
poorly in simulation due to rendering artifacts [81]; hence, we use ground-truth semantic
information for all simulated baselines to analyze navigation performance under perfect
perception.

10.6.2 Real-world Exploration with LFG

To show the versatility of the LFG scoring framework, we further integrated it with a
heuristic-based exploration framework that uses topological graphs for episodic mem-
ory [232]. We compare two published baselines: a language-agnostic FBE baseline [238],
and an LLM-based baseline that uses the language model to greedily pick the frontier [59].

138

Method Success SPL Data

DD-PPO [283] 27.9 14.2 2.5B
FBE [81] 61.1 34.0 0

SemExp [29] 63.1 0.29 10M
OVRL-v2 [290] 64.7 28.1 12M

Greedy LLM [59] 54.4 26.9 0
L3MVN [296] 62.4 0
LFG (Ours) 68.9 36.0 0

Table 11: LFG outperforms all LLM-based base-
lines on HM3D ObjectNav benchmark, and can
achieve close to SOTA performance without
any pre-training.

Method Success ∆

LFG (Full) 68.9 –

Prompting
No CoT 62.3 (6.6)
Only Positives 64.2 (4.7)

Scoring
Random 61.1 (7.8)
Logprobs 60.4 (8.5)
Ask 62.4 (6.5)

Table 12: We find that CoT prompting with posi-
tives and negatives, combined with polling, are
essential to achieve the best performance.

We evaluate this system in two challenging real-world environments: a cluttered
cafeteria and an apartment building (shown in Figures 57 and 59). In each environment,
the robot is tasked to reach an object described by a textual string (e.g., “kitchen sink” or
“oven”), and we measure the success rate and efficiency of reaching the goal. Episodes that
take longer than 30 minutes are marked as failure. While we only tested our system with
goal strings corresponding to the 20,000 classes supported by our object detector [301],
this can be extended to more flexible goal specifications with the rapid progress in
vision-language models.

We find that the complexity of real-world environments causes the language-agnostic
FBE baseline to time out, i.e., the robot is unable to reach the goal by randomly exploring
the environment. Both LLM baselines are able to leverage the stored semantic knowledge
to guide the exploration in novel environments, but LFG achieves 16% better performance.
Figure 59 shows an example rollout in a real apartment, where the robot uses LFG to
reach the toilet successfully.

setup : We instantiate LFG in the real-world using a previously published topological
navigation framework [232] that builds a topological map of the environment, where
nodes correspond to the robot’s visual observations and edges correspond to paths
traversed in the environment. This system relies on omnidirectional RGB observations
and does not attempt to make a dense geometric map of the environment. To obtain
“semantic frontiers” from the omnidirectional camera, we generate nv = 4 views and run
an off-the-shelf object detector [301] to generate rich semantic labels describing objects in
these views. The robot maintains a topological graph of these views and semantic labels,
and picks the frontier view with the highest score (Algorithm 10, Line 26) according to
LFG. The robot then uses a Transformer-based policy [242, 254] to reach this subgoal. For
more implementation details, see Appendix F.1.3.

139

10.7 discussion

We presented LFG, a method for utilizing language models for semantic guesswork to
help navigate to goals in new and unfamiliar environments. The central idea in our
work is that, while language models can bring to bear rich semantic understanding,
their ungrounded inferences about how to perform navigational tasks are better used as
suggestions and heuristics rather than plans. We formulate a way to derive a heuristic
score from language models that we can then incorporate into a planning algorithm,
and use this heuristic planner to reach goals in new environments more effectively. This
way of using language models benefits from their inferences when they are correct, and
reverts to a more conventional unguided search when they are not.

limitations and future work While our experiments provide a validation of our
key hypothesis, they have a number of limitations. First, we only test in indoor environ-
ments in both sim and real yet the role of semantics in navigation likely differs drastically
across domains – e.g., navigating a forest might implicate semantics very differently than
navigating an apartment building. Exploring the applicability of semantics derived from
language models in other settings would be another promising and exciting direction for
future work. Second, we acknowledge that multiple requests to cloud-hosted LLMs with
CoT is slow and requires an internet connection, severely limiting the extent of real-world
deployment of the proposed method. We hope that ongoing advancements in quantizing
LLMs for edge deployment and fast inference will address this limitation.

acknowledgments

This research was partly supported by AFOSR FA9550-22-1-0273 and DARPA ANSR.
The authors would like to thank Bangguo Yu, Vishnu Sashank Dorbala, Mukul Khanna,
Theophile Gervet, and Chris Paxton, for their help in reproducing baselines. The authors
would also like to thank Ajay Sridhar for supporting real-world experiments, and De-
vendra Singh Chaplot, Jie Tan, Peng Xu, and Tingnan Zhang, for useful discussions in
various stages of the project.

140

Algorithm 10 Instantiating LFG for Goal-Directed Exploration

1: Input: o0, Goal language query q
2: subgoal← None
3: while not done do
4: ot ← getObservation()
5: episodicMemory← mappingModule(ot)
6: if q in semanticMap then
7: subGoal← getLocation(episodicMemory, q)
8: else
9: if numSteps % τ == 0 then

10: // replanning
11: location← getCurrentLocation()
12: frontier← getFrontier(episodicMemory)
13: objectClusters← getSemanticLabels(episodicMemory, frontier)
14: LLMpos, LLMneg ← ScoreSubgoals(objectClusters)
15: scores← []
16: for point in frontier do
17: distance← DistTo(location, point)
18: scores[point]← - distance
19: closestCluster← getClosestCluster(objectClusters, point)
20: i← clusterID(closestCluster)
21: if dist(closestCluster, point) < δ then
22: // incorporate language scores
23: scores[point]← wp · LLMpos[i]− wn · LLMneg[i]− distance
24: end if
25: end for
26: subgoal← argmax(scores)
27: end if
28: end if
29: numSteps← numSteps +1
30: goTo(subGoal)
31: end while

141

11

C O N C L U S I O N

In this dissertation, we presented a recipe for deploying intelligent robots in open-world
environments by training cross-embodiment robot foundation models, and combining
them with internet foundation models of language and vision. We explored the design
space of datasets, algorithms and architectures for large-scale robot learning (Chap-
ters 2–5), proposed the idea of cross-embodiment policy learning and open-sourced
three increasingly capable variants of navigation foundation models (Chapters 6–8), and
proposed a novel planning based framework that can combine these RFMs with pre-
trained vision and language models to follow natural language instructions in real-world
environments (Chapters 9–10).

We are particularly excited about the role of plug-and-play robot foundation models
(Definition 1) in reducing the entry barrier to robotics and embodied AI for both re-
searchers and practitioners, and in addressing the reproducibility crisis in robot learning.
Broadly capable robot models that can be deployed in any environment and on any
robot will enable ever increasing number of downstream of applications, and improve
reliability of empirical evaluations in real-world experiments. Robot foundation models
open-sourced as a part of this dissertation have already been deployed in-the-wild on 25+
robotic systems around the world, ranging from campus delivery robots in Finland [258],
to an autonomous orienteering robot in Estonia1, drones in Princeton [247], and an
industrial autonomous overhead crane2.

While the specific formulation of cross-embodiment learning in this dissertation is
limited to visual navigation, there is a lot of promise in extending this idea to a broader
set of tasks. Preliminary investigations in robotic manipulation, performed as a part of
the Open X-Embodiment Collaboration, indeed show that formulating the problem in a
similar way — by homogenizing the observation and action spaces, using an embodiment
prompt, and training on heterogeneous cross-embodiment datasets — indeed enables
broad generalization and positive transfer across various robotic embodiments, such as a
WidowX robot in Berkeley, a Franka Emika Panda in Germany, and Hello Robot Stretch in
New York City [195]. We also see similar positive signals when exploring more complex
problems like egocentric manipulation and mobile manipulation, where a combination of
clever architectures and aligning action spaces across robots enables generalization across

1 Autonomous Driving Lab @ University of Tartu
2 Konecranes

142

https://adl.cs.ut.ee
https://www.konecranes.com

mobility and manipulation, and opens doors to training a single robot policy across a
broader set of robots [293]. Despite these signals, it must be noted that assumptions
like homogenized action spaces tend to hurt dexterous tasks a lot more than the simpler
navigation tasks, since a lot of embodiment-specific information is abstracted away from
the model. However, we remain optimistic of the potential of sharing data across robotic
embodiments, and hope that future research will help bridge this gap to more dexterous
and fine-grained control.

Finally, we acknowledge that training highly capable pre-trained backbones is an
important, but small, piece in the larger puzzle of building robots that are ready for
open-world deployment. Deployment of intelligent robots in challenging, unstructured
environments will require critical breakthroughs in adjacent areas of robotics and ma-
chine learning, such as robust fine-grained manipulation hardware, continual learning,
reinforcement learning, efficient edge computing, flexible neural network architectures,
generative modeling, safety, fast online adaptation, and much more.

open problems and future avenues

We foresee a number of exciting research directions that can be enabled by the research
presented in this dissertation:

Scaling up cross-embodiment learning. Building on the presented work on cross-
embodiment learning in navigation [234, 242], we anticipate exploration of its merits as a
general framework for learning-based grasping, locomotion, and mobile manipulation. In a recent
collaboration, we found that cross-embodiment training can indeed help grasping [195],
but we are yet to effectively use the large amount of robot data we have access to. This
presents a unique opportunity in machine learning, where data is typically expensive,
and we plan to design architectures and algorithms that can learn useful behaviors from
large-scale data. It would also be exciting to explore applications of these generalizable
policies to scenarios where robots do not have access to high-quality sensors beyond RGB
cameras (e.g., underwater exploration, miniature robots), and with limited potential for
simulation or data collection (e.g., drones with limited battery life, robot-assisted vascular
surgery, search-and-rescue in forests and other dense unstructured environments).

Safety and robustness. Robots deployed in physical spaces must exhibit robustness to
environmental perturbations and avoid unsafe maneuvers, that can lead to catastrophic
consequences. Our work (Chapter 6) has shown that generalization of cross-embodiment
policies leads to emergent robustness to natural and adversarial factors of perturbation,
such as varying lighting conditions, rain or damaged hardware. While these learned
policies were empirically robust, they are not guaranteed to be safe. Previous work [51]
has developed a suitable solution lies in combining empirically robust policies with a
“fallback” verifiable planner, which could be an interesting avenue to explore. Another

143

mechanism is to have safety constraints that can be incorporated during deployment
using sample-efficient online RL, which has shown great promise for autonomous im-
provement in recent work [233]. This can enable exploring self-supervised reward signals
for out-of-distribution detection and automatically learning recovery maneuvers from
suboptimal data.

How might robotics help language, vision, and generative model research? The
rise of large generative models of language and vision has enabled a large number of
useful applications that leverage these foundation models, trained on internet-scale text
and images, to provide a simplistic version of “commonsense reasoning”. However,
these models are not grounded in the physical world and tend to hallucinate missing
details. Our preliminary investigations suggest that language models can be grounded
by combining them with skill-based affordances [240, 108], treating robots as a consumer
of knowledge stored in these models. A further exciting direction could be the ability
to jointly train foundation models of language, vision, and robot control, which can be
trained on internet-scale data and simultaneously, be grounded in the physical world.
Cognitive scientists believe that embodied intelligence in humans emerges as a result
of sensorimotor activity (the embodiment hypothesis [273]). Its an exciting time to test
this hypothesis for artificial intelligence using the abundance of cross-embodiment data,
combined with internet-scale text, images and videos. We believe that data from real-
world interactions of robots and control-based training objectives can lead to improved
grounded reasoning in large language and vision models, and will design algorithms and
systems that can leverage large-scale robot data.

How might robots co-exist with humans? In the future, robots will not exist in
instrumented, static environments with a well-defined task, but co-habitate spaces with
humans. They need to understand how humans interact with them, how humans are
influenced by them, and how humans can help robots to cooperatively accomplish tasks
such as cleaning a house, preparing a meal, or stocking inventory in a hospital. This
poses two interesting challenges that I am excited to explore: (i) How do we model the rich
interactions between humans and robots?, and (ii) How do we incorporate human feedback into the
autonomous learning process, so robots can be better assistants and companions? Understanding
these questions will be imperative to the deployment of autonomous robots in open-world
environments alongside humans.

144

B I B L I O G R A P H Y

[1] Alessandro Achille and Stefano Soatto. “Emergence of invariance and disentan-
glement in deep representations”. In: The Journal of Machine Learning Research 19.1
(2018), pp. 1947–1980.

[2] Evan Ackerman. “Skydio demonstrates incredible obstacle-dodging full autonomy
with new R1 consumer drone”. In: IEEE Spectrum (2018).

[3] Ali Agha et al. NeBula: Quest for Robotic Autonomy in Challenging Environments;
TEAM CoSTAR at the DARPA Subterranean Challenge. 2021.

[4] Michael Ahn et al. “Do As I Can, Not As I Say: Grounding Language in Robotic
Affordances”. In: arXiv preprint arXiv:2204.01691. 2022.

[5] Jean-Baptiste Alayrac et al. Flamingo: a Visual Language Model for Few-Shot Learning.
2022.

[6] Alexander A Alemi et al. “Deep variational information bottleneck”. In: arXiv
preprint arXiv:1612.00410 (2016).

[7] Peter Anderson et al. On Evaluation of Embodied Navigation Agents. 2018. arXiv:
1807.06757 [cs.AI].

[8] Peter Anderson et al. “Sim-to-Real Transfer for Vision-and-Language Navigation”.
In: Proceedings of the 2020 Conference on Robot Learning. 2021.

[9] Peter Anderson et al. “Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments”. In: IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 3674–3683.

[10] Marcin Andrychowicz et al. “Hindsight Experience Replay”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. 2017.

[11] Mikel Artetxe et al. “Efficient large scale language modeling with mixtures of
experts”. In: arXiv preprint arXiv:2112.10684 (2021).

[12] Ruzena Bajcsy, Yiannis Aloimonos, and John K Tsotsos. “Revisiting active percep-
tion”. In: Autonomous Robots (2018).

[13] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. “ChauffeurNet: Learning to
Drive by Imitating the Best and Synthesizing the Worst”. In: Robotics: Science and
Systems (RSS). 2019.

[14] Marc G Bellemare et al. “Unifying count-based exploration and intrinsic motiva-
tion”. In: arXiv preprint arXiv:1606.01868 (2016).

145

https://arxiv.org/abs/1807.06757

[15] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. “Estimating or Propa-
gating Gradients Through Stochastic Neurons for Conditional Computation”. In:
ArXiv (2013).

[16] Joydeep Biswas and Manuela M. Veloso. “Localization and navigation of the
CoBots over long-term deployments”. In: The International Journal of Robotics Re-
search (2013).

[17] Sid Black et al. GPT-NeoX-20B: An Open-Source Autoregressive Language Model. 2022.

[18] Valts Blukis et al. “Following High-level Navigation Instructions on a Simulated
Quadcopter with Imitation Learning”. In: CoRR (2018).

[19] Johann Borenstein and Yoram Koren. “Real-time obstacle avoidance for fast mobile
robots”. In: IEEE Transactions on systems, Man, and Cybernetics (1989).

[20] F. Bourgault et al. “Information based adaptive robotic exploration”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2002.

[21] Anthony Brohan et al. “RT-1: Robotics Transformer for Real-World Control at
Scale”. In: arXiv preprint (2023).

[22] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in
Neural Information Processing Systems. 2020.

[23] Jake Bruce et al. “Learning Deployable Navigation Policies at Kilometer Scale from
a Single Traversal”. In: Conference on Robot Learning (CoRL). 2018.

[24] Yuri Burda et al. “Exploration by random network distillation”. In: arXiv preprint
arXiv:1810.12894 (2018).

[25] Nicholas Carlevaris-Bianco, Arash K Ushani, and Ryan M Eustice. “University of
Michigan North Campus long-term vision and lidar dataset”. In: The International
Journal of Robotics Research (2016).

[26] Joao Carreira and Andrew Zisserman. “Quo Vadis, Action Recognition? A New
Model and the Kinetics Dataset”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2017.

[27] Matthew Chang, Arjun Gupta, and Saurabh Gupta. “Semantic Visual Navigation
by Watching Youtube Videos”. In: Neural Information Processing Systems (NeurIPS).
2020.

[28] Devendra Singh Chaplot et al. “Learning to Explore using Active Neural SLAM”.
In: International Conference on Learning Representations (ICLR). 2020.

[29] Devendra Singh Chaplot et al. “Semantic Curiosity for Active Visual Learning”.
In: ECCV. 2020.

[30] Benjamin Charrow et al. “Information-theoretic mapping using cauchy-schwarz
quadratic mutual information”. In: IEEE International Conference on Robotics and
Automation (ICRA). 2015.

146

[31] Yevgen Chebotar et al. “Q-Transformer: Scalable Offline Reinforcement Learning
via Autoregressive Q-Functions”. In: 7th Annual Conference on Robot Learning (CoRL).
2023.

[32] Yevgen Chebotar et al. “Actionable Models: Unsupervised Offline Reinforcement
Learning of Robotic Skills”. In: arXiv preprint arXiv:2104.07749 (2021).

[33] Boyuan Chen et al. “Open-vocabulary queryable scene representations for real
world planning”. In: arXiv preprint arXiv:2209.09874 (2022).

[34] Chenyi Chen et al. “Deepdriving: Learning affordance for direct perception in
autonomous driving”. In: IEEE International Conference on Computer Vision. 2015.

[35] David L. Chen and Raymond J. Mooney. “Learning to Interpret Natural Language
Navigation Instructions from Observations”. In: Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence. 2011.

[36] Howard Chen et al. “TOUCHDOWN: Natural Language Navigation and Spa-
tial Reasoning in Visual Street Environments”. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2019.

[37] Lili Chen et al. “Decision Transformer: Reinforcement Learning via Sequence
Modeling”. In: Advances in Neural Information Processing Systems. 2021.

[38] Mark Chen et al. “Evaluating Large Language Models Trained on Code”. In: arXiv
(2021).

[39] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual Repre-
sentations”. In: International Conference on Machine Learning (ICML) (2020).

[40] Xi Chen et al. “Pali: A jointly-scaled multilingual language-image model”. In:
arXiv preprint arXiv:2209.06794 (2022).

[41] Yen-Chun Chen et al. “Uniter: Universal image-text representation learning”. In:
ECCV. 2020.

[42] Cheng Chi et al. “Diffusion Policy: Visuomotor Policy Learning via Action Diffu-
sion”. In: Robotics: Science and Systems (RSS). 2023.

[43] Hao-Tien Lewis Chiang et al. “Learning Navigation Behaviors End-to-End with
AutoRL”. In: IEEE Robotics and Automation Letters (2019).

[44] F. Codevilla et al. “End-to-End Driving Via Conditional Imitation Learning”. In:
IEEE International Conference on Robotics and Automation (ICRA). 2018.

[45] F. Codevilla et al. “End-to-End Driving Via Conditional Imitation Learning”. In:
International Conference on Robotics and Automation (ICRA). 2018.

[46] Cédric Colas et al. “CURIOUS: intrinsically motivated modular multi-goal rein-
forcement learning”. In: International conference on machine learning. PMLR. 2019.

[47] Robert Dadashi et al. “Continuous Control with Action Quantization from Demon-
strations”. In: 39th International Conference on Machine Learning (ICML). 2022.

147

[48] FR Dalgleish, SW Tetlow, and RL Allwood. “Vision-based navigation of unmanned
underwater vehicles: a survey. Part I: Vision Based Cable-, Pipeline-and Fish
Tracking”. In: Journal of Marine Design and Operations. 7. 2004, pp. 51–56.

[49] DARPA. Subterranean Challenge. 2019. url: https://www.subtchallenge.com.

[50] Sudeep Dasari, Frederik Ebert, et al. “RoboNet: Large-Scale Multi-Robot Learning”.
In: Conference on Robot Learning (CoRL). 2020.

[51] Nitish Dashora et al. “Hybrid Imitative Planning with Geometric and Predic-
tive Costs in Off-road Environments”. In: International Conference on Robotics and
Automation (ICRA). 2022.

[52] Andrew J Davison and David W Murray. “Mobile robot localisation using active
vision”. In: European conference on computer vision. Springer. 1998, pp. 809–825.

[53] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: Conference
on Computer Vision and Pattern Recognition (CVPR). 2009.

[54] Coline Devin et al. “Learning modular neural network policies for multi-task and
multi-robot transfer”. In: 2017 International Conference on Robotics and Automation
(ICRA). 2017.

[55] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische mathematik (1959).

[56] Yan Ding et al. Task and Motion Planning with Large Language Models for Object
Rearrangement. 2023.

[57] Yiming Ding et al. “Goal-conditioned Imitation Learning”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2019.

[58] Yiming Ding et al. “Goal-conditioned imitation learning”. In: arXiv preprint
arXiv:1906.05838 (2019).

[59] Vishnu Sashank Dorbala, James F. Jr. Mullen, and Dinesh Manocha. Can an Em-
bodied Agent Find Your ”Cat-shaped Mug”? LLM-Based Zero-Shot Object Navigation.
2023.

[60] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale”. In: International Conference on Learning Representations
(ICLR). 2021.

[61] Danny Driess et al. “PaLM-E: An Embodied Multimodal Language Model”. In:
arXiv preprint arXiv:2303.03378. 2023.

[62] Yan Duan et al. “RL2: Fast reinforcement learning via slow reinforcement learning”.
In: arXiv preprint arXiv:1611.02779 (2016).

[63] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. “Challenges of real-
world reinforcement learning”. In: arXiv preprint arXiv:1904.12901 (2019).

148

https://www.subtchallenge.com

[64] Lasse Espeholt et al. “IMPALA: Scalable Distributed Deep-RL with Importance
Weighted Actor-Learner Architectures”. In: ICML. 2018.

[65] Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. “Search on the Replay
Buffer: Bridging Planning and RL”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2019.

[66] Ben Eysenbach et al. “Rewriting history with inverse rl: Hindsight inference for
policy improvement”. In: Advances in Neural Information Processing Systems (2020).

[67] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. “C-Learning:
Learning to Achieve Goals via Recursive Classification”. In: arXiv preprint (2020).

[68] Kuan Fang et al. “Generalization with Lossy Affordances: Leveraging Broad Offline
Data for Learning Visuomotor Tasks”. In: 6th Annual Conference on Robot Learning.
2022.

[69] A. Faust et al. “PRM-RL: Long-range Robotic Navigation Tasks by Combining
Reinforcement Learning and Sampling-Based Planning”. In: IEEE International
Conference on Robotics and Automation (ICRA). 2018.

[70] Aleksandra Faust et al. “PRM-RL: Long-range robotic navigation tasks by combin-
ing reinforcement learning and sampling-based planning”. In: 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2018.

[71] Gilbert Feng et al. “GenLoco: Generalized Locomotion Controllers for Quadrupedal
Robots”. In: Conference on Robot Learning (CoRL). 2022.

[72] Pete Florence et al. “Implicit Behavioral Cloning”. In: 5th Annual Conference on
Robot Learning (CoRL). 2021.

[73] Patrick S. Foo et al. “Do humans integrate routes into a cognitive map? Map-
versus landmark-based navigation of novel shortcuts.” In: Journal of experimental
psychology. Learning, memory, and cognition (2005).

[74] Patrick S. Foo et al. “Do humans integrate routes into a cognitive map? Map-
versus landmark-based navigation of novel shortcuts.” In: Journal of experimental
psychology. Learning, memory, and cognition (2005).

[75] A. Francis et al. “Long-Range Indoor Navigation With PRM-RL”. In: IEEE Transac-
tions on Robotics (2020).

[76] Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and Juan Manuel Rendón-Mancha.
“Visual simultaneous localization and mapping: a survey”. In: Artificial Intelligence
Review (2015).

[77] Scott Fujimoto, David Meger, and Doina Precup. “Off-policy deep reinforcement
learning without exploration”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 2052–2062.

149

[78] Paul Furgale and Timothy D Barfoot. “Visual teach and repeat for long-range rover
autonomy”. In: Journal of Field Robotics (2010).

[79] Shani Gamrian and Yoav Goldberg. “Transfer learning for related reinforcement
learning tasks via image-to-image translation”. In: International Conference on
Machine Learning. PMLR. 2019.

[80] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. “Learning to fly by crashing”. In:
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017.

[81] Theophile Gervet et al. “Navigating to objects in the real world”. In: Science Robotics
(2023).

[82] Dibya Ghosh et al. “Learning to reach goals without reinforcement learning”. In:
arXiv preprint arXiv:1912.06088 (2019).

[83] S. Gillner and H. A. Mallot. “Navigation and Acquisition of Spatial Knowledge in
a Virtual Maze”. In: Journal of Cognitive Neuroscience (1998).

[84] Anirudh Goyal et al. “Infobot: Transfer and exploration via the information bottle-
neck”. In: arXiv preprint arXiv:1901.10902 (2019).

[85] Kristen Grauman et al. “Ego4D: Around the World in 3,000 Hours of Egocentric
Video”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2022.

[86] Jing Gu et al. “Vision-and-Language Navigation: A Survey of Tasks, Methods, and
Future Directions”. In: Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2022.

[87] Xiuye Gu et al. “Open-vocabulary Object Detection via Vision and Language
Knowledge Distillation”. In: International Conference on Learning Representations.
2022.

[88] Abhishek Gupta et al. “Learning invariant feature spaces to transfer skills with
reinforcement learning”. In: arXiv preprint arXiv:1703.02949 (2017).

[89] Meera Hahn et al. “No RL, No Simulation: Learning to Navigate without Navigat-
ing”. In: Neural Information Processing Systems (NeurIPS. 2021.

[90] Philippe Hansen-Estruch et al. IDQL: Implicit Q-Learning as an Actor-Critic Method
with Diffusion Policies. 2023.

[91] Kristian Hartikainen et al. “Dynamical Distance Learning for Semi-Supervised
and Unsupervised Skill Discovery”. In: International Conference on Learning Repre-
sentations. 2020.

[92] Elad Hazan et al. “Provably efficient maximum entropy exploration”. In: Interna-
tional Conference on Machine Learning. PMLR. 2019, pp. 2681–2691.

[93] Kaiming He et al. “Mask R-CNN”. In: 2017 IEEE International Conference on Com-
puter Vision (ICCV). 2017.

150

[94] Kaiming He et al. “Masked Autoencoders Are Scalable Vision Learners”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2022.

[95] Karl Moritz Hermann et al. “Learning To Follow Directions in Street View”. In:
CoRR (2019).

[96] Noriaki Hirose et al. “Deep visual MPC-policy learning for navigation”. In: IEEE
Robotics and Automation Letters (2019).

[97] Noriaki Hirose et al. “ExAug: Robot-Conditioned Navigation Policies via Ge-
ometric Experience Augmentation”. In: International Conference on Robotics and
Automation (ICRA). 2023.

[98] Noriaki Hirose et al. “SACSoN: Scalable Autonomous Control for Social Naviga-
tion”. In: arXiv preprint arXiv:2306.01874 (2023).

[99] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic
Models”. In: Neural Information Processing Systems. 2020.

[100] Jonathan Ho and Tim Salimans. “Classifier-free diffusion guidance”. In: arXiv
preprint arXiv:2207.12598 (2022).

[101] Dirk Holz et al. A comparative evaluation of exploration strategies and heuristics to
improve them. 2011.

[102] Matthew Honnibal et al. “spaCy: Industrial-strength natural language processing
in python”. In: (2020).

[103] Rein Houthooft et al. “Vime: Variational information maximizing exploration”. In:
arXiv preprint arXiv:1605.09674 (2016).

[104] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. 2017. arXiv: 1704.04861 [cs.CV].

[105] Chenguang Huang et al. “Visual Language Maps for Robot Navigation”. In: arXiv
preprint arXiv:2210.05714 (2022).

[106] Shaohan Huang et al. Language Is Not All You Need: Aligning Perception with Language
Models. 2023.

[107] Wenlong Huang, Igor Mordatch, and Deepak Pathak. “One Policy to Control
Them All: Shared Modular Policies for Agent-Agnostic Control”. In: International
Conference on Machine Learning (ICML). 2020.

[108] Wenlong Huang et al. Grounded Decoding: Guiding Text Generation with Grounded
Models for Robot Control. 2023.

[109] Wenlong Huang et al. “Language Models as Zero-Shot Planners: Extracting Ac-
tionable Knowledge for Embodied Agents”. In: arXiv preprint arXiv:2201.07207
(2022).

151

https://arxiv.org/abs/1704.04861

[110] Wenlong Huang et al. “Language Models as Zero-Shot Planners: Extracting Ac-
tionable Knowledge for Embodied Agents”. In: International Conference on Machine
Learning (ICML). 2022.

[111] Brian Ichter et al. “Do As I Can, Not As I Say: Grounding Language in Robotic
Affordances”. In: Annual Conference on Robot Learning (CoRL). 2022.

[112] Maximilian Igl et al. “Generalization in reinforcement learning with selective noise
injection and information bottleneck”. In: arXiv preprint arXiv:1910.12911 (2019).

[113] Vihan Jain et al. “Stay on the Path: Instruction Fidelity in Vision-and-Language
Navigation”. In: Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics. 2019.

[114] Eric Jang et al. “BC-Z: Zero-Shot Task Generalization with Robotic Imitation
Learning”. In: 5th Annual Conference on Robot Learning. 2021.

[115] Michael Janner et al. “Planning with Diffusion for Flexible Behavior Synthesis”. In:
International Conference on Machine Learning (ICML). 2022.

[116] Krishna Murthy Jatavallabhula, Ganesh Iyer, and Liam Paull. “gradSLAM: Dense
SLAM meets Automatic Differentiation”. In: CoRR (2019).

[117] Krishna Murthy Jatavallabhula et al. “ConceptFusion: Open-set Multimodal 3D
Mapping”. In: arXiv (2023).

[118] Chao Jia et al. “Scaling Up Visual and Vision-Language Representation Learning
With Noisy Text Supervision”. In: Proceedings of the 38th International Conference on
Machine Learning. 2021.

[119] Yunfan Jiang et al. “VIMA: General Robot Manipulation with Multimodal Prompts”.
In: arXiv preprint (2022).

[120] Yunfan Jiang et al. “Vima: General robot manipulation with multimodal prompts”.
In: arXiv preprint arXiv:2210.03094 (2023).

[121] Abhishek Kadian et al. “Sim2Real Predictivity: Does Evaluation in Simulation
Predict Real-World Performance?” In: IEEE Robotics and Automation Letters (2020).

[122] Leslie Pack Kaelbling. “Learning to achieve goals”. In: IJCAI. Citeseer. 1993,
pp. 1094–1099.

[123] G. Kahn et al. “Self-Supervised Deep RL with Generalized Computation Graphs
for Robot Navigation”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2018.

[124] Gregory Kahn, Pieter Abbeel, and Sergey Levine. “BADGR: An Autonomous Self-
Supervised Learning-Based Navigation System”. In: IEEE Robotics and Automation
Letters (2021).

[125] Gregory Kahn et al. “Composable action-conditioned predictors: Flexible off-policy
learning for robot navigation”. In: Conference on Robot Learning. 2018.

152

[126] Dmitry Kalashnikov et al. “Mt-opt: Continuous multi-task robotic reinforcement
learning at scale”. In: arXiv preprint arXiv:2104.08212 (2021).

[127] Katie Kang, Gregory Kahn, and Sergey Levine. “Hierarchically Integrated Models:
Learning to Navigate from Heterogeneous Robots”. In: Conference on Robot Learning
(CoRL). 2021.

[128] Jared Kaplan et al. “Scaling Laws for Neural Language Models”. In: CoRR (2020).

[129] Haresh Karnan et al. “Socially CompliAnt Navigation Dataset (SCAND): A Large-
Scale Dataset Of Demonstrations For Social Navigation”. In: IEEE Robotics and
Automation Letters (2022).

[130] Apoorv Khandelwal et al. “Simple but Effective: CLIP Embeddings for Embodied
AI”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2022.

[131] Diederik Kingma et al. “Variational diffusion models”. In: Neural Information
Processing Systems (NeurIPS) (2021).

[132] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv
preprint arXiv:1312.6114 (2013).

[133] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations (ICLR) (2015).

[134] Philipp Koehn. Statistical Machine Translation. Cambridge University Press, 2009.

[135] Thomas Kollar and Nicholas Roy. “Efficient Optimization of Information-Theoretic
Exploration in SLAM”. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI). 2008.

[136] Eric Kolve et al. “AI2-THOR: An Interactive 3D Environment for Visual AI”. In:
ArXiv (2019).

[137] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. “Offline reinforcement learning
with implicit q-learning”. In: arXiv preprint arXiv:2110.06169 (2021).

[138] Ilya Kostrikov et al. “Offline reinforcement learning with fisher divergence critic
regularization”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 5774–5783.

[139] Alexandros Kouris and Christos-Savvas Bouganis. “Learning to Fly by MySelf:
A Self-Supervised CNN-Based Approach for Autonomous Navigation”. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018.

[140] Jacob Krantz et al. “Beyond the Nav-Graph: Vision-and-Language Navigation in
Continuous Environments”. In: Proceedings of the European Conference on Computer
Vision. 2020.

[141] Eric Krotkov and Martial Hebert. “Mapping and positioning for a prototype
lunar rover”. In: Proceedings of 1995 IEEE International Conference on Robotics and
Automation. IEEE. 1995.

153

[142] Alexander Ku et al. “Room-Across-Room: Multilingual Vision-and-Language
Navigation with Dense Spatiotemporal Grounding”. In: Conference on Empirical
Methods for Natural Language Processing (EMNLP). 2020.

[143] Benjamin Kuipers and Yung-Tai Byun. “A robot exploration and mapping strat-
egy based on a semantic hierarchy of spatial representations”. In: Robotics and
Autonomous Systems (1991). Special Issue Toward Learning Robots.

[144] Ashish Kumar et al. “Rma: Rapid motor adaptation for legged robots”. In: Robotics:
Science and Systems. 2021.

[145] Aviral Kumar et al. “Conservative q-learning for offline reinforcement learning”.
In: Advances in Neural Information Processing Systems (2020).

[146] Ashish Kumar* et al. “Visual Memory for Robust Path Following”. In: Neural
Information Processing Systems (NeurIPS). 2018.

[147] T.L Lai and Herbert Robbins. “Asymptotically efficient adaptive allocation rules”.
In: Advances in Applied Mathematics (1985).

[148] Sascha Lange, Thomas Gabel, and Martin Riedmiller. “Batch reinforcement learn-
ing”. In: Reinforcement learning. Springer, 2012.

[149] Steven M LaValle. Planning Algorithms. Cambridge university press, 2006.

[150] Alessandro Lazaric. “Transfer in reinforcement learning: a framework and a
survey”. In: Reinforcement Learning. Springer, 2012.

[151] Alex X Lee et al. “Beyond pick-and-place: Tackling robotic stacking of diverse
shapes”. In: 5th Annual Conference on Robot Learning. 2021.

[152] Lisa Lee et al. “Efficient exploration via state marginal matching”. In: arXiv preprint
arXiv:1906.05274 (2019).

[153] Brian Lester, Rami Al-Rfou, and Noah Constant. “The Power of Scale for Parameter-
Efficient Prompt Tuning”. In: Conference on Empirical Methods in Natural Language
Processing (EMNLP). 2021.

[154] Sergey Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In: The
Journal of Machine Learning Research (2016).

[155] Sergey Levine et al. Offline Reinforcement Learning: Tutorial, Review, and Perspectives
on Open Problems. 2020.

[156] Chengshu Li et al. “HRL4IN: Hierarchical Reinforcement Learning for Interactive
Navigation with Mobile Manipulators”. In: 3rd Annual Conference on Robot Learning
(CoRL). 2019.

[157] Liunian Harold Li et al. “VisualBERT: A Simple and Performant Baseline for Vision
and Language”. In: Arxiv. 2019.

[158] Kevin Lin et al. Text2Motion: From Natural Language Instructions to Feasible Plans.
2023.

154

[159] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection”. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

[160] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: ECCV.
2014.

[161] Kara Liu et al. “Hallucinative topological memory for zero-shot visual planning”.
In: International Conference on Machine Learning. PMLR. 2020.

[162] Xiaosen Liu et al. “The Power of Scale for Parameter-Efficient Prompt Tuning”. In:
Conference on Empirical Methods in Natural Language Processing (EMNLP). 2021.

[163] Antonio Loquercio et al. “DroNet: Learning to Fly by Driving”. In: IEEE Robotics
and Automation Letters (2018).

[164] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”. In:
International Conference on Learning Representations (ICLR). 2019.

[165] Corey Lynch et al. “Learning latent plans from play”. In: Conference on Robot
Learning. PMLR. 2020.

[166] Arjun Majumdar et al. “Improving vision-and-language navigation with image-
text pairs from the web”. In: Proceedings of the European Conference on Computer
Vision. 2020.

[167] Arjun Majumdar et al. “Where are we in the search for an Artificial Visual Cortex
for Embodied Intelligence?” In: arXiv preprint arXiv:2303.18240 (2023).

[168] Arjun Majumdar et al. “Zson: Zero-shot object-goal navigation using multimodal
goal embeddings”. In: arXiv preprint arXiv:2206.12403 (2022).

[169] Travis Manderson et al. “Self-Supervised, Goal-Conditioned Policies for Navigation
in Unstructured Environments”. In: 2010.

[170] Ajay Mandlekar et al. “Iris: Implicit reinforcement without interaction at scale for
learning control from offline robot manipulation data”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2020.

[171] Manolis Savva* et al. “Habitat: A Platform for Embodied AI Research”. In:
IEEE/CVF International Conference on Computer Vision (ICCV). 2019.

[172] Cynthia Matuszek, Dieter Fox, and Karl Koscher. “Following directions using
statistical machine translation”. In: 2010 5th ACM/IEEE International Conference on
Human-Robot Interaction (HRI). 2010.

[173] Cynthia Matuszek et al. “Learning to Parse Natural Language Commands to a
Robot Control System”. In: Experimental Robotics: The 13th International Symposium
on Experimental Robotics. 2013.

[174] John McCormac et al. “SemanticFusion: Dense 3D semantic mapping with con-
volutional neural networks”. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). 2017.

155

[175] Oier Mees, Jessica Borja-Diaz, and Wolfram Burgard. Grounding Language with
Visual Affordances over Unstructured Data. 2023.

[176] Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. “Listen, Attend, and Walk:
Neural Mapping of Navigational Instructions to Action Sequences”. In: AAAI.
2016.

[177] M. Meng and A. C. Kak. “Mobile Robot Navigation using Neural Networks and
Nonmetrical Environmental Models”. In: IEEE Control Systems Magazine (1993).

[178] M. Meng and A. C. Kak. “NEURO-NAV: A Neural Network based Architecture
for Vision-guided Mobile Robot Navigation using Non-metrical Models of the
Environment”. In: IEEE International Conference on Robotics and Automation (ICRA).
1993.

[179] X. Meng et al. “Scaling Local Control to Large-Scale Topological Navigation”. In:
IEEE International Conference on Robotics and Automation (ICRA). 2020.

[180] Luke Metz et al. Discrete Sequential Prediction of Continuous Actions for Deep RL.
2019.

[181] Atanas Mirchev et al. “Approximate bayesian inference in spatial environments”.
In: arXiv preprint arXiv:1805.07206 (2018).

[182] Piotr Mirowski et al. “The StreetLearn Environment and Dataset”. In: CoRR (2019).

[183] Dipendra Kumar Misra et al. “Mapping Instructions to Actions in 3D Environ-
ments with Visual Goal Prediction”. In: Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing. 2018.

[184] Anusha Nagabandi et al. “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning”. In: arXiv preprint arXiv:1803.11347 (2018).

[185] A. Nair et al. “Contextual Imagined Goals for Self-Supervised Robotic Learning”.
In: Conference on Robot Learning (CoRL). 2019.

[186] Ashvin Nair et al. “Awac: Accelerating online reinforcement learning with offline
datasets”. In: arXiv preprint arXiv:2006.09359 (2020).

[187] Suraj Nair et al. “R3M: A Universal Visual Representation for Robot Manipulation”.
In: Conference on Robot Learning (CoRL). 2022.

[188] Medhini Narasimhan et al. “Seeing the Un-Scene: Learning Amodal Semantic
Maps for Room Navigation”. In: CoRR (2020).

[189] Soroush Nasiriany et al. “Planning with Goal-Conditioned Policies”. In: Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2019.

[190] Nigamaa Nayakanti et al. Wayformer: Motion Forecasting via Simple and Efficient
Attention Networks. 2022.

[191] Alexander Quinn Nichol and Prafulla Dhariwal. “Improved Denoising Diffusion
Probabilistic Models”. In: International Conference on Machine Learning (ICML). 2021.

156

[192] Takahiro Niwa, Shun Taguchi, and Noriaki Hirose. “Spatio-Temporal Graph Lo-
calization Networks for Image-based Navigation”. In: International Conference on
Intelligent Robots and Systems (IROS). 2022.

[193] John O’Keefe and Lynn Nadel. The Hippocampus as a Cognitive Map. Oxford: Claren-
don Press, 1978.

[194] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with
Contrastive Predictive Coding. 2019.

[195] Open X-Embodiment Collaboration et al. “Open X-Embodiment: Robotic Learning
Datasets & RT-X Models”. In: arXiv (2023).

[196] Simone Parisi et al. “The Unsurprising Effectiveness of Pre-Trained Vision Models
for Control”. In: arXiv preprint arXiv:2203.03580 (2022).

[197] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. “Actor-mimic: Deep
multitask and transfer reinforcement learning”. In: arXiv preprint arXiv:1511.06342
(2015).

[198] Deepak Pathak et al. “Curiosity-driven exploration by self-supervised prediction”.
In: International Conference on Machine Learning. PMLR. 2017.

[199] Tim Pearce et al. “Imitating Human Behaviour with Diffusion Models”. In: The
Eleventh International Conference on Learning Representations (ICLR). 2023.

[200] Xue Bin Peng et al. “Sim-to-Real Transfer of Robotic Control with Dynamics
Randomization”. In: International Conference on Robotics and Automation (ICRA).
2018.

[201] Silviu Pitis et al. “Maximum entropy gain exploration for long horizon multi-goal
reinforcement learning”. In: International Conference on Machine Learning. PMLR.
2020.

[202] Patrick von Platen et al. Diffusers: State-of-the-art diffusion models. https://github.
com/huggingface/diffusers. 2022.

[203] Vitchyr Pong et al. “Temporal difference models: Model-free deep rl for model-
based control”. In: arXiv preprint arXiv:1802.09081 (2018).

[204] Vitchyr H Pong et al. “Skew-fit: State-covering self-supervised reinforcement
learning”. In: arXiv preprint arXiv:1903.03698 (2019).

[205] Alec Radford et al. “Learning transferable visual models from natural language
supervision”. In: International Conference on Machine Learning (ICML). 2021.

[206] Alec Radford and Karthik Narasimhan. “Improving Language Understanding by
Generative Pre-Training”. In: 2018.

[207] Ilija Radosavovic et al. “Real-World Robot Learning with Masked Visual Pre-
training”. In: Conference on Robot Learning (CoRL). 2022.

157

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

[208] Santhosh Kumar Ramakrishnan et al. “Poni: Potential functions for objectgoal nav-
igation with interaction-free learning”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2022.

[209] Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP Latents.
2022.

[210] Ali Sharif Razavian et al. “CNN Features off-the-shelf: an Astounding Baseline
for Recognition”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2014.

[211] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks”. In: Advances in Neural Information Processing Systems.
2015.

[212] Moritz Reuss et al. “Goal Conditioned Imitation Learning using Score-based
Diffusion Policies”. In: Robotics: Science and Systems. 2023.

[213] Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. “Deep Imitative Mod-
els for Flexible Inference, Planning, and Control”. In: International Conference on
Learning Representations. 2020.

[214] Robin Rombach et al. “High-Resolution Image Synthesis With Latent Diffusion
Models”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2022.

[215] Frieda Rong. Extrapolating to Unnatural Language Processing with GPT-3’s In-context
Learning: The Good, the Bad, and the Mysterious. http://ai.stanford.edu/blog/in-
context-learning/. Accessed: 2022-06-04. 2021.

[216] C. Rosen and N. Nilsson. “APPLICATION OF INTELLIGENT AUTOMATA TO
RECONNAISSANCE.” In: SRI Technical Report. 1967.

[217] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning”. In: Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS). 2011.

[218] Fereshteh Sadeghi et al. “Sim2Real Viewpoint Invariant Visual Servoing by Re-
current Control”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2018.

[219] Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. “Meta re-
inforcement learning with latent variable gaussian processes”. In: arXiv preprint
arXiv:1803.07551 (2018).

[220] Chitwan Saharia et al. “Palette: Image-to-image diffusion models”. In: ACM SIG-
GRAPH 2022 Conference Proceedings. 2022.

[221] Chitwan Saharia et al. Photorealistic Text-to-Image Diffusion Models with Deep Lan-
guage Understanding. 2022.

158

http://ai.stanford.edu/blog/in-context-learning/
http://ai.stanford.edu/blog/in-context-learning/

[222] Chitwan Saharia et al. “Photorealistic text-to-image diffusion models with deep lan-
guage understanding”. In: Neural Information Processing Systems (NeurIPS) (2022).

[223] Yash Satsangi et al. “Maximizing Information Gain in Partially Observable Envi-
ronments via Prediction Reward”. In: arXiv preprint arXiv:2005.04912 (2020).

[224] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. “Semi-Parametric Topo-
logical Memory for Navigation”. In: International Conference on Learning Representa-
tions. 2018.

[225] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. “Semi-parametric
topological memory for navigation”. In: arXiv preprint arXiv:1803.00653 (2018).

[226] Nikolay Savinov et al. “Episodic curiosity through reachability”. In: International
Conference on Learning Representations (ICLR (2019).

[227] Tom Schaul et al. “Universal Value Function Approximators”. In: International
Conference on Machine Learning (ICML). 2015.

[228] John Schulman et al. Proximal Policy Optimization Algorithms. 2017.

[229] Amirreza Shaban et al. “Semantic Terrain Classification for Off-Road Autonomous
Driving”. In: Conference on Robot Learning (CoRL). 2022.

[230] Nur Muhammad Mahi Shafiullah et al. “Behavior Transformers: Cloning k
modes with one stone”. In: Advances in Neural Information Processing Systems
(NeurIPS). Ed. by Alice H. Oh et al. 2022.

[231] Nur Muhammad Mahi Shafiullah et al. CLIP-Fields: Weakly Supervised Semantic
Fields for Robotic Memory. 2023.

[232] Dhruv Shah and Sergey Levine. “ViKiNG: Vision-Based Kilometer-Scale Naviga-
tion with Geographic Hints”. In: Robotics: Science and Systems (RSS). 2022.

[233] Dhruv Shah et al. “FastRLAP: A System for Learning High-Speed Driving via
Deep RL and Autonomous Practicing”. In: Annual Conference on Robot Learning
(CoRL). 2023.

[234] Dhruv Shah et al. “GNM: A General Navigation Model to Drive Any Robot”. In:
International Conference on Robotics and Automation (ICRA). 2023.

[235] Dhruv Shah et al. “LM-Nav: Robotic Navigation with Large Pre-Trained Models
of Language, Vision, and Action”. In: Annual Conference on Robot Learning (CoRL).
2022.

[236] Dhruv Shah et al. “Navigation with Large Language Models: Semantic Guesswork
as a Heuristic for Planning”. In: 7th Annual Conference on Robot Learning (CoRL).
2023.

[237] Dhruv Shah et al. “Offline Reinforcement Learning for Customizable Visual Navi-
gation”. In: Conference on Robot Learning (CoRL). 2022.

159

[238] Dhruv Shah et al. “Rapid Exploration for Open-World Navigation with Latent
Goal Models”. In: 5th Annual Conference on Robot Learning. 2021.

[239] Dhruv Shah et al. “Robotic Navigation with Large Pre-Trained Models of Language,
Vision, and Action”. In: Conference on Robot Learning (CoRL. 2022.

[240] Dhruv Shah et al. “Value Function Spaces: Skill-Centric State Abstractions for
Long-Horizon Reasoning”. In: International Conference on Learning Representations
(ICLR). 2022.

[241] Dhruv Shah et al. “ViNG: Learning Open-World Navigation with Visual Goals”.
In: IEEE International Conference on Robotics and Automation (ICRA). 2021.

[242] Dhruv Shah et al. “ViNT: A Foundation Model for Visual Navigation”. In: 7th
Annual Conference on Robot Learning (CoRL). 2023.

[243] Nobuyuki Shimizu and Andrew Haas. “Learning to Follow Navigational Route
Instructions”. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence. IJCAI’09. 2009.

[244] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. “CLIPort: What and Where
Pathways for Robotic Manipulation”. In: Proceedings of the 5th Conference on Robot
Learning (CoRL). 2021.

[245] Mohit Shridhar et al. “ALFRED: A Benchmark for Interpreting Grounded Instruc-
tions for Everyday Tasks”. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2020.

[246] R. Sim and J. J. Little. “Autonomous vision-based exploration and mapping using
hybrid maps and Rao-Blackwellised particle filters”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2006.

[247] Nathaniel Simon and Anirudha Majumdar. “MonoNav: MAV Navigation via
Monocular Depth Estimation and Reconstruction”. In: International Symposium on
Experimental Robotics (ISER). 2023.

[248] Avi Singh et al. “Cog: Connecting new skills to past experience with offline
reinforcement learning”. In: arXiv preprint arXiv:2010.14500 (2020).

[249] Ishika Singh et al. ProgPrompt: Generating Situated Robot Task Plans using Large
Language Models. 2022.

[250] D. Singh Chaplot et al. “Neural Topological SLAM for Visual Navigation”. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.

[251] Boris Sofman et al. “Improving Robot Navigation Through Self-Supervised Online
Learning”. In: Journal of Field Robotics: Special Issue on Machine Learning Based
Robotics in Unstructured Environments (2006).

[252] Haoyu Song et al. “CLIP Models are Few-Shot Learners: Empirical Studies on VQA
and Visual Entailment”. In: Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 2022.

160

[253] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising diffusion implicit
models”. In: arXiv preprint arXiv:2010.02502 (2020).

[254] Ajay Sridhar et al. “NoMaD: Goal Masked Diffusion Policies for Navigation and
Exploration”. In: arXiv. 2023.

[255] Rupesh Kumar Srivastava et al. “Training agents using upside-down reinforcement
learning”. In: arXiv preprint arXiv:1912.02877 (2019).

[256] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. “Incentivizing exploration in
reinforcement learning with deep predictive models”. In: arXiv preprint (2015).

[257] Hao Sun et al. “Policy continuation with hindsight inverse dynamics”. In: arXiv
preprint arXiv (2019).

[258] Lauri Suomela et al. “PlaceNav: Topological Navigation through Place Recogni-
tion”. In: arXiv (2023).

[259] Richard S. Sutton. “Learning to predict by the methods of temporal differences”.
In: Machine Learning (1988).

[260] Wennie Tabib et al. “Real-Time Information-Theoretic Exploration with Gaussian
Mixture Model Maps.” In: Robotics: Science and Systems. 2019.

[261] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking Model Scaling for Convolu-
tional Neural Networks”. In: International Conference on Machine Learning (ICML).
2019.

[262] Matthew E Taylor and Peter Stone. “Cross-domain transfer for reinforcement
learning”. In: Proceedings of the 24th international conference on Machine learning.
2007.

[263] Stefanie Tellex et al. “Understanding Natural Language Commands for Robotic
Navigation and Mobile Manipulation”. In: Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence. 2011.

[264] Romal Thoppilan et al. “LaMDA: Language Models for Dialog Applications”. In:
CoRR (2022).

[265] Charles Thorpe et al. “Vision and navigation for the Carnegie-Mellon Navlab”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence (1988).

[266] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. “Probalistic robotics”. In:
Kybernetes (2006).

[267] Sebastian Thrun et al. “Stanley: The robot that won the DARPA Grand Challenge”.
In: Journal of field Robotics (2006).

[268] Naftali Tishby, Fernando C Pereira, and William Bialek. “The information bottle-
neck method”. In: arXiv preprint physics/0004057 (2000).

161

[269] Samuel Triest et al. “TartanDrive: A Large-Scale Dataset for Learning Off-Road
Dynamics Models”. In: International Conference on Robotics and Automation (ICRA).
2022.

[270] Joanne Truong et al. “IndoorSim-to-OutdoorReal: Learning to Navigate Outdoors
without any Outdoor Experience”. In: arXiv preprint arXiv:2305.01098 (2023). arXiv:
2305.01098 [cs.RO].

[271] Chris Urmson et al. “Autonomous driving in urban environments: Boss and the
urban challenge”. In: Journal of Field Robotics (2008).

[272] Karthik Valmeekam et al. Large Language Models Still Can’t Plan (A Benchmark for
LLMs on Planning and Reasoning about Change). 2023.

[273] Francisco J. Varela, Evan Thompson, and Eleanor Rosch. The Embodied Mind:
Cognitive Science and Human Experience. MIT Press, 1991.

[274] Arun Balajee Vasudevan, Dengxin Dai, and Luc Van Gool. “Talk2Nav: Long-Range
Vision-and-Language Navigation with Dual Attention and Spatial Memory”. In:
Int. J. Comput. Vision (2021).

[275] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by I. Guyon et al. 2017.

[276] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/kingoflolz/mesh-transformer-jax. 2021.

[277] Yan Wang et al. “Pseudo-LiDAR From Visual Depth Estimation: Bridging the
Gap in 3D Object Detection for Autonomous Driving”. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2019.

[278] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. “Diffusion Policies as
an Expressive Policy Class for Offline Reinforcement Learning”. In: The Eleventh
International Conference on Learning Representations (ICLR). 2023.

[279] Saim Wani et al. “MultiON: Benchmarking Semantic Map Memory using Multi-
Object Navigation”. In: Neural Information Processing Systems (NeurIPS). 2020.

[280] Jason Wei et al. “Finetuned Language Models are Zero-Shot Learners”. In: Interna-
tional Conference on Learning Representations (ICLR). 2022.

[281] Jason Wei et al. “Chain of Thought Prompting Elicits Reasoning in Large Language
Models”. In: Neural Information Processing Systems (NeurIPS). 2022.

[282] Jan M. Wiener, Simon J. Büchner, and Christoph Hölscher. “Taxonomy of Hu-
man Wayfinding Tasks: A Knowledge-Based Approach”. In: Spatial Cognition &
Computation (2009).

[283] Erik Wijmans et al. “DD-PPO: Learning Near-Perfect PointGoal Navigators from
2.5 Billion Frames”. In: International Conference on Learning Representations (ICLR).
2020.

162

https://arxiv.org/abs/2305.01098
https://github.com/kingoflolz/mesh-transformer-jax

[284] Thomas Wolf et al. “HuggingFace’s Transformers: State-of-the-art Natural Lan-
guage Processing”. In: CoRR (2019).

[285] Yuk Wah Wong and Raymond Mooney. “Learning for Semantic Parsing with
Statistical Machine Translation”. In: Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference. 2006.

[286] Yuxin Wu et al. Detectron2. https://github.com/facebookresearch/detectron2. 2019.

[287] Yaqi Xie et al. “Translating natural language to planning goals with large-language
models”. In: arXiv preprint arXiv:2302.05128 (2023).

[288] Karmesh Yadav et al. Habitat Challenge 2022. https://aihabitat.org/challenge/2022/.
2022.

[289] Karmesh Yadav et al. Offline Visual Representation Learning for Embodied Navigation.
2022.

[290] Karmesh Yadav et al. OVRL-V2: A simple state-of-art baseline for ImageNav and
ObjectNav. 2023. eprint: 2303.07798.

[291] B. Yamauchi. “A frontier-based approach for autonomous exploration”. In: IEEE
International Symposium on Computational Intelligence in Robotics and Automation
(CIRA). 1997.

[292] An Yan et al. Cross-Lingual Vision-Language Navigation. 2019.

[293] Jonathan Yang et al. “Pushing the Limits of Cross-Embodiment Learning for
Manipulation and Navigation”. In: Robotics: Science and Systems (RSS). 2024.

[294] Naoki Yokoyama, Sehoon Ha, and Dhruv Batra. Success Weighted by Completion
Time: A Dynamics-Aware Evaluation Criteria for Embodied Navigation. 2021. arXiv:
2103.08022 [cs.RO].

[295] Jason Yosinski et al. “How transferable are features in deep neural networks?” In:
Neural Information Processing Systems (NeurIPS). Curran Associates, Inc., 2014.

[296] Bangguo Yu, Hamidreza Kasaei, and Ming Cao. L3MVN: Leveraging Large Language
Models for Visual Target Navigation. 2023.

[297] Fisher Yu et al. “BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask
Learning”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2020.

[298] Wenhao Yu et al. “Preparing for the Unknown: Learning a Universal Policy with
Online System Identification”. In: Robotics: Science and Systems. 2017.

[299] Andy Zeng et al. “Socratic Models: Composing Zero-Shot Multimodal Reasoning
with Language”. In: arXiv (2022).

[300] Lunjun Zhang, Ge Yang, and Bradly C Stadie. “World Model as a Graph: Learning
Latent Landmarks for Planning”. In: arXiv preprint (2020).

163

https://github.com/facebookresearch/detectron2
https://aihabitat.org/challenge/2022/
2303.07798
https://arxiv.org/abs/2103.08022

[301] Xingyi Zhou et al. “Detecting Twenty-Thousand Classes Using Image-Level Su-
pervision”. In: 17th European Conference on Computer Vision (ECCV). 2022. doi:
10.1007/978-3-031-20077-9 21.

[302] Y. Zhu et al. “Target-driven visual navigation in indoor scenes using deep rein-
forcement learning”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2017.

164

https://doi.org/10.1007/978-3-031-20077-9_21

Part IV

A P P E N D I C E S

165

A P P E N D I X A : O P E N - W O R L D E X P L O R AT I O N W I T H L AT E N T G O A L
M O D E L S

a.1 dataset

In this work, we emphasize that data collected from prior experience in unrelated
environments can be a rich source of supervision, even if the interactions in the dataset
are suboptimal. To demonstrate this, we curate a dataset of over 5000 self-supervised
trajectories collected over 9 distinct real-world environments. These trajectories capture
the interaction of the robot in diverse environments, including phenomena like collisions
with obstacles and walls, getting stuck in the mud or pits, or flipping due to bumpy
terrain. The dataset contains measurements from a wide range of sensors including a
pair of stereo RGB cameras, thermal camera, 2D LiDAR, GPS and IMU to support offline
evaluation using an alternative suite of sensors. While a lot of these sensor measurements
can be noisy and unreliable, we believe that learning-based techniques coupled with
multimodal sensor fusion can provide a lot of benefits in the real-world. This dataset
was collected over a span of 18 months, including parts collected by Kahn et al. [124]
and Shah et al. [241] for earlier research projects, and exhibits significant variation in
appearance due to seasonal and lighting changes.

This dataset is available for download at sites.google.com/view/recon-robot/dataset,
along with helper scripts to load and visualize the trajectories.

a.1.1 Self-Supervised Data Collection and Labeling

We design the data collection methodology to enable gathering large amounts of diverse
data with minimal human intervention. Due to the high cost of gathering data with
real-world robotic systems, we choose to use an off-policy learning algorithm in order
to be able to gather data using any control policy and train on all of the gathered data.
To ensure that the control policy achieves sufficient coverage of the environment while
also ensuring that the action sequences executed by the robot are realistic, we use a
time-correlated random walk to gather data. A naı̈ve uniform random control policy is
inadequate because the robot will primarily drive straight due to the linear and angular
velocity action interface of the robot, which will result in both insufficient exploration
and unrealistic test time action sequences.

During data collection using the random control policy, the robot requires a mechanism
to detect if it is in collision or stuck, and an automated controller to reset itself in order to
continue gathering data. We detect collisions in one of two ways, either using the LIDAR

166

https://sites.google.com/view/recon-robot/dataset

to detect when an obstacle is near or the IMU to detect when the robot is stuck due to an
obstacle or uneven terrain. We program an automated backup maneuver that drives the
robot out of collision (whenever possible) so it can initiate a new trajectory.

We also use these collision detectors as a weak source of supervision by generating
event labels for the collected trajectories, giving us a self-supervised relabeling pipeline as
proposed in BADGR [124]. We consider three different events: collision, bumpiness, and
position. A collision event is detected the LIDAR measures an obstacle to be close or, in
off-road environments, when the IMU detects a sudden drop in linear acceleration (jerk)
and angular velocity magnitudes. A bumpiness event is calculated as occurring when the
angular velocity magnitudes measured by the IMU are above a certain threshold. The
position is determined by an onboard state estimator that fuses wheel odometry and
the IMU to form a local position estimate. Note that all experiments reported in this
paper only use the collision labels; these labels are used to dissect the random walks into
smooth trajectories that end in collision.

a.1.2 Environments

To learn general navigational affordances across a wide range of environments, we curate
over 40 hours of trajectories in 9 diverse open-world environments of varying complexity
(see Figure 60).

Figure 61 shows the exploration and navigation performance of RECON and the
baselines (see Sec. 3.5 for details) on the individual environments. As the environment
complexity increases, most methods are not able to explore the environment efficiently to
discover the goal. For videos of our system exploring these environments, please check
out the supplemental video submission.

a.2 reproducibility

a.2.1 Algorithmic Components

The SubgoalNavigate function rolls out the learned policy for a fixed time horizon H to
navigate to the desired subgoal latent zw

t , by querying the decoder qθ(at, dt|zw
t , oτ) in an

open loop manner. The endpoint of such a rollout is used to update the visitation counts
v in the graph G using the AssociateToVertex subroutine. To nudge the robot to the
frontier, we use a heuristic LeastExploredNeighbor routine that uses the visitation counts
of the neighbors to identify unexplored areas in the local neighborhood. At the end of
each trajectory, the ExpandGraph subroutine is used to update the edge and node sets
{E ,V} of the graph G to update the non-parametric representation of the environment.
Pseudocode for these subroutines are given in Alg. 11.

167

Algorithm 11 Pseudocode for subroutines referenced in the exploration algorithm shown
in Alg. 3

1: function SubgoalNavigate(zw
t ; H)

2: trajectory ← ()
3: for t ∈ [1, . . . , H] do
4: trajectory.append((ot, at, t))
5: at, dg

t ∼ qθ(at, dt | zw
t , oτ) ▷ []Sample action

6: ot ← Env.step(at) ▷ []Execute action
7: end for
8: vH ← AssociateToVertex(G, oH)

9: vH.count← vH.count + 1
10: Dw ← ((ot, oH, at, H − t) for (ot, at, t) ∈ trajectory)
11: return Dw, oH

12: end function

1: function AssociateToVertex(G = (V , E), ot)
2: d← sort((d̄v

t , v) for v ∈ V) ▷ []Predict distances
3: v, d← d[0] ▷ []Associate ot with nearest vertex
4: return v
5: end function

1: function LeastExploredNeighbor(G = (V , E), ot, δ2)
2: v← AssociateToVertex(G, ot)
3: Vn ← {v′ : E(v, v′) < δ2, v′ ∈ V} ▷ []Retrieve neighbors
4: c← sort((v′.count, v′.o) for v′ ∈ Vn)

5: vc, oc ← c[0] ▷ []Retrieve neighbor with smallest count
6: return oc

7: end function

1: procedure ExpandGraph(G = (V , E), ot)
2: vt ← Node(count = 1, o = ot) ▷ []Create node for ot

3: E ← E ∪ {(vt, vg) : d̄g
t , g ∈ V} ▷ []Add edges

4: V ← V ∪ {vt} ▷ []Add vertex
5: end procedure

168

Hyperparam. Value Meaning

δ1 4 Threshold of identification
δ2 15 Threshold of neighbors
ϵ 10−2 Exploration threshold on prior
β 1.0 Model complexity
γ 10 Epochs to finetune model
H 5 seconds Horizon to navigate to subgoal

Table 13: Hyperparameters used in our experiments.

a.2.2 Implementation Details

Inputs to the encoder pϕ are pairs of observations of the environment – current and
goal – represented by a stack of two RGB images obtained from the onboard camera at a
resolution of 160× 120 pixels. pϕ is implemented by a MobileNet encoder [104] followed
by a fully-connected layer projecting the 1024-dimensional latents to a stochastic, context-
conditioned representation zg

t of the goal that uses 64-dimensions each to represent the
mean and diagonal covariance of a Gaussian distribution. Inputs to the decoder qθ are
the context (current observation) – processed with another MobileNet – and zg

t . We use
the reparametrization trick [132] to sample from the latent and use the concatenated
encodings to learn the optimal actions ag

t and distances dg
t . Details of our network

architecture are provided in Table 14. During pretraining, we maximize Eq. 2 with a
batch size of 128 and perform gradient updates using the Adam optimizer with learning
rate λ = 10−4 until convergence. We provide the hyperparameters associated with our
algorithms in Table 13.

169

Layer Input [Dimensions] Output [Dimensions] Layer Details

Encoder pϕ(z | ot, og) = N (·; µp, Σp)

1 ot, og [3, 160, 120] Ig
t [6, 160, 120] Concatenate along channel dimension.

2 Ig
t [6, 160, 120] Eg

t [1024] MobileNet Encoder [104]
3 Eg

t [1024] µp [64], σp [64] Fully-Connected Layer, exp activation of σp
4 σp [64] Σp [64, 64] torch.diag(σp)

Decoder qθ(a, d | ot, zg
t) = N (·; µq, Σq)

1 ot [3, 160, 120] Et [1024] MobileNet Encoder [104]
2 Et [1024], zg

t [64] F = Et ⊕ zg
t [1088] Concatenate image and goal representation

3 F [1088] µq [3], σq [3] Fully-Connected Layer, exp activation of σq
4 σq [3] Σq [3, 3] torch.diag(σq)
5 µq [3] āg

t [2], d̄g
t [1] Split into actions and distances.

Table 14: Architectural Details of RECON: The inputs to the model are RGB images ot ∈
[0, 1]3×160×120 and og ∈ [0, 1]3×160×120, representing the current and goal image.

170

(a) Junkyard (b) Fire Station (c) Warehouse

(d) Cafeteria (e) Parking Lot 1 (f) Forest Cabin

(g) Farmlands (h) Parking Lot 2 (i) Residential

Figure 60: We collect data in 9 diverse environments. Example trajectories are shown in cyan.

171

Figure 61: Exploring and learning to reach goals: (left) Amount of time needed for each method
to search for the goals in a new environment (↓ is better; hashed out bars represent failure).
(right) Amount of time needed to reach the goal a second time, after reaching the goal once and
constructing the map, in seconds (↓ is better).

172

A P P E N D I X B : K I L O M E T E R - S C A L E E X P L O R AT I O N W I T H
G E O G R A P H I C H I N T S

b.1 implementation details

Layer Input [Dimensions] Output [Dimensions] Layer Details

Encoder pϕ(z | ot, ow) = N (·; µp, Σp)

1 ot, ow [3, 160, 120] Iw
t [6, 160, 120] Concatenate along channel dimension.

2 Iw
t [6, 160, 120] Ew

t [1024] MobileNet Encoder [104]
3 Ew

t [1024] µp [64], σp [64] Fully-Connected Layer, exp activation of σp
4 σp [64] Σp [64, 64] torch.diag(σp)

Decoder qθ(a, d, x | ot, zw
t) = N (·; µq, Σq)

1 ot [3, 160, 120] Et [1024] MobileNet Encoder [104]
2 Et [1024], zw

t [64] F = Et ⊕ zw
t [1088] Concatenate image and goal representation

3 F [1088] µq [3], σq [3] Fully-Connected Layer, exp activation of σq
4 σq [5] Σq [5, 5] torch.diag(σq)
5 µq [5] āw

t [2], d̄w
t [1], x̄w

t [2] Split into actions, distances and offsets

Table 15: Architectural details of the latent goal model (Section 4.3.1)

b.1.1 Latent Goal Model (Section 4.3.1)

Inputs to the encoder pϕ are pairs of observations of the environment—current and
goal—represented by a stack of two RGB images obtained from the onboard camera at a
resolution of 160× 120 pixels. pϕ is implemented by a MobileNet encoder [104] followed
by a fully-connected layer projecting the 1024-dimensional latents to a stochastic, context-
conditioned representation zw

t of the goal that uses 64-dimensions each to represent the
mean and diagonal covariance of a Gaussian distribution. Inputs to the decoder qθ are
the context (current observation)—processed with another MobileNet—and zw

t . We use
the reparametrization trick [132] to sample from the latent and use the concatenated
encodings to learn the optimal actions aw

t , temporal distances dw
t and spatial offsets xw

t .
Details of our network architecture are provided in Table 15. During pretraining, we
maximize LVIB (Eq. 3) with a batch size of 128 and perform gradient updates using the
Adam optimizer with learning rate λ = 10−4 until convergence.

173

b.1.2 Learned Heuristic (Section 4.3.3)

Inputs to the encoder pover are (i) satellite image cS and (ii) the triplet of GPS locations
{xw, xS, xG}. pover is implemented as a multi-input neural network with a MobileNet
encoder [104] to featurize cS, which is then concatenated with the location inputs. This
is followed by a series of fully-connected layers [512, 128, 32, 1] down to a single cell to
predict the binary classification scores. During pretraining, we minimize LNCE with a
batch size of 256 and perform gradient updates using the Adam optimizer with learning
rate λ = 10−4 until convergence.

b.1.3 Miscellaneous Hyperparameters

We provide the hyperparameters associated with our algorithms in Table 16.

Hyperparameter Value Meaning

∆t 0.5 Time step of the robot (s)
ϵ 10 Threshold for close (Sec. 4.3.2)
C 20 Scaling constant for v (Alg. 5 L15)

λover 200 Scaling constant for hover (Sec. 4.3.3)

Table 16: Hyperparameters used in our experiments.

b.2 offline trajectory dataset

For the offline dataset discussed in Section 4.4.2, we use a combination of a 30 hours of
autonomously collected data, and 12 hours of human teleoperated data. The complete
dataset was collected by 3 independent sets of researchers over the course of 24 months
in environments spanning multiple cities. We provide more information below.

b.2.1 Autonomously Collected Data

We use the published dataset by Shah et al. [238], that contains over 5000 self-supervised
trajectories collected over 9 distinct real-world environments. These trajectories capture
the interaction of the robot in diverse environments, including phenomena like collisions
with obstacles and walls, getting stuck in the mud or pits, or flipping due to bumpy
terrain.

During data collection, a robot is equipped with a 2D LIDAR sensor to detect collisions
ahead of time and generate autonomous pseudo-labels for collision events. To ensure that
the control policy achieves sufficient coverage of the environment while also ensuring

174

Training Dataset ViKiNG Deployment

Avg. Length 45m >1km
Avg. Velocity (m/s) 1.68 1.36

Table 17: Trajectory statistics for offline training dataset and real-world deployment.

Environment Type Amount of Data (hrs)

Paved Hiking Trails 01:45

City Sidewalks 02:15

Suburban Neighborhood Roads 01:30

Unpaved Grasslands 01:00

University/Office Campus 02:30

Miscellaneous 03:00

Total 12:00

Table 18: Approximate composition of various environment types in the teleoperated dataset.

that the action sequences executed by the robot are realistic, we use a time-correlated
random walk to gather data.

b.2.2 Human Teleoperated Data

The above dataset contains extremely diverse dataset that is great for learning general
notions of traversability and collision avoidance. However, the random nature of the
dataset means that it does not contain any semantically interesting behavior that may be
desired of a robotic system, such as following a sidewalk or through a patch of trees. To
enhance the quality of learned behaviors, we augment this dataset with about 12 hours
of human teleoperated data in semantically rich environments such as hiking trails, city
sidewalks, parking lots and suburban neighborhoods. These environments represent
realistic scenarios where such a robotic system would be deployed.

Table 17 summarizes key statistics of the trajectories, such as length and velocity.
Table 18 summarizes the various environments in which the dataset was collected, and
their relative composition. Figure 62 visualizes the geographic locations of these data
collection sites (location anonymized for the double-blind review process). We ensure no
overlap between the training and test environments—success in these test environments
requires true generalization to unseen environments.

175

Train

Test

1km

Figure 62: Rough geographical locations of data collection by human teleoperation and testing
(Section 4.4)

176

A P P E N D I X C : O F F L I N E R E I N F O R C E M E N T L E A R N I N G F O R V I S UA L
N AV I G AT I O N

c.1 formal analysis of proposition 3 .1

Proposition 3.1 If we recover the optimal value function V∗(s, s′) for short-horizon goals s′

(relative to s), and G = S (all states exist in the graph), and the MDP is deterministic with γ = 1,
then finding the minimum-cost path in the graph G with edge-weights −V∗(s, s′) recovers the
optimal path. .

Proof : Let A(s) and Ah(s) define a set of all nodes adjacent to node s and within a
short horizon from a node s correspondingly.

The Bellman equation can be used to write the cost of the minimal-cost path, J∗(s, g),
in the graph with rewards defined via edge-weights r(s, a, s′) = −V∗(s, s′):

J∗(s, g) = min
s′∈Ah(s)

[−V∗(s, s′) + J∗(s′, g)] = − max
s′∈Ah(s)

[V∗(s, s′)− J∗(s′, g)].

We can expand the recursion:

J∗(s, g) = − max
s′∈Ah(s),s′′∈Ah(s′),...,g∈Ah(s(n))

[V∗(s, s′) + V∗(s′, s′′) + . . . + V∗(s(n), g)]. (16)

We can further expand each V∗(·, ·) term as

V∗(s(n−k), s(n−k+1)) = max
s1∈A(s(n−k))

s2∈A(s1)...
s(n−k+1)∈A(st)

t∈N

[−C(s(n−k), s1)− C(s1, s2)− . . .− C(st, s(n−k+1))].

(17)

If we expand every term in Equation 16 with 17 it becomes exactly the optimization
objective for the shortest path problem with the original edge-weights. One can see
V∗(s, s′) as a solution to the shortest path problems in the subgraphs of G induced by
Ah(s).

c.2 reward labeling

For the base task of goal-reaching, we use a simple reward scheme with a survival penalty
that incentivizes the robot to take the shortest path to the goal:

177

Rdist(st, at, g) =

{
−1 ∀st ̸= g
0 otherwise.

(18)

For more complex utilities, such as incentivizing driving in the sun (e.g., for a solar
robot), we discount the survival penalty by a factor of 4.

Rgrass(st, at, g) =

{
−1 + 0.75 ∗ 1grass{st} ∀st ̸= g
0 otherwise.

(19)

Rsun(st, at, g) =

{
−1 + 0.75 ∗ 1sun{st} ∀st ̸= g
0 otherwise.

(20)

An interesting implication of the above reward scheme is to view the negative penalty
as a proxy for the amount of work a robot needs to do — a solar robot may use 1 unit of
energy per time step to navigate in an environment, but it may also create 0.75 units of
energy by exposing itself to the sun, effectively discounting the navigation cost in sunny
regions. This reward scheme trades-off the choice of the shortest path to the goal with
maximizing the user-specified utility function.

For our experiments, we use three different mechanisms to generate these labels:

1. Fully Autonomous: In several cases, the reward signal can be easily expressed as a
linear/heuristic function of the visual observations. For instance, to obtain labels for
“sunny” or “grassy”, we process the egocentric images from the robot by thresholding
in the HSV colorspace. We process the bottom center crop of the image by thresholding
it, and declare event 1sun or 1sun if a majority of the pixels satisfy the thresholds.

2. Manual Labeling: For more abstract tasks, generating reward labels may require
careful hand-labeling at the level of each observation, or each frame. We generate
labels for “on-sidewalk” by manually labeling trajectories that are driving on the
sidewalk/pavement — this was only feasible because the number of such trajectories
was relatively small.

3. Learned Reward Classifiers: A desirable hybrid of the above approaches can be
constructed where manual labels are queried for a small portion of the training
dataset, which can be used to train a simple image classification model. This model
can be used to obtain reward labels, albeit noisy, for the remainder of the dataset in a
semi-autonomous way. We follow this process for obtaining high-quality labels for the
“grassy” and “on-pavement” tasks. So long as the reward signal is fully contained by
the visual observation, which loosely relates to the Markovian assumption for RL, this
method gives us a scalable way to learn a predictive model of rewards.

We note that while the above choice of reward function may seem arbitrary, the
overall utility function (or the “relative weight” between the two objectives) would be

178

Figure 63: ReViND can support a wide range of reward functions and performs as expected for
varying levels of trade-offs between the goal-reaching and utility maximization objectives.

application-dependent. For instance, a solar-powered robot may be able to recoup 20%
of its navigation energy when driving in the sun, and its effective reward could be
(−1 + 0.2 ∗ 1sun). We ran experiments to test ReViND’s sensitivity to this trade-off and
found that it performs expectedly for a wide range of reward functions (see Figure 63).
Practically, this would be a hyperparameter set empirically by the user based on the
desired level of trade-off between the goal-reaching and utility maximization objectives.

c.3 building the topological graph

As discussed in Section 5.3.3, we combine the value function learned via offline RL with
a topological graph of the environment. This section outlines the finer details regarding
how this graph is constructed. We use a combination of learned value function (from Q-
learning), spatial proximity (from GPS), and temporal proximity (during data collection),
to deduce edge connectivity. If the corresponding timestamps of two nodes are close
(< 2s), suggesting that they were captured in quick succession, then the corresponding
nodes are connected — adding edges that were physically traversed. If the distance
estimates (or, negative value) between two nodes are small, suggesting that they are close,
then the corresponding nodes are also connected — adding edges between distant nodes
along the same route, and giving us a mechanism to connect nodes that were collected in
different trajectories or at different times of day but correspond to the nearby locations.
To avoid cases of underestimated distances by the model due to aliased observations, e.g.
green open fields or a white wall, we filter out prospective edges that are significantly

179

further away as per their GPS estimates — thus, if two nodes are nearby as per their GPS,
e.g. nodes on different sides of a wall, they may not be disconnected if the values do
not estimate a small distance; but two similar looking nodes 100s of meters away, that
may be facing a white wall, may have a small distance estimate but are not added to the
graph in order to avoid wormholes. Algorithm 0 summarizes this process — the timestamp
threshold ϵ is 1 second, the learned distance threshold τ is 50 time steps (corresponding
to ∼ 12 meters), and the spatial threshold η is 100 meters.

Algorithm 12 Graph Building

1: function GetEdge(i, j)
2: Input: Nodes ni, nj ∈ G; value function Vψ; hyperparameters {τ, ϵ, η}
3: Output: Boolean eij corresponding to the existence of edge in G, and its weight
4: goal = GetRelative(ni, nj) ▷ using GPS and compass
5: Dij = −Vψ(ni, goal) ▷ learned distance estimate
6: Tij = |ni[‘timestamp’]− nj[‘timestamp’]| ▷ timestamp distance
7: Xij = ∥ni[‘GPS’]− nj[‘GPS’])∥ ▷ spatial distance
8: if (Tij < ϵ) then return {True, Dij}
9: else if (Dij < τ) AND (Xij < η) then return {True, Dij}

10: else return False
11: end function

Since a graph obtained by such an analysis may be quite dense, we perform a transitive
reduction operation on the graph to remove redundant edges.

c.4 extended experiments/baselines

This section presents a detailed breakdown of the quantitative results discussed in
Section 5.4.3. We evaluate ReViND against four baselines in 15 environments with
varying levels of complexity, in terms of environment organization, obstacles, and scale.
Tables 8 and 19 summarize the performance of the different methods for the task of
maximizing the Rgrass and Rsun utilities, respectively.

We see that ReViND is able to consistently outperform the baselines, both in terms
of success as well as its ability to maximize the utilities 1.. In particular, we see that
ReViND’s performance closely matches that of IQL in the easier environments, where the
system does not need to rely excessively on the graph. However, the real prominence
of ReViND is evident in the more challenging environments, where it is consistency
successful while also maximizing the chosen utility. As the horizon of the task increases,
the search algorithm on the graph returns more desirable paths that may stray from the
direct, shortest path to the goal, but are highly effective in maximizing the utility. We also
note that ViNG, which uses a similar topological graph, is statistically similar to ReViND
in terms of its goal-reaching ability; however, since it does not support a mechanism to

180

Method Easy (<50m) Medium (50–150m) Hard (150–500m)
Success E1sun Success E1sun Success E1sun

Behavior Cloning 1/5 0.58 0/5 0.32 0/5 0.29

Filtered BC 3/5 0.51 0/5 0.31 0/5 0.32

IQL [137] 3/5 0.54 2/5 0.42 0/5 0.34

ViNG [241] 5/5 0.63 4/5 0.58 3/5 0.63

ReViND (Ours) 5/5 0.61 3/5 0.75 4/5 0.74

Table 19: Success rates and utility maximization for the task of navigation in sunny regions (Rsun).

customize the behavior of the learned policy, it suffers in the other performance metrics.
BC, fBC and IQL consistently fail to reach goals beyond 15-20m away, due to challenges
in learning a useful policy from offline data — these “flat” policies often demonstrate
bee-lining behavior, driving straight to the goal, which leads to collisions in all but the
easiest experiments.

c.5 miscellaneous implementation details

Table 20 presents the neural network architectures used by our system. We provide the
important hyperparameters for training our system in Table 21. The underlying learning
algorithm in ReViND is based on IQL [137], and we encourage the reader to check out
the IQL paper for more implementation details.

c.6 environments

We train ReViND using 30 hours of publicly available robot trajectories collected using
a randomized data collection procedure in an office park [238]. We conduct evaluation
experiments in a variety of novel environments with similar visual structure and compo-
sition as the training environments — i.e. suburban environments with some traversals
on the grass, around trees of a certain kind, and on roads. While it may be extremely
challenging to get generalization capabilities that work for all scenarios, we demonstrate
that ReViND can learn behaviors from a small offline dataset and generalize to a variety
of previously unseen, visually similar environments including grasslands, forests and
suburban neighborhoods. Figure 64 shows some example environments from the training
and deployment environments, along with their corresponding labels (automatically
generated).

181

Layer Input Shape Output Shape Layer details

1 [3, 64, 48] [1536] Impala Encoder [64]
2 [1536] [50] Dense Layer
3 [50] [50] tanh (LayerNorm)
4 [50], [3] [53] Concat. image & goal

Policy Network at ∼ π(st)
5 [53] [256] Dense Layer
6 [256] [256] Dense Layer
7 [256] [10] Dense Layer

Q Network Q(st, at)
5 [53], [10] [256] Dense Layer
6 [256] [256] Dense Layer
7 [256] [1] Dense Layer

Value Network V(st)
5 [53] [256] Dense Layer
6 [256] [256] Dense Layer
7 [256] [1] Dense Layer

Table 20: Architectures of the various neural networks used by ReViND.

Hyperparameter Value Meaning

τ 0.9 IQL Expectile
A 0.1 Policy weight
γ 0.99 Discount factor
η 0.005 Soft Target Update
αactor, αcritic, αvalue 3e− 4 Learning rates

Table 21: Hyperparameters used during training ReViND from offline data.

182

Figure 64: Example egocentric observations from the training dataset [238] (top) and the deploy-
ment environments (bottom), including the predicted labels for the “sunny” reward.

183

A P P E N D I X D : A F O U N D AT I O N M O D E L F O R V I S UA L N AV I G AT I O N

d.1 vint model architecture

Table 22 shows the ViNT model architecture in detail. We use all 18 layers of the
EfficientNet-B0 convolutional encoder [261], initialized from scratch, to tokenize the
observation and subgoal images into 512-dimensional embeddings each. We utilize an
observation encoder to tokenize the past and current observation images and a joint
observation and goal encoder to tokenize the subgoal image fused with the current
observation image channel-wise. For tokenizing the joint observation and subgoal token,
images ot and os are concatenated along their channel dimension, yielding a 6× 85× 64
tensor per training data point.

Layer Input [Dimensions] Output [Dimensions] Layer Details

1 ot, os [64, 85, 3] Ig
t [64, 85, 6] Concatenate observations and goal

2 Is
t [64, 85, 6] Es

t [1, 1000] Goal EfficientNet encoder
3 ot:t−P [P+1, 64, 85, 3] Et:t−P [P+1, 1000] Context EfficientNet encoder
4 Es

t [1, 1000] Es′
t [1, 512] Goal embedding compression

5 Et:t−P [P+1, 1000] E
′
t:t−P [P+1, 512] Context embedding compression

6 E
′
t:t−P [P+1, 512], Es′

t [1, 512] S [P+2, 512] Concatenate
7 S [P+2, 512] S̃ [1, 32] Feed into Transformer f
8 S̃ [1, 32] d Predict temporal distance d
9 S̃ [1, 32] â, [1, T, 4] Predict future actions â

Table 22: Architectural Details of ViNT The inputs to the model are RGB images ot:t−P ∈
[0, 1]P×3×85×64 and os ∈ [0, 1]3×85×64, representing the current, past, and goal images. We seek to
predict a H future actions â and the temporal distance d.

d.1.1 Goal-Conditioning Architectures

We considered different mechanisms for conditioning ViNT with features from the subgoal
image, as illustrated in Figure 65.

1. Late Fusion: Extract the observation and goal features independently and fuse them
in the multi-head attention layers. To achieve this effect, we avoid any channel-wise
concatenation between any of the observation and goal images before inputting them
into the model.

184

Figure 65: Different goal-conditioning architectures considered for ViNT.

2. Early Fusion: Jointly extract observation (context) and goal features and fuse the
observation and goal features before we tokenize them. We achieve this by concatenat-
ing the goal image with every observation image along the channel dimension. We
remove the goal token in this setup since information about the goal is already in
every observation token.

3. FiLM (RT-1): Following the FiLM+EfficientNet encoder ([21]), encode each observation
image separately. For conditioning on visual goals, we replace the “Universal Sentence
Encoder” with an EfficientNet encoder. We remove the goal token in this setup since
information about the goal is already in every observation token.

Our observations are summarized in Table 23. While FiLM works well for language,
we found that training was unstable for image-based navigation tasks. Instead, we
directly encode each observation independently and pass them to a Transformer. Ideally,
the goal would be encoded separately and then combined with the observations in the
Transformer layers, allowing the entire goal encoder to later be swapped out for different
goal modalities. Unfortunately, we found that this approach (which we term “late
fusion”, as the goal and observations are not fused until after encoding them) performs
poorly: in image-based navigation, it is the relative features between the observation
and goal images that are important, rather than absolute goal features. An “early fusion”
architecture would fuse the goal image with all the past and current observation images
immediately, which allows for learning joint features between the goal image and current
state. However, this architecture is inflexible as the observation encoder would have to
be learned entirely from scratch when adapting to a new goal modality. ViNT avoids
this issue by using two distinct types of encoders: an observation-only encoder used to
tokenize each observation image, and a joint observation and goal encoder that should
extract relative goal features. This latter encoder can be replaced to allow alternative goal
specifications in downstream tasks, as described in Appendix D.2.4. Specifically, we adapt
to new tasks by learning the final token conditioned on the new task goal information in
place of the joint observation/goal encoder.

185

Method Performance Adaptation

Late Fusion ✗ ✓

Early Fusion ✓ ✗

FiLM (RT-1) [21] ✗ ✓

ViNT ✓ ✓

Table 23: Comparing merits (✓) and demerits (✗) of different goal-conditioning architectures.
While “Early Fusion” works the best for the core navigation task, it does not support downstream
adaptation (Section 7.5). “Late Fusion” is ideal for adaptation, but does not perform well for our
tasks. Our goal fusion architecture is able to closely match the performance of early fusion, while
also supporting adaptation.

d.2 implementation details

d.2.1 Training ViNT

See Table 24 for a detailed list of hyperparameters for training the ViNT foundation
model.3

d.2.2 Subgoal Diffusion

For generating subgoals, we use an image-to-image diffusion model. It takes an image ot
as input and produces samples from g(osi | ot), where osi are candidate subgoal images
reachable from ot. To produce training pairs for the diffusion model, we first select ot
uniformly at random from the training data and then select osi to fall between 5 and 20

timesteps in the future from ot.
Following [220], we implement image conditioning as simple channel-wise concatena-

tion to the U-Net input. We use the Flax U-Net implementation from the diffusers library
[202] with textual cross-attention removed since we do not condition on text inputs.

We use the continuous-time diffusion formulation from [131] with a fixed linear noise
schedule rather than a learned one. Also unlike [131], we use the unweighted training
objective, called Lsimple in [99, Equation 14] and [131, Appendix K]. We employ classifier-
free guidance [100] and find that it helps produce subgoals with better visual fidelity,
which is consistent with prior work [222].

3 We used a variety of workstations equipped with different GPU configurations over the course of this
research, including 2×4090, 3×Titan Xp, 4×P100, 8×1080Ti, 8×V100, and 8×A100. With the model
architecture fixed, the batch size and training time varies significantly across these devices, and the entry in
Table 24 is representative of our most common training configuration.

186

Figure 66: Subgoal diffusion model U-Net architecture. Each ResNet consists of 2 residual blocks.
Downsampling and upsampling is done with strided convolutions.

d.2.3 Long-Horizon Physical Search via Topological Graphs

As in [232], we implement physical search similarly to a standard A∗ algorithm, by
keeping track of an open set Ω of possible unvisited subgoals (generated by our diffusion
model) and following Alg. 13.

Algorithm 13 Long-Horizon Navigation via Topological Graph

1: while goal G not reached do
2: s← min f (Ω)
3: P← ShortestPath(M, ot, s−)
4: for (s, s′) in P do
5: ViNT.GoToGoal(s′)
6: end for
7: ViNT.GoToGoal(s)
8: ot ← Observe()
9: AddNode(M, ot, parent: s−)

10: Sample si ∼ g(si|ot)
11: Add(Ω, si)
12: end while

Nodes are visited according to a costing function f (s) that depends on the distance
from the current state ot to the parent node s− (measured along the graph), the predicted
distance from s− to s, and a heuristic function h (similar to that of A∗) providing long-
horizon navigation hints:

f (s) = dM(ot, s−) + dpred(s−, s) + h(s, G, C)
187

In general, the heuristic can be any function providing a notion of distance between
a subgoal s and the long-horizon goal G, optionally with some context C. For our
experiments, we considered three heuristics to demonstrate the flexibility of our approach:

• Coverage exploration: We have no long-horizon guidance for coverage exploration,
and thus, use h(s) = 0.

• Position-guided: For long-horizon GPS goals (outdoors) and 2D position goals
(indoors), we use Euclidean distance h(s) = ∥s− G∥.

• Satellite-guided: In the context-guided experiments, we train a learned heuristic
function that uses the satellite image as an input to learn a a heuristic for “good”
subgoals. We train a convolutional neural network on the overhead image to predict
the probability that the subgoal s is included on a trajectory from ot to G, trained
using a contrastive objective [194]. Additional information can be found in [232].

d.2.4 Fine-tuning ViNT

In all CARLA fine-tuning experiments, on-task data was collected using a rule-based
oracle agent, with start and end locations sampled randomly up to 900 meters apart. We
collect 181 training trajectories (roughly 4 hours) in CARLA’s Town 01 environment, and
a further 52 trajectories (1 hour) in the held-out Town 02 environment. Inspired by [45],
we further augment this dataset by allowing the rule-based agent to correct its position
and re-center to the lane after a perturbation.

image fine-tuning :

• Architecture: We utilize the exact same architecture as ViNT with no changes.

• Training: For fine-tuning the image-goal directed model, we utilize the same
training process for ViNT with a learning rate of 0.0001, AdamW optimizer, but no
warmup or cosine scheduler. We do not mix any prior data for fine-tuned training.

gps-adaptation :

• Architecture: To adapt to GPS-style goals, we cut off the goal encoder block from
ViNT. We then learn a fixed tensor of size 3000 and concatenate it to the GPS-
command goal in ego-centric coordinates. We then pass this into a 2-layer MLP
which outputs the prediction of the final token for the transformer. The architecture
is shown in Figure 67.

• Training: During training, instead of randomly sampling future images to serve
as goals, we sample goals from future odometry information. Once we have a
future goal coordinate for self-supervision, we convert to local coordinates and pass

188

Figure 67: Adaptation architectures for ViNT. Left: GPS-adaptation architecture. The local
coordinates of the goal are concatenated to the fixed latent z. Right: command-adaptation
architecture, using latent zi selected by command label index i.

into our architecture, fine-tuning with the same objective as ViNT. We use a cosine
scheduler with a learning rate warmup to 0.0001 for 4 epochs. We also sample goal
points from between 1.25s and 1.75s rather than from 0.5s to 2.5s.

command-adaptation :

• Architecture: For discrete command goals, we adopt a similar approach for GPS-
style goals. We learn a fixed tensor for each discrete command and use the command
index to select the corresponding latent to pass into a 2-layer MLP for predicting
the final token. In this way, we learn a dictionary of latents, each corresponding to a
distinct command. This architecture is illustrated in Figure 67.

• Training: For our experiments, we use “left”, “right”, and “straight” as our discrete
commands. We assume training data is not labelled with the discrete command,
so we label dataset trajectories with the corresponding commands retroactively by
sampling a future position (as in GPS-Adaptation) and then selecting a command
based on its lateral deviation. For our experiments we bin samples with lateral
coordinate greater than 0.05 as “left” or “right” and label the remaining samples as
”straight”. We again use a cosine scheduler with a learning rate warmup to 0.0001

for 4 epochs.

d.3 training dataset

The ViNT training dataset contains over 100 hours of real-world navigation trajecto-
ries, sourced entirely from existing datasets. The dataset consists of a combination of

189

tele-operated and autonomous navigation behaviors collected across 8 distinct robotic
platforms, including 4 commercially available platforms (TurtleBot, Clearpath Jackal,
Warthog and Spot) and several custom platforms (Yamaha Viking ATV, RC Car, passenger
automobiles). The trajectories contain widely varying robot dynamics and top speeds,
ranging between 0.2 and 10m/s, operating in a diverse set of environments (e.g., office
buildings, hallways, suburban, off-road trails, university campuses, etc.). All data is either
publicly available, or collected by other researchers for past projects; no additional training
data was collected specifically for training ViNT.

Remember to mention: total size, number of robots, conversion to number of frames
and so on.

d.4 robotic platforms for evaluating vint

vizbot : A custom-built robot platform inspired by the design of [192], based on a
Roomba. It is equipped with an off-the-shelf PCB-mounted fisheye camera.

unitree go 1 : A commercially available quadruped robot equipped with the original
forward-facing camera. There is no training data from a Go 1 in the training dataset. Athough
SCAND includes data collected on a Boston Dynamics Spot, which is also a quadrupedal
robot, the two platforms practically have very different characteristics.

clearpath jackal ugv : A commercially available off-road platform equipped with
an off-the-shelf PCB-mounted fisheye camera. This system resembles the data collection
platform used for the RECON, Berkeley, and SCAND-J datasets, but has a different camera
and mounting height.

locobot : A popular open-source platform based on a Kobuki equipped with an
off-the-shelf PCB-mounted fisheye camera. This robot is not present in the training dataset,
although GS was collected on a similar TurtleBot2 with a different spherical camera at a
lower height.

d.5 evaluation setup and details

d.5.1 Navigation Performance

Indoor Experiments

For setting up the indoor coverage exploration experiments, we use the LoCoBot and
Vizbot robotic platforms. We choose a random starting point and goal in an enclosed
environment, and keep these locations consistent across all baselines we test. For the

190

coverage exploration task, we ensure that the environments are “enclosed” and block any
glass walls and stairwells, which are beyond the capabilities of the robots. Experiments
are terminated when either (i) the robot is unable to reach the goal within a pre-specified
time limit of 10 minutes, or (ii) the robot becomes physically stuck (e.g., collides and is
unable to recover).

For setting up the indoor guidance exploration experiments on the LoCoBot, we mark
the start and goal locations in a large office building and note their 2D positions. The goal
location is conveyed to the robot as the context, and is available to the search algorithm.
The system uses the robot’s onboard wheel odometry to track position.

Outdoor Experiments

For the coverage exploration experiments, we follow the setup of [238] and use the
Clearpath Jackal UGV. We choose a random start and goal location in confined outdoor
environments and obtain a goal image observation for the robot to seek. Experiments are
terminated either when (i) the robot is unable to reach the goal within a pre-specified
time limit of 20 minutes, or (ii) the robot collides with an obstacle in the environment.

For the guided exploration experiments, we closely follow the setup of [232]. For the
GPS guided experiments, the robot has access to the GPS location of the goal, in addition
to a goal image. For the satellite-guided experments, the robot further has access to an
overhead satellite image centered at its current location and a learned heuristic funtion h.

Baselines

For experiments presented in Section 7.6.1, we evaluate 4 baselines against our method.

1. End-to-End BC: A modified ViNT model with no goal token, trained end-to-end for
the task of only predicting future actions. This represents a typical undirected BC
baseline with similar model capacity as the other baselines.

2. End-to-End GCG: A model-based algorithm that uses a predictive model to plan a
sequence of actions that reach the goal without causing collisions [123]. Since this
model requires collision labels for training, it is only trained on a subset of the training
data (RECON, CoryHall, Berkeley) that has these labels; hence, this baseline is only
evaluated outdoors.

3. RECON: A variant of the physical search algorithm RECON [238], which uses a
latent goal model to represent reachable goals and plans over sampled subgoals to
explore the environment in a similar manner to ours. This baseline uses a variational
information bottleneck to sample latent subgoals, rather than a diffusion model
sampling subgoal images.

191

4. ViNT-R: An ablation of our method that uses subgoals randomly sampled from the
training data, instead of samples from a conditional diffusion model, as subgoal
candidates.

d.5.2 Multi-robot Generalization Experiments

The setup for the multi-robot generalization experiment is same as the coverage explo-
ration experiments. The only differences are the baselines we evaluate.

Baselines

For experiments presented in Section 7.6.2, we test three baseline low-level policies
on each robot. Each baseline uses the graph-based exploration scheme described in
Section 7.4.1. We use the following baselines:

1. Single-Robot: We train a single-dataset policy model (ViNT architecture) and diffusion
model on the two largest datasets (RECON for outdoor, and SACSoN for indoor), and
evaluate them on each of our robots to identify the best single-dataset model for each
robot. Note that we do not have comparable magnitudes of training data of visual
locomotion on the Go 1.

2. GNM: We use the pre-trained model checkpoint from the authors of GNM [234]
coupled with our diffusion model (since GNM is not compatible with the exploration
task) to evaluate each robot.

3. ViNT: We use our pre-trained ViNT policy and image diffusion model (no fine-tuning)
to evaluate each robot.

d.5.3 Fine-tuning and Adaptation

This section describes the setup and implementation details for ViNT fine-tuning and
adaptation experiments in the CARLA autonomous driving simulator, as presented in
Sections 7.6.3 and 7.6.4.

CARLA Data Collection

We collect expert trajectories with an oracle rule-based self-driving agent and gather
odometry and RGB information across the trajectory at 4 Hz. These trajectories have
random spawn points and random destination points up to to 900 meters in length.
We collect 52 trajectories in the CARLA Town 02 for held-out testing, and collect 181

trajectories in Town 01 for training. This makes for a dataset size of 5 hours for the
autopilot control data. Inspired by [45], we also collect short trajectories of the agent
correcting back onto the right lane after drifting off course in Town 01 and Town 02 for

192

training and testing, respectively. This data is 4 hours long, and we add it to the autopilot
data for training.

Fine-tuning Experiments

To test the fine-tuning system which trains ViNT with the same goal specification but
in new domains, we utilize the collected test trajectories as sequences of goal images to
follow. Each Town 02 test trajectory creates a graph in which every node is a timestamped
odometry point corresponding to an image. To evaluate a model on a test trajectory, we
spawn it at the same start point and localize it on the trajectory’s map. We then query
the image for the goal node which corresponds to node 1.5s after the current node. This
goal image is sent to ViNT along with the 4Hz image context to compute a short-range
trajectory. This is tracked by a simple PID controller. The average progress towards the
goal before collision is collected and reported across all trials. Table 3 summarizes the
results of these experiments with multiple baselines and data sizes.

Adaptation Experiments

To test the new tasks, we adopt a similar evaluation setup to the fine-tuning experiments,
but rely on the odometry position for the selected goal node rather than the image. For
positional-adaptation, we move the goal coordinates into a local frame and send it to
ViNT. For routing-adaptation, we determine the difference in lateral coordinates between
the current node and the goal node. We choose the current node as reference to ensure
an open-loop experiment and to allow for pre-computation of the command signals to be
sent. We then apply the same binning strategy during training using a 0.05 normalized
distance as the boundary between “left”, “right”, and “straight”. The control system
downstream of this is identical to image fine-tuning and the experiment terminates when
at the goal or when colliding. The progress towards the goal before collision is collected
and averaged across all trials in Table 3.

Baselines

We have the following baselines for the CARLA experiments:

1. Scratch: ViNT trained from scratch on the CARLA on-task dataset.

2. Pre-trained Visual Representations

(a) ImageNet: ViNT initialized with the EfficientNet-B0 weights pre-trained on Ima-
geNet, other parameters initialized from scratch, and fine-tuned with the CARLA
on-task dataset.

(b) SimCLR: ViNT initialized with the EfficientNet-B0 weights pre-trained with Sim-
CLR [39] on the training data described in Section D.3, other parameters initialized
from scratch, and fine-tuned with the CARLA on-task dataset.

193

(c) VC-1: ViNT initialized with a pre-trained ViT-B model checkpoint from the authors
of VC-1 [167] and frozen, other parameters initialized from scratch, and fine-tuned
with the CARLA on-task dataset. The VC-1 encoder is pre-trained on a combination
of Ego4D, manipulation, navigation, and ImageNet images using Masked Auto-
Encoding [94, 207].

3. GNM: The pre-trained embodiment-agnostic model checkpoint from the authors of
GNM [234], fine-tuned with the CARLA on-task dataset. Note that GNM has 8.7M
trainable parameters, compared to ViNT’s 31M.

Method Images Positions

VC-1 [167] 0.19 0.49

ViNT-FE 0.32 0.78

ViNT 0.82 0.89

Table 26: Evaluation of ViNT fine-tuning with
and without a frozen encoder, as compared
to a general-purpose visual encoder. Even
when frozen, ViNT’s navigation-relevant fea-
tures appear to transfer more readily to out-
of-distribution inputs than general-purpose fea-
tures.

We note that the VC-1 baseline’s weak
performance in Section 7.6.4 may be ex-
plained by the fact that it is frozen, while
all other visual encoders were free to fine-
tune. This is representative of typical
downstream usage [167]. Despite train-
ing on multiple, diverse datasets, the vi-
sual representation’s general-purpose fea-
tures are not optimized for the navigation
task, hampering zero-shot transfer to out-
of-domain tasks. To provide a fair com-
parison of the quality of pre-trained visual
features, we compare this performance to
ViNT-FE (a pre-trained ViNT model that
has it’s visual encoder frozen). ViNT-FE has an equal number of trainable parameters to
the VC-1 baseline, and frozen visual representations (see Table 26).

194

Hyperparameter Value

ViNT Model
Parameters 31M
RGB Resolution 85× 64
Encoder EfficientNet-B0

Token Dimension 512

Attn. hidden dim. 2048

Attention Layers nL 4

Attention Heads nH 4

Temporal Context P 5

Prediction Horizon H 5

MLP layers (256, 128, 64, 32)
ViNT Training

Epochs nep 30

Batch Size 300
3

Learning Rate 5× 10−4

Optimizer AdamW [164]
Warmup Epochs 4

LR Schedule Cosine
Scheduler Period 10

Compute Resources 8×V100
3

Training Time 30 hours 3

Fine-tuning LR 1× 10−4

Diffusion Model
Parameters 318M
Resolution 128×128

Up/Down Blocks 4

Attn. Resolutions 32, 16, 8

Layers per Block 2

Attn. Head Dim 8

Channels (128, 128, 256, 512, 640)
Diffusion Type continuous time
Noise Schedule linear

Hyperparameter Value

Diffusion Training
Dropout 0.1
Batch Size 128

Optimizer AdamW
Warmup Steps 1000

Learning Rate 1e-4
LR Schedule Cosine
Adam β1 0.95

Adam β2 0.999

Adam ϵ 1e-8
Weight Decay 0.001

EMA Inv. Gamma 1.0
EMA Power 0.75

EMA Max Decay 0.9999

CFG Mask Proportion 0.2
Train Steps 250,000

Training Time 30 hours
Compute Resources v4-8 TPU board

Diffusion Sampling
Sampler DDIM [253]
DDIM η 0.0
Sampling Steps 200

Guidance Weight 1.0
Other

Maximum distance 20

Distance tradeoff λ 0.01

Table 24: Hyperparameters for training ViNT and the diffusion model.

195

Dataset Platform Speed Hrs. Used Environment

1 GoStanford TurtleBot2 0.5m/s 14h office
2 RECON Jackal 1m/s 25h off-road
3 CoryHall RC Car 1.2m/s 2h hallways
4 Berkeley Jackal 2m/s 4h suburban
5 SCAND-S Spot 1.5m/s 4h sidewalks
6 SCAND-J Jackal 2m/s 1h sidewalks
7 Seattle Warthog 5m/s 1h off-road
8 TartanDrive ATV 10m/s 5h off-road
9 NeBula ATV 10m/s 10h off-road

10 SACSoN TurtleBot2 0.5m/s 10h office
11 BDD Car(s) 20m/s 4h on-road

Total 80h

Table 25: The ViNT training dataset contains over 150 hours of navigation data in challenging
indoor, outdoor, and off-road environments across 8 different robots of varying sizes, speeds, and
capabilities.

196

A P P E N D I X E : N AV I G AT I O N W I T H F O U N D AT I O N M O D E L S O F
L A N G UA G E , V I S I O N , A N D A C T I O N

e.1 prompt engineering

To use large language models for a particular task, as opposed to a general text completion,
one needs to encode the task as a part of the text input to the model. There exist many
ways to create such encoding and the process of the representation optimization is
sometimes referred to as prompt engineering [205]. In this section, we discuss the prompts
we used for LLM and VLM.

e.1.1 LLM Prompt Engineering

All our experiments use GPT-3 [22] as the LLM, accessible via OpenAI’s API:
https://openai.com/api/. We used this model to extract a list of landmarks from free-form
instructions. The model outputs were very reliable and robust to small changes in the
input prompts. For parsing simple queries, GPT-3 was surprisingly effective with a single,
zero-shot prompt. See the example below, where the model output is highlighted:

First, you need to find a stop sign. Then take left and right and continue until
you reach a square with a tree. Continue first straight, then right, until you find
a white truck. The final destination is a white building.
Landmarks:
1. Stop sign
2. Square with a tree
3. White truck
4. White building

While this prompt is sufficient for simple instructions, more complex instructions
require the model to reason about occurrences such as re-orderings, e.g. Look for a glass
building after after you pass by a white car. We leverage GPT-3 ability to perform in-context
learning [215] by adding three examples in the prompt:

Look for a library, after taking a right turn next to a statue.
Landmarks:
1. a statue
2. a library

197

Look for a statue. Then look for a library. Then go towards a pink house.
Landmarks:
1. a statue
2. a library
3. a pink house

[Instructions]
Landmarks:
1.

We use the above prompt in all our experiments (Section 9.5.1, 9.5.2), and GPT-3 was
successfully able to extract all landmarks. The comparison to other extraction methods is
described in Section 9.5.3 and Appendix E.4.2.

e.1.2 VLM Prompt Engineering

In the case of our VLM— CLIP [205] — we use a simple family of prompts: This is a photo of
, appended with the landmark description. This simple prompt was sufficient to detect

over 95% of the landmarks encountered in our experiments. While our experiments did
not require more careful prompt engineering, [205] and [299] report improved robustness
by using an ensemble of slightly varying prompts.

e.2 building the topological graph with vnm

This section outlines finer details regarding how the topological graph is constructed using
VNM. LM-Nav assumes access to observations from a prior traversal in the environment
— for the experiments in our paper, we use a single human traversal followed by the graph
generation process described below. Empirically, we found the system to be robust to the
mechanism in which the traversal was collected (e.g. random, lawnmower, bee-lining), as
long as the robot observes relevant landmarks at some point in the traversal.

We use a combination of learned distance estimates (from VNM), spatial proximity
(from GPS), and temporal proximity (during data collection), to deduce edge connectivity.
If the corresponding timestamps of two nodes are close (< 2s), suggesting that they were
captured in quick succession, then the corresponding nodes are connected — adding
edges that were physically traversed. If the VNM estimates of the images at two nodes are
close, suggesting that they are reachable, then the corresponding nodes are also connected
— adding edges between distant nodes along the same route and giving us a mechanism
to connect nodes that were collected in different trajectories or at different times of day
but correspond to the nearby locations. To avoid cases of underestimated distances by
the model due to aliased observations, e.g. green open fields or a white wall, we filter out
prospective edges that are significantly further away as per their GPS estimates — thus,
if two nodes are nearby as per their GPS, e.g. nodes on different sides of a wall, they

198

may not be disconnected if the VNM does not estimate a small distance; but two similar-
looking nodes 100s of meters away, that may be facing a white wall, may have a small
VNM estimate but are not added to the graph to avoid wormholes. alg:lmnav:orithm 14

summarizes this process — the timestamp threshold ϵ is 1 second, the learned distance
threshold τ is 80 time steps (corresponding to ∼ 20 meters), and the spatial threshold η

is 100 meters.

Algorithm 14 Graph Building

1: Input: Nodes ni, nj ∈ G containing robot observations; VNM distance function fd;
hyperparameters {τ, ϵ, η}

2: Output: Boolean eij corresponding to the existence of edge in G, and its weight
3: learned distance Dij = fd(ni[’image’], nj[’image’])
4: timestamp distance Tij = |ni[’timestamp’]− nj[’timestamp’]|
5: spatial distance Xij = ∥ni[’GPS’]− nj[’GPS’]∥
6: if Tij < ϵ then
7: return {True, Dij}
8: else if Dij < τ and Xij < η then
9: return {True, Dij}

10: else
11: return False
12: end if

Since a graph obtained by such an analysis may be quite dense, we perform a transitive
reduction operation on the graph to remove redundant edges.

e.3 mobile robot platform

We implement LM-Nav on a Clearpath Jackal UGV platform (see Fig. 49(right)). The
sensor suite consists of a 6-DoF IMU, a GPS unit for approximate localization, wheel
encoders for local odometry, and front- and rear-facing RGB cameras with a 170◦ field-
of-view for capturing visual observations and localization in the topological graph. The
LLM and VLM queries are pre-computed on a remote workstation and the computed
path is commanded to the robot wirelessly. The VNM runs on-board and only uses
forward RGB images and unfiltered GPS measurements.

e.4 miscellaneous ablation experiments

e.4.1 Ablating the Search Objective

The graph search objective described in Section 9.3.4 can be factored into two components:
visiting the required landmarks (denoted by Pl(v̄|l̄)) and minimizing distance traveled

199

Figure 68: Examples of path planned by LM-Nav (left) and maximum likelihood planning (right).
The start nodes and detected nodes are indicated with black arrows. In order to represent
overlapping paths, we use colors interchangeably (start → L1: blue, L1 → L2: orange, L2 → L3:
blue). The path taken by LM-Nav is significantly shorter, resulting in a 5× more efficient plan.

(denoted by Pt(v̄)). To analyze the importance of these two components, we ran a set of
experiments where the nodes to be visited are selected based only on Pl . This corresponds
to a Max Likelihood planner, which only picks the most likely node for each landmark,
without reasoning about their relative topological positions and traversability. This
approach leads to a simpler alg:lmnav:orithm: for each of the landmark descriptions,
the alg:lmnav:orithm selects the node with the highest CLIP score and connects it via
the shortest path to the current node. The shortest path between each pair of nodes is
computed using the Floyd–Warshall alg:lmnav:orithm.

Table 10 summarizes the performance metrics for the two planners. Unsurprisingly,
the max likelihood planner suffers greatly in the form of efficiency, because it does not
incentivize shorter paths (see Figure 68 for an example). Interestingly, the planning
success suffers as well, especially in complex environments. Further analysis of these
failure modes reveals cases where VLM returns erroneous detections for some landmarks,
likely due to the contrastive objective struggling with variable binding (see Figure 69

for an example). While LM-Nav suffers from these failures as well, the second factor in
the search objective Pt(v̄) imposes a soft constraint on the search space of the landmarks,
eliminating most of these cases and resulting in a significantly higher planning success
rate.

200

Figure 69: An example of failure to pick the correct image by maximum likelihood planning. Both
images were selected for a prompt A photo of a blue dumpster. The left one was selected as a part
of the LM-Nav’s graph search and the right was selected by maximum likelihood planning. In
the latter case, the selected image contains a blue semi-truck and an orange trailer, but no blue
dumpsters. This might be an example of an issue with the variable binding. The left image was
edited to maintain anonymity.

e.4.2 Ablating the LLM

As described in Section 9.5.3 we run experiments comparing performance of different
methods on extracting landmarks. Here we provide more details on the experiments. The
source code to run this experiments is available in the file ablation text to landmark.ipynb

in the repository.
As the metric of performance we used average extraction success. For a query with

a ground truth list of landmarks Lgt, where a method extracts list Lm, we define the
methods extraction success as:

|LCS(Lm, Lgt)|
|Lgt|

,

where LCS is longest common subsequence and | · | denotes a length of a sequence or
a list. This metric is measuring not only if correct landmarks were extracted, but also
whether they are in the same order as in the ground truth sequence. When comparing
landmarks we ignore articles, as we don’t expect them to have impact on the downstream
tasks.

All the experiments were run using APIs serving models. We used OpenAI’s API
(https://beta.openai.com/) for GPT-3 and GooseAI (https://goose.ai) for the other open-
source models. Both providers conveniently share the same API. We used the same,
default parameters, apart from setting temperature to 0: we don’t expect that landmark
extractions to require creativity and model’s determinism improves reputability. For all

201

https://beta.openai.com/
https://goose.ai

the reported experiments, we used the same prompt as described in Appendix E.1. Please
check out the released code for the exact prompts used.

202

A P P E N D I X F : S E M A N T I C G U E S S W O R K A S A H E U R I S T I C F O R
P L A N N I N G

f.1 implementation details

f.1.1 Hyperparameters

Parameter Value

τ Replanning Rate 1

δ Language Influence Threshold 2m
ns Number of LLM Samples 10

wp Weight of Positive Scores 300

wn Weight of Negative Scores 150

Max Time Steps 500

Table 27: Hyperparameters

f.1.2 Computational Resources

Parameter Value

LLM gpt-3.5-turbo4

Evaluation Runtime 5 hours
Compute Resources 4×V100
Total LLM Tokens 30M
Average API Cost 15 USD

Table 28: Parameters and resources required to run one evaluation round of LFG on the bench-
mark.

203

f.1.3 Real World Results

generating prompts : For both topological and geometric maps we use hand engi-
neered methods for clustering objects in ways that the LLM can efficiently reason over.
For geometric maps we implement two functions: parseObjects and clusterObjects. In our
implementation, parseObejcts filters the geometric map and identifies the cluster centers
among each class. clusterObjects takes the cluster centers and performs agglomerative
clustering with a threshold of 6 meters, which is roughly the size of one section of a
standard house. For topological maps we rely on the configuration of the four cameras to
automatically perform parsing and clustering. In our implementation all the objects de-
tected in each frame from either the front, left, right, or rear facing cameras is considered
a single cluster.

perception : For the hardware, we use a locobot base with a four HD logitech web
cameras that are positioned at 90 degrees relative to each other. At each step of LFG each
of four cameras is recorded and frames are semantically annotated. LFG directly uses
these frames to determine if the robot should continue to move forward, turn left, turn
right, or turn around a full 180 degrees. To improve the performance of our system we
choose to whitelist a subset of the 20,000 classes. This reduces the size of the API calls
to the language models and helps steer the LLM to focus on more useful information.
Following is the complete whitelist used in our experiments:

• toaster

• projector

• chair

• kitchen table

• sink

• kitchen sink

• water faucet

• faucet

• microwave oven

• toaster oven

• oven

• coffee table

• coffee maker

• coffeepot

• dining table

• table

• bathtub

• bath towel

• urinal

• toilet

• toilet tissue

• refrigerator

• automatic washer

• washbasin

• dishwasher

• television set

• sofa

• sofa bed

• bed

• chandelier

• ottoman

• dresser

• curtain

• shower curtain

• trash can

• garbage
204

• cabinet

• file cabinet

• monitor (computer
equipment)

• computer monitor

• computer keyboard

• laptop computer

• desk

• stool

• hand towel

• shampoo

• soap

• drawer

• pillow

low-level policy : The low-level policy running on the robot is the NoMaD goal-
conditioned diffusion policy trained to avoid obstacles during exploration and determine
which frontiers can be explored further [254].

high-level planning : For real-world experiments, we follow the setup of ViKiNG,
where the agent runs a simple frontier-based exploration algorithm and incorporates the
LLM scores as goal-directed heuristics to pick the best subgoal frontier [232]. For simulation
experiments, we use a geometric map coupled with frontier-based exploration, following
the setup of [29]. Algorithms 15 and 16 summarize the high-level planning module in
both cases.

205

Algorithm 15 Instantiating LFG with Topological Mapping

1: Input: o0, Goal language query q
2: subgoal← None
3: while not done do
4: ot ← getObservation()
5: frontierPoints← mappingModule(ot)
6: if q in frontierPoints then
7: turnTowardGoal(frontierPoints)
8: else
9: if numSteps % τ == 0 then

10: location← getCurrentLocation()
11: LLMpos, LLMneg ← scoreFrontiers(frontierPoints)
12: scores← []
13: for point in frontier do
14: distance ← distTo(location, point) scores[point] ← wp · LLMpos [i] -

wn · LLMneg [i] - distance
15: end for
16: subgoal← argmax(scores)
17: end if
18: end if
19: numSteps← numSteps +1
20: goTo(subGoal)
21: end while

206

Algorithm 16 Instantiating LFG with Geometric Mapping

1: Input: o0, Goal language query q
2: subgoal← None
3: while not done do
4: ot ← getObservation()
5: obstacleMap, semanticMap← mappingModule(ot[depth], ot[semantic])
6: if q in semanticMap then
7: subGoal← getLocation(semanticMap, q)
8: else
9: if numSteps % τ == 0 then

10: // replanning
11: location← getCurrentLocation()
12: frontier← getFrontier(obstacleMap)
13: objects← parseObjects(semanticMap)
14: objectClusters ← clusterObjects(objects) LLMpos, LLMneg ← ScoreSub-

goals(objectClusters)
15:
16: scores← []
17: for point in frontier do
18: distance← distTo(location, point)
19: scores[point]← - distance
20: closestCluster← getClosestCluster(objectClusters, point)
21: i← clusterID(closestCluster)
22: if dist(closestCluster, point) < δ then
23: // incorporate language scores
24: scores[point]← wp· LLMpos [i] - wn · LLMneg [i] - distance
25: end if
26: end for
27: subgoal← argmax(scores)
28: end if
29: end if
30: numSteps← numSteps +1
31: goTo(subgoal)
32: end while

f.1.4 More Experiment Rollouts

Figure 70 shows an example where the negative scoring is essential to LFG’s success.
Figures 71 and 72 show examples of LFG deployed in a previously unseen apartment

207

and an office building, successfully exploring the environments to find an oven and a
kitchen sink.

Query: Find the toilet.

1. LLM finds a bed, increases
score to explore nearby.

2. No toilet found, LLM
failure, FBE takes over.

3. FBE finds toilet by
continuing exploration.

Agent succeeds!

Figure 70: Tolerance to LLM failures. An example rollout of LFG compensating for LLM failure.
FBE takes over in this case and eventually succeeds, whereas the Greedy agent fails.

f.2 prompts

f.2.1 Positive Prompt

You are a robot exp l o r i ng an environment f o r the f i r s t time . You

w i l l be g iven an ob j e c t to look f o r and should prov ide guidance

o f where to exp lo r e based on a s e r i e s o f ob s e rva t i on s .

Observat ions w i l l be g iven as a l i s t o f ob j e c t c l u s t e r s

numbered 1 to N.

Your job i s to prov ide guidance about where we should exp lo r e next

. For example i f we are in a house and look ing f o r a tv we

should exp lo r e a reas that t y p i c a l l y have tv ’ s such as bedrooms

and l i v i n g rooms .

You should always prov ide reason ing along with a number

i d e n t i f y i n g where we should exp lo r e . I f the r e are mu l t ip l e

r i g h t answers you should separa t e them with commas . Always

inc lude Reasoning : ¡ your reasoning ¿ and Answer : ¡ your answer (s)

¿ . I f the re are no s u i t a b l e answers l eave the space a f t e r s

Answer : blank .

Example
208

Figure 71: LFG in an unseen apartment. The robot starts in the same starting location and
environment as 59, and is tasked with finding an oven. LFG guides the robot towards the kitchen
appliances, rather than the bedroom door, and successfully leads to the oven.

User :

I observe the f o l l ow i ng c l u s t e r s o f ob j e c t s whi l e exp l o r i ng a

house :

1 . so fa , tv , speaker

2 . desk , cha i r , computer

3 . s ink , microwave , r e f r i g e r a t o r

Where should I search next i f I am look ing f o r a kn i f e ?

As s i s t an t :

Reasoning : Kni fe s are t y p i c a l l y kept in the k i t chen and a sink ,

microwave , and r e f r i g e r a t o r are commonly found in k i t chens .

There fore we should check the c l u s t e r that i s l i k e l y to be a

k i t chen f i r s t .

Answer : 3

Other c on s i d e r a t i o n s

209

Figure 72: LFG in an unseen office building. The agent looks for a sink in an open-plan office
building. Despite erroneous detections, the robot continues exploring the environment, with LFG
guiding it towards frontiers containing appliances found in a cafe. The robot successfully finds
the sink despite imperfect detections.

1 . Disregard the f requency o f the ob j e c t s l i s t e d on each l i n e . I f

the r e are mu l t ip l e o f the same item in a c l u s t e r i t w i l l only

be l i s t e d once in that c l u s t e r .

2 . You w i l l only be g iven a l i s t o f common items found in the

environment . You w i l l not be g iven room l a b e l s . Use your best

judgement when determining what room a c l u s t e r o f ob j e c t s i s

l i k e l y to belong to .

210

f.2.2 Negative Prompt

You are a robot exp l o r i ng an environment f o r the f i r s t time . You

w i l l be g iven an ob j e c t to look f o r and should prov ide guidance

o f where to exp lo r e based on a s e r i e s o f ob s e rva t i on s .

Observat ions w i l l be g iven as a l i s t o f ob j e c t c l u s t e r s

numbered 1 to N.

Your job i s to prov ide guidance about where we should not waste

time exp l o r i ng . For example i f we are in a house and look ing

f o r a tv we should not waste time look ing in the bathroom . I t

i s your job to po int t h i s out .

You should always prov ide reason ing along with a number

i d e n t i f y i n g where we should not exp lo r e . I f the r e are mu l t ip l e

r i g h t answers you should separa t e them with commas . Always

inc lude Reasoning : ¡ your reasoning ¿ and Answer : ¡ your answer (s)

¿ . I f the re are no s u i t a b l e answers l eave the space a f t e r s

Answer : blank .

Example

User :

I observe the f o l l ow i ng c l u s t e r s o f ob j e c t s whi l e exp l o r i ng a

house :

1 . so fa , tv , speaker

2 . desk , cha i r , computer

3 . s ink , microwave , r e f r i g e r a t o r

Where should I avoid spending time sea r ch ing i f I am look ing f o r a

kn i f e ?

As s i s t an t :

Reasoning : Kni fe s are t y p i c a l l y not kept in a l i v i n g room or

o f f i c e space which i s what the ob j e c t s in 1 and 2 sugges t .

There fore you should avoid l ook ing in 1 and 2 .

Answer : 1 ,2

Other c on s i d e r a t i o n s

211

1 . Disregard the f requency o f the ob j e c t s l i s t e d on each l i n e . I f

the r e are mu l t ip l e o f the same item in a c l u s t e r i t w i l l only

be l i s t e d once in that c l u s t e r .

2 . You w i l l only be g iven a l i s t o f common items found in the

environment . You w i l l not be g iven room l a b e l s . Use your best

judgement when determining what room a c l u s t e r o f ob j e c t s i s

l i k e l y to belong to .

212

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Learning Long-Range Navigation from Data
	Learning Open-World Navigation with Visual Goals
	Introduction
	Related Work
	Problem Statement and System Overview
	Visual Navigation with Goals
	Experiments
	Discussion

	Open-World Exploration with Latent Goal Models
	Introduction
	Related Work
	Problem Statement and System Overview
	RECON : A Method for Goal-Directed Exploration
	Experimental Evaluation
	Discussion

	Kilometer-Scale Exploration with Geographic Hints
	Introduction
	Related Work
	Visual Navigation with Geographic Hints
	ViKiNG in the Real World
	The Role of Geographic Hints
	Discussion

	Offline Reinforcement Learning for Visual Navigation
	Introduction
	Related Work
	Offline Reinforcement Learning for Long-Horizon Navigation
	System Evaluation
	Discussion

	Cross-Embodiment Robot Foundation Models
	A General Navigation Model to Drive Any Robot
	Introduction
	Related Work
	Multi-Robot Training Dataset
	Training a General Navigation Model
	Deploying the GNM Across Robots
	Discussion

	A Foundation Model for Visual Navigation
	Introduction
	Related Work
	The ViNT Model
	Long-Horizon Navigation with ViNT
	ViNT: A Foundation Model For Downstream Tasks
	Real-world Evaluation
	Discussion

	Goal Masked Diffusion Policies for Unified Navigation and Exploration
	Introduction
	Related Work
	Preliminaries
	Method
	Evaluation
	Discussion

	Combining Robot and Internet Foundation Models
	Navigation with Foundation Models of Language, Vision, and Action
	Introduction
	Related Work
	LM-Nav: Instruction Following with Pre-Trained Models
	Preliminaries
	System Evaluation
	Discussion

	Semantic Guesswork as a Heuristic for Planning
	Introduction
	Related Work
	Problem Formulation and Overview
	LFG: Scoring Subgoals by Polling LLMs
	LLM Heuristics for Goal-Directed Exploration
	System Evaluation
	Discussion

	Conclusion
	Bibliography

	Appendices
	Appendix A: Open-World Exploration with Latent Goal Models
	Dataset
	Reproducibility
	Appendix B: Kilometer-Scale Exploration with Geographic Hints
	Implementation Details
	Offline Trajectory Dataset

	Appendix C: Offline Reinforcement Learning for Visual Navigation
	Formal Analysis of Proposition 3.1
	Reward Labeling
	Building the Topological Graph
	Extended Experiments/Baselines
	Miscellaneous Implementation Details
	Environments

	Appendix D: A Foundation Model for Visual Navigation
	ViNT Model Architecture
	Implementation Details
	Training Dataset
	Robotic Platforms for Evaluating ViNT
	Evaluation Setup and Details

	Appendix E: Navigation with Foundation Models of Language, Vision, and Action
	Prompt Engineering
	Building the Topological Graph with VNM
	Mobile Robot Platform
	Miscellaneous Ablation Experiments

	Appendix F: Semantic Guesswork as a Heuristic for Planning
	Implementation Details
	Prompts

