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Real-time Estimation of a Markov Process Over a Noisy Digital
Communication Channel

Qing Xu and Raja Sengupta

Abstract

We study the real-time estimation of a Markov process over a memoryless noisy digital communication channel. The goal of
system design is to minimize the mean squared estimation error. We first show the optimal encoder and decoder can be memoryless
in terms of the source symbols. We then prove the optimal encoder separates the real space with hyperplanes. In the case of the
binary symmetric channel and scalar source, the optimal encoder canbe a threshold. A recursive algorithm is given to jointly find
a locally optimal encoder and decoder for the binary symmetric channel.For a memoryless Gaussian vector source and a binary
symmetric channel, we show the optimal policy is to encode the principal component. We derive the minimum mean squared
error as a function of the variance of source and the channel noise.

I. I NTRODUCTION

This paper is about the design of encoders and decoders optimized to estimate the state of a stochastic dynamical system
across a digital but noisy communication channel. Control and estimation over communication networks is attracting increasing
attention. For example see the recent special issues of the IEEE Transactions on Automatic Control [3] and Control Systems
Magazine [2] on networked control system. This class of problems is also given considerable weight in [17] in its evaluation
of future directions in control, dynamics, and systems. They see control over communication networks as the natural next
phase of the information revolution. It would transform current communication networks, now mainly concerned with the
transmission of information, to have more interaction withthe physical world. We ourselves have built control and estimation
systems over digital communication networks for cars and airplanes [7][23][29][10][16]. For an audio-visual description of
one of our systems see [1].

Here we present results on real-time estimation of the stateof a Markov process over a noisy communication channel.
Figure 1 shows the system schematically. A discrete-time continuous-valued Markov source is passed through an encoderat
each discrete time-step. The encoder produces the input to the communication channel. The communication channel is assumed
to have a finite, discrete alphabet. Thus we consider digitalcommunications. The input and output alphabets are the same. In
general the channel may output a symbol different from the one that is input, i.e., the channel is noisy. The channel is also
memoryless. The output of the channel is fed to the decoder. The decoder is permitted to have memory. Its job is to output
an estimate of the state of the Markov process. There are no communication delays.

Fig. 1. State Estimation over Memoryless Channel

Our aim is to choose the encoder and decoder at each time-stepto minimize the mean squared difference between the state
of the Markov process and its estimate at the output of the decoder at the same time step. In other words, the encoder and
decoder are to be designed for real-time minimum mean-square error estimation (MMSE). The Real-time has to do with the
emphasis on choosing the encoder and decoder at timet to minimize the estimation error at timet. This distinguishes our
formulation from the rate distortion, source and channel coding problems in information theory. Our objective function is the
same as that in Kalman filtering [12]. However, the emphasis on the digital communication channel distinguishes this problem
from Kalman’s.

We review relevant previous works in section II. The problemstatement is in section III. The rest of the paper is composed
of two parts. The first part presents the structural results.There are three theorems and an algorithm in this part. The encoder at
time t is permitted to be any function of the states up to timet. In section IV, Theorem 4.1 shows the encoder may be restricted,
without loss of optimality, to a function of the current state of the Markov process and the probability mass function of the
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memory of the decoder conditioned on the current state. Thissays the encoder can be causal and memoryless. Theorem 4.3
merely asserts that since ours is an MMSE problem, for any given encoder the optimal decoder is the conditional expectation
of the state of the Markov process given all past channel outputs. Theorem 4.4 shows the encoder may be restricted, without
loss of optimality, to a threshold type. In section V we present an iterative algorithm that converges to a locally optimal
encoder and decoder for the binary symmetric channel. The algorithm synthesizes these results from control and information
theory to derive a computational scheme to get optimal encoders and decoders for minimum mean-square error estimation.
The algorithm itself turns out to be related to others well established in quantization and rate distortion theory. [4][5][15] The
second part of the paper studies the special case of memoryless Gaussian vector source over binary symmetric channel. We
show that the globally optimal encoding is to do a threshold encoding of the principal component. We also derive expressions
for the minimum mean square error.

II. PREVIOUS WORK

We situate our problem in a literature situated partly in control and partly in information theory. The problem of optimal
estimation of a linear Gaussian Markov process, when the measurement is contaminated by an independent white Gaussian
process, was studied by Kalman in [12] and [13]. However whenthe state is transmitted over a digital communication channel
the state measurement, which is a real vector, has to be quantized into bits. Then the bits are transmitted over the noisy channel
and are decoded on the other side. Thus the optimality of the orthogonal projection of the state onto the manifold generated
by the observations no longer holds.

The problem of estimating state over a digital communication channel was first introduced in [28]. Nair and Evens extend
this work in [19] [20] [21] and [18]. All these references consider a noise-less though bit-rate constrained channel, The system
output at each time-step can be quantized intoR bits, which are then transmitted over the channel without error. We consider
both the bit rate limit and the channel noise, i.e., the bits received may not be the same as those transmitted.

In [24] Tatikonda derived the bit rates necessary for the controllability, observability, and stability of a dynamicalsystem.
Once again, the communication channel was assumed to be error free.

Walrand and Varaiya [26] studied the optimal coding-decoding problem. They consider a discrete alphabet source, and the
Hamming distance as a measure of distortion. Our source is continuous valued. They also allow the encoder to have noiseless
feedback from the channel which we do not assume.

Sahai studied the estimation problem of an unstable processover noisy channel in [?] and [?]. He considers the stability of
the estimation. We on the other side study stable process, but concern more with the optimal performance in estimation.

Şimşek and Varaiya [6] extended the work of Sahai and studied the estimation over a binary symmetric channel. They derive
conditions for stability. Once again, they assume channel feedback. We on the other hand find the optimal design to minimize
the mean square estimation error without channel feedback.

Neuhoff and Gilbert [22] studied causal source codes, and show that the performance of memoryless coding is as good as
any other causal coding at the minimum bit rate required to achieve a given distortion. We show similar results but in the
presence of a noisy channel. They solve a pure source coding problem.

Quantization over a noisy channel problem was first introduced in [14]. They studied scalar quantization. Farvardin [8]
extended the result to provide an iterative algorithm whichconverges to a locally optimal encoder for a given channel and
distortion measure. Vector quantization is studied in [9].The authors show the geometric structure of channel-optimized vector
encoders and the implications on the complexity of encoding. We extend their results from the memoryless process to the
Markov process. They provide an iterative algorithm to get alocal optimum for any stationary source and discrete memoryless
channel. We on the other hand present an algorithm for a Markov source, and binary symmetric channel.

Teneketzis [25] studied the real-time estimation of a discrete-time Markov process. They present a structural resultssimilar
to our first theorem. They assume a discrete-valued Markov source. We generalize their result to a continuous valued Markov
source. Their cost function is also slightly different. They optimize the sum of all errors from the beginning to the current
time, and design all the encoders and decoders at one time to minimize this sum. We on the other hand optimize the encoder
and decoder at the current instant to minimize the distortion at the current instant, assuming the prior encoders and decoders
are already fixed.

Xu and Hespanha study optimal communication logics for networked control systems in [30]. They derive communication
policies for the optimal control of an estimator-based networked control system architecture to reduce communicationload.
Unlike us, they do not consider quantization of the communication signals. The channel in their problem is also error free.
In [31] the authors study the minimal rate requirements for state estimation in linear time-invariant systems. For different
estimation distortion criterion, they find the minimum datarate required from the channel. The channel they consider again
has a constraint on data rate, but is noiseless. We consider noisy channels.

III. PROBLEM STATEMENT

The system is shown in Figure 1. We describe each part of it below.

1) Source:



Xt ∈ R
n is a Markov process.

2) Encoder: DefineXt
1 , {X1,X2, · · · ,Xt}.

St = Γt(X
t
1) (1)

whereSt ∈ L = {1,2, · · · ,K} andK ∈ N
+.

3) Channel: Memoryless
Ŝt = Ht(St ,Nt) (2)

whereNt ∈ {1,2, · · · ,γ} and γ ∈ N
+. Nt is independent for differentt and independent ofSt . Ŝt ∈ L.

4) Receiver memory update:

a) At t = 1, M1 = l1(Ŝ1).
b) At t > 1, Mt = lt(Ŝt ,Mt−1).

where Mt ∈ Wt = {1,2, · · · ,κt} and κt ∈ N
+. Denote the space of probability mass functions in Wt as P

Wt , and the
probability mass function ofMt as PMt . Define the probability mass function ofMt conditioned onXt = xt as PMt (xt ) ,

P(Mt | Xt = xt).
5) Decoder:

X̂t = ∆t(Ŝt ,Mt−1) (3)

6) Cost Function:
E{‖Xt − X̂t‖2} (4)

The Real-time Estimation Problem: At each timet = τ, given Γτ−1
1 , {Γ1,Γ2, · · · ,Γτ−1}, ∆τ−1

1 , {∆1,∆2, · · · ,∆τ−1}, and
l τ
1 , {l1, l2, · · · , lτ}, find the encoderΓτ(·), and decoder∆τ(·), such thatE{‖Xτ − X̂τ‖2} is minimized.

IV. T HE STRUCTURE OF THE OPTIMAL ENCODER AND DECODER

In this section we prove three structural results about the real-time estimation problem. Firstly, by Theorem 4.1 we prove
that for a given decoder, the optimal encoder for real-time estimation of the state of a Markov process is separable, i.e., it
need not depend on the previous states. This is an extension of the result in [25] to a continuous-valued source. Our proofis
also similar although our cost function is a bit different, as discussed in section II. Lemma 4.2 is an intermediate result used
to prove Theorem 4.1. Then Theorem 4.3 asserts the optimal decoder for any given encoder is the expected value of the state
conditioned on the previously channel outputs. Finally we prove in Theorem 4.4 the optimal encoder is a hyper-plane encoder.
It partitions the real space with hyper-planes, and maps theXt values in each subspace to a distinct symbol. This result is
based on Theorem 4.1. The proof technique is similar to [8].

A. The optimal encoder

This subsection is about the structure of the optimal encoder for the real-time Markov process estimation problem. The
result is in Theorem 4.1.

Theorem 4.1:For anyt, one can replaceΓt with someΓ∗
t

Γ∗
t : R

n×P
Wt → L

so thatst = Γ∗
t (xt ,PMt−1(xt−1)) without loss of optimality.

Like [25], we prove the theorem with a two-stage lemma, i.e.,Lemma 4.2. This approach first appeared in [27].
Below in Lemma 4.2 we consider a vector Markov process. The states in the first two time instants areX1 ∈R

n andX2 ∈R
n.

The encoder at stage 1 isΓ1 : R
n → L with S1 = Γ1(X1). The encoder at stage 2 isΓ2 : R

n×n → L with S2 = Γ1(X1,X2).
St ∈ L = {1,2, · · · ,K} for t = 1,2. Then we have the following lemma.

Lemma 4.2:Two-stage lemma:
Consider a two-stage system where

Γ2 : R
n×n → L

so thatS2 = Γ2(X1,X2), then one can replaceΓ2 with Γ∗
2,

Γ2 : R
n×P

W1 → L

so thatS2 = Γ∗
2(X2,PM1(x1)) without loss of optimality.

Proof: With a given designd , (Γ1,Γ2, l1, l2,∆1,∆2), define ρ̂2(X2,M1,S2,N2) , ‖X2 − ∆2(M1,H2(S2,N2))‖2. Define
Pd

M1(x1)
, Pd(M1 = m1 | X1 = x1) to be the probability mass function ofM1 conditioned onX1 = x1, under designd. It depends

on Γ1 and l1 but notΓ2. We then have for anyX1 = x1, X1 = x2



Ed{‖X2− X̂2‖2 | X1 = x1,X2 = x2}
= Ed{‖X2− X̂2‖2 | X1 = x1,X2 = x2,P

d
M1(x1)

}
= Ed{‖X2−∆2(M1,H2(S2,N2))‖2 | X1 = x1,X2 = x2,P

d
M1(x1)

}
= Ed{ρ̂2(X2,M1,S2,N2) | X1 = x1,X2 = x2,P

d
M1(x1)

}
= ∑

m1

∑
s2

∑
n2

Pd(M1 = m1,S2 = s2,N2 = n2 | X1 = x1,X2 = x2,P
d
M1(x1)

) · ρ̂2(x2,m2,s2,n2)

= ∑
s2

Pd(S2 = s2 | X1 = x1,X2 = x2)

[

∑
n2

P(N2 = n2) · [∑
m1

Pd
M1(x1)

(m1)ρ̂(x2,m1,s2,n2)]

]

Now consider a new design̂d whereΓ∗
2 : R

n×P
W1 → L is chosen as follows: For any givenx2 ∈R

n and any givenPM1 ∈ P
W1

Γ∗
2(x2,PM1(x1)) = argmin

s2∈L

{

∑
n2

P(N2 = n2) ·
[

∑
n2

P(N2 = n2)

[

∑
m1

Pd
M1(x1)

(m1)ρ̂(x2,m1,s2,n2)

]]}

Keep the decoders the same in the new design. Then, under the new designd̂ = (Γ1,Γ∗
2, l1, l2,∆1,∆2), for all x1,

Pd
M1(x1)

= Pd̂
M1(x1)

and

Ed̂{‖X2− X̂2‖2 | X2 = x2,P
d
M1(x1)

}

= Ed̂{‖X2− X̂2‖2 | X1 = x1,X2 = x2,P
d
M1(x1)

}
≤ Ed{‖X2− X̂2‖2 | X1 = x1,X2 = x2,P

d
M1(x1)

}
= Ed{‖X2− X̂2‖2 | X2 = x2,P

d
M1(x1)

} (5)

Therefore

Ed̂{‖X2− X̂2‖2} ≤ Ed{‖X2− X̂2‖2}

Using Lemma 4.2, we can prove Theorem 4.1. The basic idea is toaggregate the system state from time 1 tot −1 into one
“super-state” at the first stage, and view the state att as the second stage so that the two-stage lemma can be applied.

Proof of Theorem 4.1

Proof: The given t-stage system can be considered as a two-stage system by setting

X̄1 , (X1,X2, · · · ,Xt−1)

X̄2 , Xt

N̄1 , (N1,N2, · · · ,Nt−1)

N̄2 , Nt

S̄1 , (S1,S2, · · · ,St−1)

S̄2 , St
¯̂S1 , (Ŝ1, Ŝ2, · · · , Ŝt−1)
¯̂S2 , Ŝt

M̄1 , Mt−1 = φ(X̄1, N̄1)

M̄2 , Mt
¯̂X1 , (X̂1, X̂2, · · · , X̂t−1)
¯̂X2 , X̂t

Γ̂2(X̄1, X̄2) , Γt(X1,X2, · · · ,Xt)

l̄2(M̄1,
¯̂S2) , lt(Mt−1, Ŝt)



Then by the two-stage lemma there is an encoderΓ∗
2 that has the structure

s̄2 = Γ∗
2(x̄2,PM̄1

(x1))

which does not increase the cost. This corresponds to

st = Γ∗
t (xt ,PMt−1(xt−1))

B. The optimal decoder

The following theorem characterized the optimal decoder for any given encoder.
Theorem 4.3:For any encoderΓt the optimal decoder∆t is

X̂t = ∆t(Ŝt ,Mt−1) = EΓt
1,l t−1

1
{Xt | Ŝt ,Mt−1}

Proof: This is a well-known result in estimation theory. It appearsin, for example, Theorem 1 of [12]. The proof is
omitted here.

C. Optimality of the hyper-plane encoder

Theorem 4.1 opens a way to use quantization techniques for noisy channels. The following theorem is similar to the result
in [8]. Unlike the quantization problem, in our problem the receiver memory needs to be considered.

Theorem 4.4:For any given decoder, the optimal encoder for the real-timeestimation problem is a hyperplane encoder.
In particular, let the reconstruction points be{c1,c2, · · · ,cK̂}, where and 1≤ i ≤ K̂ and ci = ∆(Ŝt = i,Mt−1) depends on the
memory of the receiver. DefineAi , {xt : Γ∗

t (xt ,PMt−1) = i}, thenAi andAl are separated by the hyper-plane

{

xt ∈ R
n : 2

K̂

∑
j=1

[

P(Ŝt = j | St = l)−P(Ŝt = j | St = i)
]

· 〈xt ,c j〉 =
K̂

∑
j=1

[

P(Ŝt = j | St = l)−P(Ŝt = j | St = i)
]

· ‖c j‖2

}

Ai ∩Al = /0,∀1≤ i, l ≤ K, i 6= l , and∪K
i=1Ai = R

n.
Proof: An optimal encoder should map all the vectors in a way such that all the xt mapped to thei-th region, i.e.St = i,

produce smaller mean squared error than if they are mapped toany other, say,l -th region. Denote the set of vectors mapped
to the i-th region by an optimal encoder asA∗

i Then all the vectors inA∗
i should satisfy the following equation for any given

l other thani.

E{‖xt − x̂t‖2 | St = i}−E{‖xt − x̂t‖2 | St = l}
= x2

t −2E{〈xt , x̂t〉 | St = i}+E{x̂2
t | St = i}−x2

t +2E{〈xt , x̂t〉 | St = l}−E{x̂2
t | St = l}

= 2(E{〈xt , x̂t〉 | St = l}−E{〈xt , x̂t〉 | St = i})+
(

E{x̂2
t | St = i}−E{x̂2

t | St = l}
)

=
K̂

∑
j=1

[

P(Ŝt = j | St = l)−P(Ŝt = j | St = i)
]

〈xt ,c j〉−
K̂

∑
j=1

[

P(Ŝt = j | St = l)−P(Ŝt = j | St = i)
]

· ‖c j‖2

≤ 0

where〈a,b〉 denotes the inner product ofa andb.
For any given 1≤ l ≤ K̂, consider the following sets

Ail ,

{

xt ∈ R
n : 2

K̂

∑
j=1

[

P(Ŝt = j | St = l)−P(Ŝt = j | St = i)
]

· 〈xt ,c j〉 ≤
K̂

∑
j=1

[

P(Ŝt = j | St = l)−P(Ŝt = j | St = i)
]

· ‖c j‖2

}

For any l , the vectors inA∗
i are in the setAil , hence

A∗
i =

⋂

l 6=i

Ail (6)

The regionsA∗
i andA∗

l are separated by the hyperplane

{

xt ∈ R
n : 2

K̂

∑
j=1

[

P(Ŝt = j | St = l)−P(Ŝt = j | St = i)
]

· 〈xt ,c j〉 =
K̂

∑
j=1

[

P(Ŝt = j | St = l)−P(Ŝt = j | St = i)
]

· ‖c j‖2

}



Fig. 2. A Binary Symmetric Channel

which is a hyper-plane in Rn.
Remark 4.5:Note when the source is scalar, the optimal encoder separates the range of the source into continuous intervals,

and maps the points in each interval into a different symbol.That is, the optimal encoder for the scalar source is a threshold
encoder.

V. A LGORITHM TO FIND THE OPTIMAL THRESHOLD OF A SCALAR ENCODER FOR A BINARY SYMMETRIC CHANNEL

In this section we focus on the special case of the binary symmetric channel and the scalar Markov source.
{

P(Ŝt = St) = 1− ε
P(Ŝt = 1−St) = ε (7)

whereSt , Ŝt ∈ {0,1}.
The channel is shown in Fig 2.
In this case the optimization problem reduces to that of finding an optimal thresholdT such that

St =

{

0 Xt ≤ T
1 Xt > T

For this special case of the original real-time estimation problem, we state a recursive algorithm to find a locally optimal
solution. The algorithm is based on the one presented in [8].But unlike in their problem, we have to consider the receiver
memory in our calculation. Our approach is to recursively find the optimal encoder for a given decoder and then find the
optimal decoder for a given encoder. Since each iteration reduces the mean squared error, the algorithm converges. Recursive
algorithms are used in information theory to find the rate-distortion function and channel capacity [4] [5]. There the optimization
is performed over convex sets, so the solution obtained is globally optimal. We on the other hand only know the algorithm
converges to a locally optimal solution.

Let the reconstruction points beR0 andR1, both in R, such that

X̂t =

{

R0 = ∆(Ŝt = 0,Mt−1)

R1 = ∆(Ŝt = 1,Mt−1)

Then the mean squared error is

D = E{|Xt − X̂t |2}

= P(Ŝ= 0 | S= 0)
∫ T

−∞
|x−R0|2pX(x)dx+P(Ŝ= 1 | S= 0)

∫ T

−∞
|x−R1|2pX(x)dx

+P(Ŝ= 0 | S= 1)

∫ ∞

T
|x−R0|2pX(x)dx+P(Ŝ= 1 | S= 1)

∫ ∞

T
|x−R1|2pX(x)dx

A. The optimal encoder for a fixed decoder

For fixedR0 andR1, we can find the optimal thresholdT∗ by differentiatingD with respect toT. In the following equation,
let P(A|B) , P(Ŝ= A|S= B), whereA,B∈ {0,1}, then we have

dD
dT

= 0⇒

T =
1
2

(P(0|1)−P(0|0))R2
0 +(P(1|1)−P(1|0))R2

1

(P(0|1)−P(0|0))R0 +(P(1|1)−P(1|0))R1

=
1
2
· (2ε −1)(R2

0−R2
1)

(2ε −1)(R0−R1)

=
1
2
(R0 +R1) (8)



To minimize mean squared error for fixedR0 andR1 we also need

d2D
dT2 = 2(2ε −1)(R0−R1) > 0 (9)

Therefore

d2D
dT2 > 0⇔

{

R0 < R1 whenε <
1
2

R0 ≥ R1 whenε ≥ 1
2

(10)

Therefore for givenR0 andR1 (hence a given decoder), the optimal encoder puts the threshold at the mid-point of the two
reconstruction points. In addition, equation (10) must be satisfied. We will further discuss this point in the next subsection.

B. The optimal decoder for fixed encoder

For fixed encoder, the optimal decoder is the conditional expectation.

X̂t =

{

R0 = E{Xt | Ŝt = 0,Mt−1}
R1 = E{Xt | Ŝt = 1,Mt−1}

(11)

whereMt−1 is the known receiver memory from the last step.
Now once the optimal decoder for a fixed encoder is given by (11), we can go back to check the optimality condition given

by (10).
We notice first, for the threshold given in (8) to be optimal, (10) must be true, but this is not guaranteed by (11), i.e., there

may be solutions of (11) that violate (10).
Secondly, if we flip the areas encoded to 0 and 1,R0 andR1 will also flip since

R0 = E{Xt | Ŝt = 0,Mt−1}

= E{Xt | St = 0,Mt−1} ·
(1− ε)P(St = 0)

(1− ε)P(St = 0)+ εP(St = 1)
+

E{Xt | St = 1,Mt−1} ·
εP(St = 1)

(1− ε)P(St = 0)+ εP(St = 1)

and

R1 = E{Xt | Ŝt = 0,Mt−1}

= E{Xt | St = 0,Mt−1} ·
εP(St = 0)

εP(St = 0)+(1− ε)P(St = 1)
+

E{Xt | St = 1,Mt−1} ·
(1− ε)P(St = 1)

εP(St = 0)+(1− ε)P(St = 1)

Hence if we haveS′t =

{

0 Xt > T
1 Xt ≤ T

, then R′
0 = R1 and R′

1 = R0. But the derivation of (8) is not affected by this flip.

Therefore by simply exchanging the areas coded to 1 and 0 we can always make (10) true and thus make the threshold given
by (8) optimal.

C. The algorithm to find the optimal encoder and decoder

In summary, we obtain the following recursive algorithm to find an encoder and decoder for transmission of a Markov
process over a binary symmetric channel:

• Step 1: Set{R0,R1} = {R(0)
0 ,R(0)

1 }, the initial reconstruction levels. They must satisfy (10)but are otherwise arbitrary.
• Step 2: Setk = 0 (the iteration index), andD(0) = ∞.
• Step 3: Use (8) to determine the best thresholdT(k).
• Step 4: Setk = k+1. Use (11) to find the best reconstruction levelsR(k)

0 andR(k)
1 .

• Step 5: Check if (10) is satisfied. If not, flip the areas encoded to 0 and 1, and therefore flipR(k)
0 andR(k)

1 .

• Step 6: Compute the MSED(k). If D(k−1)−D(k)

D(k) < δ , whereδ is a preset positive fraction, go to step 7, otherwise go to
step 3.

• Step 7: End the algorithm.

Remark 5.1: 1) Since with each iteration the MSE always decreases, the algorithm converges.
2) The role played by memory in the system is in (11), which further affects the solution of (8).



VI. OPTIMAL ESTIMATION OF MEMORYLESSGAUSSIAN RANDOM VECTOR SOURCE OVER BINARY SYMMETRIC CHANNEL

In this section we discuss the special case of the memorylesssource. We are able to analytically characterize the optimal
encoder and the minimum mean square error in this case. The optimal encoding strategy is to encode the principal component
of the source. Lemma 6.2 asserts this for a random vector withindependent components. Theorem 6.11 asserts the same for
a source vector with correlated components.

A. System Description

Let X ∈ R
n andX ∼ N(0n,Kx), whereKx ∈ R

n×n. X is encoded with

S= G(X) (12)

whereS∈ {0,1}. Kx is a symmetric positive definite matrix.
S is transmitted through a memoryless channel. From now on assume the channel is binary symmetric, i.e.

P(Ŝ= 0|S= 0) = P(Ŝ= 1|S= 1) = 1− ε
P(Ŝ= 0|S= 1) = P(Ŝ= 1|S= 0) = ε

The decoder is

X̂ , [X̂1 X̂2 . . . X̂n]
T = ∆(Ŝ) (13)

The objective is to estimateX with minimum mean squared error, i.e. to designG∗(·) and ∆∗(·) to minimize E{(X −
X̂)T(X− X̂)}.

For any givenG(·), the optimal decoder is the conditional expectation, i.e.X̂ = E{X|Ŝ}=
[

E{X1|Ŝ} E{X2|Ŝ} . . .E{Xn|Ŝ}
]T

.

B. The Optimal Vector Encoder for Binary Symmetric Channel:Independent Gaussian Noise Case

Since in section IV it is shown that the optimal vector encoder over noisy channel partitions the vector space with hyper-
planes, we search for our optimal design within this class ofencoders. The following two lemmas provide the optimal encoder
among all the encoders that partition theR

n space with a plane. In this subsection we derive the optimal encoder design when
the components of the Gaussian random vector are mutually independent. We discuss the case of correlated components in
the next subsection.

Lemma 6.1:Let X ∈ R
n andX ∼ N(0n,Kx), andKx = diag(σ2

1 ,σ2
2 , . . . ,σ2

n ). Let w ∈ R
n, ‖w‖ = 1 andb∈ (−∞,∞). Define

a encoder such that

S= G(X) =

{

Y if wTX ≥ b
1−Y otherwise

whereY ∈ {0,1}. Then for any binary symmetric channel, among all encoders with the samew, the encoder withb = 0,
i.e. when the plane passes through the origin, is optimal.

Lemma 6.2:Let X ∈ R
n andX ∼ N(0n,Kx) andKx = diag(σ2

1 ,σ2
2 , . . . ,σ2

n ). Consider the encoderG∗(·) defined as below

S= G∗(X) =

{

Y if w∗TX ≥ 0
1−Y otherwise

whereY ∈ {0,1}, w∗ ∈ R
n, ‖w∗‖ = 1 is chosen as below.

1) If σ1 = σ2 = · · · = σn = σ , i.e. all the n directions are equally noisy, letw∗ be any vector inRn.
2) Let σm = max{σ1,σ2, . . . ,σn}, with m∈ {1,2, . . . ,n}, let w∗ be the unit vector in the m-th direction.

ThenG∗(·) is optimal, i.e., the optimal encoder only encodes the most noisy direction with one bit.
To prove Lemmas 6.1 and 6.2 we prove lemmas 6.3 to 6.8.
Lemma 6.3:Minimizing the mean squared errorE{(X− X̂)T(X− X̂)} is equivalent to maximizing

∥

∥E{X|Ŝ= 0}
∥

∥

2
P(Ŝ= 0)+

∥

∥E{X|Ŝ= 1}
∥

∥

2
P(Ŝ= 1) (14)

Proof: SinceX̂ = E{X|Ŝ}
we have



E{(X− X̂)T(X− X̂)}
= E{

∥

∥X−E{X|Ŝ}
∥

∥

2}
= E

{

∥

∥X−E{X|Ŝ= 0}
∥

∥

2 |Ŝ= 0
}

P(Ŝ= 0)+E
{

∥

∥X−E{X|Ŝ= 1}
∥

∥

2 |Ŝ= 1
}

P(Ŝ= 1)

=
(

E{XTX|Ŝ= 0}−2E{XT |Ŝ= 0}E{X|Ŝ= 0}+
∥

∥E{X|Ŝ= 0}
∥

∥

2
) ·P(Ŝ= 0

)

+
(

E{XTX|Ŝ= 1}−2E{XT |Ŝ= 1}E{X|Ŝ= 1}+
∥

∥E{X|Ŝ= 1}
∥

∥

2
) ·P(Ŝ= 1

)

= E{XTX|Ŝ= 0}P(Ŝ= 0)−
∥

∥E{X|Ŝ= 0}
∥

∥

2
P(Ŝ= 0)+E{XTX|Ŝ= 1}P(Ŝ= 1)−

∥

∥E{X|Ŝ= 1}
∥

∥

2
P(Ŝ= 1)

= E{XTX}−
∥

∥E{X|Ŝ= 0}
∥

∥

2
P(Ŝ= 0)−

∥

∥E{X|Ŝ= 1}
∥

∥

2
P(Ŝ= 1)

=
n

∑
i=1

σ2
i −

∥

∥E{X|Ŝ= 0}
∥

∥

2
P(Ŝ= 0)−

∥

∥E{X|Ŝ= 1}
∥

∥

2
P(Ŝ= 1)

Thus the lemma is true.
Below we define the probability mass function of the section of R

n mapped to 0 and 1 respectively.

P0(w,b) , P(S= 0) =
1

√

(2π)ndet(Kx)

∫

wTx<b
e−

1
2xTK−1

x xdx

=
1

√

(2π)n ∏n
i=1 σi

∫

wTx<b
e−

1
2xTK−1

x xdx

and

P1(w,b) , P(S= 1)

= 1−P0(w,b)

=
1

√

(2π)ndet(Kx)

∫

wTx<b
e−

1
2xTK−1

x xdx

=
1

√

(2π)n ∏n
i=1 σi

∫

wTx<b
e−

1
2xTK−1

x xdx

In above equations, the special case whereb = 0 is included. Obviously, whenb = 0, P0(w,0) = P1(w,0) = 1
2. Hereafter we

drop the arguments ofP0(w,b) andP1(w,b) and simply write them asP0 andP1.
Lemma 6.4:For any i ∈ {1,2, . . . ,n}, define

X̄i(0) , E{Xi |S= 0}

=
1

P0
√

(2π)ndet(Kx)

∫

wTx<b
xie

− 1
2xTK−1

x xdx

X̄i(1) , E{Xi |S= 1}

=
1

P1
√

(2π)ndet(Kx)

∫

wTx≥b
xie

− 1
2xTK−1

x xdx

and
X̄( j) = [X̄1( j) X̄2( j) . . . X̄n( j)]T (15)

for j ∈ {0,1}.
Then we have

E{Xi |Ŝ= 0} =
(1− ε)P0X̄i(0)+ εP1X̄i(1)

(1− ε)P0 + εP1
(16)

E{Xi |Ŝ= 1} =
εP0X̄i(0)+(1− ε)P1X̄i(1)

εP0 +(1− ε)P1
(17)

Proof:



E{Xi |Ŝ= 0} = E{Xi |S= 0, Ŝ= 0}P(S= 0|Ŝ= 0)+E{Xi |S= 1, Ŝ= 0}P(S= 1|Ŝ= 0)

= E{Xi |S= 0}P(S= 0|Ŝ= 0)+E{Xi |S= 1}P(S= 1|Ŝ= 0)

=
(1− ε)P0

(1− ε)P0 + εP1
X̄i(0)+

εP1

(1− ε)P0 + εP1
X̄i(1)

The second equation above is because thatXi → S→ Ŝ is a Markov chain. The third equation is because of Bayes Rule.
ChangingŜ= 0 to Ŝ= 1, we can prove equation (17) in the same way.
Lemma 6.5:

P0X̄i(0)+P1X̄i(1) = E{Xi} = 0,∀i ∈ {1,2, · · · ,n} (18)
Proof: The proof is straightforward and omitted.

Lemma 6.6:Define for all j ∈ {1,2, · · · ,n}

I j(b) ,

∫

wTx<b
x j pX(x)dx,∀ j ∈ {1,2, · · · ,n}

=
1

(2π)
n
2 ∏n

i=1 σi

∫

wTx<b
x je

− 1
2xTK−1

x xdx (19)

where pX(·) is the probability density function of random vectorX. Then

∥

∥E{X|Ŝ= 0}
∥

∥

2
P(Ŝ= 0)+

∥

∥E{X|Ŝ= 1}
∥

∥

2
P(Ŝ= 1)

=
(2ε −1)2 ∑n

j=1 I j(b)2

−(2ε −1)2P2
0 +(2ε −1)P0 + ε(1− ε)

(20)

Proof:
From Lemma 6.4, we know that

∥

∥E{X|Ŝ= 0}
∥

∥

2
P(Ŝ= 0)+

∥

∥E{X|Ŝ= 1}
∥

∥

2
P(Ŝ= 1)

=
n

∑
j=1

(

E{Xj |Ŝ= 0}
)2

P(Ŝ= 0)+
n

∑
j=1

(

E{Xj |Ŝ= 1}
)2

P(Ŝ= 1)

=
n

∑
j=1

((1− ε)P0X̄j(0)+ εP1X̄j(1))
2

(1− ε)P0 + εP1
+

n

∑
j=1

(εP0X̄j(0)+(1− ε)P1X̄j(1))
2

εP0 +(1− ε)P1

= (2ε −1)2
n

∑
j=1

(P0X̄j(0))
2
(

1
(1− ε)P0 + εP1

+
1

εP0 +(1− ε)P1

)

= (2ε −1)2
n

∑
j=1

(P0X̄j(0))
2
(

1
(1−2ε)P0 + ε

+
1

(2ε −1)P0 +1− ε

)

=
(2ε −1)2

−(2ε −1)2P2
0 +(2ε −1)P0 + ε(1− ε)

n

∑
j=1

(P0X̄j(0))
2

=
(2ε −1)2

−(2ε −1)2P2
0 +(2ε −1)P0 + ε(1− ε)

n

∑
j=1

(

1
√

(2π)ndet(Kx)

∫

wTx<b
x je

− 1
2xTK−1

x xdx

)2

=
(2ε −1)2 ∑n

j=1 I j(b)2

−(2ε −1)2P2
0 +(2ε −1)P0 + ε(1− ε)

(21)

The second equation comes from Lemmas 6.4, the third equation from (18), the fourth equation is true becauseP0+P1 = 1,
and the sixth equation is due to the definition ofX̄i(0).

SinceP0 = 1
2 whenb = 0, by Lemma 6.6, to prove Lemma 6.1 we need to show



∑n
j=1 I2

j (b)

−(2ε −1)2P2
0 +(2ε −1)P0 + ε(1− ε)

≤ ∑n
j=1 I2

j (0)

−(2ε −1)2(

1
2

)2
+(2ε −1)

(

1
2

)

+ ε(1− ε)

=
∑n

j=1 I2
j (0)

1
4

(22)

We have the following lemma regardingI j(b).
Lemma 6.7:Let w = [ w1 w2 · · · wn ]T , Ω2

w = ∑n
j=1w2

i σ2
i

I j(b) = Rj(w)e
− b2

2Ω2
w ,∀ j ∈ {1,2, · · · ,n} (23)

whereRj(w) is independent ofb.
Proof: Let

P1 =











P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
. ..

...
Pn1 Pn2 · · · Pnn











be a rotation matrix such that

P1











1
0
...
0











=











w1

w2
...

wn











Then the original random vectorw =











w1

w2
...

wn











is rotated toZ =











1
0
...
0











. Sincexi ’s are orthogonal, the variance ofz1,

which is in the direction ofw in the original coordinate system and the first basic direction of the transformed coordinate, is
the following:

σ2
z1

= Ω2
w

=
n

∑
j=1

w2
i σ2

i (24)

The probability density function of random vectorZ now is

pZ(z) =
1

(2π)
n
2 det(Kx)

e−
1
2zTPT

1 K−1
x P1z

Notice sinceP1 is orthogonal, the determinant of the variance matrix is notchanged.
Now we look atI1(b),



I1(b) ,

∫

wTx<b
x1pX(x)dx

=
∫

wTx<b

n

∑
j=1

P1 jzj pZ(z)dz

= P11

∫ b

−∞
z1dz1

∫ ∞

−∞
pZ(z)dz2 · · ·dzn +

n

∑
j=2

P1 j

∫ b

−∞
dz1

∫ ∞

−∞
zj pZ(z)dz2 · · ·dzn

=
P11√
2πσz1

∫ b

−∞
z1e

− z21
2σ2

1 dz1 +
n

∑
j=2

P1 j

2π
√

σ2
z1

σ2
zj
−σ2

z1zj

∫ b

−∞

∫ ∞

−∞
zje

− 1
2 ( z1 zj )

(

σ2
z1

σz1zj
σz1zj σ2

zj

)−1(
z1
zj

)

dzjdz1

= −P11σz1e
− b2

2σ2
z1 +

n

∑
j=2

P1 j

2π
√

σ2
z1

σ2
zj
−σ2

z1zj

∫ b

−∞

∫ ∞

−∞
zje

− 1
2( z1 zj )

(

σ2
z1

σz1zj
σz1zj σ2

zj

)−1(
z1
zj

)

dzjdz1

Now we analyze the second term. Without loss of generality, let j = 2. Define

a ,
σz2

√

σ2
z1

σ2
z2
−σ2

z1z2

(25)

f ,
σz1

√

σ2
z1

σ2
z2
−σ2

z1z2

(26)

c ,
−σz1z2

σ2
z1

σ2
z2
−σ2

z1z2

(27)

and

g ,
c
f

=
−σz1z2

σz1

√

σ2
z1

σ2
z2
−σ2

z1z2

(28)

Notice
a2−g2 =

1
σ2

z1

Then we have

∫ b

−∞

∫ ∞

−∞
z2e

− 1
2

(

z1 z2
)

(

σ2
z1

σz1z2
σz1z2 σ2

z2

)−1
(

z1

z2

)

dz2dz1

=
∫ b

−∞

∫ ∞

−∞
z2e−

1
2(a2z2

1+ f 2z2
2+2cz1z2)dz2dz1

=
∫ b

−∞
e−

a2z21
2

∫ ∞

−∞
z2e−

1
2( f 2z2

2+2cz1z2)dz2dz1

=
∫ b

−∞
e−

1
2 (a2−g2)z2

1

∫ ∞

−∞
z2e−

1
2( f 2z2

2+2cz1z2+g2z2
1)+

1
2g2z2

1dz2dz1

=

∫ b

−∞
e−

1
2 (a2−g2)z2

1

∫ ∞

−∞
z2e−

1
2 ( f z2+gz1)

2
dz2dz1

= −
√

2πg
f 2

∫ b

−∞
z1e−

1
2 (a2−g2)z2

1dz1

= −
√

2πg
f 2

∫ b

−∞
z1e

− z21
2σ2

z1 dz1

=

√
2πgσz1

f 2 e
− b2

2σ2
z1

= r12e
− b2

2σ2
z1 (29)



wherer12 =
√

2πgσz1
f 2 is independent ofb. Similarly it can be shown that thej-th term in the summation in equation 25 can

be written asr1 je
− b2

2σ2
z1 wherer1 j is independent ofb. It follows that

I1(b) =
n

∑
j=1

r1 je
− b2

2σ2
z1

, R1e
− b2

2Ω2
w (30)

whereR1 is independent ofb and can be obtained from equations (25) and (29).

To showI j(b) = Rje
− b2

2Ω2
w , repeat the analysis with

P1

























0
...
0
1
0
...
0

























=























w1

w2
...
...
...

wn























where
(

0 · · · 0 1 0 · · · 0
)T

is the j-th basis vector.
Lemma 6.8:

√

1−e−ϕ2

2
≥ 1√

2π

∫ ϕ

0
e−

y2
2 dy, ∀ϕ ≥ 0 (31)

where the equality is true whenϕ = 0 or ϕ → ∞.
Proof:

See Appendix I.

With lemmas 6.3— 6.8, we prove Lemma 6.1 as follows.

• Proof of Lemma 6.1
Lemma 6.7 tells us that

n

∑
j=1

I2
j (b) =

n

∑
j=1

R2
j e

− b2

Ω2
w

= F(w)e
− b2

Ω2
w (32)

whereF(w) does not depend onb.
Hence (22) becomes

∑n
j=1F(w)e

− b2

Ω2
w

−(2ε −1)2P2
0 +(2ε −1)P0 + ε(1− ε)

≤ ∑n
j=1F(w)

1
4

(33)

Define

α ,
1√

2πΩw

∫ b

0
e
− z21

2Ω2
w dz1 (34)

Then

P0 =
1√

2πΩw

∫ b

−∞
e
− z21

2Ω2
w dz1

=
1
2

+α



Continuing with (33), sinceP0 = 1
2 +α, we get

∑n
j=1F(w)e

− b2

Ω2
w

−(2ε −1)2P2
0 +(2ε −1)P0 + ε(1− ε)

≤ ∑n
j=1F(w)

1
4

⇔ −(2ε −1)2P2
0 +(2ε −1)P0 + ε(1− ε) ≥ e

− b2

Ω2
w

4

⇔ 1
4
− (2ε −1)2α2 ≥ e

− b2

Ω2
w

4

Since(2ε −1)2 ≤ 1 it suffices to prove

1
4
−α2 ≥ e

− b2

Ω2
w

4
i.e.

α =
1√

2πΩw

∫ b

0
e
− z21

2Ω2
w dz1

≤

√

1−e
− b2

Ω2
w

2
(35)

By Lemma 6.8,

1√
2π

∫ ϕ

0
e−

y2
2 dy≤

√

1−e−ϕ2

2
, ∀ϕ ≥ 0

Puttingy = z1
Ωw

in (35), the lemma follows.
We prove one more lemma before using Lemma 6.1 to prove Lemma 6.2.
Lemma 6.9:For w1 6= 0 andK non-singular,

det











1

σ2
1w2

1











w2
2 w2w3 · · · w2wn

w3w2 w2
3 · · · w3wn

...
...

. . .
...

wnw2 wnw3 · · · w2
n











+diag

(

1

σ2
2

,
1

σ2
3

, · · · , 1
σ2

n

)











=
σ2

1w2
1 +σ2

2w2
2 + · · ·+σ2

nw2
n

w2
1σ2

1 σ2
2 · · ·σ2

n

=
∑n

i=1 σ2
i w2

i

w2
1 ∏n

i=1 σ2
i

(36)

Proof:
See Appendix II

With Lemma 6.1 and Lemma 6.9, we prove Lemma 6.2 as follows.
• Proof of Lemma 6.2

From Lemmas 6.3, 6.6 and Lemma 6.1, we want to maximize the following expression whenb = 0.



∑n
i=1





1

(2π)
n
2 ∏n

j=1 σ j

∫

wTx<bxie
− 1

2 ∑n
j=1

x2
j

σ2
j dx





2

−(2ε −1)2P2
0 +(2ε −1)P0 + ε(1− ε)

=

(

4

(2π)
n
2 ∏n

j=1 σ j

)2

·

n

∑
i=1





∫

wTx<0
xie

− 1
2 ∑n

j=1

x2
j

σ2
j dx





2

(37)

Look at the term withi = 1,

1

(2π)
n
2 ∏n

j=1 σ j

∫

wTx<0
x1e

− 1
2 ∑n

j=1

x2
j

σ2
j dx

=
1

(2π)
n
2 ∏n

j=1 σ j

∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ −∑n
k=2wkxk

w1

−∞
x1e

− 1
2 ∑n

j=1

x2
j

σ2
j dx1dx2 · · ·dxn

=
1

(2π)
n
2 ∏n

j=1 σ j

∫ ∞

−∞
e
− x2

n
2σ2

n

∫ ∞

−∞
e
−

x2
n−1

2σ2
n−1

∫ ∞

−∞
e
− x2

2
2σ2

2

∫ −∑n
k=2wkxk

w1

−∞
x1e

− x2
1

2σ2
1 dx1dx2 · · ·dxn

= − σ1

(2π)
n
2 ∏n

j=2 σ j

∫ ∞

−∞
· · ·

∫ ∞

−∞
e
− 1

2 ∑n
j=2

x2
j

σ2
j e

− (∑n
k=2wkxk)

2

2σ2
1w2

1 dx2dx3 · · ·dxn

If w1 = 0, the innermost integration has limits from−∞ to +∞. Since random vectorX is zero mean, we know the integral
is 0.
Now assumingw1 6= 0, continuing from above equation we have

− σ1

(2π)
n
2 ∏n

j=2 σ j
·

∫ ∞

−∞
· · ·

∫ ∞

−∞
e
− 1

2 ∑n
j=2

x2
j

σ2
j e

− (∑n
k=2wkxk)

2

2σ2
1w2

1 dx2dx3 · · ·dxn

= − (2π)
n−1

2 σ1

(2π)
n
2 ∏n

j=2 σ j
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1

σ2
1w2

1











w2
2 w2w3 · · · w2wn

w3w2 w2
3 · · · w3wn

...
...

. ..
...

wnw2 wnw3 · · · w2
n











+diag

(

1

σ2
2

,
1

σ2
3

, · · · , 1
σ2

n

)





















− 1
2

= − σ1

(2π)
1
2 ∏n

j=2 σ j

w1 ∏n
i=1 σi

√

∑n
i=1 σ2

i w2
i

(38)

= − σ2
1w1

√

2π ∑n
i=1 σ2

i w2
i

(39)

where (38) comes from lemma 6.9.

Similarly we can show thej-th term is
−σ2

j w j√
2π ∑n

i=1 σ2
i w2

i

.

Thus (37) becomes

(2ε −1)2 2
π
· ∑n

j=1 σ4
j w2

j

∑n
j=1 σ2

j w2
j

(40)

Without loss of generality, letσk = max{σi : wi 6= 0}, then

∑n
j=1 σ4

j w2
j

∑n
j=1 σ2

j w2
j

= σ2
k −

∑n
j=1, j 6=k(σ2

1 −σ2
j )σ2

j w2
j

∑n
j=2 σ2

j w2
j

(41)



The second term in (41) is non-negative. There are two possible cases.

1) σ1 = σ2 = · · · = σn = σ , i.e. then directions are equally noisy. In this case the mean squared error is constant for
all w, thus anyw is optimal.

2) Otherwise, (37) is maximized, i.e. the mean squared estimation error is minimized, if and only ifw j = 0,∀ j ∈
{2,3, · · · ,n}. In this case, since‖w‖ = 1, we know thatw1 = 1, i.e. w is in the direction with the maximum noise
variance.

The lemma is proved.

Remark 6.10:When the encoding is performed according to Lemma 6.2, the minimum MSE for any given binary symmetric
channel can be obtained:

1) σ1 = σ2 = · · · = σn = σ , i.e. then directions are equally noisy.
The MSE is

(

n− 2(2ε −1)2

π

)

σ2

When the channel has maximum entropy, i.e.ε = 1
2, the minimum MSE isnσ2. Therefore no information is transmitted

over the channel.
When the channel is perfect, i.e.ε = 0, the minimum MSE is

(

n− 2
π

)

σ2

The reduction in MSE is due to quantization.
2) When not all variances are the same, andσi = max(σ1,σ2, · · · ,σn), i.e. directioni is the most noisy.

The MSE is

∑
j 6=i

σ2
j +

(

1− 2(2ε −1)2

π

)

σ2
i

When the channel has maximum entropy, i.e.ε = 1
2, the minimum MSE is∑n

j=1 σ2
j . Therefore no information is transmitted

over the channel.
When the channel is perfect, i.e.ε = 0, the minimum MSE is

∑
j 6=i

σ2
j +

(

1− 2
π

)

σ2
i

The reduction in MSE is due to quantization in theXi direction.

C. The Optimal Vector Encoder for Binary Symmetric Channel:Correlated Gaussian Noise Case

For ann dimensional zero-mean Gaussian random vector with density

fX(x) =
1

(2π)
n
2
√

det(KX)
e−

1
2xTK−1

X x

whereKX is the covariance matrix defined by

KX , E{XXT} = E











X2
1 X1X2 · · · X1Xn

X2X1 X2
2 · · · X2Xn

...
...

.. .
...

XnX1 XnX2 · · · X2
n











If Kx is positive-definite thenKX can be diagonalized to be

M = diag{σ2
1 ,σ2

2 , · · · ,σ2
n} = QTKxQ

where σ2
1 ,σ2

2 , · · · ,σ2
n are the eigen-values ofKX , with corresponding orthonormal eigen-vectorsv1,v2, · · · ,vn and Q ,

[

v1 v2 · · · vn
]

(See e.g. [11]).Q is an orthonormal matrix withQTQ = QQT = I , whereI is the unit matrix. We also
havedet[KX ] = det[M ] = ∏n

j=1 σ2
j , K−1

X = QM−1QT , anddet[Q] = 1..
Then we have the following theorem.
Theorem 6.11:Let X ∈ R

n andX ∼ N(0n,Kx) and henceKX has orthonormal eigen-vectorsv1,v2, · · · ,vn corresponding to
eigen-valuesσ2

1 ,σ2
2 , · · · ,σ2

n . Consider encoderG∗(·) defined as below



S= G∗(X) =

{

Y if w∗TX ≥ 0
1−Y otherwise

whereY ∈ {0,1}, w∗ ∈ R
n, ‖w∗‖ = 1 andw∗ is chosen as below. If

1) σ1 = σ2 = · · · = σn = σ , i.e. all the n directions are equally noisy,w∗ is any vector inR
n.

2) Otherwise, letσm = max{σ1,σ2, . . . ,σn}, with m∈ {1,2, . . . ,n}. Thenw∗ = vm is the unit vector in the direction of the
m-th eigen-vector.

ThenG∗(·) is optimal, i.e., the optimal encoder only encodes the most noisy direction with one bit.
Proof:

By Theorem 4.4, there is an optimal encoder ofX within the class of encoders separatingR
n by a hyperplane through the

origin.
Consider random vectorZ = QTX, whereQ =

[

v1 v2 · · · vn
]

. Then the covariance ofZ satisfies

KZ , E{ZZT} = QTKXQ = M = diag{σ2
1 ,σ2

2 , · · · ,σ2
n} (42)

and the density ofZ is

fZ(z) =
1

(2π)
n
2
√

det(KZ)
e−

1
2zTK−1

Z z

=
1

(2π)
n
2 ∏n

j=1 σ j
e−

1
2zT M−1z

All the n components of random vectorZ are independent. Lemma 6.2 gives an optimal encoder for sucha random vector.
Below we will prove there is a 1-to-1 map between the hyperplane encoders ofZ and X producing the same mean squared
error.

Consider the mean squared estimation error caused by the following two encoders

Sx = Gx(X) =

{

Y if wTX ≥ 0
1−Y otherwise

(43)

with Y ∈ {0,1}.
and

Sz = Gz(Z) =

{

Y if (QTw)TZ = wTQZ ≥ 0
1−Y otherwise

(44)

with Y ∈ {0,1}.
The encoderGz(·) encodes the random vectorZ, which is rotated fromX by QT , with hyper-planeQTw, which is rotated

by QT from the hyper-planew used byGx(·).
Let Px0 , P(Sx = 0) and Px1 , P(Sx = 1). From Lemma 6.4, the outputs of the decoder in estimatingX when the encoder

is Gx(·) are

E{X|Ŝx = 0} =
(1− ε)Px0E{X|Sx = 0}+ εPx1E{X|Sx = 1}

(1− ε)Px0 + εPx1
(45)

and

E{X|Ŝx = 1} =
εPx0E{X|Sx = 0}+(1− ε)Px1E{X|Sx = 1}

εPx0 +(1− ε)Px1
(46)

whereε = P(Ŝ= 0 |S= 1) = P(Ŝ= 1 |S= 0). DefinePz0 , P(Sz = 0) andPz1 , P(Sz = 1). Again by Lemma 6.4, the outputs
of the decoder in estimatingZ when the encoder isGz(·) are

E{Z|Ŝz = 0} =
(1− ε)Pz0E{X|Sz = 0}+ εPz1E{Z|Sz = 1}

(1− ε)Pz0 + εPz1
(47)

and

E{Z|Ŝz = 1} =
εPz0E{Z|Sz = 0}+(1− ε)Pz1E{Z|Sz = 1}

εPz0 +(1− ε)Pz1
(48)



With encoder asGx(·), the expectation ofX conditioned onSx = 0 is

E{X|Sx = 0}

=
1

Px0
√

(2π)ndet(Kx)

∫

wTx<0
xe−

1
2xTK−1

x xdx

=
1

Px0
√

(2π)n ∏n
i=1 σi

∫

wTx<0
xe−

1
2xTK−1

x xdx

and

Px0 =
1

√

(2π)ndet(Kx)

∫

wTx<0
e−

1
2xTK−1

x xdx

=
1

√

(2π)n ∏n
i=1 σi

∫

wTx<0
e−

1
2xTK−1

x xdx

On the other hand, when the encoder isGz(·) the expectation ofZ conditioned onSz = 0 is

E{Z|Sz = 0}

=
1

Pz0
√

(2π)ndet(M)

∫

wTQz<0
ze−

1
2zTM−1zdz

=
1

Pz0
√

(2π)n ∏n
i=1 σi

∫

wTQz<0
ze−

1
2zTM−1zdz

and

Pz0 =
1

√

(2π)ndet(M)

∫

wTQz<0
e−

1
2zTM−1zdz

=
1

√

(2π)n ∏n
i=1 σi

∫

wTQz<0
e−

1
2zTM−1zdz

SinceZ = QTX andM = QTKxQ, we know

Pz0 =
1

√

(2π)n ∏n
i=1 σi

∫

wTQz<0
e−

1
2zTM−1zdz

=
1

√

(2π)n ∏n
i=1 σi

∫

wTx<0
e−

1
2xTQM−1QTxdet[Q]dx

=
1

√

(2π)n ∏n
i=1 σi

∫

wTx<0
e−

1
2xTK−1

x xdx

= Px0

sincedet[Q] = 1. Also

E{Z|Sz = 0}

=
1

Pz0
√

(2π)n ∏n
i=1 σi

∫

wTQz<0
ze−

1
2zTM−1zdz

=
1

Px0
√

(2π)n ∏n
i=1 σi

∫

wTx<0
QTxe−

1
2xTQM−1QTxdet[Q]dx

=
1

Px0
√

(2π)n ∏n
i=1 σi

∫

wTx<0
QTxe−

1
2xTK−1

x xdx

= QTE{X|Sx = 0}
Similarly we can proveE{Z|Sz = 1} = QTE{X|Sx = 1} and therefore by (47) and (48)

E{Z|Ŝz = 0} = QTE{X|Ŝx = 0}
and



E{Z|Ŝz = 1} = QTE{X|Ŝx = 1}
Moreover,

EGz

{

(

Z − Ẑ
)T (

Z − Ẑ
)

}

= EGx

{

(

QTX−QTX̂
)T (

QTX−QTX̂
)

}

= EGx

{

(

X− X̂
)T

QQT (

X− X̂
)

}

= EGx

{

(

X− X̂
)T (

X− X̂
)

}

The mean squared error achieved byGx(·) in estimatingX and the mean squared error achieved byGz(·) in estimatingZ
are the same.

Thus for every encoder ofX of the form (43), we can find an encoder ofZ of the form (44), such that the error in estimating
X andZ are the same, and vice versa.

Therefore ifw∗ in (43) is optimal,QTw in (44) is also optimal, and vice versa.
From Lemma 6.2, if σm = max{σ1,σ2, · · · ,σn}, an optimal encoder forZ is in the form (44) with QTw =

[ 0 · · · 0 1 0 · · · 0 ]T , where the 1 is them-th component. Then an optimal encoder forX is in the form (43)
with

w = Q
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=
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v1 v2 · · · vn
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0
1
0
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= vm

VII. C ONCLUSION

We study the real-time estimation of a Markov process over a memoryless noisy digital communication channel to minimize
the mean squared estimation error. We first show the optimal encoder can be a function of the current state of the Markov
process and the probability mass function of the state of thememory of the receiver given the current state. We then prove
the optimal encoder separates the state space with hyper-planes. A recursive algorithm is then given to jointly find the locally
optimal encoder and decoder for the special case of the binary symmetric channel and scalar source. For memoryless Gaussian
vector source and binary symmetric channel we analyticallyderive the global joint optimal encoder and decoder. This turns out
to be an encoding of the principal component of the source vector. We derive the minimum mean squared error as a function
of the variance of source and the channel noise.

Many problems remain open. The recursive relation between the optimal design across time steps needs to be found. The
recursive algorithm to find optimal encoder and decoder needs to be generalized to channels other than the binary symmetric
channel. For the memoryless Gaussian vector case, we also need to find the optimal designs for more practical channels. The
memory state update is given in our problem. The optimal joint design of encoder, decode, and memory update is another
interesting problem.
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APPENDIX I
PROOF OFLEMMA 6.8

Proof: Whenϕ = 0, both sides of (31) equal to 0. Whenϕ → +∞, both sides are equal to12. Hence inequality holds at
both 0 and∞.

We will show for all ϕ ∈ (0,∞), the left side of (31) is greater than the right side. Since both sides are positive, (31) is
equivalent to

V(ϕ) ,
1−e−ϕ2

4
− 1

2π

(

∫ ϕ

0
e−

y2
2 dy

)2

≥ 0 (49)

We differentiateV(ϕ) with ϕ and get

dV
dϕ

=
ϕe−ϕ2

2
− 1

π
e−

ϕ2

2

∫ ϕ

0
e−

y2
2 dy (50)

Clearly, dV
dϕ is zero when eitherϕ = 0 or ϕ → +∞. We study its sign in(0,+∞)

For all ϕ ∈ (0,∞), defineW(ϕ) , e
ϕ2

2

(

dV
dϕ

)

. Therefore

W(ϕ) =
ϕe−

ϕ2

2

2
− 1

π

∫ ϕ

0
e−

y2
2 dy (51)

W(ϕ) and dV
dϕ have the same sign whenϕ > 0 and is finite. We can study the sign ofdV

dϕ usingW(ϕ).



W(0) = 0 andW(+∞) = − 1√
2π < 0. The first term in (51) first increases from 0 withϕ, then decreases until it converges

to 0. The second term on the other hand keeps increasing from 0with ϕ, so the sign ofW(ϕ), therefore the sign ofdV
cϕ , must

be negative for largeϕ. Now we analyze the change trend of the sign ofW(ϕ) with ϕ by differentiating it.

dW
dϕ

= e−
ϕ2

2

(

1
2
− 1

π
− ϕ2

2

)

(52)

Clearly, dW
dϕ ≥ 0, if ϕ ≤

√

1− 2
π . SinceW(0) = 0, we haveW(ϕ) > 0 in

(

0,

√

1− 2
π

]

. On the other hand,dW
dϕ < 0, if

ϕ >

√

1− 2
π . Therefore in(

√

1− 2
π ,∞) W(ϕ) keeps decreasing, going from positive to negative. SinceW(ϕ) and dV

dϕ have

the same sign except forϕ → +∞, we know the following aboutdV
dϕ :

dV
dϕ































= 0 ϕ = 0

> 0 and increasing ϕ ∈ (0,

√

1− 2
π ]

> 0 and decreasingϕ ∈ (
√

1− 2
π ,ϕ∗]

< 0 and decreasingϕ > ϕ∗ and finite
= 0 ϕ → +∞

whereϕ∗ is a finite positive number in(1− 2
π ,+∞) whose exact value is not important to us.

From the sign ofdV
dϕ we can see thatV(ϕ) starts from 0 whenϕ = 0. It first increases then decreases monotonically with

ϕ, and converges to zero whenϕ → +∞. Hence it can never be negative. The only possibility isV(ϕ) first increases withϕ
from 0 to be positive , then decreases while still being positive, and eventually goes back to 0. Figure 3 confirms our analysis.
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Fig. 3. V as a function ofϕ

Therefore we have proved thatV(ϕ) ≥ 0, ∀ϕ ∈ (0,+∞), and the lemma is proved.

APPENDIX II
PROOF OFLEMMA 6.9

Proof: We prove by induction.

Whenn = 2, det
[

w2
2

σ2
1 w2

1
+ 1

σ2
2

]

=
σ2

1 w2
1+σ2

2 w2
2

w2
1σ2

1 σ2
2

. This establishes a base case.

Suppose the lemma holds for all matrices of the above form of size (k−1)× (k−1), then observe that
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, |A(k)|

where|M| stands for the determinant of matrixM.
Then

|A(k)| =
σ2

1w2
1 +σ2

2w2
2 + · · ·+σ2

k w2
k

w2
1σ2

1 σ2
2 · · ·σ2
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Now,
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We prove in two cases depending on the value ofwk, i.e. wk 6= 0 andwk = 0.

1) Assumewk 6= 0
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2) Assumewk = 0.
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The second last equation is because of the induction assumption, and the last equation is true consideringwk = 0.

Therefore the Lemma is proved for both cases.




