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Abstract: We study worldvolume actions for D-branes coupled to the worldvolume U(1)
gauge field and Ramond-Ramond (RR) potentials in nonrelativistic string theory. This the-
ory is a self-contained corner of relativistic string theory and has a string spectrum with a
Galilean-invariant dispersion relation. We therefore refer to such D-branes in nonrelativis-
tic string theory as nonrelativistic D-branes. We focus on the bosonic fields in spacetime
and also couple the D-branes to general closed string geometry, Kalb-Ramond, and dilaton
background fields. We dualize nonrelativistic D-branes by performing a duality transfor-
mation on the worldvolume U(1) gauge field and uncover novel dual D-brane actions. This
generalizes familiar properties, such as the SL(2,Z) duality in Type IIB superstring theory
and the relation between Type IIA superstring and M-theory, to nonrelativistic string and
M-theory. Moreover, we generalize the limit of string theory, in which nonrelativistic string
theory arises, to include RR potentials. This stringy limit induces a codimension-two foli-
ation structure in spacetime. This spacetime geometry is non-Riemannian and known as
string Newton-Cartan geometry. In contrast, nonrelativistic M-theory that we probe by
dualizing D2- and D4-branes in nonrelativistic string theory arises as a membrane limit of
M-theory, and it is coupled to a membrane Newton-Cartan geometry with a codimension-
three foliation structure. We also discuss T-duality in nonrelativistic string theory and
generalize Buscher rules from earlier work to include RR potentials.
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1 Introduction

One of the most fascinating discoveries in string theory is that different superstring the-
ories are corners of M-theory in eleven dimensions. Theories that arise as various limits
of M-theory and describe rather different physics are frequently related to each other by
duality transformations. These dualities provide powerful techniques for probing different
corners in M-theory and bring useful intuitions about various nonperturbative regimes in
string theory. Even though a comprehensive understanding of M-theory is still lacking,
it is widely believed that the full dynamics of M-theory is captured by a simple quan-
tum mechanical system of D0-branes, known as the Matrix theory conjecture [1–4]. This
description of M-theory is approached from considering a discrete light cone quantization
(DLCQ) of M-theory, typically defined by taking an infinite-boost limit of compactification
on a spacelike circle. Moreover, the Matrix theory description of the DLCQ of string the-
ory was later studied in [5–7]. Compared to the infinite-momentum frame and the large-N
limit considered in the seminal work on Matrix theory (with N D0-branes), the DLCQ of
string/M-theory has the advantage of making various dualities manifest at finite N .

Not relying on the subtle infinite-boost limit, the DLCQ of string theory is known to be
related to a unitary and ultra-violet (UV) complete theory called nonrelativistic string the-
ory, which in flat spacetime is defined by a two-dimensional quantum field theory (QFT)
with a (string-)Galilean global symmetry [8]. The string excitations in nonrelativistic
string theory have a Galilean-invariant dispersion relation and a nonrelativistic spacetime
S-matrix; the spectrum there contains no massless gravitons.1 Instead, the asymptotic
closed string states necessarily carry nonzero windings and they can exchange instanta-
neous gravitational forces that are Newtonian-like [8, 11]. In curved spacetime, this theory
describes strings propagating in the so-called string Newton-Cartan geometry [12, 13],2
which is a non-Riemannian geometry equipped with a codimension-two foliation struc-
ture. This geometry naturally generalizes Newton-Cartan geometry, the geometrization
of Newtonian gravity equipped with a codimension-one foliation. Moreover, T-dualities of
nonrelativistic string theory with arbitrary background fields have been studied in [13]. It
is shown that the DLCQ of relativistic string theory arises from performing a T-duality
transformation along a spacelike circle in nonrelativistic string theory. This relation pro-
vides a first principle definition of the DLCQ of relativistic string theory, which is otherwise
only defined by the subtle infinite-boost limit.

In recent years, significant progress has been made towards the formulation of non-
relativistic string theory in general backgrounds.3 These studies have been generating
new excitements about exploring a landscape of non-Lorentzian gravity and field theories,
as well as their applications to the AdS/CFT correspondence; see e.g., [12–20, 22–36].4

1The closed string spectrum was first obtained from a limit of relativistic string theory [9]. Also see [10].
2Background geometries with different torsional constraints that nonrelativistic strings are coupled to

have been discussed in the literature, depending on what global symmetries are imposed on the worldsheet.
See, e.g., [14–20] for studies of strings in torsional string Newton-Cartan geometries. These subtle differences
will not affect our studies of D-brane actions in this paper. For simplicity, we will collectively refer to this
class of background geometries as “string Newton-Cartan geometry”.

3See [21] for a review of recent developments in nonrelativistic string theory.
4Also see [37] for a companion paper on KLT relations for amplitudes in nonrelativistic string theory.
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Lately, the quantum conformal invariance of the worldsheet theory with boundary terms
describing nonrelativistic string theory in arbitrary open string backgrounds is analyzed
in [38]. This study of worldsheet conformal anomalies leads to a set of spacetime equations
of motion that are nonlinear and describe the low-energy dynamics of the open string fields.
For a single D-brane, these equations of motion can be derived from a nonlinear action of
the curvature of the U(1) connection, which describes a local field theory with Galilean
symmetry. This theory is referred to as Galilean Dirac-Born-Infeld (DBI) theory in [38].
Such a Galilean DBI action can be readily generalized to Dp-brane actions that describe
the low-energy dynamics of (p+ 1)-dimensional membranes on which nonrelativistic open
strings end.5 These Galilean DBI actions describing D-branes in nonrelativistic string the-
ory significantly differ from their relativistic counterparts, and only arise as a nontrivial
limit of relativistic D-branes [38]. The realization of such worldvolume actions enable con-
crete studies of D-branes in nonrelativistic string theory. In particular, D-branes are useful
probes for mapping out physics in different (strongly-coupled) regimes of string/M-theory,
which are accessed by performing duality transformations on the associated worldvolume
actions of D-branes (see e.g., [39, 40]).

Based on the previous advancements in nonrelativistic string theory, it is timely to
systematically investigate its duality web. This endeavor will not only improve our un-
derstanding of extended objects in nonrelativistic string theory, but also allow us to probe
“nonrelativistic M-theory” that arises in a strongly coupled regime. It will also be interest-
ing to investigate how the expectations from the well-studied dualities of D-brane actions in
relativistic string theory can be applied to the DBI actions in nonrelativistic string theory,
and whether novel nonrelativistic twists arise.

Such a duality web in nonrelativistic string theory can be accessed using two comple-
mentary methods. First, it is known that nonrelativistic string theory arises as an intriguing
limit of relativistic string theory that requires a subtle cancellation between the string ten-
sion and a critical Kalb-Ramond field [8]. It must be possible to generalize such a limiting
procedure to derive the desired duality web in nonrelativistic string theory using the known
ingredients from relativistic string theory. As we will construct later in this paper, such
a limiting procedure in general involves highly nontrivial cancellations among various di-
vergent terms and has to be treated with care. Second, since nonrelativistic string theory
is self-contained and can be studied independently of relativistic string theory, the desired
duality web can also be accessed from first principles. This program imposes new challenges
as D-branes in nonrelativistic string theory are coupled to string Newton-Cartan geometry,
which is non-Riemannian and equipped with a two-dimensional foliation structure. Such
a geometry is fundamentally distinct from Einstein’s gravity emerging in relativistic string
theory. Consequently, duality transformations of the associated D-brane action (whose DBI
part is only recently realized in [38]) do not find any direct analogue in relativistic string
theory and are expected to reveal novel brane configurations in nonrelativistic string the-
ory. Even though a systematic analysis of the duality web in nonrelativistic string theory
is missing, some related aspects in both approaches have been explored to certain extent
in the literature, which we briefly review below.

5In [38], strictly speaking, only D25-branes in bosonic string theory are considered.
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Hitherto, S-duality transformations of the Galilean-invariant D-brane actions from [38]
have been explored almost only in flat spacetime, mostly in the context of noncommutative
open string (NCOS) theory.6 The NCOS is known to be an open string sector in the
framework of nonrelativistic string theory [8–10]. NCOS was originally introduced by
taking a stringy limit of relativistic string theory in the presence of a Kalb-Ramond field
tuned to cancel the string tension. This limit naturally induces a codimension-two foliation
structure that also appears in string Newton-Cartan geometry to which nonrelativistic
closed strings are coupled. It is known that the four-dimensional NCOS gives an S-dual
description of the strongly coupled, spatially noncommutative Yang-Mills theory with N =
4 supersymmetry [43]. It is also shown in [44, 45] that the strongly-coupled five-dimensional
NCOS is described by a theory of light open membranes (OM) on an M5-brane at a near
critical three-form field strength. Such an OM theory arises as a membrane generalization
of the NCOS limit of M-theory. This limit induces a codimension-three foliation structure
in eleven-dimensional spacetime. This is in contrast to the codimension-two foliation in
string Newton-Cartan geometry that nonrelativistic strings are coupled to.

The NCOS limit has been generalized in [12, 15, 38] to relativistic strings coupled to
arbitrary geometry, Kalb-Ramond and dilaton background field, together with a worldvol-
ume gauge field. This limit leads to nonrelativistic string theory that can be equivalently
defined using the worldsheet theory introduced in [8]. Moreover, this limit has been gener-
alized to the so-called p-brane limits involving a near critical (p+1)-form field strength [8].
In particular, the two-brane limit coincides with the limit of M-theory that leads to the OM
theory. S-dualities of theories that arise as various p-brane limits of relativistic string/M-
theory have also been discussed, for examples, in [8, 46]. It is also known that a dimensional
reduction of the two-brane limit of M-theory leads to nonrelativistic string theory [33, 47].
However, relations between general p-brane limits and nonrelativistic string theory are
unclear.

On the other hand, T-duality transformations in nonrelativistic string theory have
been studied in [13], where general Buscher rules for geometry, Kalb-Ramond and dilaton
background fields have been derived from first principles by using the worldsheet theory.7
These Buscher rules have been applied to the DBI-like part of the D-brane actions in
nonrelativistic string theory in [50], where it is shown how relativistic, nonrelativistic and
noncommutative open strings are related to each other.

In this paper, we will first generalize the D-brane actions found in [38] to include all
relevant bosonic terms, which will be our starting point for analyzing both S- and T-duality
transformations of such D-brane actions in nonrelativistic string theory.8 We will refer to

6For examples, see [41, 42] for NCOS-type limits of various extended objects in string/M-theory and
relevant applications to holography.

7Also see [8, 10, 15, 48]. Moreover, see [14, 16, 25, 49] for related works on null reductions.
8There are a series of standard simplifications we make throughout the paper. We will restrict to the

case where the geometric curvatures are very small and hence omit any curvature contributions to the
effective action of a D-brane (see, e.g., [51–54] for inclusion of corrections from the geometric curvature in
the worldvolume actions of D-branes in relativistic string theory). Moreover, for simplicity, we will only
consider a single D-brane with a worldvolume U(1) connection, but our construction can be in principle
generalized to non-abelian cases with multiple coinciding D-branes. We further assume the worldvolume
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such D-branes as nonrelativistic D-branes. In relativistic string theory, since Polchinski’s
realization [57], it is well established that D-branes are charge carriers for RR potentials,
which extends the D-brane action to include a Chern-Simons (CS) term, in addition to the
DBI term. Analogously, introducing similar CS terms in nonrelativistic D-brane actions
allows the inclusion of RR potentials in nonrelativistic string theory. We will also derive
how the nonrelativistic string limit is applied to RR potentials, and show that a careful
cancellation among different RR potentials and the Kalb-Ramond field is required for
reproducing the finite D-brane action in nonrelativistic string theory.

Based on these new developments of D-brane actions in nonrelativistic string theory,
we study in detail the duality transformations of Dp-branes in Type II nonrelativistic
superstring theories with p = 1, · · · , 4, by dualizing a U(1) gauge field on the branes’
worldvolumes. Firstly, the S-duals of nonrelativistic D1- and D3-branes reveal the SL(2,Z)
symmetry as in Type IIB relativistic superstring theory. Secondly, the dual actions of non-
relativistic D2- and D4-branes describe nonrelativistic M2- and M5-branes, respectively.
These duality transformations are significantly different from those in relativistic string the-
ory, and lead to novel dual D-brane actions coupled to various non-Riemannian spacetime
geometries. While nonrelativistic string theory and the associated D-branes are coupled to
ten-dimensional string Newton-Cartan geometry with a codimension-two foliation, nonrel-
ativistic M2- and M5-branes are coupled to eleven-dimensional membrane Newton-Cartan
geometry with a codimension-three foliation. Moreover, we also generalize the previous
studies on T-duality transformations in nonrelativistic string theory [13, 15, 50] to in-
clude RR potentials. These results generalize the previous works to a larger duality web
for nonrelativistic string/M-theory coupled to RR potentials, in addition to other bosonic
background fields that have been considered before.

The paper is organized as follows. In section 2, we construct the bosonic part of
the worldvolume action describing D-branes in nonrelativistic string theory coupled to
string Newton-Cartan geometry, Kalb-Ramond, dialton, U(1) gauge and RR potential
background fields. In section 3, we study S-duality transformations of various Dp-branes
by dualizing the worldvolume U(1) gauge field. In section 4, we extend the previous works
on T-duality transformations in nonrelativistic string theory to include RR potentials. In
particular, we realize in section 4.2.2 a novel double-scaling limit to derive the Buscher
rules associated with the longitudinal lightlike T-duality transformation that relate non-
relativistic string theory to NCOS. In section 5, we conclude our paper. In appendix A,
we construct the Dp-brane action coupled to p-brane Newton-Cartan geometry.9 In ap-
pendix B, we provide an extra check using a symmetry argument for the Buscher rules
derived in section 4.
gauge field strength to be slowly varying at the string length scale, which allows us to drop derivatives of
the field strength (see, e.g., [55, 56] for the corrections beyond the slowly-varying-field approximation in
relativistic D-brane actions).

9The D2-brane action that arises as a three-brane limit of relativistic D2-brane action has been formu-
lated in [47] by dimensionally reducing the nonrelativistic M2-brane action along a transverse direction.
Moreover, it is also shown in [47] that a double dimensional reduction in a longitudinal spatial direction
of nonrelativistic M2-brane gives rise to the Nambu-Goto action describing nonrelativistic strings in string
Newton-Cartan geometry, which arises in the p-brane limit of relativistic string theory. See relevant discus-
sions in appendix A and section 3.2.2, respectively.

– 5 –



J
H
E
P
0
4
(
2
0
2
2
)
1
6
1

2 D-branes in nonrelativistic string theory

In this section, we construct the effective worldvolume actions describing D-branes in non-
relativistic string theory coupled to arbitrary bosonic background fields. In particular,
we turn on arbitrary RR potentials here. We will focus on the case of a single D-brane
with an abelian worldvolume gauge potential. Moreover, we only keep leading-order terms
in the derivative expansion, such that derivatives of the worldvolume field strength are
neglected. We also assume the geometric curvature to be small and omit any depen-
dence on the geometric curvature. This will form the foundation for our later studies
of duality transformations in nonrelativistic string theory. We will also discuss how to
reproduce these D-brane actions from a stringy limit of relativistic string theory that in-
duces a codimension-two foliation structure in the target-space geometry. Such a stringy
limit can be generalized to a p-brane limit of relativistic string/M-theory that imposes a
codimension-(p + 1) foliation in spacetime, which we review at the end of this section in
section 2.4. Among these p-brane limits, the two-brane limit will play an important role
when we dualize the worldvolume U(1) gauge field for D2- and D4-branes later in section 3,
where nonrelativistic M-theory will be probed at the strongly-coupled regime of Type IIA
nonrelativistic superstring theory.

2.1 Nonrelativistic string limit of D-brane actions

We start with the Dirac-Born-Infeld (DBI) action that describes the dynamics of a Dp-
brane in relativistic string theory. We denote the coordinates on the spacetime manifoldM
as XI , I = 0, 1, · · · , 9. Such spacetime coordinates XI are associated with the worldsheet
fields that map the worldsheet Σ to the target space M in relativistic string theory. On
the D-brane submanifold N , we denote the coordinates as Y µ, µ = 0, 1, · · · , p. In curved
spacetime, we write XM

∣∣
∂Σ = fM (Y µ), where fM describes how the Dp-brane is embedded

in spacetime. Consider the closed string background described by a metric field Ĝµν , a
Kalb-Ramond field B̂µν and a dilaton field Φ̂. We also introduce a U(1) gauge field Âµ
together with its field strength F̂ = dÂ on the D-brane. It is useful to define the pullbacks
Ĝµν = ∂µf

M ∂νf
N ĜMN and F̂µν = ∂µf

M ∂νf
N B̂MN + F̂µν . Then, the DBI action of a

Dp-brane in relativistic string theory takes the form,

Ŝp = −T̂p
∫
dp+1Y e−φ

√
− det

(
Ĝµν + F̂µν

)
. (2.1)

The brane tension T̂p is related to the string coupling ĝs = eΦ̂0 and the Regge slope α̂′ via

T̂p = 1
(2π)p ĝs (α̂′)(p+1)/2 . (2.2)

Here, Φ̂0 is constant and the dilaton field is now split to be Φ̂ = Φ0 +φ. Consider the zero
Regge slope limit α̂′ → 0 with the following field configurations [8–10]:

ĜMN =

ηAB 0
0 α̂′

α′ δA′B′

 , B̂MN =
(
−εAB 0

0 0

)
+ α̂′

α′
BMN , F̂µν = α̂′

α′
Fµν . (2.3)

– 6 –
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We also set φ = 0. Here, the index M is split into the longitudinal part A = 0, 1 and the
transverse part A′ = 2, · · · , 9. Moreover, Fµν = ∂µAν − ∂νAµ, where Aµ is the rescaled
U(1) gauge field. We defined ηAB = diag(−1, 1) and the Levi-Civita symbol εAB by ε01 =
−ε10 = 1. We have introduced α′ that will later become the effective Regge slope in
nonrelativistic string theory. For the meantime, we hold fixed the radius R10 = ĝs

√
α̂′ of

the circle compactified over the eleventh dimension X10 in M-theory. The effective string
coupling is

gs = ĝs

√
α̂′

α′
. (2.4)

We kept a remainder B-field BMN in (2.3) for later use. Taking the limit α̂′ → 0 in (2.1)
then leads to a finite action referred to as Galilean DBI in [38],

Sp = −Tp
∫
dp+1Y

√√√√− det
(

0 ∂ν
(
f0 + f1)

∂µ
(
f0 − f1) ∂µf

A′ ∂νf
A′ + Fµν

)
, (2.5)

where Fµν = ∂µf
M ∂νf

N BMN + Fµν and

Tp = 1
(2π)p gs (α′)(p+1)/2 . (2.6)

We will collectively refer to Dp-branes described by the action (2.5) as nonrelativistic
Dp-brane. The near critical field limit treats the longitudinal and transverse sectors un-
equally. As a result, there are different configurations that we can consider, depending on
whether the D-brane is transverse or extending in the longitudinal spatial X1 direction.
For historical reasons, this α̂′ → 0 limit is referred to as the noncommutative open string
limit [9, 43, 58]. In this paper, we will view this limit in a larger framework of nonrelativistic
string theory and therefore refer to such a limit as the nonrelativistic string limit.

We first consider a D-brane that is transverse to the longitudinal spatial X1 direction.
In this case, f0 = Y 0 and f1 = x1 + π, where x1 is the location of the D-brane in X1.
The field π is the Nambu-Goldstone boson that emerges from the spontaneous symmetry
breaking of the translational isometry in X1. Similarly, fA′ now splits into

f i+1 = Y i , i = 1, · · · , p ; (2.7a)
fa = xa + πa , a = p+ 2 , · · · , 9 . (2.7b)

Here, xa is the location of the Dp-brane along Xa, and πa are the Nambu-Goldstone
bosons that perturb perpendicularly to the D-brane in Xa. In the absence of B-field with
BMN = 0, the low-energy Dp-brane action (2.5) becomes

Sp = −Tp
∫
dp+1Y

√√√√− det
(

0 δ0
ν + ∂νπ

δ0
µ − ∂µπ δiµ δ

i
ν + ∂µπ

a ∂νπ
a + Fµν

)
. (2.8)

This theory is the effective field theory on D-branes in nonrelativistic open string (NROS)
theory. At the quadratic order in field configurations, we find the effective action,

S(2)
p = Tp

2

∫
dp+1Y

(
π̇2 − 2Ei ∂iπ −

1
2 Fij F

ij − ∂iπa ∂iπa
)
. (2.9)

– 7 –
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Here, Ei = F0i is the electric field. This quadratic action (2.9) is invariant under a Galilean
boost symmetry [59],

Ỹ 0 = Y 0 , Ỹ i = Y i + vi Y 0, (2.10)

if supplemented with the following field transformations:

Ã0
(
Ỹ
)

= A0(Y )− viAi(Y ) + 1
2 vi v

i π , π̃(Ỹ ) = π(Y ) , (2.11a)

Ãi
(
Ỹ
)

= Ai(Y )− vi π , π̃a(Ỹ ) = πa(Y ) . (2.11b)

The action (2.9) without the last term that depends on πa is referred to as Galilean elec-
trodynamics (GED) in the literature [59–61]. There are no propagating degrees of freedom
in (2.9). However, it is shown in [62] that, in 2+1 dimensions, coupling GED to propagat-
ing Schrödinger scalars generates non-trivial modifications to renormalization group flows,
which give rise to a family of conformal fixed points.

Next, we consider D-branes extending in the longitudinal spatial X1 direction. We
introduce a purely electric B-field with BAB = e εAB/2 and all other components in Bµν
are taken to be zero. Moreover, we take fA = Y A and split fA′ into

f i = Y i , i = 2, · · · , p ; (2.12a)
fa = xa + πa , a = p+ 1 , · · · , 9 . (2.12b)

The Dp-brane action (2.5) now becomes

Sp = −Tp
∫
dp+1Y

√√√√− det
(

0 δ0
ν + δ1

ν

δ0
µ − δ1

µ δiµ δ
i
ν + ∂µπ

a ∂νπ
a + Fµν

)
. (2.13)

At the quadratic order in field configurations of (2.13), we have

S(2)
p = − Tp

4 e3/2

∫
dp+1Y

(
FAB F

AB + 2 e FAi FAi + e2 Fij Fij
)

− Tp
2 e1/2

∫
dp+1Y

(
∂Aπ

a ∂Aπa + e ∂iπ
a ∂iπ

a
)
.

(2.14)

Taking the rescaling Y i → e1/2 Y i and Aµ → e1/2Aµ, the effective action (2.14) becomes

S(2)
p = −Tp e

p/2

2

∫
dp+1Y

(1
4 Fµν F

µν + 1
2 ∂µπ

a ∂µπa
)
, (2.15)

which is manifestly relativistic. Open strings that end on such a D-brane configuration
described at low energies by (2.13) is known as noncommutative open strings (NCOS)
in the literature, where space/time noncommutativity arises due to the present of the
nonzero Kalb-Ramond field BAB [43]. This noncommutative behavior becomes manifest
after using the Seiberg-Witten map to rewrite the worldvolume theory in terms of the
effective background fields seen by the open strings [63], which we briefly describe below.
We start with the DBI action (2.1) that describes relativistic D-branes. The inverse effective
metric Ĝµν , the noncommutativity tensor Θµν , and the effective open string coupling Ĝo
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seen by the open strings are given by the following Seiberg-Witten map between closed
and open string background fields [63]:

Ĝµν = α̂′

α′

( 1
Ĝ+ B̂

Ĝ
1

Ĝ− B̂

)µν
, Ĝo = ĝs

√√√√det
(
Ĝ+ B̂

)
det Ĝ

, (2.16a)

Θ̂µν = − α̂
′

α′

( 1
Ĝ+ B̂

B̂
1

Ĝ− B̂

)µν
. (2.16b)

Here, the equal time commutator [Y µ, Y ν ] ∼ Θ̂µν measures the noncommutativity between
different worldvolume coordinates. In terms of these open string background fields, the
associated field theory can be written in terms of the noncommutative Yang-Mills fields
using the Moyal bracket [63].10 Plugging (2.3) and (2.4) into the Seiberg-Witten map (2.16),
and with the Kalb-Ramond field being purely electric as we have specified earlier, we derive
the following NCOS variables that arise in the α̂′ → 0 limit:

Ĝµν → Gµν =
(
e−1 ηAB 0

0 δij

)
, Θ̂µν → Θµν = −

(
e−1 εAB 0

0 0

)
, Ĝo → Go = gs

√
e .

(2.17)

The structure of the noncommutativity tensor Θµν implies that the longitudinal space and
time coordinates Y 0 and Y 1 do not commute with each other, with [Y 0, Y 1] ∝ e−1.

As a final remark, we note that there is a formal T-dual relation between NCOS Dp-
branes and NROS D(p−1)-branes [50]: start with the NCOS Dp-brane, we take an infinite
boost in the longitudinal sector of the X1 circle, along which the D-brane extends. Then,
we are led to the DLCQ of NCOS on a compactified lightlike circle. Performing a T-duality
transformation along this lightlike circle leads to a D(p−1)-brane in the DLCQ of NROS
on a dual lightlike circle.

2.2 Nonrelativistic DBI action

There is a natural curved-spacetime generalization of the above zero Regge slope limit [12].
This limit treats the longitudinal directions differently from the transverse directions, and
thus induces a codimension-two foliation structure in spacetime. In curved spacetime, we
introduce the longitudinal vielbein field τµ

A and the transverse vielbein field Eµ
A′ . We

consider the reparametrizations of relativistic background fields in terms of α̂′,

ĜMN = τMN + α̂′

α′
EMN , eΦ̂ = eΦ

√
α′

α̂′
, (2.18a)

B̂MN = −τMA τN
B εAB + α̂′

α′
MMN , (2.18b)

10In the noncommutative Yang-Mills action, the terms that are quadratic in Fµν are still the same as
in (2.15). However, the noncommutative field strength involves higher order terms in the gauge potential
Aµ, with F ′µν = ∂µA

′
ν − ∂µA′ν − i A′µ ?A′ν + i A′ν ?A

′
µ, where “?” denotes the Moyal product, and the prime

in A′µ indicates that a point-splitting regularization has been introduced [63].
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where τMN = τM
A τN

B ηAB, EMN = EM
A′EN

A′ and MMN is an antisymmetric two-
tensor. The ansatz (2.18) is a direct covariantization of (2.3). Applying the α̂′ → 0 limit
to the relativistic DBI action (2.1), we find [38] (also see [50, 64, 65]),

SDp = −Tp
∫
dp+1Y e−φ

√√√√− det
(

0 τν
τ̄µ Eµν +Mµν + Fµν

)
. (2.19)

Here, we have written the dilaton field Φ as Φ = log gs+φ, such that the expectation value
of φ is zero. Moreover, Fµν = ∂µAν − ∂νAµ for a U(1) gauge potential Aµ on the D-brane.
We also defined the following pullbacks to the worldvolume:

τµ
A = τM

A ∂µf
M , Eµ

A′ = EM
A′ ∂µf

M , Mµν = MMN ∂µf
M ∂νf

N . (2.20)

We also defined τµ = τµ
0 + τµ

1 and τ̄µ = τµ
0 − τµ1. The action (2.19) is invariant under

the local string Galilean boost transformations parametrized by ΛAA′ ,

δGτM
A = 0 , δGEM

A′ = ΛA′A τMA , (2.21)

supplemented with

δGMMN = ΛA′A εAB
(
τM

BEN
A′− τNBEMA′

)
. (2.22)

Together with diffeomorphisms, the Lorentz boost in the longitudinal sector, and rotations
in the transverse sector, all these transformations form the string Galilei algebra. It is
useful to introduce an additional gauge field mµ

A that transforms nontrivially under the
string Galilean boosts,

δmM
A = −ΛA′AEµA

′
, (2.23)

and parametrize MMN as

MMN = BMN +
(
mM

A τN
B −mN

A τM
B
)
εAB . (2.24)

Then, BMN is invariant under the string Galilei boosts. This Kalb-Ramond field transforms
under the Neveu-Schwarz (NS) gauge symmetry parametrized by εM as

δεBMN = ∂M εN − ∂N εM . (2.25)

The action (2.19) is invariant under (2.25), if supplemented with the following transforma-
tion of the gauge potential Aµ:

δεAM = −εM , (2.26)

apart from the U(1) gauge transformation

δηAµ = ∂µη . (2.27)

The target-space gauge fields τMA, EMA′ andmM
A constitute the so-called torsional string

Newton-Cartan geometry [14, 16, 17, 19].
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It is known that the string Galilei symmetry is not sufficient for the sigma model
describing nonrelativistic string theory to be self-consistent at the quantum level; instead,
one has to introduce an extra counterterm that essentially deforms the theory towards
relativistic string theory [18, 26, 29]. In order to define a renormalizable two-dimensional
worldsheet QFT without this deformation, the string Galilei symmetry is extended to
include a noncentral extension associated with the gauge field mM

A [26, 29] (also see [12,
13, 15]). This extension modifies the Lie bracket between the string Galilei boost and
transverse translation generator such that they commute into a new generator ZA, which
only acts nontrivially (and infinitesimally) on mM

A and Aµ as [38]

δZmM
A = DMσ

A , δZAµ = −εAB σA τµB . (2.28)

Here, σA is the Lie group parameter associated with ZA and DMσ
A = ∂Mσ

A−ΩM εAB σ
B,

with ΩM the spin connection for the longitudinal Lorentz boost. Extending the string
Galilei algebra with the ZA generator (and together with other generators required for the
closedness of the algebra) leads to the so-called string Bargmann algebra [12, 15, 66, 67],
which underlies the string Newton-Cartan geometry. In the gauging procedure of the string
Bargmann algebra, mM

A turns out to be the gauge field associated with the ZA generator.
Moreover, the ZA symmetry imposes a torsional constraint on the longitudinal Vielbein
field τMA, with [12, 13]

D[MτN ]
A = 0 . (2.29)

Using the torsional constraint (2.29), we find that the field strength F = dA transforms
under the ZA symmetry as

δZFµν = −εAB Dµσ
A τν

B. (2.30)

It is shown in [38] that (2.19) is invariant under the above ZA transformations and thus
the string Bargmann symmetry. In [18], it is shown that preserving half of the lightlike
components in the ZA symmetry, e.g., Z+ = Z0 +Z1, also leads to a self-consistent algebra.
This Z+ symmetry only imposes half of the torsional constraint in (2.29) that coincides
with the one found in [20] from supersymmetrizing string Newton-Cartan geometry. This
relaxed torsional constraint also leads to a renormalizable worldsheet QFT that describes
nonrelativistic strings [18]. Since the above distinctions between these non-Lorentzian
geometries with different torsional constraints will not play any role in this paper, we
will refer to the target-space geometry as “string Newton-Cartan geometry” in the generic
sense, without specifying what torsional constraint is imposed on τMA.

In terms of the above geometric data, we write SDp in the form that is manifestly boost
invariant, with

SDp = −Tp
∫
dp+1Y e−φ

√√√√− det
(

0 τν
τ̄µ Hµν +Bµν + Fµν

)
, (2.31)

where both Hµν ≡ Eµν +
(
τµ
Amν

B + τν
Amν

B
)
ηAB and Bµν are invariant under the

string Galilei boost. This action (2.31) introduces extra field contents that give rise to
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Stueckelberg-type symmetries [13]:

HMN → HMN −
(
τM

A ΞNB + τN
A ΞMB

)
ηAB , (2.32a)

BMN → BMN +
(
τM

A ΞNB − τNA ΞMB
)
εAB . (2.32b)

Note that (2.32) are finite transformations. This formalism in terms of HMN and BMN has
the advantage that the geometric data is separated from the B-field. This (infinitesimal)
Stueckelberg-type symmetry will also serve as a useful check later in the paper.

In [38], the nonlinear equations of motion that govern the consistent open string back-
ground fields in nonrelativistic string theory are derived by demanding the quantum con-
formal invariance on the string worldsheet. Furthermore, it is shown that these equations
coincide with the ones from varying (2.31). Therefore, (2.31) defines the D-brane action
that describes the low-energy dynamics of open string background fields in nonrelativistic
string theory coupled to a string Newton-Cartan geometry, Kalb-Ramond and dilaton field.

2.3 Coupling to RR potentials

We now couple the nonrelativistic Dp-brane action (2.31) to the RR potentials via a CS
term. We denote a differential q-form RR potential by C(q). The RR potentials arise in
nonrelativistic superstring theory similarly as in relativistic superstring theory [68]. In
addition, the B-field and the gauge field strength Fµν also contribute to the CS term. This
requires that the CS action also includes RR potentials of ranks no greater than p+ 1 for
a Dp-brane. The complete CS term is given by [69, 70]

SCS = µp

∫ ∑
q

C(q) ∧ eF
∣∣∣
p+1

, F = B + F . (2.33)

where µp is the Dp-brane charge and the subscript p + 1 indicates that only the (p + 1)-
forms are kept in the expression. In this paper, we assume that q ≥ 0 for C(q).11 The
factor eF denotes an infinite sum over wedge products of F = B + F . In the B = 0
case, and in a more standard normalization, this factor can be written as eiF/(2π), which is
the Chern character that generates polynomials of Chern classes in the (generically non-
abelian) gauge bundle, with F being the associated curvature. As in relativistic string
theory, the CS term in (2.33) is related to various topological features of the gauge bundle
on the D-brane’s worldvolume.12

The CS action (2.33) is invariant under the NS gauge symmetry (2.25) and (2.26), and
the worldvolume U(1) gauge symmetry (2.27). Additionally, it is also invariant (up to a
boundary term) under the RR gauge transformation,

δζ
∑

q
C(q) = dζ(q−1) + dB ∧ ζ(q−3) . (2.34)

11It is also interesting to consider q = −1, in which case there is a D(−1)-brane that plays the role of a
spacetime instanton.

12In relativistic string theory, such terms are also important for cancelling the anomalies in the Green-
Schwarz mechanism and necessary for having the correct T-duality transformations. We will discuss T-
duality transformations that involve the RR potentials in section 4 for nonrelativistic string theory.
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We assume that ζ(q) = 0 for q < 0. One may also express the CS action (2.33) as an
integral over a (p+ 2)-dimensional worldvolume with a (p+ 1)-dimensional boundary

SCS = µp

∫ ∑
q

R(q) ∧ eF
∣∣∣
p+2

, (2.35)

where the RR field strength

R(q) = dC(q−1) + dB ∧ C(q−3) (2.36)

is invariant under the RR gauge transformation (2.34) and the NS gauge transformation
defined in (2.25) and (2.26). Moreover, the RR potential C(q) is boost invariant, but it
transforms infinitesimally under the ZA symmetry (if imposed) as

δZC
(q) = C(q−2) ∧DσA ∧ τB εAB , (2.37)

and accordingly for the halved ZA symmetry in [18]. Here, D = dY µDµ and τA = dY µ τµ
A.

The finite Stueckelberg symmetry (2.32) can also be extended to act on the RR po-
tentials:

C(q) → C(q) − C(q−2) ∧ τA ∧ ΞB εAB + 1
2 C

(q−4) ∧ τA ∧ ΞB ∧ τC ∧ ΞD εAB εCD . (2.38)

Fixing the Stueckelberg symmetry by setting ΞMA = mM
A, we find that the Galilean DBI

action becomes (2.19) and the CS action becomes

SCS = µp

∫ ∑
q

N (q) ∧ eM+F
∣∣∣
p+1

, (2.39)

where M = B +m(2) as in (2.24) and

N (q) = C(q) − C(q−2) ∧m(2) + 1
2 C

(q−4) ∧m(2) ∧m(2) . (2.40)

The two-form m(2) is defined in components as

m
(2)
MN =

(
τM

AmN
B − τNAmM

B
)
εAB . (2.41)

We have used the identity m(2)∧m(2)∧m(2) = 0 to derive (2.39). Note that N (q) transforms
nontrivially under the string Galilei boosts but trivially under the ZA symmetry.

It is useful to understand how to obtain the Galilean DBI action coupled to the RR
potentials from the zero Regge slope limit of the Galilean DBI action as in section 2.2.
Starting with the relativistic DBI action (2.1), to which we add the following CS action:

ŜCS = µ̂p

∫ ∑
q

Ĉ(q) ∧ eF̂
∣∣∣
p+1

, µ̂p = 1
(2π)p (α̂′)(p+1)/2 , (2.42)

where F̂ = B̂ + F . In addition to the parametrizations of background fields in (2.18), we
also parametrize the relativistic RR potentials Ĉ(q) as13

Ĉ(q) =
(
α̂′

α′

)(q−2)/2(
N (q−2) ∧ `+ α̂′

α′
N (q)

)
. (2.43)

13Note the pattern that a q-form in relativistic string theory receives a rescaling factor
√
α̂′/α′ for the

nonrelativistic string limit to work. However, the two-form ` is not rescaled.
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Here, N (q) = 0 for q < 0 and the components of the two-form ` is defined as the pullback of

`MN = τM
A τN

B εAB . (2.44)

In terms of τA = τµ
A dY µ, we have ` = 1

2 τ
A∧τBεAB. Plugging the parametrizations (2.18)

and (2.43) into (2.42), followed by taking the limit α̂′ → 0, we find that the resulting action
is exactly (2.39) with µp = (2π)−p α′−(p+1)/2.

For later references, it is useful to rescale the relativistic background fields and de-
fine the low-energy limit α̂′ → 0 in an alternative way, such that the Regge slope is not
rescaled. Moreover, it is also helpful to take a generalized form of the parametrizations of
the relativistic background fields such that the Stueckelberg symmetries are made manifest
after the limit is taken. We now describe how such a modified limit is defined. We start in
relativistic string theory with the Dp-brane action including both the DBI and CS terms:

ŜDp = −
∫
dp+1Y e−Φ̂

√
− det

(
Ĝµν + F̂µν

)
+
∫ ∑

q

Ĉ(q) ∧ eF̂
∣∣∣
p+1

. (2.45)

For simplicity, we assume that both the couplings in front of the DBI and CS terms are
unity. We now consider the following ansatz (with α̂′ → 1/c2):

ĜMN = c2 τMN +HMN , F̂ = −c2 `+ F , (2.46a)
Φ̂ = Φ + ln c , Ĉ(q) = c2C(q−2) ∧ `+ C(q) . (2.46b)

We have assumed that C(q) = 0 for q < 0. Plugging (2.46) into (2.45) and then taking the
limit c→∞, we find that the resulting action is

SDp = −
∫
dp+1Y e−Φ

√√√√− det
(

0 τν
τµ Hµν + Fµν

)
+
∫ ∑

q

C(q) ∧ eF
∣∣∣
p+1

, (2.47)

which matches the DBI-like action (2.31) and the CS action (2.33). This c→∞ limit gives
a convenient form of the nonrelativistic string limit for bosonic background fields. As we
will see momentarily in section 2.4, there also exists a natural generalization of this stringy
limit to the so-called p-brane limits.

We also make the following remark. Note that the ansatz (2.46) is a reparametrization
of the relativistic background fields rather than an expansion with respect to a large c. To
understand the origin of this reparametrization, we start with the Polyakov formalism of
relativistic string theory,

Ŝ = − 1
4πα

∫
d2σ ∂XM ∂̄XN

(
ĜMN + B̂MN

)
, (2.48)

where σα =
(
σ0, σ1) are worldsheet coordinates. Here, XM are the worldsheet fields that

map the worldsheet to the target space. We have taken the conformal gauge and defined
the derivatives ∂ = ∂σ1 + i ∂σ0 and ∂̄ = ∂σ1 − i ∂σ0 . Plugging in the ansatz for ĜMN

and B̂MN that we gave in (2.46), and introducing a pair of auxiliary fields λ and λ̄, we
rewrite (2.48) in the following equivalent form [8]:

Ŝ = − 1
4πα

∫
d2σ

{
∂XM ∂̄XN (HMN +BMN ) + λ ∂̄XMτM + λ̄ ∂XNτN + c−2λλ̄

}
.

(2.49)
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Now, c−2 is associated with the functional coupling in front of the marginal operator λλ̄.
Therefore, the c → ∞ limit that leads to nonrelativistic string theory finds a worldsheet
QFT interpretation as tuning the marginal operator λλ̄ to zero.14 On the other hand, it
is also possible to consider a general Taylor series expansion of the background fields with
respect to a large c. For example, one may express ĜMN as

ĜMN = c2 τMN +HMN +
∞∑
n=1

c−2nH
(n)
MN . (2.50)

Even though this may be natural to consider from the perspective of spacetime geometry,15

it appears to be an intricate choice from the worldsheet point of view, where the parameter
c loses the simple worldsheet QFT interpretation as a coupling constant associated with
the marginal operator λλ̄. We will follow the ansatz in (2.46) throughout the paper, which
does not contain any subleading terms if regarded as an expansion with respect to a large
c. This parametrization will be proven to be convenient for our purposes.

2.4 Nonrelativistic limits of strings and p-branes

Before we move on to building up a duality web in nonrelativistic string theory, we first
review different nonrelativistic limits in string theory that have been introduced in [8].
Nonrelativistic string theory arises as a stringy limit of relativistic string theory. Such
a stringy limit of relativistic strings in curved spacetime involves first parametrizing the
background fields using the parameter c as in (2.46), followed by taking the c→∞ limit.
We have seen how such a limit of relativistic D-brane action (2.45) leads to the action (2.47)
that describes the low-energy dynamics of Dp-branes in nonrelativistic string theory [12].
Moreover, the action describing nonrelativistic fundamental strings also arises from the
same stringy limit of relativistic fundamental strings. To elucidate how nonrelativistic
fundamental strings arise, we begin with the Nambu-Goto action for relativistic string
theory

Ŝ = −T
∫
d2σ

(√
− det Ĝαβ + 1

2 ε
αβ B̂αβ

)
. (2.51)

We denote the worldsheet coordinates by σα = (σ0, σ1). Moreover,

Ĝαβ = ∂αX
M ∂βX

N ĜMN , B̂αβ = ∂αX
M ∂βX

N B̂MN (2.52)

are the pullbacks of the background fields from the target space to the string world-
sheet, with the worldsheet fields XM , M = 0, 1, · · · , 9 mapping the worldsheet to the
ten-dimensional target space. These worldsheet fields XM play the role of spacetime coor-
dinates. The parametrizations in (2.46) induce

Ĝαβ = c2 ταβ +Hαβ , B̂αβ = −c2 τα
A τβ

B εAB +Bαβ . (2.53)

14Symmetries that protect the worldsheet QFT from being deformed by quantum corrections which
generate the marginal operator λλ̄ have been studied in detail [18, 26, 29].

15See also [71] for an expansion of relativistic string theory with respect to a large c.
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Here, ταβ and ταA are, respectively, pullbacks of τMN and τMA to the worldsheet manifold.
In the c→∞ limit, we find that (2.51) becomes

S = −T2

∫
d2σ

(√
−τ ταβ Hαβ + εαβ Bαβ

)
, (2.54)

where τ = det ταβ < 0 and ταβ is the inverse of ταβ . Since A = 0, 1, there is an induced
codimension-two foliation structure in spacetime with τM

A the vielbein field in the two-
dimensional longitudinal sector and HMN encoding the geometry on the leaves. This is
the Nambu-Goto formalism of nonrelativistic string theory [12].

The nonrelativistic string limit of the relativistic string Nambu-Goto action (2.51) is
a special case of the class of p-brane limits of a relativistic p-brane considered in [8, 46, 66,
67, 72–76]. Now, more generally, consider the Nambu-Goto action on a (p+1)-dimensional
worldvolume describing a relativistic p-brane coupled to a (p+ 1)-form gauge field Â(p+1),

Ŝp-brane = −
∫
dp+1σ

√
− det Ĝαβ −

∫
Â(p+1) , (2.55)

where we have chosen the convention such that both the p-brane tension and the (p+ 1)-
form charge are unity. The worldvolume coordinates are σα, α = 0, · · · , p. Moreover,

Ĝαβ = ∂αX
I ∂βX

J ĜIJ , Âα0···αp = ∂α0X
I0 · · · ∂αpXIp ÂI0···Ip (2.56)

are pullbacks of the spacetime fields from the target space to the (p+1)-dimensional world-
volume, with the worldvolume fields XI , I = 0, · · · , d playing the role of the spacetime
coordinates. Explicitly, the CS term in (2.55) is∫

Â(p+1) = 1
(p+ 1)!

∫
dp+1σ εα0···αp Âα0···αp =

∫
dp+1σ Â01···p . (2.57)

Analogous to (2.52), we now consider the following ansatz:

Ĝαβ = c2 γαβ + c1−pHαβ , Â
(p+1)
01···p = −cp+1 γ0

u0 · · · γpup εu0···up +A
(p+1)
0···p , (2.58)

where γαβ = γα
u γβ

v ηuv, and u = 0, · · · , p. Plugging (2.58) into (2.55), and taking the
c→∞ limit leads to the non-singular action

Sp-brane = −1
2

∫
dp+1σ

√
−γ γαβ Hαβ −

∫
A(p+1) , (2.59)

where γ = det γαβ and γαβ is the inverse of γαβ . These p-brane limits involve a cancellation
of divergences between the Nambu-Goto and the CS actions. The stringy limit of relativistic
fundamental strings we considered earlier is a special case of the p-brane limit when p = 1.
This is in contrast to the nonrelativistic string limit of Dp-branes discussed in section 2.3,
where the DBI and CS term are non-singular separately.

In section 3, we will see that a membrane limit of M-theory, which is identified with
the p-brane limit in eleven dimensions with p = 2, arises when the S-dual of Type IIA
nonrelativistic superstring theory is considered. This leads to the notion of nonrelativistic
M-theory, which is related to the DLCQ of M-theory. Recall that nonrelativistic string
theory, consisting of fundamental strings together with other extended objects such as Dp-
branes, arises as a stringy limit of relativistic string theory. In contrast, nonrelativistic
M-theory, consisting of M2-branes together with M5-branes as their magnetic duals, arises
as a membrane limit of relativistic M-theory.
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3 S-duals of nonrelativistic D-brane actions

In this section, we construct dual nonrelativistic D-brane actions by performing a duality
transformation of the U(1) gauge field on the D-brane.16 The dual of the U(1) gauge
field is a (p− 2)-form gauge field. The dual nonrelativistic D1- and D3-branes give rise to
nonrelativistic fundamental strings and self-dual nonrelativistic D3-branes, respectively, as
expected from the nonrelativistic string limit of the SL(2,Z) duality of Type IIB superstring
theory. Moreover, dualizing the U(1) guage potential on nonrelativistic D2- and D4-branes
give rise to nonrelativistic analogs of M2- and M5-branes in the strongly coupled regime of
Type IIA nonrelativistic superstring theory. This leads us to the notion of nonrelativistic
M-theory that arises as a nonrelativistic membrane limit of relativistic M-theory.

3.1 Nonrelativistic D1-brane

The first example that we start with is the S-dual of a nonrelativistic D1-brane. The
effective action is obtained by setting p = 1 in (2.47)

SD1 = −
∫
d2Y e−Φ√−M+

∫ (
C(2) + C(0)F

)
. (3.1)

Here,M = detMµν and

Mµν =
(

0 τν
τµ Hµν + Fµν

)
, F = B + F , F = dA . (3.2)

We will show that the S-dual of the nonrelativistic D1-brane action gives rise to a bound
state of nonrelativistic fundamental strings and nonrelativistic D-strings.

3.1.1 Nonrelativistic fundamental strings

To perform an S-duality transformation, we treat F as an independent field and introduce
the generating function

Sgen. = 1
2

∫
d2Y Θ̃µν (Fµν − 2 ∂µAν) , (3.3)

where Θ̃µν is an antisymmetric field playing the role of a Lagrange multiplier. Integrating
out Θ̃ in Sgen. leads to the constraint F = dA, and thus gives back the original D1-brane
action (3.1). To find the S-dual theory, we instead integrate out Aµ, which leads to the
constraint ∂µΘ̃µν = 0. Locally, this constraint is solved by

Θ̃µν = εµν p , (3.4)

where p is constant. After integrating out Aµ, the D1-brane action SD1 + Sgen now takes
the following equivalent form:

Sparent = −
∫
d2Y e−Φ√−M+

∫
T
(
F −A(2)) , (3.5)

16See, e.g., [40] for similar analysis for D-brane actions in relativistic string theory.
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where
T = p+ C(0) , A(2) = pB − C(2)

T
. (3.6)

Instead of integrating out in the path integral the non-dynamical field Fµν , which is now
treated as an independent field, we equivalently integrate out Fµν . Varying SD1 with
respect to Fµν yields the equation of motion,

T = e−Φ
√

τ

M
, τ = det τµν , τµν = τµ

A τν
B ηAB , (3.7)

which indicates that T > 0. This equation is solved by

Fµν = εµν
2

[
1√
−τ

det
(

0 τσ
τρ Hρσ

)
+ e−2 Φ√−τ

T 2

]
. (3.8)

Plugging the solution (3.8) into (3.5), and with a constant axion field C(0),17 we find that
the resulting S-dual action is

Sdual = −T2

∫
d2Y

(√
−τ τµνH̃µν + εµνA(2)

µν

)
, (3.9)

where τµν is the inverse of τµν and

T = p+ C(0) > 0 , H̃µν = Hµν + τµν
2T 2 e

−2Φ, A(2) = pB − C(2)

T
. (3.10)

This dual action takes the form of the Nambu-Goto formalism (2.54) describing fundamen-
tal strings propagating in string Newton-Cartan geometry.

3.1.2 Nonrelativistic string limit of (p, q)-string

To fully appreciate the S-dual action (3.9), it is instructive to investigate how the above
S-duality relation between nonrelativistic D1-branes and fundamental strings arise as a
nonrelativistic string limit in relativistic string theory. We first review the S-duality trans-
formation of a D1-brane in relativistic string theory. Starting with the D1-brane action in
Type IIB relativistic superstring theory,

ŜD1 = −
∫
d2Y e−Φ̂

√
− det

(
Ĝµν + F̂µν

)
+
∫ (

Ĉ(2) + Ĉ(0)F̂
)
. (3.11)

Taking the nonrelativistic string limit of (3.11) as discussed in section 2.3, by first plugging
in the ansatz (2.46) and then setting c → ∞, we recover the nonrelativistic D1-brane
action (3.1). Instead, we now add the generating function (3.3) to (3.11) and perform
an S-duality transformation. This is done by first integrating out the gauge potential Aµ
and then the field strength Fµν , which is treated as an independent field. The dual action
is [39, 40]

Ŝdual = −T̂
∫
d2Y

(√
− det Ĝµν + 1

2 ε
µνÂ(2)

µν

)
, (3.12)

17The S-duality still holds when C(0) is an arbitrary function. Here, we focus on the constant C(0) case
for the clarity of this exposition.
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where
T̂ =

∣∣p+ ĝ
∣∣ =

√(
p+ Ĉ(0))2 + e−2Φ̂ , Â(2) = p B̂ − Ĉ(2)

T̂
. (3.13)

Here, we defined the relativistic axio-dilaton field,

ĝ = Ĉ(0) + i e−Φ̂, (3.14)

and also assumed that Φ̂ is constant. The associated Type IIB supergravity is invariant
under the SL(2, R) transformation of ĝ. In the full string theory, only the discrete subgroup
SL(2, Z) is preserved. The effective tension T̂ in (3.13) takes the form of the (p, 1)-string
tension. In general, a (p, q)-string is a bound state of p fundamental strings and q D-
strings, i.e., q D1-branes. Such a bound state carries both the Kalb-Ramond and two-form
RR charges. The generalized Dirac quantization condition requires that both the charges
are quantized. Measured in the inverse charge carried by the five-brane that arises as a
magnetic dual of strings, both p and q must be integers [77].18 In our case, (3.12) describes
a (p, 1)-string in the dilaton and axion background fields, where p = Θ is required to be
an integer. Here, normalized by the effective tension, B̂ is the Kalb-Ramond field coupled
to p fundamental strings and Ĉ(2) is the RR-potential coupled to the single D-string in
the bound state. Equivalently, the dual action (3.12) also receives an interpretation as the
fundamental (1, 0)-string with an SL(2,Z) transformed background [40].

The parametrizations in (2.46) imply that the ingredients in the dual relativistic (p, 1)-
string action (3.12) now assume the following expressions in terms of c:

T̂ = T +O(c−2) , Ĝµν = c2 τµν +Hµν , (3.15)

and
Â(2) = −c2 `+A(2) + e−2Φ

2T 2 `+O(c−2) , (3.16)

where T and A(2) are defined in (3.6). Also recall that ` is defined in components in (2.44),
with `µν = τµ

A τν
B εAB. Plugging (3.15) into (3.12), and then taking the c→∞ limit, we

find that the resulting action is precisely (3.9). Note that this limit is reminiscent of the
stringy limit discussed in section 2.4, which leads to the fundamental string action (2.54)
in nonrelativistic string theory. Analogous to the (p, 1)-string action (3.12) in relativistic
string theory, the S-dual action (3.9) describes a nonrelativistic (p, 1)-string state in non-
relativistic string theory, with p the number of fundamental nonrelativistic strings in the
bound state.

3.2 Nonrelativistic D2-brane

We now move on to nonrelativistic D2-brane, whose effective action is obtained by setting
p = 2 in (2.47), i.e.,

SD2 = −
∫
d3Y e−Φ√−M+

∫ (
C(3) + C(1) ∧ F

)
, (3.17)

18Moreover, p and q are coprimes such that the bound state cannot be decomposed into a multiple string
configuration, with the number off strings given by the common divisor.
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where

Mµν =
(

0 τν
τµ Hµν + Fµν

)
, F = B + F , F = dA . (3.18)

We have introduced the three-form and one-form RR-potentials. Explicitly, in components,
the CS term can be written as

SCS = 1
3!

∫
d3Y εµνρ

(
C(3)
µνρ + 3C(1)

ρ Fµν
)
. (3.19)

As in relativistic string theory, by dualizing the U(1) gauge potential Aµ in (3.17), we
are probing the strongly coupled regime of IIA nonrelativistic superstring theory, which
corresponds to nonrelativistic M-theory.

3.2.1 Dual nonrelativistic membrane

To dualize the gauge potential Aµ, we first treat Fµν as an independent field and introduce
the generating function in the same way as in (3.3), but now with

Sgen. = 1
2

∫
d3Y Θ̃µν (Fµν − 2 ∂µAν) , (3.20)

where Θ̃µν is an antisymmetric field that imposes the constraint F = dA. Integrating
out Θ̃ in Sgen. gives back the original D2-brane action (3.17). To find the S-dual theory,
we instead integrate out Aµ, which leads to the constraint ∂µΘ̃µν = 0. Locally, on the
three-dimensional worldvolume, this constraint is solved by

Θ̃µν = εµνρ ∂ρΘ . (3.21)

The dual field Θ will play the role of the extra eleventh dimension in nonrelativistic M-
theory. This extra dimension becomes decompactified in the strongly coupled regime and
thus visible in the S-dual theory. Now, the “parent” action SD2 + Sgen. becomes

Sparent = −
∫
d3Y e−Φ√−M+

∫ (
C ∧ F −A(3)

)
, (3.22)

where we defined
A(3) = −C(3) +B ∧ dΘ , C = C(1) + dΘ . (3.23)

We also set the dilaton to zero in the following calculation. The dilaton can easily be
recovered at the end of this calculation by performing rescalings of various background
fields,19

τµ
A → e−Φ/3 τµ

A , Fµν → e−2Φ/3Fµν , (3.24a)
Hµν → e−2Φ/3Hµν , C → e2Φ/3C . (3.24b)

19We chose the above rescalings such that it is easier to facilitate the later comparison with the dimensional
reduction of M-theory. However, a more practical way to recover the Φ dependence is by only rescaling the
longitudinal vielbein, with τµA → e−Φ τµ

A.
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To facilitate the duality transformation, we introduce an auxiliary field u and re-
write (3.22) as

Sparent = −1
2

∫
d3Y e−Φ

(M
u
− u

)
+
∫ (

C ∧ F −A(3)
)
, u < 0 . (3.25)

Varying the parent action (3.25) with respect to F , we find that the resulting equations of
motion constrain u and two components of Fµν . Plugging the solutions for u and the two
constrained components of Fµν back into (3.25), we find that the dual action is

Sdual = −1
2

∫
d3Y
√
−γ γµν Hµν −

∫
A(3) , γµν = τµν + CµCν , (3.26)

where γ = det γµν and γµν is the inverse of γµν . Performing the rescalings (3.24) in the
dual action (3.26), we find the complete dual action in an arbitrary dilaton background,

Sdual = −1
2

∫
d3Y
√
−γ γµν H̃µν −

∫
A(3) , (3.27)

where

γµν = γµ
u γν

v ηuv , γµ
v = ∂µf

I γI
v, γI

v = e−Φ/3
(
τM

A 0
eΦC

(1)
M eΦ

)
, (3.28)

with I = 0, · · · , 10, f10 = Θ, and u = 0, 1, 10. Moreover,

H̃µν = ∂µf
I ∂νf

J H̃IJ , H̃IJ = e−2Φ/3
(
HMN 0

0 0

)
, (3.29a)

A(3)
µνρ = ∂µf

I ∂νf
J ∂ρf

KA
(3)
IJK , A

(3)
MNL = −C(3)

MNL , A
(3)
MN10 = BMN . (3.29b)

The dual action (3.27) defines the Nambu-Goto formalism of nonrelativistic M2-branes
propagating in eleven-dimensional spacetime, with the dual field Θ playing the role of the
eleventh dimension. The dual action (3.27) coincides with (2.59) when p = 2, and therefore
arises as a nonrelativistic membrane limit of relativistic M2-branes. See section 3.2.3 for
further details.

Recall that the ten-dimensional string Newton-Cartan geometry — the appropri-
ate spacetime geometry coupled to nonrelativistic superstrings — is equipped with a
codimension-two foliation structure. Here, we have a two-dimensional longitudinal sec-
tor described by the vielbein field τM

A, with M the ten-dimensional curved index and
A the two-dimensional flat index. In contrast, the nonrelativistic M2-brane described
by (3.27), which arises as an S-dual of the nonrelativistic D2-brane (3.17), is coupled to
an eleven-dimensional spacetime geometry equipped with a codimension-three foliation
structure. Now, there is a three-dimensional longitudinal sector described by the viel-
bein field γI

u, with I the eleven-dimensional curved index and u the three-dimensional
flat index. The quantity H̃IJ encodes the geometry of the eight-dimensional leaves. We
refer to such a geometry with a codimension-three foliation structure as the membrane
Newton-Cartan geometry. The function fI describes how the M2-brane is embedded in
the eleven-dimensional membrane Newton-Cartan geometry.
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3.2.2 Dimensional reductions

Now that we have derived the nonrelativistic M2-brane action (3.27), it is interesting to
consider the dimensional reductions of this action to theories in ten dimensions: (i) the
double dimensional reduction leads to the nonrelativistic fundamental string action (2.54),
which has been studied in [47], and (ii) the direct dimensional reduction of the M2-brane
action (3.27) gives the nonrelativistic D2-brane action (3.17). In appendix A, a transverse
spatial reduction of M2-brane is considered, leading to a different type of nonrelativistic D2-
branes that are coupled to a ten-dimensional membrane Newton-Cartan geometry [47].20

Also see [33] for similar dimensional reductions of eleven-dimensional supergravity.21

We first consider the double dimensional reduction, where the dimension of the brane
and ambient spacetime are reduced by one simultaneously. This procedure will lead us to
the fundamental string action. In practice, we require that Θ = Y 2 and all the background
fields be independent of Y 2. We also compactify Θ over a circle of radius R10. Then, the
quantities in (3.28) and (3.29) become

γµν = e−2Φ/3
(
ταβ + e2ΦC

(1)
α C

(1)
β e2ΦC

(1)
β

e2ΦC
(1)
α e2Φ

)
, (3.30a)

H̃µν = e−2Φ/3
(
Hαβ 0

0 0

)
, A

(3)
αβ 2 = Bαβ , (3.30b)

where α = 0, 1 denotes the worldsheet index after the double dimensional reduction. Plug-
ging (3.30) into the M2-brane action (3.27), we find

Sd.d.r. = −πR10

∫
d2Y

(√
−τ ταβ Hαβ + 1

2 ε
αβ Bαβ

)
, (3.31)

which is the Nambu-Goto formalism (2.54) that describes nonrelativistic strings propagat-
ing in ten-dimensional string Newton-Cartan geometry and B-field background.

Next, we consider a direct dimensional reduction of the nonrelativistic M2-brane ac-
tion (3.27) by requiring that the M2-brane be localized in Θ. We continue to compactify
the eleventh-dimension Θ, which we take to be an isometry direction, over a circle of radius
R10. The abelian isometry is given by δεΘ = ε. The shape of the M2-brane can vary in the
Θ-direction, and this fluctuation is captured by a Nambu-Goldstone mode. To take into
account this excitation, instead of directly setting ∂µΘ = 0, we need to gauge the isometry
by introducing an auxiliary gauge field vµ that transforms as δεvµ = −∂µε. The gauged
version of (3.27) is

Sgauged = −1
2

∫
d3Y

√
−γ′ γ′µν H̃µν −

∫ (
A′(3) + v ∧ F

)
, (3.32)

where

γ′µν = e−2Φ/3
[
τµν + e2Φ

(
C(1)
µ +DµΘ

) (
C(1)
ν +DνΘ

)]
, (3.33a)

A′(3) = −C(3) +B ∧DΘ , DµΘ = ∂µΘ + vµ . (3.33b)
20Such a geometry is referred to as a D2 Newton-Cartan geometry in [33].
21The parametrizations of relativistic background fields in terms of c in [33] are different from the ones

given in this paper. See, e.g., (2.46b) and (A.13) in this paper and (4.10) and (4.23) in [33] for comparisons.
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Moreover, locally, F = dA is an exact two-form. The one-form field A will gain the
interpretation as a gauge potential on the D2-brane after the dimensional reduction. The
boundary term

∫
v ∧ F is required such that, upon integrating out A, the auxiliary field

v is pure gauge. Instead, integrating out v in the path integral will give rise to the direct
dimension reduction of the M2-brane action. This procedure is essentially the inverse
of the duality transformation on the nonrelativistic D2-brane action that we detailed in
section 3.2.1. In terms of the one-form V = C(1) +DΘ, (3.32) can be rewritten as

Sgauged = −1
2

∫
d3Y

√
−γ′ γ′µν Hµν +

∫ (
C(3) + C(1) ∧ F − V ∧ F

)
, (3.34)

where
γ′µν = τµν + Vµ Vν . (3.35)

We have set Φ = 0; the dependence on Φ can easily be recovered by rescaling various
background fields as in (3.24) at the end of the calculation. Moreover, we neglect a global
contribution

∫
F∧dΘ. We dualize Θ by integrating out the auxiliary field Vµ. For simplicity,

we perform the duality transfomation in the special case with τµν = diag(τ00 , τ11 , τ22) and
Hµν = diag(H00, H11, H22), and covariantize the action at the end to recover the complete
dual theory. Varying (3.34) with respect to Vµ gives

F01 = 1
2 τ00 τ11

(
τ2

00 τ
2
11 − V 2

0 τ
2
11 + V 2

1 τ
2
00

V 2
2

H22 − τ2
00H11 + τ2

11H00

)
, (3.36a)

F02 = V1 τ00
V2 τ11

H22 , F12 = V0 τ11
V2 τ00

H22 , (3.36b)

which are solved by

V0 = τ2
00√
−M

F12 , V1 = τ2
11√
−M

F02 , V2 = τ00 τ11H22√
−M

, (3.37)

withM = detMµν and

Mµν =


0 τ0

0 τ1
1 0

τ0
0 H00 F01 F02

−τ1
1 −F01 H11 F12

0 −F02 −F12 H22

 , (3.38)

Plugging (3.37) into (3.34), and covariantizing (3.38) to be

Mµν =
(

0 τν
τ̄µ Hµν + Fµν

)
, (3.39)

we find that the dualized action matches the nonrelativistic D2-brane action (3.17).

3.2.3 Nonrelativistic membrane limit of M2-brane

Finally, we discuss how the different theories discussed in this section that are related by
dualizing the worldvolume U(1) gauge field and dimensional reductions arise as distinct
limits of relativistic string theory.
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We first recapitulate that the nonrelativistic D2-brane action (3.17) arises as the non-
relativistic string limit of the relativistic D2-brane action,

ŜD2 = −
∫
d3Y e−Φ̂

√
− det

(
Ĝµν + F̂µν

)
+
∫ (

Ĉ(3) + Ĉ(1) ∧ F̂
)
. (3.40)

Plugging in the ansatz (2.46) and then taking the c→∞ limit, we recover the nonrelativis-
tic D2-brane action (3.17). Instead, we now add the generating function (3.20) to (3.40),
and perform a duality transformation by integrating out Aµ and Fµν . This leads to the
dual M2-brane action [40],

Ŝdual = −
∫
d3Y

√
− det Gµν −

∫
A(3) , (3.41)

where

Gµν = e−2Φ̂/3
[
Ĝµν + e2Φ̂(Ĉ(1)

µ + ∂µΘ
)(
Ĉ(1)
ν + ∂νΘ

)]
, (3.42a)

A(3)
µνρ = −Ĉ(3)

µνρ + ∂µΘ B̂νρ + ∂νΘ B̂ρµ + ∂ρΘ B̂µν . (3.42b)

The dual field Θ plays the role of the eleventh dimension in M-theory. Plugging (2.46)
into (3.42), we find (see, e.g., [33])

Gµν = c4/3 γµν + c−2/3 H̃µν , A(3)
µνρ = −c2 γµ

u γν
v γρ

w εuvw +A(3)
µνρ , (3.43)

where γµu, H̃µν , and A(3) are defined in (3.28) and (3.29). After redefining c → c3/2, the
parametrizations in (3.43) coincide with the ones in (2.58) with p = 2. Taking the limit
c→∞ of (3.41) reproduces the nonrelativistic M2-brane action (3.27).

We now consider the double dimensional reduction of the relativistic M2-brane ac-
tion (3.41), which requires that Θ = Y 2 and all the background fields be independent of
Y 2. Then, (3.42) becomes

Gµν = e−2Φ̂/3
(
Ĝαβ + e2Φ̂ Ĉ

(1)
α Ĉ

(1)
β e2Φ̂ Ĉ

(1)
β

e2Φ̂ Ĉ
(1)
α e2Φ̂

)
, A(3)

αβγ = −Ĉ(3)
αβγ , A(3)

αβ 2 = B̂αβ .

(3.44)
Plugging the ansatz (3.44) for double dimensional reduction into the M2-brane action (3.41),
we find that the reduced action is

Ŝd.d.r. = −2πR10

∫
d2Y

(√
− det Ĝαβ + 1

2 ε
αβ B̂αβ

)
. (3.45)

Here, R10 is the radius of the circle along which the eleventh dimension is compactified.
The parametrizations of ĜMN and B̂MN are given in (2.46), i.e.,

Ĝαβ = c2 ταβ +Hαβ , B̂αβ = −c2 τα
A τβ

B εAB +Bαβ . (3.46)

The c → ∞ limit of (3.45) is therefore the nonrelativistic string limit of the fundamental
relativistic string as discussed in section 2.4. The resulting action is precisely (3.31) that
describes fundamental nonrelativistic strings in string Newton-Cartan geometry.
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The direct dimensional reduction of the relativistic M2-brane action is done by gauging
the isometry Θ direction and performing a duality transformation. This is essentially the
inverse of the duality transformation of the relativistic D2-brane action (3.40). As shown
in [39, 40], dualizing Θ gives back the relativistic D2-brane action, whose nonrelativistic
string limit gives rise to the nonrelativistic D2-brane action (3.17), as we have discussed in
section 2.3.

3.3 Nonrelativistic D3-brane

The nonrelativistic D3-brane is described by the action

SD3 = −
∫
d4Y e−Φ√−M+

∫ (
C(4) + C(2) ∧ F + 1

2 C
(0)F ∧ F

)
, (3.47)

where F = B + F , and

Mµν =
(

0 τν
τ̄µ Hµν + Fµν

)
. (3.48)

More explicitly,

SD3 = −
∫
d4Y

{
e−Φ√−M− 1

4! ε
µνρσ

(
C(4)
µνρσ + 6C(2)

µν Fρσ + 3C(0)Fµν Fρσ
)}

. (3.49)

During the following calculation, it is convenient to set Φ = 0 and recover the dependence
on Φ at the end of the calculation by taking the rescaling

τµ
A → e−Φ τµ

A. (3.50)

The S-duality transformation of the nonrelativistic D3-brane action proceeds differently
depending on whether C(0) equals zero. We will start with analyzing the S-duality trans-
formation in the more general case when C(0) 6= 0 and then discuss the zero C(0) limit next.

3.3.1 Self-duality transformation

To perform an S-duality transformation in the presence of a nonzero C(0), we treat F as
an independent field and introduce the generating function,

Sgen. = 1
2

∫
d4Y Θ̃µν (Fµν − 2 ∂µAν) , (3.51)

where Θ̃µν is antisymmetric. Integrating out Θ̃ in Sgen. leads to the constraint F = dA, and
thus gives back the original D3-brane action (3.47). To find the S-dual theory, we instead
integrate out Aµ, which leads to the constraint ∂µΘ̃µν = 0. Locally, on the four-dimensional
worldvolume, this constraint is solved by

Θ̃µν = 1
2 ε

µνρσ F̃ρσ , F̃ = dÃ . (3.52)

We then write the “parent” action SD3 + Sgen. equivalently as

Sparent = −1
2

∫
d4Y

(M
u
− u

)
+
∫ (

Γ(4) + 1
2 C

(0) V ∧ V
)
, (3.53)

– 25 –



J
H
E
P
0
4
(
2
0
2
2
)
1
6
1

where u < 0 and
Mµν =

(
0 τν
τ̄µ Hµν − Γµν + Vµν

)
, (3.54)

and

Γ(4) = C(4) − F̃ ∧B − 1
2 C

(0) Γ ∧ Γ , (3.55a)

V = F + Γ , Γ = F̃ + C(2)

C(0) . (3.55b)

We already set Φ = 0, bearing in mind that the dependence on Φ will be recovered at the
end of the calculation. We make the special choice τµA = δAµ and Hµν = diag

(
0, 0, 1, 1

)
to facilitate the calculation, and will later covariantize the dual action with respect to the
string Newton-Cartan geometry.22 This choice of background fields leads to a D-brane
extending in the longitudinal spatial direction, and therefore the NCOS sector. However,
after the covariantization at the end, the NROS sector with a Dirichlet boundary condition
in the longitudinal spatial direction will also be captured. Varying the nonrelativistic
D3-brane action (3.53) with respect to Vµ, we find the following equations of motion:

uC(0) V01 = εa
′b′ F0a′ F1b′ − 2FabF23 , uC(0) V23 = −

(
1 + F2

23

)
, (3.56a)

uC(0) Vaa′ = εa
b εa′

b′Fbb′ −Faa′ F23 . (3.56b)

We split µ = (a, a′), with a = 0, 1 and a′ = 2, 3. Recall that, from (3.55), we have
F = V − Γ. The Levi-Civita symbols εab and εa′b′ are defined by ε01 = −ε10 = 1 and
ε23 = −ε32 = 1, respectively. These equations are solved by

V01 = F02F13 −F03F12 + 2 Γ01F23
uC(0) + 2F23

, V23 = −1
2
(
uC(0) − 2 Γ23 + P

)
, (3.57a)

Vaa′ = εa
b εa′

b′ Γbb′ + εb
′c′ Γab′ Γa′c′

1 + Γ2
23

V23 , (3.57b)

where
P =

√(
uC(0) − 2 Γ23

)2 − 4
(
1 + Γ2

23
)
. (3.58)

Plugging (3.57) into the nonrelativistic D3-brane action (3.53) yields

Sparent = 1
4

∫
d4Y

(
2u− uC(0) − 2 Γ23 + P(u)

1 + Γ2
23

C(0)M′
)

+
∫

Γ(4), (3.59)

whereM′ ≡ detM′µν , with

M′µν =


0 1 1 0
1 0 −Γ01 −Γ0b′

−1 Γ01 0 −Γ1b′

0 Γ0a′ Γ1b′ 1a′b′ − Γa′b′

 . (3.60)

22Note that we also suppressed various Nambu-Goldstone modes that perturb the shape of the D-brane,
but they will be recovered once we covariantize the resulting dual action.
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Varying (3.59) with respect to u gives rise to a quadratic equation, which is solved by

u = −
1 +

[
Γ23 − C(0)(−M̃ )1/2]2
(
C(0))2 (−M̃ )1/2 < 0 , (3.61)

where M̃ ≡ detM̃µν , with

M̃µν =


0 1 1 0
1 0 −Γ01 + 1

2

(
C(0)

)−2
−Γ0b′

−1 Γ01 − 1
2

(
C(0)

)−2
0 −Γ1b′

0 Γ0a′ Γ1b′ 1a′b′ − Γa′b′

 . (3.62)

Plugging (3.61) back into (3.59) gives the S-dual action,

Sdual = −
∫
d4Y

(√
−M̃ − Γ23

C(0)

)
+
∫

Γ(4) . (3.63)

Covariantize this action using the string Newton-Cartan data τµA and Hµν , and then take
into account (3.50) to recover the dependence on the dilaton, we find the S-dual action,

Sdual = −
∫
d4Y e−Φ

√
−M̃+

∫ (
Γ(4) + 2C(0) Γ ∧ L

)
, (3.64)

where M̃ ≡ detM̃µν and

M̃µν =
(

0 τν
τ̄µ Hµν − Γµν + Lµν

)
, Lµν = `µν

2
(
eΦC(0))2 . (3.65)

This dual action can be brought into the form of a nonrelativistic D3-brane,

Sdual =
∫
d4Y LDBI +

∫
Ω(4) , (3.66)

where

LDBI = −e−Φ

√√√√− det
(

0 τν
τ̄µ Hµν + F̃µν

)
, Ω(4) = C̃(4) + C̃(2) ∧ F̃ + 1

2 C̃
(0) F̃ ∧ F̃ ,

and

C̃(0) = −C(0) , F̃ = − F̃ + C(2)

C(0) + L , (3.67a)

C̃(2) = C(0)(B − L) , C̃(4) = C(4) +
(
C(2) − C(0) L

)
∧B . (3.67b)

Note that we used the identity ` ∧ ` = 0.
It is useful to consider a fixed background configuration to gain some physical intuition

of the S-dual action (3.66). In flat background with τµ
A = δµ

A, we are in the regime of
NCOS, with the D-brane extending in the spacetime longitudinal directions. For simplicity,
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we also set the Kalb-Ramond and all the RR potentials C(2) and C(4) to zero and consider
a constant dilaton field Φ = Φ0. Moreover, we take C(0) to be constant. Then, the Yang-
Mills (YM) couplings associated with the quadratic actions of F and its S-dual F̃ are,
respectively,

gYM = eΦ0/2 , g̃YM = eΦ0/2C(0) . (3.68)

The usual electric-magnetic duality (see later in (3.83) for the relativistic case) corresponds
to the choice C(0) = 0. However, the dual coupling in (3.68) vanishes in the zero axion
limit C(0) → 0. Before concluding that this axion limit is singular, we first note that there
is a loophole in (3.68) when we write the dual Yang-Mills coupling g̃YM: in (3.67a), there
is an additional term L in F̃ that we have defined in (3.65), which acts as part of the
Kalb-Ramond field. In the flat spacetime limit, we have

Lµν = 1
2
(
eΦC(0))2

(
εAB 0

0 0

)
. (3.69)

Using the Seiberg-Witten map (2.17), we find that the open string and noncommutative
Yang-Mills (NCYM) coupling are, respectively,

G̃o = 1
C(0) , g̃NCYM = g̃1/2

s C(0) =
(
C(0))1/2 . (3.70)

Unfortunately, both the open string and NCYM coupling are still singular in the zero
axion limit, even after taking into account the Seiberg-Witten map. Nevertheless, as we
will momentarily, the zero axion limit is in fact more subtle and leads to a well-defined
theory with an effective gauge coupling (3.96) that depends on the transverse component
of C(2).

3.3.2 A zero axion limit

We now investigate the limit where the axion field C(0) is set to zero in the dual ac-
tion (3.66). This turns out to be a highly non-trivial limit to take in practice. To derive
the resulting action, we define ω ≡ 1/C(0) and expand (3.66) with respect to a large ω. The
DBI and CS parts of the action respectively take the following expansions with respect to
a large ω:

LDBI = ω2

2 e2Φ tr
(˜̀C)− ω

4 tr
(
C̃ C
)

+
e−2ΦG+ tr

(
C̃ τ C̃H

)
− 1

16 e
2Φ[tr(C̃ C)]2

tr
(˜̀C) +O(ω−1) ,

Ω(4) = ω2

e2Φ C ∧ `−
ω

2 C ∧ C + C(4) − F̃ ∧B , (3.71)

where we chose tr
(˜̀C) < 0 and defined

˜̀µν = 1
2 ε

µνρσ `ρσ , C = F̃ + C(2) , C̃µν = 1
2 ε

µνρσ Cρσ , (3.72)

and, with Hµν being the inverse of Hµν ,

G = det
(
Hµν

)
det
(
τρ
AHρσ τσ

B) . (3.73)
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Note that G is non-singular even if Hµν is degenerate [15]. Also note that,

tr
(˜̀C) = ˜̀µν Cνµ , tr

(
C̃ C
)

= C̃µν Cνµ , tr
(
C̃ τ C̃H

)
= C̃µρ τρσ C̃σν Hνµ . (3.74)

In the limit ω →∞, the dual action (3.66) gives rise to a finite action,

S′dual =
∫
d4Y

e−2ΦG+ tr
(
C̃ τ C̃H

)
− 1

16 e
2Φ[tr(C̃ C)]2

tr
(˜̀C) +

∫ (
C(4) − F̃ ∧B

)
. (3.75)

This is the electric-magnetic dual of the nonrelativistic D3-brane action (3.47) with C(0) =
0. Since we expanded with respect to a small C(0) to obtain (3.75), and there is a ra-
tio F̃ /C(0) appearing in the action (3.66) that we started with, the C(0) → 0 limit and
truncating the action at the quadratic order in F̃ do not necessarily commute.23 For this
reason, the C(0) → 0 limit of the dual couplings in (3.68) and (3.70) is not trustworthy. In
section 3.3.3, we will discuss the physical meaning of this action and define the effective
couplings for (3.75), at least for a particular class of D-brane configurations.

The same dual action (3.75) can be reproduced by performing an S-duality transfor-
mation on the D3-brane action (3.47) with C(0) = 0. Now, the nonrelativistic D3-brane
action is

SD3 = −
∫
d4Y e−Φ√−M+

∫ (
C(4) + C(2) ∧ F

)
, Mµν =

(
0 τν
τ̄µ Hµν + Fµν

)
.

(3.76)
Introducing the generating function (3.51) and then integrating out the gauge potential Aµ
gives the “parent” action

Sparent = −1
2

∫
d4Y e−Φ

(M
u
− u

)
+
∫ (

C(4) − F̃ ∧B + C ∧ F
)
, (3.77)

with u < 0. In the choice of background fields with τµ
A = δAµ and Hµν = diag

(
0, 0, 1, 1

)
,

integrating out the non-dynamical field F in (3.77) leads to the equivalent action,

Sparent =
∫
d4Y

(
u

2 eΦ −
CAi CAi + 1

2 C̃
µν Cµν

√
−1− u eΦ C23

2 C23

)
+
∫ (

C(4) − F̃ ∧B
)
.

(3.78)
The presence of

√
−1− u eΦ C23 implicitly requires that C23 > −e−Φ/u > 0, which is

consistent with our earlier choice tr
(˜̀C) = −C23 < 0. The equation of motion from varying

the nondynamical field u in (3.78) is

C03 C12 − C02 C13 + C01 C23 = −e−2Φ√−1− u C23 < 0 . (3.79)

Finally, integrating out u by plugging (3.79) into (3.78) gives the dual action, which
matches (3.75) after covariantizing with respect to the background string Newton-Cartan
geometry.

23In contrast, the c→∞ and C(0) → 0 limits commute, because there is no truncation involved.
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3.3.3 Nonrelativistic string limit of dual D3-brane

We now examine how the self-dual of the nonrelativistic D3-brane action arises from the
nonrelativistic string limit. Starting with the relativistic D3-brane action

ŜD3 = −
∫
d4Y e−Φ̂

√
− det

(
Ĝµν + F̂µν

)
+
∫ (

Ĉ(4)+ Ĉ(2)∧ F̂ + 1
2 Ĉ

(0) F̂ ∧ F̂
)
, (3.80)

as we already learned from section 2.3, under the parametrization (2.46), the c→∞ limit
of (3.80) leads to the nonrelativistic D3-brane worldvolume action (3.47). The S-dual of
the relativistic D3-brane action (3.80) is [39, 40]

Ŝdual = −
∫
d4Y e−Φ̂

√√√√− det
(
Ĝµν −

Ĉµν
|ĝ|

)
+
∫ (

Ĉ(4)− F̃ ∧ B̂ − Ĉ(0)

2 |ĝ|2 Ĉ ∧ Ĉ
)
, (3.81)

where ĝ = Ĉ(0) + i e−Φ̂ as in (3.14) and Ĉ = F̃ + Ĉ(2), with F̃ the S-dual field strengh of
F . In flat spacetime with zero Kalb-Ramond and RR background fields, for the quadratic
terms in F and F̃ , the YM coupling under S-duality transforms as

ĝYM = eΦ̂0/2 −→ eΦ̂0/2 |ĝ| = eΦ̂0/2
√(

Ĉ(0))2 + e−2Φ̂0 . (3.82)

We have taken the dilaton field to be constant here. In the zero axion limit, we have the
usual electric-magnetic duality with

ĝYM = eΦ̂0/2 −→ e−Φ̂0/2 . (3.83)

We now consider the nonrelativistic string limit of the D3-brane action (3.81), which
can be rewritten as

Ŝdual = −
∫
d4Y e−Φ̂

√
− det

(
Ĝµν + K̂µν

)
+
∫ (

Â(4) +Â(2) ∧ K̂ + 1
2 Â

(0) K̂ ∧ K̂
)
, (3.84)

where

K̂ = − Ĉ
|ĝ|

, Â(0) = C̃(0) , Â(2) = |ĝ| B̂ , Â(4) = Ĉ(4) + Ĉ(2) ∧ B̂ . (3.85)

Plugging in the ansatz from (2.46) and expanding with respect to large c, we find, in terms
of the prescriptions given in (3.67),

Ĝµν = c2 τµν +Hµν , Â(2) = c2 C̃(0) `+ C̃(2) + N
c2 +O(c−4) , (3.86a)

K̂ = −c2 `+ F̃ + K
c2 +O(c−4) , Â(4) = c2 C̃(2) ∧ `+ C̃(4) + C̃(2) ∧ L . (3.86b)

and Â(0) = C̃(0). Here,

K = − 2 F̃ + L(
2 eΦ C̃(0))2 , N = 2 C̃(2) − 3 C̃(0) L(

2 eΦ C̃(0))2 , L = `

2
(
eΦ C̃(0))2 . (3.87)
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In the c → ∞ limit, we find that (3.84) gives rise to (3.66). Moreover, applying the same
limit to the Yang-Mills coupling (3.82), the expression in (3.68) is recovered.

It is also interesting to understand how the dual nonrelativistic D3-brane action (3.75)
with a zero axion arises directly as a nonrelativistic string limit of the dual relativistic
D3-brane action (3.81) with Ĉ(0) = 0, i.e.,

Ŝdual =
∫
d4Y L̂DBI +

∫
Ω(4) , (3.88)

where

L̂DBI = −e−Φ̂

√
− det

(
Ĝµν − eΦ̂ Ĉµν

)
, Ω̂(4) = Ĉ(4)− F̃ ∧ B̂ . (3.89)

Plug the ansatz (2.46) with Ĉ(0) = 0 into the dual action (3.88) and then expand with
respect to a large c gives

LDBI = 1
2 c

2 tr
(˜̀C)+

e−2ΦG+ tr
(
C̃ τ C̃H

)
− 1

16 e
2Φ[tr(C̃ C)]2

tr
(˜̀C) +O(c−2) , (3.90a)

Ω(4) = c2 C ∧ `+ C(4) − F̃ ∧B . (3.90b)

We have chosen the tr
(˜̀C) < 0 branch. Plugging (3.90) back into (3.88) and taking the

c→∞ limit indeed recovers (3.75). However, since the limit C(0) → 0 does not necessarily
commute with truncating at the quadratic order in the dual field strength F̃ , the effective
gauge coupling cannot be read directly by taking limits of (3.82) anymore.

To unravel the physical meaning of the novel dual action (3.75) with a zero axion, we fo-
cus on the specific background field configuration with τµA = δAµ and Hµν = diag

(
0, 0, 1, 1).

We also set B = C(0) = C(4) = 0. As we have discussed around (2.13), this choice of back-
ground fields in the original nonrelativistic D3-brane action (3.47) describes the physics
in the NCOS regime, with the D3-brane extending in the longitudinal spatial direction.
In [43], it is shown that the S-dual of NCOS on a D3-brane is spatially-noncommutative
N = 4 supersymmetric Yang-Mills. This limit is indeed captured by the nonrelativis-
tic string limit c → ∞ of the relativistic D3-brane action (3.88), which in our choice of
background fields is

Ŝdual = −
∫
d4Y

[
e−Φ̂

√
− det

(
Ĝµν + F̂µν

)
+ c2 (F̃23 + C

(2)
23
)]
, (3.91)

where F̂µν = −c eΦ(F̃µν +C
(2)
µν
)
. Since F̃23 = ∂2Ã3 − ∂3Ã2 is an exact form, the boundary

term c2 F̃23 can be omitted. We also take Φ = Φ0 to be a constant and gs = eΦ0 as the
closed string coupling. We further take C(2)

23 = −2πb/gs with a constant b and all the other
components of C(2) to be zero. Then, the term c2C

(2)
23 in (3.91) is a constant, and thus

also a boundary term that can be omitted. Finally, define α̂′ = 1/c, we rewrite (3.91) as

Ŝdual = − 1
ĝs α̂′2

∫
d4Y

√
− det

[
Gµν + 2πα̂′

(
Bµν + Fµν

)]
, (3.92)
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where Fµν = −gs F̃µν/(2π) and

Gµν =
(

ĜAB 0
0 Ĝij

)
, Bµν =

(
0 0
0 Bij

)
, (3.93)

and
GAB = ηAB , Gij = α̂′2 δij , Bij = −εij b , ĝs = α̂′ gs . (3.94)

We performed the above redefinitions for the ease of comparison with [43]. Now, the α̂′ → 0
limit reproduces the NCYM limit in [43] up to a rescaling factor of Ĝij . It is important that
we kept a constant b in the action (3.92): applying the NCYM limit to the Seiberg-Witten
map (2.16), we find the following α̂′ → 0 limit of the open string background fields,

Ĝµν =
( 1

G + 2πα̂′B G
1

G − 2πα̂′B

)µν
−→ Gµν =

(
ηAB 0

0 δij/(2πb)2

)
,

(3.95a)

Θ̂µν = −
(
2πα̂′

)2 ( 1
G + 2πα̂′B B

1
G − 2πα̂′B

)µν
−→ Θµν =

(
0 0
0 εij/b

)
, (3.95b)

G2
o = ĝs

√
det (G + 2πα̂′B)

det G
−→ Ĝ2

o = 2πgs b . (3.95c)

Therefore, as expected, the action (3.92) describes NCYM with a spatial noncommutativity
[Y 2, Y 3] ∝ 1/b. This theory has a well-defined effective NCYM coupling,

gNCYM = Go =
√

2πgs b , (3.96)

as long as b 6= 0. In this setting, the effective action (3.75) of the worldvolume U(1) gauge
potential Ãµ can be expanded around the closed string background field configuration (3.93)
with respect to a small field strength F̃ = dÃ. In this way, the term tr

(˜̀C) =
(
2πb/gs

)
−F̃23

in the denominator of (3.75) does not present any singular behavior in the regime where b
is nonzero and |F̃23| � |b|.

The above analysis extends to the case where the D3-brane is localized in a longitu-
dinal direction by using the T-dual relation between NCOS and NROS (in the DLCQ),
which suggests that one has to introduce a nontrivial background geometry in the NROS
for the associated effective gauge theory from expanding (3.75) to be well defined [50].
Additionally, one can determine how the Seiberg-Witten map transforms under T-duality
as in [63].

3.4 Nonrelativistic D4-brane

So far, we have dualized nonrelativistic D1-, D2- and D3-brane actions with respect to the
worldvolume U(1) gauge field. We also showed that the dual actions match the nonrela-
tivistic string limits of the associated extended objects in relativistic string theory. Now,
we apply ansatz (2.46), which is well-tested by now, to the relativistic D4-brane action and
its dual. We will show that the dual of a nonrelativistic D4-brane gives rise to a double
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dimensional reduction of a nonrelativistic M5-brane, which arises as the membrane limit
of a relativistic M5-brane. At the end of this section, we will construct the appropriate
membrane limit by generalizing section 3.2.3 to include higher form potentials. We will
argue that such a membrane limit of the covariant PST formalism of relativistic M5-branes
reproduces the desired dual D4-brane after double dimensional reduction. Throughout this
section, we will be content with showing that the stringy and membrane limits lead to finite
results. However, we will not write down any explicit expressions of the D4- and M5-brane
actions in nonrelativistic string/M-theory. These actions appear to be rather complicated.
It deserves future studies to reveal the detailed structure of a covariant formalism of non-
relativistic M5-branes.

3.4.1 Dual D4-brane in relativistic string theory

We start with the relativistic D4-brane action

ŜD4 = −
∫
d5Y e−Φ̂

√
− det

(
Ĝµν + F̂µν

)
+
∫ (

Ĉ(5) + Ĉ(3) ∧ F̂ + 1
2 Ĉ

(1) ∧ F̂ ∧ F̂
)
.

(3.97)
The duality transformation is implemented by adding in the following generating function:

Sgen. = 1
2

∫
d5Y Θ̃µν (Fµν − 2 ∂µAν) . (3.98)

Integrating out Aµ constrains the dual field Θ̃ to be

Θ̃µν = 1
3! ε

µνρσλ Θρσλ , Θ = dA , (3.99)

where A is a two-form potential. The “parent” action ŜD4 + Sgen. becomes

Ŝparent = ŜDBI +
∫ (

Ĉ(5) −Θ ∧ B̂ + Ĥ ∧ F̂ + 1
2 Ĉ

(1) ∧ F̂ ∧ F̂
)
, (3.100)

where
Ĥ = Θ + Ĉ(3) . (3.101)

Integrating out F̂ in (3.100) leads to the dual action [39, 40]

Ŝdual = −
∫
d5Y e−Φ̂

√
−Ĝ

√
1 + y1 + 1

2 y
2
1 − y2

− 1
8

∫
d5Y e2Φ̂ Ĝ G̃−1 ελµνρσ Ĉ

(1)
λ H̃

µν H̃ρσ +
∫ (

Ĉ(5) −Θ ∧ B̂
)
,

(3.102)

where

y1 = e2Φ̂ tr
(
G̃ H̃ G̃ H̃

)
2
(
−G̃

) , y2 = e4Φ̂ tr
(
G̃ H̃ G̃ H̃ G̃ H̃ G̃ H̃

)
4
(
−G̃

)2 , (3.103)

and
G̃µν = Ĝµν + e2 Φ̂ Ĉ(1)

µ Ĉ(1)
ν , H̃µν = 1

3! ε
µνρσλ Ĥρσλ . (3.104)
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We have defined Ĝ = det Ĝµν and G̃ = det G̃µν , which are related to each other by

G̃ =
(
1 + e2Φ̂ Ĝµν Ĉ(1)

µ Ĉ(1)
ν

)
Ĝ . (3.105)

The indices are lowered (and raised) by the metric Ĝµν (and its inverse).
The dual action (3.102) arises as a double dimensional reduction of the M5-brane

action [78]. To understand how this works, we first present the covariant Pasti-Sorokin-
Tonin (PST) formalism [79–81] of the M5-brane action in eleven-dimensional spacetime
with a six-dimensional worldvolume,

Ŝdual = −
∫
d6Y

√
− det

(
Gµ̄ν̄ + i H̃µ̄ν̄

)
+ 1

4

∫
d6Y
√
−G H̃µ̄ν̄ Hµ̄ν̄ρ̄ n

ρ̄ + 1
2

∫ (
A(6) −Θ ∧ A(3)

)
.

(3.106)

Here, we have introduced the six-dimensional index µ̄ = (µ , 5), with µ = 0, 1, · · · , 4,
together with the metric Gµ̄ν̄ as well as the three-form potential A(3). The µ̄ index is
lowered (and raised) by Gµ̄ν̄ (and its inverse). We also defined G = det Gµ̄ν̄ and

H̃µ̄ν̄ = 1
3!
εµ̄ν̄ρ̄σ̄λ̄κ̄ Hρ̄σ̄λ̄ nκ̄√

−G
, Hµ̄ν̄ρ̄ = Θµ̄ν̄ρ̄ − A(3)

µ̄ν̄ρ̄ , nµ̄ = ∂µ̄a√
∂µ̄a ∂µ̄a

. (3.107)

The scalar field a is introduced to ensure the covariance of the six-dimensional worldvolume.
Note that a is purely auxiliary and imposes the self-dual condition on the three-form field
strength Θ.

We now consider the double dimensional reduction of the PST action by wrapping
the M5-brane around a compactified spatial circle. This amounts to take the tenth spatial
coordinate to be X10 = Y 5 and fixing the auxiliary field a = Y 5. The reduction map
include the ones for the metric GMN and three-form A(3) as in (3.44) in M-theory, which
we transcribe below:

Gµ̄ν̄ = e−
2
3 Φ̂
(
Ĝµν + e2Φ̂ Ĉ

(1)
µ Ĉ

(1)
ν e2Φ̂ Ĉ

(1)
ν

e2Φ̂ Ĉ
(1)
µ e2Φ̂

)
, A(3)

µνρ = −C(3)
µνρ , A(3)

µν5 = B̂µν . (3.108)

Moreover,

Θ̂µν5 = H̃µ5 = nµ = 0 , H̃µν = 1
3!
εµνρσλHρσλ√
−G Ĝ55

, n5 = 1√
Ĝ55

. (3.109)

Consequently, Hµνρ = Ĥµνρ, Hµν5 = −B̂µν , and

Gµ̄ν̄ = e2Φ̂/3
(

Ĝµν −Ĝνσ Ĉ(1)
σ

−Ĝµρ Ĉ(1)
ρ e−2Φ̂ + Ĉ

(1)
ρ Ĝρσ Ĉ

(1)
σ

)
, G = e−2Φ̂ Ĝ . (3.110)

Finally, we take the reduction prescription for the six-form potential A(5) as

A(6)
µνρσλ5 = 2 Ĉ(5)

µνρσλ + 10 Ĉ(3)
[µνρ B̂σλ] −→ 2 Ĉ(5) + Ĉ(3) ∧ B̂ . (3.111)

Plugging (3.108) ∼ (3.111) back into (3.106) reproduces the dual D4-brane action (3.102).
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3.4.2 Nonrelativistic membrane limit of M5-brane

From section 2.3, we already learned that applying the parametrization (2.46) to the D4-
brane action (3.97) and taking the nonrelativistic string limit by sending c → ∞ leads to
the nonrelativistic D4-brane worldvolume action,

SD4 = −
∫
d5Y e−Φ

√√√√− det
(

0 τν
τ̄µ Hµν + Fµν

)

+
∫ (

C(5) + C(3) ∧ F + 1
2 C

(1) ∧ F ∧ F
)
.

(3.112)

The dual of this action with respect to the worldvolume U(1) gauge potential is given by
the same nonrelativistic string limit of (3.102). This limit gives a rather lengthy result,
which requires future studies to reveal its detailed structure, with the hope that a compact
and understandable form can be acquired. Instead of presenting the detailed expression of
the dual nonrelativistic D4-brane action, which is not very illuminating at this stage, we
will focus on showing that this limit is indeed well defined and gives a finite action.

We start with the first line in (3.102). In terms of the parametrizations in (2.46),
we find

e−Φ̂
√
−Ĝ = c e−Φ

√
det
(
Hµν

)
det
(
τρAHρσ τσB

)
+O(c−1) . (3.113)

Moreover, by power counting, we have

y1 = O(c0) , y2 = O(c0) . (3.114)

However, intriguingly, there is a non-trivial cancellation among the terms under the square
root in (3.102), such that

1 + y1 + 1
2 y

2
1 − y2 = O(c−2) . (3.115)

We explicitly checked this cancellation when τµ
A = δAµ and Hµν = diag

(
0, 0, 1, 1, 1

)
. In-

stead of presenting this lengthy calculation, in the following, we demonstrate that this
cancellation works in the simple case where Θ + C(3) = 0. We then have

G̃ = −c6 e2Φ
(
C2

2 + C2
3 + C2

4

)
+O(c4) , (3.116)

and

tr
[(
G̃ · H̃

)2n] = 2
(
−c4)n (C2

2 + C2
3 + C2

4

)n
. (3.117)

It then follows that
y1 = −1 +O(c−2) , y2 = 1

2 +O(c−2) . (3.118)

As expected in (3.115), the zeroth order terms in c exactly cancel. Combining (3.113)
and (3.115), we find

−
∫
d5Y e−Φ̂

√
−Ĝ

√
1 + y1 + 1

2 y
2
1 − y2 = O(c0) . (3.119)
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Next, we turn to the second line in (3.102). Applying the parametrizations in (2.46),
we find

1
8 e

2Φ̂ Ĝ G̃−1 εµνρσλ Ĉ
(1)
µ H̃νρ H̃σλ = 1

12 c
2 εµνρσλ `µν Hρσλ +O(c0) , (3.120a)

Ĉ(5) −Θ ∧ B̂ = c2H ∧ `+O(c0) , (3.120b)

where H = Θ + C(3). These two divergences in O(c2) are canceled in (3.102). Together
with (3.119), we find that the nonrelativistic string limit of the dual action (3.102) gives a
finite S-dual of the nonrelativistic D4-brane action (3.112).

The ansatz in (2.46) can be lifted to be a membrane limit in eleven dimensions that gen-
eralizes the one discussed in section 3.2.3, now applied to the relativistic M5-brane action
with a six-dimensional worldvolume. The appropriate parametrizations for the background
fields in (3.106) are given by

Gµ̄ν̄ = c4/3 γµ̄ν̄ + c−2/3 H̃µ̄ν̄ , (3.121a)

H = 1
3! c

2 γu ∧ γv ∧ γw εuvw +H , (3.121b)

A(3) = − 1
3! c

2 γu ∧ γv ∧ γw εuvw +A(3) , (3.121c)

A(6) = − 1
3! c

2A(3) ∧ γu ∧ γv ∧ γw εuvw +A(6) . (3.121d)

Here, γµv, H̃µν , and A(3) are defined in the same way as in (3.28) and (3.29). Note that the
parametrizations of Gµ̄ν̄ and A(3) match the ones in (3.43) for M2-branes. We also require
that, under the double dimensional reduction,

A(6) → 2C(5) + C(3) ∧B . (3.122)

These parametrizations are constructed such that they reproduce the ones in (2.46) after
plugging in the double dimensional reduction prescriptions in (3.108) ∼ (3.111).

4 T-duals of nonrelativistic D-brane actions

In [13], T-duality transformations in the path integral of the sigma model that describes
nonrelativistic string theory have been studied in detail, where nonrelativistic strings are
coupled to an arbitrary string Newton-Cartan geometry background and a Kalb-Ramond
and dilaton field. Due to its codimension-two foliation structure, the string Newton-Cartan
geometry of nonrelativistic string theory admits two distinct classes of T-duality transfor-
mations, depending on whether the isometry lies in the longitudinal or transverse sector.
These T-duality transformations are then classified in [13] according to the nature of the
associated isometry directions. These analyses are then generalized in [50] to include open
string background fields and also applied to the DBI actions for various D-branes. T-duality
transformations in nonrelativistic string theory are summarized as follows:
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1. Longitudinal spatial T-duality. The T-duality transformation is performed along a
compact longitudinal spacelike isometry in nonrelativistic string theory coupled to a
string Newton-Cartan background. The resulting theory is relativistic string theory
coupled to a Lorentzian background geometry with a compact lightlike isometry, i.e.,
the DLCQ of relativistic string theory.

2. Longitudinal lightlike T-duality. The T-duality transformation is performed along
a compact longitudinal lightlike isometry in nonrelativistic string theory coupled to
a string Newton-Cartan background. The resulting theory is nonrelativistic string
theory coupled to a T-dual string Newton-Cartan background with a longitudinal
lightlike isometry of an inverse radius. Applied to nonrelativistic open strings, this
T-duality relates nonrelativistic and noncommutative open strings to each other.

3. Transverse T-duality. The T-duality transformation is performed along a compact
transverse (spacelike) isometry in nonrelativistic string theory on a string Newton-
Cartan background. The resulting theory is nonrelativistic string theory on a T-dual
string Newton-Cartan background with a transverse isometry.

In this section, we include RR potentials to this discussion and derive the associated
Buscher rules. Historically, the relativistic Buscher rules for the RR-potentials were derived
from analyzing type II supergravity [82]. However, the same results can also be derived
by using probe D-branes (see, e.g., [83] and references therein). In section 4.1, we will first
review how the generalized Buscher rules that incorporate the RR potentials are derived
by analyzing relativistic D-brane actions. Then, in section 4.2, we apply the same analysis
to nonrelativistic D-branes in the presence of RR potentials and different isometries. We
will generalized Buscher rules that also act on the RR potentials in nonrelativistic string
theory. Finally, in section 4.3, we show how these generalized Buscher rules are reproduced
by taking the nonrelativistic limit of relativistic Buscher rules, which serves as an extra
sanity check of the generalize nonrelativistic string limit that we proposed in section 2.3.

4.1 T-duals of relativistic D-brane actions

We start with a brief review of T-duality transformations of the Buscher rules for the RR
potentials in relativistic string theory. Such Buscher rules can be derived by using the
relativistic Dp-brane action that consists of both the DBI and CS parts is given in (2.45),
which we repeat below for convenience:

ŜDp = −
∫
dp+1Y e−Φ̂

√
− det

(
Ĝµν + B̂µν

)
+
∫ ∑

q

Ĉ(q) ∧ eB̂
∣∣∣
p+1

. (4.1)

Recall that Ĝµν = ∂µX
M ∂νX

N ĜMN and B̂µν = ∂µX
M ∂νX

N B̂MN are respectively the
pullbacks of the background metric ĜMN and Kalb-Ramond field B̂MN to the Dp-brane’s
worldvolume. For simplicity, we set the gauge field strength Fµν on the D-brane to zero
and focus on the closed string background fields. The generalization that incorporates the
worldvolume U(1) gauge field can be obtained straightforwardly by following [84].

Assume that there is a Killing vector kM in the target space. We defined the target-
space coordinates XM = (y,Xm) that are adapted to kM , with kM∂M = ∂y. Therefore, the
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translation in y represents an abelian isometry. The standard Buscher rules for the metric
field ĜMN , Kalb-Ramond field B̂MN and dilaton field Φ̂ are derived from performing a
T-duality transformation in the path integral of the worldsheet sigma model [85, 86], with

Ĝ′yy = 1
Ĝyy

, Ĝ′my = B̂my

Ĝyy
, Ĝ′mn = Ĝmn + B̂my B̂ny − Ĝmy Ĝny

Ĝyy
, (4.2a)

Φ̂′ = Φ̂− 1
2 ln Ĝyy , B̂′my = Ĝmy

Ĝyy
, B̂′mn = B̂mn −

B̂my Ĝny − B̂ny Ĝmy
Ĝyy

. (4.2b)

In the following, we perform the T-duality transformation of the D-brane action (4.1) along
the isometry direction in two different cases, depending on what boundary conditions in
the isometry direction that the open strings satisfy.

• Neumann boundary condition. We first consider a D-brane that is extending
in the isometry y direction, i.e., the open strings satisfy the Neumann boundary
condition in y. The D-brane action is already given in (4.1). We choose the adapted
coordinates Y µ = (Y α, y) with α = 0, 1, · · · , p − 1 on the worldvolume of the Dp-
brane. Under the Buscher rules (4.2), there holds the following identity between
different DBI Lagrangians:

e−Φ̂
√
− det

(
Ĝµν + B̂µν

)
= e−Φ̂′

√
− det

(
Ĝ′αβ + B̂′αβ

)
, (4.3)

where the l.h.s. describes a Dp-brane extending along y and the r.h.s. describes the
dual D(p−1)-brane localized at a point in y. For consistency, the following condition
must hold for CS Lagrangians:∑

q

Ĉ(q) ∧ eB̂
∣∣∣∣
p+1

=
(∑

q

Ĉ ′(q) ∧ eB̂′
∣∣∣∣
p

)
∧ dy , (4.4)

such that the T-dual D-brane action is

Ŝ′D(p−1) = −
∫
dpY e−Φ̂′

√
− det

(
Ĝ′µν + B̂′µν

)
+
∫ ∑

q

Ĉ ′(q) ∧ eB̂′
∣∣∣
p
, (4.5)

which is in the same form as the original action (4.1) but in terms of the T-dual
fields and describes a D(p− 1)-brane transverse to the dual isometry y direction. It
is convenient to define the worldvolume differential forms

Ĉ(q+1)
y = 1

q! Ĉ
(q+1)
α1···αq y dY

α1 ∧ · · · ∧ dY αq , Ĝy = Ĝαy dY
α , B̂y = B̂αy dY

α , (4.6)

and similarly for the primed fields. We will use B̂ (also for other worldvolume forms)
to denote both 1

2 B̂αβ dY
α∧ dY β and 1

2 B̂µν dY
µ∧ dY ν , with µ = (α, y) to avoid a

cluster of notation. The difference should be clear from the context. Then, (4.2)
becomes

Ĝ′yy = 1
Ĝyy

, Ĝ′y = B̂y

Ĝyy
, Ĝ′mn = Ĝmn + B̂my B̂ny − Ĝmy Ĝny

Ĝyy
, (4.7a)

Φ̂′ = Φ̂− 1
2 ln Ĝyy , B̂′y = Ĝy

Ĝyy
, B̂′ = B̂ − B̂y ∧ Ĝy

Ĝyy
. (4.7b)
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Note that we always choose to place the index y at the end of the subscript in the
form’s components. Now, the l.h.s. of (4.4) gives∑

q

Ĉ(q) ∧ eB̂
∣∣∣∣
p+1

= L′CS ∧ dy , L′CS =
∑
q

(
Ĉ(q)
y + Ĉ(q) ∧ B̂y

)
∧ eB̂

∣∣∣∣
p

. (4.8)

Using (4.7), we find

L′CS =
∑
q

(
Ĉ(q+1)
y + Ĉ

(q−1)
y ∧ B̂y ∧ Ĝy

Ĝyy
+ Ĉ(q−1) ∧ B̂y

)
∧ eB̂′

∣∣∣∣
p

. (4.9)

Here, we rewrote B̂ as B̂ = B̂′ + (B̂y ∧ Ĝy/Ĝyy). Without repeating further, this is
also the trick that we use for other similar derivations in this section. Finally, (4.4)
gives

Ĉ ′(q) = Ĉ(q+1)
y + Ĉ(q−1) ∧ B̂y + Ĉ

(q−1)
y ∧ B̂y ∧ Ĝy

Ĝyy
. (4.10)

• Dirichlet boundary condition. Now, we consider a Dp-brane that is transverse to
the isometry y direction, i.e., the open strings satisfy the Dirichlet boundary condition
in y. It then follows that ∂µy = 0. Note that this Dp-brane is still described by
the action (4.1). Under the Buscher rules in (4.2), there holds an identity between
different DBI Lagrangians that is in form the same as (4.3), but now with Y ′α =
(Y µ, y′). Here, y′ is dual to y in the target space. This implies that (4.3) receives a
different interpretation with the l.h.s. describing a Dp-brane transverse to y and the
r.h.s. describing the dual D(p+ 1)-brane extending in y′. For consistency, we require∑

q

Ĉ(q) ∧ eB̂
∣∣∣∣
p+1

= L′CS , L′CS ≡
∑
q

(
Ĉ ′(q+1)
y + Ĉ ′(q) ∧ B̂′y

)
∧ eB̂′

∣∣∣∣
p+1

, (4.11)

with
L′CS ∧ dy′ =

∑
q

Ĉ ′(q+1) ∧ eB̂′
∣∣∣∣
p+2

(4.12)

The l.h.s. of the first equation in (4.11) is the CS term for the Dp-brane transverse
to y. Moreover, (4.12) denotes the dual CS term for the D(p+ 1)-brane extending in
y′. Using (4.7), we find that (4.11) implies

Ĉ ′(q+1)
y = Ĉ(q) + Ĉ(q−2) ∧ B̂y ∧ Ĝy

Ĝyy
− Ĉ ′(q−1) ∧ Ĝy

Ĝyy
. (4.13)

• Buscher rules for RR potential. Finally, combining (4.10) and (4.13) that relate
the RR potentials to their T-duals, we find:

Ĉ ′(q+1)
y = Ĉ(q) − Ĉ

(q)
y ∧ Ĝy
Ĝyy

, (4.14a)

Ĉ ′(q) = Ĉ(q+1)
y + Ĉ(q−1) ∧ B̂y + Ĉ

(q−1)
y ∧ B̂y ∧ Ĝy

Ĝyy
. (4.14b)

In the following subsections, we will derive the generalized Buscher rules for RR-
potentials in nonrelativistic string theory, analogous to the ones in (4.14). Note that
the differential forms here do not contain dy or dy′.
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4.2 T-duals of nonrelativistic D-brane actions

Now, we return to the nonrelativistic Dp-brane action (2.47) and study its T-dual along
a compact isometry direction in the target space. We address all the three cases with a
longitudinal spacelike, longitudinal lightlike and transverse isometry, respectively.

4.2.1 Longitudinal spatial T-duality

We start with the case where there is a longitudinal spacelike Killing vector kM satisfying

kM τM
0 = 0 , kM τM

1 6= 0 , kMEM
A′ = 0 . (4.15)

Define the coordinates XM = (Xm, y) adapted to kM , with kM ∂M = ∂y. In terms of
these adapted coordinates, (4.15) implies τy0 = Ey

A′ = 0 and τy
1 6= 0. Then, y is a

longitudinal spacelike isometry direction. In the absence of RR potentials, the Buscher
rules for nonrelativistic string theory with a longitudinal spatial isometry in spacetime are
given in [13]. These Buscher rules are derived by using the worldsheet formalism. The dual
worldsheet sigma model describes relativistic string theory in the DLCQ, where a dual
Lorentzian metric field G̃MN exists, in addition to the dual Kalb-Ramond field B̃MN and
dilaton field Φ̃. The Buscher rules that relate these dual fields to the nonrelativistic closed
string background fields τµA, Hµν , Bµν and Φ are

G̃yy = 0 , G̃my = −`my
τyy

, B̃my = τmy
τyy

, Φ̃ = Φ− 1
2 ln τyy , (4.16a)

G̃mn = Hmn −
(Bmy `ny +Bny `my) + (Hmy τny +Hny τmy −Hyy τmn)

τyy
, (4.16b)

B̃mn = Bmn −
(Bmy τny −Bny τmy) + (Hmy `ny −Hny `my +Hyy `mn)

τyy
. (4.16c)

See (2.44) for the definition of `MN . Using differential forms, we rewrite the Buscher rules
associated with G̃my, B̃my, and B̃mn as

G̃y = − `y
τyy

, B̃y = τ
(1)
y

τyy
, B̃ = B − By ∧ τ (1)

y +Hy ∧ `y +Hyy `

τyy
. (4.17)

Here, τ (1)
y = ταy dY

α, where α is a worldvolume index excluding y. The fact that G̃yy = 0
implies that there is a lightlike isometry in the dual relativistic target-space geometry. We
also defined

` = 1
2 τα

A τβ
B εAB dY

α ∧ dY β , `y = τα
A τy

B εAB dY
α . (4.18)

Note that the two-form ` here is defined differently from (2.44). We consider how the
following nonrelativistic Dp-brane action transforms under the above Buscher rules:

SDp = −
∫
dp+1Y e−Φ

√√√√− det
(

0 τν
τ̄µ Hµν +Bµν

)
+
∫ ∑

q

C(q) ∧ eB
∣∣∣∣
p+1

. (4.19)
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The same nonrelativistic Dp-brane action has been given in (2.47), but now we set the
gauge field strength F = 0 on the D-brane. For the inclusion of the worldvolume U(1)
gauge field in the Buscher rules, see [50].

We first consider the case where the nonrelativistic Dp-brane described by the ac-
tion (4.19) extends in the longitudinal spacelike isometry y direction. The T-dual of this
nonrelativistic Dp-brane is a relativistic D(p − 1)-brane transverse to the isometry direc-
tion ỹ. Note that ỹ is dual to y and is compactified over a lightlike circle. As we already
explained earlier, this is because the dual metric component G̃yy vanishes in (4.16). We
choose the adapted coordinates Y µ = (Y α, y), with α = 0, 1, · · · , p−1 on and Y µ the coor-
dinates on the (p+ 1)-dimensional worldvolume of the nonrelativistic Dp-brane. Under the
Buscher rules (4.16), the following identity between different DBI Lagrangians holds [50]:

e−Φ

√√√√− det
(

0 τν
τ̄µ Hµν +Bµν

)
= e−Φ̃

√
− det

(
G̃αβ + B̃αβ

)
. (4.20)

The l.h.s. of (4.20) describes a nonrelativistic D(p− 1)-brane extending in y and the r.h.s.
describes the dual relativistic Dp-brane transverse to ỹ. For consistency, we require for the
CS Lagrangians that

∑
q

C(q) ∧ eB
∣∣∣∣
p+1

=
(∑

q

C̃(q) ∧ eB̃
∣∣∣∣
p

)
∧ dy , (4.21)

in analog with the relativistic case in (4.4). Applying (4.17) to (4.21), we find

C̃(q) = C(q+1)
y + C(q−1) ∧By +

C
(q−1)
y ∧

(
By ∧ τ (1)

y +Hy ∧ `y +Hyy `
)

τyy

+ C(q−3) ∧By ∧ (Hy ∧ `y +Hyy `)
τyy

+ C
(q−3)
y ∧By ∧Hy ∧ `

τyy
.

(4.22)

Next, we consider a nonrelativistic Dp-brane described by the action (4.19) but now
transverse to the longitudinal spacelike isometry y. The T-dual of the nonrelativistic
Dp-brane is a relativistic D(p + 1)-brane extending in the lightlike isometry direction ỹ

that is dual to y. Under the Buscher rules in (4.16), there holds an identity between
different DBI Lagrangians that is in form the same as (4.20), but now with Y ′α = (Y µ, ỹ).
Then, (4.20) receives the interpretation that the l.h.s. describes a nonrelativistic D(p− 1)-
brane transverse to y and the r.h.s. describes a relativistic Dp-brane extending in ỹ. For
consistency, like (4.11) and (4.12) in relativistic string theory, the following condition for
CS Lagrangians must hold:

∑
q

C(q) ∧ eB
∣∣∣∣
p+1

 ∧ dỹ =
∑
q

C̃(q) ∧ eB̃
∣∣∣∣
p+2

. (4.23)
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Using (4.17), we find in analog with (4.10) that

C̃(q)
y + C̃(q−2) ∧ τ

(1)
y

τyy

= C(q−1) + C(q−3) ∧ By ∧ τ
(1)
y +Hy ∧ `y +Hyy `

τyy
+ C(q−5) ∧By ∧Hy ∧ `

τyy
.

(4.24)

Finally, combining (4.24) and (4.22), we find the following map between the RR po-
tentials in nonrelativistic string theory and their T-dual RR potentials in relativistic string
theory:

C̃(q)
y = C(q−1) − C

(q−1)
y ∧ τ (1)

y

τyy
+ C(q−3) ∧ (Hy ∧ `y +Hyy `)

τyy
− C

(q−3)
y ∧Hy ∧ `

τyy
, (4.25a)

C̃(q) = C(q+1)
y + C(q−1) ∧By +

C
(q−1)
y ∧

(
By ∧ τ (1)

y +Hy ∧ `y +Hyy `
)

τyy

+ C(q−3) ∧By ∧ (Hy ∧ `y +Hyy `)
τyy

+ C
(q−3)
y ∧By ∧Hy ∧ `

τyy
. (4.25b)

The same Buscher rules (4.25) for RR potentials can be reproduced by plugging the
ansatz (2.46) into the relativistic Buscher rules (4.14) and then taking the c → ∞ limit.
Note that Ĉ ′(q) in (4.14) will be identified with C̃(q) in (4.25) after the limit is taken. We
will study this nonrelativistic string limit of relativistic Buscher rules in section 4.3. More-
over, as a nontrivial check, we will further show in appendix B that the Buscher rules (4.25)
are invariant under the infinitesimal version of the Stueckelberg transformations in (2.32)
and (2.38).

4.2.2 Longitudinal lightlike T-duality

Previously, we considered the T-duality transformation of D-branes in nonrelativistic string
theory along a longitudinal spacelike isometry, and the dual D-branes are coupled to a
Lorentzian background geometry with a compact lightlike isometry. For completeness,
we now perform a T-duality transformation along a lightlike isometry for a nonrelativis-
tic D-brane coupled to string Newton-Cartan geometry. This leads to a dual nonrela-
tivistic D-brane that is coupled to a dual string Newton-Cartan geometry. This lightlike
T-duality transformation maps between two lightlike circles with dual radii [13]. This
lightlike T-duality provides a formal relation between nonrelativistic and noncommutative
open strings [50].

We start with a longitudinal lightlike Killing vector kM satisfying

kM τM 6= 0 , kM τ̄M = 0 , kM EM
A′ = 0 . (4.26)

We then have τ̄y = Ey
A′ = 0 in the coordinates XM = (Xm, y) adapted to kM , satisfying

kM ∂M = ∂y. These prescriptions require that y be a lightlike isometry. In the absence
of RR potentials, the Buscher rules for nonrelativistic string theory with a longitudinal
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lightlike isometry are derived in [13] using the worldsheet formalism, with the dual fields
TM

A, H̃MN , B̃MN and Φ̃ given by

Ty = 1
τy
, Φ̃ = Φ− ln τy , (4.27a)

T̄y = 0 , T̄m = τ̄m , Tm =
(
Bmy −Hmy

)
τy +Hyy τm

τ2
y

, (4.27b)

H̃My = 0 , B̃my = τm
τy

, B̃mn = Bmn −
Bmy τn −Bny τm

τy
, (4.27c)

H̃mn = Hmn +
Hyy τm τn −

(
Hmy τn +Hny τm

)
τy

τ2
y

. (4.27d)

Here, we used TM
A to denote the T-dual of the longitudinal vielbein field τM

A in string
Newton-Cartan geometry.

We first consider a nonrelativistic Dp-brane that is described by the action (4.19) and
extends in the longitudinal lightlike isometry y. This theory is in the sector of NCOS. We
choose the adapted coordinates Y µ = (Y α, y) with α = 0, 1, · · · , p − 1. Using (4.27), we
obtain the following identity between different DBI Lagrangians [50]:

e−Φ

√√√√− det
(

0 τν
τ̄µ Hµν +Bµν

)
= e−Φ̃

√√√√− det
(

0 Tβ
T̄α H̃αβ + B̃αβ

)
, (4.28)

where the r.h.s. describes the dual nonrelativistic D(p − 1)-brane transverse to the dual
lightlike isometry ỹ. This dual theory is in the sector of NROS. Requiring that the analog
of the identity between the CS Lagrangians in (4.21) hold, but now with B̃MN related to
BMN as in (4.27), we find

C̃(q) = C(q+1)
y + C(q−1) ∧By + C

(q−1)
y ∧By ∧ τ

τy
, τ = τα dY

α . (4.29)

Next, we consider NROS and a Dp-brane that is described by the action (4.19) and
transverse to the longitudinal lightlike isometry y. The T-dual action describes a D(p+ 1)-
brane in NCOS that extends in the dual lightlike isometry ỹ. In this case, we continue
to have the identity (4.28) between different DBI actions, but with Y ′α = (Y µ, ỹ). For
consistency, the same relation (4.23) between different CS Lagrangians has to hold, but now
with the background fields satisfying the Buscher rules in (4.27). Then, the relation (4.23)
implies

C̃(q)
y + C̃(q−2) ∧ τ

τy
= C(q−1) + C(q−3) ∧By ∧ τ

τy
. (4.30)

Finally, combining (4.30) and (4.29), we find the Buscher rules for the RR potentials,

C̃(q)
y = C(q−1) − C

(q−1)
y ∧ τ
τy

, (4.31a)

C̃(q) = C(q+1)
y + C(q−1) ∧By + C

(q−1)
y ∧By ∧ τ

τy
. (4.31b)

– 43 –



J
H
E
P
0
4
(
2
0
2
2
)
1
6
1

Later in section 4.3, we will discuss how the generalized Buscher rules (4.27) and (4.31)
arise as a nonrelativistic string limit of the relativistic Buscher rules. In appendix B, we will
analyze how these Buscher rules transform under the infinitesimal Stueckelberg symmetry,
whose finite form is given in (2.32) and (2.38).

4.2.3 Transverse T-duality

It is also possible to perform a T-duality transformation along a transverse isometry di-
rection that is compactified over a circle.24 Consider a transverse Killing vector kM that
satisfies

kMτM
A = 0 , kMEMN 6= 0 . (4.32)

Recall that EMN = EM
A′EN

A′ . The derivation of the Buscher rules for transverse T-
duality is in form the same as the relativistic case in section 4.1. The resulting Buscher
rules are

H̃yy = 1
Hyy

, H̃my = Bmy
Hyy

, H̃mn = Hmn + Bmy Bny −HmyHny

Ĝyy
, (4.33a)

Φ̃ = Φ− 1
2 lnHyy , B̃my = Hmy

Hyy
, B̃mn = Bmn −

BmyHny −BnyHmy

Hyy
, (4.33b)

and

C̃(q)
y = C(q−1) − C

(q−1)
y ∧Hy

Hyy
, (4.34a)

C̃(q) = C(q+1)
y + C(q−1) ∧By + C

(q−1)
y ∧By ∧Hy

Hyy
. (4.34b)

Here, Hy = Hαy dY
α, where the worldvolume index α does not include y. The background

field τM
A remains unchanged under the transverse T-duality transformation, while the

background fields HMN , BMN ,Φ and C(q) are mapped to their T-duals, H̃MN , B̃MN , Φ̃
and C̃(q). Both the original and T-dual D-brane actions are in the form of (2.47). Also
see appendix B for how these Buscher rules transform under the infinitesimal Stuckelberg
symmetry.

4.3 Buscher rules from nonrelativistic string limit

Finally, we discuss how the Buscher rules derived in section 4.2 can be reproduced by taking
appropriate nonrelativisitc string limits of the relativistic Buscher rules in section 4.1. Our
starting point are the background fields’ parametrizations given in (2.46), which we rewrite
below as:

ĜMN = c2 τMN +HMN , Φ̂ = Φ + ln c , (4.35a)
B̂ = −c2 `+B , Ĉ(q) = c2C(q−2) ∧ `+ C(q) , (4.35b)
B̂y = −c2 `y +By , Ĉ(q)

y = c2(C(q−2)
y ∧ `+ C(q−2) ∧ `y

)
+ C(q)

y . (4.35c)
24Note that all transverse directions are spacelike.
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For q < 0, we set Ĉ(q) = Ĉ
(q+1)
y = 0. We have set the worldvolume field strength Fµν to

zero. Also note that ` and `y are defined in (4.18).

• Longitudinal spatial T-duality. In the presence of the longitudinal spatial Killing
vector as specified in (4.15), we learned from section 4.2.1 that the T-dual of nonrela-
tivistic string theory along the longitudinal spacelike isometry direction describes the
DLCQ of relativistic string theory [13]. It has been shown in [15] that the Buscher
rules (4.16) for longitudinal spatial T-duality arise as the nonrelativistic string limit of
the relativistic Buscher rules in (4.2). This is done by plugging the ansatz (4.35) of rel-
ativistic background fields into the relativistic Buscher rules in (4.2), and then taking
the c → ∞ limit. Note that we also need to identify Ĝ′MN → G̃MN , B̂′MN → B̃MN ,
Φ̂′ → Φ̃ after applying the c → ∞ limit. This procedure also applies to the RR
potentials. Starting with the relativistic Buscher rules for RR potentials in (4.14)
and plugging in (4.35), we find,

C ′(q+1)
y = c2

[
C(q−2) ∧ `−

(
1− Hyy

c2 τyy

)
C(q−2) ∧ `y ∧ τ (1)

y

τyy

]

+ C(q) − C
(q−2)
y ∧ ` ∧Hy + C(q−2) ∧ `y ∧Hy + C

(q)
y ∧ τ (1)

y

τyy
+O(c−2) ,

(4.36a)

and

C ′(q) = c2
(
C(q−1)
y ∧ `+ C(q−3) ∧ ` ∧By

)
+ C(q+1)

y + C(q−1) ∧By

+
(
c2 − Hyy

τyy

)
C(q−3) ∧ `y ∧By ∧ τ (1)

y − C(q−1)
y ∧ `y ∧ τ (1)

y

τyy

+ τ−1
yy

(
C(q−3)
y ∧ ` ∧By ∧Hy + C(q−3) ∧ `y ∧By ∧Hy

− C(q−1)
y ∧ `y ∧Hy + C(q−1)

y ∧By ∧ τ (1)
y

)
+O(c−2) .

(4.36b)

In the c→∞ limit, Ĉ ′(q) → C̃(q) and Ĉ ′(q)y → C̃
(q)
y . Using the identity `y∧τ (1)

y = ` τyy,
we find that (4.36) becomes (4.25) at c→∞.

• Longitudinal lightlike T-duality. The construction of the nonrelativistic string
limit that reproduces the Buscher rules associated with the longitudinal lightlike T-
duality transformation appears to be rather delicate and requires a careful treatment.
We start with revisiting the ansatz (4.35) of background fields in relativistic string
theory, but now in the presence of the longitudinal lightlike Killing vector defined
in (4.26). To facilitate the following discussion, we fix the Stueckelberg symme-
try (2.32) and (2.38) by setting ΞMA = mM

A as in section 2.3. Accordingly, we
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modify the reparametrizations of background fields in (4.35) as

ĜMN = c2 τMN + EMN , Φ̂ = Φ + ln c , (4.37a)
B̂ = −c2 `+M , Ĉ(q) = c2N (q−2) ∧ `+N (q) , (4.37b)
B̂y = −c2 `y +My , Ĉ(q)

y = c2(N (q−2)
y ∧ `+N (q−2) ∧ `y

)
+N (q)

y . (4.37c)

We recall that EMN =EM
A′EN

A′ ,MMN andN (q+1)
M0···Mq

are defined in (2.24) and (2.40),
respectively. Additionally,

` = 1
2 τ̄ ∧ τ , `y = 1

2
(
τ̄ τy − τ̄y τ

)
, τ = τα dY

α , τ̄ = τ̄α dY
α . (4.38)

Recall that the worldvolume α index excludes y. Moreover, as detailed in sec-
tion 4.2.2, the existence of the longitudinal lightlike isometry in y implies that
τ̄y = Ey

A′ = 0 in the adapted coordinates XM = (Xm, y). Using (4.37), we find
Ĝyy = 0. Upon initial inspection, it seems impossible to take the c→∞ limit of the
relativistic Buscher rules because of Ĝyy appearing in several denominators in (4.2).

Fortunately, the above difficulty is avoidable by considering a double scaling
limit instead of the original nonrelativistic string limit that only sets c → ∞. We
first construct such a double scaling limit without any RR potential and show how
the Buscher rules (4.27) for longitudinal lightlike T-duality can be reproduced. In
addition to the parameter c that controls the nonrelativistic string limit in the original
theory, we now introduce a second parameter c̃ that controls the nonrelativistic string
limit on the T-dual side, with

Ĝ′MN = c̃ 2 TMN + ẼMN , B̂′MN = −c̃ 2 ˜̀
MN + M̃MN , Φ̂′ = Φ̃ + ln c̃ . (4.39)

Here, TMN = TM
A TN

B ηAB and ˜̀MN = TM
A TN

B εAB. In addition, we define

τ̄y = − τy
c̃ 2 , T̄y = −Ty

c2 , T̄m = τ̄m −
Mmy

c2 τy
+ τm
c̃ 2 , (4.40)

where Tm = Tm
0 + Tm

1 and T̄m = Tm
0 − Tm

1. In the limit c̃ → ∞, τ̄y becomes
zero; this is required such that y is a longitudinal lightlike isometry. Further taking
c→∞, we find T̄m → −τ̄m. Moreover, we also require that c2/c̃ 2 → 0, such that the
ansatz (4.37) is consistent with the one from setting τ̄m to zero identically.25 This
double scaling limit is reminiscent of defining the DLCQ of string/M-theory as a
subtle infinite boost limit [3]. Plugging (4.37), (4.40) and (4.39) into the relativistic

25Note that the definition of the longitudinal lightlike Killing vector originally presented in [13] has
c̃−1 = 0 identically. This does not cause any problem there, since (4.37) uses the path integral of the
sigma model that describes nonrelativistic string theory and does not rely on any limits of relativistic string
theory.

– 46 –



J
H
E
P
0
4
(
2
0
2
2
)
1
6
1

Buscher rules (4.2), we find

Ty = 1
τy
, T̄y = −Ty

c2 , T̄m = τ̄m −
Mmy

c2τy
+ τm
c̃ 2 , (4.41a)

Tm = Mmy

τy
, Ẽmn = Emn , ẼMy = 0 , Φ̃ = Φ− ln τy , (4.41b)

M̃my = τm
τy

, M̃mn = Mmn −
Mmy τn −Mny τm

τy
, (4.41c)

Furthermore, taking the double scaling limit c , c̃ → ∞ of (4.41) reproduces the
expressions in (4.27) with a fixed Stueckelberg symmetry (see section 2.3).

Similarly, we parametrize the dual RR potential in relativistic string theory as

Ĉ ′(q) = c̃ 2 Ñ (q−2) ∧ ˜̀+ Ñ (q) , Ĉ ′(q)y = c̃ 2 (Ñ (q−2)
y ∧ ˜̀+ Ñ (q−2) ∧ ˜̀y)+ Ñ (q)

y ,

(4.42)
where Ñ (q) and Ñ (q)

y are dual RR potentials in nonrelativistic string theory. Note that

˜̀= 1
2 T̄ ∧ T ,

˜̀
y = 1

2
(
T̄ Ty − T̄y T

)
, T = Tα dY

α , T̄ = T̄α dY
α . (4.43)

To facilitate the calculation, we first rewrite T̄m, Tm, M̃my and M̃mn from (4.41) in
terms of differential forms, with

T = My

τy
, T̄ = τ̄ − My

c2 τy
+ τ

c̃ 2 , M̃y = τ

τy
, M̃ = M − My ∧ τ

τy
. (4.44)

Plugging the above ingredients into the relativistic RR Buscher rules (4.14) gives

c̃ 2

2 τy

(
Ñ (q−2)
y ∧ τ̄ ∧My + Ñ (q−2) ∧ τ̄

)
+ Ñ (q)

y + Ñ
(q−2)
y ∧ τ ∧My + Ñ (q−2) ∧ τ

2 τy

= c̃ 2N
(q−1)
y ∧ τ̄
2 τy

+N (q−1) − N
(q−1)
y ∧ τ

2 τy
,

(4.45a)

and

c̃ 2 Ñ (q−2) ∧ τ̄ ∧My

2 τy
+ Ñ (q) + Ñ (q−2) ∧ τ ∧My

2 τy

= − c̃
2N

(q−1)
y ∧My ∧ τ̄

2τy
+N (q+1)

y +N (q−1) ∧My + N
(q−1)
y ∧My ∧ τ

2 τy
.

(4.45b)

Solving for Ñ (q)
y and Ñ (q), we find

Ñ (q)
y = N (q−1)− N

(q−1)
y ∧ τ
τy

, (4.46a)

Ñ (q) = N (q+1)
y +N (q−1) ∧My + N

(q−1)
y ∧My ∧ τ

τy
, (4.46b)

reproducing the Buscher rules in (4.31) with a fixed Stueckelberg symmetry.
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• Transverse T-duality. In the presence of the transverse Killing vector kM as spec-
ified in (4.32), we learned from section 4.2.3 that the T-duality transformation along
the associated spacelike isometry in the transverse sector relates nonrelativistic string
theories compactified over dual spacelike circles. The Buscher rules for transverse T-
duality have been shown in [13] to arise from taking the nonrelativistic string limit of
the relativistic Buscher rules in (4.2). This is done by first rewriting the background
fields as in (4.35) and similarly for the dual fields as

Ĝ′MN = c2 τMN + H̃MN , B̂′MN = −c2 `MN + B̃MN , Φ̂′ = Φ̃ + ln c , (4.47)

followed by plugging (4.35) and (4.47) into the relativistic Buscher rules in (4.2).
Note that the longitudinal vielbein field τµA does not transform under the transverse
T-duality. The same procedure can also be applied to the RR potentials. In analog
to (4.35), we parametrize the dual relativistic RR potentials as

Ĉ ′(q) = c2 C̃(q−2) ∧ `+ C̃(q) , Ĉ ′(q)y = c2 C̃(q−2)
y ∧ `+ C̃(q)

y . (4.48)

While Ĉ(q) = C̃
(q+1)
y = 0 for q < 0. Plugging (4.35), (4.47) and (4.48) into the

Buscher rules (4.14) for RR potentials in relativistic string theory, and noting that
τy
A = 0 in the presence of the transverse Killing vector kM , we find

c2 C̃(q−1)
y ∧ `+ C̃(q+1)

y = c2
(
C(q−2) − C

(q−2)
y ∧Hy

Hyy

)
∧ `+ C(q) − C

(q)
y ∧Hy

Hyy
,

(4.49a)

and

c2 C̃(q−2) ∧ `+ C̃(q) = c2
(
C(q−1)
y + C(q−3) ∧Hy + C

(q−2)
y ∧Hy ∧By

Hyy

)
∧ `

+ C(q+1)
y + C(q−1) ∧Hy

Hyy
+ C

(q−1)
y ∧Hy ∧By

Hyy
.

(4.49b)

Solving for C̃(q) reproduces the RR Buscher rules (4.34) under the transverse T-
duality.

5 Conclusions

In this paper, we generalized the worldvolume actions that describe D-branes in nonrela-
tivistic string theory by including RR potentials. Using nonrelativistic D-branes as probes,
we initiated a systematic classification of duality transformations for D-brane actions with
diverse worldvolume dimensions in nonrelativistic string theory. This study uncovers a
class of nonrelativistic duality transformations that are distinct in nature from the ones in
relativistic string theory, and lead to novel dual D-brane actions. These results are fur-
ther corroborated by carefully performing the stringy and membrane limits of relativistic
string and M-theory, respectively. Such limits involve nontrivial cancellations among the
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background metric, Kalb-Ramond and RR fields and elegantly reproduce the finite dual
D-brane actions that we found from the first principles method. A general p-brane limit of
the associated relativistic Dp-brane action has been considered in appendix A, leading to
other corners of relativistic string/M-theory that exhibit nonrelativistic behaviors.

While our analyses focused on the bosonic sector, we have not addressed the structure
of the fermionic sector for the full supersymmetric nonrelativistic brane action propagating
on a supergravity background that generalizes the string Newton-Cartan geometry.26 For
example, it is important to understand how to incorporate local kappa symmetry for nonrel-
ativistic D-actions, which arise in the nonrelativistic string limit of the kappa-symmetric
relativistic D-brane constructed in [87, 88]. Also see [22, 46, 72, 73] for previous works
on the kappa-symmetric nonrelativistic p-brane action that arises as the p-brane limit of
the relativistic p-brane. The supersymmetric generalization of the p-brane limit in flat
spacetime is studied in [72], and its curved-spacetime generalization is recently introduced
in [20].

We have studied the duality transformation of the nonrelativistic D4-brane by du-
alizing the worldvolume U(1) gauge field. This leads to the nonrelativistic M5-brane in
ten-dimensional membrane Newton-Cartan geometry. Nevertheless, future work is still
required for attaining a closed form of the nonrelativistic M5-brane action. Moreover, it
would be highly interesting to apply the techniques developed in this paper to dualize the
worldvolume U(1) gauge field for Dp-branes with p > 4. For example, the nonrelativistic
NS5-brane action can found from S-dualizing the nonrelativistic D5-brane action (or, from
a direct dimensional reduction of the nonrelativistic M5-brane). Along these lines, a hi-
erarchy of nonrelativistic Dp-brane actions and their duals can be built. This would also
generalize the atlas of relativistic exotic branes to their nonrelativistic counterparts.

There are also numerous other future directions for which the concepts and techniques
derived in this paper can be useful. First, the stringy limit has been applied to ten-
dimensional heterotic superstring theory in [20], where there are no RR potentials. It would
be fascinating to apply the stringy limit proposed in this paper to Type I and II supergravity
in ten-dimensions, where RR potentials are present, and compare with the membrane limit
of eleven-dimensional supergravity that has been studied in [33]. This would also make
it possible to construct an S-dual invariant nonrelativistic Type IIB supergravity action.
Moreover, the inclusion of RR potentials forms an essential step for looking for possible
black hole-like solutions to the nonrelativistic supergravity equations of motion, as well
as a top-down construction of nonrelativistic holography. Secondly, one may also add a
cosmological constant term (or a total derivative term) as [89, 90] did for massive IIA
supergravity theory. It would be interesting to examine how this modifies nonrelativistic
brane actions and T-duality transformations. Finally, we only considered the low-energy
effective action of nonrelativistic D-branes. The full D-brane dynamics are characterized
by Witten’s cubic bosonic open string field theory [91], while the (non-abelian) Born-Infeld
action arises from integrating out all the massive modes in the string field theory. It would
be interesting to understand how the analog of open string field theory can be formulated
in nonrelativistic string theory.

26See [20] for a supersymmetrization of string Newton-Cartan geometry.
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A Dp-branes in a p-brane Newton-Cartan geometry

In section 3.2.2, we discussed both double and direct dimensional reductions of nonrelativis-
tic M2-branes along a longitudinal spacelike isometry. These nonrelativistic M2-branes are
coupled to an eleven-dimensional membrane Newton-Cartan geometry equipped with a co-
dimensional three foliation. These reductions lead to the actions that respectively describe
fundamental strings and D2-branes in nonrelativistic string theory, where the spacetime
geometry is string Newton-Cartan geometry equipped with a codimension-two foliation. In
this appendix, we consider a direct dimensional reduction of the same nonrelativistic M2-
brane action but now along a transverse isometry [47]. We first review how this procedure
gives rise to a nonrelativistic D2-brane action that is coupled to a ten-dimensional mem-
brane Newton-Cartan geometry, which inherits the three-dimensional foliation structure
from nonrelativistic M-theory. We then propose a membrane limit of relativistic string
theory that leads to the same nonrelativistic D2-brane action. One may then use such
D2-branes as probes for understanding the membrane limit of relativistic string theory.
The corners of the string and membrane limits of relativistic string theory are in this sense
unified under the notion of nonrelativistic M-theory. We then discuss general p-brane limits
of relativistic string theory [8].

We begin with a review of the transverse dimensional reduction of nonrelativistic M2-
brane [47]. Consider the M2-brane action (3.27) in the most general form,

SM2 = −1
2

∫
d3Y

√
−γ′ γ′µν H ′µν −

∫
A′(3) , (A.1)

where

H ′µν = ∂µX
I ∂νX

J H ′IJ , A′(3) = ∂µX
I ∂νX

J ∂ρX
KA

′(3)
IJK , I = 0, 1, · · · , 10 , (A.2a)

γ′µν = γ′µ
u γ′ν

v ηuv , γ′µ
u = ∂µX

I γ′I
u , u = 0, 1, 2 . (A.2b)

Here, XI are coordinates of the eleven-dimensional target space. Unlike H̃IJ in (3.29),
where the components that contain the tenth spatial index are set to zero, now, all entries
inH ′µν can be nonzero. We require that the M2-brane is localized in the transverse isometry
direction Θ = X10, which we compactify over a circle of radius R10. Gauging the isometry
by introducing a pure gauge field vµ, we write the gauged form of (A.1) as

Sgauged = −1
2

∫
d3Y

√
−γ′ γ′µν H ′µν −

∫ (
A′(3) + v ∧ F

)
. (A.3)
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We take the following Kaluza-Klein reduction ansatz:

H ′µν = e−2Φ/3
[
Hµν + e2Φ

(
C(1)
µ +DµΘ

) (
C(1)
ν +DνΘ

)]
, (A.4a)

γ′µν = e−2Φ/3 γµν , A′(3) = −C(3) +B ∧DΘ , DµΘ = ∂µΘ + vµ , (A.4b)

where γµν = γµ
u γν

v ηuv is a rank-three matrix. In terms of the one-form V = C(1) +DΘ,
we write (A.3) as

Sgauged = −1
2

∫
d3Y e−Φ√−γ γµν

(
Hµν + e2Φ Vµ Vν

)
+
∫ (

C(3) + F ∧ C(1) −F ∧ V
)
.

(A.5)

Integrating out Vµ in the path integral leads to the dimensionally reduced action

S′D2 = −1
2

∫
d3Y e−Φ√−γ

(
γµν Hµν + 1

2 γ
µν γρσ FµρFνσ

)
+
∫ (

C(3) + F ∧ C(1)
)
.

(A.6)

This action reproduces the one in [47] and describes Galilean D2-branes27 coupled to ten-
dimensional membrane Newton-Cartan geometry, which has a codimension-three foliation.
This theory is different in nature from (3.17) that describes nonrelativistic D2-branes cou-
pled to string Newton-Cartan geometry. Upon performing an S-duality transformation on
the D2-brane action (A.6) by following the same procedure detailed in section 3.2.1, the
original M2-brane action (A.1) is recovered.

In a flat limit with γµν = diag(−1, 1, 1), Hµν = ∂µπ
u′ ∂νπ

u′ and B = C(1) = C(3) = 0,
the D2-brane is orthogonal to the transverse directions and extends in the longitudinal
directions. Here, πu′ are Nambu-Goldstone bosons that perturb the shape of the D2-brane
in the transverse directions, with u′ = 3, · · · , 9. We also assume that Φ = Φ0 is a constant,
which determines the string coupling gs ≡ eΦ0 = g2

YM, with gYM being the Yang-Mills
coupling. At the quadratic order in field perturbations, the DBI action (A.6) gives

S
′(2)
D2 = − 1

g2
YM

∫
d3Y

(1
4 Fµν F

µν + 1
2 ∂µπ

u′ ∂µπu
′
)
. (A.7)

This quadratic action is relativistic. It is also possible to consider Galilean D2-branes
transverse to one or both of the longitudinal spatial directions, in which case a nontrivial
geometry background is required for the effective gauge theory to be well defined.

It is also possible to derive the same D2-brane action (A.6) as a limit of the action (3.40)
describing D2-branes in relativistic string theory. We start with the following ansatz:

ĜMN = c4/3 γMN + c−2/3HMN , Ĉ(1) = c−1/3C(1) , Φ̂ = Φ , (A.8a)

F̂MN = c1/3FMN , Ĉ
(3)
MNL = c2 e−Φ γM

u γN
v γL

w εuvw + C
(3)
MNL . (A.8b)

Plugging the above ansatz into (3.40), which we transcribe as

ŜD2 = −
∫
d3Y e−Φ̂

√
− det

(
Ĝµν + F̂µν

)
+
∫ (

Ĉ(3) + Ĉ(1) ∧ F̂
)
, (A.9)

27See [8] for the origin of the terminology “Galilean Dp-brane”.
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we find that

e−Φ̂
√
− det

(
Ĝµν + F̂µν

)
= e−Φ√−γ

(
c2 + 1

2 γ
µν Hµν + 1

4 F
µνFµν

)
+O(c−2) ,

(A.10a)
1
3! ε

µνρ
(
Ĉ(3)
µνρ + 3 Ĉ(1)

µ F̂νρ
)

= c2 e−Φ√−γ + 1
3! ε

µνρ
(
C(3)
µνρ + 3C(1)

µ Fνρ
)
, (A.10b)

and thus (A.6) is recovered in the c→∞ limit. This membrane limit of relativistic string
theory generalizes the one initially considered in [8].

To further continue the study of this sector that is defined from the c→∞ limit with
the prescriptions given in (A.8), it would be useful to understand whether fundamental
strings can be defined. It would also be intriguing to consider T-duality transformations
of the action (A.6) and look for a notion of general Dp-brane actions in ten-dimensional
membrane Newton-Cartan geometry. In particular, if one could make sense of a D1-string
action in ten-dimensional membrane Newton-Cartan geometry, it would be possible to
study the associated fundamental strings by performing an S-duality transformation of
D1-strings. We will leave the studies of extended objects other than Galilean D2-branes in
membrane Newton-Cartan geometry to the future.

Finally, it is also possible to generalize the two-brane limit of the relativistic D2-brane
action, defined by the prescriptions in (A.8), to other p-brane limits of the associated
relativistic Dp-brane action. We start with the Dp-brane action (2.45) in relativistic string
theory, which we transcribe below:

ŜDp = −
∫
dp+1Y e−Φ̂

√
− det

(
Ĝµν + F̂µν

)
+
∫ ∑

q

Ĉ(q) ∧ eF̂
∣∣∣∣
p+1

. (A.11)

Consider the following ansatz that generalizes (A.8):

ĜMN = c2 γMN + c1−pHMN , F̂MN = c(3−p)/2FMN , Φ̂ = Φ , (A.12)

and

Ĉ
(p+1)
M0···Mp

= cp+1 e−Φ γM0
u0 · · · γMp

up εu0···up + C
(p+1)
M0···Mp

, (A.13a)

Ĉ(q) = c
1
4 (p−3)(p−q+1)C(q) , q < p+ 1 . (A.13b)

When p = 2, upon redefining c → c2/3, the ansatz (A.8) is recovered. Note that the
parametrizations for ĜMN and Ĉ(p+1) match (2.58) for the p-brane limit (up to a rescaling
of Ĉ(p+1) before identifying it with Â(p+1) in (2.58)). The c→∞ limit of (A.11) gives

S′Dp = −1
2

∫
dp+1Y e−Φ√−γ

(
γµν Hµν + 1

2 γ
µν γρσ FµρFνσ

)
+
∫ ∑

q

C(q) ∧ eF
∣∣∣∣
p+1

,

(A.14)

which describes the so-called Galilean Dp-brane first proposed in [8]. A Galilean Dp-brane is
coupled to a ten-dimensional p-brane Newton-Cartan geometry. It is then a straightforward
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exercise to dualize the U(1) gauge field in (A.14) and derive various actions that describe
S-dual objects in Type IIB or membrane configurations in M-theory. This may improve
our understanding of p-brane limits of relativistic string/M-theory. Moreover, it would be
intriguing to derive the Buscher rules associated with T-duality transformations under the
p-brane limits. This will help us understand how to define extended objects other than the
Dp-branes in (A.14) within these corners.

B Stueckelberg transformations of Buscher rules for RR potentials

In this appendix, we apply the infinitesimal version of the Stueckelberg transforma-
tions (2.32) and (2.38) to the Buscher rules containing RR potentials. The infinitesimal
Stueckelberg transformations of Bµν , Hµν and C(q) are

δξHMN = −
(
τM

A ξN
B + τN

A ξM
B
)
ηAB , δξC

(q) = −C(q−2) ∧ δξB , q ≥ 2 , (B.1a)

δξBMN =
(
τM

A ξN
B − τNA ξMB

)
εAB , δξC

(0) = δξC
(1) = 0 . (B.1b)

In the following, we analyze how the Buscher rules (4.25), (B.8) and (B.11) for RR-
potentials transform under these Stueckelberg symmetries. This serves as an extra check
of the Buscher rules derived in section 4.

• Longitudinal spacelike T-duality. For the T-duality transformation along a lon-
gitudinal spatial isometry that we denote by y, the associated Buscher rules are given
in (4.25), with

C̃(q)
y = C(q−1) − C

(q−1)
y ∧ τ (1)

y

τyy
+ C(q−3) ∧ (Hy ∧ `y +Hyy `)

τyy
− C

(q−3)
y ∧Hy ∧ `

τyy
,

(B.2a)

C̃(q) = C(q+1)
y + C(q−1) ∧By +

C
(q−1)
y ∧

(
By ∧ τ (1)

y +Hy ∧ `y +Hyy `
)

τyy

+ C(q−3) ∧By ∧ (Hy ∧ `y +Hyy `)
τyy

+ C
(q−3)
y ∧By ∧Hy ∧ `

τyy
. (B.2b)

Note that δξC̃(q) = δξC̃
(q)
y = 0 because C̃(q) and C̃

(q)
y are RR potentials in the

DLCQ of relativistic string theory. Therefore, the r.h.s. of both equations in (B.2)
must vanish under (B.1). We start with analyzing (B.2a) and varying with respect
to (B.1) gives

δξC̃
(q)
y = −C(q−3) ∧ δξ

(
B − By ∧ τ (1)

y +Hy ∧ `y +Hyy `

τyy

)
+ 1
τyy

C(q−3)
y ∧

(
δξB ∧ τ (1)

y + δξHy

)
+ 1
τyy

C(q−5)
y ∧ δξB ∧Hy ∧ `

− 1
τyy

C(q−5) ∧
[
δξB ∧

(
Hy ∧ `y +Hyy `

)
− δξBy ∧Hy ∧ `

]
.

(B.3)

– 53 –



J
H
E
P
0
4
(
2
0
2
2
)
1
6
1

The terms proportional to C(q−3) and C(q−5)
y vanish due to

δξB̃ = B − By ∧ τ (1)
y +Hy ∧ `y +Hyy `

τyy
= 0, δξB ∧ ` = 0 , (B.4)

where B̃ is the T-dual Kalb-Ramond field in (4.17). Furthermore, we write the
components of (B.1) that are relevant to (B.3) in terms of differential forms as

δξHy = −
(
τA ξy

B + τy
A ξB

)
ηAB , δξB = τA ∧ ξBεAB , (B.5a)

δξBy =
(
τA ξBy − τAy ξB

)
εAB , (B.5b)

where ξA = ξm
A dY m. Substituting (B.5) into (B.3), and using the identities,

εAB ηCD = −εCA ηBD − εBC ηAD , εAB εCD = ηAD ηBC − ηAC ηBD , (B.6)

we find that the C(q−3)
y and C(q−5) terms also vanish which is consistent with δξC̃(q)

y =0.
Next, we prove the invariance of C̃(q)

y under (B.1). Varying the r.h.s. of (B.2b)
with respect to (B.1), and applying (B.4), we find

δξC̃
(q) = 1

τyy
C(q−3)
y ∧

[
δξB ∧

(
`y ∧Hy −By ∧ τ (1)

y

)
+
(
δξBy ∧Hy +By ∧ δξHy

)
∧ `
]

− 1
τyy

C(q−5) ∧By ∧Hy ∧ (δξB ∧ `y + δξBy ∧ `) .

(B.7)
These contributions vanish upon substituting (B.5) directly into (B.7) and using (B.6).

• Longitudinal lightlike T-duality. The Buscher rules of the RR potentials along
a longitudinal lightlike isometry y are given in (4.31), with

C̃(q)
y = C(q−1) − C

(q−1)
y ∧ τ
τy

, (B.8a)

C̃(q) = C(q+1)
y + C(q−1) ∧By + C

(q−1)
y ∧By ∧ τ

τy
. (B.8b)

We use (2.38) to find that

δξC̃
(q)
y = −C(q−3) ∧

(
δξB −

δξBy ∧ τ
τy

)
+ C(q−3)

y ∧ δξB ∧ τ
τy

, (B.9a)

δξC̃
(q) = −C(q−1)

y ∧
(
δξB −

δξBy ∧ τ
τy

)
− C(q−3) ∧By ∧

(
δξB −

δξBy ∧ τ
τy

)

− C(q−3)
y ∧ δξB ∧By ∧ τ

τy
. (B.9b)

Applying (B.1) and the Buscher rules (4.27), (B.9) can be rewritten in terms of the
T-dual fields, with

δξC̃
(q) = −C̃(q−2) ∧ δξB̃ , (B.10a)

δξC̃
(q)
y = −C̃(q−2) ∧ δξB̃y − C̃(q−2)

y ∧ δξB̃ , (B.10b)
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reproducing the Stueckelberg transformations of C̃(q) and C̃(q)
y in nonrelativistic string

theory.
• Transverse T-duality. In the presence of a transverse isometry y, we record the

RR potentials’ Buscher rules (4.34) for convenience

C̃(q)
y = C(q−1) − C

(q−1)
y ∧Hy

Hyy
, (B.11a)

C̃(q) = C(q+1)
y + C(q−1) ∧By + C

(q−1)
y ∧By ∧Hy

Hyy
. (B.11b)

Using (2.38), we find

δξC̃
(q)
y = −C(q−3) ∧ δξB +

(
C(q−3) ∧ δξBy + C

(q−3)
y ∧ δξB

)
∧Hy − C(q−1)

y ∧ δξHy

Hyy
,

(B.12a)

δξC̃
(q) = −C(q−1)

y ∧
(
δξB −

δξBy ∧Hy +By ∧ δξHy

Hyy

)

− C(q−3) ∧
(
δξB ∧By + δξBy ∧By ∧Hy

Hyy

)
+ C(q−3)

y ∧ δξB ∧By ∧Hy

Hyy
.

(B.12b)

Applying (B.1) and the transverse Buscher rules (4.33), (B.12) can be rewritten in
terms of the T-dual fields as in (B.10). This reproduces the Stueckelberg transfor-
mations of the T-dual RR potentials in nonrelativistic string theory.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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