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Abstract

In the standard economic models of traffic congestion, traffic flow does not fall un-
der heavily congested conditions. But this is counter to experience, especially in the
downtown areas of most major cities during rush hour. This paper presents a bath-
tub model of traffic congestion. The height of water in the bathtub corresponds to
traffic density, velocity is negatively related to density, and outflow is the product of
density and velocity. Above a critical density, outflow falls as density increases. The
model indicates that, when demand is high relative to capacity, applying an optimal
time-varying congestion tolls generates benefits that are considerably larger than those
obtained from the standard models and exceed the toll revenue collected.

Keywords: traffic congestion, tolls, flow, density, velocity, hypercongestion, trip-timing
equilibrium

JEL codes:

Department of Economics, University of California Riverside, Riverside, CA 92521
richard.arnott@ucr.edu.

∗I would like to thank the University of California Transportation Center (grant number xxxx) for financial
support, and Tola Kokoza and Huiling Zhang for excellent research assistance. In writing this paper, I have
drawn on the knowledge gained from earlier collaborations with André de Palma, Elijah de Palma, Eren
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1 Introduction

There are two standard models of traffic congestion. In the first, which is familiar from

undergraduate textbooks, trip cost increases in traffic flow, approaching infinity as capacity

is reached. In the second, the bottleneck model (William Vickrey, 1969; Arnott, André de

Palma, and Robin Lindsey, 1993), which treats the evolution of congestion over the rush hour,

congestion is modeled as a deterministic queue behind a bottleneck of fixed flow capacity. In

neither model does traffic flow as congestion increases. But casual experience and common

sense1 suggest that, especially in the downtown areas of major cities during rush hour, traffic

flow falls as congestion increases (with zero flow in the limit as traffic becomes completely

jammed). Surprisingly, documentation of this phenomenon has started only recently (Carlos

Daganzo and Nikolas Geroliminis, 2008).

This paper develops a bathtub model of traffic congestion that captures this phenomenon2.

Think of the bathtub as being Manhattan. In the morning rush hour, cars join the traffic

on Manhattan streets, entering either across the bridges into Manhattan or from parking

garages in Manhattan. These cars correspond to the flow of water into the bathtub. The

density of traffic corresponds to the height of water in the bathtub, and the outflow cor-

responds to cars exiting Manhattan traffic, either across the bridges out of Manhattan or

into parking garages in Manhattan. Traffic velocity is inversely related to traffic density,

flow equals density times velocity, and, above a critical density, flow is negatively related to

density3. In terms of the bathtub analogy, as the water level in the bathtub rises, a critical

water level is reached above which the rate at which water drains out of the bathtub is
1There is abundant anecdotal evidence of downtown rush-hour traffic speeds of 3 to 5 mph in cities such

as Moscow, Shanghai, Bangkok, Djakarta, Istanbul, and London before the congestion toll, but no reliable
documentation (with average speeds below this level it would be faster to walk). And it seems implausible
that traffic flow can be close to capacity at such speeds.

2The model of this paper was inspired by a conversation with Vickrey a few years before his death. He
coined the term ”bathtub model of traffic congestion”, thinking of a bathtub and of Manhattan being shaped
like a bathtub. Vickrey never published his model, and the unpublished notes he left were incompletely
developed.

3In Vickrey’s terminology, traffic is ”hypercongested” when flow and density are negatively related, which
corresponds to traffic jam situations.
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inversely related to the height of water in the bathtub. In the early morning rush hour, the

flow of water into the bathtub exceeds the rate at which the bath can drain, and the water

level rises. If the water rises much above the critical level, the water in the bathtub takes

a long time to drain. A planner regulating the flow of water into the bathtub would ensure

that the water never rises above the critical level.

The bathtub analogy does have the ring of truth to it. But only recently has it been

empirically investigated. Traffic engineers started to collect detailed data on freeway traffic

flow using loop detectors in the early 1980’s (Fred Hall, Brian Allen, and Margot Gunter,

1986). Analysis of these data (for example, Michael Cassidy and Robert Bertini, 1999)

suggests that freeways contain bottlenecks whose discharge rates fall only slightly as the

length of the queue behind them increases. Based partly on these analyses, the prevailing

wisdom in urban transportation economics (Kenneth Small and Erik Verhoef, 2007) is that

the aggregative or macroscopic4 behavior of rush-hour traffic in metropolitan areas is broadly

consistent with the bottleneck model. Only in the last five years have comparable data been

collected for downtown city streets in major cities. Analysis of these data (Geroliminis

and Daganzo, 2008; Daganzo, Vikash Gayah, and Eric Gonzales, 2011) provides strong

support for what these authors refer to as the existence of a ”stable urban-scale macroscopic

fundamental diagram” – a stable graph relating traffic flow to traffic density at the level of

the downtown area for a particular city, which includes a portion corresponding to heavily

congested conditions over which traffic flow falls as density increases.

Section 2 briefly introduces traffic flow theory and the economic theory of traffic conges-

tion. Section 3 presents the basic bathtub model, and applies it to determining traffic flow

equilibrium in the morning rush hour in the absence of congestion tolls. Section 4 solves for

the corresponding social optimum and the time-varying toll that decentralizes it. Section 5

compares the no-toll equilibrium and the social optimum, policy insights and directions for

4The prevailing wisdom has recently been disputed by Arnott and Eren Inci (2010). There is no dispute
that hypercongestion can occur as a localized phenomenon. The dispute concerns whether hypercongestion
can or does occur at the level of the downtown or metropolitan area.
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future research, and section 6 concludes.

2 Background

The earliest well-articulated theory of traffic flow is known variously as kinematic wave

theory, LWR traffic flow congestion theory, and classical flow congestion (James Lighthill

and Gerald Whitham, 1955, and Paul Richards, 1956). The theory combines three elements:

i) the fundamental identity of traffic flow theory, that flow equals density times velocity:

q = vk; ii) the equation of continuity, which is the conservation of mass for a fluid; and iii) an

assumed technological relationship between velocity and density; in this paper, Greenshields’

Relation is assumed (Bruce Greenshields, 1935), which posits a negative linear relationship:

v = v0

�
1− k

kj

�
, where v0 is free-flow velocity and kj jam density. Elements i) and iii) imply

that flow is related to density according to the formula:

q = kv0

�
1− k

kj

�
(1)

which describes a parabolic relationship, as shown in Figure ??. For each level of flow,

there are two levels of density, the lower one corresponding to congested travel (in Vickrey’s

terminology), which corresponds to free-flowing traffic, the higher one to hypercongested

travel, which corresponds to traffic jam situations. The maximum level of flow, qc =
v0kj
4 , is

referred to as capacity flow5.

5In the transportation science literature, relationships such as (??) are termed macroscopic since they
describe the behavior of traffic at an aggregate level, without reference to the behavior of individual cars.
Microscopic models, in contrast, posit the behavior of the individual car, and then aggregate. The earliest
microscopic models are simple car-following models, which relate a car’s velocity or acceleration to the
position and velocity of the car immediately ahead. When traffic is in steady state, car-following models
yield simple relationships between velocity and density but not generally otherwise. As a result of the
avalanche of traffic flow data obtained from sensors, as well as the development of traffic microsimulation
models, there has been an explosion of microscopic models. Broadly speaking, there are now two schools in
traffic flow theory (Sven Maerivoet and Bart De Moor, 2008). The European School insists on aggregation
from microscopic models. The Berkeley School, in contrast, argues that traffic flow is so complex that, at
an aggregate level at least, a more fruitful approach is to assume a technological relationship between flow
and density even out of steady state. This paper conforms to the Berkeley School.
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In the transportation economics literature, there are two broad approaches to the study

of rush-hour traffic congestion. The first, deriving from Arthur Pigou (xxxx) and Frank

Knight (xxxx), applies the static theory of externalities to traffic congestion. Figure ??

presents the standard textbook analysis, which assumes identical cars and drivers. The user

cost (or marginal private cost) of an individual driver6 is an increasing and convex function

of traffic flow: uc(q). Since all drivers face the same user cost, user cost corresponds to

average cost in cost theory, from which a graph relating marginal social cost to traffic flow

can be derived: msc(q). Since a driver slows down other drivers without compensating them,

he generates an externality cost, ec(q), equal to the difference between marginal social cost

and user cost. The optimal level of flow, q∗, occurs where the marginal social cost curve

intersects the demand curve, and the untolled equilibrium level of flow, q̂, where the user

cost curve intersects the demand curve. The externality can be internalized by imposing

a congestion toll, τ , equal to the difference between the marginal social cost and the user

cost of a trip, evaluated at the socially optimal level of traffic flow. Since it assumes that

velocity is negatively related to flow, this approach ignores the possibility of hypercongestion.

Most studies measuring the benefits of congestion pricing (e.g. David Anderson and Herbert

Mohring, 1997) adopt this approach, and many assume the Bureau of Public Roads (BPR)

link congestion function:

T = T0 + T1

�
q

k

�4
, (2)

where T is travel time, q flow, pcc(q) = uc(q) − uc(0), and T0 and T1 are link-specific

constants. Defining private congestion cost to be the increase in a driver’s trip cost due

to congestion, (??) has the property that the ratio of the externality cost to the private

congestion cost equals7 4.0.

6Different vehicle types are accommodated by treating them as passenger-car equivalents (PCE’s).
7Consider a driver whose journey to work takes 15 minutes in uncongested traffic and 30 minutes in

congested traffic. Her private congestion cost is the value of 15 minutes of time and, with the BPR function,
she imposes an externality cost equal to the value of 60 minutes of time.
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The second broad approach to the study of rush-hour traffic congestion entails application

of Vickrey’s bottleneck model. There are N identical commuters who must travel from home

to work in the morning rush hour along a single road, and who have a common work start

time, t∗. In the absence of a toll, there are two components of trip cost, travel time cost and

schedule delay cost, which is the cost associated with arriving at work either early or late.

Along the road there is a single bottleneck with fixed flow capacity, s. Waiting in a queue

to pass through the bottleneck is the only cost of traveling on the road. Where α is the unit

cost of travel time, β the unit cost of time early, γ the unit cost of time late, t departure

time from home and T (t) the travel time as a function of t, trip cost as a function of time is

c(t) = travel time cost(t) + time early cost(t) + time late cost(t)

= αT (t) +max(0, β(t∗ − t− T (t)) +max(0, γ(t+ T (t)− t
∗))).

(3)

A trip-timing equilibrium is achieved when no commuter can reduce her trip price (which

equals trip cost in the absence of a toll) by altering her departure time. If γ < α < β (which

is supported by the empirical evidence: Small, 1982), a trip-timing equilibrium exists in

which trip price is equalized over the departure interval. This is achieved via adjustment in

the length of the queue behind the bottleneck, which is in turn achieved via adjustment in

the departure rate from home. The commuter who arrives exactly on time faces no schedule

delay cost and in the absence of a time-varying toll must therefore experience the highest

travel time cost. The commuters who depart at either the beginning or end of the rush hour

experience the highest schedule delay cost and no travel time cost. Thus, in the absence of

a time-varying toll, the queue increases (linearly) in the early morning rush hour and then

dissipates (linearly) in the late morning rush hour.

Figure ?? displays the no-toll equilibrium in terms of cumulative departures from home,

D(t), and cumulative arrivals at work, A(t). The vertical distance between D(t) and A(t) is

the queue length as a function of t, and the horizontal distance between the curves for the
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Figure 3: Cumulative inflow and outflow in the bottleneck model: No-toll equilibrium

nth driver indicates the time she spends in the queue. The slope of the cumulative departure

function is the departure rate from home, and the slope of the cumulative arrival function

the arrival rate at work, which equals the bottleneck’s flow capacity, s. Total travel time is

given by the area of the triangle XY Z, total time early by the area XWU , and total time

late by the area WV Z.

Four properties of the model are particularly noteworthy:

1. Consider the effect of applying a time-varying toll equal to travel time cost in the no-toll

equilibrium. The toll simply replaces travel time cost, completely eliminating the queue,

with all commuters experiencing the same common trip price as in the no-toll equilibrium.

Thus, the efficiency gain from applying this (optimal) time-varying toll equals the revenue

it collects, so that commuters are better off from tolling if any fraction of the toll revenue

collected is spent to their benefit.

2. Figure ?? plots reduced-form cost functions, in a diagram similar to Figure ??, except
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that the population of individuals over the rush hour, N , is on the x-axis rather than flow8.

See Figure ??. Since a doubling of population doubles the base and height of the triangles in

Figure ??, for the no-toll equilibrium, user cost, ÛC(N), and marginal social cost, ˆMSC(N),

are linear functions of population, with the marginal social cost function having double the

slope of the average cost function. Accordingly, the textbook model and the bottleneck

model can be qualitatively reconciled by interpreting the standard model as a reduced form

of the bottleneck model, with flow replaced by population. Even with this reconciliation,

however, there are important differences between the models.

3. In the textbook model so reinterpreted, with the BPR link congestion function, the

elasticity of private congestion cost with respect to population is 4.0, while in the bottleneck

model it equals 1.0. The value of this elasticity is important since it equals the ratio of the

optimal toll (optimal average toll in the bottleneck model) to private congestion cost. The

8When demand is sensitive to price, the no-toll equilibrium occurs where the no-toll user cost curve
intersects the demand curve and the optimal-toll equilibrium where the optimal-toll marginal social cost
function interests the demand curve. Since the no-toll user cost curve coincides with optimal-toll marginal
social cost function, the number of trips in the no-toll equilibrium equals that in the optimal-toll equilibrium.
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model to be presented in this paper points to a way in which these very different elasticity

values can be reconciled.

4. In the textbook model, the benefit from congestion tolling derives from the reduction

in the number of trips it induces. In the bottleneck model, there is the added benefit that

tolling reallocates trips over the rush hour, causing the user cost and marginal social cost

curves to shift down.

3 The Bathtub Model and Its No-toll Equilibrium

The bottleneck model is now well entrenched in both transportation economics and trans-

portation engineering. There is no doubt that the choice of trip time is central to rush-hour

traffic congestion, but one wonders how accurately the bottleneck model describes rush-hour

traffic congestion at the aggregate level. Its property that a doubling of population, holding

fixed the traffic network, results in only a doubling of each driver’s cost does not square with

casual observation9. One reason the bottleneck model has not been extended to provide a

richer treatment of traffic congestion was suggested earlier freeway data tend to support the

simple bottleneck models treatment of congestion while only recently have data on downtown

congestion been collected systematically. Another is that this extension has been attempted

but has proved to be analytically difficult.

Vernon Henderson (1981) replaced the bottleneck with a single highway link subject to

flow congestion, but in order to obtain analytical tractability resorted to the unappealing

assumption that a car’s speed along the link is inversely related to the entry flow rate at

9Casual empiricism suggests that time last cost at least is a convex function of time late. Suppose, for the
sake of argument, that time late cost as a function of arrival time t� equals c1(t∗−t�)+c2(t∗−t�)2+c3(t∗−t�)3,
where c1, c2, and c3 are positive constants, and that time early costs are c4[c1(t∗−t�)+c2(t∗−t�)2+c3(t∗−t�)3]
with c4 a positive constant less than one. In the bottleneck model with these time late and time early cost
functions, it is straightforward to show that, as population increases, holding bottleneck capacity fixed, the
elasticity of the no-toll equilibrium trip cost rises from 1.0 to 3.0. Thus, sufficient convexity of the schedule
delay cost functions has the potential to reconcile the different values of the elasticity of private congestion
cost with respect to population between the textbook model and the bottleneck model. The empirical
evidence, however, suggests that the schedule delay cost functions show only mild convexity.
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the time it enters the road, which is inconsistent with the physics of fluid flow. Xuehao Chu

(1995) considered the same model, except that a car’s speed along the link is a function of

the exit flow at the time it exits the road. Elijah DePalma and Arnott (2010) considered the

same model but with LWR flow congestion (in particular, assuming Greenshields’ Relation).

By solving a non-linear partial differential equation, they were able to obtain a closed-form

solution for the social optimum, though not for the no-toll equilibrium. In both the social

optimum and the no-toll equilibrium, the elasticity of private congestion cost with respect to

population is between 0.5 and 1.0. In none of these models does hypercongestion occur, in

Henderson and Chu by assumption and in DePalma and Arnott due to the physics of traffic

flow along a road of uniform width.

In a paper focusing on hypercongestion, Small and Xuehao Chu (2003) replaced the

bottleneck with a dense, isotropic street network. Working with an isotropic space is an

appealing simplification since it eliminates spatial differentiation. A natural starting point

is to assume that commuters are identical in all respects (except that they are uniformly

distributed over space) including having the same trip length, L. With the entry rate as the

control variable, the temporal evolution of travel time and density is given by the following

three equations:

� t+T (t)

t

v(k(u)) du = L

D(t) = A(t+ T (t))

k(t) = D(t)− A(t)

The first equation states that the integral of velocity over an individual’s travel time interval

equals trip length, and implicitly defines T (t); the second states that cumulative departures

up to time t equal cumulative arrivals up to time t+ T (t); and the third states that density

equals cumulative inflow minus cumulative outflow. Substituting out k(t) and A(t) gives an

11



equation relating travel time to the cumulative entry function:

� t+T (t)

t

v(D(u)−D(u− T (u))) du = L.

This is a delay integral equation with an endogenous delay, a class of problems that is

at the research frontier in applied mathematics. Small and Chu finessed the inability to

solve this equation by assuming that trip time equals trip length divided by exit velocity:

v(t + T (t))T (t + T (t)) = L. This assumption is unappealing for the same reason that

Henderson’s and Chu’s simplifying assumptions are unappealing – it is inconsistent with

the physics of fluid flow. Small and Chu are however to be credited with having solved

for the no-toll equilibrium under their assumption. The qualitative features of the no-toll

equilibrium under their simplifying assumption are broadly similar to the qualitative features

of the no-toll equilibrium obtained in this paper. Small and Chu seem not to have realized,

however, that the reduced-form equilibrium may exhibit hypercongestion, defined as mean

density-weighted density above capacity density10.

3.1 The Model

Consider an isotropic space in which trip distance and traffic density per unit area are both

well defined11. There are N identical commuters per unit area, each of whom must travel

from home to work by car in the morning rush hour and has start time t
∗. Congestion is

described by a function relating velocity to density12

v(t) = v(k(t)), (4)

10In flow-price space, a steady-state hypercongested equilibrium lies on the backward-bending portion of
the user cost curve. In their model and in ours, in population-price space, the reduced-form user cost curve
is upward sloping. This does not however imply that an equilibrium is not hypercongested according to this
definition.

11For concreteness, one may think of a Manhattan network of streets covering the entire globe.
12At some points in the paper, v is treated as a function of k and at others k is treated as a function of

v. Also, v(t) denotes the velocity at time t, whether or not v is treated as a function of k.
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Letting d(t) be the departure rate at time t, and a(t) be the arrival rate at time t, the

evolution of density is given by

k̇(t) = d(t)− a(t). (5)

Letting t denote the time of the first departure from home, and t the time of the last departure

from home:

D(t) = A((t) = 0

D(t) = N

(6)

To make the model tractable, the following simplifying assumption is made:

Assumption A-1 implies that13 there is a negative exponential distribution of trip lengths,

with mean L. Furthermore, an individual does not know his trip length until immediately

after his departure, and bases his departure time choice on expected trip price.

This assumption is made solely for analytical convenience. Trip lengths are not so dis-

tributed; individuals know their trip destinations when they depart; and knowing their trips

lengths, they sort themselves across departure times based on trip length (those with shorter

trips traveling closer to the rush hour peak). The assumption is defensible only to the ex-

tent that it results in a model whose aggregate properties conform to observation14. This

assumption implies that

a(t) =
k(t)v(k(t))

L
; (7)

v(t)
L is the probability that an individual terminates his trip at time t. Substituting (??) into

13Assumption A-1 results in arrivals being generated by a time-varying Poisson process. Within any
infinitesimal interval of time, dt, the probability that an individual in traffic will reach his destination is
v(k(t))dt

L . Thus, the number of arrivals in this interval is k(t) v(k(t)dtL .
14Small and Chu consider and reject this simplifying assumption. I prefer it, however, to their assumption,

which is inconsistent with the physics of fluid flow.

13



(??) yields

k̇(t) = d(t)− v(k(t))k(t)

L
. (8)

The social optimum is solved as an optimal control problem, with (??) as the differential

equation constraint. Equilibrium is solved for by adding an equal trip-price constraint, whose

form will differ depending on the form of tolling applied.

3.2 The No-toll Equilibrium – Analysis

Because a commuter does not know his trip length at the time he departs from home, when

deciding when to depart he faces uncertainty. Since there is no toll, the trip-price condition

is that no commuter can reduce his expected trip cost by departing at a different time. The

cost function is given by (??).

• early departures

Expected trip cost at time t is

Ec(t) =

� ∞

t

α(u− t)

�
v(u)

L

�
P (u; t) du+

� t∗

t

β(t∗ − u)

�
v(u)

L

�
P (u; t) du

+

� ∞

t∗
γ(u− t

∗)

�
v(u)

L

�
P (u; t) du,

(9)

where P (u; t) = exp

�
−
� u

t

�
(v(x)
L

�
dx

�
is the probability that an individual departing from

home at time t has not arrived at his destination by time u. The equal trip-cost condition

may be written as Ėc(t) = 0. Setting the derivative of (??) with respect to t equal to zero

(Pt(t; t) =
v(t)
L ), and simplifying, yields the early-morning trip-timing equilibrium condition:

c = Ec(t) =
αL

v(t)
+ β(t∗ − t). (10)

14



The intuition for (??) is that an individual should be indifferent between departing now and

departing an increment of time dt later. If he departs now, there is a probability v(t)
L dt that

he will exit in the interval of time between t and t dt, incurring a trip cost of β(t∗ − t), and

a probability 1− v(t)
L dt that he will not exit in the interval, incurring a trip cost of α dt+ c.

Rearranging (??) gives

v(t) =
αL

Ec(t)− β(t∗ − t)
=

c0

c1 + βt
, where c1 = c− βt

∗, and c0 = αL. (11)

Since there is a one-to-one relationship between velocity and density, (??) may be rewritten

as k�(v(t))v̇(t) = d(t)− k(v(t))v(t)
L , and hence

d(t) = k
�(v(t))v̇(t) +

k(v(t))v(t)

L
. (12)

t is then determined by the condition that15 v(t) = v0.

• late departures

Under moderately congested conditions, late departures do not occur since, even with no

inflow, the bathtub does not drain sufficiently rapidly to satisfy the trip-timing condition.

When late departures do occur, repeating the same procedure for late departures gives

Ec(t) =
αL

v(t)
+ γ(t− t

∗) (13)

v(t) =
c0

c2 − γt
, where c2 = c+ γt

∗, (14)

15It needs to be demonstrated that there is not a mass of departures at the beginning of the rush hour.
Suppose there were so that v(t+) < v0 by a finite amount. Consider an individual who departs an interval
of time dt prior to t, where a departure mass occurs. There is the probability v0dt

L that he will exit in the

interval of time between t−dt and t, incurring a trip cost of β(t∗− t), and a probability 1− v0dt
L that he will

not exit in the interval, incurring a trip cost of αdt+ c. Thus, c(t− dt) =
�
v0dt
L

�
β(t∗ − t)+

�
1− v0dt

L

�
(αdt+

αL
v(t) +β(t∗ − t)) = c+ dt

��
v0
L

�
β(t∗ − t) + α− αv0

v(t) −
v0
L β(t∗ − t)

�
< c. A mass of departures at t is therefore

inconsistent with the trip-timing equilibrium condition. Hence, v0 = c0
c1+βt , so that t =

αL
v0

−c

β .
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and (??) continues to apply, with t being determined by the condition that d(t) = 016.

The constant c is obtained from the condition that the integral of the entry rate over the

departure interval equals the population.

Over the early morning rush hour, density rises and velocity falls, and over the late morn-

ing rush hour, density falls and velocity rises. Since the density rises throughout the early

morning rush hour, inflow must continue over this period and exceed the outflow. When traf-

fic is only congested, outflow increases over this period, but when traffic is hypercongested,

it falls. In the late morning rush hour, if inflow continues it must be less than outflow.

3.3 No-toll Equilibrium – Numerical Example

It will prove instructive to work out a numerical example. Greenshields’ Relation is employed,

which specifies a negative linear relationship between velocity and density17, with a free-flow

velocity of 20 mph, and jam density normalized so that capacity flow equals 1.0, implying

that kj = 0.2. Time is measured such that t
∗ = 0. α = 20 ($/hr), β = 10, and γ = 40,

which is broadly consistent with their empirically estimated values for large US metropolitan

areas, and mean trip length is 5.0 miles. To make the example striking, it is assumed

that velocity at the peak of the rush hour is 2.5 mph. This is unrealistically high for US

metropolitan areas, except perhaps Manhattan, but not for cities such as Delhi, Bangkok,

Moscow, and Shanghai. These parameter values imply that c0 = 100, c1 = c = 40, c2 = 40,

and c3 = c = 40, t = −3.5, t̄ = 0.625, and N = 0.6922. The no-toll equilibrium is displayed

in Figure ??, which plots cumulative departures from home, D(t), and arrivals at work,

A(t), as function of time. Recall that the horizontal distance between the two curves gives

travel time, and the vertical distance gives density, which is negatively related to velocity.

The departure interval is 4.125 hours, the expected cost of a trip is $40, and at the peak

16Thus, t is given implicitly by k�(v(t))v̇(t)+ k(v(t))v(t)
L = 0. With Greenshields’ Relation, t− t∗ =

c−Lα+γ
v0

γ .

Thus, late departures do not occur when c < L(α+γ)
v0

, i.e. when trip cost is less than α+γ
α times uncongested

trip cost, αL
v0

.
17Relative to this negative linear specification, empirically estimated velocity-density relations tend to

bulge out at low densities and bulge in at high densities.
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of the rush hour traffic is so jammed that flow is only 44% of capacity flow. How inflow,

outflow, density, and velocity evolve over the rush hour shall be discussed in section 5, which

compares the no-toll equilibrium and the social optimum.

t=-3.5

D(t)
A(t)

t*=0 t=0.62
Time, t

N=0.6922

 

Figure 5: Cumulative departures and arrivals in the bottleneck model: No-toll equilibrium

The social optimum will be solved for in the next section. But for the moment the

inefficiency of the no-toll equilibrium can be illustrated by comparing it to the situation

where capacity flow is maintained throughout the departure interval — call it the bench-

mark allocation. This requires a departure mass of 0.1 at t, followed by the inflow rate

needed to maintain capacity flow for 2.961 hours. Thereafter, traffic density declines, with

a corresponding increase in velocity. An upper bound on the expected cost of a trip can

be established by assuming that velocity is 10 mph throughout the rush hour, and that the

departure interval ends at t
∗. Under these assumptions, expected travel time is 0.5 hours,

expected travel time cost $10, expected schedule delay cost18 $15.55 and expected trip cost

18The arrival rate would be 0.2 up to t∗. For the 0.5922 early arrivers, therefore, mean schedule delay cost
would be $14.80. For the 0.1 late arrivers, mean schedule delay would be 0.5 for a mean schedule delay cost
of $20.00. Overall mean schedule delay cost would therefore be (0.5922)(14.80)+(0.1)(20.00)

0.6922 = $15.55
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$25.55. Thus, expected trip cost and expected private congestion cost are consistently higher

in the no-toll equilibrium that in the benchmark allocation.

The example illustrates the inefficiency of traffic flow over the rush hour in the absence

of tolling. In the no-toll equilibrium, in order to satisfy the trip-timing condition, traffic

congestion must increase steadily over the early morning rush hour, so that at the peak of

the rush hour velocity is only 2.5 mph. But such a low velocity is associated with jammed

conditions and an outflow rate only 44% of capacity flow. The combination of a low arrival

rate at the start of the rush hour due to density considerably lower than capacity density

and a low outflow rate around the peak of the morning hour due to density considerably

higher than capacity density, lengthens the departure interval compared to the benchmark

allocation. In terms of the bathtub analogy, in the benchmark allocation the planner adjusts

the inflow rate so that the water flows out of the bathtub at capacity flow throughout the

early morning rush hour, and then turns off the tap, allowing the bathtub to drain in the late

morning rush hour. In the no-toll equilibrium, the inflow rate is such that the water level

gradually rises until it reaches a height at which the outflow is less than one-half capacity

flow, so that the bathtub takes a long time to drain.

3.4 The Reduced-Form Cost Curves

The economic importance of the elasticity of private congestion cost (PCC) with respect to

population was explained earlier, as was the substantial difference in this elasticity between

the textbook model and the bottleneck model. The value of this elasticity for this model is

now explored.

A condition for equilibrium is that the integral of the departure rate over the departure

interval equal population:

� t̄

t

d(t) dt = N. (15)
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From (??), d(t) = k
�(v(t))v̇(t) + k(v(t))v(t)

L . Expressions for v(t) for the early and late

morning rush hours are given by (??) and (??). Setting t
∗ = 0 and combining these results

gives

d(t) = −k
�
�

αL

c+ βt

�
αLβ

(c+ βt)2
+ k

�
αL

c+ βt

�
α

c+ βt

for the early departures. For late departures there are two cases to consider, the first without

late arrivals, the second with late arrivals. For the rest of the subsection, Greenshields’

Relation is assumed, for which

d(t) =
kjα

c+ βt

�
1− L(α− β)

v0(c+ βt)

�
early19

=
kjα

c− γt
max

�
0,

�
1− L(α + γ)

v0(c− γt)

��
late

(16)

When population is zero and when therefore there is no congestion, expected user cost is

αL
v0
. Define θ ≡ c÷ αL

v0
, which has the interpretation as the ratio of user cost to uncongested

user cost. In the first case θ <
α+γ
α , congestion is moderate and there are no late arrivals; in

the second, θ >
α+γ
α , congestion is heavy and there are late arrivals.

• Case 1: Moderate Congestion
�
θ <

α+γ
α

�

Integrating and then substituting in c+ βt = αL
v0

yields

19This equation may be rewritten as d(t) = kjv(t)
L

�
1− (α−β

α ) v(t)v0

�
and ḋ(t) − (kj v̇

L )
�
1− 2(α−β

α )( v(t)v0
)
�
.

Since v̇ < 0, the inflow rate is increasing if v(t) > αv0
2(α−β) , and decreasing otherwise. If β is only slightly

greater than zero, the inflow rate is increasing if traffic is congested and decreasing if it is hypercongested.
If β is greater than α

2 , the inflow rate is decreasing throughout the rush hour.
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N = kj

��
α

β

�
lnθ −

�
α− β

β

��
1− 1

θ

��
(17)

dN

dθ
= kj

�
α/β

θ
− (α− β)/β

θ2

�
. (18)

• Case 2: Heavy Congestion
�
θ >

α+γ
α

�

Integrating and then substituting in c+ βt = αL
v0

and c− γ t̄ = (α+γ)L
v0

, yields

N = kj

��
α

β
+

α

γ

��
lnθ − 1 +

1

θ

�
+ 1 +

�
α

γ

�
ln

�
γ

α + α

��
(19)

dN

dθ
= kj

�
α

β
+

α

γ

��
1

θ
− 1

θ2

�
. (20)

Total cost is αLNθ(N)
v0

, user cost is αLθ(N)
v0

, and marginal cost is αL

�
θ(N)+Nθ�(N)

v0

�
. Now,

define � = θ − 1, which is the ratio of private congestion cost to uncongested trip cost. For

light congestion and heavy congestion, respectively:

E�:N =
β(�+ 1)2

(α�+ β)�

�
α

β

�
ln(�+ 1)−

�
α− β

β

��
�

�+ 1

�

E�:N =

�
�+ 1

�

�2 ��
ln(1 + �)− �

�+ 1

�
+

β

β + γ
ln

�
α

α + γ

�
+

βγ

α(β + γ)

�
.

(21)

With the BPR form of congestion function, in the textbook model the elasticity of private
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congestion cost with respect to flow is constant, with a value of 4.0 typically being assumed.

When flow in that model is interpreted as the number of trips over the day or rush hour, it

corresponds to population (the number of travelers). In the bottleneck model, the elasticity of

private congestion with respect to population equals 1.0. In the bathtub model, the elasticity

of private congestion cost with respect to population equals E�:N . Its value approaches zero

as N approaches zero, increases monotonically with N , and asymptotically increases with the

order20 N as N approaches infinity. Thus, when flow in the textbook model is interpreted as

population, the elasticity of this paper’s model spans those of the textbook and bottleneck

models, with the bottleneck model’s elasticity corresponding to moderate congestion and the

textbook model’s elasticity corresponding to heavy congestion. In this sense at least, the

textbook model and the bottleneck model can be regarded as special cases of the bathtub

model. Figure ?? displays the reduced-form private congestion cost and marginal variable

social cost (marginal social cost minus the fixed cost of a trip, αL
v0
) functions for the example.

4 The Social Optimum

The planner’s problem is to choose the departure rate over the rush hour so as to minimize

total trip costs, which equal total travel time costs plus total schedule delay costs. Total

travel time costs alone would be minimized by having an infinitely long departure interval,

so that there would never be any congestion. Total schedule delay costs alone would be

minimized by having a mass of departures at the beginning of the rush hour of sufficient size

to bring density up to capacity density, followed by a period with entry at capacity flow,

during which outflow would be at capacity, and concluded by a period with exit but no entry

in which density dissipates21. The solution to the planner’s problem is an ”average” of these

two solutions, with relatively more weight being put on reducing total schedule costs, the

higher is the ratio of β
α .

20In the numerical example of the previous section, N = 0.6922, � = 7, and travel is heavily congested
(case 2), so that (??) applies. dN

d� = 0.05468 and E�:N = 1.8084.
21This is the same departure pattern as in the benchmark example in the previous section.
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Figure 6: Private congestion cost and marginal variable social cost as functions of population:
No-toll equilibrium

4.1 Optimal Control Problem

The social optimum problem is solved for using optimal control theory. There is one control

variable, d(t), and two state variables, A(t), and k(t). The objective is to minimize the sum

of total travel time costs, total time early costs, and total time late costs (all per unit area).

t = 0 is taken to be the time of the first departure22, so that t
∗ and t̄ are taken as choice

variables. Total travel time costs can be written as
�∞
0 αk(t) dt, with the travel time on the

road between t and t+dt being simply the density of cars on the road at that time; total time

early costs as
� t∗

0 βA(t) dt, with the time early between t and t+ dt equaling the number of

individuals who have already arrived at work; and total time late costs as
�∞
t∗ γ(N−A(t)) dt,

with the time late between t and t + dt equaling the number of individuals who have not

arrived at work. The two differential equation constraints are k̇(t) = d(t) − k(t)v(k(t))
L (eq.

(??)) and Ȧ(t) = k(t)v(t)
L . There are also an isoperimetric constraint, that the integral of

22Note that the time origin is different from that of the previous section, where t∗ is the origin.
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the departure rate over the departure interval equal the population, initial and terminal

conditions on the state variables, and a non-negativity constraint on d(t).

The optimal control problem is

min

� � t∗

0

αk(t) dt +

� t∗

0

βA(t) dt

�
+

� � ∞

t∗
αk(t) dt +

� ∞

t∗
γ(N − A(t)) dt

�

such that

i) k̇(t) = d(t)− k(t)v(k(t))

L
λ

ii) Ȧ(t) =
k(t)v(t)

L
µ

iii) N ≤
� t

0

d(t) dt ρ

iv) k(0) = A(0) = 0

v) k(∞) = 0 A(∞) = N

vi) d(t) ≥ 0

(22)

Ignoring constraint vi) since it turns out not to bind, for the early morning rush hour

the Hamiltonian is

H = αk + βA+ λ

�
d− kv(k)

L

�
+ µ

�
kv(k)

L

�
− ρd (23)

The optimality conditions are:

d : λ− ρ = 0 (24)

k : λ̇ = −
�
α− λ(v + kv

�)

L
+

µ(v + kv
�)

L

�
(25)

A : µ̇ = −β (26)
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Since ρ is the shadow price associated with an isoperimetric constraint (equaling the

marginal social cost of a trip), it is independent of t. So therefore from (??) is λ(t), which

is the shadow price of density at time t. Solving (??) gives that µ(t), the shadow price of

an arrival at time t, equals µ(0) − βt. Since the cost of time early is β(t∗ − t), µ(0) = βt
∗.

Combining these results yields

αL− [λ− β(t∗ − t)] (v + kv
�) = 0. (27)

This equation can be explained through a perturbation argument. Increase traffic density

at time t by one unit and then decrease it back to its original level a period dt later. This

increases traffic density by one unit for a period of time dt. The travel time cost associated

with this is αdt. The arrivals rate at time t is k(t)v(k(t))
L , which increases by v(k)+kv�(k)

L for the

increment of time dt, and thereafter returns to its original level. Since the cost of an extra

arrival at time t is β(t∗− t), time early costs increase by β
(t∗−t)(v(k)+kv�(k))

L . To restore density

to its original level, requires subtracting (v(k)+kv�(k))
L individuals at time t+ dt at a saving of

λ(v(k)+kv�(k))
L . Since the initial allocation was optimal, this perturbation has no effect on total

trip costs. Thus, [αL+ β(t∗ − t)(v + kv
�)− λ(v + kv

�)]dt = 0.

Since there is no congestion at t = 0, v(0) = (v + kv
�)0 = v0, so that from (??)

λ =
αL

v0
+ βt

∗
. (28)

Inserting (??) into (??) yields

αL−
�
αL

v0
+ βt

�
(v + kv

�) = 0. (29)

Since v + kv
�
> 0, traffic is never hypercongested during the early morning rush hour.

Also, density increases continuously over the early morning rush hour. (??) may be solved

for k
e(t), the optimal time path of density over the early morning rush hour. From this,

v
e(t) = v(ke(t)), ae(t) = ke(t)ve(t)

L , d
e(t) = k̇

e(t) + a
e(t) may be calculated. The first-order
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condition with respect to t
∗ is

βA(t∗)− γ[N − A(t∗)] = 0, (30)

so that

t
∗ = A

−1

�
γN

β + γ

�
. (31)

If departures continue into the late morning rush hour, the condition analogous to (??)

is

αL−
�
αL

v0
+ βt

∗ − γ(t− t
∗)

�
(v + kv

�) = 0, (32)

and t is determined by the condition d(t) = 0. Suppose, for the sake of argument, that

departures do continue into the late morning rush hour. Then (??) can be solved for kl(t),

the optimal time path of density over the portion of the late morning rush hour during which

there are departures, and so too can d
l(t) = k̇

l(t) + kl(t)vl(t)
L . If the t that solves d

l(t) = 0

exceeds t∗, then departures do continue into the late morning rush hour, and otherwise not.

After the last departure, whether this occurs at t∗ or later, traffic density falls according to

the equation k̇(t) = −k(t)v(t)
L . Traffic is never hypercongested in the late morning rush hour.

If there are late departures, (??) implies that traffic is not hypercongested in the late morning

departure interval, and after departures cease traffic density decreases and therefore cannot

become hypercongested. If there are no late departures, traffic density falls continuously

after t∗, and since traffic is not hypercongested at t∗, it is not hypercongested after t∗.

Finally, it bears note that, measured from the start of the rush hour, the time path of the

inflow rate during the early morning rush hour is independent of population, with population

determining the length of the morning rush hour. The reason is that density must increase

from zero at such a rate that the marginal social cost of a trip remain constant over time.

An analogous result holds for the no-toll equilibrium, in which density must increase from
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zero at such a rate that trip cost remain constant over time.

4.2 Social Optimum – Numerical Example

The social optimum for the example considered in the previous section is now solved for.

Assuming Greenshields’ Relation, (??) and (??) become

k(t) =
kj

2
−

�
αLkj

v0

�
÷ 2

�
αL

v0
+ βt

�
for t < t

∗

=
kj

2
−

�
αLkj

v0

�
÷ 2

�
αL

v0
+ βt

∗ − γ(t− t
∗)

�
for t ∈ (t∗, t̄)

(33)

Also,

k̇(t) = −k(t)v(k(t))

L
for t > t

For early arrivals

Ȧ(t) =
k(t)v(k(t))

L
=

kjv0 −
�

α2L2kj
v0

�
÷
�

αL
v0

+ βt

�2

4L
.

Since A(0) = 0,

A(t) =
kjv0t+

�
α2L2kj
βv0

�
÷

�
αL
v0

+ βt

�

4L
− αkj

4β
. (34)

Also, from (??), t∗ is determined by the equation

A(t∗) =

�
γ

β + γ

�
N =

kjv0t
∗ +

�
α2L2kj
βv0

�
÷
�

αL
v0

+ βt
∗
�

4L
− αkj

4β
. (35)

The departure rate is given by

26



d(t) = k̇(t) + Ȧ(t) =

kjv0
L − (α)(α−2β)Lkj

v0
÷
�

αL
v0

+ βt

�2

4
. (36)

With the parameters of the numerical example, k(t) = 0.2t
1+2t , k̇(t) =

0.2
(1+2t)2 , v(t) =

20(1+t)
1+2t ,

a(t) = 0.8(1+t)t
(1+2t)2 , d(t) = 0.2, A(t) = 0.4t2

1+2t , t
∗ = 3.201, and λ = 37.01. For t ∈ (t∗, t̄),

k(t) = 0.1 − 0.5
λ+40(t∗−t) , from which k̇(t), a(t) = k(t)v(t)

L , and d(t) = k̇(t) + a(t) can be

calculated. t̄ is calculated from the condition that d(t̄) = 0, and in the numerical example

equals 3.847. Thus, the departure interval is slightly shorter in the social optimum than in

the no-toll equilibrium. For t > t̄, there is no inflow, and so density falls at an increasing

proportional rate as cars exit. k(t) is calculated from k(t̄) and k̇(t) = −k(t)v(k(t))
L .

Cumulative departures and arrivals are shown for the example in Figure ??. Differences

between the no-toll equilibrium and the optimum will be commented on in the next section.

t t*

N

Time, t
t

D(t)
A(t)

Figure 7: Cumulative departures and arrivals in the social optimum

The marginal social cost function may be calculated using the relationships from (??)

and (??):
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λ(N) =
αL

v0
+ βt

∗(N) =
αL

v0
+ βA

e−1

�
γN

β + γ

�
. (37)

Rewrite (??) as

βkjv0t
∗
�
αL

v0
+ βt

∗
�
−

�
α
2
L
2
kj

v0

�
+

�
αLkj − 4

�
βγ

β + γ

�
NL

��
αL

v0
+ βt

∗
�

= 0

or

t
∗2(β2

kjv0) + t
∗
�
2αLkj − 4

�
βγ

β + γ

�
NL

�
+

�
−4α

�
γ

β + γ

�
NL

2

v0

�
= 0. (38)

This is a quadratic equation in t
∗, which has the form at

∗2 + [b0 − b1N ]t∗ − eN = 0, for

which the solution is t
∗ =

−(b0−b1N)+((b0−b1N)2+4aeN)
1/2

2a . t
∗, and hence marginal variable

social cost and private congestion cost, rise with N in the order between 1
2 and 1. Total

private congestion costs are

� N

0

βt
∗(n) dn =

� N

0

β

�
−(b0 − b1n) + ((b0 − b1n)2 + 4aen)1/2

2a

�
dn.

For the numerical example, numerical integration gives that private congestion cost is xxxx

and hence average trip costs is xxxx. COMMENT.

Figure ?? displays marginal variable social cost and private congestion cost as functions

of N . The difference between them is the average congestion externality cost or equivalently

the average value of the optimal time-varying toll.

4.3 The Optimal Time-Varying Toll

The optimal time-varying toll, τ(t), which is applied at the beginning of the trip, may be

calculated as the difference between the marginal social cost, λ, and the user cost, evaluated

at the social optimum. In the decentralized optimum, expected trip price must be the same
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Figure 8: Private congestion cost and marginal variable social cost as functions of population:
Social optimum

for all t in the departure interval. Expected trip price for a departure at time t < t
∗ is

Ep(t) = λ =

� ∞

t

α(u− t)

�
v(u)

L

�
P (u; t) du+

� t∗

t

β(t∗ − u)

�
v(u)

L

�
P (u; t) du

+

� ∞

t∗
γ(u− t

∗)

�
v(u)

L

�
P (u; t) du+ τ(t).

Integrating the first term on the right-hand side by parts yields

Ep(t) = λ =

� ∞

t

αL

v(u)

�
v(u)

L

�
P (u; t) du+

� t∗

t

β(t∗ − u)

�
v(u)

L

�
P (u; t) dt

+

� ∞

t∗
γ(u− t

∗)

�
v(u)

L

�
P (u; t) du+ τ(t).

(39)

Using (??), (??), and (??), one may write
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λ =

� ∞

t

�
αL

v(u) + k(u)v� (k(u))

�
v(u)

L
P (u; t) du+

� t∗

t

β(t∗ − u)
v(u)

L
P (u; t) du

+

� ∞

t∗
γ(u− t

∗)
v(u)

L
P (u; t) du.

(40)

Subtracting (??) from (??) yields

τ(t) =

� ∞

t

α

�
− k(u)v�(k(u))

v(k(u)) + k(u)v�(k(u))

�
P (u; t) du. (41)

−k(u)v�(k(u))
v(u)+kv�(u) is the ratio of the congestion externality cost to the user cost of travel time at

time u. Since a commuter’s user cost of travel between u and u+ du is αdu, the congestion

externality cost he imposes during this interval is [− kv�

v+kv� ]udu. Multiplying this expression

by the probability that the commuter is on the road at this time, and integrating over u,

gives the expected congestion cost of a trip starting at time t. The externality operates

entirely via traffic congestion and not at all via schedule delay23.

5 Comparison of the No-toll Equilibrium and Social

Optimum

5.1 Their Comparison in the Example

This section starts with a detailed discussion of the numerical example. In the numerical

example, free-flow velocity equals 20 mph and velocity at capacity flow 10 mph, so that

travel is hypercongested for speeds below 10 mph. The units of density are chosen so that

capacity flow is 1.0; jam density is 0.2 per ml2-hr, and capacity density 0.1 per ml2. The

units of flow are cars per ml-hr or car-miles per ml2 per hr. Since mean trip distance is 5

23This result is due to the Envelope Theorem. Since the allocation is socially optimal, the adjustment in
the departure time distribution induced by the addition of an individual at a particular point in time does
not have a first-order effect on aggregate trip costs.
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mls, the steady-state capacity inflow rate (that inflow rate that would sustain capacity flow

on the street system) is 0.2. Time is measured in clock hours with the common work start

time being 9:00 am.

Figure ?? contains three panels. The top panel displays velocity as a function of time,

the middle panel density, and the bottom panel the departure rate. In each panel, the curve

for the no-toll equilibrium is represented by a solid line and that for the social optimum by a

starred line. The discussion will focus on the early morning rush hour. Consider first the top

panel. In the no-toll equilibrium, v(t) = 10
4−(9−t) . The early morning rush hour starts at 5:30

am, at which time traffic flows at free-flow speed. Traffic becomes increasingly congested over

the early morning rush hour, with hypercongestion setting in at 6:00 am, and with velocity

at the peak being 2.5 mph. In the social optimum, v(t) = 20[1+(t−5.799)]

(1+ 2
t−5.799)

. The early morning

rush hour starts at 5:48 am. Traffic becomes increasingly congested over the early morning

rush, but never becomes hypercongested, with velocity at the peak being 11.35 mph.

The middle panel displays density as a function of time. Since density is a negative

linear function of velocity (Greenshields’ Relation), this panel displays the same information

as that in the top panel but from a perspective that will facilitate understanding why traffic

becomes so much more congested in the no-toll equilibrium than in the social optimum even

though the lengths of their rush hours are similar.

The bottom panel displays the departure rates as a function of time. In the no-toll equilib-

rium early morning rush hour, the departure rate is given by d(t) =
�

kjv0
L

��
v(t)
v0

��
1− v(t)

2v0

�
=

0.8
�

0.5
(4−(9−t))

��
1− 0.25

4−(9−t)

�
. The departure rate falls over the early morning rush hour, from

0.4 (twice the steady-state capacity departure rate) at the start of the rush hour, 5:30 am,

to 0.3 at 6:00 am, to 0.175 at 7:00 am, to 0.09375 at 9:00 am. In line with the paper’s cen-

tral simplifying assumption, the arrival rate is proportional to the flow rate on the streets:

v(t)k(t)
L = 0.8

�
0.5

4−(9−t)

��
1− 0.5

4−(9−t)

�
. The arrival rate starts at zero at 5:30 am, rises to a

maximum of 0.2 at 6:00 am, at which time hypercongestion sets in, and then falls to 0.15 at

7:00 am, and then 0.0875 at 9:00 am. To satisfy the trip-timing condition, density must rise
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Figure 9: Velocity, density, and inflow rate over the morning rush hour: No-toll equilibrium
and social optimum.
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throughout the early morning rush hour, which requires that the departure rate exceed the

arrival rate, even after hypercongestion has set in. In the social optimum in contrast, the

departure rate equals the steady-state capacity departure rate throughout the early morning

rush hour. As a result, density rises steadily but at a decreasing rate, asymptotically ap-

proaching capacity density. With this departure rate, user cost falls over the early morning

rush hour, so that over this period decentralization of the optimum requires a toll that it is

increasing in time.

In the no-toll equilibrium, the common trip price, which equals the common user cost

since there is no toll, is $40.00. In the decentralized social welfare optimum, the common

trip price, which equals the marginal social cost of a trip, is $37.01. Thus, in the example,

the imposition of the optimal time-varying congestion toll would make commuters better off

even if the toll revenue collected were completely squandered! Put alternatively, the revenue

from the congestion toll is raised with negative burden.
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Figure 10: Private congestion cost and marginal variable social cost as functions of popula-
tion: No-toll equilibrium and social optimum
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Figure ?? combines two previous figures, Figures ?? and ??, displaying the marginal

variable social cost and private congestion cost as functions of population (the fixed number

of commuters over the morning rush hour, road capacity fixed). Again the curves for the

no-toll equilibrium are drawn as solid lines, those for the social optimum as starred lines.

The vertical distance between the private congestion cost in the no-toll equilibrium and that

in the social optimum equals the per capita deadweight loss due to the no-toll equilibrium’s

inefficient pattern of departures over the rush hour. Particularly noteworthy is that with very

heavy congestion – when road capacity is very small relative to population, as in most major

cities outside Western Europe and North America – private congestion cost increases close

to exponentially with population in the no-toll equilibrium but only linearly with population

in the social optimum. In the no-toll equilibrium, as population gets very large, mean travel

time cost increases without limit, as traffic is almost completely jammed over almost the

entire rush hour. In the social optimum, in contrast, as population gets very large, mean

travel time cost levels off since traffic is close to capacity flow for almost the entire rush

hour, so that, first, the bulk of marginal social cost is schedule delay cost, and, second, a

doubling of population results in a doubling of the length of the morning rush hour and

hence a doubling of average schedule delay cost.

5.2 Policy insights

Most applied studies of congestion tolling have examined the policy using the textbook

model, where the benefit from congestion tolling derives from a reduction in the number of

trips taken (REFS). These studies typically find that the toll revenue raised is several times

the efficiency gain achieved. Unless therefore the toll revenue is spent wisely, tolling can

be harmful in aggregate, and even when it is beneficial in aggregate, some groups are hurt

and others helped. There has therefore been considerable policy and academic discussion

about how toll revenues can be redistributed to benefit all major user groups, or at least

the super-majority of users needed for the policy to be politically attractive (REFS). In
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the basic bottleneck model, in which trip demand is inelastic, the benefit from congestion

tolling derives from the reallocation of the fixed number of trips over the rush hour. The

toll revenue exactly equals the efficiency gain, and so is raised with no burden. The bathtub

model of this paper enriches the bottleneck model to allow for classical flow congestion, in

which velocity is negatively related to density. With moderate congestion, the efficiency gain

from congestion tolling falls short of the revenue raised, but when congestion is very heavy

may exceed it many times. The optimal time-varying toll prevents hypercongestion – traffic

jam situations – which can add enormously to trip cost when road capacity is low relative

to population.

To simplify the analysis, this paper has assumed that trip demand is completely inelastic.

Extend the model to treat price-sensitive demand, and consider the effect in the extended

model of applying a flat (time-invariant) congestion toll. The toll would be successful in

reducing the number of commuters, but would not prevent crippling traffic jams at the peak

of the rush hour. An optimal time-varying toll, however, would. Thus, this paper strengthens

the argument for employing congestion tolls that vary over time.

In several papers, Daganzo and his co-authors have pointed to the critical importance,

under heavily congested conditions, of not allowing traffic to become hypercongested. They

have argued for traffic restraint policies to achieve this. Where time-varying congestion

tolling is infeasible, as is the case in most developing countries where the technology for its

implementation would be impractically expensive and where the government’s administrative

and enforcement capacities are limited, traffic restraint policies might indeed be a desirable

second best. At a conceptual level, a traffic restraint policy would restrain the entry rate into

areas that have the potential to become badly jammed, similar to the way ramp meters do

on freeways. In this way, traffic jams would be converted into queues, and hypercongestion

avoided. Whether practical traffic restraint policies along these lines can be designed and

implemented remains to be seen.
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5.3 Directions for Future Research

This paper has presented just about the simplest possible model of bathtub traffic congestion

over the morning rush hour24, and even for this model devoted considerable space to a

particular example and derived few general results. In light of its analytical tractability, it

should not be unduly difficult either to derive results with general functional forms for the

trip cost and congestion functions or to generalize the model, while still achieving analytical

tractability, in many of the ways that the bottleneck model has been generalized. For

example, the model could be extended relatively straightforwardly to allow for commuters

who differ in their values of time and work start times, and for alternative modes (when

traffic becomes heavily congested, bicycling and walking25 become attractive options). It

would also be very straightforward to apply the model to solve for optimal capacity,26 and

to extend it to treat downtown parking27. The model also seems well suited to endogenize

activity scheduling within an urban area, most notably the distribution of work start times.

The research program initiated by Daganzo and his co-authors in estimating macroscopic

fundamental diagrams for heavily congested areas of particular cities should prove highly

complementary to development of the bathtub model, leading to practical policy simulation

based on bathtub models within a short period of time.

The model was based on three central assumptions, one more general, and the other

two more specific. The more general assumption is that traffic flow at the level of the urban

24An alternative approach would extend the bottleneck model to, first, allow the capacity of the bottleneck
to depend on the length of the queue behind it and, second, to replace FIFO (first-in, first-out) queuing with
random access queuing so as to avoid having to solve a delay differential equation.

25A Punch cartoon from the early 1960’s (before the construction of motorways in the UK, when holiday
traffic jams were measured in miles) shows two hitchhikers getting out of a car, with the caption along the
lines: “We’ve really enjoyed visiting with you, but we must get along now.” When taking taxis in central
London prior to implementation of the congestion-pricing program, several times the author had to get out
of his taxi and walk in order to make his appointment.

26With perfectly inelastic demand, (second-best) capacity in the no-toll equilibrium would be higher than
(first-best) capacity in the social optimum. As the demand elasticity is increased, induced demand in the no-
toll equilibrium would increasingly undermine the benefits of capacity expansion, until a demand elasticity
is reached beyond which optimal capacity in the no-toll equilibrium would be lower than that in the social
optimum.

27Arnott, Rave and Schöb (2005), Arnott and Inci (2006), and Arnott and Rowse (2009) examine parking
policy in steady-state bathtub models.
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neighborhood can be described, with reasonable accuracy, by classical flow congestion, which

assumes a negative relationship between velocity and traffic density. This assumption is a

working hypothesis, and is based on the argument that traffic congestion on city streets is

so complicated that the most fruitful approach is to model it at the aggregate level, in terms

of a macroscopic relationship between flow, velocity, and density. The early tests of the

hypothesis are promising, but its validity is open to question. The classical flow congestion

model was originally derived for flow congestion on highways, and it is a leap to apply it to

congested urban areas where nodal congestion – congestion at intersections – is arguably more

important than flow congestion. The first more specific assumption is that individuals do

not know the length of their trips when making their trip-timing decisions. This is obviously

unrealistic, but it is hard to see how the basic insights derived from the paper would not

carry through if the assumption were relaxed. Furthermore, relaxing the assumption by itself

results in a model that is severely analytically intractable (even numerical analysis of it is

difficult), while the alternative assumptions that have been made in the literature to achieve

tractability all violate the physics of fluid flow, which raises doubts about the soundness of

the results obtained. The second more specific assumption is that trip lengths are negative

exponentially distributed. This assumption too is not realistic, but again does it compromise

the macroscopic relationships the model is designed to elucidate?

6 Conclusion

In developed countries, traffic congestion is getting worse slowly but steadily; in developing

countries, it is getting worse quickly. Even though most of us experience traffic congestion on

a daily basis, it remains poorly understood, which at least partially explains why congestion

mitigation seems so intractable. Previous economic models of traffic assume that congestion

increases travel time but does not reduce flow. This assumption is counter to experience and

recent empirical evidence. This paper developed a model of rush-hour traffic congestion in
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which, under heavily congested conditions, increased congestion causes traffic flow to fall.

The broad intuition is easy to understand through analogy with a special type of bathtub

for which the rate at which the bath drains depends on the height of water in the tub. Up

to a critical height, the outflow is positively related to the height of water, but as the height

of water increases above this critical level the drain becomes increasingly clogged by the

weight of water above it. The bathtub represents Manhattan or any other heavily built-up

urban area; the height of water represents traffic density (and the critical height to capacity

density); and water entering from the tap and exiting via the drain represent the flow of

traffic entering and exiting the city streets.

This paper developed a simple model along these lines and applied it to traffic flow in

the morning rush hour. A fixed number of identical commuters with a common work start

time travel from home to work over city streets, experiencing two types of cost, travel delay

due to congestion and the inconvenience of arriving at work early or late. In equilibrium no

commuter can reduce her trip cost by altering her departure time from home. The paper

solved for the no-toll equilibrium and the social optimum, and compared their properties.

In the no-toll equilibrium, travel delay increases over the early morning rush hour at a rate

that exactly offsets the benefits from arriving less early, and over the late morning rush hour

decreases. With heavy congestion (the capacity of the street system is low relative to the

number of commuters), equilibrium traffic density rises above capacity density causing a

traffic jam (hypercongestion) that is slow to dissipate. In the social optimum, in contrast,

the planner regulates the departure of commuters ensuring that a traffic jam does not occur.

The social optimum can be decentralized via a time-varying toll equal to the congestion

externality imposed by drivers, evaluated at the social optimum. The paper developed an

extended numerical example of a heavily congested area in which trip price in the no-toll

equilibrium is higher than that in the social optimum, implying that the efficiency gain from

tolling exceeds the revenue raised from the toll.

Casual empiricism, supported by recent evidence collected by transportation scientists,
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suggests that the central areas of many of the world’s largest cities (though few in the US)

are sufficiently heavily congested that efficiency gains of this order could be achieved from

time-varying congestion pricing. However, most of these cities are in countries that lack

the capacity to implement sophisticated tolling schemes. Whether there are traffic restraint

policies akin to ramp metering on freeways that these cities could practically implement to

reduce hypercongestion is an open question.
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Table 1: No-toll Equilibrium
Notes: 1. After t̄, there are no departures. Over this interval, density evolves according to
the differential equation k̇(t) = −k(t)v(k(t))

L , with k(t̄) determined as indicated above. Over

this interval, v(t) is determined as v(k(t)) and a(t) as −k̇(t).
2. Case I applies if d(t∗+) < 0.
3. Greenshields Relation is assumed: v(k) = v0(1− k
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).

4. t∗ is exogenous.
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Table 2: Social Optimum
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4. Time is measured from the start of the rush hour, i.e. t = 0. t
∗ is determined by the

optimality condition A(t∗) = γ
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