
UC San Diego
UC San Diego Previously Published Works

Title
The structure theory of nilspaces III: Inverse limit representations and topological dynamics

Permalink
https://escholarship.org/uc/item/9zx6c5w6

Authors
Gutman, Yonatan
Manners, Freddie
Varjú, Péter P

Publication Date
2020-05-01

DOI
10.1016/j.aim.2020.107059
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9zx6c5w6
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

60
5.

08
95

0v
2 

 [
m

at
h.

D
S]

  7
 F

eb
 2

02
0

THE STRUCTURE THEORY OF NILSPACES III: INVERSE LIMIT

REPRESENTATIONS AND TOPOLOGICAL DYNAMICS

YONATAN GUTMAN, FREDDIE MANNERS AND PÉTER P. VARJÚ

Abstract. This paper forms the third part of a series by the authors [GMV18,GMV17] concerning

the structure theory of nilspaces. A nilspace is a compact space X together with closed collections

of cubes Cn(X) ⊆ X2n , n = 1, 2, . . ., satisfying some natural axioms. Our goal is to extend the

structure theory of nilspaces obtained by Antoĺın Camarena and Szegedy, and to provide new proofs.

Our main result is that, under the technical assumption that Cn(X) is a connected space for all

n, then X is isomorphic (in a strong sense) to an inverse limit of nilmanifolds. This is a direct and

slight generalization of the main result of Antoĺın Camarena and Szegedy.

We also apply our methods to obtain structure theorems in the setting of topological dynamics.

Specifically, if H is a group (subject to very mild topological assumptions) and (H,X) is a minimal

dynamical system, then we give a simple characterization of the maximal pronilfactor of X. This

generalizes the case H = Z, which is a theorem of Host, Kra and Maass, although even in that case

we give a significantly different proof.
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1. Introduction

This paper is the third and last in a series of papers devoted to the structure theory of cubespaces

and nilspaces, the previous two parts of the project being [GMV18] and [GMV17].

A cubespace is a structure consisting of a compact metric space X , together with a closed collection

of “cubes” Ck(X) ⊆ X2k for each integer k ≥ 0, satisfying certain axioms that we will recall later.

The structure (X, {Ck(X)}k∈N) is further called a nilspace if it also satisfies certain extra rigidity

conditions.

The notion of nilspaces has its origins in the work of Host and Kra [HK08], where these objects

appeared under the name of “parallelepiped structures”. The study of these objects was furthered by

Antoĺın Camarena and Szegedy [ACS12], who in the same work formulated a strong structure theorem

for nilspaces, subject to certain further hypotheses.

The papers of Candela [Can17b, Can17a] expand on [ACS12], providing more detailed proofs. He

also includes several additional results implicit in [ACS12], particularly about continuous systems of

measures.

The purpose of our project is to provide a new exposition of this theory, and also to derive new

applications to topological dynamics. Although we rely heavily on the ideas contained in earlier work

[HK05, HM07, ACS12, HK08, HKM10, GT10], our proofs differ from the existing literature in many

respects and we also obtain new results.

The study of nilspaces might be motivated in three different ways. First, it can be a useful tool

in the area of higher order Fourier analysis, and in particular, forms the basis of Szegedy’s approach

[Sze12] to proving an inverse theorem for the Gowers norms (another approach being due to Green,

Tao and Ziegler [GTZ12]).

Second, nilspaces can be used in topological dynamics. For example, we use them in this paper

to generalize a result of Host, Kra and Maass [HKM10] characterizing the largest pronilfactor of a

minimal group action.

Third, nilspaces can be used in the context of ergodic theory, in particular to give a new and more

general proof of the structure theorem for characteristic factors, introduced by Host and Kra [HK05]

and by Ziegler [Zie07] (using a different framework). For details, see [Gut15,GL19].

Given the close connection of the subject to the study of nilsequences arising in additive number

theory and ergodic theory [BHK05,GT12], we might expect further applications to arise.

In this paper, we explain the notion of nilspaces, and outline our project, from the point of view

of topological dynamics. The reader whose main interest lies in combinatorics or higher order Fourier

analysis may wish to consult the paper [GMV18], where an outline is given from that perspective. She

may then continue directly to Section 2 of this paper, where the main result of this paper is presented

in a fashion that does not require familiarity with the dynamical material introduced in Section 1.
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1.1. Regional proximality. Let (T,X) be a topological dynamical system, which for our pur-

poses means that X is a compact metric space and T is a homeomorphism on X .

We begin by recalling some definitions. We say that a pair of points (x, y) ∈ X2 is proximal, if

there is a sequence of integers {ni} such that lim dist(T nix, T niy) = 0. We say that (x, y) ∈ X2 is

regionally proximal, if there are sequences of points {xi}, {yi} ⊆ X and a sequence of integers {ni}

such that limxi = x, lim yi = y and lim dist(T nixi, T
niyi) = 0. We write (x, y) ∈ PT (X) if (x, y) is

proximal and (x, y) ∈ RPT (X) if (x, y) is regionally proximal.

We say that the system (T,X) is distal if the proximality relation is trivial; that is, if (x, y) ∈ PT (X)

if and only if x = y. We say that the system (T,X) is minimal if the orbit of each point is dense.

It turns out that RPT (X) is an equivalence relation, and the quotient X/RPT (X) has the following

property.

Theorem 1.1 (Ellis and Gottschalk [EG60, Theorem 2]). Let (T,X) be a minimal topological dy-

namical system. Then RPT (X) is a closed equivalence relation and (T,X/RPT (X)) is the maximal

equicontinuous factor of (T,X).

In other words, there is a compact abelian group K and an element t ∈ K that generates a dense sub-

group of K, such that the system (T,X/RPT (X)) is isomorphic to (t,K). Moreover, (T,X/RPT (X))

is the maximal factor with this property.

Motivated by this result in part, Host, Kra and Maass [HKM10] introduced the notion of the higher

order regional proximal relation, which can be used analogously to identify the maximal pronilfactor

of a topological dynamical system.

We recall some definitions. We call a system (T,X) a nilsystem of degree s if there is an s-step

nilpotent Lie group G, a discrete cocompact subgroup Γ ≤ G, and an element t ∈ G, such that (T,X)

is isomorphic as a topological dynamical system to (t, G/Γ).

Here, by a Lie group we mean a Hausdorff, second countable topological group G equipped with

a differentiable structure, such that the map G2 → G : (g, h) 7→ gh−1 is differentiable. We do not

assume that Lie groups are connected, and so in particular any countable discrete group is Lie.

Some authors require the Lie group G in the definition of a nilsystem to be connected (which we

do not). We note that a connected nilmanifold G/Γ can always be realized in such a way that G is

connected: indeed, if G◦ denotes the connected component of the identity in G then we may identify

G/Γ with G◦/(Γ ∩G◦). On the other hand, it may be that a connected nilsystem (t, G/Γ) cannot be

represented as a nilsystem in which G is connected, if t /∈ G◦.

We write (T,X∞) = lim
←−

(T,Xi) if the system (T,X∞) is the inverse limit of the systems {(T,Xi)};

i.e., if there is a family of morphisms (in the category of topological dynamical systems, i.e. continuous

T -equivariant maps)

{ϕi,j : (T,Xj)→ (T,Xi)}i<j≤∞
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such that ϕi,j ◦ ϕj,l = ϕi,l for all triplets of indices i < j < l ≤ ∞, and such that for any two points

x 6= y ∈ X∞ there is i < ∞ such that ϕi,∞(x) 6= ϕi,∞(y). A collection of maps {ϕi,j} with this

property is called an inverse system.

We say that a system (T,X) is pronil of degree s, if it is the inverse limit of nilsystems of degree

s. We call a factor X → Y of X a pronilfactor of degree s if Y is pronil of degree s, and say Y is the

maximal pronilfactor if every other pronilfactor of X factors through Y .

The discrete cube of dimension d is the set {0, 1}d. We write ~0 = (0, . . . , 0) ∈ {0, 1}d and

use the notation ~1 in a similar manner. For a vertex ω = (ω1, . . . , ωd) ∈ {0, 1}d and a vector n =

(n1, . . . , nd) ∈ Zd, we write 〈ω, n〉 =
∑d

i=1 ωini. If G is a group and g = (g1, . . . , gd) ∈ Gd, then we

write gω = gω1

1 · · · g
ωd

d .

Let (T,X) be a system. Following Host, Kra and Maass, we say that the pair of points x, y ∈ X is

regionally proximal of order s if there are sequences of points {xi}, {yi} ⊆ X and a sequence of

integer vectors {ni} ⊆ Zs such that limxi = x, lim yi = y and

lim dist(T 〈ω,ni〉xi, T
〈ω,ni〉yi) = 0

for all ω ∈ {0, 1}s\{~0}. We denote this relation by RPs
T (X). For a nilsystem (T,X) of degree s,

RPs
T (X) is trivial. This fact is non-trivial, we return to it in Section 1.5 after introducing some

additional concepts.

The following theorem of Host, Kra and Maass characterizes the maximal pronilfactor of (T,X)

using the higher order regional proximal relation. 1

Theorem 1.2 ([HKM10, Theorem 1.3]). Let (T,X) be a minimal distal system. Then RPs
T (X) is a

closed equivalence relation and (T,X/RPs
T (X)) is the maximal pronilfactor of (T,X) of degree s.

Host, Kra and Maass also proved that a minimal system (T,X) is distal provided the relation

RPs
T (X) is trivial. Shao and Ye [SY12, Theorem 3.5] proved that RPs

T (X) is a closed equivalence

relation for minimal (but not necessarily distal) (T,X) and they combined this with [HKM10] to

deduce that Theorem 1.2 holds without the assumption on distality.

The definition of RPs
T , and those of nilsystems and pronilsystems, generalize straightforwardly to

the context of a dynamical system (H,X) where H is any abelian group (that is, H acts continuously

on the space X), the previous discussion corresponding to the case H = Z.

In [GGY18], Gutman, Glasner and Ye further generalize the definition of the regionally proximal

relation to the case of an action by an arbitrary, possibly non-abelian group. For abelian group actions,

in particular for Z-actions, the new definition coincides with the old one.

We will review this new definition and discuss it in detail in the next subsection, as well as stating

a generalization of Theorem 1.2 to these more general group actions, which is one of the main goals of

this paper.

1The case s = 2 had been proven previously in [HM07, Theorem 2].
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1.2. Regional proximality for non-abelian actions. We introduce some more definitions. Let X

be a compact metric space and let H be a metrizable topological group acting continuously on X . We

denote the action by g.x for g ∈ H and x ∈ X and call the pair (H,X) a topological dynamical

system or simply a system.

The topology of H does not play any significant role. We assume that it is induced by the maximum

displacement metric

dist(h1, h2) = max{dist(h1x, h2x) : x ∈ X}.

We denote the set of maps {0, 1}ℓ → X by X{0,1}
ℓ

and call its elements ℓ-configurations. Given a

configuration c ∈ X{0,1}
ℓ

, we call the points {c(ω)}ω∈{0,1}ℓ the vertices of c. We call a configuration

constant if all its vertices are equal.

A set of the form {ω ∈ {0, 1}ℓ : ωi = α} for some 1 ≤ i ≤ d and α ∈ {0, 1} is called a hyperface of

the discrete cube. For a hyperface F and an h ∈ H we denote by [h]F the element of H{0,1}
ℓ

defined

as [h]F (ω) = h if ω ∈ F and [h]F (ω) = e otherwise. Here and everywhere below e denotes the identity

element of the group. We call the subgroup of G{0,1}
ℓ

generated by

{[h]F : h ∈ H and F is a hyperface of {0, 1}ℓ}

the Host–Kra cube group and denote it by HKℓ(H). These groups originate in [HK05, Section 5] and

coincide with the parallelepiped groups of [HKM10, Definition 3.1] introduced for abelian actions. The

terminology is due to [GT10, Definition E.3] where it is employed in the context of filtered Lie groups.

The Host–Kra cube group acts naturally on the space of ℓ-configurations on X , via γ.c(ω) =

γ(ω).c(ω) for γ ∈ HKℓ(H) and c ∈ X{0,1}
ℓ

. Following Host, Kra and Maass [HKM10] we call the orbit

closure of constant configurations the set of dynamical cubes2, denoted

Cℓ
H(X) = {γ.x{0,1}ℓ : γ ∈ HKℓ(H), x ∈ X} . (1)

If x, y ∈ X are two points, we write xk(x; y) for the configuration

ω 7→




x : ω 6= ~1

y : ω = ~1
.

We return to the setting of Z-systems as in the previous section, i.e. we take H = {T n}n∈Z for a

homeomorphism T of X . Host, Kra and Maass [HKM10, Corollary 4.3] gave the following character-

ization of the regional proximal relation of order s if the system (H,X) = ({T n}, X) is minimal and

distal: we have (x, y) ∈ RPs
T (X) if and only if xs+1(x; y) ∈ Cs+1

H (X). Shao and Ye [SY12] proved that

this holds for general abelian actions, even without the assumption that the system is distal.

Motivated by this, in [GGY18], the following definition for the regional proximal relation for general

group actions is introduced.

2In fact, Host, Kra and Maass call these configurations parallelepipeds, but we use the term cubes in order to conform
with [ACS12] and for the sake of brevity.
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Definition 1.3. Let (H,X) be a topological dynamical system. We say that a pair of points, x, y ∈ X

is regionally proximal of order s and write (x, y) ∈ RPs
H(X), if and only if xs+1(x; y) ∈ Cs+1

H (X).3

It is shown in [GGY18] that, perhaps surprisingly, the newly introduced relation is an equivalence

relation for any minimal action (without any restriction on the group). Moreover the proof of this

more general fact is simpler than the one given in [SY12].

The nature of RPs
H can vary significantly, and we now give two extreme examples.

For the first, note that if Hs+1 denotes the (s+ 1)-th element of the lower central series of H , then

(x, hx) ∈ RPs
H(X) for any h ∈ Hs+1. (For a proof of this fact, see Section 1.4). Hence if H is perfect,

i.e. H = [H,H ], and the action is minimal, then RPs
H(X) = X2; in other words, every pair of points

is regionally proximal to all orders.

For the second example, let (H,G/Γ) be a nilsystem in the following generalized sense: let G be

an s-step nilpotent Lie group, let Γ be a discrete cocompact subgroup, and let H act on G/Γ via a

continuous group homomorphism φ : H → G, i.e. (h, xΓ) 7→ φ(h)xΓ. Then it turns out that RPt
H(G/Γ)

is the trivial relation for all t ≥ s (we will see a proof of this in Section 1.5).

We are now ready to state a significant generalization of Theorem 1.2 to general H-actions.

Theorem 1.4. Let (H,X) be a minimal system. Suppose further that H has a dense subgroup generated

by a compact set. Then RPs
H(X) is a closed H-invariant equivalence relation, and (H,X/RPs

H(X))

is the maximal pronilfactor of (H,X) of degree at most s.

The proof of Theorem 1.2 (which is a special case of Theorem 1.4) by Host, Kra and Maass relies

on an ergodic theoretic analogue obtained previously by Host and Kra [HK05]. Our proof, however,

works entirely within the topological category. We believe that this feature makes our approach of

interest even in the case of Z-actions.

We note that in our proof we use the result from [GGY18] that RPs
H(X) is an equivalence relation

for an arbitrary minimal topological dynamical system (H,X).

1.3. Cubespaces and nilspaces. In the preceding discussion we introduced the notion of dynamical

cubes. In this section we discuss similar structures in a much more abstract setting, following Host

and Kra [HK08] and Antoĺın Camarena and Szegedy [ACS12]. Everything in this section is taken from

[ACS12], although our terminology and notation differs from that paper.

We first formalize the notion of a cubespace. Given the previous discussion, the following definitions

should seem fairly reasonable; the reader may also consult [GMV18, Sections 1–3] for further discussion.

Definition 1.5. A map ϕ = (ϕ1, . . . , ϕk) : {0, 1}ℓ → {0, 1}k is termed a morphism of discrete cubes

if each coordinate function ϕj(ω1, . . . , ωl) is equal to either 0, 1, ωi or 1− ωi for some 1 ≤ i ≤ m.

3The regionally proximal relation of order s is denoted by NRP
[s](X) in [GGY18].
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Definition 1.6. Let X be a metric space and for each integer ℓ ≥ 0 let Cℓ ⊆ X{0,1}
ℓ

be a closed set.

We say that (X, {Cℓ}ℓ∈N) is a cubespace if C0 = X and c ◦ϕ ∈ Cℓ for any c ∈ Ck and any morphism

of discrete cubes ϕ : {0, 1}ℓ → {0, 1}k.

We refer to this property as cube invariance.

We call the elements of Cℓ the ℓ-cubes of X . Given c ∈ Cℓ, we call the elements c(ω) for ω ∈ {0, 1}ℓ

the vertices of c. To simplify our notation, we simply write X to refer to the full cubespace structure

(X, {Cℓ}ℓ∈N), and we write Cℓ(X) to refer unambiguously to the cubes Cℓ associated to X .

The cube-invariance property encodes certain fairly natural operations that produce new cubes from

old ones. For instance:

• cube-invariance for ϕ(ω1, . . . , ωℓ−1) = (ω1, . . . , ωℓ−1, 0) encodes the fact that a face of an ℓ-cube

of dimension (ℓ− 1) is again an (ℓ− 1)-cube;

• similarly, cube-invariance for ϕ(ω1, . . . , ωℓ) = (1 − ω1, . . . , ωℓ) states that reflecting an ℓ-cube

in one of the coordinate axes yields another ℓ-cube;

• using f(ω1, . . . , ωℓ) = (ω1, . . . , ωℓ−1) shows that “duplicating” an (ℓ−1)-cube creates an ℓ-cube;

and

• applying ϕ(ω1, ω2, ω3) = (ω2, ω1, ω3) shows that permuting the coordinates of a cube yields

another cube.

As well as considering cubespaces, we will also need to discuss maps between them that respect the

cubespace structure. The natural definition is as follows.

Definition 1.7. Let X and Y be two cubespaces and let ϕ : X → Y be a continuous map. Then we

say that ϕ is a cubespace morphism, if

{ϕ ◦ c : c ∈ Ck(X)} ⊆ Ck(Y )

for all k ∈ N.

Cubespaces also admit a natural notion of sub-objects.

Definition 1.8. If X and Y are two cubespaces, we say that Y is a subcubespace of X if Y ⊆ X

and Cℓ(Y ) ⊆ Cℓ(X) for all ℓ. If Z ⊆ X is a closed set, the subcubespace of X induced by Z is defined

by Cℓ(Z) = Cℓ(X) ∩ Z{0,1}
ℓ

for all ℓ.

We now introduce a further technical definition.

Definition 1.9. We say a cubespace X is ergodic if C1(X) = X{0,1}, i.e. if any pair of points form

a 1-cube. More generally, we say that X is s-ergodic if Cs(X) = X{0,1}
s

.

Observe that s-ergodicity implies t-ergodicity for all t ≤ s, as a consequence of cube-invariance.

It turns out that non-ergodic cubespaces are fairly uninteresting, insofar as – under reasonable extra

hypotheses – they decompose into a number of essentially non-interacting ergodic pieces; hence, we

will almost always work with ergodic cubespaces as a further sanity condition.
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We now turn to the notion of corner-completion. This is both fundamental and rather difficult

to motivate from our previous discussion. Perhaps the best one can say is that this property arises

naturally in many of the examples of cubespaces arising in applications – e.g. in dynamics, the study of

nilmanifolds, etc. – and is an essential assumption if one hopes to prove any kind of structure theory.

Ultimately, though, this definition is thoroughly non-obvious, and constitutes one of the key insights

of [HK08].

Definition 1.10. Let X be a cubespace and let λ : {0, 1}ℓ\{~1} → X be a map. We call λ an ℓ-corner

if λ|ωi=0 is an (ℓ − 1)-cube for all 1 ≤ i ≤ ℓ. We say that the cubespace X has s-completion if any

s-corner can be completed to an s-cube; in other words, if for any such λ there exists a cube c ∈ Cs(X)

such that c|{0,1}s\{~1} = λ.

We say that X is fibrant if it has s-completion for all s ≥ 0.

It is also imperative to know when this completion process is unique. The dimension at which this

occurs determines the “degree” or “step” of the space.

Definition 1.11. We say that a cubespace X has s-uniqueness, if c1|{0,1}s\~1 = c2|{0,1}s\~1 implies

c1 = c2 for any two s-cubes c1, c2 ∈ C
s(X).

Definition 1.12. We say that a cubespace X is a nilspace of degree s if it is fibrant and s ≥ 0 is the

smallest integer such that X has (s+ 1)-uniqueness.

In [GMV18], the following relative analogue of the corner-completion property is introduced, apply-

ing to a map between two cubespaces.

Definition 1.13. Let X and Y be two cubespaces and let ϕ : X → Y be a continuous map. We say

that ϕ is a fibration if it is a cubespace morphism, and if furthermore the following holds for every ℓ.

Let λ : X → {0, 1}ℓ\{~1} be an ℓ-corner and c ∈ Ck(Y ) a compatible cube, in the sense that

ϕ ◦ λ = c|{0,1}ℓ\{~1}. Then there is a completion c′ of λ compatible with c; that is, there exists

c′ ∈ Cℓ(X) such that c′|{0,1}ℓ\{~1} = λ and ϕ ◦ c′ = c.

Definition 1.14. We say that a cubespace morphism ϕ : X → Y has k-uniqueness for some k ∈ N

if the following holds. If c, c′ ∈ Ck(X) are two cubes such that ϕ(c) = ϕ(c′) and c(ω) = c′(ω) for all

ω 6= ~1, then, in fact, c = c′.

If ϕ is a fibration that has k-uniqueness for some k ∈ N and k is the smallest such number, then we

say that ϕ has degree (k − 1).

It is easy to see that composition of fibrations is a fibration. We also recall that fibrations have the

following “universal property”.

Lemma 1.15 ([GMV18, Lemma 7.8]). Let ϕYX : X → Y and ϕZX : X → Z be fibrations between

compact cubespaces. Suppose that for every y ∈ Y there is z ∈ Z such that ϕ−1Y X(y) ⊆ ϕ−1ZX(z). Then

there is a unique fibration ϕZY : Y → Z such that ϕZX = ϕZY ◦ ϕY X .
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Equivalently, the following holds. Let ϕ : X → Y be a fibration and ψ : Y → Z be an arbitrary

continuous map between two compact cubespaces. If ψ ◦ ϕ is a fibration then so is ψ.

Observe that a cubespace X is fibrant if and only if the map from X to the one-point cubespace

{∗} is a fibration. If we set Z = {∗} in the above lemma, we see that the image of a fibrant cubespace

under a fibration is also fibrant.

An almost equivalent condition to fibrations appears in [ACS12, Section 2.8] under the name “fiber-

surjective morphism”. There, a cubespace morphism ϕ : X → Y between nilspaces X and Y is called

fiber-surjective if the image of any ∼k class in X is a ∼k class in Y , for any k ≥ 0. (Here ∼k are the

canonical equivalence relations, which we will introduce in Section 1.5.)

If X and Y are nilspaces and ϕ : X → Y a cubespace morphism, it is not hard to see that ϕ is a

fibration if and only if it is fiber-surjective. At some points in the project, we have reason to consider

fibrations between cubespaces that are not nilspaces, and in these cases the definitions are inequivalent

and the notion of a fibration appears to be the correct one to use. Moreover, in general the authors

have also found it a more natural and convenient starting point on which to build the associated theory.

It is proved in [GMV18, Remark 7.9] that the image of a nilspace under a fibration is a nilspace.

Given two ℓ-configurations c0, c1 : {0, 1}ℓ → X , the concatenation of c0 and c1 is the (l + 1)-

configuration [c0, c1] : {0, 1}ℓ+1 → X given by [c0, c1](ω, 0) = c0(ω) and [c0, c1](ω, 1) = c1(ω) for all

ω ∈ {0, 1}ℓ.

Definition 1.16. We say that a cubespace X has the gluing property if the following holds for all

ℓ ≥ 0: for all c1, c2, c3 ∈ C
ℓ(X), [c1, c2], [c2, c3] ∈ Cℓ+1(X) implies that [c1, c3] ∈ Cℓ+1(X).

We recall from [GMV18, Proposition 6.2] that fibrant cubespaces always have the gluing property.

This property is useful for the following reason: if Y is an induced subcubespace of X , and X has

the gluing property, then so does Y ; however, if X is fibrant this does not necessarily imply that Y is

fibrant.

We note that an ergodic nilspace of degree 0 is necessarily the 1 point space. More interesting

examples of cubespaces are the dynamical cubespaces (X, {Ck
H(X)}k∈N) introduced in Section 1.2.

Indeed, we recall the following fact from [GGY18, Theorems 3.8 and 7.14].

Theorem 1.17. Let (H,X) be a minimal topological dynamical system. Then RPℓ
H(X) is a closed

H-invariant equivalence relation, and (X/RPℓ
H , {C

k
H}k∈N) is an ergodic nilspace of degree at most ℓ,

for each ℓ ∈ N.

Finally, we give another example of a nilspace, which will play a special role in the theory. Let A

be a compact abelian group, with the group operation denoted additively. We write Ds(A) for the

cubespace defined by requiring that c ∈ Cℓ(Ds(A)) if and only if
∑

ω∈{0,1}s+1

(−1)|ω|c(ϕ(ω)) = 0
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holds for any morphism of discrete cubes ϕ : {0, 1}s+1 → {0, 1}ℓ, where we write |ω| =
∑

1≤i≤s+1 ωi

for ω ∈ {0, 1}s+1. We will consider this object again in the next section, as it turns out to be a special

case of a construction discussed there. We will see that it follows from general results that Ds(A) is a

nilspace of degree s, and leave it to the reader to verify that it is also s-ergodic.

1.4. Host–Kra nilspaces. In this section, we discuss a variant of the dynamical cubespace construc-

tion considered above. A more detailed exposition, with examples, is available in [GMV18, Section 2

and Appendix A].

Let G be a topological group. We call a chain of closed subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ . . . ⊇ Gs+1 = {1}

a filtration of degree s if [Gi, Gj ] ⊆ Gi+j for all i, j ≥ 0, adopting the convention that Gi = {1} for

all i ≥ s+ 1.

Note that a filtration is always a central series, but a central series may not be a filtration. E.g. if

G is a nilpotent Lie group of degree 2, then G0 = G1 = G2 = G, G3 = [G,G], G4 = {1} is a central

series, but it is not a filtration, because [G2, G2] 6⊆ G4. On the other hand, we note that the lower

central series is always a filtration (see [MKS66, Theorem 5.3]).

We call the filtration proper if G0 = G1. Note that if a group admits a proper filtration of degree s

then it must be nilpotent of nilpotency class at most s. In this paper, we always assume that filtrations

are proper even if we do not state this explicitly.

We call a group a filtered group if we want to emphasize that it is equipped with a particular

filtration. We write G• as a shorthand to denote a group G equipped with a filtration {Gi}.

We now consider a generalization of the notion of Host–Kra cubegroups introduced in Section 1.2.

A subset F ⊆ {0, 1}ℓ of the vertices of the discrete cube is called a face of co-dimension d if there

are indices 1 ≤ i1 < . . . < id ≤ ℓ and α = (α1, . . . , αd) ∈ {0, 1}d such that

F = {ω ∈ {0, 1}ℓ : ωij = αj for all 1 ≤ j ≤ d}.

Let G• be a filtered topological group of degree s. If F ⊆ {0, 1}ℓ and g ∈ G, we write [g]F for the

element of G{0,1}
ℓ

given by [g]F (ω) = g if ω ∈ F and [g]F (ω) = e otherwise.

We define the Host–Kra cubegroup HKℓ(G•) for each ℓ to be the subgroup ofG{0,1}
ℓ

generated by

the elements of the form [g]F , where F ⊆ {0, 1}ℓ is a face of codimension i for some 1 ≤ i ≤ min(s+1, ℓ),

and g ∈ Gi.

We note that the definition of HKℓ(G•) in [GMV18, Definition 2.2] differs in that only “upper”

faces F are used to construct generators. However, this gives rise to the same group, as noted in

[GMV18, Remark 2.3].

If F is a face of codimension d, then for any positive integers d1, d2 with d1 + d2 = d we can find

faces F1 and F2 of codimension d1 and d2, respectively, such that F1 ∩ F2 = F . Then, the identity

[[g1]F1
, [g2]F2

] = [[g1, g2]]F holds (where, confusingly, some of the square brackets denote commutators
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and others do not). Using these observations, it is easy to see that the Host–Kra cubegroup HKℓ(G)

defined in Section 1.2 agrees with the above construction applied to the lower central series filtration.

For a different filtration, however, the Host–Kra cubegroup may be larger.

We digress to justify a claim we made in Section 1.2. Let g ∈ Gs+1, the (s + 1)-th element of

the lower central series filtration. Then [g]F ∈ HKs+1(G) for any face F of co-dimension (s + 1) in

{0, 1}s+1, i.e. for any single vertex of {0, 1}s+1. Thus, [g]F .x
{0,1}s+1

∈ Cs+1
G (X), which implies that

(x, gx) ∈ RPs+1
G (X) as claimed in Section 1.2.

Let G• be a degree s filtered Lie group.4 We say that a discrete co-compact subgroup Γ of G is

compatible with the filtration if Γ ∩Gi is a (discrete) co-compact subgroup of Gi for all i.

The group HKℓ(G•) naturally acts on the space (G/Γ){0,1}
ℓ

. It turns out that the stabilizers are

discrete cocompact subgroups in HKℓ(G•), provided Γ is compatible with the filtration, and hence the

orbits of the action are compact and therefore closed. (For a proof of this fact, see [GT10, Lemma

E.10], where the only fact that is used (implicitly) is that Γ is compatible with the filtration.)

We define the Host–Kra nilspace HK(G•)/Γ associated to G• and Γ as follows. The base topo-

logical space is X = G/Γ, and the cubes are defined as

Cℓ(G/Γ) :=
{
ω 7→ g(ω).x : g ∈ HKℓ(G•), x ∈ X

}
.

In [GMV18] we defined Host–Kra nilspaces slightly differently: we considered (G, {HKℓ(G•)}ℓ∈N)

as a cubespace, and defined the cubespace G/Γ as the quotient of this under the map G→ G/Γ; so the

cubes ofG/Γ are denoted as HKℓ(G•)/Γ. However, this is completely equivalent to the above definition,

and the discrepancy made deliberately for consistency with the dynamical viewpoint adopted in this

paper.

It is proven in [GMV18, Proposition 2.6] that HK(G•)/Γ is an ergodic nilspace of degree s.

Recall the definition of Ds(A) from the previous section. It turns out that Cℓ(Ds(A)) = HKℓ(A•),

where A is considered with the filtration A0 = A1 = . . . = As = A and As+1 = {0} of degree s. This

equivalence is proved in [GMV18, Propostion 5.1]. When A is a compact Lie group, this is a Host–Kra

nilspace.

Host–Kra nilspaces are relatively easy to understand thanks to the well-developed theory of nilman-

ifolds. The main aim of our project following Antoĺın Camarena and Szegedy [ACS12] is that we want

to approximate general nilspaces by Host–Kra nilspaces. We outline our program to achieve this goal

in the next sections.

1.5. Canonical factors. The first stage of our program (following [ACS12]) is to realize an ergodic

nilspace of degree t as a tower of extensions

X → πt−1(X)→ πt−2(X)→ . . .→ π0(X) = {∗},

4Note that, by Cartan’s closed subgroup theorem, the groups Gi appearing in the filtration of a Lie group are automat-
ically themselves Lie groups.
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where the degree of the nilspace is reduced by one each time we move along the sequence.

In the setting of Host–Kra nilspaces, this corresponds to taking quotients by the normal subgroups

Gs that form the filtration; i.e. we expect that πs(G/Γ) should be HK((G•/Gs+1)/(Γ/(Γ ∩ Gs+1))).

The challenge is to simulate this construction in the setting of general nilspaces.

It is clear that we will need to construct πs(X) as quotients of X in a suitable sense, and we first

verify that this makes sense.

Definition 1.18. Let X be a cubespace and let ∼ be a closed equivalence relation on X . Write

π : X → X/ ∼ for the corresponding quotient map.

Then we define a cubespace structure on X/ ∼, the quotient cubespace, by declaring a configu-

ration c ∈ (X/ ∼){0,1}
ℓ

to be a cube if and only if there is a cube c′ ∈ Cℓ(X) such that π(c′) = c.

It is easy to verify that X/ ∼= π(X) as constructed is indeed a cubespace.

Resuming the above discussion: the key feature of πs(G/Γ) for a Host–Kra nilspace is that it has

degree s, and is in some sense the largest quotient with this property. In cubespace language, this

states that πs(G/Γ) has (s+ 1)-uniqueness.

So, for X a general cubespace, our task is to find an equivalence relation ∼s on X such that the

quotient X/ ∼s has (s+ 1)-uniqueness, and it is the smallest relation with this property. The correct

definition is as follows.

Definition 1.19. Given a cubespace X and s ≥ 0, define a relation ∼s on X as follows: x ∼i y if

and only if there are two cubes c1, c2 ∈ C
i+1(X) such that c1(ω) = c2(ω) for ω 6= ~1, c1(~1) = x and

c2(~1) = y.

We call ∼s it the s-th canonical equivalence relation on X .

This may be compared with [ACS12, Definition 2.3].

It is clear that if X/ ∼s is to have (s + 1)-uniqueness, then ∼s must contain at least these pairs of

points. What is much less obvious is that this definition does indeed give rise to a closed equivalence

relation, and that the corresponding quotient is a nilspace whenever X is. However, all this is proved

in [GMV18, Proposition 6.3], following [ACS12, Section 2.4] and [HK08, Section 3.3] closely.

Note that ∼s is the trivial relation if and only if X already has (s+ 1)-uniqueness.

The canonical equivalence relation ∼s has the following alternative definition, whose equivalence is

proven in [GMV18, Lemma 6.6] (following [ACS12, Lemma 2.3] and [HK08, Proposition 3]). Recall

from Section 1.2 that we denote by xs(x; y) the configuration ω 7→ x for ω 6= ~1 and ~1 7→ y.

Lemma 1.20. Let X be a fibrant cubespace. Then x ∼s y if and only if xs+1(x; y) is a cube.

This alternative characterization of ∼s shows that if X is a fibrant dynamical cubespace induced

by a group G acting on X , then ∼s= RPs
G.
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Now we can explain why RPs
G is trivial on a degree s nilsystem, as we claimed at the end of Section

1.1 for Z-systems and in Section 1.2 for general G-actions. In this case, the dynamical cubes form a

Host–Kra cubespace in the above sense, which is a nilspace of degree at most s by [GMV18, Proposition

2.6]. Hence, ∼s is trivial (by the above remarks) and it follows that RPs
G is, since they agree.

The canonical equivalence relation has the following universal replacement property proved in

[GMV18, Proposition 6.3] (see also [ACS12, Lemma 2.5] and [HK08, Proposition 3]).

Lemma 1.21. Let X be a fibrant cubespace. Let c ∈ Cℓ(X) for some ℓ ≤ s + 1, and suppose that

c′ ∈ X{0,1}
ℓ

is a configuration such that c(ω) ∼s c
′(ω) for all ω ∈ {0, 1}ℓ. Then c′ ∈ Cℓ(X).

Finally, we summarize our notation for these constructions. If X is a fibrant cubespace, we call

X/ ∼s the s-th canonical factor of X . The quotient map is denoted πs : X → X/ ∼s, and we also

use the notation πs(X) to denote the quotient space.

1.6. Structure groups. We state the first structure theorem for nilspaces in this section, which is

proved in [GMV18, Theorem 5.4] (see also [ACS12, Theorem 1], and also [HK08, Section 5] for a closely

related discussion).

Theorem 1.22 (Weak Structure Theorem). Let X be a compact ergodic nilspace of degree s. Then

there is a compact abelian group A = As(X) (notated additively) acting continuously and freely on X,

such that the following hold.

(1) The orbits of A coincide with the fibres of πs−1, the (s− 1)-th canonical projection.

(2) Let c1 ∈ Cℓ(X) and c2 : {0, 1}ℓ → X be such that πs−1(c1) = πs−1(c2). Denote by a :

{0, 1}ℓ → A the unique configuration in A such that a(ω).c1(ω) = c2(ω) for all ω ∈ {0, 1}ℓ.

Then c2 ∈ C
ℓ(X) if and only if a ∈ Cℓ(Ds(A)).

It is worth spelling out the meaning of item 2 in a few special cases. If ℓ = s+ 1, then the condition

a ∈ Cℓ(Ds(A)) is equivalent to ∑

ω∈{0,1}s+1

(−1)|ω|aω = 0.

If l < s + 1, then any configuration c : {0, 1}ℓ → X is a cube provided π(c) ∈ Cℓ(π(X)), because

Ds(A) is s-ergodic. Note this is consistent with Lemma 1.21.

If we consider cubes contained in a single fibre of πs−1, we see that they admit a free and transitive

action by Cℓ(Ds(A)). Equivalently, the subcubspaces of X induced by the fibres of πs−1 are all

isomorphic copies of Ds(A).

Using the characterization of Ds(A) in terms of Host–Kra cubegroups, we obtain the following. If

c ∈ Cℓ(X) is a cube, and F is a face of codimension at most s, then [a]F .c is also a cube for all a ∈ A.

This holds in particular when ℓ = s+ 1 and F is an edge, i.e. a face of dimension 1.

The weak structure theory constitutes progress towards a structure theorem for nilspaces, for the

following reasons.
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• By part (1), we have that X is an A-principal bundle over πs−1(X). Iterating this procedure

on πs−1(X), we realize X as a tower of extensions by compact abelian groups, terminating in

π0(X), the 1-point space, which constitutes fairly strong information about the structure of

X .

• In order to recover the cubes of X given knowledge of πs−1(X), it suffices to exhibit a single

(s + 1)-cube lying above each (s + 1)-cube of πs−1(X), since part (2) then gives us all such

cubes. Again, we can iterate this on πs−1(X) to obtain a full description of the cubespace.

We call the group A = As(X) the top structure group of X . Also, we define At(X) := At(πt(X)),

the top structure group of the canonical factor πt(X) for 0 ≤ t ≤ s, and call it the t-th structure

group of X .

The proof of Theorem 1.22 is given in the paper [GMV18], we only recall here how the group A is

constructed. Recall that we denote by xℓ(x; y) the ℓ-configuration all of whose vertices are x except

for the one labelled by ~1, which is y. Recall also the notation [c1, c2] from Section 1.3, which denotes

the concatenation of the configurations c1 and c2.

We consider the set

Y = {(x, y) ∈ X ×X : x ∼s−1 y}

and introduce a relation ≈ on Y , given by setting (x, y) ≈ (x′, y′) if and only if [xs(x; y), xs(x′; y′)] ∈

Cs+1(X).

It is shown in [GMV18] that ≈ is a closed equivalence relation; hence we define A to be the quotient

Y/ ≈. One can argue using (s + 1)-uniqueness that, given x ∈ X , each equivalence class of ≈ has an

unique representative of the form (x, y) for some y. Hence each element of A can be identified with

the graph of a transformation on X , and we use this identification to define simultaneously the group

law on A and its action on X .

1.7. Lie-fibered nilspaces. We say that a nilspace X is Lie-fibered if the structure groups Ai(X)

of X defined in the previous section are all Lie groups. We recall the main result of the paper [GMV17]

below, which classifies Lie-fibered nilspaces under the additional technical assumption that Ck(X) is

connected for each k. We call nilspaces satisfying this latter property strongly connected.

We say that a homeomorphism f of X is an i-translation if [f ]F .c ∈ C
ℓ(X) for each c ∈ Cℓ(X) and

any face F ⊆ {0, 1}ℓ of the discrete cube of codimension i. It follows in particular that f is a cubespace

morphism X → X . It is clear that the set of i-translations, endowed with the maximum displacement

metric, forms a topological group, which we denote by Auti(X). The notion of translations originate

from the work of Host and Kra [HK08, Definition 6] and they play a prominent role in the program of

Antoĺın Camarena and Szegedy [ACS12].

It is easy to verify from the definitions that the groups Auti(X) are nested, and form a (proper)

filtration of the group Aut1(X), by

Aut1(X) ⊇ Aut1(X) ⊇ Aut2(X) ⊇ . . . .
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The reason for Aut1(X) appearing twice in the above line is that Aut1(X) is both the index 0 and the

index 1 element of the filtration. We denote this filtered group by Aut•(X).

Let G• be a filtered Lie group with a compatible discrete cocompact subgroup Γ. It is a direct

consequence of the definitions that the elements of Gi are i-translations on the Host–Kra nilspace

HK(G•)/Γ. Therefore, if it is possible to represent a nilspace X as a Host–Kra nilspace, then it must

be possible to locate the filtered group G• inside the filtered group Aut•(X). The next result confirms

that, in the case of Lie-fibered strongly connected nilspaces, it is sufficient simply to takeGi = Aut◦i (X),

the connected component of the identity in Auti(X). For a proof, see [GMV17, Theorem 2.18] (and

see also [ACS12, Theorem 7]).

Theorem 1.23. Let X be a compact ergodic Lie-fibered strongly connected nilspace of degree s. Fix a

point x0 ∈ X. Then G = Aut◦1(X) is a Lie group which admits a filtration

G• : G = G0 = Aut◦1(X) ⊇ Aut◦2(X) ⊇ . . . ⊇ Aut◦s+1(X) = {1}

of degree s and a discrete subgroup Γ = Stab(x0) ⊆ G compatible with the filtration, such that the map

G/Γ→ X

f · Γ 7→ f(x0)

is an isomorphism of cubespaces between HK(G•)/Γ and X.

In [ACS12, Theorem 7] the same conclusion is shown to hold under the assumption that the structure

groups of X are all connected, i.e. are all tori of various dimensions. It is easy to see that this condition

implies that X is strongly connected. The other implication – that strong connectivity implies that

the structure groups are tori – also holds, but it is less obvious. Indeed, the only proof of which we

are aware makes use of the full force of our structure theorem: Theorem 1.23 implies that a strongly

connected nilspace with Lie structure groups is isomorphic to a Host–Kra nilspace of a connected

nilpotent Lie group G endowed with a filtration {Gi} of connected subgroups, and it follows from this

that the structure groups (Gi/Gi+1)/((Gi ∩ Γ)/(Gi+1 ∩ Γ)) are tori.

There is a third possible formulation of Theorem 1.23. One can replace the condition that X is

Lie-fibered with suitable topological conditions, e.g. requiring that X is locally connected and has finite

Lebesgue covering dimension. These conditions certainly hold whenever X is a topological manifold,

which is clearly a necessary condition for X to be isomorphic to a nilmanifold. See Theorem A.1 for

further details.

In the setting of nilspaces constructed from a topological dynamical system, as in Section 1.2, we

have the following variant. Recall that a nilsystem is a topological dynamical system (H,X) such

that there is a nilpotent Lie group G and a discrete cocompact subgroup Γ of G, such that (H,X) is

isomorphic to (H,G/Γ), where the action of H on G/Γ is induced from a continuous homomorphism

α : H → G.
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Theorem 1.24. Let (H,X) be a minimal topological dynamical system. Assume that X is locally

connected and has finite Lebesgue covering dimension, and also that RPs
H(X), the regional proximal

relation of order s, is trivial for some s.

Then (H,X) is a nilsystem.

The proof of this variant of Theorem 1.23 is discussed in Section A.4 of the appendix. A similar

result is proved in [GMV17, Corollary 2.20], where as in Theorem 1.23 the topological conditions are

replaced by cubespace-theoretic conditions on the dynamical nilspace constructed from the action of

H .

We recall the main ideas of the proofs of these theorems from the paper [GMV17]. The most difficult

part of the proof of Theorem 1.23 is in verifying that the group Aut◦1(X) acts transitively on X . This is

proved by induction on the degree of X . It can be seen easily that the canonical projection πs−1 induces

a homomorphism π∗s−1 : Aut◦1(X) → Aut◦1(πs−1(X)). Furthermore, it can be seen that the kernel of

π∗s−1 contains the connected component of the top structure group A of X , which acts transitively on

the connected components of the fibres of πs−1 as we discussed in the previous section. Therefore,

it remains to prove that π∗s−1 is surjective, from which transitivity follows by these observations and

inductive hypothesis on πs−1(X).

Fix a small parameter ε > 0 and let f ∈ Aut◦1(πs−1(X)) be a translation such that dist(x, f(x)) < ε

for all x ∈ πs−1(X). We want to show that there is a translation f̃ ∈ Aut◦1(X) such that π∗s−1(f̃) = f .

To this end, we first find a homeomorphism g of X – not necessarily a translation or even a cubespace

morphism – such that πs−1(g(x)) = f(πs−1(x)); and moreover such that g commutes with the action

of the top structure group As(X), i.e. g(a.x) = a.g(x) for all a ∈ A and x ∈ X .

In the next step, we attempt to correct g so as to make it a genuine translation on X . Specifically,

we look for a map α : X → A such that the transformation

f̃ : x 7→ α(x).g(x)

is a translation.

For c ∈ Cs(X), we write D(c) for the unique element of A such that [c, [D(c)]{~0}.g ◦ c] ∈ C
s+1(X).

The function c 7→ D(c) encodes the amount g deviates from being a translation at c. It can be seen

from the weak structure theorem that the transformation f̃ defined above is a translation if and only

if the functional equation ∑

ω∈{0,1}s

(−1)|ω|α(c(ω)) = D(c) (2)

holds for all c ∈ Cs(X).

The equation (2) appears in [ACS12] (although not in exactly this way) and plays a prominent

role in the whole theory. We recall some definitions and then a result about the solutions of (2) from

[GMV17].
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Definition 1.25. Let A be a compact abelian Lie group, let X be a cubespace, and let ℓ ∈ N be given.

A continuous function σ : Cℓ(X)→ A is called an ℓ-cocycle (or just a cocyle) if

ρ([c1, c3]) = ρ([c1, c2]) + ρ([c2, c3])

holds for any c1, c2, c3 ∈ Cℓ−1(X) such that all three concatenations appearing in the equation are

cubes.

We call this property additivity.

We stress that our rather vague notation allows the concatenation operation [−,−] on any coordinate

{1, . . . , ℓ}, not just the first one; hence there are strictly speaking ℓ additivity conditions, one per

coordinate.

We note the following two consequences of additivity:

• (degenerate cubes) if c = [c0, c0] then ρ(c) = 0;

• (reflections) we have ρ([c0, c1]) = −ρ([c1, c0]).

Again let X be a cubespace, A an abelian group and ℓ ∈ N, and let f : X → A be a function. Then

we define the function ∂ℓf : Cℓ(X)→ A by

∂ℓf(c) =
∑

ω∈{0,1}ℓ

(−1)|ω|f(c(ω)).

The key step in the proof of Theorem 1.23 is the following result, which guarantees the existence

of solutions to (2) under certain hypotheses. In fact, we state the theorem in a slightly more general

form than is necessary for the purposes of Theorem 1.23, but we will need the full power of it in the

proof of the results that we state in the next section.

Theorem 1.26. Let A be a compact abelian Lie group and let s ≥ 0, ℓ ≥ 1 be given. Then there exists

δ = δ(s, ℓ, A) > 0 such that the following holds.

Let ϕ : X → Y be any fibration of degree s between compact ergodic cubespaces X and Y that obey

the gluing axiom. Let ρ be an ℓ-cocycle on X with values in A, let 0 < δ′ ≤ δ be given and suppose

that dist(ρ(c), ρ(c′)) ≤ δ′ whenever ϕ(c) = ϕ(c′).

Then there is a continuous map f : X → A and a cocycle ρ̃ : Cℓ(Y )→ A such that

ρ = ∂ℓf + (ρ̃ ◦ ϕ) (3)

and dist(f(x), f(y)) .s,ℓ δ
′ (that is, there exists a constant c = c(s, ℓ) > 0 such that dist(f(x), f(y)) ≤

cδ′) whenever ϕ(x) = ϕ(y).

Moreover, the function f is unique in the following sense. Suppose f, f ′ are two continuous solutions

of (3); in particular, f and f ′ are continuous functions such ∂ℓ(f − f ′) is constant on fibers of ϕ.

Suppose moreover that dist(f(x), f ′(x)) ≤ δ for all x ∈ X. Then f − f ′ is constant on the fibres of ϕ.

This result in this form is proved in [GMV17, Theorem 5.1 and Corollary 5.3], but it is very closely

modelled on [ACS12, Lemma 3.19]. The main difference is that [ACS12] considers only the special
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case where Y is the one point space (which is all that is required in our proof of Theorem 1.23). The

general case requires, among other things, the “relative” weak structure theory developed in [GMV18].

The proof of Theorem 1.23 uses the connectedness hypothesis in two crucial ways. First, we can find

continuous lifts only for translations of πs−1(X) with small displacement. Second, we can solve the

functional equation (2) only for small cocycles. In the proof of Theorem 1.24 we can get around this

problem using that the acting group H immerses into the group of translations and it acts transitively

on the space of connected components. We can then realize X as a homogeneous space of G =

〈Aut◦1(X), H〉. Observe that G need not be connected even if X is.

The approach in [ACS12] to the proof of Theorem 1.23 is both closely related to ours and in other

ways somewhat different. Both proofs use at their core the triviality of certain cocycles, in the sense

of Theorem 1.26, but the way these arise, and the method of constructing small translations, vary.

The approach in [ACS12] can be summarized as follows. The authors develop a kind of cohomology

theory for nilspaces, whereby an extension of a nilspace by an abelian group may be characterized up

to isomorphism by a measurable cocycle (up to “coboundaries”). In this picture, cocycles which are

“trivial”, or equal to coboundaries (i.e. of the from ρ = ∂ℓg) are shown to correspond to split or direct

product extensions. Armed with these tools, and given an element f ∈ Aut◦1(πs−1(X)) with small

displacement, they construct an extension of a certain nilspace by a compact abelian group, such that

the extension splits if and only if f has a lift in Aut◦1(X). Hence, the problem is reduced to showing

triviality of a measurable cocycle associated to this extension.

1.8. Inverse limits. We turn to the structure theory of (general) nilspaces. It turns out that these

are not all Lie-fibered nilspaces (as can be seen by considering Ds(A) where A is a compact abelian

group but not a Lie group); but they can be approximated by Lie-fibered nilspaces in some sense, as

the following result (identical to [ACS12, Theorem 4]) shows.

Theorem 1.27 (Inverse Limit Theorem). Let X be a compact ergodic nilspace. Then there is a

sequence of compact ergodic Lie-fibered nilspaces {Xn}, and an inverse system of fibrations {ϕm,n :

Xn → Xm}m<n such that X = lim
←−

Xn.

The proof of this result is given in Section 2; we now outline the main ideas.

The first step is to note that compact abelian groups are inverse limits of compact abelian Lie

groups, and to apply this fact to the structure groups of X . This is enough to deduce the degree 1

case; we prove the theorem for higher degree nilspaces by an inductive argument.

We may identify the top structure group of X with an inverse limit of Lie groups, and thereby

write X = lim
←−

X
(m)
∞ where each X

(m)
∞ is a quotient of X under the action of a subgroup of the top

structure group, and the top structure group of X
(m)
∞ is a Lie group. The degree (s − 1) factors

are unaffected, i.e. πs−1(X) = πs−1(X
(m)
∞ ). Furthermore, we may construct the sequence so that we

eventually quotient by the whole top structure group, i.e. X
(0)
∞ = πs−1(X).

Next, we apply the induction hypothesis to X
(0)
∞ to write X

(0)
∞ = lim

←−
X

(0)
n , where X

(0)
n is Lie-fibered.
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So far, we have some degree (s − 1) Lie-fibered nilspaces X
(0)
n approximating πs−1(X), and some

spaces X
(m)
∞ approximating X whose top structure groups are Lie, but whose degree (s− 1) quotients

are still huge.

Our remaining task is to fill in the diagonal: we want to build a space X
(m)
n for enough pairs n and

m, whose degree (s− 1) factor is the Lie-fibered space X
(0)
n and whose top structure group is the same

as that of X
(m)
∞ .

More precisely, we want to construct a nilspace X
(m)
n for each m and all sufficiently large n ≥ n0(m)

(depending on m), such that πs−1(X
(m)
n ) = X

(0)
n and the fibration X

(0)
∞ → X

(0)
n can be lifted to a

fibration X
(m)
∞ → X

(m)
n . Once this is done, we can write X

(∞)
∞ as the inverse limit of a sequence of the

form {X
(m)
nm }m∈N for some sequence nm →∞.

In other words, we wish to construct the following commuting diagram of fibrations, and then take

an inverse limit up the diagonal.

X
(∞)
∞ = X

X
(m+1)
∞ X

(m+1)
nm+1

X
(m)
∞ X

(m)
nm+1

X
(m)
nm

X
(0)
∞ = πs−1(X) X

(0)
nm+1

X
(0)
nm X

(0)
0 = {•}

The main difficulty of the approach lies in the construction of this nilspace X
(m)
n . To reiterate this

isolated problem: we are given a fibration X
(0)
∞ → X

(0)
n , and also that the nilspace X

(0)
∞ is the quotient

of X
(m)
∞ under the free action of a compact abelian group A = As(X

(m)
∞ ). We wish to construct X

(m)
n

and a fibration X
(m)
∞ → X

(m)
n , such that X

(0)
n is the quotient of X

(m)
n under the free action of the same

group A, and such that the following diagram commutes:

X
(m)
∞ X

(m)
n

X
(0)
∞ X

(0)
n

πs−1 πs−1

It turns out that this is not a natural or categorical construction, and indeed it is not possible in

general to construct X
(m)
n with these properties. To do so, we will need some topological input; in
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particular, we will have to make use of the fact that A is Lie and that X
(0)
n is “sufficiently close” to

X
(0)
∞ if n is large enough, in the sense that the fibers of the map X

(0)
∞ → X

(0)
n have small diameter.

The (only reasonable) way to construct the nilspace X
(m)
n is as a quotient of X

(m)
∞ by a closed

equivalence relation, which we denote by ∼m
n . For the quotient to have the required properties, we

need the following hold for every equivalence class D ⊆ X
(m)
∞ of ∼m

n :

• the image πs−1(D) ⊆ X
(0)
∞ is equal to the inverse image of a single point under the fibration

X
(0)
∞ → X

(0)
n ; and

• the restriction

πs−1|D : D → πs−1(D)

of the canonical projection πs−1 to the subcubespace induced byD, is a cubespace isomorphism.

We call a set D satisfying these two properties a straight class.

So, to construct ∼m
n , we need to show that if n is sufficiently large depending on m, then given any

point x ∈ X
(m)
∞ we can find a canonical straight class containing x.

The proof of this fact proceeds as follows. First, we need to invoke with Gleason’s theorem on the

existence of local sections for the bundle X
(m)
∞ → X

(0)
∞ . I.e. this states that any point x ∈ X

(0)
∞ has a

neighborhood U that admits a continuous map σ : U → X
(m)
∞ such that πs−1 ◦ σ = IdU .

Next, we want to adjust this section σ so that it sends fibers of X
(0)
∞ → X

(0)
n to straight classes in

X
(m)
∞ .

In other words, we need to choose a suitable map f : U → A (where as above A = As(X
(m)
∞ ) is the

top structure group of X
(m)
∞ ) and set σ′(x) = f(x).σ(x) for x ∈ U . The condition on f that asserts

that σ′ maps inverse images of points in X
(0)
n into straight classes, is very similar to (2), and so we are

able to find such an f using Theorem 1.26.

The approach of [ACS12] to proving the inverse limit theorem is different. As we mentioned pre-

viously, Antoĺın Camarena and Szegedy develop a cohomology theory for nilspaces. By an intricate

argument measurable cocycles are shown to correspond to extensions by compact groups. This prin-

ciple is then shown to be valid in a relative setting. Indeed, the nilspace X
(m)
n is constructed from a

measurable cocycle arising from a section for X
(m)
∞ → X

(0)
∞ which is compatible with X

(0)
n .

1.9. Equivariance of fibrations for translation groups. We have seen in the previous section that

strongly connected Lie-fibered nilspaces can be endowed with the structure of a Host–Kra nilspace.

It is natural to ask whether this structure is respected by the maps in the inverse system realizing a

strongly connected nilspace as the inverse limit of Host–Kra nilspaces. The answer turns out to be

positive, as confirmed by the following theorem that will be obtained in Section 3 as a byproduct of

the proof of Theorem 1.27. The results stated in this section are new.
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Theorem 1.28. Let ϕ : X → Y be a fibration between two compact ergodic Lie-fibered nilspaces. Then

ϕ induces a surjective continuous homomorphism ϕ∗ : Aut◦i (X)→ Aut◦i (Y ) such that

ϕ∗f.ϕ(x) = ϕ(f.x)

for all x ∈ X and f ∈ Aut◦i (X).

Combining this with Theorems 1.23 and 1.27, we deduce the following.

Theorem 1.29. Let X be a compact ergodic strongly connected nilspace of degree s. Then:

• there exists a sequence of connected Lie groups G(n) equipped with filtrations G
(n)
• of degree at

most s (with G
(n)
i also connected for each i);

• for each n there is a discrete co-compact subgroup Γ(n) of G(n) compatible with the filtration;

and

• for each ∞ > n ≥ m, there are surjective group homomorphisms ψm,n : G(n) → G(m);

such that, letting Xn := G(n)/Γ(n) be the Host–Kra nilspace associated to G
(n)
• and Γ, the following

hold:

• for each n ≥ m, we have ψm,n

(
G

(n)
i

)
= G

(m)
i for each i ≥ 0;

• again for each n ≥ m, we have that ψm,n

(
Γ(n)

)
⊆ Γ(m);

• the map

ϕm,n : Xn → Xm

g · Γ(n) 7→ ψm,n(g) · Γ(m)

induced by ψm,n, is a fibration; and

• X is homeomorphic and isomorphic as a nilspace to the inverse limit lim
←−

Xn given by the

inverse system ϕm,n.

This result should be thought of as a strengthening of the statement that X is an inverse limit of

nilmanifolds: indeed, it states precisely this, but giving much more information concerning the nature

of the connecting maps.

As a consequence of these results, it is possible to endow a compact ergodic strongly connected

nilspace X with an action of the inverse limit of the groups Aut◦1(Xn). One might hope to use this

information to represent X itself as a homogeneous space of this inverse limit group. Unfortunately,

this fails, because the action need not be transitive in general. Moreover, there are examples due to

Rudolph [Rud95], in which X cannot be represented as a homogeneous space of any nilpotent group.

Nevertheless, it is possible to make some direct statements about the nilspace structure of X on the

strength of these results. We believe there are interesting issues here; however, we will not pursue them

presently, though we may return to them in future work.
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Let (H,X) be a minimal topological dynamical system as in the setting of Theorem 1.4. As we

discussed in Section 1.3, we know that X/RPk
H(X) is an ergodic nilspace of degree k. Using The-

orem 1.27, we can write X/RPk
H(X) as the inverse limit of Lie-fibered nilspaces Xn. Notice that

H ⊆ Aut1(X/RPk
H(X)), by the definition of dynamical cubes. To conclude that X/RPk

H(X) is a

pronilsystem, as claimed in Theorem 1.4, we only need to show that the action of H descends to Xn

for n sufficiently large. This is proved in Section 4 using the same circle of ideas as is discussed above.

Moreover, we will obtain the following slightly stronger form of Theorem 1.4.

Theorem 1.30. Let (H,X) be a minimal topological dynamical system. Suppose that RPs
H(X) is

trivial for some s, and that H has a dense subgroup generated by a compact set.

Then:

• there exists a sequence of nilpotent Lie groups G(n) of degree at most s;

• for each n, there is a continuous homomorphism αn : H → G(n);

• for each n, there is a discrete co-compact subgroup Γ(n) ⊆ G(n); and

• for each n > m, there is a continuous homomorphism ψm,n : G(n) → G(m);

such that

• ψm,n(Γn) ⊆ Γm;

• αm = ψm,n ◦ αn; and

• the system (H,X) is isomorphic, as a topological dynamical system, to the inverse limit of

(H,G(n)/Γ(n)) along the inverse system of maps induced by ψm,n, where H acts on G(n)/Γ(n)

via αn.

Finally, we note that Theorem 1.30 is also valid in the following slightly more general setting. The

condition that RPs
H(X) is trivial could be replaced by the assumption that X is a nilspace of degree

at most s and H acts on X via a continuous homomorphism H → Aut1(X). This variant allows

the cubespace structure on X to have more cubes than the dynamical cubespace (X, {Ck
H(X)}k∈N),

provided it is still assumed to be a nilspace of degree s.
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2. Inverse limits in the category of cubespaces

The purpose of this section is to prove Theorem 1.27, the inverse limit theorem. We recommend

the reader review the outline of the proof contained in Section 1.8 before proceeding with the details.

2.1. Preliminaries and definitions. For each metrizable topological space we fix a metric that we

always denote by dist(·, ·). The choices of these metrics may be arbitrary.

The following fact is the starting point of the proof.

Lemma 2.1. A compact abelian group is the inverse limit of compact abelian Lie groups.

This allows us to deduce that the structure groups of a nilspace are inverse limits of Lie groups. In

particular, the degree 1 case of the theorem could be easily deduced from this alone.

Proof of Lemma 2.1. This is straightforward given Pontryagin duality. Indeed, it follows easily from

the fact that a compact abelian group is a Lie group if and only if its dual group is finitely generated.

See also [Sep07, Theorem 5.2(a)]. �

Let X
(∞)
∞ be a compact ergodic nilspace of degree s. (The reason for the double index will become

clear in due course, or may be deduced from Section 1.8.) We prove that X
(∞)
∞ is an inverse limit of

Lie-fibered nilspaces – the statement of Theorem 1.27 – by induction on s. If s = 0, then X
(∞)
∞ is the

one point space and the theorem is trivial.

We fix s ≥ 1, and assume that the theorem holds for nilspaces of degree (s − 1). We denote by

B∞ = π(X
(∞)
∞ ) the (s − 1)-th canonical factor of X

(∞)
∞ . Here, and throughout the remainder of this

section, we abbreviate πs−1 to π, as we will not need to use any of the other canonical projections. By

the induction hypothesis, we may write B∞ = lim
←−

Bm for a sequence {Bm}m∈N of Lie-fibered nilspaces,

along fibrations ψm : B → Bm.

We denote the top structure group of X
(∞)
∞ by A(∞). Applying Lemma 2.1, we write A(∞) =

lim
←−

A(n), where {A(n)}n∈N is a sequence of Lie groups. Let Kn denote the kernel of the surjective

homomorphism A(∞) → A(n). We define X
(n)
∞ to be the quotient of X

(∞)
∞ under the action of Kn and

write α(n) : X
(∞)
∞ → X

(n)
∞ for the quotient map.

It is not hard to show that α(n) is a fibration, from which it follows that X
(n)
∞ is a nilspace (by

[GMV18, Remark 7.9]).

Indeed, let λ : {0, 1}ℓ\{~1} → X
(∞)
∞ be an ℓ-corner and c ∈ Cℓ(X

(n)
∞ ) a cube which is compatible

with λ in the sense that α(n) ◦ λ = c|{0,1}ℓ\{~1}. Let c̃ ∈ Cℓ(X
(∞)
∞ ) be an arbitrary cube such that

α(n)(c̃) = c (which exists by definition of the quotient cubespace). Let f : {0, 1}ℓ\{~1} → Kn be the

unique configuration such that f.c̃|{0,1}ℓ\{~1} = λ. It follows from the weak structure theorem that f
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is a corner in Ds(Kn), hence it can be completed to a cube f ′. Thus f ′.c̃ is a completion of λ that is

compatible with c.

We will shortly state a technical proposition, which claims the existence of several nilspaces and

maps in between them. We will see that Theorem 1.27 follows from it directly. In order to formulate

the statement more easily, we first introduce some terminology. Note that these definitions depend on

the value of s that has been fixed above.

Let ϕ : X → Y be a fibration between two compact ergodic nilspaces of degree s. We claim that

there is a unique fibration ψ : π(X)→ π(Y ) such that the diagram

X Y

π(X) π(Y )

ϕ

π π

ψ

commutes. Indeed, by the universal property of the canonical factor (see [GMV18, Remark 6.7]), the

composite π◦ϕ : X → π(Y ) must factor uniquely through π(X), which gives us ψ; and by the universal

property of fibrations (see Lemma 1.15), since π and ψ ◦ π are fibrations, so is ψ.

Definition 2.2. With this set-up, we call ψ the shadow of ϕ.

We recall from [GMV18, Definition 7.10] the notion of k-uniqueness for a fibration ϕ : X → Y : this

states that if c1, c2 ∈ C
k(X) are such that ϕ(c1) = ϕ(c2) and c1(ω) = c2(ω) for all ω 6= ~1, then in fact

c1 = c2.

We introduce the following terminology for the special case that X and Y are nilspaces of degree s

and k = s. Recall again that we write xs(x; y) to denote the configuration given by ~1 7→ y and ω 7→ x

for all ω 6= ~1.

Definition 2.3. We say that a fibration ϕ : X → Y between two nilspaces of degree s is horizontal

if one of the following two equivalent conditions holds:

(1) we have ϕ(x1) 6= ϕ(x2) for any two points x1, x2 ∈ X with π(x1) = π(x2) and x1 6= x2;

(2) for any x ∈ X with ϕ(x) = y, we have that ϕ restricts to a bijection π−1(x)→ π−1(y).

Remark 2.4. Using the notation and terminology introduced in [GMV18, Section 7], the notion of

horizontal fibrations can also be characterized by one of the following equivalent conditions:

(3) ϕ has (relative) s-uniqueness;

(4) the canonical equivalence relation ∼ϕ,s−1 is trivial (see [GMV18, Section 7.2] for a definition);

(5) for all x1, x2 ∈ X such that ϕ(x1) = ϕ(x2), the configuration xs(x1;x2) is a cube only if

x1 = x2.
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We will use the equivalence of (3)–(5) and the definition only later in Section 3. In particular, the

proof of Theorem 1.27 does not require this. Hence the reader may safely choose to ignore this remark

for the moment.

The equivalence of (3), (4) and (5) is dealt with in [GMV18, Section 7.2]. Logically, (1) is the same

as saying that if π(x1) = π(x2) and ϕ(x1) = ϕ(x2) then x1 = x2; and by Lemma 1.20, this is the same

as (5).

We now state the promised technical proposition.

Proposition 2.5. Let X
(n)
∞ , α(n), Bm, ψm, etc. be as above.

Then there is an increasing sequence {Mn} of positive integers such that the following holds. For

all n ∈ N and m ≥ Mn, there is a compact ergodic nilspace X
(n)
m of degree s such that its (s − 1)-th

canonical factor is π(X
(n)
m ) = Bm, and its top structure group is An. Furthermore, there is a horizontal

fibration ϕ
(n)
m : X

(n)
∞ → X

(n)
m , whose shadow is ψm.

In addition, we have the following property. If m1 ≤ m2 and n1 ≤ n2 are such that X
(n1)
m1

, X
(n2)
m2

are both defined, then the fibres of

ϕ(n2)
m2
◦ α(n2) : X(∞)

∞ → X(n2)
m2

partition the fibres of

ϕ(n1)
m1
◦ α(n1) : X(∞)

∞ → X(n1)
m1

;

more precisely, for each x1 ∈ X
(n1)
m1

there is x2 ∈ X
(n2)
m2

such that (ϕ
(n2)
m2
◦ α(n2))−1(x2) ⊆ (ϕ

(n1)
m1
◦

α(n1))−1(x1).

Note that the last claim about the fibres of ϕ
(n)
m ◦ α(n) is used to construct fibrations from X

(n2)
m2

to X
(n1)
m1

with the help of the universal property of fibrations. Specifically, it asserts the existence of

a map of sets X
(n2)
m2
→ X

(n1)
m1

that makes everything commute; and by these universal properties this

will turn out to be continuous and a fibration.

Assuming this proposition, whose proof we will return to below, we now complete the proof of

Theorem 1.27. The deduction is more or less a case of formalizing the previous remark, and we advise

against taking the formal details too seriously.

Since X
(n)
m are Lie fibred nilspaces, it is enough to prove the following.

Proposition 2.6. Let X
(n)
m , α(n), Bm, ψm, Mn, etc. be as above. Let {M̃n} be an increasing sequence

such that M̃n ≥Mn for all n and M̃n →∞.

Writing Xn = X
(n)

M̃n

and X∞ = X
(∞)
∞ , there is an inverse system of fibrations {ϕn,l : Xl →

Xn}∞≥l≥n such that the shadow of ϕn,∞ is ψn and X∞ = lim
←−

Xn.

The reader might be wondering what the purpose of the sequence {M̃n} is, and why we cannot

simply take M̃n = Mn. The reason is that we will need this extra flexibility in our proof of the

dynamical results in Section 4.
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Proof. We set ϕn,∞ = ϕ
(n)

M̃n

◦ αn and construct the fibrations ϕn,l for l <∞ by applying Lemma 1.15

(the universal property of fibrations) with X = X∞ = X
(∞)
∞ , Y = Xl = X

(l)

M̃l

and Z = Xn = X
(n)

M̃n

. We

verify that ϕn,l ◦ ϕl,o = ϕn,o. If o =∞, this already follows from Lemma 1.15. If o < ∞ then we can

write

(ϕn,l ◦ ϕl,o) ◦ ϕo,∞ = ϕn,l ◦ (ϕl,o ◦ ϕo,∞) = ϕn,l ◦ ϕl,∞ = ϕn,∞.

Hence ϕn,l ◦ ϕl,o = ϕn,o by the uniqueness part of Lemma 1.15 applied with X = X∞, Y = Xo and

Z = Xn.

Finally, now that we have an inverse system, we need to verify that it separates points of X∞. Let

x, y ∈ X∞ = X
(∞)
∞ be distinct points; we need to show that ϕn(x) 6= ϕn(y) if n is sufficiently large.

If π(x) 6= π(y), then ψ
M̃n

(π(x)) 6= ψ
M̃n

(π(y)) if n is sufficiently large. Since the shadow of ϕ
(n)

M̃n

is

ψ
M̃n

, we have

ϕn,∞(x) = ϕ
(n)

M̃n

(α(n)(x)) 6= ϕ
(n)

M̃n

(α(n)(y)) = ϕn,∞(y).

If π(x) = π(y), then there is a unique a ∈ A(∞) such that a.x = y. If n is sufficiently large then

a 6= Kn, hence αn(x) 6= αn(y). The claim follows again since ϕ
(n)

M̃n

is horizontal hence injective on

fibres of π. �

2.2. Straight classes and sections. We now turn to the proof of Proposition 2.5.

As discussed in Section 1.8, we will construct the nilspace X
(n)
m as a quotient of X

(n)
∞ (and indeed,

there is essentially no other choice). To do this, we need to specify a procedure for identifying the

fibers π−1(x), π−1(y) in X
(n)
∞ for every pair of points x, y ∈ B∞ such that ψm(x) = ψm(y). See Figure

1 for a pictorial representation.

Moreover, this identification needs to respect the cubespace structure.

In particular, suppose that ϕ
(n)
m : X

(n)
∞ → X

(n)
m is indeed a horizontal fibration whose shadow is ψm.

Then we can make the following observation. Let c ∈ Cs+1(B∞) be a cube all of whose vertices are

mapped by ψm to the same point b ∈ Bm. Let x ∈ X
(n)
m be a point above b, that is b = π(x). Denote

by cx : {0, 1}s+1 → X
(n)
∞ the unique configuration such that π(cx) = c and each vertex of ϕ

(n)
m (cx) is x.

In other words, for the vertices of cx we pick the unique points above the vertices of c that are mapped

to x by ϕ
(n)
m .

We claim that cx is a cube in X
(n)
∞ . Indeed, it follows from the weak structure theorem (Theorem

1.22) that there is a cube c′ ∈ Cs+1(X
(n)
∞ ) with π(c′) = c and with all but possibly one of its vertices

matching the corresponding vertices of cx; say c′(~1) is the exception. If we remove the exceptional

vertex from c′, we obtain a corner all of whose vertices are mapped to x by ϕ
(n)
m . Since ϕ

(n)
m is a

fibration, this corner can be completed to a cube c′′ such that ϕ
(n)
m (c′′)(~1) = x. On the other hand,

π(c′′)(~1) = c(~1) = π(cx)(~1), since Bm is of degree (s− 1). So, we must have that c′′ = cx.

Motivated by the above observation, we make the following definition.

Definition 2.7. Let X be a compact ergodic nilspace, and let ψ : B1 := π(X) → B2 be a fibration

onto a nilspace B2. We call a set D ⊆ X a straight ψ-class, if there is a point b′ ∈ B2 such that
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X
(n)
∞

B∞ Bm

X
(n)
m

π π

ψm

ϕ
(n)
m

Figure 1. A schematic of the process of constructing X
(n)
m . The map ϕ

(n)
m is supposed

to be a horizontal fibration; i.e. map vertical fibers (left dotted lines) bijectively to

vertical fibers (right dotted line). The three horizontal black lines in X
(n)
∞ are three

of the desired equivalence classes of the quotient. In particular, we need to construct
an identification between the two left-hand fibers.

π(D) = ψ−1(b′), D contains exactly one point on the fiber π−1(b) for every b ∈ ψ−1(b′), and if a

configuration c : {0, 1}s+1 → D is a cube if and only if π(c) is a cube.

Note that the “only if” part of the above condition holds for any set D, since π is a cubespace

morphism. Also, the reader may wish to verify that this definition is a restatement of the one in

Section 1.8.

We can summarize the above discussion in the following lemma.

Lemma 2.8. If ϕ : X → Y is a horizontal fibration between two compact ergodic nilspaces, then the

inverse images of points under ϕ are straight ψ-classes, where ψ is the shadow of ϕ.

A key fact, which we will formalize in Propositions 2.9 and 2.10 below, is the following.

Fact. If m is sufficiently large (in terms of n), then each point x ∈ X
(n)
∞ is contained in a straight

ψm-class. Moreover, this class is unique if we also insist that its diameter be small.

This allows us to define X
(n)
m as a quotient of X

(n)
∞ by identifying straight classes; i.e., the equivalence

classes of the relation ∼m
n defining X

(n)
m are precisely the straight classes given by this fact.

We are not yet done: the condition of Lemma 2.8 is necessary but not sufficient. We have further

work to do to show that this equivalence relation is closed and respects the cubespace structure in

the appropriate way to give a horizontal fibration. However, by Lemma 2.8 and the above fact, we do

know that this quotient is essentially the only possible candidate, which is reassuring.
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Indeed, the main problem is that the definition of straight classes only carries information about

those cubes of X
(n)
∞ that collapse down to a single point in Bm under the map ψm ◦ π. It does not

directly tell us anything about general cubes.

Fortunately, our proof of the existence of straight classes in fact yields further information along

these lines. In order to formalize this, we now make some further definitions.

Let X be a compact ergodic nilspace and denote by A its top structure group. For a vertex

ω ∈ {0, 1}s+1 of the discrete cube, and an element a ∈ A, we write [a]ω : {0, 1}s+1 → A for the

map which assigns a to ω and the identity element 0 to all other vertices. Let c : {0, 1}s+1 → X be

a configuration such that π(c) is a cube. By the weak structure theorem, there is a unique element

a ∈ A such that [a]~0.c is a cube in X . We call this element a the discrepancy of c and denote it by

D(c) := a.

Let X be a compact ergodic nilspace and let ψ : B1 := π(X)→ B2 be a fibration. Let U ′ ⊆ B2 be

an open set and put U = ψ−1(U ′). We say that a continuous map σ : U → X is a straight ψ-section

if π ◦ σ = IdU , and the following holds. If c1, c2 : {0, 1}s+1 → U are two (s+ 1)-cubes of B1 such that

ψ(c1) = ψ(c2), then D(σ(c1)) = D(σ(c2)).

We remark that the straightness of a section σ implies that it maps the fibres of ψ onto straight

classes. Indeed, let c ∈ Cs+1(B1) be a cube contained in a single fibre of ψ and let c2 be a constant

cube in the same fibre. Then D(σ(c)) = D(σ(c2)) = 0, since σ ◦ c2 is also a constant cube. This proves

that σ(c) is a cube.

We also note that discrepancy is a continuous function. Indeed, let {cn} ⊆ X
{0,1}s+1

be a sequence

of configurations converging to a limit c ∈ X{0,1}
s+1

, such that π(cn) is a cube for all n (and hence

so is π(c)). We show that limD(cn) = D(c). We assume as we may that limD(cn) = a exists. Since

Cs+1(X) is closed, we see that

lim[D(cn)]~0.cn = [a]~0.c

is a cube. Hence D(c) = a by definition.

We now state two technical propositions, extending the fact about existence and uniqueness of

straight classes stated above.

Proposition 2.9. Let X be an ergodic compact nilspace of degree s and suppose that its top structure

group is a Lie group. Let ε > 0 be given. Then there is a number δ > 0 such that the following

holds. Let ψ : B1 := π(X)→ B2 be a fibration onto a nilspace B2 such that diam(ψ−1(b2)) < δ for all

b2 ∈ B2.

Then for every c ∈ Cs+1(B1), there is an open set U2 ⊆ B2 such that U1 := ψ−1(U2) contains the

vertices of c, and such that there exists a straight ψ-section σ : U1 → X such that diam(σ(ψ−1(b))) ≤ ε

for all b ∈ U2. In particular, each point in X is contained in a straight ψ-class of diameter at most ε.

Proposition 2.10. Let X be an ergodic compact nilspace of degree s and suppose that A, the top

structure group of X, is a Lie group. Then there is a number δ > 0 such that the following holds. Let
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ψ : B1 := π(X)→ B2 be a fibration onto a nilspace B2. Let D1, D2 ⊆ X be two straight ψ-classes with

π(D1) = π(D2) and diam((D1 ∪D2) ∩ π−1(b)) ≤ δ for all b ∈ π(D1).

Then D1 = a.D2 for some a ∈ A. In particular, D1 and D2 are either equal or disjoint.

The rest of the section is devoted to the proofs of Propositions 2.9 and 2.10. The fact that (local)

sections s : U → X exist even without any further properties is already non-trivial, and was established

by Gleason in his work on Hilbert’s 5th problem.

Theorem 2.11 ([Gle50, Theorem 3.3]). Suppose that a compact Lie group A acts freely and contin-

uously on a completely regular topological space X. Denote by π : X → X/A the quotient map under

the action of A. Then every point x ∈ X/A has a neighborhood U such that there is a local section

σ : U → X; that is, a continuous map satisfying π ◦ σ = IdU .

Although this is a very deep result, we note that the proof in the abelian case is significantly simpler,

which is all that we are using. See the notes of Tao [Tao14] for a self-contained treatment.

To prove Proposition 2.9, we start with a local section σ that we obtain from Gleason’s theorem.

Then we “straighten” it using the action of the structure group A; that is, we choose a suitable

continuous function f : U → A and verify that x 7→ f(x).σ(x) is a straight ψ-section.

To this end, we work out what condition on f implies the straightness of the section f.s, and record

it in the following lemma.

We recall the following definition. Let f : X → A be a continuous function from a cubespace to an

abelian group. We call the function ∂s+1f : Cs+1(X)→ A defined by

∂s+1f(c) :=
∑

ω∈{0,1}s+1

(−1)|ω|f(c(ω))

the (s+ 1)-th derivative of f .

Lemma 2.12. Let X be an ergodic compact nilspace of degree s, and let ψ : B1 := π(X) → B2 be a

fibration onto a nilspace B2. Let U2 ⊆ B2 be an open set and put U1 = ψ−1(U2). Denote by A the top

structure group of X. Let σ : U1 → X be a section and f : U1 → A be a continuous map.

Then the section x 7→ f(x).σ(x) is straight if and only if

∂s+1f(c1)−D(σ(c1)) = ∂s+1f(c2)−D(σ(c2))

for any two c1, c2 ∈ C
s+1(B1) such that c1, c2 ⊆ U1 and ψ(c1) = ψ(c2).

The above lemma is an immediate corollary of the following.

Lemma 2.13. Let X be an ergodic compact nilspace of degree s and denote by A its top structure group.

Consider the configurations c : {0, 1}s+1 → X and f : {0, 1}s+1 → A. Then D(f.c) = D(c)− ∂s+1f .

Proof. By definition [D(c)]~0.c is a cube. By the weak structure theorem and the identity

∂s+1(f − [∂s+1f ]~0)(c) = 0,
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the configuration

(f − [∂s+1f ]~0 + [D(c)]~0).c = [D(c)− ∂s+1f ]~0.(f.c)

is also a cube. This proves the claim. �

At this point, we have reduced the proof of Proposition 2.9 to solving a cocycle equation in the

sense of Theorem 1.26, and therefore the remaining technical core of the proof will be an appeal to

that theorem.

However, we caution that we do really need the full technical power of Theorem 1.26 to make this

work, and in particular will apply it to some slightly odd spaces X and Y that are not in general

nilspaces.

The remaining work is therefore devoted to setting up these spaces in detail, and to a lot of technical

epsilon management.

Proof of Proposition 2.9. We will prove only the existence of the straight section, as the claim about

straight classes follows immediately from this.

In fact, we prove the following formally weaker version. We show that for every cube c0 ∈ C
s+1(B1),

there is an open set U2 ⊆ B2 such that U1 := ψ−1(U2) contains the vertices of c0, and there exists a

δ = δ(U2) > 0 depending on U2, X , ε such that the claim of the proposition holds for U2 with this

δ. By compactness, this implies the proposition: we may take the minimum of δ(U2) over a finite

collection of open sets whose preimages under ψ cover Cs+1(B1).

Fix a cube c0 ∈ C
s+1(B1). By Gleason’s theorem, there is an open set U−1 ⊆ B1 containing the

vertices of c0 and a continuous section σ : U−1 → X . Indeed, if this were to fail, then let V ⊆ B1 be an

open set that admits a continuous section and that contains the maximal possible number of vertices

of c0. Let b be a vertex of c0 not covered by V . We can assume without loss of generality that b /∈ V .

Then we can find an open neighborhood V ′ of b disjoint from V that admits a continuous section using

Gleason’s lemma. Then V ∪ V ′ violates the assumption we made on V .

We choose a smaller open set U0 containing c0 such that U0 ⊆ U−1. We also fix a number τ to

be set later, depending only on ε and the number denoted by δ in Theorem 1.26 applied with the top

structure group of X in the role of A, and with ℓ = (s+1). We consider U0 with the induced cubespace

structure, i.e. we denote by Cs+1(U0) the set of (s+ 1)-cubes all of whose vertices lie in U0. We define

the function ρ : Cs+1(U0)→ A by ρ(c) = D(σ(c)), where D is the discrepancy function defined above.

Since σ and D are continuous, ρ is also continuous. By uniform continuity, there is a number

δ0 > 0 such that dist(ρ(c1), ρ(c2)) < τ whenever dist(c1, c2) = maxω dist(c1(ω), c2(ω)) < δ0, and

dist(σ(x1), σ(x2)) ≤ τ/C whenever dist(x1, x2) ≤ 4δ0. Here C is the implicit constant from Theorem

1.26.

We now set δ to be small enough such that δ ≤ δ0 and such that the ball of radius δ around

each vertex of c0 is contained inside U0. We construct open sets U1 ⊆ B1 and U2 ⊆ B2 such that

U1 = ψ−1(U2) and c0 ⊆ U1 ⊆ U0. To this end, let Z be the complement of the union of the δ-balls
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around the vertices of c0. Then ψ(Z) is a compact set, which does not contain any vertex of ψ(c0),

since diam(ψ−1(ψ(c0(ω)))) < δ for all ω ∈ {0, 1}k+1. We let U2 be the complement of ψ(Z) in B2.

Then U1 = ψ−1(U2) contains c0 and it is disjoint from Z hence it is contained in the δ neighborhood

of the vertices of c0. This implies U1 ⊆ U0. Moreover, diam(σ(ψ−1(b))) ≤ τ/C for all b ∈ U2 by the

assumptions on ψ, δ0 and δ.

We check that ρ restricted to Cs+1(U1) is a cocycle. Let c1, c2, c3 ∈ C
s(U1) be two cubes such that

[c1, c2], [c1, c3] and [c2, c3] are all cubes. Then we know that [ρ([ci, cj ])]~0.σ([ci, cj]) are cubes in X for

i, j = 1, 2, 3. It follows then that

([ρ([c1, c2]) + ρ([c2, c3])]~0 + [ρ([c2, c3])](0,...,0,1)).σ([c1, c2]) (4)

is also a cube. Indeed, this configuration is obtained from [ρ([c1, c2])]~0.σ([c1, c2]) by acting on two

adjacent vertices with the same element of the top structure group.

Using that nilspaces have the gluing property ([GMV18, Proposition 6.2]) for the cube (4) and

[ρ([c2, c3])]~0.σ([c2, c3]), we obtain that

[ρ([c1, c2]) + ρ([c2, c3])]~0.σ([c1, c3])

is also a cube. By the definition of discrepancy this proves ρ([c1, c3]) = ρ([c1, c2]) + ρ([c2, c3]).

We check that Theorem 1.26 applies to the fibration ψ : U1 → U2. Both U1 and U2 are considered

with the induced cubespace structure and they are compact, ergodic and have the gluing property.

Moreover as B1 is an ergodic nilspace of degree (s−1), ψ is a fibration of degree (s−1). For two cubes

c1, c2 ∈ C
s+1(U1) with ψ(c1) = ψ(c2), we have dist(c1, c2) < δ ≤ δ0, hence dist(ρ(c1), ρ(c2)) < τ that

is assumed to be smaller than the number denoted by δ in Theorem 1.26.

We obtain a function f : U1 → A from Theorem 1.26 such that ρ = ∂s+1f+ρ̃◦ψ and dist(f(x), f(y)) ≤

C ·τ/C = τ whenever ψ(x) = ψ(y). This implies that for any two cubes c1, c2 ⊆ U1 with ψ(c1) = ψ(c2)

we have

∂s+1f(c1)−D(σ(c1)) = −ρ̃(ψ(c1)) = −ρ̃(ψ(c2)) = ∂s+1f(c2)−D(σ(c2)).

Thus b 7→ f(b).σ(b) is a straight section on U1 by Lemma 2.12.

We set τ to be small enough so that τ ≤ ε/2 and such that for any x ∈ X and a1, a2 ∈

A with dist(a1, a2) < τ we have dist(a1.x, a2.x) < ε/4. As diam(σ(ψ−1(b))) < τ < ε/2, then

diam((f.σ)(ψ−1(b))) ≤ ε/2 + 2ε/4 = ε for all b ∈ B2, as required. �

Proof of Proposition 2.10. Write B′1 = π(D1) = π(D2). Since D1 and D2 are ψ-classes, B′1 is the ψ

inverse image of a point x ∈ B2, hence B′1 is a compact ergodic nilspace and has the gluing property.

We write B′2 for the nilspace whose only point is x.

Denote by σi : B′1 → Di the inverses of π restricted to Di for i = 1, 2. Let f : B′1 → A be the

function such that σ2(x) = f(x).σ1(x) for all x ∈ B′1. Fix c ∈ Cs+1(B′1). Since D1 and D2 are straight

classes, σ1(c) and σ2(c) are both cubes. This and the weak structure theorem shows that ∂s+1f(c) = 0.
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On the other hand, we have dist(f(x), 0) ≤ δ by assumption. By Theorem 1.26 applied to ψ : B′1 →

B′2 and the cocycle 0, f must be constant. This proves the proposition. �

2.3. Quotienting by straight classes. Let X be a compact ergodic nilspace of degree s and suppose

that A, its top structure group, is a Lie group. Let ψ : B1 = π(X)→ B2 be a fibration onto a nilspace.

If the fibers of ψ have sufficiently small diameter depending on X , then by Propositions 2.9 and 2.10,

we know that each point of X is contained in a unique straight ψ-class of small diameter. We define

the equivalence relation ≈ on X by requiring that each equivalence class is this unique straight ψ-class.

Or purpose in this section is to prove the following proposition.

Proposition 2.14. Let X be an ergodic compact nilspace of degree s and suppose that A, its top

structure group is a Lie group. There is a number δ > 0 depending only on X such that the following

holds. Let ψ : B1 = π(X)→ B2 be a fibration onto a nilspace. Suppose that diam(ψ−1(b2)) ≤ δ for all

b2 ∈ B2.

Then the equivalence relation ≈ defined above is closed. The quotient cubespace Y := X/ ≈ is a

nilspace, whose (s−1)-th canonical factor is B2. The quotient map ϕ : X → Y is a horizontal fibration

with shadow ψ.

The next lemma will be used to establish that the quotient map ϕ is a fibration. (The lemma is

equivalent to Y having (s+ 1)-uniqueness.)

Lemma 2.15. In the setting of Proposition 2.14, let c1, c2 ∈ C
ℓ(X) for some ℓ ≥ s + 1 and suppose

that c1(ω) ≈ c2(ω) for all vertices ω ∈ {0, 1}ℓ\{~1}. Then we have c1 ≈ c2, that is, we also have

c1(~1) ≈ c2(~1).

Proof. It is enough to prove the lemma for ℓ = s + 1, for if ℓ is larger we can use the case ℓ = s + 1

for suitable faces of c1 and c2. Note that ψ(π(c1)) and ψ(π(c2)) are cubes in B2, which is a nilspace of

degree (s − 1) (as fibrations do not increase the degree), and we have ψ(π(c1(ω))) = ψ(π(c2(ω))) for

ω ∈ {0, 1}s+1\{~1}. Then ψ(π(c1(~1))) = ψ(π(c2(~1))) also. Hence there is an element a ∈ A such that

a.c1(~1) ≈ c2(~1) and hence [a]~1.c1 ≈ c2. We need to show that a = 0.

We apply Proposition 2.9 for the cube π(c1). Let U1 ⊆ B1 and U2 ⊆ B2 be open sets such that

π(c1) ⊆ U1 = ψ−1(U2) and let σ : U1 → X be a straight section. Since ψ(π(c1)) = ψ(π(c2)), this

implies that π(c2) ⊆ U1. Let f : {0, 1}s+1 → A be such that f.σ(π(c1)) = c1. For each ω ∈ {0, 1}s+1

the set

([a]~1 + f)(ω).σ(ψ−1(ψ(π(c2(ω)))))

is a straight class that contains [a]~1.c1(ω) hence c2(ω) also. Thus ([a]~1 + f).σ(π(c2)) = c2.

By Lemma 2.13, we have

0 = D(c1) = D(σ(π(c1)))− ∂s+1f

and

0 = D(c2) = D(σ(π(c2))) − ∂s+1f + (−1)sa.
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By the definition of straightness, we have D(σ(π(c1))) = D(σ(π(c2))), hence a = 0 proving the

claim. �

Proof of Proposition 2.14. We first show that ≈ is closed. Let limxi = x and lim yi = y be two

convergent sequences of points in X such that xi ≈ yi for all i. By the continuity of π and ψ, we have

ψ(π(x)) = ψ(π(y)). By Proposition 2.9, if δ is sufficiently small, then there is an open set U ⊆ B1

containing both π(x) and π(y) and a straight section σ : U → X .

We assume without loss of generality that π(xi), π(yi) ∈ U for all i. Using Proposition 2.10 we

conclude that there are ai ∈ A such that xi = ai.σ(π(xi)) and yi = ai.σ(π(yi)). We can assume

without loss of generality that ai converges to an element a ∈ A. Then by the continuity of σ and the

action of A, we have x = a.σ(π(x)) and y = a.σ(π(y)). Then x and y are in the same straight class,

since σ(π(x)) and σ(π(y)) are. This shows that x ≈ y proving closedness.

We denote the projection map X → Y by ϕ. We denote by π′ : Y → B2 the unique map that

satisfies ψ ◦ π = π′ ◦ϕ, and we show that it is a cubespace morphism. Indeed, if c is a cube in Y , then

there is a cube c′ such that ϕ(c′) = c, hence π′(c) = ψ(π(c′)) is a cube, as well.

We show that ϕ is a fibration. It is a cubespace morphism by the definition of the cubespace

structure on the quotient cubespace Y , so it is left to prove the relative completion property. Let λ be

an ℓ-corner in X and let c be a completion of ϕ(λ). We show that there is a completion c1 of λ such

that ϕ(c1) = c.

We first consider the case ℓ ≥ s+ 1. In this case, λ has a unique completion c1. Let c2 ∈ C
ℓ(X) be

such that c = ϕ(c2). Then c1(ω) ≈ c2(ω) for all ω ∈ {0, 1}ℓ\{~1} hence c1 ≈ c2 by Lemma 2.15. Thus

ϕ(c1) = ϕ(c2) = c as required.

Second, we assume that ℓ ≤ s. We use that ψ is a fibration and find a cube c0 ∈ C
ℓ(B1) that is

a completion of π(λ) such that ψ(c0) = π′(c). (Here we used that π′ is a morphism, a fact that we

proved above.) We set c1 to be the unique configuration such that π(c1) = c0 and ϕ(c1) = c. Since

the dimension of c0 is at most s, any π lift of it is a cube, so c1 is a cube in particular.

The fact that ϕ is a fibration, implies by [GMV18, Remark 7.9] that Y is a nilspace and by the

universal property that π′ is a fibration. We leave it to the reader to verify that π′ is the s-th canonical

projection, ϕ is horizontal and ψ is its shadow. �

2.4. Proof of Proposition 2.5. In this paper, we adopt the convention that we denote by π the

canonical projection of any nilspace of degree s to its s− 1’th canonical factor without designating the

domain of the map in our notation. This should not normally cause confusion; however, in this proof

we will use the canonical projection of many nilspaces, and for this reason we temporarily deviate from

our usual convention, and write

π(n)
m : X(n)

m → X(0)
m = Bm

for the canonical projection of X
(n)
m . This should not be confused with the notation in Section 1, where

the subscript of π designates the degree of the canonical factor that we project onto.
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We take Mn sufficiently large so that diam(ψ−1m (x)) < δ for all m ≥ Mn and x ∈ Bm, where δ is

sufficiently small such that Proposition 2.14 and Proposition 2.10 can both be applied to X
(n)
∞ . Then

the existence of the nilspace X
(n)
m and the fibration ϕ

(n)
m follows from Proposition 2.14 and it remains

to verify the claim about the inverse images of points under the maps ϕ
(n)
m ◦ α(n).

We take indices n2 ≥ n1 and m2 ≥ m1 ≥Mn1
such that m2 ≥Mn2

. Let x ∈ X
(n2)
m2

be a point. Let

x̃ ∈ (ϕ
(n2)
m2
◦ α(n2))−1(x) ∈ X

(∞)
∞ be an arbitrary point and take y = ϕ

(n1)
m1

(α(n1)(x̃)). We set out to

prove that

Z2 := (ϕ(n2)
m2
◦ α(n2))−1(x) ⊆ Z1 := (ϕ(n1)

m1
◦ α(n1))−1(y).

We first show that α(n1)(Z2) ⊆ X
(n1)
∞ is a straight ψm2

-class. Let b ∈ D := ψ−1m2
(π

(n2)
m2

(x)) be an

arbitrary point. We show that α(n1)(Z2) contains a unique point in the fibre of π
(n1)
∞ above b. Since

(ϕ
(n2)
m2

)−1(x) is a straight ψm2
-class, it follows that the points of Z2 in the fibre of π

(∞)
∞ above b is a

single Kn2
orbit. This projects to a single point under α(n1) as Kn2

⊆ Kn1
.

Let c : {0, 1}s+1 → D be a cube. We show that there is a cube c̃ : {0, 1}s+1 → α(n1)(Z2) with

π
(n1)
∞ (c̃) = c. Since (ϕ

(n2)
m2

)−1(x) is a straight ψm2
-class, we can find a cube c1 : {0, 1}s+1 → (ϕ

(n2)
m2

)−1(x)

with π
(n2)
∞ (c1) = c. Since α(n2) is a fibration, there is a cube c2 : {0, 1}s+1 → Z2 with α(n2)(c2) = c1

and hence π
(∞)
∞ (c2) = c. Thus c̃ := α(n1)(c2) satisfies the requirements. This shows that α(n1)(Z2) is

indeed a straight ψm2
-class.

We note that α(n1)(Z1) is a straight ψm1
-class. Then

α(n1)(Z1) ∩ (π(n1)
∞ )−1(D)

is a straight ψm2
-class and it contains the point α(n1)(x̃), which is also contained in α(n1)(Z2). By

Proposition 2.10 we have hence

α(n1)(Z2) ⊆ α(n1)(Z1)

and then Z2 ⊆ Z1. This completes the proof of Proposition 2.5.

3. Equivariance under translations

We recall that we denote by Auti(X) the group of i-translations of a nilspace X . We endow it with

the maximum displacement metric

dist(f, g) = max
x∈X
{dist(f(x), g(x))}.

We denote by Autεi (X) the ε-neighbourhood of the identity in this metric. If X is a Lie-fibered nilspace

then Auti(X) is a Lie group (see [GMV17, Theorem 2.18]), hence

Aut◦i (X) = 〈Autεi (X)〉

if ε is sufficiently small. The purpose of this section is the proof of Theorem 1.28, which is an immediate

consequence of the following.
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Proposition 3.1. Let ϕ : X → Y be a fibration between two compact ergodic Lie-fibered nilspaces and

let ε > 0 be given. Then there is a δ > 0 depending only on X, Y , ϕ and ε such that the following

holds. For every f ∈ Autδi (X) there is an f ′ ∈ Autεi (Y ), and respectively for every f ′ ∈ Autδi (Y ) there

is an f ∈ Autεi (X), such that f ′ ◦ ϕ = ϕ ◦ f .

Note there are really two distinct statements here: a “pushing forward” result and a “pulling

back” one. The proofs of these will be handled separately and have different flavours. The “pulling

back” part is really an existence fact, and will be implied fairly easily by results concerning the

existence of translations from [GMV17]. The “pushing forward” part is about proving properties

of small translations – namely, that they are compatible with the fibration in some sense – and will

require a new argument.

In both cases, the proof of this proposition is by induction on s, the degree of X . For s = 0 the

claim is trivial, so we fix s ≥ 1 and assume that the proposition holds for nilspaces of degree (s− 1).

Recall that in Definition 2.3 we coined the notion of a horizontal fibration. In Section 3.1 we

introduce the complementary notion of vertical fibrations, and show that an arbitrary fibration may

be decomposed as a composition of a vertical and a horizontal one.

The “pushing forward” part of Proposition 3.1 is reasonably straightforward for vertical fibrations,

and in fact holds without any smallness assumption. We handle this in Section 3.2. We thereby reduce

to the case where ϕ is horizontal.

We consider this case in Section 3.3. The crucial step is to show that small translations map sets of

the form ϕ−1(y) onto each other. The key observations are to note that such sets are straight classes,

and that, in general, translations map straight classes onto straight classes. Hence, the results of the

previous section can be exploited to give what we want in the case of small translations.

Finally, we prove the “pulling back” result in Section 3.4.

3.1. A decomposition of fibrations. We recall from Section 2.2 that the shadow of a fibration

ϕ : X → Y between compact ergodic nilspaces of degree s is the unique fibration ψ : π(X) → π(Y )

that satisfies π ◦ ϕ = ψ ◦ π. We continue to use our convention that π abbreviates πs−1 as we do not

use the other canonical projections.

We also recall that a fibration ϕ is called horizontal if it has relative s-uniqueness; or equivalently,

if it is injective on fibres of π (see Definition 2.3 and the remarks that follow).

Finally, we recall from [GMV18, Definition 7.18] that a fibration ϕ : X → Y is called relatively

k-ergodic if whenever c : {0, 1}k → X is a configuration such that ϕ ◦ c ∈ Ck(Y ) then c ∈ Ck(X); i.e. if

all k-configurations in X are cubes provided they map to cubes of Y .

The complementary notion to a horizontal fibration is as follows.

Definition 3.2. We say that a fibration ϕ : X → Y between ergodic compact nilspaces of degree s is

vertical if any of the following equivalent conditions holds:

(1) given x1, x2 ∈ X such that π(ϕ(x1)) = π(ϕ(x2)), we must have π(x1) = π(x2);
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(2) the shadow of ϕ is an isomorphism π(X)
∼
−→ π(Y );

(3) ϕ is relatively s-ergodic;

(4) we have that x1 ∼ϕ,s−1 x2 for any x1, x2 ∈ X such that ϕ(x1) = ϕ(x2) (again, see [GMV18,

Section 7.2] for a definition);

(5) for any x1, x2 ∈ X such that ϕ(x1) = ϕ(x2), the configuration xs(x1;x2) is a cube.

The equivalence of (3), (4) and (5) is covered in [GMV18, Section 7.2]. Now, (1) states precisely

that the shadow of ϕ is injective, and any fibration is an isomorphism if and only if it is injective;

so (1) and (2) say the same. Clearly, (1) implies (5); and (3) implies (1), since (by Lemma 1.20)

π(ϕ(x1)) = π(ϕ(x2)) if and only if xs(ϕ(x1);ϕ(x2)) is a cube, which holds if and only if xs(x1;x2) is

(assuming (3)), which implies π(x1) = π(x2).

Examples of such fibrations are quotient maps by subgroups of the top structure group. In fact, it

turns out that these are the only examples.

The main result of this section is the following decomposition result.

Proposition 3.3. Let ϕ : X → Y be a fibration between two compact ergodic nilspaces of degree s.

Then there is a compact ergodic nilspace Z, a vertical fibration ϕv : X → Z and a horizontal fibration

ϕh : Z → Y such that ϕ = ϕh ◦ ϕv.

Proof. This is immediate from [GMV18, Proposition 7.12]. This states that there is a decomposition

ϕ : X
πϕ,s−1

−−−−→ X/ ∼ϕ,s−1
g
−→ Y

where ∼ϕ,s−1 is the canonical equivalence relation attached to the fibration ϕ, and that both of these

maps are fibrations. It is immediate from the definition of ∼ϕ,s−1 that the quotient map is relatively

s-ergodic; and it follows from [GMV18, Remark 7.9] that Z = X/ ∼ϕ,s−1 is a nilspace (and also

trivially compact and ergodic). By [GMV18, Proposition 7.12], g is a fibration of degree at most s− 1,

so it has s-uniqueness, and hence it is horizontal. (See also Remark 2.4). �

We make a final remark before proceeding. We note that the relation ∼ϕ,s−1 is finer than ∼s−1 on

X (which is immediate from the definitions), and hence π factors as

π : X
πϕ,s−1

−−−−→ πϕ,s−1(X)→ π(X).

Also, the relative structure theorem [GMV18, Theorem 7.19] states that X admits a free continuous

action by a compact abelian group As(ϕ) whose orbits are the fibers of πϕ,s−1.

It is not quite immediate from this, but is nonetheless true and not hard to argue, that when X is

a nilspace of degree s this group As(ϕ) may be identified with a closed subgroup of the top structure

group As. Hence, any vertical fibration is the quotient of X by a subgroup of the top structure group.

However, we will not explicitly need such a result.

3.2. The case of vertical fibrations. In this section, we prove the following.
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Proposition 3.4. Let ϕ : X → Y be a vertical fibration between two compact ergodic nilspaces. Then

there is a continuous homomorphism ψ : Auti(X)→ Auti(Y ) such that ψ(f)(ϕ(x)) = ϕ(f(x)) for all

x ∈ X and f ∈ Auti(X).

We begin with a simple lemma which gives a condition for a translation to descend to a factor

through a fibration.

Lemma 3.5. Let ϕ : X → Y be a fibration between two compact nilspaces and let f ∈ Auti(X) be a

translation. Suppose that for every y1 ∈ Y there is a y2 ∈ Y such that f(ϕ−1(y1)) = ϕ−1(y2). Then

there is a unique translation f ′ ∈ Auti(Y ) such that f ′ ◦ ϕ = ϕ ◦ f .

Proof. We apply Lemma 1.15 for the fibrations ϕ : X → Y and ϕ ◦ f : X → Y and deduce that a

unique fibration f ′ : Y → Y exists satisfying f ′ ◦ ϕ = ϕ ◦ f .

We show that f ′ ∈ Auti(Y ). To this end, we fix a cube c ∈ Cℓ(Y ) and let c̃ be a ϕ-preimage of c in

Cℓ(X). Let F ⊆ {0, 1}ℓ be a face of codimension i. Then [f ′]F .c = ϕ([f ]F .c̃) is a cube, showing that

f ′ is indeed a translation. �

It is possible to verify the condition of Lemma 3.5 directly in the case of vertical fibrations. Many

approaches are possible here; ours is fairly direct, using minimal structure theory.

Recall that we write xk(x; y) to denote the k-configuration given by ~1 7→ y and ω 7→ x for all ω 6= ~1.

We also introduce the notation �k(x) to denote the constant k-cube ω 7→ x.

Lemma 3.6. Suppose ϕ : X → Y is a vertical fibration between compact ergodic nilspaces of degree s,

and suppose f ∈ Aut1(X) is an 1-translation.

Let x, x′ ∈ X be such that ϕ(x) = ϕ(x′). Then ϕ(f(x)) = ϕ(f(x′)).

Proof. By relative s-ergodicity of ϕ, we have that xs(x;x′) is an s-cube, and hence c = [xs(x;x′), xs(f(x), f(x′))]

is an (s+ 1)-cube, since f is a 1-translation.

Now let c̃ = [�s(ϕ(x)),�s(ϕ(f(x)))]. This is a cube of Y (by ergodicity); and moreover, c|{0,1}s+1\{~1}

and c̃ form a compatible (s+ 1)-corner for ϕ. Since ϕ is a fibration, we may complete c|{0,1}s+1\{~1} to

a cube c′ such that ϕ(c′(~1)) = ϕ(f(x)).

But X has (s+ 1)-uniqueness, and hence f(x′) = c(~1) = c′(~1), which gives the result. �

Proof of Proposition 3.4. Combining Lemma 3.5 and Lemma 3.6, we have shown that for all f ∈

Auti(X) there exists an unique ψ(f) ∈ Auti(Y ) such that ψ(f) ◦ϕ = ϕ ◦ f . It is routine to verify that

ψ must define a continuous group homomorphism. �

3.3. Horizontal fibrations. In this section, we prove the following.

Proposition 3.7. Let ϕ : X → Y be a horizontal fibration between two compact ergodic Lie-fibered

nilspaces of degree s, and let ε > 0 be given. Then there is a δ > 0 depending only on X, Y , ϕ and ε

such that the following holds. For every f ∈ Autδi (X) there is f ′ ∈ Autεi (Y ) such that f ′ ◦ ϕ = ϕ ◦ f .
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Recall our induction hypothesis, that Proposition 3.1 holds for nilspaces of degree at most (s − 1).

We fix a horizontal fibration ϕ : X → Y between two compact ergodic Lie-fibered nilspaces of degree s

and a parameter ε0 > 0. Denote by ψ : π(X)→ π(Y ) the shadow of ϕ. We choose a sufficiently small

number δ0 such that Proposition 3.1 holds for ψ, π(X), π(Y ), ε0, δ0.

Proposition 3.7 is an immediate consequence of Lemma 3.5 and the following lemma:

Lemma 3.8. If δ is sufficiently small, then for any point y ∈ Y there is a point z ∈ Y such that we

have f(ϕ−1(y)) = ϕ−1(z).

Proof. Let f ∈ Autδi (X). Write g ∈ Auti(π(X)) for the shadow of f . If δ is sufficiently small, then

g ∈ Autδ0i (π(X)). Hence there is a translation g′ ∈ Autε0i (π(Y )) such that g′(ψ(x)) = ψ(g(x)) for all

x ∈ π(X). Thus for every y1 ∈ π(Y ) there is z1 ∈ π(Y ) such that g(ψ−1(y1)) = ψ−1(z1).

Recall from Lemma 2.8 that the inverse images of points under ϕ are straight ψ-classes in X . We

use that f is a cubespace automorphism and the conclusion of the previous paragraph to deduce that

D1 := f(ϕ−1(y)) is also a straight ψ-class.

Now fix a point x0 ∈ ϕ
−1(y), let z = ϕ(f(x0)) and let D2 = ϕ−1(z). Then D1 and D2 are both

straight ψ-classes, and f(x0) ∈ D1∩D2. Recall that Proposition 2.10 gives conditions under which two

straight classes are always either identical or disjoint; if these conditions hold, we have that D1 = D2

and hence f(ϕ−1(y)) = ϕ−1(z) as required.

So, its suffices to check the hypotheses of Proposition 2.10. We fix a parameter κ > 0 to be specified

later. Since ϕ is continuous, it follows that for any x ∈ X we have dist(ϕ(f(x)), ϕ(x)) ≤ κ provided δ is

sufficiently small. Hence for all x ∈ ϕ−1(y), we have dist(ϕ(f(x)), y) ≤ κ. In particular, dist(z, y) ≤ κ,

hence dist(ϕ(f(x)), z) ≤ 2κ for all x ∈ ϕ−1(y).

Let now x1 ∈ D1, x2 ∈ D2 with π(x1) = π(x2). Denote by δ1 the number δ from Proposition

2.10. We aim to show that dist(x1, x2) < δ1 if δ is sufficiently small, which completes the proof. To

that end, we show that if κ is sufficiently small, then for any u, v ∈ X with π(u) = π(v), we have

that dist(ϕ(u), ϕ(v)) < κ implies dist(u, v) < δ1. Indeed, suppose for contradiction that (un)n∈N and

(vn)n∈N are two sequences with π(un) = π(vn) for all n, and dist(ϕ(un), ϕ(vn)) → 0 as n → ∞,

yet dist(un, vn) ≥ δ1 for all n. We may assume without loss of generality that un and vn are both

convergent, and we write u and v for their respective limits. By continuity of π and ϕ, we have

π(u) = π(v) and ϕ(u) = ϕ(v), hence u = v, because ϕ is a horizontal fibration. However, we also have

dist(u, v) ≥ δ1, which is a contradiction. �

3.4. Pulling back translations. All that now remains is the “pulling back” component of Proposition

3.1, which we now recall.

Proposition 3.9. Let ϕ : X → Y be a fibration between two compact ergodic Lie-fibered nilspaces and

let ε > 0 be number. Then there is a δ > 0 depending only on X, Y , ϕ and ε such that the following

holds. For every f ′ ∈ Autδi (Y ) there is f ∈ Autεi (X) such that f ′ ◦ ϕ = ϕ ◦ f .

We recall the following result from [GMV17, Lemmas 3.10 and 3.4] that will be used in the proof.
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Theorem 3.10. Let X be a compact ergodic Lie-fibered nilspace. Then Aut◦i (X) acts transitively on

each connected component of the equivalence classes of the (i − 1)-th canonical equivalence relation

∼i−1.

In fact, the following strengthening is true. For every ε > 0 there is δ > 0 such that the following

holds: for every two points x1, x2 ∈ X satisfying x1 ∼i−1 x2 and dist(x1, x2) < δ, there is a translation

f ∈ Autεi (X) such that f(x1) = x2.

Also, the stabilizer Stabx(Aut1(X)) is discrete for any point x ∈ X.

Essentially this states that, under some topological assumptions, i-translations are uniquely char-

acterized by where they send a single point, and we have almost total freedom to choose that point.

So, if f ′ sends y to y′, we can choose f by insisting it maps x to x′ for some x ∈ ϕ−1(y), x′ ∈ ϕ−1(y′)

that we choose; and if we are sufficiently careful, this f will have the required properties.

We now turn to the details.

Proof of Proposition 3.9. Fix a point y1 ∈ Y . Let ε > 0 be sufficiently small such that Staby1
(Aut2εi (Y )) =

{e}. Let δ1 > 0 be sufficiently small so that for each f ∈ Autδ1i (X) there is f ′ ∈ Autεi (Y ) such

that f ′ ◦ ϕ = ϕ ◦ f . Let δ2 be sufficiently small so that for every two points x1, x2 ∈ X satisfying

dist(x1, x2) < δ2 and x1 ∼i x2, there is a translation f ∈ Autδ1i (X) such that f(x1) = x2. Let δ3 be

sufficiently small so that for the above fixed y1 ∈ Y and any point y2 ∈ Y satisfying dist(y1, y2) ≤ δ3,

there are x1 ∈ ϕ
−1(y1) and x2 ∈ ϕ

−1(y2) so that dist(x1, x2) ≤ δ2.

We show that for every f0 ∈ Autδ3i (Y ), there is f ∈ Autδ1i (X) such that f0 ◦ ϕ = ϕ ◦ f . Write

y2 = f0(y1). Then dist(y1, y2) ≤ δ3. Let x1, x2 ∈ X be such that ϕ(xi) = yi for i = 1, 2, and

dist(x1, x2) ≤ δ2. Let f ∈ Autδ1i (X) be such that f(x1) = x2. Let f ′ ∈ Autεi (Y ) be such that

ϕ ◦ f = f ′ ◦ ϕ. Then f ′(y1) = ϕ(f(x1)) = y2 = f0(y1). Hence f−10 f ′ ∈ Staby1
(Aut2εi (Y )) and thus

f0 = f ′. �

4. Inverse limits in the dynamical category

The purpose of this section is to prove Theorems 1.4 and 1.30.

Let (H,X) be a minimal topological dynamical system such that H has a dense subgroup generated

by a compact set K. By Theorem 1.17, RPs
H(X) is a closed H-invariant equivalence relation. For

Theorem 1.4, it is left to show that (H,X/RPs
H(X)) is the largest pronilfactor of (H,X) of degree at

most s.

The main outstanding issue is whether the action of a group of translations on a nilspace whose top

structure group is Lie, descends through a horizontal fibration when the translations are not necessarily

small perturbations of the identity. For vertical fibrations, Proposition 3.4 can be applied, but we will

need a substitute for Proposition 3.7, which is the following.
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Proposition 4.1. Let X be a compact ergodic nilspace of degree s such that its top structure group

As(X) is Lie. Let H < Aut1(X) be a group of translations, which has a dense subgroup generated by

a compact set. Then there is a number δ > 0 depending on X and H such that the following holds.

Let ϕ : X → Y be a horizontal fibration to a nilspace Y such that diam(ϕ−1(y)) < δ for all y ∈ Y .

Suppose that there is a continuous homomorphism ψ̄ : H̄ → Aut1(π(Y )) such that ψ̄(f) ◦ ϕ̄ = ϕ̄ ◦ f for

all f ∈ H̄, where H̄ is the image of H in Aut1(π(X)) and ϕ̄ : π(X)→ π(Y ) is the shadow of ϕ. Then

there is a continuous homomorphism ψ : H → Aut1(Y ) such that ψ(f) ◦ ϕ = ϕ ◦ f for all f ∈ H.

In an earlier draft, we stated the above result in a stronger form without assuming that the top

structure group of X is Lie, the translation is horizontal and that H factors through the shadow of

ϕ. It was pointed out to us by Pablo Candela, Diego González-Sánchez and Balázs Szegedy that this

result does not hold in that generality. They provide a counterexample in [CGSS19, Example 2.2].

However, the above stated weaker form is sufficient for our purposes.

We prove Proposition 4.1 in Section 4.1. Then we prove the part of Theorem 1.4 that X/RPs
H is

a pronilsystem in Section 4.2. Then we prove that it is the largest such factor in Section 4.3. Finally,

we prove the remaining parts of Theorem 1.30 in Section 4.4.

4.1. Proof of Proposition 4.1. We fix a compact set K ⊆ H that generates a dense subgroup of H .

We first show that these translations factor through ϕ.

Lemma 4.2. With the above notation and assumptions in Proposition 4.1, for every f1 ∈ K there is

a unique f2 ∈ Aut1(Y ) such that f2 ◦ ϕ = ϕ ◦ f1, provided δ is sufficiently small depending on K.

Proof. In light of Lemma 3.5, it is enough to show that for any f ∈ K and y1 ∈ Y there is y2 ∈ Y such

that f(ϕ−1(y1)) = ϕ−1(y2).

To prove this, we recall that ϕ−1(y) is a straight ϕ̄-class for all y ∈ Y (see Lemma 2.8). By

Proposition 2.10, we know that there is a number δ1 > 0 such that each point x ∈ X is contained in

at most one straight ϕ̄-class of diameter at most δ1.

We assume as we may that δ is so small that diam(f(D)) < δ1 for any set D ⊆ X with diam(D) ≤ δ

and f ∈ K. This is possible, because K is compact and the action is continuous. We also assume that

δ < δ1. We fix a point y1 ∈ Y , then pick an arbitrary element x2 ∈ f(ϕ−1(y1)) and let y2 = ϕ(x2). We

observe that ϕ−1(y2) and f(ϕ−1(y1)) are both straight ϕ̄-classes of diameter at most δ1. Moreover,

they both contain the point x2, hence they must be equal by Proposition 2.10, as we noted above.

This completes the proof. �

Now we complete the proof of the proposition. For any translation f1 ∈ Aut1(X), there is at most

one translation f2 ∈ Aut1(Y ) such that

f2 ◦ ϕ = ϕ ◦ f1. (5)

For f1 ∈ K the existence of f2 satisfying (5) follows from Lemma 4.2. If f
(1)
1 , f

(2)
1 ∈ Aut1(X) and

f
(1)
2 , f

(2)
2 ∈ Aut1(Y ) satisfy the analogue of (5), then f

(1)
1 ◦ f

(2)
1 and f

(1)
2 ◦ f

(2)
2 satisfy it, as well. In
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addition, if the analogue of (5) holds for {f
(i)
1 }i∈N ⊆ Aut1(X) and {f

(i)
2 }i∈N ⊆ Aut1(Y ) for all i ∈ N

and f
(i)
1 uniformly converges to a translation f1, then f

(i)
2 also converges to a translation and we have

(5).

It follows from the above observations that a map ψ : H → Aut1(Y ) exists such that ψ(f)◦ϕ = ϕ◦f

for all f ∈ H . We leave it to the reader to verify that this is also a continuous group homomorphism.

4.2. Proof that X/RPs
H is a pronilfactor. The goal of this section is to prove the claim in Theorem

1.4 that X/RPs
H is a pronilfactor of degree at most s.

We recall from Theorem 1.17 that X/RPs
H(X) equipped with its dynamical cubes Ck

H(X/RPs
H), is

an ergodic nilspace of degree at most s.

By Proposition 2.6, there is a sequence of Lie-fibred nilspaces {Xn} together with an inverse system

of fibrations {ϕm,n : Xn → Xm} such that X/RPs
H(X) = X∞ = lim

←−
Xn.

We will show that it is possible to choose {Xn} and {ϕm,n : Xn → Xm} in such a way that the

action of H descends to Xn through the fibration ϕn,∞. From this it follows that (H,X∞) is indeed

pronil thanks to the following result from [GMV17, Corollary 2.20], which is a variant of Theorem 1.24.

Theorem 4.3. Let (H,X) be a minimal topological dynamical system, where X is a compact ergodic

Lie-fibred nilspace of degree s and H acts on X through a continuous group homomorphism α : H →

Aut1(X).

Then (H,X) is a nilsystem. More specifically, the group G = 〈Aut◦1(X), α(H)〉 is a nilpotent Lie

group that acts transitively on X. Hence (H,X) is isomorphic to (H,G/Γ), where Γ is the stabilizer

in G of an arbitrary point and H acts through the homomorphism α.

The above formulation differs slightly from that of [GMV17, Corollary 2.20], where the larger group

Aut1(X) is taken in the role of G. However, the (very short) proof of [GMV17, Corollary 2.20] only

uses the action of α(H) and Aut◦1(X) to show transitivity.

We prove the claim that H descends to Xn by induction on the degree s of the nilspace X∞. The

s = 1 case being trivial, we assume that s > 1 and that the claim holds for s− 1.

We write B∞ = π(X∞) and note that the action of H descends to B∞ by virtue of Proposition 3.4.

By abuse of notation, we identify H with its image in Aut1(B∞) and apply the induction hypothesis

to the action of H on B∞. Therefore, we have a sequence of nilspaces {Bn} and an inverse system

{ψm,n : Bn → Bm} such that the action of H descends to Bn trough ψn,∞ for each n.

We use the above nilspaces Bn and fibrations {ψm,n : Bn → Bm} as an input in the construction

in Section 2 and use a sufficiently fast increasing sequence M̃n (to be chosen later) in Proposition 2.6

to construct the sequence of Lie-fibred nilspaces {Xn} together with the inverse system of fibrations

{ϕm,n : Xn → Xm} we alluded to above.

By Proposition 3.3, we have a decomposition ϕn,∞ = ϕh ◦ ϕv, where ϕv : X → Z is a vertical and

ϕh : Z → Xn is a horizontal fibration and Z is a compact ergodic nilspace. In fact, this decomposition

already appears in the construction of ϕn,∞ in Proposition 2.6. Using the notation of that proposition,
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we just have Z = X
(n)
∞ , ϕv = αn and ϕh = ϕ

(n)

M̃n

. In particular, we see that Z is Lie fibred and we can

make the fibers of ϕh as small as we wish by making M̃n large enough.

We apply Proposition 3.4 to ϕv and Proposition 4.1 to ϕh. We find that there is a continuous

homomorphism ψ : H → Aut1(Xn) such that ψ(f) ◦ ϕn = ϕn ◦ f for all f ∈ H . Therefore, (H,X∞)

is the inverse limit of the topological dynamical systems (H,Xn) via the inverse system {ϕm,n}. By

Theorem 4.3, (H,Xn) is a nilsystem of degree at most s for all n, so this completes the proof that

X/RPs
H is a pronilfactor of degree at most s

4.3. Let Y = X/∼ be a pronilfactor of degree s. We show that RPs
H(X) ⊆∼. We denote by ϕ : X → Y

the quotient map. It follows directly from the definition that ϕ(c) ∈ Cs+1
H (Y ) for all c ∈ Cs+1

H (X) and

hence (ϕ(x), ϕ(y)) ∈ RPs
H(Y ) for any pair of points (x, y) ∈ RPs

H(X). Thus the claim follows from

the following lemma.

Lemma 4.4. Let (H,Y ) be a pronil system of degree s. Then RPs
H(Y ) is trivial.

Proof. It is enough to show that RPs
H(Y ) is trivial for a nilsystem (H,Y ) of degree s. In this case,

the dynamical cubes form a Host–Kra nilspace, which is a nilspace of degree at most s, as shown in

[GMV18, Proposition 2.6]. Hence RPs
H(Y ) =∼s is indeed trivial. �

4.4. Proof of Theorem 1.30. Let (H,X) be a minimal system such that RPs
H(X) is trivial and

suppose that H has a dense subgroup generated by a compact set.

This means that we are in the setting of the proof of Theorem 1.4. We have, therefore, a sequence of

Lie-fibred nilspaces {Xn} together with an inverse system of fibrations {ϕm,n : Xn → Xm} such that

X = X∞ = lim
←−

Xn. We have already proved that the action of H factors through the fibrations ϕn,∞,

i.e. we have continuous homomorphisms αn : H → Aut1(Xn) such that αm = ϕm,n ◦ αn for m < n.

Moreover, by Theorem 4.3, the group Gn = 〈Aut◦1(Xn), αn(H)〉 act transitively on Xn.

We saw in the proof of Theorem 1.29 that there is a continuous surjective homomorphism ψm,n :

Aut◦1(Xn)→ Aut◦1(Xm) such that

ψm,n(g).ϕm,n(x) = ϕm,n(g.x)

for all g ∈ Aut◦1(Xn) and x ∈ Xn. We can extend ψm,n to a homomorphism Gn → Gm by taking

ψm,n(αn(h)) = αm(h). We leave it to the reader to verify that this extension satisfies the properties

claimed in Theorem 1.30.

Finally, we note that the proof is valid in the slightly more general setting, when X is an arbitrary

compact ergodic nilspace andH acts onX via a continuous homomorphismH → Aut1(X). (The action

has to be continuous and minimal, and H has to contain a compactly generated dense subgroup.) That

is to say, the proof does not require that the cubespace structure on X is defined using the dynamical

construction; it may be larger.
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Appendix A.

The purpose of this appendix is to prove the following result stated already in [GMV17, Theorem

1.1].

Theorem A.1. Let X be a compact, ergodic nilspace of degree s. Suppose X is locally connected and

has finite Lebesgue covering dimension, and that Cn(X) is connected for all n.

Then X is isomorphic to a nilmanifold G/Γ. That is, there exists a filtered connected Lie group G•,

a discrete co-compact subgroup Γ ⊆ G, and a homeomorphism ϕ : X ↔ G/Γ that identifies the cubes

Ck(X) with the Host–Kra cubes HKk(G•)/Γ.

The structure theorems of this paper apply to the nilspace X . In particular, by virtue of Theorem

1.29 we can represent X as an inverse limit of Host–Kra nilmanifolds. We only need to show that the

sequence of approximating nilmanifolds stabilizes under the topological hypotheses of Theorem A.1.

We recall the notation from Theorem 1.29. We have that X is the inverse limit of Host–Kra

nilmanifolds Xn via an inverse system of fibrations ϕm,n : Xn → Xm.

For each n, the group G(n) = Aut◦1(Xn) is a connected nilpotent Lie group equipped with the

filtration G
(n)
• = Aut◦•(Xn) of degree at most s. Each G(n) contains a discrete co-compact subgroup

Γ(n) that is compatible with the filtartion. The cubespace structure on Xn = G(n)/Γ(n) is the Host–

Kra structure arising from the filtration G
(n)
• and the discrete co-compact subgroup Γ(n) as defined in

Section 1.4.

For each n ≥ m there is a (smooth) surjective homomorphism ϕ′m,n : G(n) → G(m) such that

ϕ′m,n(Γ(n)) ⊆ Γ(m) and ϕm,n(g · Γ(n)) = ϕ′m,n(g) · Γ(m).

We aim to prove that the map ϕm,n : Xn → Xm is trivial (i.e. bijective) if m and n are large

enough. This proves that X is isomorphic to Xn for n large, thereby proving Theorem A.1.

We begin by recalling some facts about the universal covers G̃(n) of the Lie groups G(n) in Section

A.1. Then we show in Section A.2 that the assumption that X has finite Lebesgue covering dimension

implies that the dimension of G̃(n) must be bounded. This implies that the sequence of Lie groups

G̃(n) stabilizes. Finally, we show in Section A.3 that the sequence Γ̃(n) (the preimage of Γ(n) in G̃(n))

also stabilizes.

A.1. The universal cover of G(n). We refer to [War83] as a general reference on Lie groups and

differential geometry. We recall from [War83, Theorem 3.25] that the universal cover G̃(n) of G(n)

can be endowed with a unique Lie group structure such that the covering map τ : G̃(n) → G(n) is a

homomorphism.

We write Γ̃(n) = τ−1(Γ(n)), which is a discrete co-compact subgroup and note that the map g ·Γ̃(n) 7→

τ(g) · Γ(n) identifies the quotients G̃(n)/Γ̃(n) and G(n)/Γ(n).

One could prove a version of Theorem 1.29 with G̃(n) in place of G(n), but we only need the following

standard fact.
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Lemma A.2. For each n ≥ m there is a surjective homomorphism ϕ̃m,n : G̃(n) → G̃(m) such that

τ ◦ ϕ̃m,n = ϕ′m,n ◦ τ .

We note that ϕ̃m,n(Γ̃(n)) ⊆ Γ̃(m), hence ϕ̃m,n induces a map G̃(n)/Γ̃(n) → G̃(m)/Γ̃(m). It is easy to

see that this map coincides with ϕm,n.

We include a proof for the reader’s convenience.

Proof. We denote by g
(n) the Lie algebra of G(n). This can be identified by the Lie algebra of G̃(n) so

that dτ : g(n) → g
(n) = Id.

By [War83, Theorem 3.14], the differential dϕ′m,n : g(n) → g
(m) of the homomorphism ϕ′m,n is a

Lie algebra homomorphism. By [War83, Theorem 3.27], there is a Lie group homomorphism ϕ̃m,n :

G̃(n) → G̃(m) such that dϕ̃m,n = dϕ′m,n.

We observe that

d(ϕ′m,n ◦ τ) = dϕ′m,n ◦ Id = Id ◦ dϕ̃m,n = d(τ ◦ ϕ̃m,n).

By [War83, Theorem 3.16] this implies that τ ◦ ϕ̃m,n = ϕ′m,n ◦ τ .

Since ϕ′m,n is surjective, dϕm,n is also surjective, which implies that ϕ̃m,n is open. In addition, G̃(m)

is connected, hence ϕ̃m,n is surjective. �

A.2. G(n) stabilizes. The purpose of this section is to show the following.

Proposition A.3. For each n, dim G̃(n) is at most the Lebesgue covering dimension of X.

We need two facts from dimension theory. First, the Lebesgue covering dimension of an open

subset of a manifold equals its ordinary dimension (see [Eng78, Theorem 1.8.2]). Second, the Lebesgue

covering dimension is monotone with respect to inclusion for separable metric spaces. This property

is proved in [Eng78, Theorem 1.1.2] for the small inductive dimension, but in the setting of separable

metric spaces the two notions of dimension coincide (see [Eng78, Theorem 1.7.7]).

Our objective is to show that for each n, a sufficiently small open neighbourhood of identity in G̃(n)

can be embedded in X . This proves our claim in light of the above remarks.

We begin with the following lemma.

Lemma A.4. For each n, there is an injective continuous map ψn : G̃(n) → G̃(n+1) such that ϕn,n+1 ◦

ψn = Id.

We denote by exp : g(n) → G̃(n) the exponential map and note that it is a homeomorphism, since

G̃(n) is a connected simply connected nilpotent Lie group (see [Kna02, Theorem 1.127]).

Proof. Since dϕ̃n,n+1 : g(n+1) → g
(n) is a surjective linear map, there is an injective continuous map

h : g(n) → g
(n+1) such that dϕ̃n,n+1 ◦ h = Id. We define ψn = exp ◦h ◦ exp−1.

By [War83, Theorem 3.32], we have

ϕn,n+1 = exp ◦dϕ̃n,n+1 ◦ exp−1 .
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Thus

ϕn,n+1 ◦ ψn = exp ◦dϕ̃n,n+1 ◦ exp−1 ◦ exp ◦h ◦ exp−1 = Id.

�

Lemma A.5. For each n and g ∈ G̃(n) there is a unique point x ∈ X such that

ϕm,∞(x) = ψm−1 ◦ . . . ◦ ψn(g) · Γ̃(m) (6)

for all m > n.

Proof. By the definition of inverse limits we only need to verify that for all m > k ≥ n we have

ϕk,m

(
ψm−1 ◦ . . . ◦ ψn(g) · Γ̃(m)

)
= ψk−1 ◦ . . . ◦ ψn(g) · Γ̃(k),

which is immediate from the definition of the maps ψi. �

Proof of Proposition A.3. We fix n and choose a sufficiently small open neighborhood U of the identity

in G̃(n) such that U → G̃(n)/Γ̃(n) is injective. We define the map f : U → X such that f(g) is the

unique point x ∈ X that satisfies (6). It follows easily from the definition of the inverse limit topology

that f is continuous. Moreover, f is injective, because ϕn,∞ ◦ f is injective. Since U is compact, f

embeds U in X , which proves our claim. �

A.3. Γ(n) stabilizes. In the previous section we proved that dim G̃(n) is bounded by the Lebesgue

covering dimension of X . Removing an initial segment of the sequence, we can assume that dim G̃(n) is

constant. Then dϕ̃m,n : g(n) → g
(m) is invertible, hence ϕ̃m,n is an isomorphism. We can thus replace

all G̃(n) by isomorphic copies and assume that G̃ = G̃(n) = G̃(m) and ϕ̃m,n = Id for all m,n.

Our objective in this section is to show that the sequence Γ̃(n) also stabilizes.

Proposition A.6. If m and n are sufficiently large then Γ̃(n) = Γ̃(m).

Proof. Suppose to the contrary that the claim of the proposition fails.

Let U be a sufficiently small open neighborhood of the identity in G̃ such that U−1U ∩Γ(1) = {Id},

i.e. U → G̃/Γ̃(1) is injective.

Let D be an open connected subset of ϕ−11,∞(U · Γ̃(1)), which exists by the local connectedness of X .

Since D is open, there is a number n and an open subset V ⊆ Xn such that ϕ−1n,∞(V ) ⊆ D.

Let m > n be such that Γ̃(m) $ Γ̃(n). Let γ1, . . . , γk be a system of representatives for left cosets of

Γ̃(m) in Γ̃(1). Then

ϕ−11,m(U · Γ̃(1)) = U · γ1 · Γ̃
(m) ◦∪ . . .

◦
∪ U · γk · Γ̃

(m).

Each of the sets U ·γi · Γ̃
(m) is open and hence closed in ϕ−11,m(U · Γ̃(1)). Since ϕm,∞(D) is connected,

it must be contained in one of the sets U · γi · Γ̃
(m).

Let g · Γ̃(m) ∈ ϕ−1n,m(V ) be an arbitrary point and let γ ∈ Γ̃(n)\Γ̃(m). We note that

ϕn,m(g · Γ̃(m)) = ϕn,m(g · γ · Γ̃(m)) ∈ V,
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hence

g · Γ̃(m), g · γ · Γ̃(m) ∈ ϕm,∞(D).

Thus there is some i such that

g · Γ̃(m), g · γ · Γ̃(m) ∈ U · γi · Γ̃
(m).

Then there are elements u1, u2 ∈ U and β1, β2 ∈ Γ̃(m) such that g = u1γiβ1 and gγ = u2γiβ2. Then

u1γiβ1γ = u2γiβ2

and

u−12 u1 = γiβ2γ
−1β−11 γ−1i ∈ U−1U ∩ Γ̃(1).

Hence γiβ2γ
−1β−11 γ−1i = Id. This in turns gives β−11 β2 = γ, which contradicts γ /∈ Γ̃(m) and completes

the proof. �

A.4. A dynamical analogue. The purpose of this section is to prove Theorem 1.24, which is analo-

gous to Theorem A.1 in the dynamical setting.

By Theorem 1.30, there is a sequence of Lie-fibred nilspaces {Xn} together with an inverse system

of fibrations {ϕm,n : Xn → Xm} and continuous homomorphisms αn : H → Aut1(Xn) such that

(H,X) = lim
←−

(H,Xn), where H acts on Xn through αn.

We aim to show that ϕm,n is a homeomorphism if m,n are sufficiently large and then we can deduce

that (H,X) is a nilsystem, e.g. from Theorem 4.3.

We begin with an observation about connected components.

Lemma A.7. X has finitely many connected components, which are both open and closed.

Proof. Since X is locally connected, every point of it has a connected open neighborhood. Since X is

compact, we can cover it with finitely many connected open sets U1, . . . , Un.

If A ⊆ X is open and closed then either Ui ⊆ A or A ∩ Ui = ∅ for each i. Hence every closed

and open subset of X is a union of some Ui. There are at most 2n such sets. This implies that the

connected component of a point x in X is the intersection of all closed and open subsets that contain

x, and this is a finite intersection. The claim follows. �

It follows from the lemma that the number of connected components of Xn is bounded. We may

assume therefore that the number of connected components is the same along the sequence.

We fix an arbitrary point x0 ∈ X and denote by X◦n the connected component of ϕn,∞(x0) in Xn.

Lemma A.8. The map ϕm,n|X◦

n
is a homeomorphism to X◦m if m and n are large enough.

We claim that this is enough for the proof of Theorem 1.24. We only need to show that ϕm,n

is injective for m,n large enough. We know from the lemma that the restriction of ϕm,n to the

connected components are injective, so we just need to rule out that the image of two different connected



INVERSE LIMIT REPRESENTATIONS 47

components have a non-empty intersection. Since ϕm,n maps connected components into connected

components, ϕm,n(Xn) has fewer connected components than Xn if ϕm,n is not injective. This is not

possible, because Xn and Xm have the same number of connected components and ϕm,n is onto.

Proof of Lemma A.8. We recall from Theorem 1.30 that there are nilpotent Lie groups Gn acting on

Xn and homomorphisms ψm,n : Gn → Gm such that ϕm,n(g.x) = ψm,n(g).ϕm,n(x) for all g ∈ Gn and

x ∈ Xn.

We denote by G◦n the connected component of the identity in Gn. We note that G◦n acts transitively

on X◦n. One way to see this is the following argument. The Lie group Gn has at most countably many

connected components, hence the orbit of ϕn,∞(x) under one of the cosets of G◦n must have non-empty

interior by the Baire category theorem. This implies that the orbit of ϕn,∞(x) under G◦n is open. Since

it is also connected, it must equal the connected component X◦n.

Now the proof can be completed by the same argument as in the proof of Theorem A.1 explained

in the previous sections. �
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[GMV18] Y. Gutman, F. Manners, and P. P. Varjú, The structure theory of nilspaces I, 2018. arXiv:1605.08945v3, To

appear in J. Anal. Math. ↑1, 2, 6, 8, 9, 10, 11, 12, 13, 14, 18, 23, 24, 25, 31, 33, 35, 36, 42

[GT10] B. Green and T. Tao, Linear equations in primes, Ann. of Math. (2) 171 (2010), no. 3, 1753–1850. MR2680398

(2011j:11177) ↑2, 5, 11
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