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CONSTRAINT NETWORKS 

Constraint-based reasoning is a paradigm for formulating 
knowledge as a set of constraints without specifying the 
method by which these constraints are to be satisfied. A 
variety of techniques have been developed for finding par­
tial or complete solutions for different kinds of constraint 
expressions. These have been successfully applied to di­
verse tasks such as design, diagnosis, truth maintenance, 
scheduling, spatiotemporal reasoning, logic programming 
(qv), and user interface. Constraint networks are graphi­
cal representations used to guide strategies for solving 
constraint satisfaction problems (CSPsJ. 

Basic Definitions 

A constraint network (CN) consists of a finite set of vari­
ables, X = {Xi. ... , X,}, each associated with a domain of 
discrete values, D1, ••• , D. and a set of constraints, {C1, 
... , C1}. Each of the constraints is expressed as a rela­
tion, defined on some subset of variables, whose tuples are 
all the simultaneous value assignments to the members of 
this variable subset that, as far as this constraint alone is 
concerned, are legal. (This does not mean that the actual 
representation of any constraint is necessarily in the form 
of its defining relation, but that the relation can, in princi­
ple, be generated using the constraint's specification with­
out the need to consult other constraints in the network.) 
Formally, a constraint Ci has two parts: <ll the subset of 
variables Si = {X;,, ... , X;,..}, on which it is defined, 
called a constraint subset, and (2) a relation rel; defined 
over S;: rel, \; D;, x · · · x D;,,,. Because many properties 
of a CN depend on the structure of the constraint subsets, 
the scheme of a CN is defined as the set of subsets on 
which constraints are defined, namely, scheme (CNl = 
{S1, 82, ... , S1}, S; i;;: X. The projection of a relation p on a 
subset of variables U = U1, • •• , U1 is given by llu (p) = 
{xu = (xu" ... , Xu1) / 3 .r E p, .r is an extension of xu}. 

An assignment of a unique domain value to each mem­
ber of some subset of variables is called an instantiation. 
An instantiation is said to satisfy a given constraint C; if 
the partial assignment specified by the instantiation does 
not violate C; (ie, it belongs to the projection of reli on the 
common variables). An instantiation is said to be legal or 
locally consistent if it satisfies all the (relevant) con­
straints of the network. 

A legal instantiation of all the variables of a constraint 
network is called a solution of the network, and the set of 
all solutions is a relation, p, defined on the set of all vari­
ables. This relation is said to be represented by the con-

straint network. Formally, 

P = {<Xi = xi. ... , X. = x,l I 't S, E scheme, 
lls. p i;;: rel,} (1) 

Example 1. Figure la presents a simplified version of a 
crossword puzzle (see CONSTRAINT SATISFACTION). The vari­
ables are X 1 (1, horizontal), X2 (2, verticall, X3 <3, verti­
cal), x. (4, horizontal), and X 5 (5, horizontal). The scheme 
of this problem is {X1X2, X 1X3, X.X2, X4X3, XsX2}. The 
domains and some constraints are specified in Figure lb. 
A tuple in the relation associated with this puzzle is the 
solution: (X1 = sheet, X2 = earn, X3 = ten, X 4 = aron, 
Xs =no). 

Typical tasks defined in connection with constraint 
networks are to determine whether a solution exists, to 
find one or all of the solutions, to determine whether an 
instantiation of some subset of the variables is a partial 
solution (ie, is part of a global solution), etc. These tasks 
are collectively called constraint satisfaction problems. 

Techniques used in processing constraint networks can 
be classified into three categories. The first category con­
sists of search techniques for systematic exploration of the 
space of all solutions. The most common algorithm in this 
class is backtracking (qv), which traverses the search 
space in a depth-first fashion. The second category is con­
sistency algorithms for transforming a CN into more ex­
plicit representation. These are used primarily in a pre­
processing phase, to improve the performance of the 
subsequent backtracking search, but can be incorporated 
into the _search procedure itself. Third are the structure­
driuen algorithms, which exploit the topological features 
of the network to guide the search. Structure-driven algo­
rithms can support both the consistency algorithms as 
well as the backtracking search. 

This survey concentrates on techniques of the third 
kind, namely, structure-based algorithms. These together 
with backtracking and consistency algorithms (see CON­
STRAINT SATISFACTION) give a complete picture of the avail­
able techniques. A brief summary of backtracking and 
consistency enforcing procedures is presented next. 

BACKTRACKING AND 
CONSISTENCY-ENFORCING STRATEGIES 

The standard solution procedure for solving constraint­
satisfaction problems is backtracking search. The algo­
rithm typically considers the variables in some order and, 
starting with the first, assigns a provisional value to each 

g . 

4 

. 

0 1• (hoses. laser. sheet, snail. steer! 

D2• 04• (hike, aron. keet, earn. same) 

o3- (run. sun. let. yes. ell, ten) 

o5• (no.be.us.it) 

Figure 1. A crossword puzzle and its CN representa­
tion. "(a) 

c,2· ((hoses.same). (laser.same). (sheet.earn), (snail.aroni. 
( Sleer.earnll 

(b) 
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successive variable in turn as long as the assigned values 
are consistent with those assigned in the past. When, in 
the process, a variable is encountered such that none of its 
domain values is consistent with previous assignments (a 
situation referred to as a dead-end), backtracking takes 
place. That is, the value assigned to the immediately pre­
ceding variable is replaced, and the search continues in a 
systematic way until either a solution is found or until it 
may be concluded that no such solution exists. 

Improving backtracking efficiency amounts to reduc­
ing the size of its expanded search space. This depends on 
the way the constraints are represented (ie, on the extent 
of their explicitness), the order of variables instantiation, 
and, when one solution suffices, on the order in which 
values are assigned to each variable. 

Using these factors to improve the performance of 
backtracking algorithms, researchers have developed pro­
cedures of two types: those that are employed in advance 
of performing the search, and those that are used dynami­
cally during search. The former include a variety of con­
sistency-enforcing algorithms (Montanari, 1974; Mack­
worth, 1977; Freuder, 1978). These transform a given 
constraint network into an equivalent, yet more explicit, 
network by deducing new constraints to be added on to the 
network. 

Intuitively, a consistency-enforcing algorithm will 
make any partial solution of a small subnetwork extensi­
ble to some surrounding network. For example, the most 
basic consistency algorithm, called arc-consistency or 
2-consistency (also known as constraint propagation and 
constraint relaxation), ensures that any legal value in the 
domain of a single variable has a legal match in any other 
selected variable. Path-consistency (or 3-consistency) al­
gorithms ensure that any consistent solution to a two­
variable subnetwork is extensible to any third variable, 
and, in general, i-consistency algorithms guarantee that 
any locally consistent instantiation of i - 1 variables is 
extensible to any ith variable. 

Deciding the level of consistency that should be en­
forced on the network is not a clear-cut choice. Generally 
speaking, backtracking will benefit from representations 
that are as explicit as possible, having higher consistency 
level. However, the complexity of enforcing i-consistency 
is exponential in i. As a result, there is a trade-off between 
the effort spent on preprocessing and that spent on search 
(backtracking). Experimental analyses of this trade-off 
have been published (Oechter and Meiri, 1989; Dechter, 
1990; Haralick and Elliott; 1980). 

Variable orderings' decisions have also received much 
consideration, and several heuristics have been proposed 
(Freuder, 1982; Dechter and Pearl, 1989), all following the 
intuition that tightly constrained variables should come 
first. Strategies for dynamically improving the pruning 
power of backtracking can be conveniently classified as 
look-ahead schemes and look-back schemes. Look-ahead 
schemes are invoked whenever the algorithm is preparing 
to assign a value to the next variable. Some of the func­
tions that such schemes perform are: 

1. Calculate and record the way in which the current 
instantiations restrict future variables. This process has 
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been referred to as constraint propagation. Examples in­
clude Waltz's ( 1975> algorithm and forward checking 
1 Haralick and Elliott, 1980>. 

2. Decide which variable to instantiate next <when the 
order is not predetermined). Generally, it is advantageous 
to first instantiate variables that maximally constrain the 
rest of the search space. Therefore, the variable partici­
pating in the highest number of constraints is usually 
selected <Freuder, 1982; Purdom, 1983; Stone and Stone, 
1986). 

3. Decide which value to assign to the next variable 
(when there is more than one candidate). Generally, for 
finding one solution, an attempt is made to assign a value 

. that maximizes the number of options available for future 
assignments (Haralick and Elliott, 1980; Dechter and 
Pearl, 1987). 

Look-back schemes are invoked when the algorithm 
encounters a dead end and prepares for the backtracking 
step. These schemes perform two functions: 

1. Decide how far to backtrack. By analyzing the rea­
sons for the dead end, it is often possible to go back di­
rectly to the source of failure instead of to the immediate 
predecessor in the ordering. This idea is often referred to 
as backjumping (Gaschnig, 1979). 

2. Record the reasons for the dead end in the form of 
new constraints so that the same conflicts will not arise 
again in a later search. Terms used to describe this idea 
are constraint recording and no-good constraints. Depen­
dency-directed backtracking incorporates both backjump­
ing and no-goods recording (Stallman and Sussman, 
1977). Constraint recording can also be viewed as a form 
of explanation-based learning (EBL). 

GRAPH-BASED ALGORITHMS 

Graphical Representations 

Graphical properties of CN were initially investigated 
through the class of binary constraint networks (Freuder, 
1982). A binary constraint network is one in which every 
constraint subset involves at most two variables. In this 
case the network can be associated with a constraint 
graph, where each node represents a variable, and the 
arcs connect nodes whose variables are explicitly con­
strained; namely, they are members of the network's 
scheme. Figure 2 shows the constraint graph associated 
with the crossword puzzle in Figure 1. 

A graphical representation of higher order networks 
can be provided by hypergraphs, where again, nodes rep­
resent the variables, and hyperarcs (drawn as regions) 
group those variables that belong to the same constraint. 
Two variations of this representation that can be used to 
facilitate structure-driven algorithms are primal-con­
straint graph and dual-constraint graph. A primal-con­
straint graph (a generalization of the binary constraint 
graph) represents variables by nodes and associates an arc 
with any two nodes residing in the same constraint. A 
dual-constraint graph represents each constraint subset 



278 CONSTRAINT NETWORKS 

Figure 2. A constraint graph of the crossword puzzle. 

by a node {also called a c-variable) and associates a la­
beled arc with any two nodes whose constraint subsets 
share variables. The arcs are labeled by the shared vari­
ables. 

For example, Figure 3 depicts the primal, the dual, and 
the hypergraph representations of a CN with variables A, 
B, C, D, E, F and constraints on the subsets {ABC), {AEFl, 
(CDE) and <ACE). The constraints themselves are sym­
bolically given by the inequalities: A+ B s C, A +Es F, 
C + D s E, A + C s E, where the domains of each vari­
able are the integers (2, 3, 4, 5, 61. 

The dual constraint graph can be viewed as a transfor­
mation of a nonbinary network into a special type of bi­
nary network: the domain of the c-variables ranges over 
all possible value combinations permitted by the corre­
sponding constraints, and any two adjacent c-variables 
must obey the restriction that their shared variables 
should have the same values (ie, the c-variables are 
bounded by equality constraints). For instance, the do­
main of the c-variable ABC is {224, 225, 226, 235, 236, 
325, 326, 246, 426, 336} and the binary constraint between 
ABC and CDE is given by the relation: relABC.CDE = {(224, 
415),(224, 426)}. Viewed in this way, any network can be 
solved by binary networks techniques. 

Solving Tree Networks 

Almost all the known structure-based techniques rely on 
the observation that binary constraint networks whose 
constraint graph is a tree can be solved in linear time 
(Freuder, 1982; Mackworth and Freuder, 1984; Dechter 
and Pearl, 1987). The solution of tree-structured networks 
are discussed, and later it is shown how they can be used 
to facilitate the solution of general CN. 

Given a tree network over n variables (Fig. 4a), the 
first step of the tree-algorithm is to generate a rooted­
directed tree. Each node in this tree (excluding the root) 
has one parent node directed toward it and may have sev­
eral child nodes, directed away from it. Nodes with no 
childreri are called leaves. An ordering, d =Xi. X2, ... , 
Xn, is then enforced such that a parent always precedes its 

A 

Figure 3. Primal and dual constraint graphs of a CSP. (a) 

B 

children. ln the second step, the algorithm processes each 
arc (and its associated constraint) from leaves to root, in . 
an orderly layered fashion. For each directed arc from X, 
to X1 it removes a value from the domain of X, if it has n' 
consistent match in the domain of Xr Finally, after ti-. 
root is processed, a backtracking algorithm is used to find 
a solution along the ordering d. 

lt can be shown that the algorithm is linear , 
number ofvariables. ln particular, backtracking, wr.:ch m 
general is an exponential procedure, is guaranteed, ' find 
a solution without facing any dead ends. The tre1 algo­
rithm is sketched by the following procedures: 

Tree-Algorithm (T) 

1. begin 
2. generate a rooted tree ordering, d = Xi. . , Xn. 
3. for i=n to 1 by -1 do 
4. revise(XP' 11 ,X,); Xp 111) denotes the parent I X,. 
5. if the domain of xpt"il is empty, stop (no sd, .. . tion 

~ sts). 
6. end 
7. use backtracking to instantiate variables al1.; g d. 
8. end. 

The revise procedure (Mackworth, 1977) is defined I 

Revise (X.;.X;) 

1. begin 
2. for each v E Dj do 
3. if there is no u E Di s.t. (Xj =u,X,=u) is cq sis-

mt 
4. delete v from Dj. 
5. end. 
6. end. 

The complexity of the tree-consistency algorithr is 
bounded by 0 (nk2) steps where k bounds the domain I ~e. 
because an ordering (step 2) can be produced in Ii+ ar 
time, whereas the revise procedure, which is bounde1 by 
k2 steps, is executed at most n times (loop 3-6). The I ·ee 
algorithm is an instance of a general class of ordered ~ :o­
rithms, to be discussed next. 

Directional and Adaptive Consistency 

In general, a problem is considered easy when it admi 
solution in polynomial time. In the context of constran.,, 

(b) (c) 
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networks, a problem is easy if an algorithm like back­
tracking can solve it in a backtrack-free manner, ie, with­
out dead ends, thus producing a solution in time linear in 
the number of variables and constraints. This concept has 
prompted a theoretical investigation ( Freuder, 1982, 
1985; Dechter and Pearl, 1987, 1989) into the level of local 
consistency that suffices for ensuring a backtrack-free 
search. The theory had identified topological features that 
determine this level of consistency, and has yielded trac­
table algorithms for transforming some networks into 
backtrack-free representations. The following paragraphs 
present a summary of this theory. 

The theory is centered on a graphical parameter called 
width, and the definitions are relative to the primal con­
straint graph. An ordered (primal) constraint graph is de­
fined as one in which the nodes are linearly ordered to 
reflect the sequence of variable assignments executed by . 
backtracking algorithm. The width of a node is the num­
ber of arcs that connect that node to previous ones, the 
width of an ordering is the maximum width of all nodes, 
and the width of a graph is the minimum width of all 
orderings of that graph. 

Figure 5 presents three possible orderings of the con­
straint graph of Figure 2. The width of node X2 in the first 
ordering (from the left) is three, whereas in the second 
ordering it is two. It can be shown that no ordering can 
achieve width lower than two, hence the width of this 
constraint graph is two. [The graph has cycle, and it is 
known that only trees are width-one graphs (Freuder, 
1982).] 

The width of a graph can be determined by a greedy 
algorithm. The algorithm selects a node having the least 
number of neighbors and puts it last in the ordering. This 
node is then removed (together with its adjacent edges), 
and the algorithm proceeds recursively on the remaining 
graph. The ordering of Figure 5c, for instance, could have 
been generated by this procedure. 

1 
Direction of 

Xi order 

X3 

(a) (b) (c) 

Figure 5. Three orderings of a constraint graph, representing 
widths of three, two, and two, respectively. 

1 
Direction 
of 
arc·cons1s Lency 
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Figure 4. A tree network. 

The connection between width and local consistency 
requires further elaboration. A constraint network is said 
to be i-consistent if for any set of i - 1 variables along 
with values for each that satisfy all the constraints among 
them, there exists a value for any ith variable, such that 
the i values together satisfy all the constraints among the 
i variables. Strong i-consistency holds when the problem 
is }-consistent for every j s i. Given an ordering d, direc­
tional i-consistency along d (or d-i-consistency) requires 
that any consistent instantiation of i - 1 variables can be 
consistently extended only by variables that succeed all of 
them in the ordering d. Strong d-i-consistency is defined 
accordingly. The general relationship between the width 
of a network and the amount of local consistency required 
for tractability is summarized in the following theorem: 

Theorem. An ordered constraint graph is backtrack­
free if the level of directional strong consistency along 
this order is greater than the width of the ordered 
graph. 

In particular, if the graph has width-one (ie, it is a 
tree), a directional two-consistency is sufficient. If it is 
width-two, strong directional three-consistency would suf­
fice. The intuition behind this theorem rests on the fact 
that when backtrack works along a given ordering, it tests 
for consistency only among past and current variables, 
considering the relevant local constraints. If these con­
straints already ensure that a locally consistent partial 
solution will remain consistent relative to future vari­
ables, dead end will not occur. This required level of local 
consistency is related to the number of constraints future 
variables have with current variables. That is, when a 
future variable is constrained with many past variables 
(ie, when it has a high width), the required level of local 
consistency among past variables is higher. 

Because most problem instances will not satisfy the 
desired relationship between the width and the consis­
tency level, it is possible to try to push one of these two 
factors until the relationship holds. One possibility is to 
increase the level of directional consistency until it 
matches the width of the problem. Specifically, if a width­
i - 1 problem is not i-consistent, algorithms enforcing 
directional i-consistency can be applied to it. 

Consider, first, the case of width - 1. According to the 
theorem, if a tree is ordered along a width-one ordering 
and then enforced with directional two-consistency (ie, arc 
consistency), the result is a backtrack-free problem. In­
deed, the tree algorithm presented earlier does exactly 
that: the rooted-tree ordering is a width-one ordering 
(each node has only one adjacent predecessor) and its in-



280 CONSTRAINT NETWORKS 

ternal loop (steps 3-6 l enforces directional arc consistency 
along this ordering. 

This seems to lead to a general scheme: given a con­
straint network, find its width w and enforce directional 
(strong) ( w + 1) consistency along the appropriate order­
ing, followed by a backtrack-free instantiation of the vari­
ables. Unfortunately, enforcing directional i-consistency 
( i > 2l often requires the addition of new constraints, and 
these constraints are reflected by additional arcs in the 
constraint graph, which may cause the width to increase. 
The resulting problem will be directional-consistent, but 
its width may now be greater than w, thus backtrack-free 
search is no longer guaranteed. The next algorithm (Dech­
ter and Pearl, 1987; Seidel, 1981l overcomes this diffi­
culty. 

Given an ordering d, algorithm adaptive consistency 
establishes directional i-consistency recursively, when i 
changes from node to node to match its width at the time 
of processing. This is accomplished by processing nodes in 
decreasing order, so that by the time a node is processed 
its final width is determined and the required level of 
consistency can be achieved. Let parents( XJ denote the set 
of predecessors connected to X, when it is called for pro­
cessing. 

Adaptive Consistency (Xi. . . . , X0 ) 

begin 
l. for i=n to 1 by -1 do 
2. Compute parents(X,) 
3. connect all elements in parentstX,) (if they are not 

yet connected) 
4. perform consistency(X,, parents(X,)) 
5. endfor 
End 

The procedure consistency( V, set) generates and re­
cords tuples of those variables in the set that are consis­
tent both internally and with at least one value of V. The 
procedure may impose new constraints over clusters of 
variables as well as tighten existing constraints. When 
adaptive consistency terminates, backtracking can solve 
the problem in the order prescribed without any dead 
ends. It is important to realize that the topology of the 
resulting graph, called an induced graph, can be found 
prior to executing the procedure by recursively (in a de­
creasing order) connecting any two parents sharing a com­
mon successor. 

Consider the ordering Xi. X2, X3, X4, X 5 shown in Fig­
ure 5c. Adaptive consistency proceeds from X 5 to X 1 and 
imposes constraints on the parents of each processed vari­
able. X 5 is chosen first and because it has only one parent, 
X2, the algorithm merely tightens the domain of X2, if 
necessary (which amounts to enforcing arc consistency on 
<X2, X5)J. X4 is selected next and, having width two, the 
algorithm enforces a three-consistency on its parents 
[X3,X2]. This operation may require that a constraint be­
tween X2 and X3 be added, and in that case an arc (X2, X3) 

is added to the constraint graph. When the algorithm 
reaches node X3, its width is two and, therefore a three­
consistency is enforced on X3's parents [X2, Xi]. The arc 

(a) 

Adapl1ve­
cons1Slency .. 

(b) 

Figure 6. A constraint graph !al before and tbl after adaptive 
consistency. 

(Xi. X2l already exists so this operation may merely 
tighten the corresponding constraint. The resulting graph 
is given in Figure 6b. 

Let w(d) be the width of the ordering d and letw* ( dl be 
the width of the induced graph. The complexity of solving 
a problem using the adaptive consistency preprocessing 
phase and then backtracking (freely) along the order dis 
dominated by the former. The worst-case com~lexity of 
the consistency( V, parents ( V)) step, is exponential in the 
cardinality of V and its parent set, because it actually 
solves a network of constraints having that many vari­
ables. Because the maximal size of the parent set is equal 
to the width of the induced graph, solving the cmstraint 
network along the ordering d is bounded by 0 ( n · exp 
(w* (d) + 1)). Notice that had adaptive consistEricy been 
applied on the ordering in Figure 6b, the resulting in­
duced width would have been three. 

w•-Tractability 

It seems that w*, the minimum induced width, can be 
used to identify classes of easy problems. Namely, if the 
primal graph of a constraint network has w* $ rthen the 
problem can be solved in 0 (exp (rl) steps. However, find­
ing the smallest induced width of a graph and its corre­
sponding ordering is an NP-complete problem (/\rnborg, 
1985). Nevertheless, deciding whether thew* of a problem 
is less than or equal to r is polynomial in r. In particular, 
deciding if a problem instance has small induced width, 
say w~ = 1, w* = 2, or w* = 3, can be efficiently deter­
mined. In trees, the width is equal to the induced width 
( = ll; hence any minimal width ordering is also an opti­
mal induced-width ordering, and it can be found in linear 
time. A linear time algorithm recognizing problems hav­
ing w* > 2 is also available (Amborg, 1985; Bertele and 
Brioschi, 1972). The algorithm selects as last a node hav­
ing a smallest degree, eliminates it, connects its neighbors 
in the residual graph (if they were not previously con­
nected), and continues recursively. If the result is an or­
dering having w* > 2 it can be concluded that the graph, 
too, has w* > 2. Otherwise, the network has induced 
width equals two (also called a regular width-two net­
work). 

li spite of the nice structure and complexity guaran 
tees that are provided by adaptive consistency, experi­
mental results have shown that unless w* is very low 



(namely, one or two) the algorithm is too expensive on the 
average. Its cost stems from the determination to ensure 
an absolutely backtrack-free search, often investing a dis­
proportional amount of computation trying to eliminate 
just a few remaining dead ends. Simple backtracking, 
which can potentially encounter all such dead ends, would 
often be more efficient. This suggests that a less vigorous 
consistency enforcing algorithm can be appropriate, strik­
ing a compromise between preprocessing and search. In­
deed, bounded directional i-consistency algorithms mech­
ter and Pearl, 1987) fulfill such a compromise by enforcing 
a limited directional consistency and eliminating as many 
dead ends as possible within some predetermined compu­
tational bounds. Instead of recording one constraint on all 
the parents of a node, these procedures record a set of 
smaller constraints on size-i subsets of the parents. It was 
shown that on classes of artificially generated CN, direc­
tional two-consistency eliminates a large subset of the 
dead ends, whereas directional three-consistency elimi­
nates almost all <Dechter and Meiri, 1989). 

Acyclic Networks and Tree-Clustering 

Although w* provides a measure of tractability, some 
problems admit easy solution, independently of their 
width. This happens when the induced width of an order­
ing is identical to its width (namely, no arcs are added by 
adaptive consistency), and when constraint recording con­
sumes only a linear amount of computation (in the prob­
lem input). Acyclic constraint networks (ACNs) or acyclic 
CSPs have these two properties, and were first character­
ized and evaluated in the relational database literature 
(Beeri and co-workers, 1983). These can be viewed as trees 
in the dual-graph representation. Clearly, if the dual 
graph of a nonbinary CN is a tree, the tree algorithm 
would apply. But even when the dual graph is not a tree, 
some of its arcs may be redundant, and their removal 
might result in a tree structure. An arc in the dual graph 
can be deleted if its variables are shared by every arc 
along an alternative path between the two end points. The 
subgraph resulting from removal of redundant arcs is 
called a join graph. 

For instance, the arc between <AEF> and (ABC> in 
Figure 7a can be eliminated because the variable A is 
common along the cycle <AEF)-A-(ABC>-AC-(ACE>­
AE-(AEF), and so a consistent assignment to A is en­
sured by the remaining arcs. By a similar argument it is 
possible to remove the arcs labeled C and E, thus turning 
the join graph into a tree, called a join tree (Fig. 7b}. In 
general, finding whether such a transformation exists is a 
tractable problem (Maier, 1983). 

(1) (b) 

Figure 7. A dual-constraint graph and its join tree. 
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Constraint networks that can be represented by a join 
tree are called acyclic networks and can be solved effi­
ciently as follows. If there are p constraints in the join tree 
(ie, pc-variables), each allowing at most l tuples, then a 
straightforward application of the algorithm developed for 
a tree of singletons (using 0(nk2 ) steps) would yield a solu­
tion in 0(p{l) steps. A further refinement based on index­
ing can reduce the complexity to O<p · l · log l} steps 
<Dechter and Pearl, 1989). 

A generalization of acyclic networks called webs 
<Dalkey, 1991} permits backtrack-free solutions for a 
larger class of network topologies. This requires, however, 
that the constraints possess special properties, typical of 
causal mechanisms (Dechter and Pearl, 1991). Web struc­
tures are conveniently represented by a form of directed 
constraint networks (or causal networks) which indicate 
the ordering along which solutions can be obtained back­
track-free. 

Recognizing Acyclic Networks. Several efficient proce­
dures for identifying an ACN and finding a representative 
join tree have been described (Maier, 1983}. One scheme 
that proved particularly useful is based on the observation 
that a CN is acyclic if and only if its primal graph is both 
-chordal and conformal (Beeri and co-workers, 1983). A 
graph is chordal if every cycle of a length of at least four 
has a chord, ie, an edge joining two nonconsecutive verti­
ces along the cycle. A graph is conformal if each of its 
maximal cliques (ie, subsets of nodes that are completely 
connected) corresponds to a constraint in the original CN. 
The chordality of a graph can be identified via an ordering 
called the maximal cardinality ordering, (m-ordering); it 
always assigns the next number to the node having the 
largest set of already numbered neighbors (breaking ties 
arbitrarily). For instance, the ordering in Figure 5c is an 
m-ordering, whereas in Figures 5a and 5b it is not. 

It can be shown (Tarjan and Yannakakis, 1984} that in 
an m-ordered chordal graph, the parents of each node 
must be completely connected. If, in addition, the maxi-

. mal cliques coincide with the constraint subsets of the 
original CN, both conditions for acyclicity would be satis­
fied. Because for chordal graphs each node and its parent 
set constitutes a clique, the maximal cliques can be identi­
fied in linear time, and then a join tree can be constructed 
by connecting each maximal clique to an ancestor clique 
with which it shares the largest set of variables. 

As noted, acyclic networks have a chordal primal 
graph, thus their width and induced width are identical 
along an m-ordering. Hence, if applied to such ordered 
CNs, adaptive consistency will add no arcs to the graph. 
Also, because all tuples on each parent set are already 
locally consistent, the amount of constraint recording is 
bounded by 0 (l ·log l), resulting in an overall complexity 
bound of 0 (n · l · log l) steps. 

Tree Clustering. The above recognition process suggests 
a scheme for combining subsets of constraints into higher 
level constraints until a join tree emerges (when the net­
work is not acyclic to begin with). Such a tree-clustering 
scheme is based on a triangulation algorithm (Tarjan and 
Yannakakis, 1984) that transforms any graph into a 
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chordal graph by filling in edges lrecursivelyl in a reverse 
order of the m-ordering, connecting any two nonadjacent 
nodes that are connected via nodes higher up in the order­
ing. The maximal cliques of the resulting chordal graph 
are the clusters necessary for forming an ACN. These 
clusters represent subproblems that must be indepen­
dently solved, an operation that is exponential in the 
clique's size. 

It can be shown that the maximal clique size, gener­
ated that way, equals w* + l; thus the whole transforma­
tion (into a join tree) is, once again, exponential in w*. 
Although tree clustering differs conceptually from adap­
tive consistency, it effectively results in the same behav­
ior and same performance. When applied on the same or­
dered constraint graph both, algorithms produce the same 
induced graph. In other words, adaptive consistency can 
be viewed as an effective scheme for assembling ACNs. It 
seems desirable to use adaptive consistency when one­
time solutions are required, and to use tree-clustering 
when the network is used as a knowledge base subjected 
to repeated queries. Note that although tree clustering 
can be applied in any ordering, the m-ordering produces 
dose to optimal induced width (for chordal graphs it is 
indeed optimal. l 

A subclass of ACNs for which all maximal cliques have 
the same size is often characterized by a special class of 
chordal graphs called k-trees. A k-tree is a chordal graph 
whose maximal clues are of size k + 1, and it can be 
defined recursively as follows. (1) A complete graph with k 
vertices is a k-tree. (2) A k-tree with r vertices can be 
extended to r + 1 vertices by connecting the new vertex to 
the vertices in any clique of size k. In particular, one-trees 
are ordinary trees. 

The addition of each vertex (step 2l generates a new 
clique of size k + l, and by associating each new clique 
with one parent clique that shares k vertices with it, a join 
tree is obtained. The example of an acyclic CN given in 
Figure 7 is indeed a two-tree because its primal graph 
could be constructed in the order A, B, C, E, D, F. k-trees 
were investigated extensively in the graph theoretical lit­
erature. In particular, it was shown that a graph can be 
embedded in a k-tree if and only if it has an induced width 
w* = k. Detailed discussions of the properties of k-trees 
are available (Arnborg, 1985; Freuder, 1990; Rossi and 
Montanari, 1989). 

Decomposition into Nonseparable Components 

Another approach that exploits the structure of the con­
straint graph involves the notion of nonseparable compo­
nents (Freuder, 1985; Dechter and Pearl, 1987). Similar to 
tree clustering, the idea is to identify subsets of variables 
that, when grouped together, transform the problem into 
a tree; the nonseparable components of a graph have this 
property (Even, 1979). 

A connected graph, G = (V, El (V, a set of nodes, E, a 
set of edges), is said to have a separation node v if there 
exists nodes a and b such that all paths connecting a and b 
pass through v. A graph that has a separation node is 
called separable, and one that has none is called nonse­
parable. A subgraph with no separation nodes is called a 
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Figure 8. A graph and its decomposition into nonseparable com­
ponents. 

nonseparable component. An 0 (/Ell algorithm exists for 
finding all the nonseparable components and the separa­
tion nodes; it is based on a depth-first search traversal of 
the graph, called a DFS ordering (Even, 1979). 

Let G be a graph and super-G the tree whose nodes 
represents the components Ci. C2, ... , Cr and the sepa­
rating nodes Vi, V2, •.. , V1 (Fig. 8bl. Figure 8 shows a 
graph G, its components, and its separating vertices. Once 
the components are recognized, each represents a sub­
problem that, when solved, defines the domains of a new 
compound variable. The tree algorithm can then be ap­
plied to the resulting problem, treating each component as 
a compound variable. 

The complexity of this approach is 0 (nkr), where r is 
the size of the largest component. Therefore, in cases 
where the constraint network has a decomposition into 
small clusters of nonseparable components, the resulting 
performance is improved. In comparing the nonseperable 
component method with either tree clustering or adaptive 
consistency, it is immediately realized that it does not 
improve the worst-case complexity, namely, w* :5 rand, 
frequently, w* < r. Nevertheless, this scheme is the most 
natural extension of trees and can also be extended to the 
dual-graph representation. 

The Cycle Cutset Scheme 

The decomposition method presented in this section is 
based on identifying a cycle cutset, that is, a set of nodes 
that, once removed, would render the constraint graph 
cycle-free. The method uses trees in a different way then 
previous schemes, exploiting the fact that variable instan­
tiation changes the effective connectivity of the constraint 
graph. In Figure 9, for example, instantiating X2 to some 
value, say hike, renders the choices of X1 and X 5 indepen­
dent as if the pathway X1 - X2 - X5 were blocked at X2. 
Similarly, this instantiation blocks the pathway X1 -

X2 - X4, leaving only one path between any two variables. 
The effective constraint graph for the rest of the variables 
is shown in Figure 9b, where the instantiated variable X2 

is duplicated for each of its neighbors. 
When the group of instantiated variables constitutes a 

cycle cutset, the remaining network is cycle free and can 
be solved by the tree algorithm. In the example above, X2 
cuts the single cycle X1 - X2 - X3 - X4 and renders the 
graph in Figure 9b cycle free. In most practical cases it 
would take more than a single variable to cut all the cy­
cles in the graph. Thus a general way of solving a problem 
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Figure 9. An instantiated variable cuts its own cycles. 

of which the constraint graph contains cycles is to find a 
consistent instantiation of the variables in a cycle cutset 
and solve the remaining problem by the tree algorithm. If 
a solution to the restricted problem is found, then a solu­
tion to the entire problem is at hand. If not, another in­
stantiation of the cycle cutset variables should be consid­
ered until a solution is found. Thus if the task is to solve 
the crossword puzzle (Fig. ll, first X2 = hike must be as­
sumed, and the remaining tree problem is solved. If no 
solution is found, it is assumed that X2 = keel and another 
attempt is made, until a solution is found. 

The complexity of the cycle cutset scheme is bounded 
by 0 (exp (c)) steps, where c is the size of the cycle cutset, 
because the utmost number of times the tree algorithm is 
invoked equals the number of partial solutions to the cut­
set variables. Because finding a minimal-size cycle cutset 
is NP hard, it will be more practical to incorporate this 
scheme within a general problem solver such as back­
tracking. Because backtracking works by progressively 
instantiating sets of variables, all that is necessary is to 
keep track of the connectivity status of the constraint 
graph. As soon as the set of instantiated variables consti­
tutes a cycle cutset, the search algorithm is switched to 
the tree algorithm on the remaining problem, ie, either 
finding a consistent extension for the remaining variables 
(thus finding a solution to the entire problem), or conclud­
ing that no such extension exists (in which case back­
tracking takes place and another instantiation is tried) 
(Dechter, 1990). 

Graph-Based Schemes for Improving Backtracking 

Two ideas for improving the look-back phases of back­
tracking have received wide attention (Gaschnig, 1979; 
Stallman and Sussman, 1977; Doyle, 1979; Dechter, 
1990). These have often been referred to as backjumping 
and constraint recording in the constraint literature, but 
are more commonly recognized under the umbrella name 
dependency-directed backtracking in the truth-mainte­
nance (qv) literature. Backjumping suggests jumping 
back several levels in the search tree to a variable that 
may have relevance to the current dead end, whereas con­
straint recording suggests storing the reasons for the dead 
end in the form of new constraints, so the same conflict 
will not arise again later in the search (ie, recording no­
goods). 

In this section, graph-based variants of both backjump­
ing and constraint recording are presented. Exploiting the 
structure of the problem often simplifies the implementa-

CONSTRAINT NETWORKS 283 

tion of these schemes and enables an assessment of the 
complexity, using network parameters. 

Backjumping. The idea of going back several levels (in 
a dead-end situation) rather than retreating to the chron­
ologically most recent decision was exploited indepen­
dently in Gaschnig (1979l, where the term backjumping 
was introduced, and in Stallman and Sussman ( 1977). The 
idea has since been used in truth-maintenance systems 
(Doyle, 1979) and in intelligent backtracking in PROLOG 
rnruynooghe and Pereira, 1984l. Gaschnig's algorithm 
uses a marking technique where each variable maintains 
a pointer to the highest ancestor found incompatible with 
any of its values. In case of a dead end, the algorithm can 
safely jump directly to the ancestor pointed to by the dead 
end variable. Although this scheme retains only one bit of 
information with each variable, it requires an additional 
computation with each consistency check. 

Graph-based backjumping (Dechter, 1990) extracts 
knowledge about dependencies from the constraint graph 
alone. Whenever a deadend occurs at a particular variable 
X, the algorithm backs up to the most recent variable 
connected to X in the graph. Consider, for instance, the 
ordered constraint graph in Figure 5a. If the search is 
performed in the order X1, X2, X 3, X4, X5 and a dead end 
occurs at Xs, the algorithm will jump back to variable X2 

because Xs is not connected to either X3 or X4. If the vari­
able to which the algorithm retreats has no more values, 
it should back up to the most recent parent of both the 
original variable and the new dead-end variable, and 
so on. 

Whereas the implementation of this backjumping 
scheme would, in general, require a careful maintenance 
of each variable's parents set (Dechter, 1990), some order­
ings facilitate an especially simple implementation. If a 
depth-first search is used on the constraint graph (to gen­
erate a DFS tree) and then backjumping is conducted in 
an in-order traversal of the DFS tree (Even, 1979), finding 
the jump-back destination amounts to following a very 
simple rule: if a dead end occurred at variable X, go back 
to the parent of X in the DFS tree. Consider, once again, 
the example in Figure 2. A DFS tree of this graph is given 
in Figure lOb, and an in-order traversal of this tree is (X1, 

X2, Xs, X4, X3). If a dead end occurs at node X4, the algo­
rithm retreats to its parent X2• When backjumping is per­
formed on a DFS ordering of the variables, its complexity 
can be bounded by 0 (exp (m)) steps, m being the depth of 
the DFS tree. However, like many other parameters en­
countered, finding a minimal-depth DFS tree is NP-hard. 
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Figure 10. A DFS tree and its ordering. 
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Constraint-Recording or Dependency-Directed Back­
tracking. An opportunity to learn or deduce a new con­
straint is presented whenever backtracking encounters a 
dead end, ie, when the current instantiations = 1X1 = x 1, 

.. , X, _ 1 = x, - 11 cannot be exte:nded by any value of 
the next variable X,. In such a cases is in conflict with X,, 
or s is a conflict set. Had the problem included an explicit 
constraint prohibiting the instantiation s, the current 
dead end would have been avoided. However, there is no 
point recording such a constraint at this stage, because 
under the backtracking control strategy it will not recur. 
If, on the other hand, the set s contains one or more sub­
sets that are also in conflict with X,, then recording this 
information in the form of new explicit constraints might 
prove useful in the future because future states may con­
tain these subsets. The constraint graph provides an easy 
way for identifying subsets of s that are in conflict; by 
removing from s all assignments of variables that are not 
connected to X,, a subset is obtained that is still in conflict 
with X,, because all the removed assignments are irrele­
vant to this dead end. 

The procedure of graph-based dependency-directed 
backtracking [sometimes called graph-based constraint 
recording mechter, 1990)] implements this idea by record­
ing these conflict sets as a new constraint on each dead 
end. Specifically, if the subsets s' = (X,1 = x,1, ... , X;1 = 
x11 is the assignments in s connected to X,, the procedure 
records a constraint on variables X,i. ... , Xtt which dis­
allows the tuples'. For instance, suppose that backtrack­
ing solves the crossword puzzle using the ordering (Xi, X2, 

X 5, X 4 , X3J and is currently at state (X 1 = snail, X 2 = aron, 
X5 = no, X4 = dock). This state cannot be extended by any 
value of X4• Obviously, the tuple <Xi = snail, X2 = aron, 
X5 = no, X4 = dock) is a conflict set; however, both the 
instantiations X2 = aron and X 5 = no are irrelevant to 
this conflict, because there is no explicit constraint be­
tween X3 and X 2 or between X3 and X 5• Therefore, the 
tuple (X4 = down, Xi = snail) will be disallowed by record­
ing a new constraint on X 1 and X 4• 

Dependency-directed backtracking can be performed 
on any variable ordering. Its worst-case complexity is 
O(exp(w*)) steps, thus providing yet another scheme 
whose performance is governed by the induced width. 

CONCLUSION 

Throughout this article several techniques were pre­
sented that exploit the structure of the given network. 
Four graph parameters stood out in the analysis: the in­
duced width w* (appearing in adaptive consistency, tree 
clustering, and constraint recording in dependency-di­
rected backtracking), the cycle-cutset size c (appearing in 
the cycle-cutset method), the depth of a DFS-tree m (in 
backjumping), and the size oflargest nonseparable compo­
nent r (appearing in the tree-component scheme). It is 
clear that for any problem structure, the relationship m 2: 

r 2: w* holds, and it can also be shown that w* :S c + 1 
(Bertele and Brioschi, 1972). Another parameter men­
tioned in the literature, bandwidth (Zabih, 1990) is also 
dominated by w*. It can be concluded, therefore, that w* 

provides the most informative graph parameter, and it 
can be regarded as an intrinsic measure of the worst-case 
complexity of any constraint network. 
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CONSTRAINT SATISFACTION 

Constraint satisfaction is an umbrella term for a variety 
of techniques of AI and related disciplines. In this entry 
attention is focused on the main approaches, such as back­
tracking, constraint propagation, and cooperative algo­
rithms, with some consideration given to the motivations 
and techniques underlying other constraint-based sys­
tems. 

The first class of constraint satisfaction problems con­
sidered is those in which one has a set of variables, each to 
be instantiated in an associated domain and a set of Bool­
ean constraints limiting the set of allowed values for spec­
ified subsets of the variables. This general formulation 
has a wide variety of incarnations in various applications: 
it is a general search (qv) problem. One standard approach 
involves backtracking (qvl; various forms of "intelligent" 
backtracking are surveyed. A complementary approach 
based on the class of consistency algorithms has some nice 
properties that are described and illustrated. 
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The second class of problems considered is the numeri­
cal optimization problems that ari;;e when one is de;;ign­
ing a system to maximize the extent to which the solu­
tions it provides satisfy a large number of local 
constraints. Algorithms for their solution are based on 
generalizations of the consistency algorithms for applica­
tions primarily in computational vision. These algo­
rithms, which have a high degree of potential parallelism, 
are variously known as cooperative or probabilistic relax­
ation algorithms. 

One can call these two problem classes Boolean con­
straint satisfaction problems and constraint optimization 
problems, respectively. As with all dichotomies, this one is 
not absolute. Some approaches lie between these two 
poles; others combine them. There are, in fact, many other 
dimensions along which one could categorize the area, but 
this is the best first cut. 

BOOLEAN CONSTRAINT SATISFACTION PROBLEMS 

A Boolean constraint satisfaction problem (CSPl is char­
acterized as follows: given is a set V of n variables {u1 , u2 , 

. .. , u0 }, associated with each variable u; is a domain D; 
of possible values. On some specified subsets of those vari­
ables, there are constraint relations, given that there are 
subsets of the Cartesian product of the domains of the 
variables involved. The set of solutions is the largest sub­
set of the Cartesian product of all the given variable do­
mains such that each n-tuple in that set satisfies all the 
giwm constraint relations. One may be required to find 
the entire set of solutions or one member of the set or 
simply to report if the set of solutions has any members­
the decision problem. If the set of solutions is empty, the 
CSP is unsatisfiable. 

A surprisingly large number of seemingly different ap­
plications can be formalized in this way. Some of them are 
enumerated below. Of particular theoretical interest is 
the map-coloring problem. Consider, for example, the 
problem of deciding if three colors suffice to color a given 
planar map such that each region is a different color from 
each of its neighbors. This is formulated as a Boolean CSP 
by creating a variable for each region to be colored, associ­
ating with each variable the domain {red, green, blue}, 
and requiring for each pair of adjacent regions that they 
have different colors. Since the map-coloring problem is 
known to be NP-complete and is therefore believed inher~ 
ently to require exponential time to solve, one does not 
expect to find an efficient polynomial time algorithm to 
determine if a general CSP is satisfiable. 

Various restrictions on the general definition of a CSP 
are possible. For example, the domains may be required to 
have a finite number of discrete values. If this is the case, 
the constraining relations may be specified extensionally 
as the set of all p-tuples that satisfy the constraint. One 
may further require that all the relations be unary or 
binary, that is, that they only constrain individual vari­
ables or pairs of variables. These restrictions apply to the 
map-coloring example above. However, they are not nec­
essary for some of the techniques reported here to be ap­
plicable. For example, suppose one were planning the lay-






