
UC Irvine
ICS Technical Reports

Title
Constraint networks

Permalink
https://escholarship.org/uc/item/9zx8248m

Author
Dechter, Rina

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9zx8248m
https://escholarship.org
http://www.cdlib.org/

Notice: Thts Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Constraint Networks

Rina Dechter
Information andComputer Science

University of California, Irvine, CA 92717
dechter@ics. uci. edu

Technical Report 92-68

.January, 1992

,7

~f 9
(~ 3
I){). 9)~fog

Appeared in Encyclopedia of Artificial Intelligence, Second Edition (Vol. 1), 1992, Stuart C.
Shapiro, Editor." New York: John Wiley & Sons, Inc.

This work was supported by GE Corporate R&D and by Toshiba of America.

. '

276 CONSTRAINT NETWORKS

CONSTRAINT NETWORKS

Constraint-based reasoning is a paradigm for formulating
knowledge as a set of constraints without specifying the
method by which these constraints are to be satisfied. A
variety of techniques have been developed for finding par­
tial or complete solutions for different kinds of constraint
expressions. These have been successfully applied to di­
verse tasks such as design, diagnosis, truth maintenance,
scheduling, spatiotemporal reasoning, logic programming
(qv), and user interface. Constraint networks are graphi­
cal representations used to guide strategies for solving
constraint satisfaction problems (CSPsJ.

Basic Definitions

A constraint network (CN) consists of a finite set of vari­
ables, X = {Xi. ... , X,}, each associated with a domain of
discrete values, D1, ••• , D. and a set of constraints, {C1,
... , C1}. Each of the constraints is expressed as a rela­
tion, defined on some subset of variables, whose tuples are
all the simultaneous value assignments to the members of
this variable subset that, as far as this constraint alone is
concerned, are legal. (This does not mean that the actual
representation of any constraint is necessarily in the form
of its defining relation, but that the relation can, in princi­
ple, be generated using the constraint's specification with­
out the need to consult other constraints in the network.)
Formally, a constraint Ci has two parts: <ll the subset of
variables Si = {X;,, ... , X;,..}, on which it is defined,
called a constraint subset, and (2) a relation rel; defined
over S;: rel, \; D;, x · · · x D;,,,. Because many properties
of a CN depend on the structure of the constraint subsets,
the scheme of a CN is defined as the set of subsets on
which constraints are defined, namely, scheme (CNl =
{S1, 82, ... , S1}, S; i;;: X. The projection of a relation p on a
subset of variables U = U1, • •• , U1 is given by llu (p) =
{xu = (xu" ... , Xu1) / 3 .r E p, .r is an extension of xu}.

An assignment of a unique domain value to each mem­
ber of some subset of variables is called an instantiation.
An instantiation is said to satisfy a given constraint C; if
the partial assignment specified by the instantiation does
not violate C; (ie, it belongs to the projection of reli on the
common variables). An instantiation is said to be legal or
locally consistent if it satisfies all the (relevant) con­
straints of the network.

A legal instantiation of all the variables of a constraint
network is called a solution of the network, and the set of
all solutions is a relation, p, defined on the set of all vari­
ables. This relation is said to be represented by the con-

straint network. Formally,

P = {<Xi = xi. ... , X. = x,l I 't S, E scheme,
lls. p i;;: rel,} (1)

Example 1. Figure la presents a simplified version of a
crossword puzzle (see CONSTRAINT SATISFACTION). The vari­
ables are X 1 (1, horizontal), X2 (2, verticall, X3 <3, verti­
cal), x. (4, horizontal), and X 5 (5, horizontal). The scheme
of this problem is {X1X2, X 1X3, X.X2, X4X3, XsX2}. The
domains and some constraints are specified in Figure lb.
A tuple in the relation associated with this puzzle is the
solution: (X1 = sheet, X2 = earn, X3 = ten, X 4 = aron,
Xs =no).

Typical tasks defined in connection with constraint
networks are to determine whether a solution exists, to
find one or all of the solutions, to determine whether an
instantiation of some subset of the variables is a partial
solution (ie, is part of a global solution), etc. These tasks
are collectively called constraint satisfaction problems.

Techniques used in processing constraint networks can
be classified into three categories. The first category con­
sists of search techniques for systematic exploration of the
space of all solutions. The most common algorithm in this
class is backtracking (qv), which traverses the search
space in a depth-first fashion. The second category is con­
sistency algorithms for transforming a CN into more ex­
plicit representation. These are used primarily in a pre­
processing phase, to improve the performance of the
subsequent backtracking search, but can be incorporated
into the _search procedure itself. Third are the structure­
driuen algorithms, which exploit the topological features
of the network to guide the search. Structure-driven algo­
rithms can support both the consistency algorithms as
well as the backtracking search.

This survey concentrates on techniques of the third
kind, namely, structure-based algorithms. These together
with backtracking and consistency algorithms (see CON­
STRAINT SATISFACTION) give a complete picture of the avail­
able techniques. A brief summary of backtracking and
consistency enforcing procedures is presented next.

BACKTRACKING AND
CONSISTENCY-ENFORCING STRATEGIES

The standard solution procedure for solving constraint­
satisfaction problems is backtracking search. The algo­
rithm typically considers the variables in some order and,
starting with the first, assigns a provisional value to each

g .

4

.

0 1• (hoses. laser. sheet, snail. steer!

D2• 04• (hike, aron. keet, earn. same)

o3- (run. sun. let. yes. ell, ten)

o5• (no.be.us.it)

Figure 1. A crossword puzzle and its CN representa­
tion. "(a)

c,2· ((hoses.same). (laser.same). (sheet.earn), (snail.aroni.
(Sleer.earnll

(b)

Reprinted from Encyclopedi~ of Artificial Intelligence, Second Edition,
Copyright © 1992 by John Wiiey & Sons, Inc.

successive variable in turn as long as the assigned values
are consistent with those assigned in the past. When, in
the process, a variable is encountered such that none of its
domain values is consistent with previous assignments (a
situation referred to as a dead-end), backtracking takes
place. That is, the value assigned to the immediately pre­
ceding variable is replaced, and the search continues in a
systematic way until either a solution is found or until it
may be concluded that no such solution exists.

Improving backtracking efficiency amounts to reduc­
ing the size of its expanded search space. This depends on
the way the constraints are represented (ie, on the extent
of their explicitness), the order of variables instantiation,
and, when one solution suffices, on the order in which
values are assigned to each variable.

Using these factors to improve the performance of
backtracking algorithms, researchers have developed pro­
cedures of two types: those that are employed in advance
of performing the search, and those that are used dynami­
cally during search. The former include a variety of con­
sistency-enforcing algorithms (Montanari, 1974; Mack­
worth, 1977; Freuder, 1978). These transform a given
constraint network into an equivalent, yet more explicit,
network by deducing new constraints to be added on to the
network.

Intuitively, a consistency-enforcing algorithm will
make any partial solution of a small subnetwork extensi­
ble to some surrounding network. For example, the most
basic consistency algorithm, called arc-consistency or
2-consistency (also known as constraint propagation and
constraint relaxation), ensures that any legal value in the
domain of a single variable has a legal match in any other
selected variable. Path-consistency (or 3-consistency) al­
gorithms ensure that any consistent solution to a two­
variable subnetwork is extensible to any third variable,
and, in general, i-consistency algorithms guarantee that
any locally consistent instantiation of i - 1 variables is
extensible to any ith variable.

Deciding the level of consistency that should be en­
forced on the network is not a clear-cut choice. Generally
speaking, backtracking will benefit from representations
that are as explicit as possible, having higher consistency
level. However, the complexity of enforcing i-consistency
is exponential in i. As a result, there is a trade-off between
the effort spent on preprocessing and that spent on search
(backtracking). Experimental analyses of this trade-off
have been published (Oechter and Meiri, 1989; Dechter,
1990; Haralick and Elliott; 1980).

Variable orderings' decisions have also received much
consideration, and several heuristics have been proposed
(Freuder, 1982; Dechter and Pearl, 1989), all following the
intuition that tightly constrained variables should come
first. Strategies for dynamically improving the pruning
power of backtracking can be conveniently classified as
look-ahead schemes and look-back schemes. Look-ahead
schemes are invoked whenever the algorithm is preparing
to assign a value to the next variable. Some of the func­
tions that such schemes perform are:

1. Calculate and record the way in which the current
instantiations restrict future variables. This process has

CONSTRAINT NETWORKS 277

been referred to as constraint propagation. Examples in­
clude Waltz's (1975> algorithm and forward checking
1 Haralick and Elliott, 1980>.

2. Decide which variable to instantiate next <when the
order is not predetermined). Generally, it is advantageous
to first instantiate variables that maximally constrain the
rest of the search space. Therefore, the variable partici­
pating in the highest number of constraints is usually
selected <Freuder, 1982; Purdom, 1983; Stone and Stone,
1986).

3. Decide which value to assign to the next variable
(when there is more than one candidate). Generally, for
finding one solution, an attempt is made to assign a value

. that maximizes the number of options available for future
assignments (Haralick and Elliott, 1980; Dechter and
Pearl, 1987).

Look-back schemes are invoked when the algorithm
encounters a dead end and prepares for the backtracking
step. These schemes perform two functions:

1. Decide how far to backtrack. By analyzing the rea­
sons for the dead end, it is often possible to go back di­
rectly to the source of failure instead of to the immediate
predecessor in the ordering. This idea is often referred to
as backjumping (Gaschnig, 1979).

2. Record the reasons for the dead end in the form of
new constraints so that the same conflicts will not arise
again in a later search. Terms used to describe this idea
are constraint recording and no-good constraints. Depen­
dency-directed backtracking incorporates both backjump­
ing and no-goods recording (Stallman and Sussman,
1977). Constraint recording can also be viewed as a form
of explanation-based learning (EBL).

GRAPH-BASED ALGORITHMS

Graphical Representations

Graphical properties of CN were initially investigated
through the class of binary constraint networks (Freuder,
1982). A binary constraint network is one in which every
constraint subset involves at most two variables. In this
case the network can be associated with a constraint
graph, where each node represents a variable, and the
arcs connect nodes whose variables are explicitly con­
strained; namely, they are members of the network's
scheme. Figure 2 shows the constraint graph associated
with the crossword puzzle in Figure 1.

A graphical representation of higher order networks
can be provided by hypergraphs, where again, nodes rep­
resent the variables, and hyperarcs (drawn as regions)
group those variables that belong to the same constraint.
Two variations of this representation that can be used to
facilitate structure-driven algorithms are primal-con­
straint graph and dual-constraint graph. A primal-con­
straint graph (a generalization of the binary constraint
graph) represents variables by nodes and associates an arc
with any two nodes residing in the same constraint. A
dual-constraint graph represents each constraint subset

278 CONSTRAINT NETWORKS

Figure 2. A constraint graph of the crossword puzzle.

by a node {also called a c-variable) and associates a la­
beled arc with any two nodes whose constraint subsets
share variables. The arcs are labeled by the shared vari­
ables.

For example, Figure 3 depicts the primal, the dual, and
the hypergraph representations of a CN with variables A,
B, C, D, E, F and constraints on the subsets {ABC), {AEFl,
(CDE) and <ACE). The constraints themselves are sym­
bolically given by the inequalities: A+ B s C, A +Es F,
C + D s E, A + C s E, where the domains of each vari­
able are the integers (2, 3, 4, 5, 61.

The dual constraint graph can be viewed as a transfor­
mation of a nonbinary network into a special type of bi­
nary network: the domain of the c-variables ranges over
all possible value combinations permitted by the corre­
sponding constraints, and any two adjacent c-variables
must obey the restriction that their shared variables
should have the same values (ie, the c-variables are
bounded by equality constraints). For instance, the do­
main of the c-variable ABC is {224, 225, 226, 235, 236,
325, 326, 246, 426, 336} and the binary constraint between
ABC and CDE is given by the relation: relABC.CDE = {(224,
415),(224, 426)}. Viewed in this way, any network can be
solved by binary networks techniques.

Solving Tree Networks

Almost all the known structure-based techniques rely on
the observation that binary constraint networks whose
constraint graph is a tree can be solved in linear time
(Freuder, 1982; Mackworth and Freuder, 1984; Dechter
and Pearl, 1987). The solution of tree-structured networks
are discussed, and later it is shown how they can be used
to facilitate the solution of general CN.

Given a tree network over n variables (Fig. 4a), the
first step of the tree-algorithm is to generate a rooted­
directed tree. Each node in this tree (excluding the root)
has one parent node directed toward it and may have sev­
eral child nodes, directed away from it. Nodes with no
childreri are called leaves. An ordering, d =Xi. X2, ... ,
Xn, is then enforced such that a parent always precedes its

A

Figure 3. Primal and dual constraint graphs of a CSP. (a)

B

children. ln the second step, the algorithm processes each
arc (and its associated constraint) from leaves to root, in .
an orderly layered fashion. For each directed arc from X,
to X1 it removes a value from the domain of X, if it has n'
consistent match in the domain of Xr Finally, after ti-.
root is processed, a backtracking algorithm is used to find
a solution along the ordering d.

lt can be shown that the algorithm is linear ,
number ofvariables. ln particular, backtracking, wr.:ch m
general is an exponential procedure, is guaranteed, ' find
a solution without facing any dead ends. The tre1 algo­
rithm is sketched by the following procedures:

Tree-Algorithm (T)

1. begin
2. generate a rooted tree ordering, d = Xi. . , Xn.
3. for i=n to 1 by -1 do
4. revise(XP' 11 ,X,); Xp 111) denotes the parent I X,.
5. if the domain of xpt"il is empty, stop (no sd, .. . tion

~ sts).
6. end
7. use backtracking to instantiate variables al1.; g d.
8. end.

The revise procedure (Mackworth, 1977) is defined I

Revise (X.;.X;)

1. begin
2. for each v E Dj do
3. if there is no u E Di s.t. (Xj =u,X,=u) is cq sis-

mt
4. delete v from Dj.
5. end.
6. end.

The complexity of the tree-consistency algorithr is
bounded by 0 (nk2) steps where k bounds the domain I ~e.
because an ordering (step 2) can be produced in Ii+ ar
time, whereas the revise procedure, which is bounde1 by
k2 steps, is executed at most n times (loop 3-6). The I ·ee
algorithm is an instance of a general class of ordered ~ :o­
rithms, to be discussed next.

Directional and Adaptive Consistency

In general, a problem is considered easy when it admi
solution in polynomial time. In the context of constran.,,

(b) (c)

A E

)(:'<
(a)

A

~
~ ~D ~E"'°F

(b)

networks, a problem is easy if an algorithm like back­
tracking can solve it in a backtrack-free manner, ie, with­
out dead ends, thus producing a solution in time linear in
the number of variables and constraints. This concept has
prompted a theoretical investigation (Freuder, 1982,
1985; Dechter and Pearl, 1987, 1989) into the level of local
consistency that suffices for ensuring a backtrack-free
search. The theory had identified topological features that
determine this level of consistency, and has yielded trac­
table algorithms for transforming some networks into
backtrack-free representations. The following paragraphs
present a summary of this theory.

The theory is centered on a graphical parameter called
width, and the definitions are relative to the primal con­
straint graph. An ordered (primal) constraint graph is de­
fined as one in which the nodes are linearly ordered to
reflect the sequence of variable assignments executed by .
backtracking algorithm. The width of a node is the num­
ber of arcs that connect that node to previous ones, the
width of an ordering is the maximum width of all nodes,
and the width of a graph is the minimum width of all
orderings of that graph.

Figure 5 presents three possible orderings of the con­
straint graph of Figure 2. The width of node X2 in the first
ordering (from the left) is three, whereas in the second
ordering it is two. It can be shown that no ordering can
achieve width lower than two, hence the width of this
constraint graph is two. [The graph has cycle, and it is
known that only trees are width-one graphs (Freuder,
1982).]

The width of a graph can be determined by a greedy
algorithm. The algorithm selects a node having the least
number of neighbors and puts it last in the ordering. This
node is then removed (together with its adjacent edges),
and the algorithm proceeds recursively on the remaining
graph. The ordering of Figure 5c, for instance, could have
been generated by this procedure.

1
Direction of

Xi order

X3

(a) (b) (c)

Figure 5. Three orderings of a constraint graph, representing
widths of three, two, and two, respectively.

1
Direction
of
arc·cons1s Lency

CONSTRAINT NETWORKS 279

Figure 4. A tree network.

The connection between width and local consistency
requires further elaboration. A constraint network is said
to be i-consistent if for any set of i - 1 variables along
with values for each that satisfy all the constraints among
them, there exists a value for any ith variable, such that
the i values together satisfy all the constraints among the
i variables. Strong i-consistency holds when the problem
is }-consistent for every j s i. Given an ordering d, direc­
tional i-consistency along d (or d-i-consistency) requires
that any consistent instantiation of i - 1 variables can be
consistently extended only by variables that succeed all of
them in the ordering d. Strong d-i-consistency is defined
accordingly. The general relationship between the width
of a network and the amount of local consistency required
for tractability is summarized in the following theorem:

Theorem. An ordered constraint graph is backtrack­
free if the level of directional strong consistency along
this order is greater than the width of the ordered
graph.

In particular, if the graph has width-one (ie, it is a
tree), a directional two-consistency is sufficient. If it is
width-two, strong directional three-consistency would suf­
fice. The intuition behind this theorem rests on the fact
that when backtrack works along a given ordering, it tests
for consistency only among past and current variables,
considering the relevant local constraints. If these con­
straints already ensure that a locally consistent partial
solution will remain consistent relative to future vari­
ables, dead end will not occur. This required level of local
consistency is related to the number of constraints future
variables have with current variables. That is, when a
future variable is constrained with many past variables
(ie, when it has a high width), the required level of local
consistency among past variables is higher.

Because most problem instances will not satisfy the
desired relationship between the width and the consis­
tency level, it is possible to try to push one of these two
factors until the relationship holds. One possibility is to
increase the level of directional consistency until it
matches the width of the problem. Specifically, if a width­
i - 1 problem is not i-consistent, algorithms enforcing
directional i-consistency can be applied to it.

Consider, first, the case of width - 1. According to the
theorem, if a tree is ordered along a width-one ordering
and then enforced with directional two-consistency (ie, arc
consistency), the result is a backtrack-free problem. In­
deed, the tree algorithm presented earlier does exactly
that: the rooted-tree ordering is a width-one ordering
(each node has only one adjacent predecessor) and its in-

280 CONSTRAINT NETWORKS

ternal loop (steps 3-6 l enforces directional arc consistency
along this ordering.

This seems to lead to a general scheme: given a con­
straint network, find its width w and enforce directional
(strong) (w + 1) consistency along the appropriate order­
ing, followed by a backtrack-free instantiation of the vari­
ables. Unfortunately, enforcing directional i-consistency
(i > 2l often requires the addition of new constraints, and
these constraints are reflected by additional arcs in the
constraint graph, which may cause the width to increase.
The resulting problem will be directional-consistent, but
its width may now be greater than w, thus backtrack-free
search is no longer guaranteed. The next algorithm (Dech­
ter and Pearl, 1987; Seidel, 1981l overcomes this diffi­
culty.

Given an ordering d, algorithm adaptive consistency
establishes directional i-consistency recursively, when i
changes from node to node to match its width at the time
of processing. This is accomplished by processing nodes in
decreasing order, so that by the time a node is processed
its final width is determined and the required level of
consistency can be achieved. Let parents(XJ denote the set
of predecessors connected to X, when it is called for pro­
cessing.

Adaptive Consistency (Xi. . . . , X0)

begin
l. for i=n to 1 by -1 do
2. Compute parents(X,)
3. connect all elements in parentstX,) (if they are not

yet connected)
4. perform consistency(X,, parents(X,))
5. endfor
End

The procedure consistency(V, set) generates and re­
cords tuples of those variables in the set that are consis­
tent both internally and with at least one value of V. The
procedure may impose new constraints over clusters of
variables as well as tighten existing constraints. When
adaptive consistency terminates, backtracking can solve
the problem in the order prescribed without any dead
ends. It is important to realize that the topology of the
resulting graph, called an induced graph, can be found
prior to executing the procedure by recursively (in a de­
creasing order) connecting any two parents sharing a com­
mon successor.

Consider the ordering Xi. X2, X3, X4, X 5 shown in Fig­
ure 5c. Adaptive consistency proceeds from X 5 to X 1 and
imposes constraints on the parents of each processed vari­
able. X 5 is chosen first and because it has only one parent,
X2, the algorithm merely tightens the domain of X2, if
necessary (which amounts to enforcing arc consistency on
<X2, X5)J. X4 is selected next and, having width two, the
algorithm enforces a three-consistency on its parents
[X3,X2]. This operation may require that a constraint be­
tween X2 and X3 be added, and in that case an arc (X2, X3)

is added to the constraint graph. When the algorithm
reaches node X3, its width is two and, therefore a three­
consistency is enforced on X3's parents [X2, Xi]. The arc

(a)

Adapl1ve­
cons1Slency ..

(b)

Figure 6. A constraint graph !al before and tbl after adaptive
consistency.

(Xi. X2l already exists so this operation may merely
tighten the corresponding constraint. The resulting graph
is given in Figure 6b.

Let w(d) be the width of the ordering d and letw* (dl be
the width of the induced graph. The complexity of solving
a problem using the adaptive consistency preprocessing
phase and then backtracking (freely) along the order dis
dominated by the former. The worst-case com~lexity of
the consistency(V, parents (V)) step, is exponential in the
cardinality of V and its parent set, because it actually
solves a network of constraints having that many vari­
ables. Because the maximal size of the parent set is equal
to the width of the induced graph, solving the cmstraint
network along the ordering d is bounded by 0 (n · exp
(w* (d) + 1)). Notice that had adaptive consistEricy been
applied on the ordering in Figure 6b, the resulting in­
duced width would have been three.

w•-Tractability

It seems that w*, the minimum induced width, can be
used to identify classes of easy problems. Namely, if the
primal graph of a constraint network has w* $ rthen the
problem can be solved in 0 (exp (rl) steps. However, find­
ing the smallest induced width of a graph and its corre­
sponding ordering is an NP-complete problem (/\rnborg,
1985). Nevertheless, deciding whether thew* of a problem
is less than or equal to r is polynomial in r. In particular,
deciding if a problem instance has small induced width,
say w~ = 1, w* = 2, or w* = 3, can be efficiently deter­
mined. In trees, the width is equal to the induced width
(= ll; hence any minimal width ordering is also an opti­
mal induced-width ordering, and it can be found in linear
time. A linear time algorithm recognizing problems hav­
ing w* > 2 is also available (Amborg, 1985; Bertele and
Brioschi, 1972). The algorithm selects as last a node hav­
ing a smallest degree, eliminates it, connects its neighbors
in the residual graph (if they were not previously con­
nected), and continues recursively. If the result is an or­
dering having w* > 2 it can be concluded that the graph,
too, has w* > 2. Otherwise, the network has induced
width equals two (also called a regular width-two net­
work).

li spite of the nice structure and complexity guaran
tees that are provided by adaptive consistency, experi­
mental results have shown that unless w* is very low

(namely, one or two) the algorithm is too expensive on the
average. Its cost stems from the determination to ensure
an absolutely backtrack-free search, often investing a dis­
proportional amount of computation trying to eliminate
just a few remaining dead ends. Simple backtracking,
which can potentially encounter all such dead ends, would
often be more efficient. This suggests that a less vigorous
consistency enforcing algorithm can be appropriate, strik­
ing a compromise between preprocessing and search. In­
deed, bounded directional i-consistency algorithms mech­
ter and Pearl, 1987) fulfill such a compromise by enforcing
a limited directional consistency and eliminating as many
dead ends as possible within some predetermined compu­
tational bounds. Instead of recording one constraint on all
the parents of a node, these procedures record a set of
smaller constraints on size-i subsets of the parents. It was
shown that on classes of artificially generated CN, direc­
tional two-consistency eliminates a large subset of the
dead ends, whereas directional three-consistency elimi­
nates almost all <Dechter and Meiri, 1989).

Acyclic Networks and Tree-Clustering

Although w* provides a measure of tractability, some
problems admit easy solution, independently of their
width. This happens when the induced width of an order­
ing is identical to its width (namely, no arcs are added by
adaptive consistency), and when constraint recording con­
sumes only a linear amount of computation (in the prob­
lem input). Acyclic constraint networks (ACNs) or acyclic
CSPs have these two properties, and were first character­
ized and evaluated in the relational database literature
(Beeri and co-workers, 1983). These can be viewed as trees
in the dual-graph representation. Clearly, if the dual
graph of a nonbinary CN is a tree, the tree algorithm
would apply. But even when the dual graph is not a tree,
some of its arcs may be redundant, and their removal
might result in a tree structure. An arc in the dual graph
can be deleted if its variables are shared by every arc
along an alternative path between the two end points. The
subgraph resulting from removal of redundant arcs is
called a join graph.

For instance, the arc between <AEF> and (ABC> in
Figure 7a can be eliminated because the variable A is
common along the cycle <AEF)-A-(ABC>-AC-(ACE>­
AE-(AEF), and so a consistent assignment to A is en­
sured by the remaining arcs. By a similar argument it is
possible to remove the arcs labeled C and E, thus turning
the join graph into a tree, called a join tree (Fig. 7b}. In
general, finding whether such a transformation exists is a
tractable problem (Maier, 1983).

(1) (b)

Figure 7. A dual-constraint graph and its join tree.

CONSTRAINT NETWORkS 281

Constraint networks that can be represented by a join
tree are called acyclic networks and can be solved effi­
ciently as follows. If there are p constraints in the join tree
(ie, pc-variables), each allowing at most l tuples, then a
straightforward application of the algorithm developed for
a tree of singletons (using 0(nk2) steps) would yield a solu­
tion in 0(p{l) steps. A further refinement based on index­
ing can reduce the complexity to O<p · l · log l} steps
<Dechter and Pearl, 1989).

A generalization of acyclic networks called webs
<Dalkey, 1991} permits backtrack-free solutions for a
larger class of network topologies. This requires, however,
that the constraints possess special properties, typical of
causal mechanisms (Dechter and Pearl, 1991). Web struc­
tures are conveniently represented by a form of directed
constraint networks (or causal networks) which indicate
the ordering along which solutions can be obtained back­
track-free.

Recognizing Acyclic Networks. Several efficient proce­
dures for identifying an ACN and finding a representative
join tree have been described (Maier, 1983}. One scheme
that proved particularly useful is based on the observation
that a CN is acyclic if and only if its primal graph is both
-chordal and conformal (Beeri and co-workers, 1983). A
graph is chordal if every cycle of a length of at least four
has a chord, ie, an edge joining two nonconsecutive verti­
ces along the cycle. A graph is conformal if each of its
maximal cliques (ie, subsets of nodes that are completely
connected) corresponds to a constraint in the original CN.
The chordality of a graph can be identified via an ordering
called the maximal cardinality ordering, (m-ordering); it
always assigns the next number to the node having the
largest set of already numbered neighbors (breaking ties
arbitrarily). For instance, the ordering in Figure 5c is an
m-ordering, whereas in Figures 5a and 5b it is not.

It can be shown (Tarjan and Yannakakis, 1984} that in
an m-ordered chordal graph, the parents of each node
must be completely connected. If, in addition, the maxi-

. mal cliques coincide with the constraint subsets of the
original CN, both conditions for acyclicity would be satis­
fied. Because for chordal graphs each node and its parent
set constitutes a clique, the maximal cliques can be identi­
fied in linear time, and then a join tree can be constructed
by connecting each maximal clique to an ancestor clique
with which it shares the largest set of variables.

As noted, acyclic networks have a chordal primal
graph, thus their width and induced width are identical
along an m-ordering. Hence, if applied to such ordered
CNs, adaptive consistency will add no arcs to the graph.
Also, because all tuples on each parent set are already
locally consistent, the amount of constraint recording is
bounded by 0 (l ·log l), resulting in an overall complexity
bound of 0 (n · l · log l) steps.

Tree Clustering. The above recognition process suggests
a scheme for combining subsets of constraints into higher
level constraints until a join tree emerges (when the net­
work is not acyclic to begin with). Such a tree-clustering
scheme is based on a triangulation algorithm (Tarjan and
Yannakakis, 1984) that transforms any graph into a

282 CONSTRAINT NETWORJ(S

chordal graph by filling in edges lrecursivelyl in a reverse
order of the m-ordering, connecting any two nonadjacent
nodes that are connected via nodes higher up in the order­
ing. The maximal cliques of the resulting chordal graph
are the clusters necessary for forming an ACN. These
clusters represent subproblems that must be indepen­
dently solved, an operation that is exponential in the
clique's size.

It can be shown that the maximal clique size, gener­
ated that way, equals w* + l; thus the whole transforma­
tion (into a join tree) is, once again, exponential in w*.
Although tree clustering differs conceptually from adap­
tive consistency, it effectively results in the same behav­
ior and same performance. When applied on the same or­
dered constraint graph both, algorithms produce the same
induced graph. In other words, adaptive consistency can
be viewed as an effective scheme for assembling ACNs. It
seems desirable to use adaptive consistency when one­
time solutions are required, and to use tree-clustering
when the network is used as a knowledge base subjected
to repeated queries. Note that although tree clustering
can be applied in any ordering, the m-ordering produces
dose to optimal induced width (for chordal graphs it is
indeed optimal. l

A subclass of ACNs for which all maximal cliques have
the same size is often characterized by a special class of
chordal graphs called k-trees. A k-tree is a chordal graph
whose maximal clues are of size k + 1, and it can be
defined recursively as follows. (1) A complete graph with k
vertices is a k-tree. (2) A k-tree with r vertices can be
extended to r + 1 vertices by connecting the new vertex to
the vertices in any clique of size k. In particular, one-trees
are ordinary trees.

The addition of each vertex (step 2l generates a new
clique of size k + l, and by associating each new clique
with one parent clique that shares k vertices with it, a join
tree is obtained. The example of an acyclic CN given in
Figure 7 is indeed a two-tree because its primal graph
could be constructed in the order A, B, C, E, D, F. k-trees
were investigated extensively in the graph theoretical lit­
erature. In particular, it was shown that a graph can be
embedded in a k-tree if and only if it has an induced width
w* = k. Detailed discussions of the properties of k-trees
are available (Arnborg, 1985; Freuder, 1990; Rossi and
Montanari, 1989).

Decomposition into Nonseparable Components

Another approach that exploits the structure of the con­
straint graph involves the notion of nonseparable compo­
nents (Freuder, 1985; Dechter and Pearl, 1987). Similar to
tree clustering, the idea is to identify subsets of variables
that, when grouped together, transform the problem into
a tree; the nonseparable components of a graph have this
property (Even, 1979).

A connected graph, G = (V, El (V, a set of nodes, E, a
set of edges), is said to have a separation node v if there
exists nodes a and b such that all paths connecting a and b
pass through v. A graph that has a separation node is
called separable, and one that has none is called nonse­
parable. A subgraph with no separation nodes is called a

C3 c.

A F e

C2

c

H
c,

(al (bl

Figure 8. A graph and its decomposition into nonseparable com­
ponents.

nonseparable component. An 0 (/Ell algorithm exists for
finding all the nonseparable components and the separa­
tion nodes; it is based on a depth-first search traversal of
the graph, called a DFS ordering (Even, 1979).

Let G be a graph and super-G the tree whose nodes
represents the components Ci. C2, ... , Cr and the sepa­
rating nodes Vi, V2, •.. , V1 (Fig. 8bl. Figure 8 shows a
graph G, its components, and its separating vertices. Once
the components are recognized, each represents a sub­
problem that, when solved, defines the domains of a new
compound variable. The tree algorithm can then be ap­
plied to the resulting problem, treating each component as
a compound variable.

The complexity of this approach is 0 (nkr), where r is
the size of the largest component. Therefore, in cases
where the constraint network has a decomposition into
small clusters of nonseparable components, the resulting
performance is improved. In comparing the nonseperable
component method with either tree clustering or adaptive
consistency, it is immediately realized that it does not
improve the worst-case complexity, namely, w* :5 rand,
frequently, w* < r. Nevertheless, this scheme is the most
natural extension of trees and can also be extended to the
dual-graph representation.

The Cycle Cutset Scheme

The decomposition method presented in this section is
based on identifying a cycle cutset, that is, a set of nodes
that, once removed, would render the constraint graph
cycle-free. The method uses trees in a different way then
previous schemes, exploiting the fact that variable instan­
tiation changes the effective connectivity of the constraint
graph. In Figure 9, for example, instantiating X2 to some
value, say hike, renders the choices of X1 and X 5 indepen­
dent as if the pathway X1 - X2 - X5 were blocked at X2.
Similarly, this instantiation blocks the pathway X1 -

X2 - X4, leaving only one path between any two variables.
The effective constraint graph for the rest of the variables
is shown in Figure 9b, where the instantiated variable X2

is duplicated for each of its neighbors.
When the group of instantiated variables constitutes a

cycle cutset, the remaining network is cycle free and can
be solved by the tree algorithm. In the example above, X2
cuts the single cycle X1 - X2 - X3 - X4 and renders the
graph in Figure 9b cycle free. In most practical cases it
would take more than a single variable to cut all the cy­
cles in the graph. Thus a general way of solving a problem

x
1

x 5

~2 '3~'
x 2

I

~

x
I

(a) (b)

Figure 9. An instantiated variable cuts its own cycles.

of which the constraint graph contains cycles is to find a
consistent instantiation of the variables in a cycle cutset
and solve the remaining problem by the tree algorithm. If
a solution to the restricted problem is found, then a solu­
tion to the entire problem is at hand. If not, another in­
stantiation of the cycle cutset variables should be consid­
ered until a solution is found. Thus if the task is to solve
the crossword puzzle (Fig. ll, first X2 = hike must be as­
sumed, and the remaining tree problem is solved. If no
solution is found, it is assumed that X2 = keel and another
attempt is made, until a solution is found.

The complexity of the cycle cutset scheme is bounded
by 0 (exp (c)) steps, where c is the size of the cycle cutset,
because the utmost number of times the tree algorithm is
invoked equals the number of partial solutions to the cut­
set variables. Because finding a minimal-size cycle cutset
is NP hard, it will be more practical to incorporate this
scheme within a general problem solver such as back­
tracking. Because backtracking works by progressively
instantiating sets of variables, all that is necessary is to
keep track of the connectivity status of the constraint
graph. As soon as the set of instantiated variables consti­
tutes a cycle cutset, the search algorithm is switched to
the tree algorithm on the remaining problem, ie, either
finding a consistent extension for the remaining variables
(thus finding a solution to the entire problem), or conclud­
ing that no such extension exists (in which case back­
tracking takes place and another instantiation is tried)
(Dechter, 1990).

Graph-Based Schemes for Improving Backtracking

Two ideas for improving the look-back phases of back­
tracking have received wide attention (Gaschnig, 1979;
Stallman and Sussman, 1977; Doyle, 1979; Dechter,
1990). These have often been referred to as backjumping
and constraint recording in the constraint literature, but
are more commonly recognized under the umbrella name
dependency-directed backtracking in the truth-mainte­
nance (qv) literature. Backjumping suggests jumping
back several levels in the search tree to a variable that
may have relevance to the current dead end, whereas con­
straint recording suggests storing the reasons for the dead
end in the form of new constraints, so the same conflict
will not arise again later in the search (ie, recording no­
goods).

In this section, graph-based variants of both backjump­
ing and constraint recording are presented. Exploiting the
structure of the problem often simplifies the implementa-

CONSTRAINT NETWORKS 283

tion of these schemes and enables an assessment of the
complexity, using network parameters.

Backjumping. The idea of going back several levels (in
a dead-end situation) rather than retreating to the chron­
ologically most recent decision was exploited indepen­
dently in Gaschnig (1979l, where the term backjumping
was introduced, and in Stallman and Sussman (1977). The
idea has since been used in truth-maintenance systems
(Doyle, 1979) and in intelligent backtracking in PROLOG
rnruynooghe and Pereira, 1984l. Gaschnig's algorithm
uses a marking technique where each variable maintains
a pointer to the highest ancestor found incompatible with
any of its values. In case of a dead end, the algorithm can
safely jump directly to the ancestor pointed to by the dead
end variable. Although this scheme retains only one bit of
information with each variable, it requires an additional
computation with each consistency check.

Graph-based backjumping (Dechter, 1990) extracts
knowledge about dependencies from the constraint graph
alone. Whenever a deadend occurs at a particular variable
X, the algorithm backs up to the most recent variable
connected to X in the graph. Consider, for instance, the
ordered constraint graph in Figure 5a. If the search is
performed in the order X1, X2, X 3, X4, X5 and a dead end
occurs at Xs, the algorithm will jump back to variable X2

because Xs is not connected to either X3 or X4. If the vari­
able to which the algorithm retreats has no more values,
it should back up to the most recent parent of both the
original variable and the new dead-end variable, and
so on.

Whereas the implementation of this backjumping
scheme would, in general, require a careful maintenance
of each variable's parents set (Dechter, 1990), some order­
ings facilitate an especially simple implementation. If a
depth-first search is used on the constraint graph (to gen­
erate a DFS tree) and then backjumping is conducted in
an in-order traversal of the DFS tree (Even, 1979), finding
the jump-back destination amounts to following a very
simple rule: if a dead end occurred at variable X, go back
to the parent of X in the DFS tree. Consider, once again,
the example in Figure 2. A DFS tree of this graph is given
in Figure lOb, and an in-order traversal of this tree is (X1,

X2, Xs, X4, X3). If a dead end occurs at node X4, the algo­
rithm retreats to its parent X2• When backjumping is per­
formed on a DFS ordering of the variables, its complexity
can be bounded by 0 (exp (m)) steps, m being the depth of
the DFS tree. However, like many other parameters en­
countered, finding a minimal-depth DFS tree is NP-hard.

x

x
3

1 x 3

o~ ./ox5

/x2
x

I

x
I

(a) (b)

Figure 10. A DFS tree and its ordering.

284 CONSTRAINT NETWORKS

Constraint-Recording or Dependency-Directed Back­
tracking. An opportunity to learn or deduce a new con­
straint is presented whenever backtracking encounters a
dead end, ie, when the current instantiations = 1X1 = x 1,

.. , X, _ 1 = x, - 11 cannot be exte:nded by any value of
the next variable X,. In such a cases is in conflict with X,,
or s is a conflict set. Had the problem included an explicit
constraint prohibiting the instantiation s, the current
dead end would have been avoided. However, there is no
point recording such a constraint at this stage, because
under the backtracking control strategy it will not recur.
If, on the other hand, the set s contains one or more sub­
sets that are also in conflict with X,, then recording this
information in the form of new explicit constraints might
prove useful in the future because future states may con­
tain these subsets. The constraint graph provides an easy
way for identifying subsets of s that are in conflict; by
removing from s all assignments of variables that are not
connected to X,, a subset is obtained that is still in conflict
with X,, because all the removed assignments are irrele­
vant to this dead end.

The procedure of graph-based dependency-directed
backtracking [sometimes called graph-based constraint
recording mechter, 1990)] implements this idea by record­
ing these conflict sets as a new constraint on each dead
end. Specifically, if the subsets s' = (X,1 = x,1, ... , X;1 =
x11 is the assignments in s connected to X,, the procedure
records a constraint on variables X,i. ... , Xtt which dis­
allows the tuples'. For instance, suppose that backtrack­
ing solves the crossword puzzle using the ordering (Xi, X2,

X 5, X 4 , X3J and is currently at state (X 1 = snail, X 2 = aron,
X5 = no, X4 = dock). This state cannot be extended by any
value of X4• Obviously, the tuple <Xi = snail, X2 = aron,
X5 = no, X4 = dock) is a conflict set; however, both the
instantiations X2 = aron and X 5 = no are irrelevant to
this conflict, because there is no explicit constraint be­
tween X3 and X 2 or between X3 and X 5• Therefore, the
tuple (X4 = down, Xi = snail) will be disallowed by record­
ing a new constraint on X 1 and X 4•

Dependency-directed backtracking can be performed
on any variable ordering. Its worst-case complexity is
O(exp(w*)) steps, thus providing yet another scheme
whose performance is governed by the induced width.

CONCLUSION

Throughout this article several techniques were pre­
sented that exploit the structure of the given network.
Four graph parameters stood out in the analysis: the in­
duced width w* (appearing in adaptive consistency, tree
clustering, and constraint recording in dependency-di­
rected backtracking), the cycle-cutset size c (appearing in
the cycle-cutset method), the depth of a DFS-tree m (in
backjumping), and the size oflargest nonseparable compo­
nent r (appearing in the tree-component scheme). It is
clear that for any problem structure, the relationship m 2:

r 2: w* holds, and it can also be shown that w* :S c + 1
(Bertele and Brioschi, 1972). Another parameter men­
tioned in the literature, bandwidth (Zabih, 1990) is also
dominated by w*. It can be concluded, therefore, that w*

provides the most informative graph parameter, and it
can be regarded as an intrinsic measure of the worst-case
complexity of any constraint network.

BIBLIOGRAPHY

S. Arnborg, "Efficient Algorithms for Combinatorial Problems on
Graphs with Bounded Decomposability-A Survey," BIT 25,
2-23 1 l985l.

C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. "On the Desir·
ability of Acyclic Database Schemes,".]. ACM 30<31. 479-513
1July 1983).

U. Bertele and F. Brioschi, Nonserial Dynamic Programming,
Academic Press, Inc., New York, 1972.

M. Bruynooghe and L. M. Pereira, "Deduction Revision by Intelli·
gent Backtracking," in J. A. Campbell, ed .. Implementation of
Prolog, Harwood Academic Publishers, New Yark, 1984, pp.
194-215.

N. C. Dalkey, Modeling Probability Distributions with WEB
Structures, Technical Report R-164, University of California,
Los Angeles, 1991.

R. Dechter, "Enhancement Schemes for Constraint Processing:
Backjumping, Learning, and Cutset Decomposition," Artif. ln·
tell. 41(3), 273-312 <Jan. 19901.

R. Dechter, and I. Meiri, "Experimental Evaluation of Prepro­
cessing Techniques in Constraint Satisfaction," in Proceed·
ings of the Eleventh IJCAI, Detroit, Mich., Morgan-Kauf­
mann, San Mateo, Calif., 1989.

R. Dechter, and J. Pearl, "Network-Based Heuristics for Con­
straint-Satisfaction Problems," Artif. Intell. 34(1 l, 1-38 I Dec.
1987).

R. Dechter and J. Pearl, ''Tree Clustering for Constraint Net­
works," Artif. lntell. 353-366 (19891.

R. Dechter and J. Pearl, "Directed Constraint Networks: A Rel<
tional Framework for Causal Modeling," Proceedings of th
Twelfth IJCAI, Sydney, Australia, Morgan-Kaufmann, San
Mateo, Calif., 1991.

J. Doyle, "A Truth Maintenance System," Artif. Intell. 12, 231-
272 (1979).

S. Even, Graph Algorithms, Computer Science Press, Rockville,
Md., 1979.

E. C. Freuder, "Synthesizing Constraint Expression," CACM
21(11), 958-965 (1978>.

E. C. Freuder, "A Sufficient Condition for Backtrack-Free
Search," J. ACM 29(1), 24-32 (Jan. 1982).

E. C. Freuder, "A Sufficient Condition for Backtrack-Bounded
Search," J. ACM, 32(4), 755-761(Qct.1985).

E. C. Freuder, "Complexity of k-Structured Constraint Satisfac­
tion Problems," in Proceedings of the Ninth National Confer·
ence on Artificial Intelligence, Boston, Mass., AAAI, Menlo
Park, Calif., 1990, pp. 4-9.

J. Gaschnig, Performance Measurement and Analysis of Certain
Search Algorithms, Technical Report CMU -CS-79-124, Carne­
gie Mellon University, Pittsburgh, Pa., 1979.

R. M. Haralick and G. L. Elliott, "Increasing Tree-Search Effi­
ciency for Constraint Satisfaction Problems," Artif Intell. 14,
263-313 (1980).

A. K. Mackworth "Consistency in Networks of Relations," Artif.
lntell. 8(1), 99-118 (1977).

A. K. Mackworth and E. C. Freuder, "The Complexity of Some
Polynomial Network Consistency Algorithms for Constraint
Satisfaction Problems," Artif lntell. 25(1) <1984>.

D. Maier. The Theory· of Relatwnal Datahases. Computer Science
Press. Rockville. Md .. 1983.

U. Montanari, "Networks of Constraints: Fundamental Proper­
ties and Applications lo Picture Processing." inform. Sci. 7,
95-132 11974!.

P. Purdom, "Search Rearrangement Backtracking and Polyno­
mial Average Time," Artz{ lntell. 21, 117-13:.J 119831.

F. Rossi and U. Montanari. "Exact Solution in Linear Time of
Networks of Constraints Using Perfect Relaxation," in Pro­
ceedings First lnternatwnal Principles of K11owled;<e Repre­
sentation and Reasoning, Toronto. Ont .. Canada, May, 1989,
pp. 394-399.

R. Seidel, "A New Method for Solving Constraint-Satisfaction
Problems." in Proceedings of the Seventh IJCAI. Vancouver.
B.C., Canada, Morgan-Kaufmann, San Mateo, Calif., 1981,
pp. 338-342.

R. M. Stallman and G. J. Sussman, "Forward Reasoning and
Dependency-Directed Backtracking in a System for Com­
puter-Aided Circuit Analysis," Artif. /ntell. 912>. 135-196
(Oct. 1977>.

H. S. Stone and J. M. Slone, Efficient Search Techniques-An
Empirical Study of the N-Queens Problem, Technical Report
RC 12057 1#54343>, IBM T. J. Watson Research Center,
Yorktown Heights, N.Y., 1986.

R. E. Tarjan and M. Yannakakis. "Simple Linear-Time Algo­
rithms to Test Chordality of Graphs, Test Acyclicity of Hyper­
graphs and Selectively Reduce Acyclic Hypergraphs," SIAM
J. Comput. 1313), 566-579 (Aug. 1984>.

D. Waltz, "Understanding Line Drawings of Scenes with
Shadows," in P.H. Winston, ed., The Psychology of Computer
Vision .. McGraw-Hill Book Co., Inc., New York. 1975.

R. Zabih, "Some Applications of Graph Bandwidth to Constraint
Satisfaction Problems," in Proceedings of the Ninth National
Conference on Al, Boston, 1990, AAA!, Menlo Park. Calif.,
1990, pp. 46-50.

RINA DECHTER

University of California at
Irvine

CONSTRAINT SATISFACTION

Constraint satisfaction is an umbrella term for a variety
of techniques of AI and related disciplines. In this entry
attention is focused on the main approaches, such as back­
tracking, constraint propagation, and cooperative algo­
rithms, with some consideration given to the motivations
and techniques underlying other constraint-based sys­
tems.

The first class of constraint satisfaction problems con­
sidered is those in which one has a set of variables, each to
be instantiated in an associated domain and a set of Bool­
ean constraints limiting the set of allowed values for spec­
ified subsets of the variables. This general formulation
has a wide variety of incarnations in various applications:
it is a general search (qv) problem. One standard approach
involves backtracking (qvl; various forms of "intelligent"
backtracking are surveyed. A complementary approach
based on the class of consistency algorithms has some nice
properties that are described and illustrated.

CONSTRAINT SATISFACTION 285

The second class of problems considered is the numeri­
cal optimization problems that ari;;e when one is de;;ign­
ing a system to maximize the extent to which the solu­
tions it provides satisfy a large number of local
constraints. Algorithms for their solution are based on
generalizations of the consistency algorithms for applica­
tions primarily in computational vision. These algo­
rithms, which have a high degree of potential parallelism,
are variously known as cooperative or probabilistic relax­
ation algorithms.

One can call these two problem classes Boolean con­
straint satisfaction problems and constraint optimization
problems, respectively. As with all dichotomies, this one is
not absolute. Some approaches lie between these two
poles; others combine them. There are, in fact, many other
dimensions along which one could categorize the area, but
this is the best first cut.

BOOLEAN CONSTRAINT SATISFACTION PROBLEMS

A Boolean constraint satisfaction problem (CSPl is char­
acterized as follows: given is a set V of n variables {u1 , u2 ,

. .. , u0 }, associated with each variable u; is a domain D;
of possible values. On some specified subsets of those vari­
ables, there are constraint relations, given that there are
subsets of the Cartesian product of the domains of the
variables involved. The set of solutions is the largest sub­
set of the Cartesian product of all the given variable do­
mains such that each n-tuple in that set satisfies all the
giwm constraint relations. One may be required to find
the entire set of solutions or one member of the set or
simply to report if the set of solutions has any members­
the decision problem. If the set of solutions is empty, the
CSP is unsatisfiable.

A surprisingly large number of seemingly different ap­
plications can be formalized in this way. Some of them are
enumerated below. Of particular theoretical interest is
the map-coloring problem. Consider, for example, the
problem of deciding if three colors suffice to color a given
planar map such that each region is a different color from
each of its neighbors. This is formulated as a Boolean CSP
by creating a variable for each region to be colored, associ­
ating with each variable the domain {red, green, blue},
and requiring for each pair of adjacent regions that they
have different colors. Since the map-coloring problem is
known to be NP-complete and is therefore believed inher~
ently to require exponential time to solve, one does not
expect to find an efficient polynomial time algorithm to
determine if a general CSP is satisfiable.

Various restrictions on the general definition of a CSP
are possible. For example, the domains may be required to
have a finite number of discrete values. If this is the case,
the constraining relations may be specified extensionally
as the set of all p-tuples that satisfy the constraint. One
may further require that all the relations be unary or
binary, that is, that they only constrain individual vari­
ables or pairs of variables. These restrictions apply to the
map-coloring example above. However, they are not nec­
essary for some of the techniques reported here to be ap­
plicable. For example, suppose one were planning the lay-

