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A gyrokinetic ion/mass-less fluid electron hybrid model as implemented in the GEM code

[Y. Chen and S. E. Parker, J. Comput. Phys. 220, 837 (2007)] is used to study the reverse shear

Alfv�en eigenmodes (RSAE) observed in DIII-D, discharge #142111. This is a well diagnosed case

with measurement of the core-localized RSAE mode structures and the mode frequency, which can

be used to compare with simulations. Simulations reproduce many features of the observation,

including the mode frequency up-sweeping in time and the sweeping range. A new algorithmic

feature is added to the GEM code for this study. Instead of the gyrokinetic Poisson equation itself,

its time derivative, or the vorticity equation, is solved to obtain the electric potential. This permits

a numerical scheme that ensures the E�B convection of the equilibrium density profiles of each

species cancel each other in the absence of any finite-Larmor-radius effects. These nonlinear

simulations generally result in an electron temperature fluctuation level that is comparable to

measurements, and a mode frequency spectrum broader than the experimental spectrum. The

spectral width from simulations can be reduced if less steep beam density profiles are used, but

then the experimental fluctuation level can be reproduced only if a collision rate above the classical

level is assumed. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4775776]

I. INTRODUCTION

The reverse shear Alfv�en eigenmode (RSAE), also

called the Alfv�en cascade (AC), is a class of shear Alfv�en

waves that have been observed in various tokamaks.1–3

RSAE resides in a radial location where the safety factor is

at a minimum, typically well inside the plasma core, and

detailed measurements of the mode fluctuations are usually

difficult. It is only recently that detailed measurements of

the mode structure on DIII-D became available from elec-

tron cyclotron emission (ECE) and electron cyclotron emis-

sion imaging (ECEI) as first reported by Refs. 4 and 5.

More experimental details are later reported on the mode

frequency as it sweeps in time, the details of the electron

temperature fluctuations inside the ECEI viewing range and

the fluctuation amplitude.6 This DIII-D plasma provides an

ideal case for comparing simulation results with direct mea-

surement. Such comparison has been attempted with simu-

lation codes based on various theoretical models, such as

the kinetic-MHD model,7 the full gyrokinetic model,8 and

hybrid models where ions are gyrokinetic but electrons are

fluid-like.

In this paper, we present simulations of the observed

RSAEs using the gyrokinetic ion/massless fluid electrons

hybrid model as has been implemented in the df particle-in-

cell (PIC) code GEM.9 Both linear and nonlinear simulation

results are reported. The most salient feature of RSAE is the

frequency sweeping in time as qmin, the safety factor at its

minimum, decreases in time as a result of current diffusion.

Reproducing this sweeping is the first step toward comparing

simulation with the experiment. As a result of using the con-

ventional df method, the magnetic equilibrium is held fixed

throughout any particular simulation. The RSAE frequency

sweeping in time in the experiments is reproduced in simula-

tions by running many simulations, each with a different

q-profile. Since in the experiment RSAEs are observed to

persist over a long time (�20 ms), much longer than the

inverse growth time 1=c (c is the linear growth rate), the

mode structure and amplitude observed in the experiments

must be assumed to correspond to the nonlinearly saturated

state. If the perturbative effect of the beam particles on the

mode structure is small, as is frequently assumed to be the

case for the toroidicity-induced gap modes,10 then it is rea-

sonable to compare the linear mode structure from linear

simulations with the experimental data. However, RSAE is

usually considered to be non-perturbative, i.e., the mode

structure is strongly influenced by the beam ion distribution,

and strong modifications of the mode structure due to the

nonlinearly modified beam distribution can happen. It is,

therefore, essential to compare the observed mode features

with the results of nonlinear simulations.

Extensive linear simulations of RSAEs using various

models have been reported recently, including simulations

with the gyrofluid code TAEFL,6,11 the fully kinetic contin-

uum code GYRO,12 and the particle-in-cell code GTC with

a second order perturbative approach for electrons.13 The

present study will, therefore, focus on nonlinear simula-

tions. It should be borne in mind that the present study is
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only an initial attempt at directly comparing the hybrid

model simulations with the experimental measurements.

While some of the observed features of RSAEs, such as the

up-sweeping of the mode frequency in time and the satu-

rated electron temperature fluctuation level, are confirmed

by simulations, there are significant disagreements between

the simulation and observation that are not well understood.

All simulations presented here are for the n¼ 3 mode

and the n¼ 4 mode (n is the toroidal mode number) as

are observed at t � 725 ms in DIII-D discharge

#142111.6,11,14,15 We started with the code as was presented

in detail previously,9,16 but in time learned that, for the plas-

mas considered here, a significant change concerning the

field equation for the electric potential u is needed. This

change is motivated by consideration of the effects of

the E� B motion on generating electric charge, which is

needed in the gyrokinetic Poisson equation (the quasi-

neutrality condition). If the finite-Larmor-radius effect is

neglected then all species undergo identical E� B motions,

leading to no net charge separation because of quasi-

neutrality in the equilibrium. Charge separation due to

E� B convection of the equilibrium density profiles occurs

only as a result of FLR effect. It is desirable for the numeri-

cal algorithm to take advantage of this fact, i.e., to ensure

proper cancellation of the E� B motion such that only the

FLR effect is retained. This is particularly important for

cases where the modes of interest have a low toroidal mode

number and the beam ion density is high, as in the DIII-D

discharge studied here. It is impossible, however, to make

use of the exact cancellation between E� B motions in con-

ventional gyrokinetic simulations, where u is obtained from

the gyrokinetic Poisson equation, with the charge density of

each species calculated from the distribution of that species.

On the other hand, if we take the time derivative of the

Poisson equation to obtain the vorticity equation for @/=@t,
the exact cancellation between the linear E� B motions can

be made explicit. This is found to greatly enhance the

robustness of nonlinear simulations, allowing us to carry

out long-term simulations (typically lasting a physical time

of 5 ms) to obtain a good steady state, from which a time-

averaged fluctuation amplitude and the wave frequency

spectrum can be calculated. These simulation results are

then compared with ECEI data. The conclusion we draw

from this comparison study is: (1) The mode frequency, in

general, agrees with the experimental data to within 10%;

(2) with the current experimental input for the beam density

profile and the classical collision rate of beam particles, the

fluctuation level (in terms of the electron temperature per-

turbation) in the simulations is consistent with ECEI mea-

surement, but the mode spectrum is more broad than ECEI

data; and (3) agreement with ECEI data in both amplitude

and spectral width can be achieved if a more flat beam den-

sity profile is used and a somewhat anomalous collisional

mechanism can be assumed.

This paper is organized as follows. In Sec. II, the new

algorithm for obtaining the electric potential is explained.

Linear results are presented in Sec. III, and nonlinear results

are presented in Sec. IV. Summary and discussions are given

in Sec. V.

II. OBTAINING U FROM THE VORTICITY EQUATION

We start with the gyrokinetic Poisson equation for the

perturbed electric potential u

�npðx; yÞ ¼ dni þ qbdnb � dne: (1)

Here, np ¼ �
P

k?
qn0

Ti
ð1� C0ðbÞÞ/k?expðikxxþ kyyÞ is the

ion polarization density. The right-hand-side (RHS) contains

the perturbed density for the main ions, the beam ions, and

the electrons, all with a charge jqj ¼ e. The equilibrium den-

sity profiles also satisfy the charge-neutrality condition,

niðrÞ þ nbðrÞ ¼ neðrÞ. Equation (1) has been solved in all

gyrokinetic simulations for u, including our previous studies

of Toroidal Alfv�en Eigenmodes (TAEs).9,16 Equation (1) is

also used in the early phase of this study, during which the

following observations are made: (1) The thermal species ki-

netic equations for df contain the x� term, which is the insta-

bility drive for drift waves, but usually not important for

energetic-particle-driven Alfv�en waves. In fact, these terms

are sometimes not included in simulations of energetic-par-

ticles-driven modes, in order to minimize the effect of ther-

mal species drive and focus on the energetic particle physics.

However, for the present DIII-D case, we find that doing so

significantly changes the n¼ 3 mode frequency and growth

rate; (2) The E� B motion is compressible in a toroidal field,

which leads to a compressibility term in the electron continu-

ity equation, @dne=@t ¼ � � � � ner � E� b=B. This term is

found to be unimportant in simulations of high-n modes, but

important in the present case.

Both observations point to the need to carefully treat the

E� B motion. It is easiest to see this when we examine the

vorticity equation. Taking the time derivative of Eq. (1)

leads to

@np

@t
¼�

X
s

ð hEi � b

B
� rf0s �

f0s

Ts
vD � hEi

� �

� dðRþ q� xÞ dR dvþr � ne
E� b

B

� �
þ � � � ; (2)

where the summation is over the ion species and only linear

terms directly related to the E� B motion are shown. Here,

hEi is the gyro-averaged electric field and the d-function

indicates that deposition of the charge to the spatial grids is

to be done for a charged ring. Without these FLR effects, the

terms shown on the RHS of Eq. (2) cancel each other exactly

if the equilibrium distributions for the ion species satisfy the

charge neutrality condition. However, numerically such can-

cellation is not ensured. In particle-in-cell simulations, the

marker particles are initially loaded according to the equilib-

rium distribution, but subsequently evolved in time without

any procedure to enforce their charge neutrality. Deviation

from the initially loaded distribution can arise from at

least two sources. First, a local Maxwellian is not an exact

equilibrium distribution for the thermal ions, because of the

finite-orbit-width effect. Second, the marker distribution is

subject to nonlinear modification if the fluctuation amplitude

of the perturbed electromagnetic field is high. The finite-

orbit-width effect is more significant for the energetic
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particles. If the energetic particle density is not very low

compared with the thermal species density, the deviation of

the energetic particle distribution from the assumed form can

cause large artificial net charge. One can also see why this

problem is especially severe for low-n modes. The ion polar-

ization density is approximately given by np ¼ �nir2
?/ in

the long wavelength limit, i.e., scales as �k2
?, whereas the

terms on the RHS (including numerical errors!) scale as �k?
because E? ¼ r/. The ratio between any numerical error

on the RHS and the LHS scales as 1=k?, i.e., large for low-n
modes.

To remove the residual contribution from these linear

E� B terms in the absence of FLR effects, we can simply

subtract the same ion terms from the RHS and drop the elec-

tron term

@np

@t
¼�

X
s

ð hEi � b

B
� rf0s �

f0s

Ts
vD � hEi

� �

� dðRþ q� xÞ dR dv

þ
X

s

ð
E� b

B
� rf0s �

f0s

Ts
vD � E

� �
dvþ � � � (3)

Numerically, Eq. (3) can be implemented by looping through

the ion markers twice in the deposition routine, treating the

ions as gyrokinetic and drift-kinetic in turn, then take the dif-

ference between the two results. Equation (3) can be solved

readily using the same Poisson solver as that used in the

split-weight scheme.17 Unlike in the split-weight scheme

where the vorticity equation is solved in addition to the

quasi-neutrality condition (Eq. (1)), here we only need to

solve the vorticity equation, and / will be obtained by inte-

grating @/=@t in time. Apart from this modification in the

way / is obtained, the rest of the computational procedure

for the hybrid model is the same as that described previ-

ously.9,16 In summary, the gyrokinetic ion/fluid electron

hybrid model used here neglects the perturbed parallel mag-

netic field perturbation. The effect of the equilibrium current

as an instability drive has been implemented but not included

in this work. The vector potential Ajj is obtained by integrat-

ing the gauge equation @Ajj=@t ¼ �Ejj � rjj/, where Ejj is

obtained from the Ohm’s law. The electron continuity equa-

tion provides the electron terms in the vorticity equation.

The field quantities / and Ajj are zero at the radial bounda-

ries, while a particle moving across the boundaries re-enters

the simulated volume at the point where its equilibrium tra-

jectory intersects the boundary surface, with its weight

unchanged. In linear simulations, the difference between

Eqs. (2) and (3) is often negligible, but the peak in the fre-

quency spectrum of a nonlinear simulation using Eq. (2) can

differ from that using Eq. (3) by 20%. Moreover, for cases

with strong instability simulations using Eq. (2) often display

nonlinear numerical instabilities leading to unphysical fluc-

tuation amplitudes, whereas simulations using Eq. (3) do not

exhibit such behavior.

III. LINEAR SIMULATION RESULTS

The equilibrium density profiles at the time �725 ms for

DIII-D discharge #142111 are shown in Fig. 2.11 The beam

density at r=a ¼ 0:3 is a significant fraction of the thermal

ion density. The beam distribution in velocity is assumed to

be an isotropic, slowing-down distribution

fbðr; vÞ ¼
nbðrÞ

Cvðv3 þ v3
I Þ
; for v < vb

0; for v > vb;

8<
: (4)

where Cv ¼
Ð vb

0
ð4pv2=ðv3 þ v3

I ÞÞdv is a normalization con-

stant so that nb is the local beam density, obtained from

classical fast ion transport calculation. There is no direct

measurement on the velocity distribution. Since the neutral

beam injection is tangential to the magnetic field, one

expects an anisotropic velocity distribution, especially in the

vicinity of the injection speed. In linear simulations, we have

tested one anisotropic distribution function model with a

Gaussian factor in the pitch angle variable,18 and an isotropic

Maxwellian distribution. In all nonlinear simulations pre-

sented in this paper, the isotropic distribution of Eq. (4) is

used for simplicity. In the simulations, we characteristically

vary the beam distribution function, including the radial pro-

file, the critical velocity vI, and the cut-off velocity vb to

show the effect of beam distribution. As a consequence, care

is needed when comparing simulation results that depend on

the details of the distribution with the experimental data, as,

for instance, when we try to interpret the nonlinear results in

Sec. IV. The linear growth rate is most sensitive to the beam

distribution, but one expects the spatial mode structure and

real frequency to be less sensitive.

Collisions between the beam particles and the thermal

species determine the critical velocity vI, in Eq. (4), which is

given by

vI=vTe ¼ ðniZ
2
i 3

ffiffiffi
p
p

me=4nemiÞ1=3 � 0:07 (5)

using the experimental parameters for the main ions. The crit-

ical velocity is the velocity where the fast-ion drag on thermal

electrons is equal to that on thermal ions. It is not sensitive to

the impurity concentration as long as the impurities have the

same charge-to-mass ratio as the primary gas, which is nor-

mally the case for plasmas of deuterium, carbon, and oxygen

(the DIII-D case). Once vI is given, linear results depend little

on the beam particle collision frequency. Beam particle colli-

sions in the form of drag and pitch-angle scattering are

important in determining the saturated mode amplitude, and

the collision frequency (or equivalently the slowing-down

time) must be specified in nonlinear simulations. The actual

form of the beam particle collision operator is given else-

where.16 For most of the simulations in this paper, a slowing-

down time of 50 ms is used, which is estimated using the

electron temperature and density in the core.

The simulation domain is chosen to be 0:1 < r=a < 0:9.

For linear simulations in this section, a total of 1 048 576

particles are used per ion species. The time step is

Xc�t ¼ 10, where Xc is the proton gyro-frequency. Both the

thermal ions and the beam ions are deuterium. The grid

setting is ðNx;Ny;NzÞ ¼ ð128; 32; 32Þ in the three dimensions

of the field-aligned coordinates.17 We remind the reader

that GEM is an initial value code, therefore only the most
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unstable mode can be clearly seen in linear simulations. The

frequency of a subdominant mode can be traced in the pa-

rameter space only with an eigenmode tool.12 If a flat beam

density profile is used the plasma is stable. Ideally, the fre-

quency spectrum of a stable plasma obtained in the simula-

tion should contain discrete peaks that correspond to discrete

eigenmodes, but the spectrum is frequently found to be

dominated by high frequency (>200 kHz) fluctuations,

yielding no clear results in the frequency range of interest,

20 kHz < f < 100 kHz.

The safety factor profile has a minimum qmin near

r=a ¼ 0:33, which decreases in the time window 700 ms < t
< 770 ms (Ref. 11) according to qmin ¼ �0:00337ðt� 700Þ
þ3:33. RSAEs are characterized by the frequency up-

sweeping as typically seen in the experiments, or equiva-

lently, rapid increase in frequency as qmin decreases. The

experimental spectrogram of Fig. 1 shows up-sweeping

n¼ 3 and n¼ 4 RSAEs in the time window 700 ms < t
< 750 ms. The mode frequencies of these two modes

obtained from linear simulations are plotted in Figs. 3 and 4.

Fig. 3 is intended to show the strong effects of the beam dis-

tribution function on the n¼ 3 mode frequency, and Fig. 4

compares the simulation results with the experimental data

for both the n¼ 3 and the n¼ 4 modes, and with the theoreti-

cal Alfv�en continuum at the qmin surface. A Doppler shift of

7:5 kHz for n¼ 3 and 10 kHz for n¼ 4 is added to all the

simulation data, corresponding to a plasma rotation fre-

quency of 2:5 kHz at the mode location. The experimental

mode frequencies of the n¼ 3 and n¼ 4 RSAEs, calculated

from the ECEI data, are also plotted. These curves represent

the centers of best-fit Gaussians to the n¼ 3 and n¼ 4 peaks

in the spectrogram, respectively, at each time point. The

spectrogram itself is the sum of the spectral power density

for all ECEI channels, with each timepoint representing a

1024-point fft window.

For the n¼ 3 mode, simulations are first run with the

beam density profile of Fig. 2. The mode frequency increases

as qmin decreases. This mode continues to be the most unsta-

ble mode until the minimum safety factor decrease to

qmin ¼ 3:17, at which point a jump in the frequency (of the

most unstable mode) is seen. Examination of the correspond-

ing eigenmodes at qmin < 3:17 indicates that the most unsta-

ble mode becomes a TAE near the edge, with frequency

nearly constant as qmin decreases. These TAE data are not

shown in Fig. 3. It is seen that, using the original beam den-

sity profile, the n¼ 3 mode frequency sweeps from �60 kHz

at t � 700 ms to �70 kHz at t ¼ 740 ms, with a sweeping

range of less than 10 kHz. This range is too small compared

with the experimental sweeping range of about 40 kHz for

the n¼ 3 mode. More rapid sweeping can be produced by

modifying the beam density profile. All the other simulation

FIG. 1. Spectrogram of RSAEs for DIII-D discharge #142111. Simulations

are for the n¼ 3 sweeping mode at the time �725 ms.

FIG. 3. Effects of the beam particle distribution on the n¼ 3 mode

frequency. (1) the beam density profile in Fig. 2, with the beam velocity

of Vb=VA ¼ 0:38 (80 KeV) (blue); (2) modified beam density profile of

Eq. (6) with a=Lh ¼ 1:86, s0 ¼ 0:4 and �s ¼ 0:2, Vb=VA ¼ 0:38,

bbeamðr=a ¼ 0:35Þ ¼ 0:006, nb0 ¼ n0. nb is the beam density at r=a ¼ 0:4
and n0 is the beam density of Fig. 2 at r=a ¼ 0:4 (black); (3) modified beam

density profile of Eq. (6) with a=Lh ¼ 1:86, s0 ¼ 0:33, and �s ¼ 0:2,

Vb=VA ¼ 0:54, bbeamðr=a ¼ 0:35Þ ¼ 0:0046, nb0 ¼ n0=2 (green); (4) Modi-

fied beam density profile with a=Lh ¼ 1:86, s0 ¼ 0:36, and �s ¼ 0:2, Max-

wellian distribution with Tbeam ¼ 21 KeV, bbeamðr=a ¼ 0:36Þ ¼ 0:0079,

nb ¼ n0 (red); (5) experimental data (black).

FIG. 2. The experimental safety factor, beam density, electron density, and

electron and ion temperature profiles.
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results of n¼ 3 in Fig. 3 are obtained with the following

analytic beam density profile

nbðsÞ ¼ nb0 exp � a�s

Lh
tan h

s� s0

�s

� �� �
: (6)

In Eq. (6) s ¼ r=a, s0 is the location where nb has maximum

gradient, characterized by the local density scale length Lh,

and �s specifies the radial width in which the gradient is

localized. The advantage of using Eq. (6) is that one can

choose s0 to focus on mode activities at a given location and

choose Lh to match the local instability drive of the experi-

mental profile. Modes far away from the s0 surface can be

avoided by choosing a small �s. The frequencies from simu-

lation with modified beam density profiles in Fig. 3 are

obtained with a=Lh ¼ 1:86, chosen to match the local radial

dependence of the beam density profile of Fig. 2 at

r=a � 0:4. We have carried out linear simulations for both

the n¼ 3 and n¼ 4 mode with other variations of the beam

density profiles, e.g., by multiplying the original profile with

a factor of e�2t (t is the square root of the normalized toroidal

flux) or setting �s ¼ 0:3 if Eq. (6) is used. We have also

used a model beam particle distribution that is anisotropic in

velocity.18 All simulations with modified beam density pro-

files display frequency up-sweeping at a rate comparable to

but smaller than the experimental observations. Fig. 3 shows

the effects on the mode frequency of the beam particle den-

sity profile and the distribution function in velocity. The cut-

off velocity of vb=vA ¼ 0:38 (vA is the Alfv�en velocity at

qmin) corresponds to the injection energy of 80 KeV. At this

cut-off velocity, the simulated mode frequency is 73.5 kHz

for qmin ¼ 3:24 (including the Doppler shift effect), com-

pared with the experimental value of 88 kHz. If the cut-off

velocity is increased to vb=vA ¼ 0:54 and the total beam den-

sity reduced by half (with a moderately reduced total beam

pressure), the mode frequency from simulation becomes 78

kHz. Also shown are the results from using a Maxwellian

beam distribution with an effective beam temperature of

21 KeV, which are close to the results obtained with the

slowing-down distribution with Vb=VA ¼ 0:54. Fig. 3 con-

firms the non-perturbative nature of the RSAE mode19 and

highlights the need for more accurate beam distribution in

code validation.

The simulation data in Fig. 4 are obtained with the ana-

lytical beam density profile of Eq. (6) with a=Lh ¼ 1:86,

s0 ¼ 0:33, �s ¼ 0:2. The beam density at qmin is half of the

beam density of Fig. 2, and the cut-off velocity is vb=vA

¼ 0:54. The qmin value is mapped into the discharge time

according to qminðtÞ ¼ �0:00337ðt� 700Þ þ 3:33 and the

frequency is now plotted as a function of time. For reference,

the theoretical Alfv�en continuum given by the formula20

xðtÞ ¼ 2pftheo ¼
m

qminðtÞ
� n

� �2 V2
A

R2
0

þ 2Te

MiR2
0

1þ 7

4

Ti

Te

� �" #2

;

(7)

is also plotted, with m¼ 10 for n¼ 3 and m¼ 13 for n¼ 4.

The RSAE mode frequency is expected to deviate slightly

from the continuum due to the effects of toroidal geometry,3

beam ions,19 and plasma pressure gradient.20 As can be seen,

this theoretical continuum predicts the frequency sweeping

rate for both modes with remarkable accuracy. In compari-

son, the sweeping rates from simulation are smaller. Fig. 4

shows that while the gyrokinetic ion/fluid electron hybrid

model used here captures important features of the RSAEs,

significant difference still exists between the simulated

frequency and the experimental data. Fig. 3 suggests that

some of the difference might be attributed to inaccuracy in

the beam distribution used in simulations. We also note that

the theoretical continuum result of Eq. (7) is obtained with

the ideal MHD, in which the compressional component of

the perturbed magnetic field, dBjj, is included. This effect is

neglected in the current simulation model. It remains to be

seen whether the inclusion of dBjj can account for the dis-

agreement in the mode frequency between simulations and

observation.

The mode is characterized by a dominant poloidal har-

monic, the m¼ 10 component for the n¼ 3 mode and the

m¼ 13 component for the n¼ 4 mode, during most of the

time. For n¼ 3, the m¼ 9 harmonic becomes significant

only for qmin < 3:18, and becomes comparable in magnitude

to the m¼ 10 mode when qmin � 3:13. The frequency sweep-

ing slows down as qmin decreases near this value, while the

m¼ 9 harmonic grows in importance, suggesting a transition

from RSAE (characterized by a single poloidal harmonic) to

TAE (characterized by coupling between neighboring

harmonics).20 The n¼ 3 mode structures in the poloidal

plane and the radial dependences of the dominant poloidal

harmonics for qmin ¼ 3:33, 3.28, 3.23, and 3.18 are shown in

Fig. 5. The plotted quantity is the potential /, which in the

core region should have the same spatial structure as the

electron temperature fluctuation dTe (see Sec. IV).

The poloidal mode structures of Fig. 5 (left column)

show noticeable poloidal shearing as the radius increases,

which has been identified as the fast ion induced shearing.6

The comparison between the simulation and experiment on

the mode shearing direction has been somewhat controver-

sial recently. The shearing direction as represented by the

qmin ¼ 3:33 case (top left in Fig. 5) is robustly observed in

FIG. 4. Mode frequencies vs. time. The beam distribution for the simulation

data is the same as that of case (3) in Fig. 3. The “theoretical” results are the

theoretical values of the Alfv�en continuum at the qmin location, modified by

the thermal pressure effect and including the Doppler shift effects.
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the experiments. In this case, the toroidal magnetic field

points out of the page (i.e., in the toroidal angle f direction if

the coordinate system ðr; h; fÞ is right-handed). The mode

shearing direction is clockwise as the radius increases, or in

the ion diamagnetic direction, which is what has been seen

in the experiment. However, Fig. 5 shows that this feature is

not robust in simulations. In general, the shearing direction

can change not only with qmin but also with the beam density

profile. The only solid conclusions we can draw from simula-

tions are that, first, the shearing direction is determined by

the direction of the toroidal field. Reversing the toroidal field

produces an eigenmode with reversed shearing. Second, the

shearing direction is independent of the plasma current direc-

tion relative to the toroidal field. In GEM, the plasma current

direction is indicated by the sign of the safety factor, with a

positive sign for a plasma current parallel to the toroidal

field. Changing the sign of q does not change the mode struc-

ture. These observations are in agreement with the linear

simulation results using the GTC code.13 We also note that

these simulation results suggest that the mode shearing is not

determined by coupling of the RSAE to the kinetic Alfv�en

wave, as the latter is included in the hybrid model through

the gyrokinetic ions.

It must be noted that as qmin or nbðrÞ is varied in simula-

tions all other equilibrium quantities are fixed. Given the

sensitivity of the mode characteristics to these equilibrium

parameters, one expects that in the experiment the q�profile

might evolve in time in a way that cannot be captured by

elevating or lowering the entire q-profile, as is done here

when qmin is varied. The beam distribution can also nonli-

nearly evolve in response to the mode. We speculate that

the observed mode shearing as a robust feature might be the

result of the simultaneous evolution of the magnetic equilib-

rium and the self-consistently evolved beam distribution.

IV. NOLINEAR SIMULATIONS

A. Obtaining the electron temperature perturbation in
simulations

The mode structure and fluctuation amplitude obtained

with ECEI are for the electron temperature dTe, which

can be obtained in the massless fluid electron model by the

isothermal condition21 along the perturbed field line

ðB0 þ dB?Þ � rðT0 þ dTeÞ ¼ 0; (8)

or linearized to give

B0 � rdTe ¼ �dB? � rT0: (9)

Equation (9) can be combined with the ideal MHD relation

dB ¼ r� ðn� B0Þ and dn?=dt ¼ E� b=B0 to yield an

evolution equation for dTe

@dTe

@t
¼ � 1

B0

E� b � rT0: (10)

Equation (9) has been incorporated in the Ohm’s law equa-

tion for Ejj and dTe does not appear in the dynamical equa-

tions.16 Equation (10) is evolved in the simulations for the

sole purpose of comparison with the experimental data. It is

preferred to directly inverting the magnetic differential equa-

tion, Eq. (9), because the problem of solvability does not

arise. However, if in the nonlinear stage a stationary pertur-

bation with x ¼ 0 is present, Eq. (10) will produce a temper-

ature perturbation that grows secularly with time. To remove

such a slow growing component, a damping term, �cTedTe,

is added to the RHS of Eq. (10), with cTe � xRSAE. Since

Eq. (10) is completely passive in the simulation, such

a damping term has negligible effect on the dTe in the fre-

quency range of interest.

FIG. 5. n¼ 3 mode structure in the poloidal plane (left column) and the ra-

dial profiles of poloidal harmonics (right column) for qmin ¼ 3:33, 3.28,

3.23, and 3.18, from top down. The mode shearing direction varies with

qmin.
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B. Saturation amplitude of the temperature
perturbation

Parameters, such as grid sizes and the time step, for the

nonlinear simulations are identical to that used in linear sim-

ulations, except that the number of particles is increased to 4

194 304 per ion species. The beam distribution function is

the same as that of case (2) in Fig. 3, i.e., using the analytical

beam density profile of Eq. (6), with the local beam density

magnitude and gradient equal to the profile in Fig. 2, and a

cut-off velocity of vb=vA ¼ 0:38. It is widely believed that

the crucial nonlinear effects that determine the single-n
mode saturation level is the energetic particle nonlinearity,10

with the thermal plasma nonlinear effect negligible. How-

ever, in the present model with multiple species, the fluctua-

tion potential / is calculated with the quasi-neutrality

condition (specifically, from the vorticity equation derived

from the quasi-neutrality condition), neglecting the nonlinear

effects of the thermal species while keeping that of the beam

particles is inconsistent, due to the same consideration that

leads to Eq. (3). The nonlinear E� B convection from all

species should nearly cancel each other if FLR effects are

small. In a multi-species model with the charge density of

each species separately calculated, keeping the E� B nonli-

nearity of one species while neglecting that of other species

leads to numerical charge accumulation. We, therefore,

include the nonlinear effects (the E� B nonlinearity and the

magnetic fluttering nonlinearity, but not the so-called paral-

lel nonlinearity, �Ejj@df=@vjj) of all species in the following

simulations, but at the end of the section give an example of

simulation with only the beam nonlinearity to show the

difference.

In the following simulations, the analytic beam density

profile, Eq. (6), is used. With s0 ¼ 0:4, �s ¼ 0:2, and

a=Lh ¼ 1:865, this analytic beam density profile near r=a
¼ 0:4 is the same as that of Fig. 2, but flat outside this

region. It is found that with the equilibrium profiles of Fig. 2,

a TAE-like mode near the edge of the simulation box,

r=a � 0:8, can become unstable, but the growth rate of this

mode is affected when the boundary is moved slightly. The

analytic beam profile is chosen to avoid this edge mode and

allows us to focus on the RSAE in the core region.

All nonlinear simulations are run for 100 000 time steps,

corresponding to a physical time of 5 ms. At each time step,

the root-mean-square (rms) value of the temperature pertur-

bation on each flux surface, rmsðdTeÞðr; tÞ, is calculated.

This quantity is then averaged over the time window of

1:5 ms < t < 5 ms to give an estimate for the steady state

fluctuation level. The temperature fluctuation levels (in keV)

at four radial locations for various qmin values are given in

Table I for n¼ 3 and Table II for n¼ 4.

At the time of t ¼ 725 ms (qmin ¼ 3:246), the relative

rms fluctuation level is also obtained: dTe=Te ðr=a ¼ 0:4Þ
¼ 1:1% for n¼ 3 and 0.75% for n¼ 4. The time history

of rmsðdTeÞðr; tÞ at r=a ¼ 0:4 for n¼ 3 at the time of

t ¼ 725ms (qmin ¼ 3:246), with large fluctuations of the am-

plitude in time, is shown Fig. 6. Typically, the linear stage is

followed by a large initial overshoot of the mode amplitude,

followed by a steady state at significantly lower amplitude.

This is a feature seen in all of the nonlinear simulations. The

average magnitude of thermal ion weights follows the same

temporal pattern, because thermal ions are not resonant with

the mode and respond adiabatically, with the weight propor-

tional to the mode amplitude. The beam ions, on the other

hand, respond to the mode non-adiabatically, and their aver-

age weight magnitude stays roughly at the level immediately

after the initial overshoot. One, therefore, is concerned

whether the discrete particle noise due to the large magni-

tude in the beam particle weights can lead to large noise that

overwhelms the low level of physical fluctuation at later

times. As mentioned above, the number of particles per ion

species in the nonlinear simulations is already increased to

four times that used in linear simulations. Fig. 7 compares

the results of three simulations, with a total of 4 194 304

(black), 8 388 608 (red), and 1 048 576 (green) particles per

species, respectively, for the qmin ¼ 3:23 case. The time-

averaged temperature fluctuation level is dTe ðr=a ¼ 0:4Þ
¼ 0:0085 KeV, 0:0094 KeV, and 0:01 KeV, respectively.

Given the large fluctuation of dTe in time and the finite simu-

lation time, we consider the result to be converged in the

number of particles.

The beam density profile at the end of the simulation for

the n¼ 3, qmin ¼ 3:246 case is shown in Fig. 8, in compari-

son with the initial profile. The RSAE mode causes a global

relaxation of the profile. The beam density at the inner bound-

ary (r=a ¼ 0:1) is reduced by �10% from the initial value.

We found that if a fixed boundary condition, i.e., df ¼ 0 at

the boundaries, is used for the beam particles, the steady state

fluctuation level is much increased. This is because fixing

df ¼ 0 at the boundary is equivalent to an unphysical source

of beam particles at the inner boundary that prevents the

profile from relaxing, and this leads to a larger saturation

amplitude.

For near-marginal instabilities, the saturation amplitude

most sensitively depends on the density scale length Lh, but

the scale length of a=Lh ¼ 1:865 used in the above simula-

tions is not near marginal (the instability threshold is about

TABLE I. n¼ 3 mode amplitude.

qmin dTðr=a ¼ 0:3Þ dTðr=a ¼ 0:4Þ dTðr=a ¼ 0:5Þ dTðr=a ¼ 0:6Þ

3.33 0.0116 0.0113 0.00465 0.0015

3.28 0.0188 0.0174 0.00964 0.00285

3.23 0.00916 0.0103 0.00726 0.00208

3.18 0.00675 0.0050 0.00136 0.0006

3.13 0.00987 0.00545 0.0028 0.0009

TABLE II. n¼ 4 mode amplitude.

qmin dTðr=a ¼ 0:3Þ dTðr=a ¼ 0:4Þ dTðr=a ¼ 0:5Þ dTðr=a ¼ 0:6Þ

3.33 0.0121 0.00647 0.00199 0.00056

3.28 0.00978 0.00753 0.00324 0.00072

3.23 0.0159 0.0140 0.00512 0.0013

3.18 0.0121 0.0135 0.00682 0.0017

3.13 0.006 0.0050 0.00112 0.00031
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a=Lh ¼ 0:6), and we found that the saturation amplitude is

insensitive to a=Lh for moderate variations in Lh. For

instance, for the n¼ 3 mode and for qmin ¼ 3:246, a value of

a=Lh ¼ 1:3 leads to a temperature fluctuation of

dTe ðr=a ¼ 0:4Þ ¼ 0:0086 KeV, a moderate reduction from

the value of 0.0137 at a=Lh ¼ 1:865. The critical velocity vI

in the slowing-down distribution can have a large effect on

the saturation amplitude. Again for the n¼ 3, qmin ¼ 3:246

case, reducing the critical velocity from vI=vTe ¼ 0:07 to

vI=vTe ¼ 0:035 reduces dTe ðr=a ¼ 0:4Þ from 0.0137 to

0.0069. The effect of reducing vI is the decrease in the num-

ber of beam particles at high energy, given the total beam

particle density fixed. Since resonant particles are at high

energy, reducing vI leads to weaker instabilities.

Figs. 9 and 10 show the frequency spectra of the n¼ 3

and n¼ 4 mode at r=a ¼ 0:4, respectively. The frequency

spectrum is obtained by first decomposing / at the outer

midplane (h ¼ 0) in the y�direction, then Fourier transform

the ky ¼ 2p=Ly component in time. This causes the asymme-

try in the frequency spectrum, as the mode propagates in the

ion diamagnetic direction, x=ky < 0.

1. Comparison with ECE Imaging

ECEI data in the time window between t¼ 0.7245 and

t¼ 0.7255 are analyzed to yield the experimental mode char-

acteristics. Quantifying the spectral width of a sweeping

FIG. 7. Convergence test with respect to particle numbers.

FIG. 8. The total beam density profile at the beginning and end of the

simulation.

FIG. 9. n¼ 3 mode frequency spectrum. The spectrum is broader than ECEI

measurement.

FIG. 6. Time history of the electron temperature perturbation for n¼ 3 at

r=a ¼ 0:4. qmin ¼ 3:246.
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mode with a sweeping rate comparable to the spectral width

is nontrivial. In this study, we have simply taken a single-

timepoint (t¼ 725 ms) slice through a spectrogram with an

appropriately chosen fft window length. The length of the fft

windows in this case was empirically chosen to be 1024

points long (about 1 ms) to minimize the spectral width of

the resulting mode peaks. In practice, the spectrogram could

be constructed using longer fft windows (resulting in an arti-

ficial broadening in the time domain) or shorter fft windows

(resulting in an artificial broadening in the frequency do-

main). By choosing the optimum balance between these two

effects, while still acknowledging some unavoidable broad-

ening due to sweeping, the resulting mode widths can, thus,

be interpreted as an upper-bound.

The ECEI data thus analyzed indicate the following

mode properties: for the n¼ 4 RSAE, the spectral peak is

located at f0 ¼ 66:9 kHz, with a width of fwhm �1 kHz; The

root-mean-square amplitude for the electron temperature

perturbation is 1.3%. For the n¼ 3 RSAE, the peak is at

f0 ¼ 80:7 kHz, with a width of fwhm �1 kHz and root-mean-

square amplitude of 1.1%. The rms amplitude is obtained by

averaging over the entire ECEI array of pixels (20 horizontal

rows of pixels, 8 in each row). The horizontal row of ECEI

pixels covers a radial range of approximately �r=a ¼ 0:21 at

the outer mid-plane. The ECEI fluctuation levels show weak

dependence on the radial location, which suggests that the

ECEI window is well aligned with the RSAE mode location,

in our simulation roughly in the region 0:2 < r=a < 0:5.

Here, we compare the ECEI data with simulation results at

r=a ¼ 0:4, which is about the same as r=a ¼ 0:3 in Tables I

and II. We note that direct comparison between measurement

and simulation at an exact physical location should be

avoided, as this will be meaningful only if the magnetic

equilibrium used in the simulation, in particular the Miller

approximation of the surface shapes, has very high accuracy.

We can now summarize the nonlinear simulation results

in comparison with ECEI data. The fluctuation level of both

modes, dTe=Te ðr=a ¼ 0:4Þ ¼ 1:1% for n¼ 3 and 0.75% for

n¼ 4, is in reasonable agreement with the ECEI data analy-

ses. The spectral width of each mode, however, is signifi-

cantly larger than ECEI data (�1 kHz for each mode), as

can be seen from Figs. 9 and 10. We note that the mode

frequency sweeping rate is about 1 kHz/ms, so that on a fft

window of about 1 ms the uncertainty of any frequency esti-

mate is about 1 kHz. However, allowing an uncertainty of

�1 kHz in the estimated experimental mode width will not

change the conclusion. We have also verified that small var-

iations (e.g., within 20%) of the beam density gradient scale

length and the velocity dependence (in terms of the critical

velocity) will not change the conclusion either.

C. Collisional effects

The role of energetic particle collisions with the back-

ground plasmas is well-known for the nonlinear saturation of

a single-n, energetic particle driven instability.10 The mode

initially saturates due to resonant particle trapping in the wave

field and flattening of the beam distribution in the vicinity of

resonance. In the absence of collisions, non-resonant particles

cannot become resonant and the mode amplitude will decay

to zero because of finite background damping. Collisions,

both pitch-angle scattering and velocity drag, can bring non-

resonant particles into resonance with the wave, leading to

saturated steady state with a finite amplitude. As the collision

rate increases, the mode amplitude increases. These theoreti-

cal findings have been verified by simulations repeatedly for

the toroidicity-induced Alfven eigenmodes.22,23

All the previous results are obtained with a collision

frequency of � ¼ 1=ss ¼ 20=s, or �=xA ¼ 3:5� 10�5. For

n¼ 4, qmin ¼ 3:246 the effect of collisions is shown in

Fig. 11. Similar to TAEs, the RSAE saturation level is also

seen to increase with the collision rate.

Although collisions can have a large effect on the fluctua-

tion amplitude, this is not through changing the linear growth

rate, as the collision rate is much smaller than the growth rate.

In linear simulations of RSAEs, the linear growth rate has

been compared with the estimated experimental spectral

FIG. 10. n¼ 4 mode frequency spectrum.

FIG. 11. Collisional effects on n¼ 4 saturation amplitude.
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width,11,13 with the implicit assumption that the spectral width

from a nonlinear simulation is correlated with the linear

growth rate. In general, our nonlinear simulations bear out

this correlation between the linear growth rate and the nonlin-

ear spectral width, but as seen above the nonlinear spectral

width is much larger than the experimental width. These con-

siderations suggest the following possibilities which can

explain the large discrepancy between the spectra of Figs. 9

and 10 and the ECEI measurement of the spectral width. The

actual beam density profile at the time of t ¼ 725 ms differs

from the profile of Fig. 2, either with lower beam density at

the mode location or with weaker density scale length (or

both), so that the mode has smaller growth rate, consequently

the spectral peak becomes narrower. On the other hand, beam

ion collisional effects are not limited to classical pitch-angle

scattering and velocity space drag (these are the only colli-

sional processes included in simulations). Small scale drift

wave turbulence can act as an anomalous collisional mecha-

nism for the beam ions, as demonstrated in a recent study.24

Perhaps more importantly, an additional scattering mecha-

nism can arise from the many simultaneously present Alfv�en

waves, as can be seen in Fig. 1, and these waves can lead to a

multitude of wave-particle resonances and cause substantial

additional stochastic transport in fast-ion phase space.25 This

can be demonstrated with a simulation of the n¼ 4 mode,

with the beam density scale length doubled (a=Lh ¼ 0:93)

and the collision rate increased to � ¼ 80=s. The fluctuation

level is dTe=Te ðr=a ¼ 0:4Þ ¼ 0:7%, similar to the previous

value. However, the mode spectrum, shown in Fig. 12, is very

different from Fig. 10. Not only does the spectral width

compare more favorably with the ECEI estimate, but also

the peak frequency at �60 kHz (including a Doppler shift

of 10 kHz for n¼ 4) is in better agreement with the

measurements.

D. The effects of thermal species nonlinearity in the
hybrid model

Finally, we test the effect of thermal species nonlinear-

ity in the hybrid model as used here. Fig. 13 shows the time

history of dTe ðr=a ¼ 0:4Þ for two identical runs with n¼ 4,

a=Lh ¼ 0:93, and � ¼ 200=s, differing only in whether ther-

mal species nonlinear terms are included. It is clearly seen

that without the thermal species nonlinear terms the temper-

ature perturbation becomes much larger. It is tempting to

conclude, based on this observation, that the mode saturates

primarily due to background nonlinearity. However, the

term “background nonlinearity” is usually understood dif-

ferently. In kinetic-MHD simulations where the thermal

plasma is described by the ideal MHD equations,7 the back-

ground nonlinear effect is usually understood to be the non-

linear terms in the ideal MHD equation, and it is usually

true that such background nonlinear terms are not important

in determining the Alfv�en wave saturation amplitudes, at

least for near marginal instabilities. Because of the differ-

ence between the MHD model and the hybrid model used

here, neglecting the background nonlinearity in MHD is not

equivalent to neglecting the thermal species nonlinear terms

in the hybrid model. Therefore, the simulation results of

Fig. 13 do not lead to the conclusion that the background

nonlinearity, as the term is usually understood in kinetic-

MHD simulations, is important. Based on the same consid-

eration that leads to the modified vorticity equation in Sec.

II, the simulation without the thermal species nonlinearity

while keeping the beam particle nonlinearity should be

viewed, for the multiple species model studied here, as

numerically inconsistent.

V. DISCUSSION AND SUMMARY

The nonlinear simulations of Sec. IV all start from a

white noise perturbed beam distribution (random initial

FIG. 12. n¼ 4 frequency spectrum (black) for larger density scale length,

a=Lh ¼ 0:93, and enhanced collision rate, ss ¼ 12:5 ms. The n¼ 4 simula-

tion line is shifted left by a Doppler shift of 10 kHz. The ECEI data are also

shown (red).

FIG. 13. The effect of thermal species nonlinearity. Black line is with ther-

mal species nonlinearity.
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values of particle weights) at sufficiently low amplitude.

Typically, the instability grows out of this initial noise, goes

through a linear stage with exponential growth, at the early

nonlinear stage reaches a large peak in amplitude and then

decreases rapidly to a steady state. In comparing the temper-

ature fluctuation level of the steady state with the experi-

mental measurement, the validity of a multi-scale analysis

in time is tacitly assumed, namely, the observed mode activ-

ity in the experiment at any time corresponds to the satu-

rated steady state in the simulation that uses the equilibrium

profiles at this time. In order to have good statistics in

obtaining the time-averaged fluctuation level, we typically

run the simulations for 5 ms or longer, but on this time scale

qmin would have changed by an amount of �0:017 according

to qminðtÞ ¼ �0:00337ðt� 700Þ þ 3:33, a significant change

for RSAEs. Moreover, when setting up the simulation for a

different time, the entire q-profile of Fig. 2 is moved down

by the amount of change in qmin, with the shape of the pro-

file unchanged. No attempt is made during the simulation to

modify the evolution of the q-profile over the simulation

time scale. The same assumption of the validity of such

multi-scale analyses is made in global drift-wave turbulence

simulations of anomalous transport of the core species. It is

very difficult to verify the assumption directly, because to

do so requires simulating the self-consistent evolution of

both the waves and the background equilibrium. One can

say that in the real plasma the RSAEs are always already in

the nonlinear stage as qmin decreases in time, and this non-

linear state evolves in response to the evolving q-profile. In

the experiment, a robust shearing direction of the mode

structure is seen, but the linear mode structure in the simula-

tion varies with qmin as shown in Sec. III. It is quite possible

that the robust shearing of the mode is the result of self-

consistent evolution of the mode in the evolving magnetic

equilibrium.

In summary, we have carried out linear and nonlinear

simulations of the n¼ 3 and n¼ 4 RSAEs observed in DIII-

D #142111, and compared the simulation results with ECEI

measurement. The linear mode frequency and the frequency

sweeping range are in reasonable agreement with the ECEI

data. The saturated mode amplitudes also compare well with

measurements, but the mode frequency spectral width

obtained the original beam density profile is much broader

than the ECEI data. These results represent an initial attempt

at comparing the hybrid model with the direct experimental

measurements. Nevertheless, this comparison exercise

already identifies important areas for future research. The

linear simulations indicate that there is still a disagreement

between the simulation and measurement, in both the mode

frequency and the frequency sweeping range, and this dis-

agreement is unlikely due to uncertainties in the experimen-

tally inferred beam distribution. This suggests the need of

improving the simulation model, perhaps by including the

parallel magnetic field perturbations. The nonlinear simula-

tion results indicate that the beam density profile should

be less steep (more close to stability threshold) than the esti-

mated beam density profile, and a physics-based model

for anomalous collisional processes should be included in

nonlinear simulations.
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