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ABSTRACT 

 
ABOUT TIME: A PEDAL IN THE RIGHT DIRECTION 

A travel-time based estimation framework for modeling bikeshare demand 
 

Deep Suryakant Shah 

Master of Science in Transportation Science 

University of California, Irvine, 2020 

Professor Jean-Daniel Saphores, Chair 

 

The recent growth in bikeshare systems has received an enthusiastic response from the research 

community interested in understanding the factors that influence bikeshare demand. Many 

research efforts have modeled spatial interactions using a distance-based weight matrix. However, 

when biking for utilitarian reasons, biking time may be equally, if not more, relevant.  To this end, 

this thesis explores the demand for bikesharing in downtown Los Angeles by contrasting two 

spatial SARAR models with the same explanatory variables but different weight matrices: one has 

a distance-based weight matrix, and the other a time-based weight matrix.  To the best of my 

knowledge, this work is the first to contrast these models and to analyze the demand for Los 

Angeles’ bike sharing program. Explanatory variables in my spatial models include socio-

demographic, land use and transport characteristics in the proximity of bikeshare stations.  The 

results show that (i) incorporating spatial interactions (spatial lag and spatial errors) is an 

important feature of bikesharing demand; and, (ii) that models with time-based weight matrices 

perform better than similar models with distance-based weight matrices for the models I 
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considered. Finally, my models show that bikesharing is seldom used as a mode for the ‘last  mile’ 

travel to access transit in downtown Los Angeles.  
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1. INTRODUCTION 

 

Bike sharing is a sustainable mode of transportation that generates no greenhouse gases, 

promotes health, saves money, could decrease congestion if used broadly, and could help address 

the ‘last mile’ problem (Shi et al. 2018).  It was first introduced in Amsterdam in 1965, in what is 

now often referred to as a first generation bikeshare program.  Since then, bike sharing as a 

transportation mode has gained worldwide popularity supported by technological advancements 

in the domains of mobile payment, GPS tracking, and big data. Campbell et al. (2016) identified 

the third generation bikeshare as one of the fastest growing modes of transport, characterized by 

docking stations, automated credit card payments, radio frequency ID tags and GPS technology. 

Globally, more than 800 cities currently offer one or more bikeshare programs (Fishman, 2015).  

In the US, there are close to 120 city bikeshare programs with a variety of functioning mechanisms 

including private, public and private-public partnerships. 

 

This global rise in bikeshare systems has received an enthusiastic response from the bikeshare 

research community over the last decade.  Si et al. (2019) organizes the bikeshare literature into 

four clusters: (a) factors and barriers, (b) system optimization, (c) behavior and impact, and (d) 

safety and health.  The ‘factors and barriers’ cluster focusses on the effect of external variables on 

bikeshare demand; including built environment, infrastructure, weather and station location.  

Studies in this cluster analyze either trip, transaction or survey data at different scales, ranging 

from city-level to trip-level, and for different periods ranging from daily to monthly.  
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My thesis falls in the ‘factors and barriers’ cluster and is aimed at addressing the tactical challenges 

associated with the planning of a bikeshare system. The planning process includes siting and sizing 

of bikeshare stations, which is largely informed by demand models. The purpose of this thesis is 

to improve the existing demand modeling framework and subsequently improve the planning and 

modification of bikeshare systems. To capture the effects of external variables that influence the 

network design, this thesis adopts a station-level bikeshare demand modeling framework for the 

Los Angeles Metro Bikeshare Program using monthly data.  In this context, my thesis makes two 

contributions to the existing literature.  

 

First, the combination of short-duration trips (Fishman, 2015) and the requirement to start and 

end bike trips at designated bike stations makes it natural to expect spatial interactions between 

nearby bike stations.  Earlier studies have attempted to incorporate these interactions using 

spatial models with network distance-based weight matrices.  In this context, my first hypothesis 

is that travel behavior is influenced by actual biking distance, but even more so by biking time.  To 

investigate this conjecture, I estimated three models: 1) a multiple linear regression model as a 

baseline; 2) a spatial econometric model with a weight matrix based on biking distance; and 3) a 

similar spatial econometric model with a weight matrix based on biking time.  Results show that 

spatial interactions (spatial lag and spatial error) are important, and support my hypothesis that 

the use of travel time over travel distance offers a better estimation framework for modelling 

bikeshare demand.  To the best of my knowledge, this study is the first one to explore time-based 

matrices for the spatial modeling of a bike share system. 
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My second contribution is to study the demand for bike sharing in Los Angeles, which is to the best 

of my knowledge, the largest system in the U.S. that has not yet received attention from 

academics.  Even though the literature on bike sharing is growing, it is noteworthy that the same 

set of explanatory variables have been observed to cause contrasting effects in different bikeshare 

studies. For instance, Maurer (2011) identified the number of jobs to negatively impact bikeshare 

demand in Minnesota, while Rixey (2013) found it to positively impact bikeshare demand in 

Washington DC. Fishman et al. (2014) found more bikeshare demand at stations with relatively 

less accessible public transit opportunities in Melbourne and Brisbane, while Shaheen et al. (2014) 

identified bikeshare usage to be significantly higher near rail stations in Paris and Washington DC.   

 

The remainder of this thesis is organized as follows.  Chapter 2 summarizes selected papers from 

the bike-sharing literature and reviews some key papers describing the spatial econometric 

models used in this research.  It also introduces the Los Angeles Metro Bikeshare Program.  

Chapter 3 presents my data, and Chapter 4 details the models estimated in this study.  Chapter 5 

then discusses my results.  Finally, Chapter 6 summarizes key results, mentions some limitations 

of my analyses, and provides suggestions for future research. 
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2. LITERATURE REVIEW AND BACKGROUND 

 

Bikeshare systems have been receiving increasing attention from researchers over the past decade 

as they have become more popular.  For an excellent review of older papers, see Shaheen et al. 

(2010), who present a comprehensive overview on the history, present, and future of bikeshare 

systems across Europe, America, and Asia.  Shaheen et al. (2010) also analyzed bikeshare systems, 

their business models, their environmental and social effects, and the lessons learned from their 

planning and implementation. The literature review in this chapter focuses on studies directly 

relevant to the modeling of station-level bikeshare usage and spatial econometric models. For a 

thorough review of bikeshare planning and implementation, please refer to Fishman (2016) and 

Si et al. (2019).  Following Vogel et al.’s (2009) classification, I focus here on the strategic challenges 

associated with the sizing and siting of bikeshare stations in the Los Angeles’ bikeshare program. 

 

Section 2.1 discusses variables that were found to matter in selected station-level bikeshare 

demand studies.  Section 2.2 then focuses on approaches used to model station-level bikeshare 

demand, with a particular interest for spatial econometric modeling, which is the methodology 

adopted in this thesis.  Finally, Section 2.3 gives a brief overview of the Los Angeles bikeshare 

program. 

 

2.1 Explanatory Variables in Station-Level Bikeshare Demand Modeling 

This section reviews prior research studies that examine the relationships between station-level 

bikeshare usage and various explanatory factors.  Table 1 presents a summary of previous studies 
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that model station-level bikeshare demand; it includes the explanatory variables considered in 

each study. 

 
The following socio-demographic variables are found significant in the literature: population (Buck 

and Buehler, 2012; Faghih-Imani et al., 2017), age (Fuller et al., 2011; Wang et al., 2015; Hyland et 

al., 2017), race (Maurer, 2011; Daddio 2012), education (Fuller et al., 2011; Rixey, 2013; Hyland et 

al., 2017), income (Rixey, 2013; Guidon et al., 2019), family structure (Faghih-Imani et al., 2017; 

Hyland et al., 2017), car ownership (Maurer, 2011; Daddio, 2012; Buck and Buehler, 2012), jobs 

(Maurer, 2011; Rixey, 2013; Faghih-Imani and Eluru (2015), El-Assi et al., 2018) and commute 

patterns (Maurer, 2011; Rixey, 2013, Hyland et al., 2017).  However, the impacts of these variable 

in different studies are not necessarily similar.  Faghih-Imani et al. (2017) find one-person 

households to have a negative influence on bikeshare demand, while Hyland et al. (2017) find 

family households to have a negative impact on bikeshare demand.  While Maurer (2011) and 

Faghih-Imani and Eluru (2015) report that the number of jobs has a negative impact on bikeshare 

demand, Rixey (2013) and El-Assi et al. (2018) report instead that it has a positive impact.  The 

impact of low-car ownership households on bikeshare demand is found to be both positive (Buck 

and Buehler, 2012) and negative (Maurer, 2011; Daddio, 2012).   

 

The following land use variables are also found significant: residential (Kim et al., 2012; Sun and 

Chen, 2017), commercial (Kim et al., 2012, Sun and Chen, 2017), schools and universities (Wang 

et al., 2015; El-Assi et al., 2018), and parks (Kim et al., 2012; Faghih-Imani and Eluru, 2015). 

Moreover, the distance of a bikeshare station from various points of interest like restaurants and 

bars (Faghih-Imani et al., 2014; Hyland et al., 2017), grocery stores (Buck and Buehler, 2012), 
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central business district (Wang et al., 2015; Faghih-Imani and Eluru, 2015), and hotels (Daddio 

2012; Faghih-Imani et al., 2017) have also been found significant.  Reported impacts of these 

variables again show contrasting impacts on bikeshare demand.  Kim et al. (2012) find that 

residential and commercial land use has a positive impact on bikeshare demand, while Sun and 

Chen (2017) find the reverse.  Similarly, the impact of hotels in the proximity on bikeshare demand 

is reported to be both positive (Faghih-Imani et al., 2017) and negative (Daddio 2012). 

 

Another commonly employed variable to explain bikeshare demand is the proximity of bike share 

stations to transit stations (Fishman et al., 2014; Faghih-Imani and Eluru, 2015; Hyland et al., 2017; 

Guidon et al., 2019). While Fishman et al. (2014) find areas with lower transit accessibility to 

experience higher bikeshare demand, the remaining studies find proximity of transit to positively 

impact bikeshare demand.  The location of bike stations with respect to other bike stations has 

also been a frequently studied aspect of bikeshare demand.  Rixey (2013) concludes that adding 

more stations within 4800m of a bikeshare station increases its demand.  Hyland et al. (2017) also 

find that the number of bikeshare stations within 1-5km of a given station has a positive impact 

on its usage; however, the number of stations within 0.8 km of the station has a negative impact 

on its usage.  Faghih-Imani et al. (2014) reach a different conclusion: for them adding more stations 

within 250m of a bikeshare station increases its demand.  The length of bike lane network in the 

proximity of a bikeshare station is another variable that positively influences its demand (Buck and 

Buehler, 2012; Rixey, 2013; Wang et al., 2015; Faghih-Imani and Eluru, 2016; Guidon et al., 2019). 

Finally, adverse weather conditions like precipitation and low temperatures have a negative 

impact the bikeshare demand (Rixey, 2013; Faghih-Imani et al., 2014; El-Assi et al. 2019).  
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Table 1. Summary of studies on station-level bikeshare demand 

Author Choice of variables (bikeshare system) 

Maurer (2011) 
Population, race, income, car ownership, commute patterns, proximity to 

jobs and transit, land use, bike lanes, station capacity (Minneapolis) 

Fuller et al. (2011) 
Age, education, employment, gender, commute mode, station proximity 

(Montreal) 

Daddio (2012) 
Age, race, income, land use, proximity to transit, distance from bike 

station cluster center, bike lanes, car ownership (Washington DC) 

Kim et al. (2012) Land use, weather, day of the week (Goyang, Korea) 

Buck and Buehler 

(2012) 

Population, mode-share, income, mode share, car ownership, bike 

infrastructure, proximity to transit and grocery (Washington DC) 

Rixey (2013) 
Population, income, race, education, built environment, car ownership, 

proximity to transit, weather (Washington DC, Denver, Minnesota) 

Faghih-Imani et al. 

(2014) 

Weather, biking infrastructure, station capacity, land use, proximity to 

transit, day of the week, population density, job density (Montreal)  

Gebhart and 

Noland (2014) 
Time of day, day of the week, month, weather (Washington DC) 

Faghih-Imani and 

Eluru (2015) 

Proximity to transit, station proximity, station capacity, land use, distance 

to CBD, population density, job density (Chicago) 

Wang et al. (2015) 
Race, age, business density, proximity to other stations, station age 

(Minneapolis - St. Paul) 

Faghih-Imani and 

Eluru (2016) 

Weather, biking facility, land use, station proximity, station capacity, 

population density, job density, proximity to transit (New York) 

Hyland et al. 

(2017) 

Age, education, family structure, jobs, homicides, car ownership, 

commute, proximity to transit, weather, bike lanes, land use (Chicago) 

El-Assi et al. (2017) 
Day of the week, weather, proximity to transit, population density, job 

density, land use, station capacity (Toronto) 

Faghih-Imani et al. 

(2017) 

Station elevation, land use, family structure, population density, time of 

the day, biking infrastructure, station density (Barcelona, Seville) 

Sun and Chen 

(2017) 

Weather, time of the day, day of the week, land use, household density, 

roadway design, transit usage (Seattle) 

Guidon et al. 

(2019) 

Weather, time of the day, day of the week, bike infrastructure, proximity 

to transit, population, income (Zurich) 
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The selection of variables and model specification in my thesis benefit from the existing research 

on station-level bikeshare demand modelling displayed in Table 1. Further, many of these variables 

have shown contrasting impacts in different studies.  The justifications for these impacts by the 

individual papers will support the interpretation of model results for the current study. Moreover, 

since this is the first study using the LA bikeshare system, results from this study may differ from 

published results for other areas given the unique attributes of Downtown LA, which include the 

absence of single-family residences, a pleasant weather, and a dense network of bus stations. 

 

2.2 Models used to Model Demand in Station-Level Bikeshare Systems 

Spatial panel models have been extensively used for public governance, taxation, fiscal policy and 

economic growth (Elhorst, 2014). Spatial models have also been used to measure housing 

accessibility (Chalermpong, 2007; Mitra and Saphores, 2016), measure job accessibility (Wang and 

Chen, 2015), track land use change (Wang and Kockelman, 2006; Shen et al. 2014), analyze labor 

markets (Smith et al., 1981; Longhi and Nijkamp, 2007), forecast housing prices (Pace et al., 2000; 

Dubé et al. 2014) and analyze air-fare prices (Daraban and Fournier, 2008; Zhang and Wang, 2015). 

  

However, spatial models are not commonly employed to study bikeshare demand. Most of the 

early literature uses linear regression to model station-level bikeshare demand (Maurer, 2011; 

Daddio, 2012; Kim et al., 2012; Buck and Buehler, 2012; Rixey, 2013). Both Faghih-Imani et al. 

(2014) and El-Assi et al. (2017) use a linear mixed model, while Hyland et al. (2017) employ a hybrid 

k-means clustering and multi-level mixed regression modeling approach. Faghih-Imani et al. 
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(2016), Sun and Chen (2017) and Guidon et al. (2019) appear to be the only studies so far that 

account for spatial and/or temporal dependencies between the bikeshare stations.  

 

Faghih-Imani et al. (2016) compare results between (i) simple models without considering spatio-

temporal effects; (ii) spatial error models with and without observed spatio-temporal effects; (iii) 

spatial lag models with and without observed spatio-temporal effects. They find that the inclusion 

of spatial and temporal effects leads to more accurate predictions and the proximity to gardens, 

subway stations, and areas with high population and job densities positively impact bikeshare 

demand.  

 

Sun and Chen (2017) use a generalized mixed linear model that addresses potential temporal and 

spatial autocorrelations for the Pronto bikeshare system in Seattle. The study finds (i) proximity to 

transit stations have a substitution effect on bikeshare, (ii) workers from office buildings as the 

major source of public bikeshare customers.  

 

Guidon et al. (2019) estimate a spatial regression model to analyze the electric bike trip transaction 

data from Smide bikeshare system in Zurich, Switzerland.  They report that economic and social 

activity are key drivers of bikeshare demand, which is also positively impacted by public 

transportation availability. 

 

As the first study to use a travel time-based weight matrix for spatial modeling, the current study 

benefits from the methods used for calculating weight matrices in the earlier studies.  Moreover, 



 

 

- 10 -  

the calculation and interpretation of impact measures in the earlier studies supports the 

interpretation of results for the two spatial models used in the current study. 

 

2.3 Los Angeles’ Metro Bikeshare Program 

The Metro Bikeshare Program in LA is a public bicycle-sharing system operated by a partnership 

between LA Metro, the City of Los Angeles, and the Port of Los Angeles.  This program started in 

August 2016.  Its goal was ‘to develop an affordable, user-friendly bikeshare program that 

increases ridership by integrating with the County’s regional transit services’  (Metro Bikeshare 

Business Plan, 2019-20).  It is a docked bikeshare network, so users are required to start and end 

all their trips at designated bikeshare station locations.  After starting with 61 stations and 700 

bicycles, the program has progressively expanded and, as of the end of 2018, it included 82 

stations and over 1,400 bicycles. 

 

Registered users can subscribe for daily/monthly/annual passes, that can be purchased either at 

a station kiosk or online using a credit/debit card.  Non-registered users can pay directly at the 

station kiosk using a credit/debit card.  The Transit Access Pass (TAP) card made available by LA 

Metro can also be used to access bikeshare after a single-time online enrollment. Currently, the 

pricing is set at $150/year, $17/month, $5/day and $1.75/trip, with additional charges for trips 

longer than 30 minutes.  The program is functional 24 hours/day and can be used by all individuals 

above the age of 16 years. However, riders under the age of 18 years need to have a 

parent/guardian purchase a pass for them.  
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3. DATA 

 

This chapter describes the dependent and explanatory variables used in my models.  Section 3.1 

details my dependent variable, while Section 3.2 discusses my explanatory variables.  Finally, 

Section 3.3 presents descriptive statistics of both dependent and explanatory variables. 

 

3.1 Dependent Variable 

This study focuses on supporting the strategic planning of bikeshare networks, rather than their 

operations. Since the purpose is to understand macro-level factors that influence bikeshare 

demand without accounting for temporal fluctuations, I selected the monthly count of trips 

originating at each station as my dependent variable.  The same approach could be used to model 

trip arrivals (i.e. station attraction). In the interest of time and space, I only model and present trip 

generation.  

 

I obtained the trip count data from Los Angeles’ Metro Bikeshare program website 

(https://bikeshare.metro.net/about/data/).  The data contain a record for each trip, along with its 

duration, timestamp, origin and destination station details, membership status, and a record of 

the bike used.  For this analysis, I selected trips in the month of September 2018 for two reasons.  

First, according to the data, September was the month with the highest number of bike trips in 

2018 (30,194 trips with a daily average of 1,006). Second, no new bike stations were opened 

during that month. Previous analyses suggest the first month a bikeshare station is in operation is 

unlikely to represent typical usage (Gebhart and Noland, 2014, Hyland et al., 2017). This was 

https://bikeshare.metro.net/about/data/
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confirmed by empirical results for the related data.  For the stations that opened in 2018, the 

average rise in the monthly trip count from the first to second month was 81%, followed by 13%, 

7% and 5% for the respective months.  After examining the data, I removed trips with the same 

origin and destination station with duration under 3 minutes (1,775 trips) because it is unlikely 

that such trips met the user’s demand for travel.  I also used the stations’ coordinates to perform 

a series of data compilation exercises to create my exogenous variables. 

 

In September 2018, there were a total of 93 bike-stations.  They were clustered in three distinct 

regions –Downtown LA (67 stations - 20,885 trips), Venice Beach (14 stations - 805 trips) and Long 

Beach (12 stations - 6,729 trips).  The individual clusters attracted different trip purposes, and thus 

could not be modeled together. Since the Downtown LA cluster experienced most (73.5%) of the 

monthly trips, I focused on this cluster. The final sample consists of 20,885 bike trips originating 

from 67 stations. Descriptive statistics are presented in Table 2.  Figure 1 shows the location of 

the three clusters, the distribution of stations, and the demand for the Downtown LA cluster.  

 

3.2 Explanatory Variables 

The exogenous variables used in this study can be broadly divided into three categories: (i) socio-

demographic variables; (ii) land use variables; and (iii) transport variables. Descriptive statistics of 

these variables are presented in Table 2. While existing studies incorporate some weather 

variables (Faghih-Imani et al., 2014; Hyland et al., 2018), I did not include any here because Los 

Angeles experiences pleasant year-around weather, with very few rainy days. In Downtown LA 

during September 2018, the temperature ranged between 61 °F and 91 °F, with an average of 71 
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°F.  Moreover, the humidity during that time ranged from 28% to 94%, with an average of 71% 

(https://timeanddate.com). Additionally, since the bike stations were closely located, any impact 

of weather was equally experienced by all stations. 

 

 

Figure 1. Location and Map of LA Downtown bikeshare cluster 

 

 

 

Downtown LA Cluster

https://www.timeanddate.com/
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3.2.1 Socio-demographic variables 

For my socio-demographic variables, I relied on the 2017 American Community Survey five-year 

estimates (ACS, U.S. Census Bureau 2017), which provides socio-demographic information at the 

census block group level.  The census block group is the lowest available level of aggregation for 

the required data.  Based on the literature review (see Chapter 2), I collected population density, 

age, education, income, car ownership, and family structure data from ACS.  I used ArcGIS to attach 

each bikeshare station with the attributes of the census block group it was located in.  

 

Earlier studies have attempted to explain the effect of the younger population on bikeshare 

demand using different age brackets - Daddio (2012) used the 20-39 age bracket while Hyland 

(2017) used the 25-44 age bracket.  Anyone above the age of 18 has unrestricted access to LA’s 

Metro Bikeshare Program. Therefore, I started by using two separate age bracket variables – 18-

29 years and 30-45 years.  The two variables caused multicollinearity when used simultaneously.  

Thus, I selected a single variable with the combined 18-45 age bracket for my final model. 

Following Shaheen et al. (2010) and Buck and Buehler (2012), I used the number of carless 

households to represent car ownership, since these households are more likely to use a bicycle. I 

calculated the family structure variable as the number of households with children, since parents 

are less likely to use bike as a transport mode (Hosford et al., 2018).  I also tried a variable for the 

population living in family households, but it increased the spatial error value over one in my 

spatial model with travel time-based weight matrix. Finally, I used the 2016 Business Patterns 

dataset to collect the employee data at the zip code level, which is the lowest level of aggregation 

available. 
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The simultaneous use of income (median household income), education (number of college 

graduates) and the number of car commuters as explanatory variables also resulted in 

multicollinearity. Trying multiple combinations in the model showed that two of these three 

variables need to be removed.  Since car ownership can partially account for the number of car 

commuters, I removed it first from my models.  To choose between the income and education 

variable, I ran individual models with each variable.  The coefficient values and significance levels 

of all the other variables remained similar.  Thus, I kept the model with the education variable on 

the account of its lower AIC and BIC values (difference of 11 each). 

 

3.2.2 Land use variables 

Kim et al. (2012), Faghih-Imani et al. (2014), as well as Sun and Chen (2017) have all used the 

shares of different types of land use near a bikeshare station to explain its demand.  The unit of 

measurement used for these studies is either a census tract or a radial buffer ranging from 250m 

to 500m.  For this study, I used SCAG’s (Southern California Association of Governments) 2016 

land use dataset, updated as of November 2018.  This dataset includes 17,315 land parcels in the 

city of Los Angeles.  The average parcel size is 1480 sq. m., excluding all roads and highways, as 

shown in Figure 2.  To capture land use in my models, I calculated the share of areas for residential, 

commercial, open/recreational, public facilities and university (University of Southern California) 

land in the 500m radial buffer around every bike station using ArcGIS. 
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Restaurant and bar density around a bikeshare station has also been shown to impact bikeshare 

demand (Hyland et al., 2017; Wang et al., 2018, Guidon et al., 2019).  Considering the heavy share 

of residential and commercial land uses in Downtown LA, I expected restaurant locations to be 

frequently visited and thus, might influence bikeshare demand. To check for this influence, I 

Figure 2. Land use near downtown LA bikeshare stations 
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incorporated data from the ‘Restaurants in LA’ dataset made available by the Office of Finance 

with the City of Los Angeles. Following Hyland et al. (2017), I created a variable that counts the 

number of restaurants within a 300m radial buffer of every bikeshare station. 

 

3.2.3 Transport variables 

One way to evaluate how bike sharing addresses the last-mile connectivity problem is by 

examining the relationship between transit arrivals and bikeshare departures in proximity.  To that 

end, I gathered variables describing average daily passenger arrivals by bus/rail in the 100m buffer 

surrounding each bike station.  I chose this radius because the average block size in LA is 100m x 

100m, and also because bike stations are relatively close to each other. The transit data were 

obtained upon request from the Los Angeles County Metropolitan Transportation Authority.  

Figure 3 shows the location of transit stations with respect to the location of bikeshare stations.  

Based on the literature (Rixey, 2013; Faghih-Imani et al., 2014, Fishman et al., 2016), and the 

objective of LA’s Metro Bikeshare Program of supporting last mile travel to increase transit usage, 

I expected the proximity to transit stations with high ridership to have a positive impact on the 

demand at a bikeshare station. 

 

According to Shaheen et al. (2012), commuting (travel to/from work or school) is the most 

common trip purpose based on surveys of four of North America's largest bikeshare programs.  

Since one objective of LA’s bikeshare program is to serve last-mile transportation needs and 

increase transit usage, measuring the extent of multimodal commute trips with transit could 

explain part of the demand for bikeshare.  However, data that can connect intermediate trips in a  
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bike-linked-transit trip are hard to gather.  Since transfer penalties make multi-modal trips longer 

(Schakenbos, 2014; Garcia-Martinez, 2018), a possible proxy could be the number of transit 

passengers with longer commute times.  Chakrabarti (2017) found that the average commute time 

using transit in Los Angeles is 69 minutes. Therefore, I used in my models the number of long-

Figure 3. Transit stations near downtown LA bikeshare stations 
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duration (>45 minutes) transit commuters at the census block group level from the 2017 ACS (U.S. 

Census Bureau, 2017).  A positive coefficient would support the hypothesis that bikeshare is being 

used as a first/last mile mode to access transit. 

 

Another variable likely to promote the demand for bikeshare is biking infrastructure (Wang et al., 

2015, Wang and Chen, 2020). The provision of additional bike lanes not only improves the safety 

of riders but is also likely to reduce their travel time. To measure the relevant infrastructure, I used 

the length of the bike lane network within a 1.6-km radial buffer around each bikeshare station. 

Data were obtained from the LA Department of Transportation. I analyzed them using ArcGIS to 

create obtain station-specific values. 

 

3.3 Descriptive Statistics 

To improve model linearity based on a graphical exploration, I took the logarithmic transform of 

the model variables.  Since the households with children, land use and transport variables include 

zero values, I added one to these variables before taking their logarithmic. Summary statistics are 

presented in Table 2.  
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Table 2. Summary of descriptive statistics for model variables 

Variable (Source) Unit (Spatial aggregation) Min Max Mean Std. Dev 

Dependent variable 

   Monthly trip counta Count  20 1162 311.72 221.45 

Socio-demographic variables 

   Population densityb  1000 persons/sq.km. (CBG) 0.16 24.54 4.62 5 

   College graduatesb 1000 persons (CBG) 0.01 2.46 1.02 0.87 

   Age 18-45b
  1000 persons (CBG) 0.45 6.36 1.60 1.07 

   Carless householdsb Count (CBG) 4 1096 336.87 281.33 

   Households with childrenb Count (CBG) 0 359 91.19 82.69 

   Employees in zip codec 1000 persons  3.75 42.79 27.87 10.71 

Land use variables 

   Residential aread % (500-m buffer) 0 0.85 0.18 0.20 

   Commercial aread % (500-m buffer) 0 0.90 0.40 0.27 

   Open space/Recreationald % (500-m buffer) 0 0.17 0.03 0.04 

   Public Facilitiesd % (500-m buffer) 0 0.60 0.09 0.14 

   Universityd % (500-m buffer) 0 0.62 0.03 0.11 

   Restaurantse Count (300-m buffer) 0 58 20.31 17.32 

Transport variables 

   Daily bus station arrivalsf  1000 persons (0.1km buffer) 0 4.82 0.46 0.87 

   Daily rail station arrivalsf  1000 persons (0.1km buffer) 0 55.02 0.95 6.77 

   Long-duration transit   
commutersb 

Count (CBG) 0 340 75.97 69.99 

   Bike lane network lengthg  Kilometers (1.6-km buffer) 0 84.69 43.39 23.65 

CBG: Census Block Group 

Data sources: 

a) LA Metro Bikeshare Program (https://bikeshare.metro.net/about/data/) 
b) American Community Survey dataset by US Census Bureau (https://factfinder.census.gov)   
c) Business Patterns dataset by US Census Bureau (https://factfinder.census.gov) 
d) Land Use dataset by SCAG (http://gisdata-scag.opendata.arcgis.com/)    
e) Restaurants in LA dataset by City of Los Angeles (https://data.lacity.org/) 
f) LA Metro (made available upon request) 
g) City of LA Bikeways dataset by LA Department of Transportation (http://geohub.lacity.org/) 

https://bikeshare.metro.net/about/data/
https://factfinder.census.gov)/
https://factfinder.census.gov)/
https://factfinder.census.gov)/
http://gisdata-scag.opendata.arcgis.com/
https://data.lacity.org/
http://geohub.lacity.org/
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4. MODELING APPROACH 

 

This chapter presents an overview of the approaches used to model station-specific bikeshare 

demand. Section 4.1 provides an overview of the base modeling approach using regression.  

Section 4.2 describes the spatial model.  Section 4.3 introduces the method for calculating the 

weight matrices.  Finally, Section 4.4 details the method of interpretation for my models. For all 

the models, N designates the sample size (N=67) and Q is the number of explanatory variables 

including a constant (Q=17). 

 

4.1 Overview and Base Modeling Approach 

The base model approach is a multiple linear regression model without spatial interactions: 

𝒀 =  𝑿𝜷 + 𝜺  (1) 

where, 

Y is a N x 1 vector of log transformed bike trip counts for each station; 

X is a N x Q matrix of exogenous explanatory variables with log transformed continuous 

values; 

β is a Q x 1 vector of unknown coefficients; and 

ε is a N x 1 vector of independent and identically distributed errors 

 

The plots of dependent variable and each independent log transformed variable show relatively 

linear trends. To check for multicollinearity, I relied on Variation Inflation Factors (VIF). Twelve of 

my sixteen variables have a VIF<5, and the remaining four have a VIF<7. 
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4.2 Spatial Dependence and Model 

Owing to (i) the relatively short duration of most bikeshare trips, and (ii) the need for existence of 

a bikeshare station at the origin and destination in docked systems, it is natural to expect spatial 

interactions between nearby bike stations. Since the destination station is often proximate to the 

origin station, demand at the latter will influence demand at the former.  It is well known (Anselin, 

1988) that in the presence of spatial effects, OLS estimates may be biased and inconsistent.  These 

spatial associations could operate via the demand (here, the number of trip departures), the 

structural characteristics of nearby stations, or be captured by the error terms. Using Moran’s I 

statistic as the investigative tool (Cliff and Ord, 1981), I confirmed the presence of spatial 

autocorrelation among the log-transformed bikeshare trip counts in my dataset (p-value<0.01). 

 

Earlier studies have captured spatial dependence using network distance to calculate the weight 

matrix (Wang et al., 2015; Becker et al., 2017), including studies to analyze bikeshare demand 

(Faghih-Imani et al., 2016; Guidon et al., 2019). Given that actual travel distance and time 

information is now readily available, I hypothesized that travel behavior is influenced by biking 

distance, but even more so by biking time. One purpose of this study is to investigate this 

conjecture. To test the first hypothesis that a model that accounts for spatial interactions yields 

improved results, I created a weight matrix of the actual biking distance between the bike stations 

and used it to estimate a spatial model. To test the second hypothesis that travel time is a better 

determinant of spatial interactions compared to travel distance, I created another weight matrix 

of the actual biking time between the bike stations and used it to estimate another spatial model.  
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The data for both matrices were collected from Google Places API (Google, 2019).  Each API call 

response provided the biking distance (km) and biking time (minutes) between bikeshare stations 

i and j. Each data value was stored in their respective matrices. To decide the extent of spatial 

dependence, I plotted the Moran’s I correlogram, which shows Moran’s I versus potential 

bandwidth from the weight matrix to assess the extent of spatial dependence.  For the biking 

distance matrix, the correlogram showed 0.75 km as an appropriate distance band, and for the 

biking time matrix, the correlogram showed 5 minutes as an appropriate time band. I used these 

bandwidths to define neighbors for the respective matrix. 

 

I then performed Robust Lagrange Multiplier (RLM) tests for spatial lags and spatial errors . 

Lagrange Multiplier (LM) tests for different specifications while conducting spatial econometric 

analysis (Anselin, 1988): 

1. Spatial residual autocorrelation in the presence of a spatially lagged dependent variable; 

2. Spatial residual autocorrelation in the presence of heteroskedasticity. 

An RLM test is a modified version of the LM test, which is robust to the error distributions and 

spatial layouts (Baltagi and Yang, 2012). Results are shown in Table 3. 

 

Table 3. Results from Robust Lagrange Multiplier (RLM) Tests 

Impedance Measure Distance-based weight matrix Time-based weight matrix 

Test Magnitude p-value Magnitude p-value 

RLM Lag 7.00 0.009 8.78 0.003 

RLM Error 4.48 0.034 6.08 0.014 
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Since both tests yield significant statistics, I estimated a combined spatial-autoregressive model 

with spatial autoregressive disturbances (SARAR; see Drukker et al., 2013). This SARAR model can 

be written:  

𝐘 =  λ𝐖𝐘 + 𝐗𝛃 + 𝐮  

 𝐮 =  ρ𝐖𝐮 +  𝛆 
(2) 

where, 

Y is an N x 1 vector of log transformed bike trip counts for each station; 

 and ρ are unknown spatial lag and spatial error parameters respectively; 

W is an N x N spatial weight matrix; 

X is an N x Q matrix of exogenous explanatory variables with log transformed values; 

β is a Q x 1 vector of unknown coefficients; 

u is an N x 1 vector of correlated residuals; and 

ε is an N x 1 vector of independent and identically distributed errors. 

 

In the first equation of (2), the term λWY reflects the impact of trip counts of neighboring stations 

and it accounts for locally constant omitted variables (Drukker et al., 2013; Mitra and Saphores, 

2016). The second equation of (2) captures the residual spatial autocorrelation. When ρ = 0, 

Equation (2) reduces to a spatial lag model; when λ = 0, it reduces to a spatial error model; and 

when ρ = λ = 0, we are back with a simple linear regression model. The SARAR model can be 

estimated using maximum likelihood (see Elhorst, 2014 for details on likelihood functions) or the 

method of moments (see Kelejian and Prucha, 1998 and 2009). In this thesis, to estimate my 
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models I relied on the sacsarlm routine in R (Bivand et al., 2015), which performs a maximum 

likelihood estimation of the SARAR model. 

 

4.3 Spatial Weight Matrix 

While the weight matrix W reflects spatial interactions between neighbors, its specification is not 

theoretically determined. For example, W could be adjacent neighbors, k-nearest neighbors or 

distance-based neighbors (Bivand and Wong, 2018). Adjacency cannot be used here due to the 

lack of grid structures. For more details on weight matrix, see Elhorst (2014). Here, my weight 

matrix adopted the mathematical form of the inverse of the square of the value. Thus, if the station 

is less than 0.75km (distance bandwidth) away, its interaction coefficient in the distance-based 

weight matrix is the inverse of the squared distance value; else it is zero.  Similarly, if the station is 

less than 5 minutes (time bandwidth) away, its interaction coefficient in the time-based weight 

matrix is the inverse of the squared time value; else it is zero. Since the weight matrix captures 

spatial interactions with nearby properties, its diagonal terms are 0. I normalized its rows to sum 

to 1 to facilitate the interpretation of my results. For robustness, I also tried using only inversed 

and exponential decay weight matrices. Since the results were similar, I discuss only the results for 

the inverse of a squared weight matrix.  

 

4.4 Interpretation of spatial model results 

Interpreting SARAR models is more involved than interpreting OLS results because of the presence 

of the spatial lag term λWY. The trip count of station i depends on the trip count of station j. 
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Similarly, the trip count of station j is dependent on the trip count of station i.  This leads to an 

infinite feedback loop between neighboring stations.  Assuming that |λ| < 1, we have: 

𝐕 ≡ (𝐈 − λ𝐖)−1 = I + λ𝐖 + λ2𝐖2 + λ3𝐖3 + ⋯ (3) 

 

It is convenient to introduce ω, defined by: 

𝛚 ≡ (𝐈 − λ𝐖)−1(𝐈 − ρ𝐖)−1𝛆 (4) 

 

Using equations (3) and (4), the first equation of (2) can be rewritten: 

𝐘 = 𝐕𝐗𝛃 +  𝛚 = 𝐗𝛃 + λ𝐖𝐗𝛃 + λ2𝐖2𝐗𝛃 + λ3𝐖3𝐗𝛃 + ⋯ + 𝛚 (5) 

 

From Equation (5), the expected value of dependent variable depends on a mean value (term Xβ) 

plus a linear combination of this mean value scaled by powers of the spatial lag parameter λ.  

Therefore, it is straightforward to derive the partial derivative of the dependent variable datapoint 

with respect to each of its corresponding explanatory variable datapoint. This derivative value 

resembles the percentage change in trip count for 1% change in the corresponding explanatory 

variable.  Since a large number of partial derivatives could be non-zero, I followed LeSage and Pace 

(2009, pp. 36-37) and calculated a scalar summary measure for each explanatory variable q ∈ {1, 

2, …, Q - 1}. 

 

The qth Average Direct Impact (ADIq) represents the average impact on each observation of 

changing its own qth explanatory variable, including the feedback passing through neighbors back 
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to each observation.  Its value is obtained by averaging the main diagonal terms of βqV as shown 

below: 

ADIq = βqN−1 ∑ 𝐕ii

N

i=1

 (6) 

 

The qth Average Indirect Impact (AIIq) represents the spillover impacts of changing its qth 

explanatory variable on other observations only.  Its value is obtained by averaging only the off-

diagonal terms of βqV: 

AIIq = βqN−1 ∑ 𝐕ij

i≠j

 (7) 

 

The qth Average Total Impact (ATIq) represents the resulting combined impact of both direct and 

indirect impacts of changing the qth explanatory variable. Its value is obtained by summing the 

(ADIq) and (AIIq), by averaging all row sums of βqV matrix. Since I row-normalized the weight matrix, 

the result simplifies to: 

ATIq =
βq

(1 − λ)
 (8) 

 

I further followed LeSage and Pace (2009) to calculate the statistical significance of these impacts.  

By assuming β, λ, ρ and σ2 normally distributed and obtaining means and covariance matrix from 

(1), I calculated ADIq, AIIq, and ATIq. I repeated these calculations for 10,000 draws and estimated 

their statistical significance based on the empirical distributions of these 10,000 draws. The same 

procedure was followed for both distance and time matrices. 
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5. RESULTS 

 

To assess the influence of spatial interactions on modeling bikeshare demand, I estimated three 

models: 1) a multiple linear regression model as a baseline; 2) a SARAR model with a weight matrix 

based on biking distance; and 3) a similar SARAR model with a weight matrix based on biking time.  

For each model, I calculated the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), 

the Akaike Information Criteria (AIC), and the Bayesian Information Criteria (BIC). The results of 

these evaluation tools are summarized in Table 4.  A comparison of the three models shows that 

the spatial model with a time-based weight matrix performs the best. For that spatial model, I 

calculated direct, indirect, and total impacts, and discussed results.  

 

The remainder of this chapter is structured as follows.  Section 5.1 presents an overview of my 

competing models and Section 5.2 discusses results for the preferred model.  Section 5.3 discusses 

the robustness of my models. 

 

5.1 Selected Diagnostics and Goodness of Fit 

Table 4 presents a summary of results and goodness of fit measures for each of the three models 

estimated.  A model with lower MAE, RMSE, AIC and BIC values is preferable in terms of goodness 

of fit. 

 

From Table 4, we see that there is an improvement in the model’s goodness of fit from the OLS 

model to both the SARAR models. The RMSE value reduces from 0.45 to 0.38 and the MAE value 
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reduces from 0.38 to 0.31. Second, there is improvement in the model’s goodness of fit from the 

SARAR model with distance-based weight matrix to the SARAR model with time-based weight 

matrix, observed in their AIC and BIC values, both of which reduce by five. This comparison 

provides evidence in support of my hypotheses that (i) incorporating spatial interaction (spatial 

lag and spatial error) and, (ii) the use of travel time over travel distance, offers a better estimation 

framework for modeling bikeshare demand.  

 

Table 4. Summary of estimated models 

Variable OLS Regression 
SARAR 

(Distance-based matrix) 

SARAR 

(Time-based matrix) 

Goodness of fit measures 

RMSE 0.45 0.38 0.37 

MAE 0.38 0.31 0.30 

AIC 120.30 110.08 105.62 

BIC 159.99 154.18 149.72 

 

Figure 4 shows a quantile-quantile plot for the residuals in all the three models. Their alignment 

along the straight-line curve suggests only a relatively mild departure from normality. Estimating 

SARAR models via maximum likelihood run the risk of biased and inconsistent estimators when 

errors are heteroskedastic (Arraiz et al., 2010).  However, both the SARAR models used here 

(distance-based weight matrix and time-based weight matrix) do not show any presence of 

heteroskedasticity when tested graphically as seen in Figure 5. The plot of residuals vs trip count 

does not indicate a particular trend for either of the three models.  
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Figure 4. Results from tests for normality of residuals 

 

 

Figure 5. Results from tests for heteroskedasticity 

 

5.2 Results 

This section discusses my spatial model results. Section 5.2.1 discusses the spatial coefficients and 

Section 5.2.2 discusses the impact measures from my preferred model.  

 

Table 5. Summary of spatial coefficients from estimated models 

Spatial Coefficient SARAR (Distance-based matrix) SARAR (Time-based matrix) 

    λ (spatial lag) 0.153 *** 0.182 *** 

    ρ (spatial error) -0.610 *** -0.874 *** 

Note: ***0.1%, **1%, *5% 
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5.2.1 Spatial coefficients 

λ is the spatial autoregressive (spatial lag) coefficient and ρ is the spatial correlation (spatial error) 

coefficient. Their statistically significant values (Table 5) confirm the presence of spatial 

autocorrelation in my dataset, which was detected by the RLM tests (Table 3).  Since I row-

normalize the spatial weight matrices, the λ and ρ values need to be between between -1 and 1 

(Elhorst, 2014). As expected, the positive λ here implies that the trip count at a bike station is 

positively influenced by the trip count of neighboring bike stations (similar to findings of Faghih-

Imani et al., 2016). This may be reflective of a travel demand at neighboring bike stations that is 

influenced by the same set of attractions (home, job, transit stop). It can also be reflective of the 

bike station experiencing higher demand, thus reducing its availability of bikes and forcing riders 

to start trips from the neighboring bike stations. Another possible explanation could be return 

trips; a trip starting from the origin station to the nearby destination station would potentially 

generate a return trip from the destination station.  

 

5.2.2 Impacts 

Since the SARAR Model with a biking time-based weight matrix is better, I calculated the impacts 

of explanatory variables on the bikeshare demand for this model.  The results are shown in Table 

6. I discuss the direct impacts in detail as they give a measure of the effect of qth explanatory 

variable on the demand for qth bikeshare station. It is noticeable that the signs of all the three 

impacts are the same for all variables, meaning the nature of the influence of the qth explanatory 

variable on the demand at the qth station is the same as the nature of its influence on the demand 

at other neighboring stations. The magnitudes of indirect impacts are much smaller as compared 
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to the magnitude of direct impacts, meaning the influence of the qth explanatory variable on 

demand at the qth bikeshare station is much stronger as compared to its influence on the demand 

at other neighboring stations. The total impacts are a sum of the direct and indirect impact.  

 

Table 6. Impact measures for SARAR model with time-based weight matrix 

Variable Coefficient ADI AII ATI 

Socio-demographic variables 

    Population density (1000 persons/sq.km.) 0.10 
 

0.10 
 

0.02   0.12 
 

    College graduates (1000 persons) 0.37 *** 0.38 *** 0.08 * 0.46 *** 

    Age 18-45 (1000 persons) 0.06   0.06   0.01   0.07   

    Carless households -0.20 ** -0.20 ** -0.04 * -0.24 ** 

    Households with children 0.08 
 

0.08 
 

0.02   0.10 
 

    Employees in zip code (1000 persons) -0.50 *** -0.51 *** -0.11 * -0.61 *** 

Land use variables 

   Residential (%) -0.04   -0.04   -0.01   -0.05   

    Commercial (% in 500m buffer) 0.00   0.00   0.00   0.00   

    Open/Recreational (%) -0.03   -0.03   -0.01   -0.04   

    Public Facilities (%) -0.01   -0.01   0.00   -0.01   

    University (%) -0.02   -0.02   0.00   -0.02   

    Restaurants 0.12 * 0.12 * 0.03 
 

0.15 * 

Transport variables 

    Daily bus station arrivals 0.03   0.03   0.01   0.03   

    Daily rail station arrivals 0.09 ** 0.09 ** 0.02 * 0.10 ** 

    Long-duration transit commuters -0.19 *** -0.19 *** -0.04 * -0.23 *** 

    Length of bike lane network (km) 0.13 * 0.13 * 0.03 
 

0.16 * 

Note: ***0.1%, **1%, *5% 
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The impacts can be interpreted as scalar elasticity measures for a 1% change in the explanatory 

variable. For example, shared bike trips at a station increase with the number of college graduates 

(ADI=0.38***); meaning a 1% increase in the number of college graduates (in the occupying 

census block group) would cause the number of bike trips at the corresponding bike station to 

increase by 0.38%. 

 

Three of the six socio-demographic variables are statistically significant – college graduates, carless 

households and employees in zip codes. The positive impact of college graduates on bikeshare 

demand is expected and consistent with results from earlier studies (Rixey, 2013; Fishman et al., 

2014; Faghih-Imani et al., 2017; Hyland et al., 2017).  A review of the bikeshare literature by 

Fishman (2016) also found that bikeshare users tend to be more educated than the general 

population.  Based on direct impacts, an increase in the number of carless households in a census 

block group by 1% causes the bikeshare demand at the corresponding station to reduce by 0.2%. 

This seems counter-intuitive since the absence of car would result in the need for alternative 

modes for transport including bikeshare.  A possible explanation is that the requirement for a 

debit/credit card to register may act as a barrier for low-income households.  Earlier papers also 

found that bikeshare members exhibit a higher car ownership as compared to non-members 

(Shaheen et al., 2011). 

 

The negative impact of employees may appear counter-intuitive result given the concentration of 

jobs in the Downtown LA area.  Based on direct impacts, a 1% increase in the number of employees 

in a zip code causes the bikeshare demand at the corresponding station to reduce by 0.51%. Earlier 
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papers report mixed impacts for the impact of the number of employees on the number of bike-

sharing trips; Rixey (2013) and Fagihih-Imani and Eluru (2016) report that proximity to jobs has a 

positive impact on bikeshare demand while Maurer (2011) find it to have a negative impact. This 

result suggests that bikesharing in Los Angeles is often used for non-work-based trips.  

Additionally, zip code is a geographically large area. The 67 stations are distributed in 11 different 

zip codes, meaning the data may not reflect the actual business patterns in the close proximity of 

the station. Another possible explanation could be the access to free parking offered by the 

employers.  

 

The coefficients of population density and age variables are not significant, even though earlier 

papers have found both to have a positive impact on bikeshare demand (Daddio, 2012; Rixey, 

2013; Ricci, 2015; Faghih-Imani and Eluru, 2016). Similarly, the households with children variable 

is not significant even though Hosford et al. (2018) found households with children to be less-likely 

users of bikeshare in Vancouver.  

 

With the exception of the number of restaurants within 300 meters, land use variables are not 

significant.  Daddio (2012) also found the effect of park and university areas in the proximity of 

bikeshare stations to be not significant for Washington DC.  However, other studies report one or 

more land use types to have significant impacts (Rixey 2013; Faghih-Imani and Eluru, 2014; Sun 

and Chen 2017).  As in previous other studies (Faghih-Imani et al., 2014; Wang et al., 2015; Faghih-

Imani and Eluru, 2016; Hyland et al., 2017), the proximity to restaurants variable (ADI = 0.12*) is 

statistically significant. A 1% increase in the number of restaurants within 300m of a bikeshare 
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station would increase its bikeshare demand by 0.12%.  This result further supports the use of 

bikeshare for non-work-based trips. 

 

Three of the four transportation variables are statistically significant.  The exception is the bus 

transit arrivals variable.  Results show that rail transit arrivals within 100m of a bikeshare station 

have a positive impact on its demand. Earlier studies have found results (Rixey 2013; Hyland et al., 

2017; Sun and Chen, 2017; El-Assi et al., 2017; Guidon et al., 2019). However, the transit variables 

used in these papers are different from the one used in this thesis. Guidon et al. (2019) used the 

number of passengers alighting transit daily as a variable, while all other studies have used the 

number of transit stations in proximity or distance to the nearest transit station as the explanatory 

variable. These variables are reflective of the general trends between the bikeshare and transit 

but do not to explain the demand for bikeshare as a last mile option. Unlike the variables stated 

above, I explained the bikeshare demand (departures) at a station using the transit demand 

(arrivals) within 100m of the bikeshare station. Connecting the transit arrivals and bikeshare 

departures in the vicinity provides more reliable evidence towards measuring the use bikeshare 

as a last mile mode. Since the LA bikeshare program is designed to integrate with the transit system 

and increase its ridership, I hypothesized the transit activity variables to have a strong positive 

impact on bikeshare demand. While the correlation for rail arrivals is positive, the magnitude of 

the impact is small. A 1% increase in the number of daily rail transit arrivals cause the monthly bike 

trip count to increase by a mere 0.09%, indicating that the LA bikeshare seldom serves as a last-

mile connectivity option for using transit. 
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The above conclusions are further reinforced by the significant negative impact of the volume of 

longer commute trips using transit (>45 minutes, ADI = -0.19***) on bikeshare demand. A 1% 

increase in the number of long-duration transit commuters in the occupying census block group 

of a bikeshare station reduces its demand by 0.19%. Considering the count of long-duration 

commuters using transit as a proxy for the count of multimodal trip makers, the negative impact 

proves that areas with higher number of long-duration transit commuters experience lower 

bikeshare demand, and vice versa.  

  

Finally, the positive impact of the length of bike lane network (ADI = 0.13*) on bikeshare demand 

is both intuitive and consistent with earlier papers (Buck and Buehler, 2012; Rixey, 2013; Wang et 

al., 2015; Faghih-Imani and Eluru, 2016; Guidon et al., 2019). A 1% increase in the length of bike 

lane network within the 1.6km radial buffer around a bikeshare station would increase its demand 

by 0.13%.  

 

5.3 Model Robustness 

I compare the goodness of fit measures for spatial models with three different weight matrix 

formulations; (i) inverse of square function, as discussed above (x-2), (ii) inverse function (x-1), and 

(iii) exponential decay function with power one (exp(x-1)) to test the robustness of my model.  

Table 7 summarizes the results from this comparison.  The values for all four goodness of fit 

measures – RMSE, MAE, AIC and BIC reduce from the SARAR model with distance-based matrix to 

SARAR model with time-based matrix across all three spatial weights formulations.  This provides 

further evidence towards the superiority of a spatial model with time-based travel matrix over one 
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with distance-based travel matrix.  The impact measures of the explanatory variables across the 

three SARAR models with time-based weight matrix remained similar, while their significance was 

the same.  

 

Table 7. Summary of estimated models with different weight matrix formulations 

Model OLS 
SARAR 

(Distance) 

SARAR 

(Time) 

SARAR 

(Distance) 

SARAR 

(Time) 

SARAR 

(Distance) 

SARAR 

(Time) 

Weight Matrix NA Inverse Squared Inverse Exponential Decay 

RMSE 0.45 0.38 0.37 0.39 0.37 0.40 0.37 

MAE 0.38 0.31 0.30 0.32 0.30 0.33 0.31 

AIC 120.30 110.08 105.62 110.94 106.02 112.03 107.31 

BIC 159.99 154.18 149.72 155.03 150.11 156.12 151.40 

 

Moreover, I performed multiple permutations with the inclusion of variables during my modeling. 

However, the impact measure values of significant variables in my final model did not experience 

significant changes when new variables were added, or existing variables were removed.  The 

changes include trying different radial buffers for the transit activity variables, alternative family 

structure variables and changing the number of land use types amongst others.  
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6. CONCLUSIONS 

 

An increasing number of cities across the world have implemented bikeshare systems to provide 

a green, sustainable and economical mode of transport since 2010.  Their popularity as solutions 

for the ‘last mile’ travel, urban traffic congestion, and carbon emissions have further prompted 

many cities to expand their systems.  Identifying the factors influencing the demand for bikeshare 

systems is pivotal to planning for new systems and expanding the existing ones.  Earlier research 

efforts have analyzed such factors, including few studies that have used spatial models with a 

network distance-based weight matrix to incorporate the spatial interactions of the bikeshare 

stations’ demand.  Given that actual travel distance and time information is now readily available, 

I hypothesized that travel behavior is influenced by biking distance, but even more so by biking 

time.  To this extent, I estimated three models: 1) a multiple linear regression model as a baseline; 

2) a SARAR model with a weight matrix based on biking distance; and 3) a similar SARAR model 

with a weight matrix based on biking time. I used socio-economic, land use and transport variables 

to explain the station-level bike trip departures for all the models.  

 

The results clearly indicate that (i) incorporating spatial interactions (spatial lag and spatial errors) 

is an important feature of bikesharing demand; and, (ii) that there is an improvement in the 

models’ goodness of fit from the SARAR models with distance-based weight matrices to the SARAR 

models with time-based weight matrices.  The lower relative mean square error (RMSE) and mean 

absolute error (MAE) for the SARAR models with time-based matrix show that they outperform 

the usual SARAR models with distance-based matrix.  This comparison provides strong evidence 
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for the verification of my hypotheses that (i) incorporating spatial interaction (spatial lag and 

spatial error) and, (ii) the use of travel time over travel distance offers a better estimation 

framework for modeling bikeshare demand.  

 

One of the objectives of the LA Metro Bikeshare Program was ‘to develop an affordable, user-

friendly bikeshare program that increases ridership by integrating with the County’s regional 

transit services’ (Metro Bikeshare Business Plan, 2019-20). Therefore, I hypothesized that 

bikeshare would be a popular mode choice for the last mile travel to access transit.  To test for 

this, I used the number of transit trip arrivals within 100m of a bikeshare station as one of my 

explanatory variables. While the results show that rail trip arrivals in the proximity of a bike station 

have a positive impact on its demand, the magnitude is very small.  A 1% increase in the proximate 

daily rail trip arrivals increases the monthly bikeshare departures by 0.09%.  The results show that 

after controlling for other factors, higher nearby rail transit demand has minimal impact on 

bikeshare demand.  This is further reinforced by the finding that bikeshare is not popular in areas 

with more long-duration transit commuters.  Thus, there is little evidence to support the 

fulfillment of LA Metro Bikeshare Program’s objective.  

 

This is the first known spatial modeling study to use biking distance and biking time as a measure 

for the spatial interactions of the bikeshare stations’ demand.  It provides quantitative estimates 

of how socio-demographic, land use and transport patterns influence station-level bikeshare 

demand.  The proposed framework and the quantitative impacts of exogeneous variables provide 

very important policy implications for planning and modeling for new bikeshare systems and 
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modifying existing bikeshare systems.  From a planning perspective, placing more stations in the 

proximity of existing stations should increase the overall system usage in LA.  Demand for shared 

bikes would also be positively influenced by placing more stations in the proximity to restaurants 

and by increasing the bike lane network around it.  Placing the bike stations in the vicinity of rail 

stations is not sufficient to promote the use of bikeshare as a last mile travel mode.  From a 

modeling perspective, a similar framework can be employed in an iterative manner for different 

network designs to finalize one with optimum expected usage.  This thesis provides evidence that 

the use of spatial model with a travel time-based matrix will give better forecasts. For existing 

systems, planners can employ this improved modeling framework to forecast the bikeshare usage 

when stations are added or removed. 

 

This work is not without limitations. In my modeling framework, I consider the monthly trip count 

which does not account for temporal fluctuations. Future studies can extend this thesis by 

incorporating them alongside the existing spatial modeling framework to model the hourly panel 

data.  This will also improve the travel time matrix by allowing for the time of the day criteria when 

collecting data from Google Places API. A similar method can also be used to model trip arrivals. 

Additionally, the use of TAP card data that links bike to transit trips would be a promising research 

direction to measure the extent of bikeshare use as the last mile mode. The statistical 

insignificance of the land use variables in my model could be driven by my choice of buffer (500m 

radius) and/or the dataset (SCAG). An extension of this study by using a different buffer sizes or 

using other data at the tax lot level may lead to different results. Finally, the SARAR model with 

travel time-based matrix shows promise but it needs to be tested on other bikeshare systems. 
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